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Addressing the gas kinetics Boltzmann equation with branching paths statistics
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Several works have shown that it is possible to conceive non-linear Monte-Carlo algorithms, but
these works have remained overlooked so far. It is commonly admitted that in non-linear physics
it is necessary to start with a linearization step before then calling on the linear Monte-Carlo
method. We show here how it is possible to avoid this linearization step in the particular case of the
Boltzmann equation. Our method retains the exact character of the Monte-Carlo method (unbiased
estimation with a reliable evaluation of its uncertainty). We also extend to non-linear transport a
very strong property of Monte-Carlo algorithms in linear transport: the ability to perform probe
calculus (evaluate a quantity at a given position and time without computing all the field at previous
times). Another striking feature of this algorithm is its ability to focus on rare events, however scarce
they may be, including very high energy events that are important from the applicative point of
view.
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I. INTRODUCTION

In linear transport physics, and especially in radia-
tive transfer physics [I, 2], the Monte-Carlo method
(MCM) consists in simulating the history of numerous
independent particles, from which mean observables can
be deduced. Since it’s initial development, this numer-
ical method has become extremely successful, because
of its many qualities: a natural management of multi-
dimensional phase space, a null systematic error com-
pared to the mathematical and physical model, the con-
fidence intervals given with the results, an ability to take
into account numerous physical phenomena simultane-
ously, an efficient management of complex geometries,
the abilty to calculate sensitivities simultaneously , and
easy parallelization [3| [4]. This success extends to all
linear physics, not only to transport [5H7].

a. In non-linear physics, the Monte-Carlo method
is commonly believed to be unusable:

“So far as the author is aware, the extension
of Monte Carlo methods to nonlinear pro-
cesses has not yet been accomplished and may
be impossible.” [§]

“Monte Carlo methods are not generally ef-
fective for nonlinear problems mainly because
expectations are linear in character.” [9]

“A nonlinear problem must usually be lin-
earized in order to use Monte Carlo tech-

nique.” [9]

However several examples lead us to moderate these as-
sertions.

A first group of such examples is the lineage of the
tests of Ermakov et al on the MCM used for solving
non-linear kinetic equations [I0]. At least twenty-five
years ago, Gurov [I1], [I2] presented the calculation in
the MCM of Fredholm integrals containing polynomial
non-linearities, by branching estimation processes. Ra-
sulov et al [I3HI5] showed how to use the MCM to re-
solve parabolic equations like the equation of heat, with
a source term depending non-linearly on the density. Al-
though barely cited or reused [16], these techniques were
shown to work by their authors, who do not hide their
intention to extend the MCM towards a broader class of
non-linear problems.

A second group of examples [I7] comes from the recent
PhD works of J. Dauchet [I8] and O. Farges [19], ded-
icated respectively to radiative transfer in photobiore-
actors and to the optimal design of concentrated solar
power plants. The authors were confronted with numer-
ical problems in which, on the one hand the geometri-
cal complexity was so high that only statistical methods
were looking affordable [20], and on the other hand non-
linearities were present — especially in the coupling law



between the local productivity inside the set-up and the
radiative transfer. Dauchet has also tackled the prob-
lem of evaluating the radiative properties of microalgae
by means of electromagnetics, accounting for their size
and shape distribution [21]: here the non-linearity came
from the fact that radiative properties are quadratic in
the electric field amplitude, which he was basically able
to calculate [22]. Confronted with these difficulties, J.
Dauchet developed a technique to handle multi-folded
integrals with one single stage of non-linearity in be-
tween [I7], drawing his inspiration from Null Collision
Algorithms (NCAs).

NCAs are the latest example we know of handling non-
linearities in the MCM, although the example is drawn
from linear transport — eg radiative transfer physics [23]
and image synthesis [24] [25], semiconductor physics [26],
neutronics [27H29], or even plasma physics [30]. These
algorithms serve to account for the extinction properties
of a medium, when they are highly variable. Their prin-
ciple is to add virtual and ineffective colliders in order to
make constant the total collision frequency. The NCAs
are justified by the rigorous equivalence between the orig-
inal and the modified transport problems; but they can
also be viewed as a way to handle the non-linearity of the
exponential Beer extinction law [31].

b. A trick shared in all these works is to convert
the non-linearity into an increase in the dimension of the
sampling space [17].

As a theoretical illustration, let us write that a
searched quantity ¢ is expressed as an expectation (ei-
ther by mimicry of the physical process under study, or
through a more mathematical reasoning) using the ran-

dom variable (RV) X, under the form:
q= E(a(i)h()?) + b()?)) (1)

where E denotes the statistical expectation, and a and b
are two deterministic functions. Suppose also that h(X)
is only known as the expectation of an estimator h(X;Y)

using the sampling of a RV Y:
¢ =E(a(X) B (MK 7) +0(X))  (1b)

the subscript * % meaning that the value of X is known.
As the statistical expectation is linear and projective:

q= E(a()?)ﬁ()?; Y) + b()?)) (Lc)

It is thus useless to evaluate h(X) exactly (ie without
statistical noise) at each value of X in order to estimate
g correctly (ie without bias, in MCM). Conversely, an
algorithm estimating h(Z) for any # can be turned into
an algorithm estimating ¢, simply by adding a first sam-
pling of X. This is one of the principal advantages of the
Monte-Carlo method: its complexity increases linearly
(and not exponentially) with the total dimension of the
configuration space — here configurations are described
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by the couple of RVs (X; }7) But this becomes false if
the coupling law h — ¢ is non-linear. Imagine now that
it is a square, then in a general manner

E@(}Z’)h(}?)?) £ E(ao?)ﬁ()?; ?)2) (2)

the same way as (u + v)? # u? + v2.

However, in this quadratic case, we could replace Y
with two independent and identically distributed RVs,
57'1 and 172, and then consider that:

B(a()n(X)?) = B(a(DR(X; VDR V2))  (3)

The same technique is usable with monomial and poly-
nomial functions, as:

Vn € N,E(ao?)h()?)") - E(a()Z)H;‘:1 h(X; Yg)) (4)

with the Y; all independent and identically distributed.
This also extends to analytic functions, because in a
Monte-Carlo calculation an infinite sum is no more than
an integral.

c. Despite the non-linearity of the gas kinetics Boltz-
mann equation, the Monte-Carlo method has been com-
monly used to solve it. But the trick revealed in the previ-
ous paragraph has never been used, and the non-linearity
has always been circumvented by using linearization tech-
niques based on discretization of time and/or space. The
numerical schemes obtained share the following operat-
ing principles: they build the story of a (big) swarm of
statistically representative molecules, and because these
cannot cross exactly, collisions are introduced using a
proximity criterion [32H35]. There are a lot of variants
being used today, depending on the collision quadrature
used in time and space [36] [37], or on whether an Eu-
lerian fluid model is used in tandem with the statistical
model [38],139]. ..

d. The author’s proposal is to solve the Boltzmann
equation with Monte-Carlo algorithms like those used in
linear transport, without linearization or discretization,
using the trick revealed in the previous paragraph along
with the null collision technique. The trick alone will deal
with the source term in the Boltzmann collision operator,
and the null collisions are useful to handle the extinction
term.

e. What we have obtained is a statistical numeri-
cal method in gas kinetics, the statistical formulations of
which are given below. The method retains the advan-
tages of the MCM from linear transport, its most striking
properties being that:

e No mesh or time discretization is necessary in the
method.

e The method enables probe calculus, 7e it is possible
to calculate the distribution function at a point of
the phase space, without computing the rest of the
field.



o Rarefaction of the gas at the probe does not com-
promise the relative precision of the calculations.

« Similarly, the frequency of rare events (in the space
of speeds) can be estimated however scarce they
may be.

e The method is limited in (spatial or temporal)
Knudsen number; because it uses a branching es-
timation process, the mean complexity of which
grows exponentially with the mean number of col-
lisions.

e The branchings in the estimation process also cre-
ate a variance problem, which is very sensitive to al-
gorithmic choices. Today, a theoretical framework
for understanding this is lacking.

e Asaresult of the two previous points, we are today
essentially unable to perform a calculus on a steady
state.

f. This paper is organized as follows. In section [}
we show how to handle the non-linearity of the source
term in the Boltzmann collision operator, in an academic
case called the BKW mode [40] which has a symbolic ex-
pression. In section [[I} we shall see how to deal with
extinction in the Boltzmann collision operator, in a very
simplified toy model with a symbolic solution. In sec-
tions[[V]and [V]we deal with the full Boltzmann equation,
firstly in a particular case [4I] with a symbolic solution
(and local equilibrium) and secondly in a more general
case. We conclude in section [VII

II. EXAMPLE: THE BKW MODE

a. The Bobylev-Krook-Wu mode was discovered si-
multaneously by these authors in 1976 [42] [43]. Tt is an
explicit solution of the Boltzmann equation, associated
with a particular set of physical conditions.

We place ourselves in ordinary 3-dimensional space
[44]. The collision model consists of Maxwell molecules
with isotropic scattering: the differential cross section
or is inversely proportional to the relative speed g, with
no angular dependence. The gas is uniform, with a unit
density and a peculiar velocity of zero. Thus f = f(& 1),
and with the adequate non-dimensionalization of time
the Boltzmann equation reads:

/ az. / @01 6

where E. and F, denote respectively the spaces of veloc-
ities and directions (so E,, is the unit sphere of E.), and
¢’ and ¢ state

5’tf(5§ t) =

&' =L@+ e + gil')
&l =5+ — gt (6)
g=lc—¢cl

In this case, the Boltzmann equation admits the par-
ticular solution known as BKW mode

exp(—¢?/(2K¢,?)) (5K -3 1-K _ ¢*
e = 22 “)( + ><02>

2 (VarKey)? K TR T
(7a)

with

K =1- 2exp(—t/6) (7b)
and ¢, the Root Mean Square velocity on each axis (RMS
velocity). With the % factor in the expression of K, f is

definite and positive for ¢ > 0. Fig. [I] gives a graphical
overview of the BKW mode.

(b) Logarithmic scale on y-axis

FIG. 1. The distribution function f along the (Oz) axis of
the velocity space, according to the BKW mode described in
Eq. @, at several times t. u; denotes the x unit vector.

b. In order to build a Monte-Carlo calculation in the
physical situation of the BKW mode, let us rewrite the
evolution Eq. ().

O f(cit) = — f(G1) + sis(Cit) (8a)

with



If it is assumed that the initial condition is “f is known
at t = 07, the time-differential Eq. can be formally
solved, giving:

t
Vt >0, f(C;t) :/ dt’ exp(—(t —t')) x

— 00

(H(t)si(@ 1) + H(-)F(E0))  (9)

where H is the Heaviside step function: H(¢) = 1 if ¢ > 0,
H(t)=0if ¢ < 0.

Together, Eqs. @D and give a second kind Fred-
holm writing of f. By choosing probability densities in
order to sample t', ¢, and 4’, this can be converted into
the Monte-Carlo algorithm intended to estimate f(¢;t)
with (¢ t) € E. x R*. Because algorithm [1] is recursive,
its ability to complete will be known when setting how
t', &, and 4’ are sampled.

Input: A point (&t) in E. x RT
Output: A point estimate of f(&;t)
Sample T” in (—oo;t]: ¢’ is obtained;
if ¥ <0 then

exp(—(t —t')) f(¢0)

return ;
pr (1)

// f(¢0) is known

else
Sample C,: ¢, is obtained;
Sample U': @ is obtained;

=/

¢+ %(5+5*+||5—€*H17’);

a4 —e—alla);
Estimate f(c’;t’) using this algorithm: f1(¢’;t’) is
obtained;

Estimate f(Z/;¢') using this algorithm: fo(&/;t') is
obtained; // independently to f1(¢’;t')
exp(=(t —t) L@ 1) f2(EL5t).

dmpr (t') pa, (G) pg. (@)

return

Algorithm 1: Algorithm for estimating f(c;t),
valid in the conditions of the BKW mode described
in section |II] (uniform and unit density, Maxwell
molecules. . . )

c. The recursive character of algorithm is a fea-
ture common to all Monte-Carlo algorithms based on
second kind Fredholm formulations. It is found in all
multiple scattering problems of transport physics. But
contrary to what happens in linear transport, each recur-
sive stage of an estimation of f by algorithm [Iis likely to
call itself more than once. So, to be exact, the estimation
process no longer consists in following a (virtual) particle
path, but rather in following a particle tree.

We began the formal development of our proposal with
a recursive integral formulation, rather than with a path
integral. We will continue in this way, and invoke the
notion of path (or tree) as little as possible. However, for
the sake of understanding, it seems useful to illustrate
here what the branching estimation paths will look like.

At the same time, we propose a way to locate in such
estimation trees. We take our inspiration from a pre-
vious proposal of Gurov [I1, 12, 45]. Any intermediate
estimate of f in a estimation tree is indexed with an in-
teger sequence, according to the following rules:

e Only the sequences N* — N, stationary at 0, in
which all terms are null since the first null term,
are used.

o The degree of the sequence (the index of its fur-
thest non-zero term) indicates the depth of the
estimate inside the estimation tree; ie the num-
ber of (T';C,;U’) samplings which lead to the
point where the considered intermediary estimate
is needed.

Thus, the final estimate given by the first call of
algorithm [I] is indexed by the null sequence.

e Among the non-zero terms, the i° term equals 1 if
at the i°® depth of recursion the branch of estimating
¢’ has been followed, while it equals 2 if the branch
of estimating ¢, has been followed.

An example of an estimation tree, with this location in-
dexing, is given in Fig.

d. We propose the following choice for sampling t’,
Cx, and U’

—o0;t] = RT
br {E > e)gp?:(t ~t))

E, — Rt
P, {5* N (mcq)—:s eXp(—E'*Q/(Q cq2)) (10)

. E, - Rt
Por @ — (4m) !

T’ follows a unit exponential law to the left of ¢, C. has
a Maxwellian distribution with null peculiar velocity and
cq RMS speed, and U’ is isotropically distributed. Al-
gorithm [T with these probability densities will be named
hereafter algorithm [2} it is displayed in a separate figure.
This choice, although guided by a desire for simplicity,
brings two interesting qualities to algorithm [1| (now [2)):

1. The expectation of the recursion, defined as the
number of T” samplings per final estimation (ie the
number of lines in an estimation tree), is finite.
This implies that algorithm [2| surely completes.

2. If at ¢ = 0 the distribution f is at equilibrium:

exp(—é’z/(Q cqg))
(‘/ﬂcq)g

then algorithm [ has a null variance.

f@t=0) = (1)

Principle of proof (1¥* point). Let us consider the expec-
tation of the recursion of algorithm [2| starting at (&),
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(a) Display of an estimation tree,
in one velocity coordinate c, versus the time ¢.

(b) Display of an estimation tree,
projected on the (xOy) plane of the ordinary space.

FIG. 2. Illustration of an estimation tree as generated by algorithm [I} with locations indexed as proposed in paragraph
The same tree is displayed, in (a) with one velocity coordinate versus time, in (b) with 2 ordinary space coordinates. For the
sake of readability, the speeds have been indexed identically to the estimations that are made there. The collision locations are
denoted in (b) by circles and in (a) by rounded cap vertical lines. Squares denote where the tree meets the initial condition.

Input: A point (¢;t) in E. x R

Output: A point estimate of f(&;t)

Sample T following a unit exponential law to the left of
t: t' is obtained;

if ¢ < 0 then return f(c;0);

else

// f(&0) is known

Sample C. following a Maxwellian distribution, with
null peculiar velocity and ¢, RMS speed: ¢ is
obtained;

Sample U’ isotropically: @’ is obtained;

& (E+a+e-ala);

cl g(@+a —e—alla);
Estimate f(¢’;t') using this algorithm: fi(¢’;¢') is
obtained;

Estimate f(Z/;¢') using this algorithm: fo(&/;t) is

// independently of fi(¢’;t’)
return (v/27cy)? exp(€*2/(2 cq2)) fi(@st') fo(elst');

obtained;

Algorithm 2: Algorithm for estimating f(c;t),
valid in the conditions of the BKW mode described
in section |II] (uniform and unit density, Maxwell
molecules. .. ). The sampling choices listed in

Eq. are used.

defined as the expectation of the number of times 7’ ran-

dom variables will be sampled. This defines a function
rec : B, X RY — [1; 400].

Reading algorithm |1} an integral equation on rec can
be obtained (as for the calculated quantity f). It reads:

t
rec(é;t) = / D (t’)dt'(l +H(-t')x 0+

— 00

H(t/)/ P@*(5*)d5*/ p (@)da’ x
E E

c u

(rec(é"; t') + rec(cl; t'))) (12)

Then the sampling choices we have made in Egs. are
entered, which gives:

rec(é:t) — /_ ; exp(—(t — ))dt’ (1 +

, exp(—a.2/(2¢,?))dé. da’
H(t)/Er (qu)g /E e

(rec(é";t’) + rec(cl; t’))) (13)

In order to solve this second kind Fredholm expression
manually, it can be derived with respect to ¢, which gives
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(b) Results obtained at 3x the RMS speed away from
the centre of the velocity space

FIG. 3. Results obtained by algorithm [2] applied to the BKW mode described in Eq. . Two probe points in the velocity
space are considered, where we follow the distribution function f along the time ¢. The graphs at the top give a graphical
comparison between the results (given with confidence intervals of 1 standard deviation) and the expected values. The graphs
at the bottom show, with the same results, the relative standard deviation (circles) (given by the calculations) beside the error
actually made (triangles). Each displayed point was obtained through running 10* realizations of algorithm

a differential system on rec:

Orec(Cit) = — rec(c;t) + 1+

vt >0, / exp(—5*2/(2cq32))dc1/ LMX
E. (V2meq) B, 47

(rec(é"; t) + rec(él; t))

rec(C;t =0) =1

(14)
rec is uniform at ¢ = 0, and its derivative preserves this
uniformity: so here rec(c;t) = rec(t). Finally the system
is easily solved in:

rec(C;t) = 2exp(t) — 1 (15)
which is finite for all (¢it) € E. x RT. O

Principle of proof (2"* point). We call ﬁ(é’, t) an estima-
tor of f(&t), obtained through algorithm [2l We assume

that the initial distribution f(&t¢ = 0) is the equilibrium
distribution described in Eq. .

Now consider the following induction hypothesis, to
be applied anywhere in an estimation tree: F(t) =
(V2meq) P exp(—c?/(2¢4?)), ie f is always estimated as
the equilibrium distribution with no variance.

Starting algorithm there are two possibilities: 77 < 0
and we are at a leaf of the tree, or 7" > 0 and we are at
a non-leaf node of the tree.

If T" < 0 then:

= f(&0)
_ exp(—é’z/(2 cq2))
(MCQ)S

the induction hypothesis is valid.
If 77 > 0 then:

= (V)P R (CHT) By (Ol TY)
exp(—C.2/(2¢,2))
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FIG. 4. Results obtained by algorithm [2| applied to the BKW mode described in Eq. @ The probe points are spread on
the (Ox) axis of the velocity space, and only two dates are considered. The graphs at the top give a graphical comparison
between the results (given with confidence intervals of 1 standard deviation) and the expected values. The graphs at the bottom
show, with the same results, the relative standard deviation (circles) (given by the calculations) beside the error actually made
(triangles). Each displayed point was obtained through running 10* realizations of algorithm

where C' and €. are the random variables (RVs) corre-
sponding to the values ¢’ and ¢ in algorithm [2| I If the

induction hypothesis holds for Fy (C"; T") and Fo(C/; T"),
then:

ﬁ(é‘ t) _ exp(—c_"/z/(g Cq2)) eXp(—C_’lz/(Z ng))
| (Varey)” exp(—C.2/(2¢,2))
_ exp(=¢?/(2¢,%))

(mcq)g

because C'2 4+ (12 = &2 4 C,2.

The induction hypothesis applies in this case also.
Because the estimation tree is finite (see the previous

point), the induction hypothesis applies from the leaves

of the tree to any node of the tree, root included. O

(17)

e. Numerical experiments were carried out in which
algorithm [2] was operated to calculate f at several points
of the phase spacetime. The physical situation considered
is the BKW situation expressed in Eq. @7 ie the initial

distribution is at maximal disequilibrium:

5¢2 ( [em \° o /(6
9c2\V 5 @) P /5%
(18

For each point where f was calculated, 10* realizations
were used. The results are displayed in Figs. [3] and

A first feature of the performance of algorithm [2]
that the variance of its result increases with the time
elapsed since the initial condition. This is logical. When
the elapsed time increases, on average the estimation
trees are padded. Because the relation between the result
and the equilibrium value is exactly the product of these
relations at every leaf of the estimation tree (this can
be understood through the 2" proof just above), more
leaves means more variance in the final result. Otherwise,
the modelling process we applied to the mean recursion
rec(C;t) through Egs. to can be applied to the
estimator variance — this will be the subject of a future
paper — , which does indeed show that this variance in-
creases with the time t.

f(&0) =
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(b) The threshold is set as 6x the RMS speed.

FIG. 5. Results obtained by algorithm [3| combined with the sampling laws listed in Egs. (10) and (19)), and applied to the
BKW mode described in Eq. . Two constant speeds are considered: along the time ¢, we follow how many particles have a
speed above these thresholds. The graphs at the top give a graphical comparison between the results (given with confidence
intervals of 1 standard deviation) and the expected values. The graphs at the bottom show, with the same results, the relative

standard deviation (circles) (given by the calculations) beside the error actually made (triangles).

obtained through running 10? realizations of algorithm

Input: A speed ¢p and a time ¢
Output: A point estimate of Frac (||¢]| = co;t), the
fraction of particles of which speed exceeds cg
at time ¢
Sample Cy: ¢y is obtained; /! cf =co
Sample ﬁf: iy is obtained;
Estimate f(cyiif;t) using algorithm }V(Cfﬁf;t) is
obtained;
e flertyst)
pey (¢r) pg, (ty)’

Algorithm 3: Algorithm for estimating fractions of
particles with high kinetic energy, valid in the
conditions of the BKW mode described in section [[I]
(uniform and unit density, Maxwell molecules. . .)

return

A more interesting behaviour of algorithm [2]is that the
variance of its result depends very little on the position in
the phase space. In particular, it is nearly independent of

Each displayed point was

the rarefaction: in Fig. [d] we see that when f is divided
by 10% while placing in the velocity space, the relative
error increases only by a factor of 5.

In order to verify this last feature in more depth, we
decided to compute high-energy fractions of the gas. The
quantity we calculated was Frac (||¢]| = co;t), the fraction
of molecules of which the total speed exceeds a given
threshold ¢y at time ¢. It is a direct integral of f on
E.: we computed it using algorithm |2 with the addi-
tional initial sampling of a RV C_"f = Cfﬁf. Algorithm
explains this; the added sampling law is:

B Co((fq) _2)
P, (cp) = (<(%2) _2)(cf—00)+co)z

2¢q
(2¢q +¢f — c0)?

py, (ily) = (4m) !

if co > 2¢,

pcf(cf) = if o < 2¢

(19)
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(b) Results obtained after 3 mean collision times

FIG. 6. Results obtained by algorithmcombined with the sampling laws listed in Egs. and 7 and applied to the BKW
mode described in Eq. . We calculate the distribution of particles along the speed ||¢]|, ¢¢ how many particles have a speed
above any given threshold co; only two dates are considered. The graphs at the top give a graphical comparison between the
results (given with confidence intervals of 1 standard deviation) and the expected values. The graphs at the bottom show, with
the same results, the relative standard deviation (circles) (given by the calculations) beside the error actually made (triangles).
Each displayed point was obtained through running 10* realizations of algorithm

The results of algorithms [3] and [2] with sampling laws
listed in Eqs. and , are displayed in Figs. and@
There seems to be no problem in quantifying tiny parts
of the gas, especially those located at high kinetic energy,
even fractions as small as one billionth of the total.

IIT. TOY MODEL, WITH NULL COLLISIONS

a. In the previous section, we used the BKW mode
as an example of gas kinetics. This theoretical case is
built on a very particular combination: the uniform den-
sity and the Maxwell collision model together make the
collision frequency constant, in the whole phase space.
Thus the extinction in the Boltzmann dynamics becomes
artificially linear. We have written f(¢;t) as a sum of
contributions of the source term due to inward collisions,
weighted with the Beer extinction law, in Eq. (9). This
is in fact always feasible, but there the exponential of the
Beer law uses the time only multiplied with a constant

coefficient (which can be set to unity thanks to proper
non-dimensionalizing, as was done in this case), which
is very convenient for sampling. In a more general case,
the collision frequency depends on f, which introduces
through the exponential term in Eq. @D an additional
non-linearity to the one contained in the source term.

We show hereafter how to deal with the non-linearity
of the extinction, in the Boltzmann equation. This is
done on a very simplified case, built as the extinction of
the Boltzmann dynamics isolated without source term or
phase space. It is only the quadratic ordinary differential
system, here written in f(¢):

f'it) = —a f(t)?
{ﬂ8=ﬁ " (20)

where o and fjy are arbitrary positive constants. It ad-
mits on R* the single solution:

o
ft) = afot+1 (21)



b. A way to solve Eq. (20) numerically, with the
Monte-Carlo method, would be to use a linear solution
of Eq. , as we did in the previous section in Eq. @
Indeed here:

ft) = —(af(t) x f(t) (22)
and so
Vt>0 / dt’ o f (¢ exp( /dt”f ”)
(H(t) % 0+ H(—t )fo) (23)
where

f() =H() f(t) +H(=t) fo (24)

Combined with the use of independent and identically
distributed RVs applied to a Taylor series of the expo-
nential function, as proposed in section[[ 0 bland detailed
in [18], Eq. leads to a recursive integral writing of
f(t), which can be turned into a Monte-Carlo algorithm.
However, this is not what we are going to use.

c. The technique we rely on is called, among other
names, a Null Collision Algorithm (NCA) [46]. On the
examples in this paper, it will remove the need for a Tay-
lor series. In fact, NCAs are formally equivalent to the
use of a Taylor series of the exponential extinction law,
which we mentioned just above; this has been explained
for example in [31I]. But the way the NCAs are built re-
lates to a physical interpretation, and their convergence
is very simple to obtain, which is why we have chosen
this approach.

The principle of a NCA is to introduce an arbitrary
collision frequency, here noted . We thus transform the

Eq. in:
F'@) = =08+ (05(t) —af®?)  (25)

Considering — 0 f(t) as an extinction and (f(t) — o f (t)?)
as a source term, we NOwW express:

t

Vt>0,f(t>:/

o(t—1t)) x

(1) (70~ L) w0y 1) - ceo)

This is where the name “Null Collision Algorithm” comes
from. The extinction frequency is set to an arbitrary
value . This is compensated by adding a source term
of particles having encountered null collisions — collisions
without effect. Thus the transport problem remains the
same, only the algorithmic is modified.

In the following we call © the “raised collision fre-
quency”. This name arises from the fact that in early im-
plementations of NCAs [26] [30,[47], © was actually having
to exceed the real extinction frequency everywhere for the
algorithms to work. It has been demonstrated recently
that this constraint is generally not mandatory [23] (but
¥ has, however, to be positive); nevertheless, complying
with it improves the convergence in most cases.

dt’' v exp(—

10

d. By setting a probability density for the integra-
tion variable ¢’ in Eq. at every t > 0, we obtain a
recursive Monte-Carlo algorithm for evaluating f(t). We
choose this density arbitrary as the exponential term in

Eq. :

[ (ooit] = RT
pre s { t' s Dexp(—d(t —t')) (27)

for the sake of simplicity, and this choice will appear rea-
sonable through the section. The result is algorithm [4

Input: A timet >0

Output: A point estimate of f(t)

Sample T” following an exponential law to the left of ¢,
with constant 2: ¢’ is obtained;

if ¥ < 0 then return f;

else

Estimate f(') using this algorithm: fi(¢') is
obtained;

Estimate at new f(¢') using this algorithm: fo(t') is
obtained,; // independently of ﬁ(t/)

return f,(t') (1 - af;(t/));

Algorithm 4: Algorithm for estimating f(t), as
described in Eq.

In the same way as shown in the previous section, we
can prove that the expected recursion of algorithm [4]
starting at any arbitrary time, is finite. Defining the
recursion rec as the total number of 7 sampling — as in
the previous section — we obtain a very similar result:

rec(t) = 2exp(vt) — 1 (28)

The same modelling approach can be applied to the
second moment of F(t) the estimator of f(¢), in order
to obtain its variance. The example given in this section
is simple enough to derive a symbolic expression of the
variance. It states that:

Var(F(t)) = > o fot F@)? (29)
af+(04fo_1)af0t
if
p>afy or <aﬁfo—1>afot<1 (29b)

, otherwise Var(ﬁ (t)) is infinite.

Interestingly, the behaviour of F varies qualitatively
with the quality of ¥ as a global bound of the extinction
frequency (of which the maximum is « fp):

e If 0 > a fo, the relative variance of ﬁ(t)7 defined

as Var( )/f

2 tends to a finite value when
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FIG. 7. Results obtained by algorithm |4} solving the Eq. . f(t) was calculated at different ¢, using two different values of

¥ in columns (a) and (b). The four bottom graphs compare the predictions in Egs. and with what algorithm [4| has

t — 4o00. So the absolute variance of F(t) tends

toward 0 while ¢ — 4o00. F(¢) is a usable estimator
of f(t) for every t.

If O = a fo, the relative variance of F(t) grows lin-
early to infinity with ¢; the absolute variance of
F(¢) still tends towards 0 while t — 4o00. F(t) is
thus still a reasonable estimator of f(t) regardless

done. Each point was obtained through running 10* realizations of algorithm

of t.

If D < a fp, the variance of F(t) (absolute or rela-
tive) reaches infinity for a finite value of the time ¢,
and for all subsequent times. In these conditions,
obtaining the convergence of a Monte-Carlo proce-
dure estimating f(t) can be very difficult.



e. Algorithm[f] was actually run with one aim being
to confirm what is affirmed in Egs. and . Some
results are given in Fig. [7]

The indications stated above about the recursion and
the variance of algorithm [fare confirmed. Noticeably, we
do not have that sharp increase in the estimator variance
with simulated time, which is observed in algorithm [2]
aimed at solving the BKW mode.

Furthermore, in Fig. as in Egs. and , it
can be understood that a compromise needs to be found
in the parameter 7: between a low variance associated
with a high recursion, and a low recursion associated
with a high variance. This kind of compromise is in fact
present when designing recursive MC algorithms solv-
ing any problem presented in this paper. For example,
with oversampling strategies we have been able to in-
crease simulatable physical times in the BKW mode of
the previous section by several mean free flight times.
This will be the subject of a future work.

IV. EXAMPLE: HARMONIC TRAP

a. In this section we solve the Boltzmann equation
with the MCM, in a second academic case where a sym-
bolic solution is available. In this case, the gas is no
longer uniform, and forms a cloud around the origin
which swells and contracts periodically. Compared to
the BKW mode, we have now to account for the ballistic
transport and for a variable collision frequency.

The physical case under consideration here is never-
theless very particular, because it belongs to the kernel
of the collision operator — e collisions have no influence
—, although it is not the barometric equilibrium. This
possibility has been known since the works of Boltzmann
himself [48], and has been revisited recently in the field
of cold atom gas manipulation [41].

We chose our precise test case in the collision operator
kernel, built as simply as possible:

e The molecules are subjected to a constant and
purely harmonic force calling them back to the ori-
gin. This force subjects the particles to an acceler-
ation:

a=ad(r) = —w?7 (30)
where 7 is the position.

e The gas has no global kinetic moment around the
origin.

Knowing this, the equilibrium distributions constitute a
set parametrized by two quantities, like the total amount
of matter n and the thermal RMS speed on each axis c,.
In this case of elastic confinement, the collision operator
kernel extends to breathing modes oscillating at twice
the trap frequency, with two additional parameters, such
as Acq2 the amplitude of the thermal energy oscillations
and ¢g a phase at the origin of time. In these breathing
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modes, the distribution of molecules is always and ev-
erywhere Maxwellian, with density, peculiar speed, and
thermal energy:

Neok (75 1) = npN(G;(l-i-esin i(;))cq,ef f) (7) (31a)
L ccosp(t)
co 7t = s - 31b
Teok (751) 1+ esin ¢(t) “r (31b)
1— 2 o 2
Ca.cok(t)? = (=€) egeq” (31c)

1+ esin@(t)

where ¢(t) stands for 2wt + ¢, ¢g, eq is the thermal speed
in the equilibrium distribution with same total mass and

i Acg’ _
same total mechanical energy, ¢ equals D and p NG
denotes the density of the centred multidimensional nor-
mal probability law with covariance matrix V. The result-

ing physical example is presented in Fig. [§]

Because we do not want to have only ballistic dy-
namics, we need to choose a collision model. For the
sake of simplicity, we chose the isotropic Maxwell colli-
sion model: the differential collision cross-section op =
k/(4mg) where g is the relative velocity of particles and
K is a constant.

b. Introducing null-collisions, the Boltzmann equa-

tion can be written in our case:

4
+n/ e, [ ZFEEn et (32)

where ¢’ and ¢/ are given in Eq. (), and © is an ar-
bitrary raised collision frequency. Considering that the
distribution is known at ¢t = 0 (as in section , and us-
ing Liouville’s theorem, Eq. can be turned into a
Fredholm counterpart:

>
~|&
30
o
—

(P (): 8 (F): )
;6 (1): 1) )) 5
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(a) Density of matter along the (Ox) axis of the ordinary
space, as a function of the time. The physical situation has
spherical symmetry. The dashed lines are density level sets,

spaced with a factor 2 or a factor 100.

1 j 1 . I H T T
3 Potential energy -~
Thermal energy - |

0,8 foi
- i | Flow kinetic energy x10 -

0 0,25 05 0,75 1
wt/(2m)

(b) Distibution of the total mechanical energy of the gas,
as a function of the time.

FIG. 8. Presentation of the physical situation of the harmonic
trap described in Eq. . The parameters € = % and ¢o =0
are chosen, as in section [V]

with 7, and ¢, describing the ballistic trajectory flowing
past (7, C) at t:

8t/77b(tl) = Eb(tl)
8,5/51,(75’) = —WQFb(t/)
(33Db)
and v; and s; are the real extinction and source term:

(75 G t) —H/ dé. f(7;Ce; t)

Lo
with the IC {rf’() "
C

(33¢)

su(FEt) = / az, / A0 e f et (33d)
E. E. 47T

The raised extinction frequency © can be used as a
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sampling guide for ¢. Then, by choosing probability
densities in order to sample ¢, and @', Eq. (33 can be
converted into Monte-Carlo algorithm [5] intended to es-
timate f(7 ¢ t) with (¥ ¢;t) € E, X E. x Rt — where E,
denotes the space of positions.

Algorithm [5| has an amazing feature: if the initial dis-
tribution is in the kernel of the collision operator — as de-
scribed in Eq. —, then whatever the choices retained
for D, C’*, and U ! the result of algorlthm I has a null
variance. To our knowledge this is the first Monte-Carlo
algorithm which exhibits a zero variance result indepen-
dently of the sampling choices[49].

Principle of proof (Null variance of algorithm @ We
call ﬁ(f"; ¢ t) an estimator of f(7;¢;t), obtained through
algorithm We assume that the initial distribution
fr et = 0) is everywhere Maxwellian, with the first
moments described in Eq. .

An essential lemma for this proof is the following: for
any arbitrary choice of (7, ¢ t;t') € E,. x E. x Rx R, a
density value at (7 ¢ t) is compatible with a Maxwellian
distribution of which the first moments are described
in Eq. , if and only if the same density value at
(7(t"); G (t);t') is compatible with a Maxwellian dis-
tribution of which the first moments are described in
Eq. with substitution of ¢ by #’. This means,
by virtue of Liouville’s theorem, that an oscillating
Maxwellian distribution, as described in Eq. , is com-
patible with the ballistic transport in the given force field.
The proof of this, and its extension to more general ex-
pressions of the collision operator kernel, can be found in
[41] and will not be repeated here.

Now consider the following induction hypothesis, to
apply anywhere in an estimation tree: F(7 ¢ t) equals
with no variance f(7;¢;t), which describes a Maxwellian
distribution, the first moments of which are given in
Eq. .

Starting algorlthml 5l there are two possibilities: TV < 0
and we are at a leaf of the estimation tree, or 77 > 0 and
we are at a non-leaf node of the tree.

If 7" < 0 then:

F(riat) = f(r(0);6,(0); 0) (34)
Because of the initial condition and of the lemma, the
induction hypothesis is valid.

If 77 > 0 then:

G(T");T") +
K

= = X
Am pe (Cu) pyp (U") 0(7(T7); & (T7); T')

(Fa(ri(1): € 17) Far(1"): Ol )~

BT 6 (T'); ') Ba(Ry(T); o ') )

where ¢’ and C_’l are the RVs corresponding to the values
¢’ and ¢, in algorithm If the induction hypothesis
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Input: A point (7;¢&t) in B, x E, x Rt
Output: A point estimate of f(7;&;t)
Sample T” in (—oo;t], with the density pg :
if ¥’ <0 then

L return f(7%,(0);&(0);0);

(t"); & (t");t")): t' is obtained;

else
Sample C.: @ is obtained;
Sample U': @ is obtained;
& e M@ ) + 8+ a ) - & @);
& e H@) + & - e ) - &l @); i
Estimate f(75(t'); &(t');t") using this algorithm: f1(7(t'); & (¢');t') is obtained
Estimate f(75(t'); Cx;t’) using this algorithm: ﬁ(Fb(t’);E*,t’) is obtained;  // independently of fi(7(t');&(t');t)
Estimate f(75(t');¢’;t") using this algorithm: f3(7(¢');&’;¢') is obtained;
Estimate f(75(¢'); ¢/;t") using this algorithm: fa(7%(t); &/;¢t') is obtained; // independently of f3(7%(t');c’;t")
ra 7 ()& rs atl,i_t/ ~—»t a*_t/

return Ji (7 (£): & (¢): ) + 5 fs(@b(t); "5 t') fa (T ( Z’c i) — f}(ib( )i G (t);t) fa(F(t); s ).

L 47rpc* (C*)pU/( /)V(Tb(t ); Co (¢ )7t/)

Algorithm 5: Algorithm for estimating f(7; & t), valid in the conditions of the harmonic trap described in

sections [[V] and [V]

holds for ﬁl, ﬁg, 133 and ﬁ4, then:

’ 5b(T/); T/) +

K

T7');CT') -

W) (T): ') f((T): Cs T))
Considering now that f at (7(77);7") follows a
Maxwellian distribution, which respects the detailed bal-
ance, we conclude that:
F(Fét) = f(i(T');6(T'); T')
Following the lemma, the induction hypothesis is valid.
As long as the estimation tree is finite (which brings
conditions on ), the induction hypothesis applies from
the leaves of the tree to any node of the tree, root in-
cluded. 0

(35)

Some numerical experiments (not displayed here) have
confirmed this result.

V. EXAMPLE: HARMONIC TRAP WITHOUT
LOCAL EQUILIBRIUM

a. There is not a lot to illustrate in the previous
section: in the physical case described, the proposed al-
gorithm has zero variance. There are of course a lot of
possible modifications of algorithm [5] which break with
this state of affairs. We have however chosen to modify
the physical case under study, as it seemed pointless to

present a new algorithm, with the only noticeable char-
acteristic being less efficient than the previous one.

The physical case of this section is a mix between the
case of the previous section and the BKW mode. We
suppose the same external force field, and the same first
moments at the initial time, as in section[[V] But now, at
the initial condition, at each point of space the distribu-
tion of speeds is the BKW mode distribution at maximal
disequilibrium. This means that at every point of space
the initial distribution of speeds is the one described in
Eq. , translated and scaled to accord with the den-
sity, peculiar speed, and temperature prescribed at initial
time ¢t = 0 by Eq. .

After the initial condition, the system will evolve in a
different way to that explained in section [[V] The differ-
ences appear even in macroscopic quantities. As far as
the authors know, there is today no symbolic description
available of the evolution of our system. Nevertheless,
two limiting situations are easily described:

o If the cross-sections are null (ie there are no colli-
sions), the evolution of the system is made only by
ballistic transport. This is symbolically calculable,
in a harmonic force field.

If the cross-sections are not null, the final state of
the gas is exactly the oscillating state described in
the previous section in Eq. . This can be
demonstrated using the collisional invariants exist-
ing in our system. Considering these, the only state
belonging to the collision operator kernel that the
system can reach is the one described in Eq. .

b. In order to build simulations, the last remaining
parameters must be set.
We chose ¢ = % and ¢p = 0, and this set the

initial condition. @ The other parameters w, n, and
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Input: A point (7;¢&t) in B, x E, x Rt
Output: A point estimate of f(7;&;t)

t < t;

repeat

if t° < 0 then

| return £(74(0); & (0); 0);
Calculate 1ok (75 (t°); t°); n° is obtained;
Do i(g)g kn°;

t %

until o < ';
Calculate cg, cok(t'); cq’ is obtained;
Calculate veok (75 (t');t'); ¥’ is obtained;

Sample C. following a Maxwellian distribution, with peculiar speed ¥’ and RMS speed c,":

Sample U’ isotropically: @ is obtained;

& 5(G() + e +at) — &l d’);

& 5@ +a — &) —alla@);

Estimate f(7(t'); & (t');t') using this algorithm:

Estimate f(7(t'); Cs;t") using this algorithm: fg(rb(t'),é'*;t')
Estimate f(7 (¢ ),E ;') using this algorithm: f3( b (t);¢'5t)
Estimate f(7,(t'); &/;¢') using this algorithm: fa(7(t); & t)) i

return fi (P (t');

G (t')t') +

(V2 exp(<5*

Cq

Sample R following a uniform standard law; r is obtained;

Fi(F(); 8 (¢); ') is obtained;

is obtained;

is obtained;

b
=2/\2 ~
) (RE@ses

Sample T° in (—oo;t'] following an exponential law to the left of ¢, with constant 2: t° is obtained;

Cx is obtained;

// independently of fl(f’b

(t"); e (t');t")

is obtained;

// independently of fs(7(t');é";t')

W) 205 1) — Fa(o(t): G (); ') Fa(Fo(); s t’));

Algorithm 6: Algorithm for estimating f(7 ¢ t), valid in the conditions of the harmonic trap described in
sections [[V] and [V] The sampling choices detailed in section [V] are used.

Cq,cq are irrelevant since they are squeezed during non-
dimensionalization. This is the choice we made while
expounding the physical case of section [[V]in Fig. 8] We

must also specify the collision model: we chose k such as
nkKk (4)2 — 3
Cq, eq :

Finally, we need to specify 2, C,., and U’. U’ will follow
an isotropic law, as in section C_"* is set to a Maxwellian
sampling; the Maxwellian bell is adjusted according to
the final distribution, e it is centred on ¥k (7;t') and
reduced to ¢g, cok (') standard deviation given in Eq. ,
where t’ is the collision date. As we wanted © as a credible
bound of the collision frequency, we made the following

choice:
1/5\2
t) = g <3)2 Kncok("?; t)

The pre-factor %(%)% is the maximal ratio between the
BKW mode initial distribution and the equilibrium dis-
tribution with the same first moments. Indeed:

1(5)3 - JBrRW (G 0)
e\ 3 éeE. (\2mey) 3 exp(—2/(2¢4?))

where fexw/(€;0) is given by Eq. .

Sampling a collision date ¢’ using the raised collision
frequency o given in Eq. can be tricky: we need to
apply the Beer extinction law to the gas density described
in Eq. , along an elliptic ballistic trajectory...To

(36)

>

U=

(7

(37)

achieve this, we use ¥ as the true extinction in an inter-
nal Null Collision Algorithm. This NCA uses as a raised
collision frequency the global maximum of © defined in
Eq. ., reached in the centre of the gas cloud at its
maximum contraction. We denote it 7, and it equals:

—

1/5\2
- (3)2 nncok(();t)|sin p(t)=—1

(e (=) @

With all these choices, algorithm [5] becomes algorithm

U=

(38)

(6

c.  We then ran algorithm[f] with all the physical and
numerical settings stated previously in this section. The
results are displayed in Figs. [9] and What is noted on
these figures as rec is the mean recursion of algorithm [6]
which means the mean number of internal calls of algo-
rithm [6] as it is written, when calling it to estimate f at
a particular point (7 ¢;t) of the phase space-time.

In Fig. [9] the distribution function f is followed at two
constant probe points of the phase space. As in the previ-
ous sections, all calculated points are independent, which
is why we can focus on any particular region of the phase
space-time, as we did around wt = 3.

Fig.[10]shows the distribution of the mass along the po-
tential energy (or equivalently, along the distance about
the origin). The fraction of the mass more distant from
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FIG. 9. Results obtained by algorithm [6] with the choices presented in subsection [V 0b] and applied to the harmonic trap
problem described in section [[V] and [V] Two probe points in the phase space are considered, where we follow the distribution
function f along the time ¢. These probe points (7% ¢) comply with the constraint ¢ = Teok(7;0), such that there f = 0 at
the initial instant. The graphs on the top give a graphical comparison between the results (given with confidence intervals of
1 standard deviation), the values predicted in the final oscillating state (dashed lines), and the values predicted by ballistic
transport of the initial condition (dotted lines). The graphs of the middle line show, with the same results, the relative standard
deviation given by the calculation. The graphs of the bottom display the mean recursivity of algorithm [6] computing the points
on the graphs above. Each displayed points has been obtained through running 10* realizations of algorithmp@
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FIG. 10. Results obtained by algorithm E combined with the sampling laws listed in Eq. and section and applied
to the harmonic trap problem described in sections [[V]and [V] We calculate the distibution of particles along the radius ||7|, ie
how many particles are more distant from the origin than any given threshold ro; only two dates are considered. The graphs
at the top give a graphical comparison between the results (given with confidence intervals of 1 standard deviation), and the
values predicted in the final oscillating state (dashed lines) (ballistic transport of the initial condition leads to the same results,
in these precise cases). The graphs in the middle line show, with the same results, the relative standard deviation given by the
calculation. The graphs at the bottom display the mean recursivity of algorithm [f] called by algorithm [7] when computing the
points on the graphs above. Each displayed point was obtained through running 10* realizations of algorithm



the origin than a fixed threshold ry is computed, as a
function of this threshold. This is an integral of the dis-
tribution function f over the phase space. It is calculated
using algorithm [6] with an additional initial sampling of
a radius 77 and a velocity ¢;. The result is algorithm

The sampling law of (ﬁf; éf) is similar to the one given

in Eq. , indeed:

ﬁf = Rf(jf with

PR, (1) =
ro ((g:j‘;q ) - 2)

(((%)Q - 2) (rp —ro) + ro)

2¢q, eq/w
(2Cq7 eq/w +rp = 70)?

pg, (i) = (4m) !

C} of law N(Ucok (ﬁf; t) ; Cq, Cok(t)2f>

5 if wrg > 2¢q, eq

if wrg < 2¢q, eq

(40)

Input: A radius rp and a time ¢

Output: A point estimate of Frac (||7]| = ro;t), the
fraction of particles more distant than r¢ from
the origin at time ¢

Sample Ry: ry is obtained; /] =1

Sample ij: iy is obtained;

Sample C_"f: Cy is obtained;

Estimate f(rfiiy; ¢r;t) using algorithm@ fretiy; Cr;t) is

obtained;
ri? flrptp; @st)
pr; (1) pg, (tiy) pe, ()’
Algorithm 7: Algorithm for estimating fractions of
particles with high potential energy, valid in the
conditions of the harmonic trap described in sections

[Vl and [V

return

We observe the same behaviours in algorithm [6] as in
algorithm [2l The variance of the obtained estimator of
f increases with the simulated physical time. It is how-
ever practically insensitive to rarefaction; we can evaluate
without difficulty fractions of the mass as small as one
millionth.

There is a noticeable decrease in the recursivity of al-
gorithm [6] when the probe points move away from the
origin. This was an expected result, as the raised colli-
sion frequency ¥ is higher near the origin. Also, we can
appreciate now the usefulness of our somewhat complex
raised extinction frequency field © set in Eq. (36). If
we had instead used a constant raised collision frequency
such as ¥ defined in Eq. , the mean recursion would
have been higher than shown in Figs. [0]and [I0] However,
it is already very high there, especially considering that
at the maximum physical time we probed, the system
was still very far from its final state.
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VI. CONCLUSION AND PERSPECTIVES

a. We have numerically solved the Boltzmann equa-
tion of gas kinetics in several test cases, using the Monte-
Carlo method. It is the ordinary Monte-Carlo method,
as used in linear physics, without bias, and where par-
ticle paths are computed independently. The algorithms
that we have proposed are based on a second kind Fred-
holm writing of the Boltzmann equation, and rely on the
following of virtual particles from their arrivals to their
sources. As far as the authors know, this is the first nu-
merical method in gas kinetics which thus travels along
time, backwards.

This building of particle paths, from the end to the
start, brings an interesting property to the method. No
difficulty appears when focusing on low crowded parts
of the phase space. For the same reason we can carry
out probe calculus. This ability is widely known in linear
transport physics. An example from radiative transfer
is the prediction of the view of a satellite looking at the
Earth: it is commonly known that one can calculate the
image by sampling rays built as incoming to the satellite
and directed from the Earth, and then by evaluating the
possible sources of these rays; and that it is unneccesary
to start by computing the whole irradiance field around
the Earth. The paths built from their destination can ex-
plore the phase space, and catch the information strictly
necessary to compute the desired result.

b.  This possibility to use particle paths built toward
sources is usually considered to be linked to a propaga-
tive insight of the phenomenon. This means that what is
observed at the probe point is a sum of the contributions
of all possible paths coming from sources. This insight
remains part of our approach, and the non-linearity is
taken into account at the nodes of the henceforth branch-
ing paths. So the contributing paths are now contribut-
ing trees. Each tree consists of the path of the incom-
ing particle, plus the paths of its collision partners, plus
the paths of the collision partners of the aforementioned
partners, etc... We have obtained an arborescent propa-
gation.

This comes at a price. When the mean number of col-
lisions encountered by the particles inside the simulated
space-time increases, the contributing trees are padded,
and the recursivity and estimation variance of our algo-
rithms can make their calculations unaffordable.

We are convinced that this extension of a propagative
and statistical point of view, performed here to examine
gas kinetics, is amenable to aspects of other non-linear
physics problems. Indeed, it has already been applied
recently to some of them [12] [I4], [T6].

c. Another striking feature of the computations we
have done is the complete absence of any mesh within.
This is again a common property of the Monte-Carlo
method in linear transport physics, but is new in gas
kinetics numericals. Here it is pointless to worry about
the good coverage of the space of speeds, about the bias
that the mesh introduces, or about the memory usage of



the numerical programme.

If a geometry is present (a possibility not illustrated
in this article), it enters the integral formulation of the
Boltzmann equation only through an intersection calcu-
lus, between surfaces and ballistic trajectories. Other-
wise, the boundary conditions in gas kinetics are gen-
erally written as integral expressions of the distribution
of the outgoing molecules, directly usable in our Monte-
Carlo method. This leads the authors to state that taking
into account any geometry will bring no difficulty, given
that ballistic trajectories are simple enough — typically,
straight lines. If very complex geometries come into play,
we will be able to use the expertise of the image synthesis
community directly [20].

d. Finally, setting aside the theoretical implications
this work could have, we have still obtained a numerical
method in gas kinetics that is very complementary to
what is currently available.

It can compute the high energy fractions in the gas
very easily, which is reputed to be a high burden for the
DSMC method or for fully discretized methods in gas ki-
netics. These fractions can be very important from the
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applicative point of view, because some processes hap-
pen only here — eg chemical reactions, ionization events,
nuclear reactions or degradation processes.

However, today it works mainly in non-stationary
problems, where the initial condition plays a major role.
Going to stationary situations is very difficult. On the
other hand, stationary problems are reputedly easier for
the DSMC or fully discretized methods.
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