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a b s t r a c t

Deposition of inertial solid particles transported by turbulent flows is modelled in a framework of a

statistical approach based on the particle velocity Probability Density Function (PDF). The

particle-turbulence interaction term is closed in the kinetic equation by a model widely inspired from

the famous BGK model of the kinetic theory of rarefied gases. A Gauss-Hermite Lattice Boltzmann model

is used to solve the closed kinetic equation involving the turbulence effect. The Lattice Boltzmann model

is used for the case of the deposition of inertial particles transported by a homogeneous isotropic turbu-

lent flows. Even if the carrier phase is homogeneous and isotropic, the presence of the wall coupled with

particle-turbulence interactions leads to inhomogeneous particle distribution and non-equilibrium par-

ticle fluctuating motion. Despite these complexities the predictions of the Lattice Boltzmann model are

in very good accordance with random-walk simulations. More specifically the mean particle velocity,

the r.m.s. particle velocity and the deposition rate are all well predicted by the proposed Lattice

Boltzmann model.

Introduction

Solid inertial particles suspended in turbulent flows are

involved in many practical applications such as coal combustion,

particulate radioactive contamination, sediment transport or ripple

motion, pollutant deposition, or drug inhalation by medicinal aero-

sols. In these applications, the deposition of the particles can be of

great importance. From the modelling point of view, the particle

deposition is challenging because the particle-turbulence interac-

tion leads to several regimes. In a standard manner the

particle-turbulence interaction is quantified with the Stokes num-

ber that is written in a turbulent channel flow as s�p ¼ spu�2=mf ,

where sp is the particle relaxation time (sp ¼ qpd
2
p=18qfmf ) and

mf =u�2 is a characteristic wall-turbulence time scale, defined on

the basis of a boundary layer characteristic velocity u�. In previous

definitions, qp is the particle density, dp is the particle diameter and

mf is the fluid viscosity. In boundary layer turbulence, we find three

regimes (Friedlander and Johnstone, 1957):

� s�p � 1: a diffusion regime, where the particles behave like

tracers.

� s�p � 40: an inertial regime, otherwise called ballistic regime,

where the particles do not interact with the turbulence and

achieve a free flight-like march down to the wall.

� 1 < s�p < 40: a transitional regime corresponding to a partial

interaction of the particles with the turbulence. It is a

diffusion-impaction regime, appearing to be the most problem-

atic regime to deal with.

These regimes are well described by Liu and Agarwal (1974)

who made experiments in which they measured the deposition

velocity of particles transported by the turbulent channel flow.

To understand the mechanisms of the particle interaction with

the near-wall turbulence, Direct Numerical Simulation coupled

with Discrete Particle Simulation have been carried out (Kallio

and Reeks, 1989; Marchioli et al., 2007). Besides these fundamental

investigations, several modelling approaches have been developed,
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such as the ADE (Advection Diffusion Equation) models, from

which the Euler/Euler, or the two-fluid models (Young and

Leeming, 1997) showed a good capability only in the diffusion

regime. In contrast, the approaches based on the Reynolds

Averaged Navier Stokes (RANS) coupled with Lagrangian tracking

of particles (Matida et al., 2000) were inaccurate for predicting

the deposition rate and the near-wall region dynamics.

A way to model the behaviour of the inertial particles trans-

ported by a turbulent flow is to use a statistical description of

the particle phase by a probability density function (PDF) of the

particle velocity. In 2009, Aguinaga et al. (2009) proposed an orig-

inal approach called SAB (for Simonin, Aguinaga and Borée) based

on a kinetic equation where the interaction of the particle with the

turbulence is closed by considering a return-to-equilibrium (BGK

like) term. As shown by Aguinaga et al. (2009), the solution of this

kinetic equation with pure deposition boundary condition can be

tricky, even in the case where the turbulence is homogeneous

and isotropic. Indeed, when considering the case of particles trans-

ported by a turbulent channel flow, Aguinaga et al. (2009) obtained

good results for the impaction regime, while for the intermediate

regime numerical problems appeared. More recently Van Dijk

and Swailes (2012) proposed a novel methodology for the numer-

ical treatment of multi-dimensional PDF models describing the

particle transport in turbulent boundary layers. Diounou et al.

(2011) proposed a very simple Lattice Boltzmann Model (LBM)

approach to solve the SAB kinetic equation, which is more efficient

and robust. In the present paper, a Gauss-Hermite Lattice

Boltzmann Method (GHLBM) is proposed for solving directly the

kinetic equation of the SAB model.

It must be emphasised the strong originality of the approach

developed here. Indeed, solving the LBM evolution equation pro-

vides an alternative to solve the Navier–Stokes equations for

single-fluid dynamics (Succi, 2001; Aidun and Clausen, 2010).

The LBM was already used to investigate particle-laden flows,

but only in order to compute the evolution of the interstitial fluid

carrying the particles (Cate et al., 2004; Derksen and Sundaresan,

2007). In the present paper, the LBM approach is used to solve

the PDF evolution kinetic equation that describes the dynamical

behaviour of a cloud composed of solid particles.

The present study is a part of a more general work dedicated to

Eulerian modelling of particle-laden turbulent flows showing com-

plex interactions with walls, such as deposition or resuspension,

but also non-elastic and/or frictional bouncing on rough wall. The

derivation of boundary conditions in the frame of the Eulerian

moment approach accounting for such complex particle–wall inter-

actionmechanisms is a daunting task, in particular as a result of the

non-equilibrium state of the particle velocity distribution in the

near-wall region. To overcome the challenges, the final practical

objective is to develop an hybrid method where the moment

approach is used far from the wall and coupled with a full resolu-

tion method of the PDF kinetic equation towards the wall. The

PDF resolution method could be a Lagrangian stochastic method,

as proposed by Pialat et al. (2007b), or a LBM approach, as devel-

oped in the present paper, with the goal to simplify the coupling

process with the moment approach used in the main flow.

The paper is organised as follows. First, the statistical approach

describing the behaviour of solid particles interacting with a turbu-

lent fluid flow is briefly introduced and the SAB model proposed by

Aguinaga et al. (2009) is presented. The third section introduces

the Lattice Boltzmann scheme. A focus is made on the numerical

treatment of the term representing the forces acting on the parti-

cles. The role of the quadrature and of the Hermite expansion is

illustrated by considering an academic problem, namely the homo-

geneous relaxation towards equilibrium. The LBM results for the

deposition of inertial particles transported by a homogeneous iso-

tropic turbulence are shown in the fourth section.

Statistical model

The statistical description of the dispersed phase, composed of

solid particles or droplets transported by a turbulent fluid flow

relies on the analogy with the thermal motion of molecules as

described by the kinetic theory of rarefied gases. In the standard

kinetic approach, the dispersed phase is described by the particle

Probability Density Function f pðx; t; cpÞ defined such that

f pðx; t; cpÞdcpdx is the mean probable number of particles at the

time t with the centre of mass located in the volume ½x;xþ dx�,
and the translation velocity, up, within ½cp; cp þ dcp�. From the

PDF the density number of particles writes

np ¼
Z

f pdcp; ð1Þ

the mean particle velocity,

Up;i ¼
1

np

Z

cp;if pdcp; ð2Þ

and the particle kinetic stress,

hu0
p;iu

0
p;ji ¼

1

np

Z

½cp;i ÿ Up;i� � ½cp;j ÿ Up;j�f pdcp: ð3Þ

The single particle velocity PDF obeys the following Boltzmann-like

kinetic equation:

@f p
@t

þ @

@xi
cp;if p
� �

þ @

@cp;i

dup;i

dt
jcp

� �

f p

� �

¼
@f p
@t

� �

col

ð4Þ

where h:jcpi is the ensemble average conditioned by the particle

velocity. The third term on the left-hand-side of Eq. (4) represents

the forces acting on the particles, enclosing the turbulent parti-

cle–fluid coupling. The term on the right-hand-side of Eq. (4) is

the modification of the PDF by the inter-particle collisions. In the

present study the particulate phase is very dilute such that this

term will no longer be considered. For spherical particles trans-

ported by a turbulent flow, several forces are acting on the particles:

the drag force, the lift force or the added mass force, as in (Gatignol,

1983; Maxey and Riley, 1983). However, assuming a large

particle-to-fluid density ratio, the forces can be reduced to the grav-

ity and drag forces. Then the particle acceleration reads

dup

dt
¼ ÿup ÿ uf@p

sp
þ g ð5Þ

whereuf@p is the fluid velocity at the particle position, g is the gravity

and sp is the particle relaxation time. So using Eq. (5) in the third term

of Eq. (4) and neglecting gravity, the Boltzmann equation becomes

@f p
@t

þ @

@xi
cp;if p
� �

þ @

@cp;i
ÿ 1

sp
ðcp;i ÿ huf@p;ijcpiÞf p

� �

¼ 0: ð6Þ

As the paper is dedicated to the modelling of the

particle-turbulence interaction in the wall boundary layer flow,

we may assume, without loss of generality that @=@y � @=@z � 0.

Then, considering sp as a given value independent of the instanta-

neous particle velocity (such as in Stokes’s drag law), the kinetic

equation governing the wall-normal particle velocity PDF is

obtained by integration of Eq. (4) on the velocity components in

y- and z-directions and is written

@f p
@t

þ @

@x
cpf p
� �

þ @

@cp
ÿ 1

sp
ðcp ÿ huf@pjcpiÞf p

� �

¼ 0 ð7Þ

where cp is the particle velocity component expected in the x-direc-

tion normal to the wall.

The modelling of the particle-turbulence coupling term

received much attention (Derevich and Zaichik, 1988; Zaichik

et al., 1997; Reeks, 1992; Reeks, 1993; Simonin, 2000).



Aguinaga et al. (2009) proposed an approach inspired from the BGK

model. The fluid-particle interaction term is separated in two

contributions: first, the fluid-particle interaction through the mean

gas and particle velocities; second, the coupling of the particle

fluctuating motion with the fluid turbulence. The last contribution

is modelled as a return-to-equilibrium term in a similar manner to

the effect of the inter-particle interactions in the BGK model

(Bhatnagar et al., 1954). As in the standard BGK model, the

return-to-equilibrium term needs an ‘‘equilibrium’’ PDF, f
�
, and a

given time-scale, s�. Then Aguinaga et al. (2009) proposed to write

the fluid-particle interaction terms of the kinetic equation as

@

@cp
ÿ 1

sp
ðcp ÿ huf@pjcpiÞf p

� �

¼ ÿ Up ÿ Uf@p

sp

� �

@f p
@cp

þ k

s�
f p ÿ f

�� �

: ð8Þ

In Eq. (8) the equilibrium PDF, f
�
, is chosen in order to model parti-

cles in equilibrium with the gas turbulence according to the Tchen

& Hinze theory (Tchen, 1947; Hinze, 1972):

u0
pu

0
p

D E

¼ u0
f@pu

0
p

D E

¼ u0
f@pu

0
f@p

D E 1

1þ St
ð9Þ

with the Stokes number St ¼ sp=stf@p, where stf@p represents the fluid

Lagrangian integral time scale measured along the particle trajecto-

ries, which is proportional to the turbulent dissipation time scale

stf ¼ k=� (Simonin et al., 1993). But, in the present study, the LBM

predictions are compared with stochastic simulation results from

Nagy and Swailes (1996) with a given value of stf@p. In such a frame-

work, the equilibrium PDF is a Gaussian distribution (Laviéville

et al., 1995)

f
�ðx; t; cpÞ ¼

np

2p u0
f@pu

0
p

D E� �1=2
exp ÿ ðcp ÿ UpÞ2

2 u0
f@pu

0
p

D E

2

4

3

5: ð10Þ

The relaxation time-scale, s�, and the parameter k in Eq. (8) are cho-

sen to ensure exact fluid-particle interaction terms in the moment

equations of np;Up, and of the particle kinetic energy. This process

leads to k ¼ 2 and s� ¼ sp.
For the mean contribution, the mean fluid velocity seen by the

particles, Uf@p, has been introduced. Such a mean velocity has two

contributions: (i) the mean fluid velocity Uf and (ii) a drift velocity

Vd representing the correlation between the local instantaneous

particle distribution and the turbulent fluid velocity. Then the

mean fluid velocity seen by the particles is written as

Uf@p ¼ Uf þ Vd and, following Simonin et al. (1993), the drift veloc-

ity in homogeneous turbulence reads

Vd ¼ ÿstf@p u0
fu

0
p

D E 1

np

@np

@x
: ð11Þ

Finally the Boltzmann-like transport Eq. (6) with the SAB model for

the fluid-particle interaction becomes

@f p
@t

þ cp
@f p
@x

þ Up ÿ ðUf þ VdÞ
sp

� �

@f p
@cp

þ 2

sp
f p ÿ f

�� �

¼ 0: ð12Þ

Aguinaga et al. (2009) solved this equation with a finite-difference

scheme based on a non-uniform mesh. For particles with large par-

ticle relaxation times, the results were very good. However, the

method was unstable for moderate and small Stokes number. In

the next section, a Lattice Boltzmann scheme is proposed to solve

Eq. (12).

Lattice Boltzmann model

Background

The lattice Boltzmann simulation of far out-of-equilibrium gas

flows has received a solid theoretical attention with the work of

Chen and co-workers (Zhang et al., 2006; Shan et al., 2006; Chen

et al., 2007; Colosqui et al., 2009; Colosqui, 2010). These develop-

ments find their origin in intensive efforts made since 1997

towards the rigorous proof that numerous of the most established

Lattice Boltzmann algorithms could be interpreted as numerical

solutions of the Boltzmann equation itself (He and Luo, 1997;

Abe, 1997; Shan and He, 1998; Piaud et al., 2005). A clear synthesis

is that of Shan et al. (2006), leading to the proposition of a system-

atic approach based on a Hermite expansion of the Boltzmann

equation similar to that of Grad in 1949 (Grad, 1949; Grad,

1952). In this approach, the starting point is the Boltzmann-BGK

equation in which both the force term and the equilibrium distri-

bution in the collision term are replaced by Hermite expansions.

Then it is shown that truncating these Hermite expansions at a

given order is equivalent to a strict satisfaction of all the moment

equations in Grad’s theory up to a fixed order, and that using a

Gauss-Hermite quadrature in the Lattice Boltzmann velocity inte-

gration scheme maintains this strict satisfaction. Increasing the

truncation order allows therefore to go as far as required into the

field of far out-of-equilibrium phenomena.

Such an approach looks very much meaningful in the present

context. The SAB model is indeed based on a transport equation

very close to the Boltzmann-BGK equation and the problems of

interest correspond to far out-of-equilibrium conditions under

which a close description of the distribution function in phase

space is required that cannot be easily reduced to the description

of only the first three moments in geometrical space. Strong devi-

ations from equilibrium have essentially two possible sources: the

boundary conditions and the spatial variations of turbulent agita-

tion. The analysis reported in the present text are restricted to

homogeneous turbulence. The studied out-of-equilibrium condi-

tions are directly related to the boundary conditions, essentially

the fact that particle deposition at the wall is translated into a null

value of the distribution function in the whole inward hemisphere.

Thus, the distribution function at the wall is therefore very far from

a Maxwellian distribution. The present question is therefore clo-

sely related to the treatment of boundary condition effects on

the Boltzmann-BGK equation in rarefied gas flows. If we take this

starting point when considering the lattice Boltzmann method

for simulation of the SAB model, then the following differences

must be pointed out. First of all, the variance of the Maxwellian

distribution f
�
is not equal to the variance of the local particle

velocity distribution. As this variance (the local temperature) plays

an essential part in the way the set of discrete velocities is chosen,

the SAB model opens new specific questions. In particular, when

adapting the available techniques, which of the two available local

temperatures should be chosen, the particle ‘‘temperature’’ or the

turbulence ‘‘temperature’’? Another point is that the forces must

be represented very accurately as they play an essential part in

the considered particle-turbulence interaction physics, which is

not the case in most of the reported implementations of Shan’s

proposition. From this point of view, a parallel can be made with

the three-dimensional modelling of liquid–gas phase transition,

which is today a very active area of research that will require the

lattice Boltzmann methods to go through a very detailed further

consideration of force terms in Boltzmann-like equations. Finally,

the above mentioned fact that the variance of the Maxwellian dis-

tribution f
�
is not equal to the variance of the local particle velocity

has a positive consequence: the relaxation term of the SAB model



is not energy conservative (energy is exchanged with turbulence)

and we can assume that the addressed numerical problem will

be less constrained, in terms of conservation principles, than those

addressed for Boltzmann-BGK applications in rarefied gas flows.

Gauss-Hermite Lattice Boltzmann models in one dimension

In order to solve one-dimensional (1D) transport problems like

the one defined by Eq. (12), which involves a relaxation process

towards an equilibrium distribution function (Maxwellian) f
�
,

one can apply the general procedure described in Shan et al.

(2006, 2014). According to this procedure, one introduces a 1D

family of Gauss-Hermite Lattice Boltzmann models, denoted as

GHLBMðN;QÞ, where N is the order of the model and Q P N þ 1

is the quadrature order, i.e., the number of the vectors in the veloc-

ity set. The approximation of a PDF by using an expansion with

respect to a family of orthogonal polynomials, followed by a

quadrature method, is a quite standard technique used in LB

models (Shan and He, 1998; Shan et al., 2006; Xiu and

Karniadakis, 2002; Cho et al., 2014; Shizgal, 2015). Such a 1D

Lattice Boltzmann (LB) model is said to be of order N (Shan et al.,

2006; Piaud et al., 2014; Ambrusß and Sofonea, 2012) if all the

moments

Meq;ðsÞðx; tÞ ¼
Z þ1

ÿ1
f
eq
p cspdcp; 0 6 s 6 N ð13Þ

of the dimensionless equilibrium distribution function f
eq

are

exactly recovered for Up ¼ 0 and Tp ¼ 1. This does not mean that

the temporal evolution of the first N moments of the dimensionless

distribution function f p are recovered. Generally speaking, the num-

ber of the distribution function moments that are accurately pre-

dicted depends on the temporal and spatial Knudsen numbers,

and even on the types of the considered initial and boundary condi-

tions. But this is still clearly the objective of lattice - Boltzmann

algorithms: accurately evaluating the moments of f p up to a given

order M, even at the expense of poorly evaluating the distribution

function itself (which seems in contradiction with the kinetic nat-

ure of these algorithms). How this could be conceived as a meaning-

ful objective is the result of a close combination of Hermite

expansions (the same starting point as Grad) and Gauss-Hermite

quadratures.

Expanding f p in Hermite polynomials HðnÞðcpÞ, i.e., writing

(Shan et al., 2006)

f p � f pðx; t; cpÞ ¼ xðcpÞ
X

1

n¼0

1

n!
anðx; tÞHnðcpÞ ð14Þ

with xðcpÞ ¼ ð1=
ffiffiffiffiffiffiffi

2p
p

Þ exp ÿc2p=2
h i

and

an � anðx; tÞ ¼
Z

f pðx; t; cpÞHnðcpÞdcp ð15Þ

allows one to define the truncated version of this expansion

f p ’ f
ðNÞ
p � f

ðNÞ
p ðx; t; cpÞ ¼ xðcpÞ

X

N

n¼0

1

n!
anðx; tÞHnðcpÞ ð16Þ

that has exactly the same moments as f p up to order N.

Using Gauss-Hermite quadratures of order Q P N þ 1 to com-

pute the first N moments of f
ðNÞ
p would ensure that this computa-

tion is exact. This is because f
ðNÞ
p has, by construction, a

Hermitian shape of order N,1 and the Gauss-Hermite quadratures

are precisely designed to evaluate the moments of such functions.

So, if one manages to define and deal with the temporal evolution

of f
ðNÞ
p , then one only needs to evaluate it at the quadrature points

cp;k (k ¼ 1; . . . ;Q). Thus, only Q values of f
ðNÞ
p are sufficient to get

the exact values of the first N moments of f
ðNÞ
p , that are identical to

those of f p:

MðsÞ �
Z þ1

ÿ1
f pc

ðsÞ
p dcp ¼ MðN;sÞ �

Z þ1

ÿ1
f
ðNÞ
p cðsÞp dcp ð17Þ

for 0 6 s 6 N and

MðN;sÞ ¼
X

Q

k¼1

wk

xðcp;kÞ
f
ðN;QÞ
p;k csp;k ð18Þ

for Q P N þ 1, with

f
ðN;QÞ
p;k � f

ðN;QÞ
p;k ðx; tÞ ¼ f

ðNÞ
p ðx; t; cp;kÞ ð19Þ

where wk are the quadrature weights (Shan et al., 2006).

In practice, this ideal objective is never reached in an exact

manner (except in academic cases such as the one that we develop

in the following section for didactic purposes). Following Shan’s

approach (Shan et al., 2006), we start by replacing the true f
ðNÞ
p

by another distribution function, ~f p � ~f pðx; t; cpÞ, that evolves

according to the following transport equation (@t � @=@t

@x � @=@x), designed to recover a spatio-temporal evolution as

close as possible to that of f
ðNÞ
p :

@t
~f p þ cp@x

~f p ÿ AxðcpÞ
X

Nÿ1

n¼0

1

n!
~anðx; tÞHnþ1ðcpÞ þ

2

sp
~f p ÿ f

�ðNÞ
h i

¼ 0

ð20Þ

with

A ¼ Up ÿ ðUf þ VdÞ
sp

� �

ð21Þ

~an ¼
Z

~f ðx; t; cpÞHnðcpÞdcp ð22Þ

and

f
�ðNÞ ¼ xðcpÞ

X

N

n¼0

1

n!
a�nðx; tÞHnðcpÞ ð23Þ

a�n ¼
Z

f
�ðx; t; cpÞHnðcpÞdcp ð24Þ

The transformed problem defined by Eq. (20) is obtained by

projecting each term of the original equation into the space of

Hermitian polynomials and truncating at order N. In fact, this is

exactly true for all terms, except the transport term cp@x
~f p that can-

not be justified using a strict truncation of cp@xf p at order N. Indeed,

noting ð:ÞðNÞ the hermitian projection truncated at order N, it can be

easily checked that cp@xf p
ÿ �ðNÞ

– cp@xf
ðNÞ
p . We will discuss this dif-

ference in Section ‘The advection term’, but in the following section

we start by addressing simple homogeneous examples in which

the advection term is null, ensuring that ~f p � f
ðNÞ
p . Fig. 1 sum-

marises the steps leading to a discrete problem in ~f p starting from

the initial continuous f p problem.

Homogeneous relaxation towards a Gaussian distribution

Let us consider the kinetic equation without the advection and

force terms:

@tf p ¼ ÿ 1

sp
f p ÿ f

�ÿ �

: ð25Þ1 We refer to a Hermitian shape of order N each time a function of cp is expressed as

xðcpÞ times a weighted sum of the first N Hermite polynomials.



This equation describes the homogeneous relaxation of the distri-

bution function f pðcp; tÞ,

f pðcp; tÞ ¼ f 0e
ÿt=sp þ f

�ð1ÿ eÿt=sp Þ ð26Þ

where f 0 � f pðcp; t ¼ 0Þ. This allows us to easily integrate Eq. (26) to

get the evolution equations of the moment of order M of f p

MðMÞðtÞ ¼
Z þ1

ÿ1
f pðcp; tÞcMp dcp

¼ eÿt=sp

Z þ1

ÿ1
f 0c

M
p dcp þ ð1ÿ eÿt=sp Þ

Z þ1

ÿ1
f
�
cMp dcp

¼ MðMÞ
0 eÿt=sp þM�;ðMÞð1ÿ eÿt=sp Þ ð27Þ

For convenience, we will consider the case where both f 0 and f
�

are Maxwellians:

f 0 ¼ np
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pTp;0

p exp ÿðcp ÿ Up;0Þ2
2Tp;0

" #

ð28aÞ

f
� ¼ np

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pTp;�
p exp ÿðcp ÿ Up;�Þ2

2Tp;�

" #

ð28bÞ

where np;Up;0;Up;�; Tp;0 and Tp;� are constant quantities. So, the fluid

starts in the Maxwellian state of velocity Up;0 and temperature Tp;0

and relaxes toward the Maxwellian state of average velocity Up;�
and temperature Tp;� (see Fig. 2). Solving Eq. (25) using the

Gauss-Hermite model GHLBMðN;QÞ leads to the following evalua-

tion of MðMÞ

MðMÞ
N;Q ðtÞ ¼

X

Q

k¼1

~f ðN;QÞ
p;k ðtÞcMp;k ð29Þ

with

~f ðN;QÞ
p;k � ~f ðN;QÞ

p;k ðx; tÞ ¼ ~f ðNÞp ðx; t; cp;kÞ: ð30Þ

This solution can then be compared to Eq. (27) using the analyti-

cally known moments of the Maxwellian. The model

GHLBMðN;QÞ is expected to recover all the moments up to order

M ¼ N. Fig. 3 shows the evolution of all the moments up to order

M ¼ 8, as recovered using the models GHLBMðN;Q ¼ N þ 1Þ, for
np ¼ 1:0;Up;0 ¼ ÿ2:0; Tp;0 ¼ 1:0;Up;� ¼ 1:0 and Tp;� ¼ 2:0. For each

N, we used only the minimum value of Q since the GHLBMðN;QÞ
models ensure all the moments of f p up to order N for any

Q P N þ 1. For a given value of M, one can see that only the

GHLBM models of order N P M allow one to get the correct evolu-

tion of the momentMðMÞ of the distribution function f p subjected to

the homogeneous relaxation process, Eq. (25). But then, above

N ¼ M in this simple case, the moments are strictly exact, which will

not be the case as soon as space gradients are present, inducing

transport effects.

It is worth emphasising that the moments are exactly recov-

ered, despite the fact that ~f ðQ ;NÞ
p;k – f pðcp;k; tÞ: the computed values

of the distribution function at the quadrature points do not match

the true distribution. As shown by Fig. 4, they match its Hermite

transform f
ðNÞ
p :

~f ðN;QÞ
p;k ¼ ~f pðcp;k; tÞ and ~f p ¼ f

ðNÞ
p ð31Þ

This means for instance that ~f ðN;QÞ
p;k can take negative values in such

an extreme case as that of Fig. 4. The initial and final distributions

are so distinct (Tp;0 ¼ 1;Up;0 ¼ ÿ2 versus Tp;� ¼ 2;Up;� ¼ 1) that the

reference values Tref and Uref , used to render the problem dimen-

sionless, cannot be chosen in an adequate manner so that the

Fig. 1. Steps to transform the initial continuous problem into the practical problem that is solved.

Fig. 2. Time-evolution of the distribution function f pðcp; tÞ given by Eq. (26).



Hermite transform remains close to a physically meaningful shape

at all the times. But this does not affect the ability to recover the

right values of the momenta. Of course, this is strictly true only

for this simple academic case, and once again the transport will turn

everything.

The advection term

Exact reasonings such as those of the preceding section cannot

be extended as soon as the advection term is non null. We already

mentioned that Eq. (20) was justified by projecting each term of

Fig. 3. Homogeneous relaxation: comparison between the evolution of the moments MðMÞ
N;Q ;M ¼ 0;1; . . .8, recovered using the models GHLBMðN;Q ¼ N þ 1Þ;N ¼ 2;3 . . .8,

and the corresponding analytical solutions given by Eq. (27), for np ¼ 1:0;Up;0 ¼ ÿ2:0; Tp;0 ¼ 1:0;Up;� ¼ 1:0 and Tp;� ¼ 2:0.



Eq. (12) into the space of Hermitian polynomials and truncating

at order N, but that this was not rigorous for the advection term.

And indeed,

@f p
@t

� �ðNÞ

¼
@f

ðNÞ
p

@t
ð32Þ

cp
@f p
@x

� �ðNÞ

– cp
@f

ðNÞ
p

@x
ð33Þ

Up ÿ ðUf þ VdÞ
sp

� �

@f p
@cp

� �ðNÞ

¼ ÿAxðcpÞ
X

Nÿ1

n¼0

1

n!
anðx; tÞHnþ1ðcpÞ ð34Þ

2

sp
f p ÿ f

�� �

� �ðNÞ
¼ 2

sp
f
ðNÞ
p ÿ f

�ðNÞ
h i

ð35Þ

If we define � as

� ¼ cp
@f

ðNÞ
p

@x
ÿ cp

@f p
@x

� �ðNÞ

ð36Þ

then f
ðNÞ
p satisfies the following equation,

@tf
ðNÞ
p þcp@xf

ðNÞ
p ÿAxðcpÞ

X

Nÿ1

n¼0

1

n!
anðx;tÞHnþ1ðcpÞþ

2

sp
f
ðNÞ
p ÿ f

�ðNÞ
h i

¼ �

ð37Þ

that only departs from Eq. (20) because of � at the right hand side.

Using Eq. (14) and the recurrence relation cpHnðcpÞ ¼ Hnþ1ðcpÞþ

nHnÿ1ðcpÞ satisfied by the Hermite polynomials (Shan et al., 2006),

� reads

�ðx;t;cpÞ ¼@x xðcpÞ
X

N

n¼0

1

n!
anðx;tÞ Hnþ1ðcpÞþnHnÿ1ðcpÞ

� 	

" #

ð38Þ

ÿ @x xðcpÞ
X

þ1

n¼0

1

n!
anðx;tÞ Hnþ1ðcpÞþnHnÿ1ðcpÞ

� 	

" # !ðNÞ

ð39Þ

¼ð1=N!ÞxðcpÞ@x aNðx;tÞHNþ1ðcpÞÿaNþ1ðx;tÞHNðcpÞ
� �

ð40Þ

If this error termwere null, Eqs. (20) and (37) would be identical

and ~f p wouldmatch f
ðNÞ
p exactly. Remembering that we only need to

evaluate f
ðNÞ
p at the quadrature points cp;k, we would only need that

�ðx; t; cp;kÞ be null for all k ¼ 1; . . . ;Q . We can turn one part of the �
expression to zero by noting that Q ¼ N þ 1 ensures HNþ1ðcp;kÞ ¼ 0

for all k ¼ 1; . . . ;Q . But we then still get

�ðx; t; cp;kÞ ¼ ÿð1=N!ÞxðcpÞ@xaNþ1ðx; tÞHNðcp;kÞ ð41Þ

and aNþ1ðx; tÞ cannot be evaluated using f
ðNÞ
p only. Choosing to retain

Eq. (20) in place of Eq. (37) is therefore equivalent to the assump-

tion that aNþ1ðx; tÞ ’ 0, or more precisely that @xaNþ1ðx; tÞ ’ 0, which

is exactly the closure assumption made by Grad in his original work

(Grad, 1949).

Fig. 3 (continued)



Fig. 4. Dependence of f 0 (left column) and f
�
(right column) with respect to both the velocity cp in the continuum space and the discrete velocities cp;k; k ¼ 1;2; . . .Q with

parameters np ¼ 1:0;Up;0 ¼ ÿ2:0; T0 ¼ 1:0;Up;� ¼ 1:0 and Tp;� ¼ 2:0. Solid line: analytical expressions Eq. (28); dashed-dot line: corresponding Hermite expansions, Eq. (16),

for N 2 f2;5;8g; and symbols: the corresponding values ~f ðN;QÞ
p;k , Eq. (19) in the GHLBMðN;Q ¼ N þ 1Þ model.



Deposition of inertial particles transported by a homogeneous

isotropic turbulent flow

Configuration overview

Nagy and Swailes (1996) performed stochastic Lagrangian sim-

ulation for investigating the deposition of inertial particles trans-

ported by a homogeneous isotropic turbulence. The numerical

domain is shown in Fig. 5. The wall is located at x ¼ 0 and the

top of the domain is at xH . The particles enter at the top of the

domain according to an half-Gaussian distribution of the velocity:

f pðx ¼ xH; t; cp < 0Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p u0
f@pu

0
p

D E

r exp ÿ
c2p

2 u0
f@pu

0
p

D E

2

4

3

5: ð42Þ

For particles crossing the edge, the top of the domain is a free outlet.

At the wall, namely for x ¼ 0, there is a perfectly adsorbing bound-

ary. Then, the PDF of particles leaving the wall is

f pðx ¼ 0; t; cp > 0Þ ¼ 0: ð43Þ

In random walk simulations, the particles are injected at various

distances from the wall. The distance of the upper boundary of

the domain is expressed as xH ¼ NL � L where NL is the number of

particle mean free paths and L is the particle mean free path given

by L ¼ stp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0
pu

0
p

D E

r

. The Lagrangian particle integral time scale, stp,

writes stp ¼ stf@p þ sp and thus the particle mean free path is

L ¼ stf@p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0
pu

0
p

D E

r

1þ sp
stf@p

 !

: ð44Þ

Nagy and Swailes (1996) considered particles with a Stokes number

equal to 100. The other fluid and particles properties are then

deduced from sp and stf@p:

sp ¼ 1

stf@p ¼ 0:01

St ¼ sp
stf@p

¼ 100

Uf ¼ 0

u0
f@pu

0
f@p

D E

¼ 101

u0
f@pu

0
p

D E

¼ 1

L ¼ 1

The analysis can be either done in terms of particle mean free paths

NL or in terms of Stokes numbers. A large NL corresponds to a small

Stokes number and a small NL corresponds to a large Stokes

number.

The computations shown in the present section have been per-

formed with Q ¼ 20 discrete velocities and the order of the trunca-

tion is N ¼ 6. The domain is meshed in the x-direction with an

uniform mesh having Nx ¼ 100 points. A flux limiter scheme

(Cristea and Sofonea, 2004; Sofonea et al., 2004; Sofonea and

Sekerka, 2005; Ambrusß and Sofonea, 2012) was used to solve the

evolution equation for ~f ðN;QÞ
p;k at each quadrature point cp;k

ð1 6 k 6 QÞ.
In the present case, after a transient phase the system reaches a

steady state where the number of particles in the domain is fluctu-

ating around a constant mean value. Then the number of injected

particles are balanced with the number of deposited particles

and the number of particles leaving the domain by the free outlet

at the top of the domain (see Nagy and Swailes (1996) for more

details).

Results and discussion

The dependence of the particle number density, defined by

Eq. (1), on the number of mean free path and the distance to the

wall is shown in Fig. 6. For heavy particles, corresponding to

NL ¼ 0:5, the profile of particle number density is almost flat,

meaning that the number density of particles at the wall is nearly

the same as the one at the top of the domain. Indeed, such very

inertial particles weakly interact with the turbulence and cross

the domain up to the wall. In contrast, Fig. 6 shows that the

number density of particles with a small Stokes number,

corresponding to large NL, is small at the wall. This trend was

expected because in such a case the particle-turbulence interaction

lead a part of the particles to go towards the wall and another part

back in the flow, i.e. by the free outlet at the top boundary.

Fig. 5. Sketch of the numerical domain and the boundary condition on the PDF. At

the top of the domain (x ¼ xH) a Maxwellian distribution is prescribed for cp < 0

(see Eq. (42)) and at the wall a pure absorbing wall boundary condition is imposed.

Fig. 6. Particle number density with respect to the normalised distance to the wall.

The symbols are the data from Nagy and Swailes (1996) and the solid lines

represent the predictions of the GHLBM.



Fig. 6 shows that GHLBM model is in good agreement with the

random walk stochastic simulation performed by Nagy and

Swailes (1996). Compared to Diounou et al. (2011) the results are

improved in the near wall region by use of the Hermite polynomial

expansion.

Fig. 7 shows the mean vertical particle velocity and r.m.s veloc-

ity for NL ¼ 10:0 and NL ¼ 1:0. One can observe that the magnitude

of the particle velocity is increasing while approaching the wall. At

the opposite side, the particle r.m.s velocity is decreasing when

approaching the bottom boundary condition.

Fig. 8 shows the deposition rate with respect to the number of

particle mean free paths. The deposition rate, defined as

kd ¼
R 0

ÿ1 cp f pðx ¼ 0; t; cpÞdcp
1
xh

R xh
0

Rþ1
ÿ1 f pðx; t; cpÞdcp

� �

dx
ð45Þ

is the flux of particles towards the wall normalised by the bulk par-

ticle number density. A small number of particle mean free paths,

i.e. NL ! 0, corresponds to particles with a large inertia. Such kind

of particles cross the domain without interacting with the turbu-

lence. Thus the expected deposition rate, and the one shown by

Fig. 8, is 1. In others word all particles entering in the domain at

xh are found at the wall at y ¼ 0. On the other hand, particles having

a large number of mean free path (NL ! þ1) have a strong interac-

tion with the turbulence. A part of the particles deposit but also a

part go back to the mean flow by the outlet at the top of the domain.

As a consequence, increasing the number NL of particle mean free

paths leads to decreasing the deposition rate (as shown by Fig. 8).

It is remarkable that the deposition rate predicted by the Lattice

Boltzmann method is in very good accordance with the random

walk Lagrangian simulations of Nagy and Swailes (1996).

Conclusions and prospects

A novel Gauss-Hermite Lattice Boltzmann Model for solving the

kinetic equation describing the dynamical behaviour of solid iner-

tial particles interacting with a turbulent flow has been proposed.

For the sake of clarity the model has been developed for 1D in

space and in velocity. However the extension to 3D in space and

in velocity is straightforward.

A simple case of a homogeneous relaxation towards an equilib-

rium has been used to show the effect of the order N of the Lattice

Boltzmann model. This case allowed us to show that, when a

Lattice Boltzmann scheme is used, we do not solve directly for

the PDF but for a projection of the true PDF on a Hermite basis.

Moreover the projected PDF may have negative values, which is

not possible for the true PDF. Accordingly, the boundary conditions

have to be also projected on a Hermite basis.

The Lattice Boltzmann scheme has been validated for the case of

the deposition of inertial particles transported by a homogeneous

isotropic turbulent flow as studied by Nagy and Swailes (1996)

with randomwalk simulations. The mean particle velocity, the par-

ticle fluctuating velocity and the deposition rate are all very well

predicted by the proposed Lattice Boltzmann model. The results

are in good accordance even for particles having a very small relax-

ation time. Such a case was the more critical because the particle

kinetic energy varies strongly between the top of the domain and

the wall.

By using the proposed Lattice Boltzmann scheme it is possible

to implement different boundary conditions describing more com-

plex phenomena as the bouncing of solid particles on a rough wall

(Konan et al., 2009). As discussed in the introduction, the deriva-

tion of practical general wall boundary conditions in the frame of

the Eulerian moment approach is a very difficult challenge and a

very promising approach should be to couple the moment equa-

tions with a full resolution of the PDF transport equation in the

near-wall region. Such a hybrid method has already been devel-

oped using a Lagrangian stochastic approach to solve the PDF

kinetic equation (Pialat et al., 2007a; Pialat et al., 2007b), but the

coupling of the Eulerian moment approach with the Lattice

Boltzmann approach seems to be much more feasible. The present

paper shows that this coupling can now be considered for the pre-

diction of particle-laden turbulent flow with deposition at the wall.
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