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Monte Carlo Estimates of Domain-Deformation Sensitivities

Maxime Roger,l’2 Stephane Blanco,2 Mouna El Haﬁ,1 and Richard Fournier?

'Ecole des Mines d’Albi-Carmaux, UMR CNRS 2392, 31 allées des Sciences - 81000 Albi Cedex 09, France
2Laboratoire d’Energétique, Université Paul Sabatier Toulouse 3, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
(Received 12 April 2005; published 24 October 2005)

It is shown that, when a Monte Carlo algorithm is used for estimation of any physical quantity A, a
simple and fast additional procedure can be implemented that simultaneously estimates the sensitivity of
A to any problem parameter. The proposed approach is general and systematic in the sense that: (i) it
includes domain-deformation sensitivities, i.e., cases where a change in the parameter modifies the
domain over which the sampled random variables are defined and (ii) a simple generic procedure is
presented to address all remaining free choices in terms of variance minimization.
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Monte Carlo methods provide powerful tools for a wide
range of problems in statistical physics, biology, engineer-
ing science, and medical applications [1,2]. In particular,
an important field of applications for Monte Carlo methods
is classical particle transport, where it commonly serves as
reference for all other numerical approaches, and remains
the only practical method as soon as either the collision
operator or the system geometry is of a high level of
complexity. The Monte Carlo method allows one to de-
velop intuitive algorithms to estimate the average value
(O) of an observable O(x), simply following the proba-
bility density functions p,(x) provided by the laws of the
considered stochastic physical processes: (O) = +

N | O(x;), where {x;};— y is a finite set of configurations
distributed according to p,. Classically, this initial point of
view may be usefully combined with approaches based on
integral formulations in which statistics are fully explicit
and sampling probability density functions p(x) are chosen
arbitrarily:
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where D is the integration domain for x and {y;};—; y is a
finite set of configurations distributed according to p. In
particular, this allows one to benefit from all formalisms
developed over the years for variance reduction [integral
reformulation, importance sampling, and stratified sam-
pling [3,4]] that improve very significantly the accuracy
of the method.

In the very same manner, it can be easily observed that
integral formulations can offer the opportunity to extend
Monte Carlo algorithms in such a way that, at the same
time that (O) is evaluated, its sensitivity 9,(0) to any
parameter A is also evaluated at the price of a low supple-
mentary computation effort [5,6]. Indeed, differentiation
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under the integral in Eq. (1) leads to
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In the direct relation between Egs. (1) and (3) the only
point to be highlighted is that it is always possible to retain
a formulation for the sensitivity that preserves the proba-
bility density function chosen for the integral evaluation.
This is the reason why the supplementary computational
effort is low: the same configuration {y;};_; y is used for
the evaluation of both (O) and its sensitivity, and therefore
no additional random sampling is required. Altogether, this
means that when one is deriving a new Monte Carlo
method to address any average observable, the sensitivities
of this average to all physical parameters can be simulta-
neously addressed. This also means that any existing
Monte Carlo method can be simply extended to address
sensitivities, provided that the corresponding integral for-
mulations are available (which is the case for all advanced
Monte Carlo approaches as integral formulations are nec-
essarily made explicit when implementing variance reduc-
tion techniques).

However, a strong restriction remains: differentiation
under the integral leading to Eq. (3) is only valid if the
parameter under consideration does not affect the integra-
tion domain D. In [6], the authors presented radiation
transport illustrations, addressing sensitivities of a given
average observable to the constants of the collision opera-
tor (mean free path, asymmetry parameter of the phase
function). Indeed, the collision operator does not affect the
space of all possible particle trajectories; it only affects
their statistical distribution. However, if one wants to ad-
dress sensitivities to the parameters defining the geometry
of the system, the situation is more complex because these
parameters modify the integration domain: if the geometry
changes, some trajectories disappear or appear as they are
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blocked or allowed by the boundary deformation. And yet
the need for geometric sensitivities is easy to identify for
all types of design purposes in engineering sciences, for
shielding problems in nuclear sciences, image processing,
and rendering in computer graphics, etc. This need is
particularly obvious nowadays in the field of medical
particle imaging where one commonly faces requirements
of fast and accurate computations of signal sensitivities to
geometric parameters, for instance, to the locations and
sizes of malignant tissues or to the locations and angles of
receptors and sources.

In this Letter, we propose an effective solution to bypass
the above mentioned restriction. A domain-deformation
velocity field is introduced to move the arising integration
difficulty from the domain boundary to the domain itself,
which again allows the use of the same set of configura-
tions. After a theoretical part describing the principle of the
method, we concentrate on two academic examples of
radiation transport. In order to first comment on what we
mean by “domain” and ‘“domain deformation,” let us start
by a brief presentation of these two examples. In the first
example a one-dimensional slab of thickness #, filled with
a uniform absorbing gas of absorption coefficient k,, is
submitted to a uniform and isotropic radiative intensity IJ

P, = fyz pn(v)dv fH py(a)du (u - 0)I()

Vi
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on one of its faces (of normal n) and the quantity we
consider is the radiative power absorbed by the gas [in
the form of Eq. (1)]:
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where dy = u”—n pn 1s an arbitrary probability density
function for the frequency » within the spectral interval
[v,, v»], and py, is an arbitrary probability density function
for the incident direction u within the unit hemisphere H.
The integration domain is therefore D = [v,, v,] X H.
Example 1 is the sensitivity of P, to the deformation of
the spectral interval (sensitivity to the spectral resolution of
a given receptor). This is therefore an example of a domain
deformation that has nothing to do with geometric defor-
mation. The second illustration example (example 2) is
strictly identical to example 1, except that the gas is now
both absorbing and scattering (scattering coefficient k).
This distinction modifies significantly the complexity of
the integration domain that is now of infinite dimension
because of multiple scattering:

ky(v)e %7 p(u;u)
Ps, (0'1)1’9Ul (ul)
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where ps . is an arbitrary probability density function for
the position of the ith scattering event within the segment
of all possible scattering positions (of length d;_), as seen
from the (i — 1)th scattering location, in the (i — 1)th
scattering direction u,_;. The scattering phase function
(the probability density function of the scattering direction
knowing the incident direction) is ¢ and py, is an arbitrary
probability density function for the ith scattering direction
u, in the unit sphere S. The integration domain is therefore:
D =D,UD UD,U..., where D, coincides with the
integration domain identified in example I and where for
i=1:D;,=[v, vy] X HX ’};})(S X [0, d;]). The sensi-
tivity problem considered for illustration will here be
related to a geometric deformation: we will address the
sensitivity of P, to the slab thickness (that affects all
subdomains for i = 1). To summarize: example I shows
how domain deformations can be encountered although no
change in geometry is considered and example 2 shows that
when changes in geometry are considered, the relevant
domain deformation is that of the Monte Carlo integration
domain (here of infinite dimension whereas the geometry is
one dimensional).

Theory.—Starting from Eq. (1), we now address the
sensitivity of (O) to a parameter A in the general case

k)vhere the integration domain D depends on A. It is
assumed that in the vicinity of the parameter value, the
evolution of D with A is differentiable and keeps its
topology unchanged. It is further assumed that the domain
boundary 9D is a piecewise smooth hypersurface. Under
these assumptions there exists an infinite number of C,
transformation velocity fields that match the given domain
deformation (Fig. 1). On the basis of Eq. (3), choosing one
among these velocity fields, V,, permutation of the differ-
entiation and integration operators is simply corrected by
an integration over 3D of the domain deformation rate:

B Po(y) 9P (y)
9,(0) = [D PO [%O(y) + O(y)—pqp(y) }d
" j:m Pe(2)0(2)V,(2) - n(z)dz, @

where n(z) is the outward normal unit vector at location z.
Estimating 9,(0) with Monte Carlo according to this for-
mulation would require that a specific Monte Carlo algo-
rithm be developed for the integral over dD. This is of no
interest in the present context where one of the objectives is
to introduce minor algorithmic modifications into existing
Monte Carlo codes in order to additionally estimate
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FIG. 1.

The domain D in R" can always be defined as {x €
R”[f(x, A) <0}, where f: R" X R— R is C; in A. V, is con-
strained by %f(x + uV),, A + u)|,—o = 0 which only fixes the
normal component at the boundary 9D [8]. If W is any vector
field tangential to 9D, V, + W is also solution, which means
that there is a large freedom of choice for the transformation
velocity field.

domain-deformation sensitivities. However, the integral
over the boundary can be simply transformed into an
integral over D by use of the Gauss-Green-Ostrogradsky
theorem:

Po(y)
p(y)

P e(y)
Po(y)

3,(0) = po<y) (aA0<y)+o<y>

field V, can be chosen arbitrarily for optimum estimation
of 9,(0). Without further investigation, a meaningful
choice is to minimize the spatial variations of V: strong
local variations of V, would indeed increase the variance
of the Monte Carlo estimate. One obvious solution is to
first define the domain-deformation velocity at the bound-
ary and then extend it to the entire domain according to the
solution of the Dirichlet problem (AV, = 0). This particu-
lar extension avoids strong local variations of V, in the
sense that it minimizes [p IV(V,)II*dy. However, this
attractive solution becomes impractical when increasing
the domain dimension, the numerical integration of the
Laplace equation requiring computational efforts that are
incompatible with the present objectives.

We propose to bypass this difficulty by rewriting the
integral over D as a succession of n one-dimensional
integrals, and solving n trivial one-dimensional Dirichlet
problems (linear extension) for each component of the
deformation velocity. This corresponds in no way to the
solution on the n-dimensional Dirichlet problem but pro-
vides a deformation velocity field that is spatially smooth
enough to ensure satisfactory Monte Carlo convergence.
Equation (8) may be rewritten as:

6A<0>=f dylf dyz---/ dy,p(y)
D, () D;(y1:4) D, (Y1200 Yn—134)

V- ov
A my) . .
Pe 8 Dpe®)
Po\Y APo\¥Y
The operator V has the dimension of D and is very distinct, X (8,\ O(y) + O(y) ===
. . . p(y) Pe(y)
in most cases, from that of the geometric space. With
Eq. (8) we are back to the technique proposed in [6], the I v (P<p OV/\)ly) )
remaining question being the choice of the deformation Po(y) ’

velocity field V. This choice can be performed an infinite
number of ways and will have no effect on the expectation
value of the estimate. Only the variance will be affected.
We therefore have complete freedom for optimization of
statistical convergence: in the same way as the sampling
probability density function p could be chosen arbitrarily
for optimum estimation of (O), the deformation velocity

where D;(A) is the space of all possible values for y,
independent of the other coordinate values, and
D;(y1, ¥2, ..., ¥i—1; A) is the space of all possible values
for y;, knowing that the i — 1 first coordinates take the
values (y, ¥, .. ., ¥;—1)- Each subdomain D, is one dimen-

sional and is the union of m; intervals [a;;, b;;]. The

TABLE 1. Simulation results for P, and its sensitivity to Av for example 1 with v, = @ Standard deviations are given for each
Monte Carlo estimate as well as the computation time increase t—f) associated to the sensitivity calculation (%, is the computation time for
estimation of A only and ¢ is the computation time for estimation of both A and its sensitivity). The sampling probability density
functions are Py(v) = ——and Py (u) = 1. The number of sampling events is 10°. The last two columns correspond to sensitivity

vy — vy
A =~ Arvtp—Ary
P

estimations based on two independent Monte Carlo computations: d,, . We impose that the same uncertainty level is

reached as in column 6. In the first case, a 5% perturbation of the parameter is used (4% = 0.05) and the number of sampling events is

adjusted; tffff = 2t0(pf—”"A)2 is the corresponding computation time. In the second case, the number of sampling events is 10° for each
Ay
Monte Carlo computation (é = 2) and the adjustment is made on the amplitude of the parameter perturbation (p = pyg; = f"i ).
v

_ P, £ Pagy
% % A= mIAv 04 aaAVA 50—8»"" é T: Tj
0.01 1 3.78 X 1072 1.23 x 1074 -371x107* 8.53 X 1077 1.048 3.33 x 10° 2.04
1 1 0.757 1.19 x 107 —4.55 X 1072 427 X 1073 1.059 1.24 X 10* 3.94
10 1 0.780 110X 1074 —4.94 X 1073 4.93 X 107° 1.075 7.98 X 107 316
1 0.01 1.81 X 1072 2.01 X 1073 —2.43 X 1073 3.58 X 10°° 1.075 5.04 X 10* 7.94
1 1 0.757 1.19 X 107* —4.55x 1072 4.27 X 1073 1.059 1.24 X 10* 3.94
1 10 0.999 3.92x 1078 —4.26 X 107° 1.12 X 1077 1.071 196 0.495
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TABLE II. Simulation results for P, and its sensitivity to /& for example 2 in the case of isotropic scattering. Standard deviations are
given for each Monte Carlo estimate as well as the computation time increase i associated to the sensitivity calculation. The sampling

ks

Ps (o)) = lfe‘,T and Py (u;) = z-. The number of sampling events is 10°. Units

T

probability density functions are Py(u) = %2

T

are arbitrary for k,, k,, and h. tffg” and p,gq; are defined as in Table 1.

%

k, k, h A=to o A ey . a P

1 1 0.001  1.99 X 1073 298 x 107° 0.991 2.08 X 1073 1.12 821 1.01

1 1 1 0.748 222X 1074 0.107 6.09 X 1074 1.11 532 0.258

1 1 10 0.853 2.52 X 1074 3.43 X 1073 223X 1074 1.11 5.11 7.99 X 1072
1 0 1 0.780 1.10 X 1074 0.297 9.78 X 1073 1.23 2.02 X 103 1.59

1 1 1 0.748 222X 1074 0.107 6.09 X 1074 1.11 53.2 0.258

1 10 1 0.501 3.62 X 1074 1.45 % 1073 3.79 X 107 1.089 12.1 0.123
0.001 1 1 1.99 X 1073 1.54 X 107° 1.99 x 1073 5.80 X 1076 1.11 113 0.375

1 1 1 0.748 222X 1074 0.107 6.09 X 1074 1.11 53.2 0.258

10 1 1 0.980 977X 1075 —7.89%x 1075 128X 1074  1.087 7.70 9.81 X 1072

deformation velocity is built component by component
starting with V, | that is a function of y; only. For y; €

[ai,j, bi,j]i

dzbyj— dray;
=Ly~ a ;)
bl,j - al’j

Vi1 A) = dyay; +

V/\,ily,-:b,»_,‘ - V)t,il_v,-:aivj

In Table II, we consider a gray medium and a gray incident
intensity and we evaluate the sensitivity to the slab thick-
ness h. The corresponding Monte Carlo estimates are dis-
played for various values of k,, k,, and A. All sensitivities
are accurately estimated in both examples for all configu-
rations, except for the relative standard deviations which
are large when the sensitivity value tends to zero. For
comparison, in both tables we also report results corre-

Vi Yo -y A) = d,a;; + b — . sponding to standard numerical differentiations. In all

b b cases, either the required computation times are very

X (y; — a;;) much higher than those corresponding to the methodology

" presented here, or the amplitude of the required perturba-
wit

Viaily=a,, = Vain Yo - yicn yi = a@iji A)
i-1

=d,a;; + Z VarOn Yo, oo Y Ddya, .
=i

Practical implementation.—This systematic procedure
is applied hereafter to the above described examples. For
example 1, a gray incident intensity is supposed and the
absorption spectrum is that of a single Lorentzian line:
k, = ﬁf)zﬂsz]' The sensitivity in question is the sensi-
tivity to the width of the observational spectral interval,
Av = v, — v,. Table I displays the sensitivity estimation
results for various values of the line intensity and the line
width. In this first example, the domain is two dimensional
and the implementation is trivial, but when dealing with
high-dimensional spaces, determining the domains D; in
Eq. (9) may seem an insurmountable problem. Fortunately,
for existing Monte Carlo algorithms, this problem vanishes
as it is directly related to the generation of configura-
tion sets in Eq. (2). The practical implementation of
Monte Carlo random sampling of x; and y; in D is usually
accomplished by a reduction to a succession of dependant
random sampling events in low-dimensional domains fol-
lowing stochastic physical models. This point is illustrated
with example 2 in which the domain of infinite dimension
is the combination of successive one-dimensional spatial
domains and two-dimensional angular domains [Eq. (6)].

tion is large (raising concerns about the linearity
assumption).

We are presently making use of this methodology for a
wide range of radiative transfer applications, as well as for
the analysis of residence times of stochastic motions in
bounded domains, in particular, for the analysis of the
successive moments and of their sensitivities to the pa-
rameters of the motion as well as to the geometry of the
system [7].
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