OATAO

Cipen Archive Toulouse Archive Ouverte

OpenArchive TOULOUSEArchive Ouverte OATAO)

OATAO is an open access repository that collects the work of Toulouse researcl
makes it freely available over the web where possible.

This is an author-deposited version published hittp://oatao.univtoulouse.fr
Eprints ID : 15728

Tolink tothisarticle : DOI:10.1016/}.ijmultiphaseflow.2015.07.004
URL : http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.07.004

Tocitethisversion :
Fede, Pascal and Sofonea, Victor and Fournier, Richard and Blanco,
Stéphane and Simonin, Olivier and Lepoutére, Guillaume and
Ambrus, Victor Lattice Boltzmann model for predicting the
deposition of inertial particles transported by a turbulent flow.
(2015) International Journal of Multiphase Flow, vol. 76. pp. 187
197. ISSN 0301-9322

Any correspondece concerning this service should be sent to the repc
administrator; staff-oatao@listes-diff.inp-toulouse.fr




Lattice Boltzmann model for predicting the deposition of inertial
particles transported by a turbulent flow

Pascal Fede *™*, Victor Sofonea ¢, Richard Fournier ¢°, Stéphane Blanco *°, Olivier Simonin *,
Guillaume Lepoutére *°, Victor Ambrus ©

2 Université de Toulouse; INPT, UPS, Institut de Mécanique des Fluides de Toulouse, Allée Camille Soula, FR-31400 Toulouse, France

Y CNRS, Fédération de Recherche FERMAT, FR-31400 Toulouse, France

€ Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, RO-300223 Timisoara, Romania
d Université de Toulouse; INPT, UPS, LAPLACE, 118, route de Narbonne, FR-31062 Toulouse, France

ABSTRACT

Deposition of inertial solid particles transported by turbulent flows is modelled in a framework of a
statistical approach based on the particle velocity Probability Density Function (PDF). The
particle-turbulence interaction term is closed in the kinetic equation by a model widely inspired from
the famous BGK model of the kinetic theory of rarefied gases. A Gauss-Hermite Lattice Boltzmann model
is used to solve the closed kinetic equation involving the turbulence effect. The Lattice Boltzmann model
is used for the case of the deposition of inertial particles transported by a homogeneous isotropic turbu-
lent flows. Even if the carrier phase is homogeneous and isotropic, the presence of the wall coupled with
particle-turbulence interactions leads to inhomogeneous particle distribution and non-equilibrium par-
ticle fluctuating motion. Despite these complexities the predictions of the Lattice Boltzmann model are
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Deposition in very good accordance with random-walk simulations. More specifically the mean particle velocity,
the r.m.s. particle velocity and the deposition rate are all well predicted by the proposed Lattice
Boltzmann model.

Introduction vy is the fluid viscosity. In boundary layer turbulence, we find three

regimes (Friedlander and Johnstone, 1957):
Solid inertial particles suspended in turbulent flows are

involved in many practical applications such as coal combustion,
particulate radioactive contamination, sediment transport or ripple
motion, pollutant deposition, or drug inhalation by medicinal aero-
sols. In these applications, the deposition of the particles can be of
great importance. From the modelling point of view, the particle
deposition is challenging because the particle-turbulence interac-
tion leads to several regimes. In a standard manner the
particle-turbulence interaction is quantified with the Stokes num-
ber that is written in a turbulent channel flow as t; = T,u?/vy,
where 7, is the particle relaxation time (7, = ppdf,/lSpfvf) and
vr/u? is a characteristic wall-turbulence time scale, defined on

the basis of a boundary layer characteristic velocity u*. In previous
definitions, p, is the particle density, d, is the particle diameter and
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e 7, < 1: a diffusion regime, where the particles behave like
tracers.

e 7, > 40: an inertial regime, otherwise called ballistic regime,
where the particles do not interact with the turbulence and
achieve a free flight-like march down to the wall.

e 1 <1, <40: a transitional regime corresponding to a partial
interaction of the particles with the turbulence. It is a
diffusion-impaction regime, appearing to be the most problem-
atic regime to deal with.

These regimes are well described by Liu and Agarwal (1974)
who made experiments in which they measured the deposition
velocity of particles transported by the turbulent channel flow.
To understand the mechanisms of the particle interaction with
the near-wall turbulence, Direct Numerical Simulation coupled
with Discrete Particle Simulation have been carried out (Kallio
and Reeks, 1989; Marchioli et al., 2007). Besides these fundamental
investigations, several modelling approaches have been developed,



such as the ADE (Advection Diffusion Equation) models, from
which the Euler/Euler, or the two-fluid models (Young and
Leeming, 1997) showed a good capability only in the diffusion
regime. In contrast, the approaches based on the Reynolds
Averaged Navier Stokes (RANS) coupled with Lagrangian tracking
of particles (Matida et al., 2000) were inaccurate for predicting
the deposition rate and the near-wall region dynamics.

A way to model the behaviour of the inertial particles trans-
ported by a turbulent flow is to use a statistical description of
the particle phase by a probability density function (PDF) of the
particle velocity. In 2009, Aguinaga et al. (2009) proposed an orig-
inal approach called SAB (for Simonin, Aguinaga and Borée) based
on a kinetic equation where the interaction of the particle with the
turbulence is closed by considering a return-to-equilibrium (BGK
like) term. As shown by Aguinaga et al. (2009), the solution of this
kinetic equation with pure deposition boundary condition can be
tricky, even in the case where the turbulence is homogeneous
and isotropic. Indeed, when considering the case of particles trans-
ported by a turbulent channel flow, Aguinaga et al. (2009) obtained
good results for the impaction regime, while for the intermediate
regime numerical problems appeared. More recently Van Dijk
and Swailes (2012) proposed a novel methodology for the numer-
ical treatment of multi-dimensional PDF models describing the
particle transport in turbulent boundary layers. Diounou et al.
(2011) proposed a very simple Lattice Boltzmann Model (LBM)
approach to solve the SAB kinetic equation, which is more efficient
and robust. In the present paper, a Gauss-Hermite Lattice
Boltzmann Method (GHLBM) is proposed for solving directly the
kinetic equation of the SAB model.

It must be emphasised the strong originality of the approach
developed here. Indeed, solving the LBM evolution equation pro-
vides an alternative to solve the Navier-Stokes equations for
single-fluid dynamics (Succi, 2001; Aidun and Clausen, 2010).
The LBM was already used to investigate particle-laden flows,
but only in order to compute the evolution of the interstitial fluid
carrying the particles (Cate et al., 2004; Derksen and Sundaresan,
2007). In the present paper, the LBM approach is used to solve
the PDF evolution kinetic equation that describes the dynamical
behaviour of a cloud composed of solid particles.

The present study is a part of a more general work dedicated to
Eulerian modelling of particle-laden turbulent flows showing com-
plex interactions with walls, such as deposition or resuspension,
but also non-elastic and/or frictional bouncing on rough wall. The
derivation of boundary conditions in the frame of the Eulerian
moment approach accounting for such complex particle-wall inter-
action mechanisms is a daunting task, in particular as a result of the
non-equilibrium state of the particle velocity distribution in the
near-wall region. To overcome the challenges, the final practical
objective is to develop an hybrid method where the moment
approach is used far from the wall and coupled with a full resolu-
tion method of the PDF kinetic equation towards the wall. The
PDF resolution method could be a Lagrangian stochastic method,
as proposed by Pialat et al. (2007b), or a LBM approach, as devel-
oped in the present paper, with the goal to simplify the coupling
process with the moment approach used in the main flow.

The paper is organised as follows. First, the statistical approach
describing the behaviour of solid particles interacting with a turbu-
lent fluid flow is briefly introduced and the SAB model proposed by
Aguinaga et al. (2009) is presented. The third section introduces
the Lattice Boltzmann scheme. A focus is made on the numerical
treatment of the term representing the forces acting on the parti-
cles. The role of the quadrature and of the Hermite expansion is
illustrated by considering an academic problem, namely the homo-
geneous relaxation towards equilibrium. The LBM results for the
deposition of inertial particles transported by a homogeneous iso-
tropic turbulence are shown in the fourth section.

Statistical model

The statistical description of the dispersed phase, composed of
solid particles or droplets transported by a turbulent fluid flow
relies on the analogy with the thermal motion of molecules as
described by the kinetic theory of rarefied gases. In the standard
kinetic approach, the dispersed phase is described by the particle
Probability Density Function f,(X,t;c,) defined such that
fp(X,t;¢,)deydx is the mean probable number of particles at the
time t with the centre of mass located in the volume [X,x + dx],
and the translation velocity, u,, within [c,,¢, + dcy). From the
PDF the density number of particles writes

n, = /fpdcp, (1)
the mean particle velocity,
1
Upi = [ cadydes, @)
P
and the particle kinetic stress,
1
<up1upj> n, /[ij - UP-,i] X [CP-J - Ul’\flfpdcp' (3)

The single particle velocity PDF obeys the following Boltzmann-like
kinetic equation:

R

where (.|c,) is the ensemble average conditioned by the particle
velocity. The third term on the left-hand-side of Eq. (4) represents
the forces acting on the particles, enclosing the turbulent parti-
cle-fluid coupling. The term on the right-hand-side of Eq. (4) is
the modification of the PDF by the inter-particle collisions. In the
present study the particulate phase is very dilute such that this
term will no longer be considered. For spherical particles trans-
ported by a turbulent flow, several forces are acting on the particles:
the drag force, the lift force or the added mass force, as in (Gatignol,
1983; Maxey and Riley, 1983). However, assuming a large
particle-to-fluid density ratio, the forces can be reduced to the grav-
ity and drag forces. Then the particle acceleration reads

du, u, — Usqp
R Y A s 5
d , ¢ (3)
where uyq, is the fluid velocity at the particle position, g is the gravity
and 7, is the particle relaxation time. So using Eq. (5) in the third term
of Eq. (4) and neglecting gravity, the Boltzmann equation becomes

of, o[ 1
a—tp+—[ ]+ . T_p(cp-i_<uf@l7-i|cp))fp =0. (6)
As the paper is dedicated to the modelling of the

particle-turbulence interaction in the wall boundary layer flow,
we may assume, without loss of generality that 9/9y ~ 9/0z ~ 0.
Then, considering 7, as a given value independent of the instanta-
neous particle velocity (such as in Stokes’s drag law), the kinetic
equation governing the wall-normal particle velocity PDF is
obtained by integration of Eq. (4) on the velocity components in
y- and z-directions and is written

o, s o 1

ot " ox [Cpfp] +8_Cp _T_,,(Cp — (Uraplcp))f | =0 (7)
where ¢, is the particle velocity component expected in the x-direc-
tion normal to the wall.

The modelling of the particle-turbulence coupling term
received much attention (Derevich and Zaichik, 1988; Zaichik
et al, 1997; Reeks, 1992; Reeks, 1993; Simonin, 2000).



Aguinaga et al. (2009) proposed an approach inspired from the BGK
model. The fluid-particle interaction term is separated in two
contributions: first, the fluid-particle interaction through the mean
gas and particle velocities; second, the coupling of the particle
fluctuating motion with the fluid turbulence. The last contribution
is modelled as a return-to-equilibrium term in a similar manner to
the effect of the inter-particle interactions in the BGK model
(Bhatnagar et al., 1954). As in the standard BGK model, the
return-to-equilibrium term needs an “equilibrium” PDF, f*, and a
given time-scale, t*. Then Aguinaga et al. (2009) proposed to write
the fluid-particle interaction terms of the kinetic equation as

bt ey 2, ). (®)

Dicp %%(q, — (Usaplcp))f } = *[ T, o, T

In Eq. (8) the equilibrium PDF, f7, is chosen in order to model parti-
cles in equilibrium with the gas turbulence according to the Tchen
& Hinze theory (Tchen, 1947; Hinze, 1972):

(1) = () = (Wstin) 5 ?

with the Stokes number St = 7,/7},,, where t;,, represents the fluid
Lagrangian integral time scale measured along the particle trajecto-
ries, which is proportional to the turbulent dissipation time scale
¢ = k/€ (Simonin et al,, 1993). But, in the present study, the LBM
predictions are compared with stochastic simulation results from
Nagy and Swailes (1996) with a given value of t{,,. In such a frame-

work, the equilibrium PDF is a Gaussian distribution (Laviéville
et al., 1995)

(- Up)2 .
2<”}@p”§z>

Fxtc) = L exp (10)

(2n(upy))

The relaxation time-scale, t*, and the parameter 4 in Eq. (8) are cho-
sen to ensure exact fluid-particle interaction terms in the moment
equations of n,, Uy, and of the particle kinetic energy. This process
leads to =2 and 7 = 7).

For the mean contribution, the mean fluid velocity seen by the
particles, Usqp, has been introduced. Such a mean velocity has two
contributions: (i) the mean fluid velocity Uy and (ii) a drift velocity
V4 representing the correlation between the local instantaneous
particle distribution and the turbulent fluid velocity. Then the
mean fluid velocity seen by the particles is written as
Urap = Uy + V4 and, following Simonin et al. (1993), the drift veloc-
ity in homogeneous turbulence reads

, o\ 1 0n
Va = —Tpop <ufup>n_p a_xp' (11)

Finally the Boltzmann-like transport Eq. (6) with the SAB model for
the fluid-particle interaction becomes

oy oy [Up= U+ Va)] oy 2
Tp ac,  Tp

L+t ,-f1=o0. (12)

Aguinaga et al. (2009) solved this equation with a finite-difference
scheme based on a non-uniform mesh. For particles with large par-
ticle relaxation times, the results were very good. However, the
method was unstable for moderate and small Stokes number. In
the next section, a Lattice Boltzmann scheme is proposed to solve
Eq. (12).

Lattice Boltzmann model
Background

The lattice Boltzmann simulation of far out-of-equilibrium gas
flows has received a solid theoretical attention with the work of
Chen and co-workers (Zhang et al., 2006; Shan et al., 2006; Chen
et al., 2007; Colosqui et al., 2009; Colosqui, 2010). These develop-
ments find their origin in intensive efforts made since 1997
towards the rigorous proof that numerous of the most established
Lattice Boltzmann algorithms could be interpreted as numerical
solutions of the Boltzmann equation itself (He and Luo, 1997;
Abe, 1997; Shan and He, 1998; Piaud et al., 2005). A clear synthesis
is that of Shan et al. (2006), leading to the proposition of a system-
atic approach based on a Hermite expansion of the Boltzmann
equation similar to that of Grad in 1949 (Grad, 1949; Grad,
1952). In this approach, the starting point is the Boltzmann-BGK
equation in which both the force term and the equilibrium distri-
bution in the collision term are replaced by Hermite expansions.
Then it is shown that truncating these Hermite expansions at a
given order is equivalent to a strict satisfaction of all the moment
equations in Grad’s theory up to a fixed order, and that using a
Gauss-Hermite quadrature in the Lattice Boltzmann velocity inte-
gration scheme maintains this strict satisfaction. Increasing the
truncation order allows therefore to go as far as required into the
field of far out-of-equilibrium phenomena.

Such an approach looks very much meaningful in the present
context. The SAB model is indeed based on a transport equation
very close to the Boltzmann-BGK equation and the problems of
interest correspond to far out-of-equilibrium conditions under
which a close description of the distribution function in phase
space is required that cannot be easily reduced to the description
of only the first three moments in geometrical space. Strong devi-
ations from equilibrium have essentially two possible sources: the
boundary conditions and the spatial variations of turbulent agita-
tion. The analysis reported in the present text are restricted to
homogeneous turbulence. The studied out-of-equilibrium condi-
tions are directly related to the boundary conditions, essentially
the fact that particle deposition at the wall is translated into a null
value of the distribution function in the whole inward hemisphere.
Thus, the distribution function at the wall is therefore very far from
a Maxwellian distribution. The present question is therefore clo-
sely related to the treatment of boundary condition effects on
the Boltzmann-BGK equation in rarefied gas flows. If we take this
starting point when considering the lattice Boltzmann method
for simulation of the SAB model, then the following differences
must be pointed out. First of all, the variance of the Maxwellian
distribution f* is not equal to the variance of the local particle
velocity distribution. As this variance (the local temperature) plays
an essential part in the way the set of discrete velocities is chosen,
the SAB model opens new specific questions. In particular, when
adapting the available techniques, which of the two available local
temperatures should be chosen, the particle “temperature” or the
turbulence “temperature”? Another point is that the forces must
be represented very accurately as they play an essential part in
the considered particle-turbulence interaction physics, which is
not the case in most of the reported implementations of Shan’s
proposition. From this point of view, a parallel can be made with
the three-dimensional modelling of liquid-gas phase transition,
which is today a very active area of research that will require the
lattice Boltzmann methods to go through a very detailed further
consideration of force terms in Boltzmann-like equations. Finally,
the above mentioned fact that the variance of the Maxwellian dis-
tribution f* is not equal to the variance of the local particle velocity
has a positive consequence: the relaxation term of the SAB model



is not energy conservative (energy is exchanged with turbulence)
and we can assume that the addressed numerical problem will
be less constrained, in terms of conservation principles, than those
addressed for Boltzmann-BGK applications in rarefied gas flows.

Gauss-Hermite Lattice Boltzmann models in one dimension

In order to solve one-dimensional (1D) transport problems like
the one defined by Eq. (12), which involves a relaxation process
towards an equilibrium distribution function (Maxwellian) f~,
one can apply the general procedure described in Shan et al.
(2006, 2014). According to this procedure, one introduces a 1D
family of Gauss-Hermite Lattice Boltzmann models, denoted as
GHLBM(N;Q), where N is the order of the model and Q > N +1
is the quadrature order, i.e., the number of the vectors in the veloc-
ity set. The approximation of a PDF by using an expansion with
respect to a family of orthogonal polynomials, followed by a
quadrature method, is a quite standard technique used in LB
models (Shan and He, 1998; Shan et al, 2006; Xiu and
Karniadakis, 2002; Cho et al.,, 2014; Shizgal, 2015). Such a 1D
Lattice Boltzmann (LB) model is said to be of order N (Shan et al.,
2006; Piaud et al., 2014; Ambrus and Sofonea, 2012) if all the
moments

+00

MET) (x, £) = / ficde,  0<s<N (13)
of the dimensionless equilibrium distribution function f* are
exactly recovered for U, =0 and T, = 1. This does not mean that
the temporal evolution of the first N moments of the dimensionless
distribution function f, are recovered. Generally speaking, the num-
ber of the distribution function moments that are accurately pre-
dicted depends on the temporal and spatial Knudsen numbers,
and even on the types of the considered initial and boundary condi-
tions. But this is still clearly the objective of lattice - Boltzmann
algorithms: accurately evaluating the moments of f, up to a given
order M, even at the expense of poorly evaluating the distribution
function itself (which seems in contradiction with the kinetic nat-
ure of these algorithms). How this could be conceived as a meaning-
ful objective is the result of a close combination of Hermite
expansions (the same starting point as Grad) and Gauss-Hermite
quadratures.

Expanding f, in Hermite polynomials H™(cp), ie., writing
(Shan et al., 2006)

> 1
Zﬁa" (%, tYHn(Cp) (14)
n=0

fhefxte) =

with w(c,) = (1/v2T) exp {—cﬁ/z] and

a, = ay(x,t) = /fp(x, t; Cp)Hau(Cp)dcy (15)
allows one to define the truncated version of this expansion
N
Fo=Fy = £, (0 6:6) = ()Y — an(X, ) Ha(cp) (16)
n=0

that has exactly the same moments as f, up to order N.

Using Gauss-Hermite quadratures of order Q > N + 1 to com-
pute the first N moments of f; would ensure that this computa-
tion is exact. This is because fl(,’\” has, by construction, a

Hermitian shape of order N,' and the Gauss-Hermite quadratures
are precisely designed to evaluate the moments of such functions.

1 We refer to a Hermitian shape of order N each time a function of cp is expressed as
(cp) times a weighted sum of the first N Hermite polynomials.

So, if one manages to define and deal with the temporal evolution
of fV then one only needs to evaluate it at the quadrature points

Gk (k=1,...,Q). Thus, only Q values of f;,N) are sufficient to get
the exact values of the first N moments of f™ that are identical to
those of f,:
+0oo +o0 N
) ;[ foeSldc, = MM 5[ ‘ fVe¥dc, (17)
for 0 <s < Nand
Q
Wk
I ok (18)
; w( P < 7P

for Q > N + 1, with
il =l =

where w;, are the quadrature weights (Shan et al., 2006).

In practice, this ideal objective is never reached in an exact
manner (except in academic cases such as the one that we develop
in the following section for didactic purposes). Following Shan’s

approach (Shan et al., 2006), we start by replacing the true f;N)

(x t;Cp) (19)

by another distribution function, f, =f,(x,t;c,), that evolves
according to the following transport equation (9, =9/t
Ox = 0/0x), designed to recover a spatio-temporal evolution as

close as possible to that of "

N N-1 1 2 .
af, + o, — Ao(cp Zm (X, Y Hpo1(Cp) + — - [fp _f (N)] =0
n=0

(20)
with
A= [%:Jrvd)] (21)
= [ Jlxticoaler)de, (22)
and
inl (x, t)Hn(Cp) (23)
n=0
a, = / f (%, t; cp)Hn(cp)dcy (24)

The transformed problem defined by Eq. (20) is obtained by
projecting each term of the original equation into the space of
Hermitian polynomials and truncating at order N. In fact, this is

exactly true for all terms, except the transport term c,dxf, that can-
not be justified using a strict truncation of ¢,0xf, at order N. Indeed,
noting (.)™ the hermitian projection truncated at order N, it can be
easily checked that (c,0.f,)™ # c,04f)". We will discuss this dif-

ference in Section ‘The advection term’, but in the following section
we start by addressing simple homogeneous examples in which

the advection term is null, ensuring that f, = f{". Fig. 1 sum-

marises the steps leading to a discrete problem inf;, starting from
the initial continuous f, problem.

Homogeneous relaxation towards a Gaussian distribution

Let us consider the kinetic equation without the advection and
force terms:

oy =~ Uy =1, 25)



[v: defined as the solution of Eq. (13)

Approximating the transport
Term in Eq. (35)

FIM) : defined from f, asa truncated
Hermite expansion

1
1
I
|
1
v

S9) : defined from f{™) fora given
set of discrete velocities Cp.k

Unpractical (f}_{"l is not known)

FIM : defined as the solution of Eq. (21)

JUG@ - defined from f;” ) for a given
sct of discrete velocitics Cpk

Practical but approximate

Fig. 1. Steps to transform the initial continuous problem into the practical problem that is solved.

This equation describes the homogeneous relaxation of the distri-
bution function f,(c;, t),

folep,t) =foe ™ +f7(1—e ) (26)

where f, = f,(cp, t = 0). This allows us to easily integrate Eq. (26) to
get the evolution equations of the moment of order M of f,

+o00
M0 = [ fyletchde,

o0 r 400
=el/w / focylde, + (1 —e /%) / frejldc,
_ M(()M)e—t/rp +M*,(M)(-l _ e—t/rp) (27)

For convenience, we will consider the case where both f, and f~
are Maxwellians:

1p (cp — Up‘O)2

_ _\p — Pp0) 28

fO \/TTPD exp |: 2Tp.0 ( a)
M | (6 -Un)’

I = omr P { 2T, (28D)

where ny, Upo, Uy, Tpo and T, are constant quantities. So, the fluid
starts in the Maxwellian state of velocity U, and temperature T,
and relaxes toward the Maxwellian state of average velocity U,
and temperature T,, (see Fig. 2). Solving Eq. (25) using the
Gauss-Hermite model GHLBM(N; Q) leads to the following evalua-
tion of M™

Q - N

My () =D FRo ), (29)
k=1

with

FRY =FNY (xt) =V (x, 1.0 (30)

This solution can then be compared to Eq. (27) using the analyti-
cally known moments of the Maxwellian. The model
GHLBM(N; Q) is expected to recover all the moments up to order
M = N. Fig. 3 shows the evolution of all the moments up to order
M =38, as recovered using the models GHLBM(N;Q =N + 1), for
n, =1.0,Upo=-2.0,Typ=1.0,Up. =10 and T,. =2.0. For each
N, we used only the minimum value of Q since the GHLBM(N; Q)
models ensure all the moments of f, up to order N for any

0.45 T T T

|

|

|

035 |

TRk e e

|

0.25 |

0.15 |-

0.1

0.05 |-

Fig. 2. Time-evolution of the distribution function f,(c,, t) given by Eq. (26).

Q > N+ 1. For a given value of M, one can see that only the
GHLBM models of order N > M allow one to get the correct evolu-
tion of the moment M™ of the distribution function f, subjected to
the homogeneous relaxation process, Eq. (25). But then, above
N = M in this simple case, the moments are strictly exact, which will
not be the case as soon as space gradients are present, inducing
transport effects.

It is worth emphasising that the moments are exactly recov-
ered, despite the fact that fﬁm # fp(Cpk, t): the computed values
of the distribution function at the quadrature points do not match
the true distribution. As shown by Fig. 4, they match its Hermite

transform f§":

% Zfycpt) and fp =0 -

This means for instance that f™®

ok can take negative values in such
an extreme case as that of Fig. 4. The initial and final distributions
are so distinct (T,o = 1,Upo = —2 versus T, = 2,U,. = 1) that the
reference values T, and Uy, used to render the problem dimen-

sionless, cannot be chosen in an adequate manner so that the
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Hermite transform remains close to a physically meaningful shape The advection term

at all the times. But this does not affect the ability to recover the

right values of the momenta. Of course, this is strictly true only Exact reasonings such as those of the preceding section cannot
for this simple academic case, and once again the transport will turn be extended as soon as the advection term is non null. We already
everything. mentioned that Eq. (20) was justified by projecting each term of
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Fig. 3 (continued)

Eq. (12) into the space of Hermitian polynomials and truncating
at order N, but that this was not rigorous for the advection term.
And indeed,

afp (N) 8f;,N)
ot) ot (32)
of (N) af(N)

<cpa—;’) ;écp—a‘;( (33)

Uy — (U + V)] 9F\ ™ S
({%} (Tcz) = A6 G O 6) (39

2 AY 2nm am

T_p[fp_f} :‘C_p [fp -f } (35)
If we define € as

af(N) 8f (N)

=g <ca—;’> (36)
then " satisfies the following equation,

™ W) 'S 2 () _p]
O+ Cpdnf wa(Cp)Zﬁan(x,t)HnH(Cp)+T—[fp —f ]_e

n=0""" p
(37)

that only departs from Eq. (20) because of € at the right hand side.
Using Eq. (14) and the recurrence relation c¢,Hn(cp) = Hni1(Cp)+

nHn_1(cp) satisfied by the Hermite polynomials (Shan et al., 2006),
€ reads

(38)

n

N
€(x,t;¢p) =0x {w(cp)zr:!an (%,6){ Hny1(Cp) +NHn1 (cp)}}

=0
+00 (N)
- (ax {w(CD)Z;Gn(X,t){HnH (o) +1Hy 1 (c,,)}D (39)
<!

n=|
X

— (1/NY)(Cy)% [an (%, Hv 1 (65) — 1 (%, O HA(G, )|

If this error term were null, Egs. (20) and (37) would be identical
and fp would match f;)N) exactly. Remembering that we only need to

(40)

evaluate f;,N) at the quadrature points ¢, we would only need that
€(x,t;cpx) be null for all k =1,...,Q. We can turn one part of the €
expression to zero by noting that Q = N + 1 ensures Hy.1(Cpx) =0
forall k=1,...,Q. But we then still get

€(x,t;¢px) = —(1/NYw(cp)Oxan1 (X, ) Hn(Cpk) (41)

and a1 (x, t) cannot be evaluated using f;" only. Choosing to retain
Eq. (20) in place of Eq. (37) is therefore equivalent to the assump-
tion that ay.1(x,t) ~ 0, or more precisely that dyan.1(x, t) ~ 0, which
is exactly the closure assumption made by Grad in his original work
(Grad, 1949).
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Fig. 4. Dependence of f; (left column) and f~ (right column) with respect to both the velocity c, in the continuum space and the discrete velocities c,x,k = 1,2,...Q with
parameters n, = 1.0,U,o = —2.0,Tg = 1.0,U,,. = 1.0 and T,,. = 2.0. Solid line: analytical expressions Eq. (28); dashed-dot line: corresponding Hermite expansions, Eq. (16),

for N € {2,5,8}; and symbols: the corresponding values fé’_",fl), Eq. (19) in the GHLBM(N; Q = N + 1) model.



Deposition of inertial particles transported by a homogeneous
isotropic turbulent flow

Configuration overview

Nagy and Swailes (1996) performed stochastic Lagrangian sim-
ulation for investigating the deposition of inertial particles trans-
ported by a homogeneous isotropic turbulence. The numerical
domain is shown in Fig. 5. The wall is located at x =0 and the
top of the domain is at xy. The particles enter at the top of the
domain according to an half-Gaussian distribution of the velocity:

C2
frx=xy,t;c, <0) = ! exp | — P : (42)
. /27r<u]’p@pu;> 2<”f@p”iv>

For particles crossing the edge, the top of the domain is a free outlet.
At the wall, namely for x = 0, there is a perfectly adsorbing bound-
ary. Then, the PDF of particles leaving the wall is

fp(x=0,t;¢, >0) =0. (43)
In random walk simulations, the particles are injected at various
distances from the wall. The distance of the upper boundary of

the domain is expressed as xy = N; - L where N; is the number of
particle mean free paths and L is the particle mean free path given

by L=r1, <u;,u;,>. The Lagrangian particle integral time scale, t¢,
writes T}, = Tf, + T, and thus the particle mean free path is
L=r1t uu 1+i (44)
~ “fap p-p ‘L')E,, ’
@p

Nagy and Swailes (1996) considered particles with a Stokes number
equal to 100. The other fluid and particles properties are then
deduced from 7, and 7,

=1

t,, =001

St=—2 —100
fap

U =0

(Woplip, ) = 101

<u},@pu;> =1
L=1

The analysis can be either done in terms of particle mean free paths
N, or in terms of Stokes numbers. A large N; corresponds to a small
Stokes number and a small N; corresponds to a large Stokes
number.

The computations shown in the present section have been per-
formed with Q = 20 discrete velocities and the order of the trunca-
tion is N = 6. The domain is meshed in the x-direction with an
uniform mesh having N, =100 points. A flux limiter scheme
(Cristea and Sofonea, 2004; Sofonea et al.,, 2004; Sofonea and
Sekerka, 2005; Ambrus and Sofonea, 2012) was used to solve the
evolution equation for fﬁ;m at each quadrature point cpyy
(1<k<Q).

In the present case, after a transient phase the system reaches a
steady state where the number of particles in the domain is fluctu-
ating around a constant mean value. Then the number of injected
particles are balanced with the number of deposited particles
and the number of particles leaving the domain by the free outlet
at the top of the domain (see Nagy and Swailes (1996) for more
details).

T A

folz, ;)

Y

ZIIH:NL'L

Wall

Fig. 5. Sketch of the numerical domain and the boundary condition on the PDF. At
the top of the domain (x = x4) a Maxwellian distribution is prescribed for ¢, < 0
(see Eq. (42)) and at the wall a pure absorbing wall boundary condition is imposed.

Results and discussion

The dependence of the particle number density, defined by
Eq. (1), on the number of mean free path and the distance to the
wall is shown in Fig. 6. For heavy particles, corresponding to
N = 0.5, the profile of particle number density is almost flat,
meaning that the number density of particles at the wall is nearly
the same as the one at the top of the domain. Indeed, such very
inertial particles weakly interact with the turbulence and cross
the domain up to the wall. In contrast, Fig. 6 shows that the
number density of particles with a small Stokes number,
corresponding to large Ny, is small at the wall. This trend was
expected because in such a case the particle-turbulence interaction
lead a part of the particles to go towards the wall and another part
back in the flow, i.e. by the free outlet at the top boundary.

0 0.2 0.4 0.6 0.8 1
Normalized distance to the wall
Fig. 6. Particle number density with respect to the normalised distance to the wall.

The symbols are the data from Nagy and Swailes (1996) and the solid lines
represent the predictions of the GHLBM.
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Fig. 7. Mean particle vertical velocity with respect to the distance to the wall. The

symbols are the data from Nagy and Swailes (1996) and the solid lines the
predictions of the GHLBM.

Ny,

Fig. 8. Particle deposition rate with respect to the number of mean free path. The
symbols are the data from Nagy and Swailes (1996) and the solid line the
predictions of the GHLBM.

Fig. 6 shows that GHLBM model is in good agreement with the
random walk stochastic simulation performed by Nagy and
Swailes (1996). Compared to Diounou et al. (2011) the results are
improved in the near wall region by use of the Hermite polynomial
expansion.

Fig. 7 shows the mean vertical particle velocity and r.m.s veloc-
ity for N; = 10.0 and N; = 1.0. One can observe that the magnitude
of the particle velocity is increasing while approaching the wall. At
the opposite side, the particle r.m.s velocity is decreasing when
approaching the bottom boundary condition.

Fig. 8 shows the deposition rate with respect to the number of
particle mean free paths. The deposition rate, defined as

0
=0,t;¢p)d
kd :lf,m Cp fp(x ) 7Cp) CP (45)

Xn gh [fj;cfp(xv t; Cp)de}dX

is the flux of particles towards the wall normalised by the bulk par-
ticle number density. A small number of particle mean free paths,
i.e. N, — 0, corresponds to particles with a large inertia. Such kind
of particles cross the domain without interacting with the turbu-
lence. Thus the expected deposition rate, and the one shown by

Fig. 8, is 1. In others word all particles entering in the domain at
x, are found at the wall at y = 0. On the other hand, particles having
a large number of mean free path (N, — +co) have a strong interac-
tion with the turbulence. A part of the particles deposit but also a
part go back to the mean flow by the outlet at the top of the domain.
As a consequence, increasing the number N; of particle mean free
paths leads to decreasing the deposition rate (as shown by Fig. 8).
It is remarkable that the deposition rate predicted by the Lattice
Boltzmann method is in very good accordance with the random
walk Lagrangian simulations of Nagy and Swailes (1996).

Conclusions and prospects

A novel Gauss-Hermite Lattice Boltzmann Model for solving the
kinetic equation describing the dynamical behaviour of solid iner-
tial particles interacting with a turbulent flow has been proposed.
For the sake of clarity the model has been developed for 1D in
space and in velocity. However the extension to 3D in space and
in velocity is straightforward.

A simple case of a homogeneous relaxation towards an equilib-
rium has been used to show the effect of the order N of the Lattice
Boltzmann model. This case allowed us to show that, when a
Lattice Boltzmann scheme is used, we do not solve directly for
the PDF but for a projection of the true PDF on a Hermite basis.
Moreover the projected PDF may have negative values, which is
not possible for the true PDF. Accordingly, the boundary conditions
have to be also projected on a Hermite basis.

The Lattice Boltzmann scheme has been validated for the case of
the deposition of inertial particles transported by a homogeneous
isotropic turbulent flow as studied by Nagy and Swailes (1996)
with random walk simulations. The mean particle velocity, the par-
ticle fluctuating velocity and the deposition rate are all very well
predicted by the proposed Lattice Boltzmann model. The results
are in good accordance even for particles having a very small relax-
ation time. Such a case was the more critical because the particle
kinetic energy varies strongly between the top of the domain and
the wall.

By using the proposed Lattice Boltzmann scheme it is possible
to implement different boundary conditions describing more com-
plex phenomena as the bouncing of solid particles on a rough wall
(Konan et al., 2009). As discussed in the introduction, the deriva-
tion of practical general wall boundary conditions in the frame of
the Eulerian moment approach is a very difficult challenge and a
very promising approach should be to couple the moment equa-
tions with a full resolution of the PDF transport equation in the
near-wall region. Such a hybrid method has already been devel-
oped using a Lagrangian stochastic approach to solve the PDF
kinetic equation (Pialat et al., 2007a; Pialat et al., 2007b), but the
coupling of the Eulerian moment approach with the Lattice
Boltzmann approach seems to be much more feasible. The present
paper shows that this coupling can now be considered for the pre-
diction of particle-laden turbulent flow with deposition at the wall.
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