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Monte Carlo Estimates of Domain-Deformation Sensitivities
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It is shown that, when a Monte Carlo algorithm is used for estimation of any physical quantity A, a
simple and fast additional procedure can be implemented that simultaneously estimates the sensitivity of
A to any problem parameter. The proposed approach is general and systematic in the sense that: (i) it
includes domain-deformation sensitivities, i.e., cases where a change in the parameter modifies the
domain over which the sampled random variables are defined and (ii) a simple generic procedure is
presented to address all remaining free choices in terms of variance minimization.
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Monte Carlo methods provide powerful tools for a wide
range of problems in statistical physics, biology, engineer-
ing science, and medical applications [1,2]. In particular,
an important field of applications for Monte Carlo methods
is classical particle transport, where it commonly serves as
reference for all other numerical approaches, and remains
the only practical method as soon as either the collision
operator or the system geometry is of a high level of
complexity. The Monte Carlo method allows one to de-
velop intuitive algorithms to estimate the average value
hOi of an observable O�x�, simply following the proba-
bility density functions p’�x� provided by the laws of the
considered stochastic physical processes: hOi � 1

N �PN
i�1 O�xi�, where fxigi�1;N is a finite set of configurations

distributed according to p’. Classically, this initial point of
view may be usefully combined with approaches based on
integral formulations in which statistics are fully explicit
and sampling probability density functions p�x� are chosen
arbitrarily:
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Z
D
p’�x�O�x�dx �
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and
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1

N

XN
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p’�yi�O�yi�
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; (2)

where D is the integration domain for x and fyigi�1;N is a
finite set of configurations distributed according to p. In
particular, this allows one to benefit from all formalisms
developed over the years for variance reduction [integral
reformulation, importance sampling, and stratified sam-
pling [3,4] ] that improve very significantly the accuracy
of the method.

In the very same manner, it can be easily observed that
integral formulations can offer the opportunity to extend
Monte Carlo algorithms in such a way that, at the same
time that hOi is evaluated, its sensitivity @�hOi to any
parameter � is also evaluated at the price of a low supple-
mentary computation effort [5,6]. Indeed, differentiation
05=95(18)=180601(4)$23.00 18060
under the integral in Eq. (1) leads to
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In the direct relation between Eqs. (1) and (3) the only
point to be highlighted is that it is always possible to retain
a formulation for the sensitivity that preserves the proba-
bility density function chosen for the integral evaluation.
This is the reason why the supplementary computational
effort is low: the same configuration fyigi�1;N is used for
the evaluation of both hOi and its sensitivity, and therefore
no additional random sampling is required. Altogether, this
means that when one is deriving a new Monte Carlo
method to address any average observable, the sensitivities
of this average to all physical parameters can be simulta-
neously addressed. This also means that any existing
Monte Carlo method can be simply extended to address
sensitivities, provided that the corresponding integral for-
mulations are available (which is the case for all advanced
Monte Carlo approaches as integral formulations are nec-
essarily made explicit when implementing variance reduc-
tion techniques).

However, a strong restriction remains: differentiation
under the integral leading to Eq. (3) is only valid if the
parameter under consideration does not affect the integra-
tion domain D. In [6], the authors presented radiation
transport illustrations, addressing sensitivities of a given
average observable to the constants of the collision opera-
tor (mean free path, asymmetry parameter of the phase
function). Indeed, the collision operator does not affect the
space of all possible particle trajectories; it only affects
their statistical distribution. However, if one wants to ad-
dress sensitivities to the parameters defining the geometry
of the system, the situation is more complex because these
parameters modify the integration domain: if the geometry
changes, some trajectories disappear or appear as they are
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blocked or allowed by the boundary deformation. And yet
the need for geometric sensitivities is easy to identify for
all types of design purposes in engineering sciences, for
shielding problems in nuclear sciences, image processing,
and rendering in computer graphics, etc. This need is
particularly obvious nowadays in the field of medical
particle imaging where one commonly faces requirements
of fast and accurate computations of signal sensitivities to
geometric parameters, for instance, to the locations and
sizes of malignant tissues or to the locations and angles of
receptors and sources.

In this Letter, we propose an effective solution to bypass
the above mentioned restriction. A domain-deformation
velocity field is introduced to move the arising integration
difficulty from the domain boundary to the domain itself,
which again allows the use of the same set of configura-
tions. After a theoretical part describing the principle of the
method, we concentrate on two academic examples of
radiation transport. In order to first comment on what we
mean by ‘‘domain’’ and ‘‘domain deformation,’’ let us start
by a brief presentation of these two examples. In the first
example a one-dimensional slab of thickness h, filled with
a uniform absorbing gas of absorption coefficient ka, is
submitted to a uniform and isotropic radiative intensity I
18060
on one of its faces (of normal n) and the quantity we
consider is the radiative power absorbed by the gas [in
the form of Eq. (1)]:

Pa�
Z �2

�1

pN���d�
Z
H
pU�u�du

�u �n�I����1�e�ka���d0�

pN���pU�u�
;

(5)

where d0 �
h

u�n , pN is an arbitrary probability density
function for the frequency � within the spectral interval
	�1; �2
, and pU is an arbitrary probability density function
for the incident direction u within the unit hemisphere H.
The integration domain is therefore D � 	�1; �2
 �H.
Example 1 is the sensitivity of Pa to the deformation of
the spectral interval (sensitivity to the spectral resolution of
a given receptor). This is therefore an example of a domain
deformation that has nothing to do with geometric defor-
mation. The second illustration example (example 2) is
strictly identical to example 1, except that the gas is now
both absorbing and scattering (scattering coefficient ks).
This distinction modifies significantly the complexity of
the integration domain that is now of infinite dimension
because of multiple scattering:
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where p�i
is an arbitrary probability density function for

the position of the ith scattering event within the segment
of all possible scattering positions (of length di�1), as seen
from the �i� 1�th scattering location, in the �i� 1�th
scattering direction ui�1. The scattering phase function
(the probability density function of the scattering direction
knowing the incident direction) is� and pUi is an arbitrary
probability density function for the ith scattering direction
ui in the unit sphere S. The integration domain is therefore:
D �D0UD1UD2U . . . , where D0 coincides with the
integration domain identified in example 1 and where for
i � 1: Di � 	�1; �2
 �H �

Qi�1
j�0�S� 	0; dj
�. The sensi-

tivity problem considered for illustration will here be
related to a geometric deformation: we will address the
sensitivity of Pa to the slab thickness (that affects all
subdomains for i � 1). To summarize: example 1 shows
how domain deformations can be encountered although no
change in geometry is considered and example 2 shows that
when changes in geometry are considered, the relevant
domain deformation is that of the Monte Carlo integration
domain (here of infinite dimension whereas the geometry is
one dimensional).

Theory.—Starting from Eq. (1), we now address the
sensitivity of hOi to a parameter � in the general case
where the integration domain D depends on �. It is
assumed that in the vicinity of the parameter value, the
evolution of D with � is differentiable and keeps its
topology unchanged. It is further assumed that the domain
boundary @D is a piecewise smooth hypersurface. Under
these assumptions there exists an infinite number of C1

transformation velocity fields that match the given domain
deformation (Fig. 1). On the basis of Eq. (3), choosing one
among these velocity fields, V�, permutation of the differ-
entiation and integration operators is simply corrected by
an integration over @D of the domain deformation rate:

@�hOi �
Z
D
p�y�

p’�y�
p�y�

�
@�O�y� �O�y�

@�p’�y�
p’�y�

�
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�
Z
@D
p’�z�O�z�V��z� � n�z�dz; (7)

where n�z� is the outward normal unit vector at location z.
Estimating @�hOi with Monte Carlo according to this for-
mulation would require that a specific Monte Carlo algo-
rithm be developed for the integral over @D. This is of no
interest in the present context where one of the objectives is
to introduce minor algorithmic modifications into existing
Monte Carlo codes in order to additionally estimate
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FIG. 1. The domain D in Rn can always be defined as fx 2
Rnjf�x; ��< 0g, where f: Rn � R! R is C1 in �. V� is con-
strained by d

du f�x� uV�; �� u�ju�0 � 0 which only fixes the
normal component at the boundary @D [8]. If W is any vector
field tangential to @D, V� �W is also solution, which means
that there is a large freedom of choice for the transformation
velocity field.

PRL 95, 180601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 OCTOBER 2005
domain-deformation sensitivities. However, the integral
over the boundary can be simply transformed into an
integral over D by use of the Gauss-Green-Ostrogradsky
theorem:

@�hOi �
Z
D
p�y�

p’�y�
p�y�

�
@�O�y� �O�y�

@�p’�y�
p’�y�

�
r � �p’OV��jy

p’�y�

�
dy: (8)

The operatorr has the dimension of D and is very distinct,
in most cases, from that of the geometric space. With
Eq. (8) we are back to the technique proposed in [6], the
remaining question being the choice of the deformation
velocity field V�. This choice can be performed an infinite
number of ways and will have no effect on the expectation
value of the estimate. Only the variance will be affected.
We therefore have complete freedom for optimization of
statistical convergence: in the same way as the sampling
probability density function p could be chosen arbitrarily
for optimum estimation of hOi, the deformation velocity
TABLE I. Simulation results for Pa and its sensitivity to �� for ex
Monte Carlo estimate as well as the computation time increase t

t0
asso

estimation of A only and t is the computation time for estimation
functions are PN��� �

1
�2��1

and PU�u� � u�n
� . The number of sampl

estimations based on two independent Monte Carlo computations: @
reached as in column 6. In the first case, a 5% perturbation of the par

adjusted; t5%
std � 2t0�

��
2
p
�A

p�@��A
�2 is the corresponding computation time. I

Monte Carlo computation ( t
t0
� 2) and the adjustment is made on t

�
��

Sh
�� A � Pa

�I�� �A �@��A

0.01 1 3:78� 10�2 1:23� 10�4 �3:71�
1 1 0.757 1:19� 10�4 �4:55�
10 1 0.780 1:10� 10�4 �4:94�
1 0.01 1:81� 10�2 2:01� 10�5 �2:43�
1 1 0.757 1:19� 10�4 �4:55�
1 10 0.999 3:92� 10�8 �4:26�
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field V� can be chosen arbitrarily for optimum estimation
of @�hOi. Without further investigation, a meaningful
choice is to minimize the spatial variations of V�: strong
local variations of V� would indeed increase the variance
of the Monte Carlo estimate. One obvious solution is to
first define the domain-deformation velocity at the bound-
ary and then extend it to the entire domain according to the
solution of the Dirichlet problem (�V� � 0). This particu-
lar extension avoids strong local variations of V� in the
sense that it minimizes

R
D kr�V��k

2dy. However, this
attractive solution becomes impractical when increasing
the domain dimension, the numerical integration of the
Laplace equation requiring computational efforts that are
incompatible with the present objectives.

We propose to bypass this difficulty by rewriting the
integral over D as a succession of n one-dimensional
integrals, and solving n trivial one-dimensional Dirichlet
problems (linear extension) for each component of the
deformation velocity. This corresponds in no way to the
solution on the n-dimensional Dirichlet problem but pro-
vides a deformation velocity field that is spatially smooth
enough to ensure satisfactory Monte Carlo convergence.
Equation (8) may be rewritten as:
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; (9)

where D1��� is the space of all possible values for y1

independent of the other coordinate values, and
Di�y1; y2; . . . ; yi�1;�� is the space of all possible values
for yi knowing that the i� 1 first coordinates take the
values �y1; y2; . . . ; yi�1�. Each subdomain Di is one dimen-
sional and is the union of mi intervals 	ai;j; bi;j
. The
ample 1 with �c �
�1��2

2 . Standard deviations are given for each
ciated to the sensitivity calculation (t0 is the computation time for
of both A and its sensitivity). The sampling probability density
ing events is 106. The last two columns correspond to sensitivity

��A ’
A���p�A��

p . We impose that the same uncertainty level is
ameter is used ( p

�� � 0:05) and the number of sampling events is

n the second case, the number of sampling events is 106 for each

he amplitude of the parameter perturbation (p � padj �
��
2
p
�A

�@��A
).

��@��A
t
t0

t5%
std

t0

padj

��

10�4 8:53� 10�7 1.048 3:33� 103 2.04
10�2 4:27� 10�5 1.059 1:24� 104 3.94
10�3 4:93� 10�6 1.075 7:98� 107 316
10�3 3:58� 10�6 1.075 5:04� 104 7.94
10�2 4:27� 10�5 1.059 1:24� 104 3.94
10�5 1:12� 10�7 1.071 196 0.495
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TABLE II. Simulation results for Pa and its sensitivity to h for example 2 in the case of isotropic scattering. Standard deviations are
given for each Monte Carlo estimate as well as the computation time increase t

t0
associated to the sensitivity calculation. The sampling

probability density functions are PU�u� � u�n
� , P�i

��i� �
kse�ks�i

1�e�ksdi�1
, and PUi �ui� �

1
4� . The number of sampling events is 106. Units

are arbitrary for ka, ks, and h. t5%
std and padj are defined as in Table I.

ka ks h A � Pa
�I�� �A

1
ks�ka

@hA
1

ks�ka
�@hA

t
t0

t5%
std

t0

padj

h

1 1 0.001 1:99� 10�3 2:98� 10�6 0.991 2:08� 10�3 1.12 821 1.01
1 1 1 0.748 2:22� 10�4 0.107 6:09� 10�4 1.11 53.2 0.258
1 1 10 0.853 2:52� 10�4 3:43� 10�5 2:23� 10�4 1.11 5.11 7:99� 10�2

1 0 1 0.780 1:10� 10�4 0.297 9:78� 10�5 1.23 2:02� 103 1.59
1 1 1 0.748 2:22� 10�4 0.107 6:09� 10�4 1.11 53.2 0.258
1 10 1 0.501 3:62� 10�4 1:45� 10�3 3:79� 10�4 1.089 12.1 0.123
0.001 1 1 1:99� 10�3 1:54� 10�6 1:99� 10�3 5:80� 10�6 1.11 113 0.375
1 1 1 0.748 2:22� 10�4 0.107 6:09� 10�4 1.11 53.2 0.258
10 1 1 0.980 9:77� 10�5 �7:89� 10�5 1:28� 10�4 1.087 7.70 9:81� 10�2
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deformation velocity is built component by component
starting with V�;1 that is a function of y1 only. For yi 2
	ai;j; bi;j
:

V�;1�y1;�� � @�a1;j �
@�b1;j � @�a1;j

b1;j � a1;j
�y1 � a1;j�

V�;i�y1; y2; . . . ; yi;�� � @�ai;j �
V�;ijyi�bi;j � V�;ijyi�ai;j

bi;j � ai;j

��yi � ai;j�

with

V�;ijyi�ai;j � V�;i�y1; y2; . . . ; yi�1; yi � ai;j;��

� @�ai;j �
Xi�1

k�1

V�;k�y1; y2; . . . ; yk;��@ykai;j:

Practical implementation.—This systematic procedure
is applied hereafter to the above described examples. For
example 1, a gray incident intensity is supposed and the
absorption spectrum is that of a single Lorentzian line:
ka �

S�
�	����c�2��2


. The sensitivity in question is the sensi-

tivity to the width of the observational spectral interval,
�� � �2 � �1. Table I displays the sensitivity estimation
results for various values of the line intensity and the line
width. In this first example, the domain is two dimensional
and the implementation is trivial, but when dealing with
high-dimensional spaces, determining the domains Di in
Eq. (9) may seem an insurmountable problem. Fortunately,
for existing Monte Carlo algorithms, this problem vanishes
as it is directly related to the generation of configura-
tion sets in Eq. (2). The practical implementation of
Monte Carlo random sampling of xi and yi in D is usually
accomplished by a reduction to a succession of dependant
random sampling events in low-dimensional domains fol-
lowing stochastic physical models. This point is illustrated
with example 2 in which the domain of infinite dimension
is the combination of successive one-dimensional spatial
domains and two-dimensional angular domains [Eq. (6)].
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In Table II, we consider a gray medium and a gray incident
intensity and we evaluate the sensitivity to the slab thick-
ness h. The corresponding Monte Carlo estimates are dis-
played for various values of ka, ks, and h. All sensitivities
are accurately estimated in both examples for all configu-
rations, except for the relative standard deviations which
are large when the sensitivity value tends to zero. For
comparison, in both tables we also report results corre-
sponding to standard numerical differentiations. In all
cases, either the required computation times are very
much higher than those corresponding to the methodology
presented here, or the amplitude of the required perturba-
tion is large (raising concerns about the linearity
assumption).

We are presently making use of this methodology for a
wide range of radiative transfer applications, as well as for
the analysis of residence times of stochastic motions in
bounded domains, in particular, for the analysis of the
successive moments and of their sensitivities to the pa-
rameters of the motion as well as to the geometry of the
system [7].
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