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cMéso-Star SAS, 8 rue des pêchers, 31410 Longages, France
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Abstract

Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach

the complexity level at which physicists start thinking about statistical approaches: 1/ constructing line-shaped ab-

sorption spectra as the result of very numerous state-transitions, 2/ integrating over optical-path domains. For the first

time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens

the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic

databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A

Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spec-

trally integrated intensities (over 25cm−1 bands or the full IR range) in a few seconds, regardless of the retained

database and line model. But free parameters need to be selected and they impact the convergence. A first possible

selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric

and combustion configurations, but a more systematic exploration is still in progress.

Keywords: Radiative transfer, Monte Carlo method, Null-collision, Line sampling, Statistical approach,

Spectroscopic databases

Nomenclature

We retain here the following standard statistical formalism: random variables are written in upper-case (e.g. X),

free and bound variables in lower-case (e.g. x) and samples of random variables are subscripted (e.g. xm).

Ai Bernoulli random variable

Bν Blackbody intensity
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d Distance

E Statistical expectation

ha,ν, j Contribution of transition j to the absorption coefficient

ĥν, j Contribution of transition j to the extinction coefficient

i Index of collision

ib Narrowband index

Iν Monochromatic specific intensity

j Index of molecular transition

ka,ν Absorption coefficient

kn,ν Null-collision coefficient

ks,ν Scattering coefficient

k̂ν Extinction coefficient resulting from null-collision introduction

k̃ν Approximate absorption coefficient

m Index of independent realization

M Number of independent realizations

Nb Number of narrowbands

Nt Number of molecular transitions

Pa Probability of absorption

Pa,J( j) Probability of absorption for a given transition j

Pb(ib) Probability of narrowband ib

PJ( j) Probability of transition j

Pn Probability of null collision

pX(x) Probability density function for absorption/emission location

p̂X(x) Probability density function for absorption/emission location considering null-collision events

pN(ν) Probability density function for wavenumber

ps(ω|ω′) Single scattering phase function

QJ( j) Second component of the proposed transition probability expression

r Random number sampled uniformly over the unit interval

S k Moments of order k

t Time

T Temperature

2



t1% Computation time require to get a 1% standard deviation

TU(u) First component of the proposed transition probability expression

u Index of spectral bands

VOV Variance of variance

w Monte Carlo weight

x Location (scalar)

x0 Observation location

x Location (vector)

y Absorption/emission location at the end of a path involving null-collisions

α Multiplicative factor

γQ Half-width of an arbitrary Lorentz profile

δ Delta-Dirac distribution

δπ Partial derivative with respect to parameter π

δν Spectral interval

ζ Extinction threshold

ν Wavenumber

π Generic parameter

τ Transmissivity

ω Direction (vector)

1. Introduction

Recent advances in Monte Carlo methods [1, 2] indicate that null-collision algorithms can be used to simulate

radiative transfer in semi-transparent media in such a way that grids are no longer required. Even for highly non-

homogeneous configurations the volume does not need to be discretized and this is achieved while still preserving all

the statistical properties of standard Monte Carlo algorithms: convergence toward the exact solution is rigorous (no

bias) and for a finite number M of samples, the estimate is associated with a faithful statistical uncertainty ( 1√
M

times

the standard deviation of the Monte Carlo weights). The initial idea of null-collisions came from the plasma physics

and neutron transport communities. It consists in adding a third type of collisional event to the absorption and scatter-

ing events. These new collisions change nothing with regard to the propagation of radiation. They are pure-forward

scattering events: after the collision, the photon continues its trajectory as if no collision had occurred (the collision is

“null” or “virtual”). The amount of such collisions can therefore be tuned to any value without modifying the resulting

transfer. This tuning can then be such that the total density of the collisionners is uniform: more null-collisions are

added where true extinction is weak, fewer where it is strong, so that the total extinction coefficient is uniform (as in a

homogeneous semi-transparent medium). The consequence is that collision locations can be sampled within a simple
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exponential-distribution, according to the Beer extinction law. It is thus only at the sampled location that the question

is raised of evaluating the respective amounts of absorbers, true-scatterers and null-collisionners, in order to sample

one type of events out of the three possible ones (according to their respective probabilities). The photon-transport

Monte Carlo algorithm is therefore decoupled from the spatial description of radiative properties. It is not required to

“know” the true radiative properties when transporting photons until their next collision location.

In preceding null-collision algorithms, the radiative properties were indeed known and the only benefit was a

simplification of the procedure for accessing the data (getting rid of the volume-discretization requirement). Here we

assume that the monochromatic absorption coefficient ka,ν is unknown and that the only available data are those of the

molecular spectroscopic databases [3, 4, 5, 6]. We still have ka,ν =
∑Nt

j=1 ha,ν, j, where Nt is the number of molecular

transitions and ha,ν, j is the known contribution of the j-th transition to the absorption coefficient at wavenumber ν, but

this sum is not precomputed. Null-collisions allow us to initiate the Monte Carlo algorithm without computing ka,ν

and we then observe that the algorithm can be continued without ever making this computation:
∑Nt

j=1 ha,ν, j is diluted

into the photon-transport algorithm via successive samplings of the transition index.

Why this is possible is quite simple. Let us take only two transitions: ka,ν = ha,ν,1 + ha,ν,2 and write ka,ν =

P1
ha,ν,1

P1
+ P2

ha,ν,2

P2
with P1 and P2 in ]0, 1[ and P1 + P2 = 1. This justifies a Monte Carlo algorithm sampling the index

j of one of the two transitions, j = 1 with probability P1, j = 2 with probability P2, and evaluating ka,ν as the average

of M weights w( j) =
ha,ν, j

P j
(a Bernoulli trial algorithm for computing sums). With this procedure, the absorption

coefficient is viewed as the expectation of a random process. But in null-collision algorithms ka,ν appears only within

the absorption probability, in a pure linear manner. So the process of sampling optical paths can be combined with the

sampling of transitions: once a path has been sampled, at the stage of summing the contributions of transition 1 and

transition 2 to evaluate ka,ν, only one transition is sampled and w( j) is used in place of ka,ν (the expectation is replaced

by the value of only one sampled event). Instead of two successive algorithms, one for the evaluation of ka,ν and the

other for radiative transfer, a single higher dimension Monte Carlo algorithm is built that combines the two integration

spaces (illustrated in the following paragraphs).

This idea is particularly meaningful when dealing with very large numbers of transitions and when the question

of pre-computing the absorption coefficient is an issue. For the engineering applications that have motivated the most

recent developments of Monte Carlo algorithms based on line-by-line approaches [7, 8, 9, 10], the issue usually does

not arise: for each new version of molecular spectroscopic databases, look-up tables are constructed that allow, via

interpolation procedures, most of the gaseous mixtures and thermodynamic states encountered in industrial devices to

be covered. We are thinking more in terms of study domains where spectroscopic requirements for either accuracy or

compositional diversity are more critical. This is the case for the terrestrial atmosphere (LW applications for global

radiative budget modeling [11] or SW radiative transfer when dealing with remote-sensing [12, 13]) and astrophysical

studies (when studying atmospheres of exoplanets [14], brown dwarfs [15, 16], or stellar atmospheres [17, 18]). In

these contexts, constructing look-up tables for each new configuration or each new spectroscopic assumption is a very
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demanding intermediate step and the approach introduced in the present article allows us to envisage the complete

disappearance of this step.

The practical value of this new approach can be illustrated with the simple example of evaluating the spectral

average transmissivity of a non-homogeneous and non-scattering gaseous column. Using the null-collision algorithm

of [1] (assuming that ka,ν is precomputed) would lead to the following w-sampling algorithm:

• Step 1 : Uniform sampling of a wavenumber ν within the considered spectral band.

• Step 2 : Sampling of a distance d traveled until the next collision as if the medium was homogeneous of

extinction coefficient k̂ν (this distance is sampled according to d = 1
k̂ν

ln(r) where r is sampled uniformly on the

unit interval).

• Step 3 : If the traveled distance leads the photon to exit the column, the algorithm stops with w = 1 (transmis-

sion).

• Step 4 : If the traveled distance leads the photon to a collision location within the column, the available absorp-

tion data are accessed to evaluate ka,ν at the collision location and the absorption probability Pa is computed as

Pa =
ka,ν

k̂ν
.

• Step 5 : A Bernoulli trial of probability Pa is performed to retain an absorption event or a null-collision event

(absorption with probability Pa, null-collision with probability 1 − Pa).

• Step 6 : If absorption, the algorithm stops with w = 0 (no transmission).

• Step 7 : If null-collision, the algorithm loops at Step 2.

This sampling algorithm is repeated M times to get M values of w, indexed wm, each equal either to 0 or 1, and

the spectral average transmissivity is evaluated as τ ≈ 1
M

∑M
m=1 wm. The only free parameter is the value of k̂ν, only

affecting the computation speed, and not the convergence speed, provided that k̂ν > ka,ν
1. Alternatively, the present

approach leads to the following slightly modified algorithm (that will be fully established in Sec. 2):

• Step 1 : Uniform sampling of a wavenumber ν within the considered spectral band.

• Step 2 : Sampling of a distance d traveled until next collision as if the medium was homogeneous of extinction

coefficient k̂ν.

• Step 3 : If the traveled distance leads the photon to exit the column, the algorithm stops with w = 1 (transmis-

sion).

1The contribution of null-collisions to the total-extinction coefficient is k̂ν − ka,ν and k̂ν < ka,ν would imply a negative value of the density of

null-collisionners. See the discussion in [1]
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• Step 4 : If the traveled distance leads the photon to a collision location within the column, a transition j is

sampled among the Nt available transitions, thanks to a Bernoulli trial of probabilities P1, P2...PNt .

• Step 5 : A Bernoulli trial of probability Pa, j =
ha,ν, j

k̂νP j
is performed to retain an absorption event or a null-collision

event (absorption with probability Pa, j, null-collision with probability 1 − Pa, j).

• Step 6 : If absorption, the algorithm stops with w = 0 (no transmission).

• Step 7 : If null-collision, the algorithm loops at Step 2.

The only difference here is that instead of using the known value of ka,ν to compute the absorption probability as ka,ν

k̂ν
,

a transition j is first sampled and only the contribution of this sampled transition ha,ν, j is required to compute Pa, j.

The recursive algorithm is then continued identically. Figure 1 displays the results of a first academic implementation

test that was made in order to check the feasibility of such Monte Carlo simulations when dealing with the typical

distances and inhomogeneities encountered in atmospheric applications (strong variations of composition and pressure

along the vertical with line widths more than ten times smaller at the top than at the bottom of the atmosphere).

Each simulation point in Figure 1 required between 0.1s and 12s on a standard laptop and the results are in perfect

adequacy with solutions obtained independently using a standard deterministic line-by-line simulation (using a 50-

levels discretization of pressure and composition along the vertical).
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Figure 1: Upward vertical intensities, averaged over 20cm−1 bands, at altitude 17km for the mid-latitude summer atmosphere [19]. Simulation

times correspond to computations performed using an Intel Core i7 processor (2.8GHz).

This test was sufficient to convince us that the approach could be practical and that it would at least be useful

to researchers wishing to bypass the task of constructing look-up tables when briefly testing a new spectroscopic

assumption or testing the influence of new lines in an updated version of a molecular spectroscopic database (before
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upgrading the look-up tables accordingly). However, we are only at the preliminary stage of fully validating the

approach, which involves providing:

• a complete theoretical proof establishing that these algorithms (combining the sampling of the optical-path with

the sampling of transitions) do indeed evaluate the addressed radiative quantities in an unbiased manner;

• a validation against published results on configurations including all the required spectral complexity (with

significant impacts of line-profile assumptions as well as spectroscopic-database alternatives).

These are the objectives of the following sections. Sec. 2 provides all the details of the required statistics, the resulting

Monte Carlo algorithm allowing the computation of spectrally-integrated intensities is then described in Sec. 3 and is

tested in Sec. 4 against the simulation results of [20]. Finally, in Sec. 5 some considerations about the meaning of such

statistical pictures outside Monte Carlo applications are discussed and a conclusion (Sec. 6) makes several comments

on the proposed approach from an operational viewpoint.

2. Statistical formulation

This section gradually establishes a statistical formulation combining random transitions with random collision-

locations. This leads to the writing of the specific-intensity as the expectation of a random weight that the Monte

Carlo algorithm will sample M times in order to build a specific-intensity estimate. We start by recalling the null-

collision concept (Sec. 2.1) as well as standard statistical pictures associated with the estimation of specific-intensity

in non-scattering infinite media (Sec. 2.2). We then modify this picture, once by introducing null-collisions (Sec. 2.3),

and twice by splitting the absorption coefficient into transition contributions (Sec. 2.4).

2.1. The null-collision concept

As shown in [1], introducing null-collisions consists in reformulating the radiative transfer equation

∂Iν
∂t

+ ω.∇Iν = −(ka,ν + ks,ν)Iν + ka,νBν + ks,ν

∫

4π
I′νps(ω|ω′)dω′ (1)

into
∂Iν
∂t

+ ω.∇Iν = −k̂νIν + ka,νBν + ks,ν

∫

4π
I′νps(ω|ω′)dω′ + kn,ν

∫

4π
I′νδ(ω − ω′)dω′ (2)

where

• Iν ≡ Iν(x,ω, t) is the specific intensity at location x, propagation direction ω, time t and wavenumber ν while I′ν

refers to the same quantity but for propagation direction ω′: I′ν ≡ Iν(x,ω′, t),

• Bν ≡ Bν(x, t) is the blackbody intensity at the local temperature,

• ka,ν ≡ ka,ν(x, t) and ks,ν ≡ ks,ν(x, t) are respectively the absorption and scattering coefficients,
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• ps(ω|ω′) ≡ ps,ν(x,ω|ω′, t) is the single scattering phase function,

• δ(ω − ω′) is the delta Dirac distribution centered along the direction ω.

In Eq. 2, a positive null-collision coefficient kn,ν ≡ kn,ν(x, t) is added to the absorption and scattering coefficients,

which means that the initial extinction coefficient ka,ν + ks,ν is increased to any arbitrary value

k̂ν ≡ k̂ν(x, t) = ka,ν + ks,ν + kn,ν (3)

Correspondingly, as announced in the introduction, the physical pictures are modified. Instead of having only three

types of statistical events (absorption, emission and scattering), a new type is introduced: null-collision events. These

events have no effect on radiative transfer since they strictly correspond to pure forward-scattering events (see the

delta-Dirac phase function in the fourth term of the right-hand member of Eq. 2) that only compensate the artificial

increase of the extinction coefficient. The first immediate benefit of this reformulation is that the new extinction

term −k̂νIν no longer depends on the absorption coefficient, but only on k̂ν. In the configurations studied in [1],

the true extinction along a given path was difficult to handle because of large heterogeneities of the temperature and

concentration fields, leading to highly varying values of the absorption coefficient. It was much simpler to use a higher

but uniform k̂ν field instead . Here we are considering configurations for which true extinction is difficult to handle

for another reason: independently of any heterogeneity, the gaseous-absorption coefficient is the sum of numerous

transition contributions.

2.2. Integral formulation of specific intensity

The discussion is now restricted to an academic configuration. We consider the monochromatic stationary specific

intensity at a given location, in a given direction, within an infinite non-scattering medium. Because scattering is

neglected, the problem becomes one-dimensional. The addressed intensity resulting from all emissions along the x

axis (at all locations between −∞ and x = x0) is noted hereafter as Iν(x0). Eq. 1 then becomes

dIν
dx

= −ka,νIν + ka,νBν (4)

and its solution at x0 can be written

Iν(x0) =

∫ x0

−∞
dx ka,ν(x)Bν(x) exp

(
−

∫ x0

x
ka,ν(x′)dx′

)
(5)

which is commonly interpreted, in statistical terms, as the expectation of the blackbody-intensity random function

Bν(X) where X is a random variable distributed on ] − ∞, x0] according to the probability density pX(x) ≡ pX,ν(x) =

ka,ν(x) exp
(
−

∫ x0

x ka,ν(x′)dx′
)
:

Iν(x0) = E(Bν(X)) =

∫ x0

−∞
pX(x) dx Bν(x) (6)

The corresponding physical picture is that of photons followed from x0, in the backward direction, until they are

absorbed at locations x. Using the reciprocity principle, one then translates these absorption events into emissions
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at local temperatures. This leads to Iν(x0) viewed as an average of blackbody intensities Bν(x) at backward-sampled

locations x (see Fig. 2).

x
x0

kν

x x0

kν

x
x

ka,ν

ka,ν(x)

Figure 2: Photons are followed from x0 in the backward direction until they are absorbed at locations x according to the probability density function

pX(x) = ka,ν(x) exp
(
−

∫ x0
x ka,ν(x′)dx′

)
. Through the reciprocity principle, these absorptions are translated into emissions at local temperatures. In

this case, the integral
∫ x0

x ka,ν(x′)dx′ of the absorption coefficient (colored area) must be available in order to sample absorption/emission locations.

2.3. Introducing null-collisions

This picture can be easily modified to take into consideration the forward-scattering effects of null-collisions. In

our simplified one-dimensional configuration, Eq. 2 becomes

dIν
dx

= −k̂νIν + ka,νBν + kn,νIν (7)

where k̂ν = ka,ν + kn,ν and its solution at x0 can be written recursively, as introduced in [1], using

Iν(xi) =

∫ xi

−∞
dxi+1 exp

(
−

∫ xi

xi+1

k̂ν(x′i+1)dx′i+1

) [
ka,ν(xi+1)Bν(xi+1) + kn,ν(xi+1)Iν(xi+1)

]
(8)

Statistically speaking, this recursion can be rewritten as

Iν(xi) =

∫ xi

−∞
p̂Xi+1 (xi+1)dxi+1

[
Pa(xi+1)Bν(xi+1) + Pn(xi+1)Iν(xi+1)

]
(9)

where

• the successive collision locations Xi ≡ Xi(Xi−1) are random variables depending on Xi−1 and distributed on

] −∞, Xi−1] according to the probability density p̂Xi (xi) ≡ p̂Xi,ν(xi|Xi−1) = k̂ν(xi) exp
(
−

∫ Xi−1

xi
k̂ν(x′i )dx′i

)
,

• X0 = x0 is the observation location,

• Pa(Xi) ≡ Pa,ν(Xi) = ka,ν(Xi)/k̂ν(Xi) is the probability of absorption and Pn(Xi) ≡ Pn,ν(Xi) = 1 − Pa(Xi) the

probability of null-collision.
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With these statistical pictures, Iν(x0) is interpreted as the expectation of the random function Bν(Y):

Iν(x0) = E(Bν(Y)) (10)

where

• Y is the absorption/emission location at the end of a path involving successive null-collisions. Formally speak-

ing: Y =
∑+∞

i=1 XiAi
∏i−1

q=1(1 − Aq),

• Ai ≡ Ai(Xi) is a Bernoulli random variable, defined as a function of the random variable Xi, taking the value 1

with probability Pa(Xi) and 0 with probability Pn(Xi).

The corresponding physical picture is again that of photons followed from X0 = x0, in the backward direction, until

they are absorbed at locations Y . But the path is now a (pure-forward) multiple-scattering one. At the first collision

location X1, there is a probability Pa(X1) that absorption occurs. In this case, the path ends at Y = X1. Otherwise,

a null-collision occurs, with probability Pn(X1), and the path is continued (with the same direction) until the next

collision at X2, etc. (see Fig. 3).

x
x0

kν

x1x2
...xn = y

ka,ν

k̂ν

ka,ν(x1)
ka,ν(x2)

ka,ν(xn)

kn,ν(x1)
kn,ν(x2)

kn,ν(xn)

Figure 3: Photons are followed from x0 in the backward direction until they are absorbed at locations y along a multiple-scattering path (with

pure-forward scattering events). At locations xi there is a probability Pa(xi) = ka,ν(xi)/k̂ν(xi) that absorption occurs. In this case, the path ends at

y = xi. Otherwise, a null-collision occurs, with probability Pn(xi) = 1−Pa(xi), and the path is continued until an absorption occurs. In this case, the

absorption coefficient ka,ν(x1), ka,ν(x2), ..., ka,ν(xn) at the sampled locations x1, x2, ..., xn must be available in order to sample absorption/emission

locations.

2.4. Removal of the absorption coefficient

Considering our objective, the important point at this stage (using the null-collision concept) is that the absorption

coefficient does not appear any more in the definition of the successive random locations Xi: they are now defined

using the total-extinction k̂ν field. ka,ν only appears in the expression of the probabilities of absorption Pa(Xi) versus
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null-collision Pn(Xi) defining the Bernoulli random variable Ai. The multiple-collisions structure of the paths and the

nonlinear nature of Beer extinction, i.e. the two main sources of difficulties when analyzing radiative transfer, can be

thought through with only k̂ν in mind, without any consideration for molecular transitions.

The last step consists in transforming Ai so that ka,ν vanishes and only transitions are used in the definition of the

random variable Y . The absorption coefficient ka,ν is the sum of the contributions ha,ν, j of each transition j among Nt

transitions2. These contributions are ha,ν, j = ησ j,ν with η the molecular density, σ j,ν the cross-section of transition

j and ka,ν =
∑Nt

j=1 ha,ν, j. We similarly split the null-collision coefficient into contributions of each transition: kn,ν =
∑Nt

j=1 hn,ν, j, as if we were now thinking in terms of ”null-transitions”. The hn,ν, j values can be chosen arbitrarily,

provided that they are positive and that their sum recovers kn,ν. Equation 7 then becomes

dIν
dx

= −k̂νIν +

Nt∑

j=1

ha,ν, jBν +

Nt∑

j=1

hn,ν, jIν (11)

and its solution at x0 can be written recursively using

Iν(xi) =

∫ xi

−∞
dxi+1 exp

(
−

∫ xi

xi+1

k̂ν(x′i+1)dx′i+1

) Nt∑

ji+1=1

[
ha,ν, ji+1 (xi+1)Bν(xi+1) + hn,ν, ji+1 (xi+1)Iν(xi+1)

]
(12)

With these new definitions and pictures (illustrated in Fig. 4), when a collision occurs at xi, it is due to a transition

x
x0

kν

x1x2
...xn = y

ha,ν,1

ha,ν,2 + ĥν,1

ĥν,1

k̂ν = ĥν,1 + ĥν,2

ha,ν,1(x1)
ha,ν,1(x2)ha,ν,1(xn)

ha,ν,2(x1)
ha,ν,2(x2)ha,ν,2(xn)

hn,ν,1(x1)
hn,ν,1(x2)hn,ν,1(xn)

hn,ν,2(x1)
hn,ν,2(x2)hn,ν,2(xn)

Figure 4: Photons are followed from x0 in the backward direction until they are absorbed at locations y along a multiple-scattering path (with

pure-forward scattering events). At locations xi, where collision occurs, there is a probability PJi ( ji) = ĥν, ji (xi)/k̂ν(xi) that the collision is due

to the transition ji among the Nt possible transitions (the present figure is an illustration for Nt = 2). For the transition ji (which is responsible

for collision), there is a probability Pa,Ji (xi) = ha,ν, ji (xi)/ĥν, ji (xi) that absorption occurs. In this case, the path ends and y = xi. Otherwise, a

”null-transition” occurs, with probability Pn,Ji (xi) = 1 − Pa,Ji (xi), and the path is continued until an absorption occurs. In this case, the absorption

coefficient completely vanishes: only the transition contributions ha,ν, j1 (x1), ha,ν, j2 (x2), ..., ha,ν, jn (xn) at the sampled locations x1, x2, ..., xn must be

available.

ji that can be interpreted as a realization of a random variable Ji distributed on {1, 2, ...,Nt} with probability PJi ( ji) ≡

2For didactic purposes, we have restricted our analysis to a mono-molecular gas. The extension to several species is straightforward, involving

only an additional sum over molecules.
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PJi,ν( ji, xi) = ĥν, ji (xi)/k̂ν(xi), where ĥν, ji = ha,ν, ji + hn,ν, ji and therefore k̂ν(xi) =
∑Nt

ji=1 ĥν, ji (xi). This collision can be

either a real one (the photon is absorbed, due to transition ji) or a null-collision. In statistical terms, Eq. 12 can be

rewritten as

Iν(xi) =

∫ xi

−∞
p̂Xi+1 (xi+1)dxi+1

Nt∑

ji+1=1

PJi+1 ( ji+1)
[
Pa,Ji+1 (xi+1)Bν(xi+1) + Pn,Ji+1 (xi+1)Iν(xi+1)

]
(13)

where Pa,Ji (Xi) ≡ Pa,ν,Ji (Xi) = ha,ν, ji (Xi)/ĥν, ji (Xi) and Pn,Ji (Xi) ≡ Pn,ν,Ji (Xi) = hn,ν, ji (Xi)/ĥν, ji (Xi) are respectively the

probabilities of absorption and of null-collision for a given transition ji. With these statistical pictures, Iν(x0) is

interpreted as the expectation of the random function Bν(Y):

Iν(x0) = E(Bν(Y)) (14)

where

• Y is again the absorption/emission location, at the end of a path involving successive null-collisions, the only

difference being that the sampling of this path is more complex as it now involves the sampling of transitions.

Formally speaking we still have: Y =
∑+∞

i=1 XiAi
∏i−1

q=1(1 − Aq),

• The Bernoulli random variable Ai ≡ Ai,ν(Xi, Ji) now depends on Xi and Ji and takes the value 1 with probability

Pa,Ji (Xi), 0 with probability Pn,Ji (Xi).

3. Monte Carlo

The statistics of the preceding section define a Monte Carlo algorithm that we describe in Sec. 3.1: this is very close

to the algorithm that we used for illustration in Sec. 1, with small modifications made to deal with thermal emission

instead of only addressing column transmissivities. This simple algorithm is first extended to address spectrally-

integrated intensities in Sec. 3.2 and is further refined in Sec. 3.3 (using energy partitioning). Finally, Sec. 3.4 is

devoted to the definition of free parameters required by the resulting algorithm that could play an important role in

convergence rates.

3.1. Algorithm evaluating a monochromatic intensity

In Eq. 14, Iν(x0) is the expectation of a random variable Wν = Bν(Y). So translating Eq. 14 into a Monte Carlo

algorithm only requires sampling a large number M of independent realizations {wν,1,wν,2...wν,M} of Wν, and to use

Ĩν(x0) = 1
M

∑M
m=1 wν,m as an estimator of Iν(x0). The most straightforward translation of Eq. 14 leads to the Wν-

sampling algorithm introduced in Fig. 5. This first algorithm is easy to follow and easy to implement. It is quite

similar to the multiple-scattering algorithms most commonly reported in the literature; only a molecular-transition

index is additionally sampled at each (pure forward) scattering event.
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i = 0 ; xi = x0

xi+1 sampling

jthi+1 line sampling

ri+1 sampling

ri+1 < Pa, ji+1

(absorption)

Yes
(null-collision)

No
wν = Bν(xi+1)×

i ≡ i + 1

Figure 5: The Wν-sampling algorithm directly translated from Eq. 14. Starting from location x0 where the intensity is estimated, a location x1

of collision and a line j1 are successively sampled. Then by uniformly sampling a random number r1 between 0 and 1, the type of collision is

defined. If r1 < Pa, j1 (x1) the collision is an absorption, wν is computed and the loop stops; otherwise null-collision occurs and the algorithm loops

at the step of collision-location sampling. This algorithm is only valid if ĥν, ji ≥ ha,ν, ji for all locations, lines and wavenumbers. This requirement

is needed to make sure that Pa, ji ∈ [0, 1].

3.2. Algorithm evaluating a spectrally integrated intensity

We have slightly modified the previous algorithm by considering the spectrally integrated intensity I(x0) =
∫ νmax

νmin
Iν(x0)dν instead of the monochromatic intensity. This requires that an additional sampling procedure is used

to first select a wavenumber ν on [νmin, νmax]. I(x0) is then viewed as the expectation of a new random variable W

according to

I(x0) =

∫ νmax

νmin

E(Bν(Y))dν =

∫ νmax

νmin

pN(ν)dν
[

1
pN(ν)

E(Bν(Y))
]

= E(W) (15)

with

W =
1

pN(N)
BN(Y) (16)

where N is a wavenumber random variable with probability density function pN(ν) defined on [νmin, νmax] (see Fig. 6).

In the preceding section, the values of k̂ (or PJi ( ji)) and hn,ν, ji were arbitrary choices; here pN(ν) is also arbitrary: any

strictly positive probability density on [νmin, νmax] can be chosen.

3.3. Further refinements

We then make two refinements: an energy-partitioning approach is used in order to increase the convergence

rate (it switches to Russian roulette at an extinction threshold ζ as proposed in [2]) and an alternative absorption-

probability Pa,Ji =
ha,ν, ji

ha,ν, ji +|ĥν, ji−ha,ν, ji |
is introduced to make sure that Pa,Ji ∈ [0, 1] whatever the value of ĥν, ji (the solution

remains exact because W is modified accordingly, as advised in [1]). The null-collision probability is still defined as

Pn,Ji = 1 − Pa,Ji . The resulting Monte-Carlo algorithm is described in Appendix A.

13



i = 0 ; xi = x0

ν sampling

xi+1 sampling

jthi+1 line sampling

ri+1 sampling

ri+1 < Pa, ji+1

(absorption)

Yes
(null-collision)

No
w =

Bν(xi+1)
pN(ν)×

i ≡ i + 1

Figure 6: The W-sampling algorithm directly translated from Eq. 16. Same as in Fig. 5 with only an additional sampling of wavenumber ν according

to the arbitrary probability density pN (ν) and a modification of the final weight w.

3.4. Selection of the free parameters

Again, from a purely theoretical point of view, k̂ν, PJi ( ji) and pN(ν) can be chosen arbitrarily: the expectation

of W will always be equal to I(x0) and provided its variance is finite, the algorithm will converge to the expected

value regardless of these choices. They only affect the speed of convergence. But practically speaking, a selection

must be made for these free parameters. One possible selection procedure is detailed in Appendix A and we used

this procedure for all the simulations results of the present article. This selection resulted from a tedious trial-and-

error process and we are still attempting to find theoretical arguments, either explaining why this choice leads to good

convergence rates in quite distinct atmospheric and combustion configurations, or justifying a better optimized choice.

We believe that the zero-variance framework [21, 22, 23, 24] should be very useful in this context.

As far as the present proposal is concerned, the main points are the following (see Appendix A):

• In standard null-collision algorithms, it is strongly advised that k̂ν be greater than ka,ν at all frequencies. This

is because absorption versus null-collision is decided with probability ka,ν

k̂ν
and this ratio must be lower than

one. But here, the decision is made with probability ha,ν, j

k̂νP j
. So k̂ν cannot be selected independently of P j: if

the transition is sampled with a probability set that does not sufficiently reflect its contribution, this must be

compensated by a greater k̂ν value (see the tuning of α in Appendix A).

• Even if k̂ν needs to be artificially increased because of the imperfect adequation of P j, it is still useful that its

spectral shape reflects the shape of ka,ν. Indeed, if k̂ν was flat, its value would be adjusted to be at least greater

than the value of the absorption coefficient at the center of the stronger line and this would imply a tremendous

number of null-collisions at line-wing frequencies. So k̂ν needs somehow to “follow” ka,ν, whereas the main

interest of the present work is precisely to avoid the evaluation of ka,ν. But any rough information about ka,ν
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gives the order of magnitude of the line-center/line-wing ratio and solves this difficulty. So any available ka,ν

spectrum can be used provided that it roughly corresponds to the same range of pressure, temperature and

concentrations, without needing to consider the detailed spectroscopic assumptions (database, truncations, etc).

We are thinking of providing a validated k̂ν database, but at the present stage gaseous-radiation specialists can

start with their available high-resolution spectra as indicated in the Appendix.

• Ideally, in terms of convergence, P j should be proportional to ha,ν, j. The choice made in the Appendix differs

from this because of pure computational constraints: memory access (for large spectral databases) and sampling

acceleration. This was only a first attempt to find the minimum computation time as a compromise between

reducing the number of samples (when P j is closely adjusted to ha,ν, j the variance of W is minimal) and reducing

the sampling time itself (when P j is easy to handle).

4. Test cases

The algorithm is applied to the six benchmark configurations3 gathered by Andre and Vaillon in [20] (test case 1

to test case 6). These configurations cover a wide variety of practical applications (from furnaces to plume infrared

signature) for which radiative transfer computations may be required. They are adapted from the test cases introduced

in [25] (cases 1 and 2), [26] (cases 3, 4 and 5) and [27] (case 6). Each of these configurations involves an emitting

and absorbing gaseous column at atmospheric pressure defined over [0, x0]. Scattering phenomena are neglected. The

x = 0 boundary is a black wall at 0K. From one configuration to the other, only the domain size (the value of x0) and

the piecewise-defined fields of temperature and of molar fraction are modified. These characteristics are described in

Table 1.

Unless otherwise specified, the computation was made using Lorentz profiles and a 25cm−1 line-wing truncation.

Outgoing intensities averaged over several 25cm−1 narrowbands are depicted in the plots of Fig. 7 - 9 for test case

24 using several databases (HITRAN 2008 [28], two versions of the HITEMP database: HITEMP and HITEMP

2010 [4]), several intensity cutoffs and several distances of line-wing truncation. For validation, a deterministic high-

resolution computation (based on line-by-line spectra) using HITEMP 2010 is also depicted. Each simulation used

the same k̂ν, PJi and pN choices: no additional preprocessing was therefore required for each of these spectroscopic-

hypothesis changes. Mean intensities were computed in 0.1 to 2.4 seconds for a 1% standard deviation on a single

core of an Intel Core i7 processor (2.8GHz). The size of the spectroscopic database, the intensity-cutoff level and the

line-truncation distance have little influence on the computation time (it depends mainly on the narrowband itself).

These computation times exclude the loading of spectroscopic data into memory and the eventual preprocessing steps

3Practically, when dealing with polymolecular gases, the molecular species index is first sampled before a transition for this species is sampled.

Also to be mentioned: the black wall at x = 0 is treated as an infinite absorbing medium; when a sampled location overtakes the wall location, the

realization stops.
4The particular choice of test case 2 for illustration purposes is fully arbitrary. Similar results were obtained for the other studied configurations.
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Case
Size Columns Temperature xCO2 xH2O xN2

[m] [m] [K] [] [] []

1 1.1
x ∈ [0; 0.1] 1500 0.5 - 0.5

x ∈ [0.1; 1.1] 500 0.05 - 0.95

2 1.1
x ∈ [0; 0.1] 1500 - 0.5 0.5

x ∈ [0.1; 1.1] 500 - 0.05 0.95

3 8
x ∈ [0; 1.5] 400 + 2000x/1.5 0.1 0.2 0.7

x ∈ [1.5; 8] 800 + 1600(8 − x)/6.5 0.1 0.2 0.7

4 8
x ∈ [0; 1.5] 400 + 2000x/1.5 0.1 - 0.9

x ∈ [1.5; 8] 800 + 1600(8 − x)/6.5 0.1 - 0.9

5 8
x ∈ [0; 1.5] 400 + 2000x/1.5 - 0.2 0.8

x ∈ [1.5; 8] 800 + 1600(8 − x)/6.5 - 0.2 0.8

6 200.8

x ∈ [0; 0.2] 1500 - 0.15 0.85

x ∈ [0.2; 0.4] 1200 - 0.12 0.88

x ∈ [0.4; 0.6] 900 - 0.09 0.91

x ∈ [0.6; 0.8] 500 - 0.06 0.94

x ∈ [0.8; 200.8] 300 - 0.03 0.97

Table 1: Dimensions, temperature and molar fractions fields for the six test cases. Fields are piecewise-defined in several columns depending on

the case.
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(in particular concerning the PJi computation, detailed in Appendix A, which could last from less than one second

to a few minutes for the bigger spectroscopic databases). Times related to loading and precomputation are therefore

frequently greater than the computation times themselves. However, once they are done, it is possible to run as many

different computations as desired (either to address different observables within the same configuration, or to address

various spectral assumptions).
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Figure 7: Intensities Iν(x0) averaged on 25cm−1 narrowbands computed for test case 2. This computation used the algorithm of Fig. A.10 for

several spectroscopic databases: HITEMP 2010, HITEMP and HITRAN 2008. The results are given together with their statistical uncertainties.

Each point was obtained using 104 independent statistical realizations. A deterministic computation is also presented (solid line) for the HITEMP

2010 database.

Table. 2 gathers intensities integrated over the 10 to 15000 cm−1 range, noted Ĩmcm(x0). They are computed using

several spectroscopic databases for test case 1 to test case 6 with 106 independent realizations 5. Also displayed is

the computation time t1% required to get a 1% standard deviation. These results are compared with those obtained

with a deterministic high-resolution approach, Ĩhr(x0), using the exact same line models and data (but requiring the

production of line-by-line spectra). They are also compared with those obtained by Andre and Vaillon in [20], here

noted Ĩa,v(x0). The consistency of Ĩmcm(x0) and Ĩhr(x0) is full and the differences with Ĩa,v(x0) are within the observed

effects of databases changes. The computation time required by the Monte Carlo algorithm to get a 1% standard

deviation is comprised between 0.97 and 9.86s (on a single core of an Intel Core i7 processor - 2.8GHz still excluding

loading and precomputation times). Because of the stochastic nature of the method, these computation times (required

to integrate Iν(x0) over a large spectral interval) are close to those of Fig. 7-9 (integration over a narrowband): the size

of the considered band has little influence.

5Thanks to the nature of our null-collision algorithm, for the cases 3, 4 and 5, by comparison with [20], a piecewise-constant approximation is

no longer needed to handle the linear temperature field.
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Figure 8: Intensities Iν(x0) averaged on 25cm−1 narrowbands computed for test case 2 with the HITEMP 2010 database. This computation used the

algorithm of Fig. A.10 for several intensities cutoff at 1500K: 3 × 10−27, 10−22, 10−21molec.cm and no cutoff. The results are given together with

their statistical uncertainties. Each point was obtained using 104 independent statistical realizations. A deterministic computation is also presented

(solid line) for the HITEMP 2010 database for a 3 × 10−27molec.cm cutoff at 1500K.
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Figure 9: Intensities Iν(x0) averaged on 25cm−1 narrowbands computed for test case 2 with the full HITEMP 2010 database. This computation used

the algorithm of Fig. A.10 for several distances of line-wing: 25, 5, 0.5cm−1 and no truncation. The results are given together with their statistical

uncertainties. Each point was obtained using 104 independent statistical realizations. A deterministic computation is also presented (solid line) for

the HITEMP 2010 database with a 25cm−1 truncation.

18



Monte Carlo (106 realizations) High Res. Andre,Vaillon

Case Databases
Ĩmcm(x0) σ t1% Ĩhr(x0) Ĩa,v(x0)

(W/m2/sr) (W/m2/sr) (s) (W/m2/sr) (W/m2/sr)

1
CDSD-1000 3125.61 4.42 0.97 3126.06

3105
CDSD-4000 3146.25 4.53 1.10 3150.32

2
HITEMP 3315.11 8.15 1.38 3311.88

4161
HITEMP 2010 4545.05 9.83 1.11 4558.68

3 CDSD-1000 & HITEMP 39223.87 51.56 1.75 39202.5 39331

4 CDSD-1000 12325.99 16.16 1.26 12320.1 11956

5 HITEMP 38240.31 49.58 1.27 38215.0 39144

6
HITEMP 885.93 3.93 9.86 886.55 -

HITEMP 2010 1066.92 4.30 7.39 1069.81 -

Table 2: Intensities integrated over the 10 to 15000 cm−1 range for the six test cases introduced in Table 1 and for several databases (CDSD-1000

versus CDSD-4000 for CO2 and Hitemp versus Hitemp 2010 for H2O). The estimation Ĩmcm(x0) obtained with the proposed method are given

together with its standard deviation σ for 106 realizations. We give the time t1% required to reach a 1% accuracy, that is related to the simulation

time t according to t1% = 104tσ2. They can be compared to those obtained with a deterministic high-resolution computation Ĩhr(x0) or to the

line-by-line values Ĩa,v(x0) obtained by Andre and Vaillon in [20]. Computation times exclude the loading of spectroscopic data into memory and

the precomputations introduced in Appendix A.

All the usual benefits of Monte Carlo methods are apparent here: the computation requirements depend very little

on the complexity level (number of retained transitions at each wavenumber, size of the integration range and therefore

number of lines with a first-order influence). So we can expect that further complexities will induce small increases

in the computation times, mainly when considering real system geometries or multiple-scattering phenomena (at least

no specific difficulty is to be expected in comparison to the standard practice [2]).

5. Perspectives outside Monte Carlo applications

Molecular spectroscopic databases [3, 4, 5, 6] are being continuously upgraded by a wide, international and

very active community of spectroscopists. Physicists and engineers rely on these databases each time they analyze

radiative experiments or address heat transfer questions involving molecular gases. But even for the simplest gases

at the coldest temperatures, in most applicative contexts the number of state-transitions that need to be considered is

large, or even extremely large when dealing, for instance with water vapor or carbon dioxide on the full infrared or

visible spectral ranges. This has always led spectroscopists to envisage statistical representations. The best-known

example corresponds to the design of statistical narrowband models that allowed the evaluation of spectrally-averaged

transmissivities from weighted averages of line intensities, line widths, etc. But in practice, this direct relationship

between line-statistics and band-average transmissivities was rapidly lost. The idea of using statistical models was kept

(notably with the continuous use of Malkmus modeling assumptions [29]), but the free parameters were more and more
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commonly adjusted from line-by-line calculations: no statistics were made on the databases themselves. They were

only used to produce high-resolution absorption-spectra with deterministic approaches, with these spectra being used

to compute average-transmissivities, and the narrowband parameters then being adjusted to fit these transmissivities.

Later, with the use of k-distributions [30, 31], the same logic was continued: the approach was statistical but it started

from high-resolution spectra instead of spectroscopic databases.

As illustrated in the previous section, it is now possible to gather the complexity of radiative transfer and that

of molecular-transitions into a single tractable statistical problem. Any radiative transfer observable can be viewed

as the expectation of a random variable defined using only transition properties. The information usually carried by

the absorption coefficient, in standard statistical approaches to radiative transfer, is here statistically reconstructed

by a combination of transitions, via the recursion of null-collisions. Before null-collisions were introduced, such a

statistical formulation was impossible because Beer extinction is nonlinear: the absorption coefficient could always

be split into transition contributions, but these transitions could not be extracted from the exponential. Null-collisions

have achieved this task:

• within the exponential, only k̂ν appears (see the definition of p̂Xi ),

• ka,ν appears outside, in a linear manner, via the absorption and null-collision probabilities (see the definitions of

Pa and Pn),

• because of this linearity, ka,ν can be replaced by transition statistics,

• the nonlinearity of the exponential is reconstructed by the forward-scattering recursion of null-collisions [1, 32].

We have seen that this has immediate numerical consequences, but we believe that Eq. 14 can also be a starting point

for theoretical studies of spectroscopic models under radiative transfer perspectives, as when Malkmus addressed

spectrally averaged column-transmissivities. Furthermore, Eq. 14 can be derived with respect to any parameter π of

the line-shape model to build a new statistical picture, this time of the sensitivity to π of Iν(x0) [21, 22, 33, 34]:

∂πIν(x0) = E

Bν(Y)
+∞∑

i=1

Ai

i−1∏

q=1

(1 − Aq)



∂πln(Pa,Ji ) +

i−1∑

m=1

∂πln(Pn,Jm )



 (17)

This means that for a given radiative-transfer quantity ϕ of interest, we can always define functions of random transi-

tions with the property that their expectation equals ϕ or the sensitivity of ϕ to any spectroscopic parameter. On this

basis, we can envisage modeling efforts, inspired by the Malkmus approach, i.e. statistically modeling the transitions

and adjusting the free parameters to fit radiative quantities of interest, as well as their sensitivities to thermodynamic

state-variables. We believe that this would be particularly meaningful in the context of general circulation modeling

(radiative transfer parameterization) when thinking of planetary atmospheres such as Venus, or exoplanets presenting

similar radiative-transfer challenges [35, 36, 37]).
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6. Conclusion

The introduction of null-collisions allows the design of reference Monte-Carlo algorithms in which absorption

properties are addressed during the simulation, via a sampling of molecular transitions. The costly step of producing

line-by-line spectra for given sets of thermodynamic properties (pressure, temperature, composition) and spectro-

scopic hypotheses (database, truncation, intensity cutoff, etc.) is no longer necessary. The interpolation of these spec-

tra during the computation also disappears: all the contributions to absorption are computed for the exact wavenumber

and the exact local properties. Radiative transfer is now thought out at the scale of molecular transitions.

In order to prove the practical feasibility, it was necessary to make a choice for free parameters that have an

important impact on convergence rates. This choice (developed in Appendix A) results from a tedious trial-and-error-

process and is only a first attempt that need to be continued. Nevertheless, the first results tested against several

distinct one-dimensional and purely absorbing test cases, from atmospheric to combustion and IR plume-detection

applications, lead to satisfying results in terms of convergence rate and precision. Important work remains to be done

to see if this method and the choice of free parameters can have a general and operational value for any kind of

radiation problem or on the contrary should be considered on a case-by-case basis for specific applications.

In particular, specific attention should be given to the validity of the estimated standard deviation. Thus, when

exploring the behavior of new Monte Carlo algorithms, when it is quite distinct from previous practices, there is always

a risk that some events with important statistical weight are not sampled. Such statistics lead to biased estimation of

standard deviation that can no longer be considered as a statistical error. Theoretically speaking, this question of well-

behaved statistics is always very difficult because the answer requires the knowledge of higher-order W-statistics. Very

commonly, only the practice can help. For standard Monte Carlo algorithms in the context of radiative-transfer, a huge

amount of practical experience has been reported and we know for sure that the Monte Carlo weights are well behaved,

which means that the computed errorbars can be trusted. This explains why Monte Carlo simulations are accepted as

reference simulations. But here the multiple sampling of lines introduces new statistical behaviors and we observed,

during the first stages of our developments, that a poor selection of the free parameters could be pathological: the true

solution could be outside the computed confidence interval. Even if we are now confident that our selection of free

parameters leads to well-behaved statistics for the 7 studied test cases (which have been validated against line-by-line

simulation) and that the errorbars will remain correct when using the present set of free parameters for a wide range of

radiative transfer applications, we strongly advise the user to implement the variance-of-variance (VOV) computation

and systematically check its value before sufficient experience is gathered for a given configuration family. Even if

it is not a complete guarantee, the variance of variance is a way to detect such pathological behavior when reference

solutions are not available. Its expression is given by:

VOV =
S 4 − 4

M S 1S 3 + 8
M2 S 2S 2

1 − 4
M3 S 4

1 − 1
M S 2

2(
S 2 − 1

M S 2
1

)2 (18)

with S k =
∑M

m=1 wk
m. As advised in [38], if the computed VOV does not exceed 0.1, the standard deviation can be
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considered as reliable. With the set of free parameters that we finally adopted, we observed that VOV was below

0.005 in all test cases (for 106 realizations).

Our pure-absorbing test cases include large heterogeneities in temperature, pressure and concentrations, including

the strong line-width variations between ground level and high altitudes in our first atmospheric example, and we

noted no mechanism increasing the variance as a function of these typical features. Therefore, we cannot think of any

configurations where the sampling of lines would introduce specific variances of the Monte Carlo weight. Of course,

this does not mean that computation times will not increase when dealing with multiple scattering and complex

geometries. This extension is in progress. However, at present, there does not seem to be any particular reason that

would indicate that multiple scattering and complex geometries would have a different impact on computation than

for previous null-collision Monte Carlo algorithms [2]. In the algorithmic structure of Appendix A, path-tracking

including multiple reflection and multiple scattering will only be a refinement of the “x j+1 sampling” step: the line-

sampling proposal presented here is strictly independent of the optico-geometrics.

Appendix A. Resulting algorithms and k̂ν, PJ i , pN choices

Starting from Eq.16, the two modifications proposed in Sec. 3 (an energy-partitioning approach and a modified

absorption probability) lead to the algorithm displayed in Fig. A.10. But choices still remain to be made for pN(ν),

PJi ( ji), k̂ν as well as for the threshold ζ at which the energy-partitioning algorithm switches to a standard Russian-

roulette algorithm. ζ is retained as equal to 0.5 in accordance with [2]. pN(ν) only plays a role in computation-time

enhancement. We first used pN independent of wavenumbers. This led to very satisfactory computation times. We

tried however to enhance the wavenumber sampling procedure by first sampling a narrowband ib, among Nb bands of

width ∆ν = 25cm−1, according to the probability

Pb(ib) =
Ĩb(ib) + 1

Nb

∑Nb
b=1 Ĩb(b)

2
∑Nb

b=1 Ĩb(b)
(A.1)

and then sample the wavenumber uniformly within the narrowband. In Eq. A.1, Ĩb(ib) corresponds to precomputed

approximate solutions using a standard narrowband model (Malkmus model with the Curtis-Godson approximation)

over which we applied an offset to compensate underestimations of some of the weaker bands. To reach the same

accuracy, the required computation times were reduced by a factor of between 2 and 5. Obviously, such a wavenumber

sampling enhancement is therefore only of limited interest. This is certainly due to the fact that we weight the bands,

but not the wavenumbers within each band. A clever solution to weight the wavenumbers would be to make use of

the approach introduced in [9].

The main difficulty is the choice of PJi and k̂ν. They are highly critical in terms of convergence. Indeed, as much as

possible, Pn,Ji has to be greater than zero in Eq. 13: if not, negative values of the null-collision frequency are handled

as advised in [1], but this severely increases the variance. We therefore need to avoid such occurrences which leads to

22



i = 0 ; ξ0 = 1 ; w0 = 0 ; xi = x0

ν sampling
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jthi+1 line sampling

ξi > ζ

(energy partitioning)

Yes
(russian roulette)

No

wi+1 = wi + ξi
ha,ν, ji+1 (xi+1)

ĥν, ji+1 (xi+1)pN(ν)
B(xi+1)

ξi+1 = ξi

1 −
ha,ν, ji+1 (xi+1)

ĥν, ji+1 (xi+1)



i ≡ i + 1

ri+1 sampling

ri+1 < Pa, ji+1

w = wi + ξi
ha,ν, ji+1 (xi+1)

ĥν, ji+1 (xi+1)Pa, ji+1 pN(ν)
B(xi+1)

ξi+1 = ξi

(
1 − ha,ν, ji+1 (xi+1)

ĥν, ji+1 (xi+1)

) ( 1
1 − Pa, ji+1

)

i ≡ i + 1

×

(absorption)

Yes
(null-collision)

No

Figure A.10: Refined W-sampling algorithm. Starting from location x0 where the intensity is estimated, a wavenumber ν, a location x1 of collision

and a line j1 are successively sampled. Then, if ξ0 > ζ, the energy partitioning branch is followed where an absorption contribution is added to

the Monte-Carlo weight and where the null-collision term ζ1 is computed, finally the branch loops on the step of collision-location sampling with

an index i incremented. If ξ0 ≤ ζ, the Russian roulette branch is followed, and the type of collision is defined by sampling uniformly a number r1

between 0 and 1. If r1 < Pa, j1 (x1) it is an absorption, so the sample wr of the random variable W is then computed and the loop stops; otherwise it

is a null-collision and the algorithm loops at the step of collision-location sampling with an index i incremented.
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the following condition:

ĥν, ji (xi) ≥ ha,ν, ji (xi) (A.2)

or equivalently (see Sec. 2.4):

k̂ν(xi) ≥
ha,ν, ji (xi)
PJi ( ji)

(A.3)

The PJi and k̂ν choices, although fully arbitrary in pure theoretical terms, are very much constrained in practice, in a

closely related manner. We retained the following strategy

• we chose k̂ν = αk̃ν where k̃ν is a precomputed high resolution spectrum and α > 1,

• we devoted most of our attention to the PJi choice,

• we finally adjusted α to ensure Eq. A.3.

Choosing the high resolution spectrum k̃. This is the only stage at which we make use of precomputed high-resolution

spectra. The essential point is that these spectra do not need to be in coherence either with the local thermodynamic

and composition variables, or with the spectral assumptions made for the Monte Carlo computation. In practice, we

used available spectra that were computed in other contexts using CDSD-1000 and HITEMP, and the most intense

lines from CDSD-4000 and HITEMP 2010 have been added to these spectra in order to ensure Eq. A.3 for the most

critical wavenumbers in all cases (the resulting spectra are distributed within the EDStar environment [39]). These

spectra were kept even when testing other spectroscopic-databases, or testing other line-profile and intensity-cutoff

assumptions than those used for their production. Any spectrum can be used as α will then be increased to ensure

Eq. A.3 for all wavenumbers. The benefit of these precomputed spectra being of high quality is only a reduction of

the computation time (lower α values will be required and therefore fewer null-collisions will occur). In test case

1 to test case 6, we split the medium into a few subdomains that roughly correspond to the medium heterogeneity

(at all locations within a subdomain, the composition and thermodynamic variables take similar values, typically 2

to 5 subdomains) and for each subdomain we retained one of our precomputed spectra, the one corresponding to the

closest thermodynamic state. Again, this choice does not affect the Monte Carlo solution but only the computation

speed. α was finally tuned to α = 50 when using our high resolution spectra 6. We also tested the effects of using

no available spectrum and taking k̃ independent of wavenumber. Table A.3 displays the corresponding increase in

the computation time. Clearly, by comparison with the pN choice, the k̃ν choice has a very significant impact: the

computation time is increased by a factor of 2000 for test case 6.

Choosing PJi . This is undeniably the step for which the most significant upgrades can be expected in future works.

It is in this sense that the Monte Carlo simulations presented in the present article are only a first feasibility test. Any

6Even with α = 50, some rare events lead to a violation of A.3. We therefore handle them as advised in [1] and increase k̃ν for the following

sampling events at the same wavenumber.
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Test case t1% for k̂ uniform (s) Databases Factor of comp. time increase

Case 1 57.6 CDSD-1000 59.4

Case 2 215.0 HITEMP 155.8

Case 3 457.2 CDSD-1000 & HITEMP 261.3

Case 4 365.7 CDSD-1000 290.2

Case 5 355.9 HITEMP 280.2

Case 6 19825.2 HITEMP 2010.7

Table A.3: Computation times t1% to reach a 1% standard deviation for the six cases with k̂ = αk̃ uniform (k̂ = 30cm−1 for test cases 1 to 5 and

k̂ = 10cm−1 for test case 6). Also given are the employed spectroscopic databases and the increase factor of computation time associated with k̂

uniform by comparison with the k̂ν choice of Appendix A (where the free parameter α is set as 50).

upgrade of the PJi choice will be immediately translated into lower α values. The fact that α = 50 is required (which

we observed was the case even in cases where k̃ν was very accurate) indicates that our present choice should be highly

improvable. However, one point is already theoretically quite clear: we used zero-variance reasoning to establish that

the ideal PJi choice should be Pideal
Ji

( ji) = ha,ν, ji (xi)/ka,ν(xi). Obviously, this cannot be retained in practice because

ka,ν(xi) is unknown. So the whole question is to choose PJi ( ji) so that it is close enough to Pideal
Ji

( ji) but remains easy

to evaluate (short computation time and limited precomputation requirements). In practice, we define [νdb,min, νdb,max]

as the interval containing the lines centers corresponding to all transitions within the considered database. We divide

this interval into regular bands of width δν = 0.3cm−1. Then we take PJi ( ji) = TU(u) × QJi ( ji, u) where

• TU(u) ≡ TU,ν(u, γQ) is a probability associated with the band containing the center of line ji (indexed u) among

all bands:

TU(u) =
atan

(
b(u)−ν
γQ

)
− atan

(
a(u)−ν
γQ

)

atan
(
νdb,max−ν

γQ

)
− atan

(
νdb,min−ν

γQ

) (A.4)

where γQ is a free parameter and [a(u), b(u)] is the spectral interval of the uth band: b(u) − a(u) = δν. With

such a definition, sampling a band index according to TU is equivalent to sampling a wavenumber according

to a Lorentz profile of width γQ around ν and retaining the corresponding band (see step 1 of Fig. A.11)7. The

efficiency of the algorithm can be affected by the arbitrary choice of γQ parameter. The best convergence rates

were obtained here using γQ = 1cm−1 for temperatures T < 500K, γQ = 0.5cm−1 for T ∈ [500K, 1000K],

γQ = 0.25cm−1 for T ∈ [1000K, 1500K] and γQ = 0.1cm−1 for T > 1500K. This temperature-dependent

definition accounts for the broadening/narrowing of ”real” line half-widths with regard to temperature. For the

atmospheric configuration treated in Sec. 1, where smaller gradients of temperature are encountered, γQ was

defined as a function of pressure, which plays, in this case, the biggest role in line half-widths: γQ = P
Pre f

1cm−1

with Pre f = 1atm, which is consistent with the values used for the plume detection cases.

7If line-wings are truncated at a distance δνtrunc, then [νdb,min, νdb,max] is replaced with [ν − δνtrunc, ν + δνtrunc].
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• QJi ( ji, u) ≡ QJi,ν( ji, u) is a probability associated with line ji among all the lines centered within the same band

(this probability simply reflects the line intensity):

QJi ( ji, u) =
S ji∑Nt(u)

q=1 S qi

(A.5)

where S ji is the intensity of line ji at a given temperature T and Nt(u) is the number of line-centers within band u.

QJi is precomputed for each of the 2 to 5 subdomains already defined for the k̃ν definition. This precomputation

requires between less than 1 second (for HITRAN database) to 5 minutes (for CDSD-4000 database) for each

subdomain on a single core of an Intel Core i7 processor (2.8GHz). However, this precomputation can be stored

once for all, for a given temperature and a given database.

With this choice, the lines that are preferentially sampled are the most intense ones, centered near the wavenumber of

interest and only the inexpensive TU computations are performed on the fly. The resulting PJi sampling procedure is

illustrated in Fig. A.11.

Step 1 Step 2

ν
ν

γQ

δν

u
ν

u

ji

Figure A.11: Sampling procedure of PJi . Step 1: a band u (of width δν) is determined by sampling a wavenumber according to a Lorentz profile of

width γQ centered in ν. Step 2: a line ji is sampled among the Nt(u) lines centered in u according to its line intensity.

[1] Galtier, M., Blanco, S., Caliot, C., Coustet, C., Dauchet, J., El Hafi, M., et al. Integral formulation of null-collision Monte Carlo

algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 2013;125:57–68.

[2] Eymet, V., Poitou, D., Galtier, M., El Hafi, M., Terrée, G., Fournier, R.. Null-collision meshless Monte-Carlo - Application to the

validation of fast radiative transfer solvers embedded in combustion simulators. Journal of Quantitative Spectroscopy and Radiative Transfer

2013;129:145–157.

[3] Jacquinet-Husson, N., Crepeau, L., Armante, R., Boutammine, C., Chédin, a., Scott, N., et al. The 2009 edition of the GEISA spectroscopic

database. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112(15):2395–2445.

[4] Rothman, L., Gordon, I., Barber, R., Dothe, H., Gamache, R., Goldman, A., et al. HITEMP, the high-temperature molecular spectroscopic

database. Journal of Quantitative Spectroscopy and Radiative Transfer 2010;111(15):2139–2150.

[5] Rothman, L., Gordon, I., Babikov, Y., Barbe, a., Chris Benner, D., Bernath, P., et al. The HITRAN2012 molecular spectroscopic database.

Journal of Quantitative Spectroscopy and Radiative Transfer 2013;130:4–50.

26



[6] Tashkun, S., Perevalov, V.. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank. Journal of Quantitative

Spectroscopy and Radiative Transfer 2011;112(9):1403–1410.

[7] Modest, M.. the Monte Carlo Method Applied To Gases With Spectral Line Structure. Numerical Heat Transfer, Part B: Fundamentals

1992;22(3):273–284.

[8] Surzhikov, S.T.. The Use of Monte Carlo Simulation Methods to Calculate the Radiation of Jets of Combustion Products in View of

Rotational Spectral Structure. High Temperature - Translated from Teplofizika Vysokikh Temperatur 2003;41(5):694–707.

[9] Feldick, A., Modest, M.F.. An improved wavelength selection scheme for Monte Carlo solvers applied to hypersonic plasmas. Journal of

Quantitative Spectroscopy and Radiative Transfer 2011;112(8):1394–1401.

[10] Ren, T., Modest, M.F.. A Hybrid Wavenumber Selection Scheme for Line-By-Line Photon Monte Carlo Simulations in High-Temperature

Gases. Journal of Heat Transfer 2013;135(8):084501.

[11] Fomin, B.A.. Monte-Carlo algorithm for line-by-line calculations of thermal radiation in multiple scattering layered atmospheres. Journal

of Quantitative Spectroscopy and Radiative Transfer 2006;98(1):107–115.

[12] Ewen, G.B.L., Grainger, R.G., Lambert, a., Baran, a.J.. Infrared radiative transfer modelling in a 3D scattering cloudy atmosphere:

Application to limb sounding measurements of cirrus. Journal of Quantitative Spectroscopy and Radiative Transfer 2005;96(1):45–74.

[13] Fomin, B., Falaleeva, V.. A polarized atmospheric radiative transfer model for calculations of spectra of the stokes parameters of shortwave

radiation based on the line-by-line and monte carlo methods. Atmosphere 2012;3(4):451–467.

[14] Madhusudhan, N., Knutson, H., Fortney, J.J., Barman, T.. Exoplanetary Atmospheres. 2014.

[15] Allard, F., Homeier, D., Freytag, B.. Models of very-low-mass stars , brown dwarfs and exoplanets. Philosophical Transactions of the

Royal Society A 2012;370:2765–2777.
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