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Abstract

A new multi-scale hybrid transport-diffusion model for radiative transfer calculations
is proposed. In this model, the radiative intensity is decomposed into a macroscopic
component calculated by the diffusion equation, and a mesoscopic component. The
transport equation for the mesoscopic component allows to correct the estimation of
the diffusion equation, and then to obtain the solution of the linear radiative transfer
equation. In this work, results are presented for stationary and transient radiative
transfer cases, in examples which concern solar concentrated and optical tomography
applications. The Monte Carlo and the discrete-ordinate methods are used to solve
the mesoscopic equation. It is shown that the multi-scale model allows to improve
the efficiency of the calculations when the medium is close to the diffusive regime.
Moreover, the development of methods for coupling the radiative transfer equation
with the diffusion equation becomes easier with this model than with the usual domain
decomposition methods.

Keywords:

Radiative transfer, multi-scale model, hybrid transport-diffusion model, Monte Carlo
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1. Introduction

Linear transport models are applied in many research fields including neutron trans-
port [1], thermal radiation [2], medical imaging [3] or atmospheric physics [4], among

others. In this work, we focus on radiative transfer models in absorbing and scat-
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tering media for applications such as solar energy processes and optical tomography.
Actually, two principal models are generally used for linear radiation transport : the
radiative transfer equation (RTE) defined at the kinetic scale and the macroscopic
diffusion equation (DE).

The RTE is a mesoscopic model which offers a better accuracy than the DE but
requires a higher computational effort. Several numerical methods such as the Monte
Carlo methods (MCM), the discrete-ordinates (DOM) or the finite-volume methods
(FVM) have been developed over the last decades in order to solve the RTE with pre-
cision and efficiency. The DOM and the FVM are deterministic methods, frequently
applied in engineering problems, which are generally faster than the MCM [2]. How-
ever, with the increase of computational power, the MCM become more attractive and
has been used in various engineering applications [5]. Accordingly, the Monte Carlo
algorithms have been significantly improved in concentrated solar processes [6], remote
sensing [7] or for sensitivity estimations [8].

All these methods based on the RTE converge slowly when the medium is close to
the diffusive regime. Accordingly, the computational requirements increase significantly
with the scattering optical thickness. In the case of MCM, the CPU time increases with
the number of times that photons scatter during their optical path, and the statistical
error improves as well. In the case of DOM or FVM, the numerical parameters must
respect strong constraints for stability reasons (like the mesh size which has to be
lower than the mean free path, very small if the scattering optical thickness is large).
At the diffusive regime, the radiation model which is generally used is the DE if it
is assumed that the radiative intensity is almost isotropic (P1 approximation), and
that the radiative heat flux scales with the gradient of the incident radiation [2]. The
DE is much more easier to solve than the RTE, and is therefore an efficient model in
highly scattering media. But the DE has some major drawbacks in the proximity of
boundaries or sources, or in regions where the medium is not optically thick, where the
P1 approximation is not valid anymore.

The objective of this work is to propose a radiation model for multi-scale prob-
lems where one has to deal with diffusive and kinetic regimes. We will focus on a

first test case related to radiation transport in a volumetric receiver in concentrated



solar applications. The solar concentrated processes involve a concentrating system
(heliostat field) and a receiver. High temperature volumetric solar receivers have been
a research topic for more than 30 years [9]. The aim of volumetric receivers is to
use semi-transparent media (particles, wire meshes, fibers, honeycombs, reticulated
porous ceramics) to absorb solar radiation deep inside the absorber in order to de-
crease losses by reflections and thermal emission. Recent studies [10, 11] used the DE
for the predicition of thermal radiation inside a volumetric solar absorber. The DE
leads to acceptable computation time, but it cannot estimate accurately the losses at
the inlet boundary. In these applications, a radiation multi-scale model, which is able
to predict correctly the losses by reflections or emission close to the surface irradiated
by the concentrated solar fluxes, and to predict correctly radiative transfer inside the
volumetric absorber where the medium is close to the diffusive regime, is needed.

On a second time, an academic problem related to optical tomography applications
will be studied. The propagation of a short-pulse laser into a biological tissue allows
to estimate the optical properties of the tissue and to detect inhomogeneities and
tumors [12, 13]. In biological tissue, the medium is generally optically thick, and
scattering dominates over absorption, which means that the DE can be assumed for
radiation model [14]. However, the diffusion approximation has some limitations at
the boundaries of the system where the short-pulse laser is emitted. The collimated
irradiation cannot be simulated accurately with the DE, and needs a kinetic description.
Moreover, scattering is typically forward-peaked in tissues [15], which enhances the
need for a mesoscopic model close to the boundaries. in such cases, a transient multi-
scale radiation model is needed to simulate the propagation of the short-pulse laser
inside the tissue.

In multi-scale problems, a solution is to couple the DE with the RTE using a
domain decomposition method, in which the system is decomposed into a mesoscopic
subdomain where the RTE is solved and a macroscopic subdomain where the DE is
solved. This approach has been tested in various studies [16, 17, 18, 15]. In these works,
the treatment of the geometric interface between the macroscopic and the mesoscopic
subdomains represents the major difficulty to handle [19]. The boundary conditions

at this interface for the DE must be consistent with the boundary conditions for the



RTE, which is not an easy task and can lead to strong error [15]. In our previous
work, a dynamic multi-scale model based on the domain-decomposition strategy has
been proposed [20] which allows to overcome the interface treatment difficulties. In
this model, the DE and the RTE are coupled through the equations instead of being
coupled through a geometric interface. A buffer zone is introduced between the kinetic
and the diffusive subdomain, and the coupling is dealt inside this buffer zone. Note
that no boundary conditions are needed for the DE with this model.

Another possible approach for dealing with multi-scale problems is based on the
so-called micro-macro formulation [21, 22, 23]. In this formulation, the mesoscopic
unknown is split into a mesoscopic and a macroscopic components, and a two-way
coupled system of equations is obtained for these two components. The micro-macro
model is equivalent to the initial kinetic equation, unlike domain decomposition meth-
ods. During the derivation of the macroscopic equation from the kinetic equation, the
exact boundary conditions are generally lost, and artificial boundary conditions may
be needed. However, it is possible to find an alternative decomposition which matches
the exact boundary conditions as proposed in [24]. The principal problem of the micro-
macro formulation is to deal with the coupling between the macroscopic and the kinetic
equations; indeed, the mesoscopic equation cannot be solved easily and efficiently with
a Monte Carlo method because of the coupling with the macroscopic equation.

In this work, a new multi-scale hybrid transport-diffusion (HTD) model is proposed
for radiative transfer. In this model, similarly to the micro-macro model, the radiative
intensity is decomposed into a macroscopic and a mesoscopic components, leading to a
macroscopic and a mesoscopic equations. The major difference with the micro-macro
model is that the two equations are one-way coupled instead of being two-way coupled.
The macroscopic equation does not depend on the resolution of the mesoscopic equation
and can be solved independently. Therefore, the macroscopic diffusion equation is first
solved on the whole time and space intervals, and then the mesoscopic equation is
solved with a source term depending on the unknown of the macroscopic equation
previously computed. The model obtained enables to reconstruct the solution of the
RTE by adding the solution of the diffusion equation and the solution of the mesoscopic

equation. In particular, the exact boundary conditions are conserved.



In the next section, the models for radiative transfer are presented. In section 3, the
HTD model is tested with the MCM in a stationary test case related to concentrated
solar applications. A transient test case related to optical tomography application is

studied in section 4 with the DOM and the MCM.

2. Radiative transfer models

2.1. The RTE and the DE

The transient RTE in absorbing, emitting and scattering media can be written as

101
—% +u- VI = —(ko+ k)T + kol + k/ p(ulu)I'du’ (1)
C 47

where [ = I(x,u,t) is the radiative intensity at location @, propagation direction u
and time ¢t. The radiative intensity [ is linked to the photons distribution function f
according to I = hvcef, where h is the Planck constant, v the frequency of the photons
and c the speed of light. The other quantities of Eq. 1 are the following: k,(x,t) is the
absorption coefficient, kg(x,t) the scattering coefficient, p(x,u|u’) is the normalized
scattering phase function and w’ is the incident direction. Finally I,(x,t) denotes the
Planck function and the notation I’ stands for I’ = I(x, ', t).
The RTE integrated over the solid-angle space can be written as:

10p
cot

+ V- j=kidrl, —p). (2)
In this equation, p is the photon fluence rate (or incident radiation), defined by p(x,t) =
<I (:B u t)>, where the symbol (-) represents the integral over the solid-angle space
= [, «a 4 ¢(u)du). Let us remark that p can be linked to the photon density @
accordmg to p = hve®. Finally, 7 is the radiative heat flux defined by j(x,t) =
(I(x,u,t)u).
Eq. 2 is not closed and an assumption has to be done to express the radiative

heat flux 7 in term of the fluence rate p. If the P1 approximation is assumed for the

=025,
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the radiative heat flux at the diffusive limit §"™ = (I . u) is related to p" accordlng
to
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where D is the diffusion coefficient and ¢ is the anisotropy factor defined by ¢ =
fol p(p)pdp with g = w.u’. In Eq. 3, the phase function is assumed to depend only on
the scalar product between the incident and the scattered direction p(u|u’) = p(u-u’),
which is not a restrictive assumption in the applications of interest. The macroscopic
diffusion equation is then deduced from Egs. 2 and 3:

1 8pllm
c Ot

— V- [DVP'"™] = k,(4nL, — p"™). (4)

2.2. Hybrid transport-diffusion model for radiative transfer
The hybrid transport-diffusion (HTD) model decomposes the radiative intensity
according to

P (e, t)

I(x,u,t) = 1
T

+ e(x, u, t). (5)

The macroscopic unknown is the photon fluence rate at the diffusive limit, p'™, which
satisfies the DE (Eq. 4). The transport equation for the mesoscopic component € is

then deduced from the RTE (Eq. 1) and from the DE,

1
_% +u - Ve = —(ka+k8)€+ks/ p(’u,.ul)eldu1+sp“m. (6)
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The source term which depends on p!™ in Eq. 6 can be written as:

S pim = i [V Ll gy Vp“‘m] (7)

m

where j™ is given by Eq. 3. Sim can be either positive or negative, as well as €.

When the DE solution 2 ””;Srw,t) overpredicts the radiation intensity I(x,u,t), e(x,u,t)

becomes negative to compensate this effect, according to Eq. 5. Note that Eq. 6 is
very similar to the RTE, and therefore the usual methods developed for solving the
RTE can be easily adapted to solve the transport equation for e. The exact boundary
conditions (BC) on I are conserved with the HTD model. Indeed, the BC for € are
defined according to the chosen boundary condition on p'™, in order to match the
exact intensity I(x,,u,t), such as:

lim(

w,t
e(:cw,u,t):[(:cw,u,t)—p w )foru~n>0 (8)
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where x,, is the boundary point and n is the ingoing normal at position x,,. Note
that in the remainder of this article, the Marshak boundary conditions are used for
lim(

P (Lo, t) -

P (X, 1) + 25 (X, ) - = 4/ I (@, u,t)(u - n)du. 9)

u-n>0

The procedure to solve the HT'D model is straightforward:

e Solve the DE (Eq. 3) in order to calculate the field of p!™ in the system and for

the considered time interval.

e Solve the transport equation on € (Eq. 6) by using one of the usual methods to

solve the RTE, such as the MCM, the DOM or the FVM, among others.

e Estimate the radiation quantity by adding the solution of both equations. For

instance if the fluence rate p is needed: p = p'"™ + p. where p, = (e).

In the micro-macro model proposed in [22, 23|, the mesoscopic distribution function
is also decomposed into a macroscopic and a mesoscopic component. The major dif-
ference with the HTD model is that the two equations obtained are two-way coupled,

and consequently less flexible to solve.

2.3. llustrative multi-dimensional test case in the stationary regime with the Monte

Carlo method

In the stationary regime, the DE is simplified to
—V - [DV'"™] = ko(4n, — p'™). (10)

Eq. 10 is also called the P1 model, because in stationary cases, only the P1 approxima-
tion is needed to obtain the macroscopic model (the diffusion approximation % =0
is always verified). The transport equation for € in the HTD model becomes
u-Ve= —(ka+k:5)e+k8/ p(u-u')eédu’ + S im (11)
47
where Sim can be written as

lim . lim
Sumzka(lb—’; )—'“’ ver (12)
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The illustrative example considered is a homogeneous absorbing and isotropic scat-
tering three-dimensional cubic enclosure, filled with a uniform grey gas at temperature
1000K confined between black walls at 300K . The length of the cube is 1m and the
number of grid meshes is 153.

In a first step, the P1 model (Eq. 10) is solved to get p"™ by a classical second
order finite volume method. The finite volume discretization leads to a linear matrix
system which is solved by the iterative Gauss-Seidel method.

Once the field of p/™ is known, a MC algorithm based on the integral formulation
is developed for the estimation of p. = (€) (in order to calculate p = p'"™ + p.). In
Appendix A, a classical reverse MC algorithm for the estimation of p is detailed. It is

based on the following formulation:

o) = [ putwia [ puedns [ oo <o (13

where w is the Monte Carlo weight expressed by

w = 4W{H(£1 — ) (@1, w) + H(dy — 61){(1 = w(@1))y(x1) + w(@a) I (@1, uﬁ}}
, (14)

ks
ka+ks

Hz)=1ifx >0,and H(z) =0if x < 0, {1 = ||z — x1]| and di = || — T

where w = is the scattering albedo, H(z) is the Heaviside function defined as
In figure 1 the notations are illustrated in an example of optical path. The chosen
probability density functions (pdf) are:

B 1
T 4x’

pu(u) (15)

L;
pr(l;) = (ko + ks) exp [—/ (ko + ks)dﬁ}, Vi € NT where (; = ||z; — x;_1|(16)
0
pUi(ui) = p(ui_1|ui), Vi € N*t. (17)
In this algorithm, the optical path is randomly generated in a reverse way. At each
collision position generated according to pr, the emission source term is implemented.
The MC algorithm used to solve Eq. 11 in the HTD model is almost identical to

the algorithm used to solve the RTE. The integral expression of p. is very similar to

Eq. 13,
—+o0
pe(x) = /pu(u)du/ pL(El)dfl/ pu, (u1)duy X w,, (18)
4 0 4
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where the probability density functions are unchanged and the MC weight w, is ex-
pressed by:

Splim (.’El)
ko(1) + k(1)

we = 47T{H(€1 —dy)e(@y1,w) + H(dy — El){ + w(xq)e(x, ul)%l})

where Syim is given by Eq. 12. When comparing the expression of the MC weight
w (Eq. 14) with the expression of w. (Eq. 19), it is clear that the algorithms are
very similar. The only difference is that w, is now implemented by the source term

S

oim from Eq. 12 at each scattering position, instead of being implemented by the

emission. The value of p™ and of its gradient at the scattering position x;, needed
for the calculation of Sum(x;), are obtained by linear interpolation from the values at
the surrounding mesh points of the grid used to solve the DE (Eq. 10).

In figure 2, an example of MC calculations of the RTE and the HTD model is
presented along with the solution of the P1 model. In this case, the optical thickness
is 10, the albedo 0.5 (which means that the absorption and the scattering coefficients
are equal to 5) and the phase function is isotropic. In figure 2(a), the fluence rate
along the z—coordinate of the enclosure is displayed (y and z are fixed to 0.6). The
MC solutions for the RTE and the HTD model are merged as expected, and it can
be seen that the P1 model represents a good alternative to the mesoscopic models in
this example, except close to the boundaries. In figure 2(b), the relative statistical
uncertainties are presented. The number of optical path generated for each points of
the mesh is 100000 in the case of the RTE calculations, while in the HTD calculations,
this number is 50000. It is shown that the HTD model gives better results than the
RTE (except at the boundary where the uncertainties are equivalent), for a lower
computational time tyrp = 0.6t grg. In this case, the MCM based on the HTD model
estimates the difference between the P1 solution and the exact solution (p — p'™),
instead of estimating directly the exact solution p (like the MCM based on the RTE).
Consequently, the statistical error with the HT'D model is smaller because the quantity
estimated with the HTD is smaller than with the RTE (p — p''™ << p).

In table 1, the ratio of the computational time needed for solving the RTE and the
HTD model at equivalent accuracy are given for various optical thicknesses. When the

optical thickness is 1 or thinner, the predictions of the P1 model are not accurate and



consequently the control variate method does not ensure a better performance than the
usual RTE. However, when the optical thickness increases (for 7 > 5), the efficiency of

the HTD calculations are better than the RTE.

3. Example of a receiver in solar concentrated applications

3.1. Stationary radiative transfer with collimated irradiation

In this section, the HTD model is applied to the simulation of radiative transfer
into a solar receiver irradiated by concentrated solar fluxes. The incident concentrated
radiation was modelled as a collimated external source and an effective grey semi-
transparent medium was considered. Problems involving collimated irradiation like the
high temperature solar absorbers are usually dealt with by decomposing the radiative
intensity into its collimated component I. and its diffuse component I; according to
I = 1.+ 1, [2]. The collimated intensity /. obeys the following equation (in stationary

cases):
u-Vi.=—(ks+ keI, if u=mu,, (20)
where [.. is non-zero only in the collimated direction u. and can be written as:
I, w) = 6w — )l (@, u)exp (- / T o). (21)
0

where ¢ is the Dirac distribution. The transport equation for I, is easily deduced by

introducing the decomposition I = I, + I; into the RTE,

u-Vig=—(ko+ks)la+ kol + /f/ plu-u) hdu' + kop(u - we)lo(z, ue),  (22)

4m
where I, = I;(x,u’). Integrating Eq. 22 over the solid-angle leads to

V. jd = ka<47rlb - pd) + ks[t:(wa uc)7 (23)

where p; = (I;) and j,; = (I;u). When the P1 approximation is assumed for the

diffuse component I, = I™, the diffusive flux 5™ = (I u) can be written as:
Gi™ = —DV pli™ + 3Dksgl. (T, Ue)Ue. (24)
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The following equation is then obtained for the transport of plim = (I4™):
—V - (DV ™) = ko(An L, — pi™) + kol (x, ue) — V - [3Dksgl.(z, uc)ue].  (25)

In the HTD model, the decomposition of the radiative intensity becomes:

lim €T
I(z,u) = L(z,u) + pdTi) +e(z, ). (26)

The transport equation for € is the same as Eq. 11, only the source term differs and

depends also on I.:
u- V"
4T

lim

Sppim = kp(u-ue)l(z, ue) + kK, <Ib — pj )
T

(27)
The HTD model is then composed of a system of three equations (20-25-11).

3.2. Monte Carlo algorithm for the HTD model

The MCM has been chosen to simulate the mesoscopic equation of the HTD model
in this example. The advantages of using the MCM in concentrating solar applications
have been recently reviewed in [6]. In particular, it is preferred to other methods
because of its ability to deal with geometrically complex systems. The modifications
needed to take into account the collimated radiation in the MC algorithm presented
in Appendix A are easily deduced from the integral formulation of the diffuse photon

fluence rate pq(z) = [, Is(x,u)du, similar to the integral formula in Eq. 13:

i) = [ it [ et [ o xwn @9

where wy is the Monte Carlo weight expressed by
wy = 47r{H(£1 —dy) (X, uw) + H(dy — 61){(1 — w(x1)) (1) + w(@s)p(u|ue) (21, ue) + w(w1)ly

Concerning the HTD model, the algorithm is almost identical to the one presented in
section 2.3. The integrals are the same as given in Eqgs. 18 and 19, the only difference

being the term S;,_yim (Eq. 27) which replaces the term Syim (Eq. 12).

3.3. Results

The HTD model is applied in this section to a test case related to a solar receiver

and compared to the RTE. Since the resolution of the diffusion equation is very fast

11



in this test-case, the CPU time for the RTE and for the HTD are almost the same
(tgrp = 1.01tgrg). The incident radiation p(x) is computed inside a volumetric solar
absorber considered as a porous medium having effective grey radiative properties.
This porous medium is assumed one-dimensional at uniform temperature (1300K") and
submitted to collimated irradiation (800kW/m?) at z = 0 perpendicular to the slab.
The following radiative properties were chosen, according to realistic values in solar
applications [10, 11]: the slab optical thickness is 7 = 4, the scattering albedo is w = 0.5
and a diffuse sphere phase function [26] is chosen with an asymmetry factor g = —4/9.
The simulation results for the isothermal solar receiver submitted to concentrated solar
flux were obtained with 10° bundles of rays for HTD and MCM.

Figures 3(a) and 3(b) present the results computed by the P1, HTD and RTE mod-
els, and the MC statistical errors, respectively. In figure 3(a), the P1, HTD and RTE
solutions coincide for x > 0.5, which means that the P1 model is the best one for radia-
tive transfer in this zone of the receiver due to the lower computational requirements.
However, for < 0.5, the P1 solution differs from the reference solution (RTE). In
this application, the P1 approximation cannot be assumed close to the inlet (x = 0)
boundary, where a maximum difference of 12% is observed between the P1 solution
and the reference one.

The HTD solution is completely merged with the reference one, as expected. Figure
3(b) shows the small normalized statistical error, i.e., an uncertainty lower than 0.2%
for a 99% confidence interval. The uncertainty for the HTD model is lower than
the uncertainty for the RTE at equivalent computational time for a large part of the
domain. Only close to the boundary z = 0 where the solar irradiation enters the
system, the RTE has a smaller relative error than the HTD solution. This is due to the
error on the boundary condition of the P1 model at x = 0. Consequently, the control
variate approach is not useful anymore at this boundary.

In these applications, the HT'D model can correct the prediction made by the P1
model close to the irradiated surface, and represents therefore an efficient alternative

to the RTE or the P1 model.
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4. Example of optical tomography application: transient radiative transfer

with collimated irradiation

4.1. Test case

The HTD model is now tested on the classical 1D test case related to optical
tomography applications of a slab submitted to a short-pulse laser irradiation on one
of its faces [27, 28]. The temporal pulse shape is a truncated Gaussian distribution.

The boundary condition for the radiative intensity at point z = 0 is

t—1

2
I(O,u,t)zloé(u—uc)exp{—41112( )} L0 <t<2t, (30)

P
where I is the maximum radiative intensity of the pulse which occurs at ¢ = t. = 3t,,.
For t > 2t., the face is free from irradiation i.e. I(0,w,t > 2t.) = 0. The medium
inside the slab is cold (emission is neglected), absorbing and scattering. The Henyey-
Greenstein phase function is used and the absorbing and scattering coefficients are
homogeneous. The irradiation is a pulse normal to the left face of the slab (u.-n = 1).
The dimensionless time defined by ¢ = c(k, + k)t is fixed to 0.5. The dimensionless
1

transmittance 7'(t) = ¢ [, I(z = L, u,t)(u - n)du is estimated as:

T(t) = T.(t) + Talt)
1 1
= ]—OIC(SU =L, uc, t)(ue-n)+ I /27r Ij(x = L,u,t)(u-n)du, (31)

where L is the slab width (z € [0, L]), and n is the outgoing normal at point x = L.

4.2. Modified RTE and DE for transient radiative transfer with collimated irradiation

In the transient regime, the transport equation for I. is written as:

18]6
c Ot

+u-VI.=—(k,+ ks, (32)

and for I;:

101
_% +u-Vig=—(ko+ ks)lg+ kodp + ks/ p(u - o) du' + kgp(u - ue)l(x, u.)
C 47

(33)

The expression of I.(x,u,t) remains similar to the expression of I.(x,u) obtained in

the stationary case (see Eq. 21):
||e—@w]|
L@, u,1) = 6(t — u) (e, U, ) eXP ( - / (ka + k:s)d€> (34)
0
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=t — Hm%‘”"’” and x,, is the boundary point defined by the intersection

where t,,
between the line passing through point @ in the direction —u and the boundary. If the
P1 approximation is assumed for the diffusive contribution I}™ = ﬁpldim + % jfiim U
as well as the diffusion approximation % = 0, the following DE is obtained for
i = (Ig"™):

19py™
c Ot

— V- (DVP§™) = k(41 — pi™) + ksl (x, ue) — V - [3Dksglo(z, uc)ue] (35)

4.3. Modified HT'D Model for transient radiative transfer with collimated irradiation

Using the following decomposition for the radiative intensity

pi" (1)

I t) = L(z,u,t

+ eq(x, u, t), (36)

the transport equation for ¢, is deduced from Eqs. 33 and 35:

10
Z% +u-Veg = —(ka + ks)eq + ks/ p(u - u')edu’ + Sy, im. (37)
4

The source term S;_ im depends now also on I.:
1 1 lim lim
Sy, pim = ko (T, Ue, t) <p(u CUe) — E) + e V.-3;™"—u-Vpy (38)

lim

where 7™ is given by Eq. 24.

4.4. Numerical methods

The diffusion Eq. 35 is solved by a finite-volume method with a second-order central
differencing, and the time discretization is assumed with a fully explicit scheme. The
resolution of the diffusion equation is much more faster than the resolution of the
mesoscopic equation of the HTD model, or than the resolution of the RTE, since this
equation is macroscopic and does not involve angular integrations.

In section 4.5, the DOM is chosen for solving the modified RTE and the mesoscopic
equation of the HTD model. A fully explicit time scheme is chosen for the discretization
of the transient term of all the equations. The transport terms in the mesoscopic
equations are spatially discretized with the step scheme. The angular discretization
is carried out using the Si5 quadrature scheme, which computes 168 directions in the

sphere. The macroscopic part (Eq. 35) of the HTD model is discretized using a second

14



order finite volume method. The grid is uniform and the same for all equations, and
the number of spatial grid points is N, = 200. The CFL number has been fixed to 0.5
At =054,

Results obtained with the MCM are also presented in section 4.6. The MCM
algorithm used to solve the RTE is the reverse MC algorithm already detailed in [29, 30].
It is a backward algorithm which estimate the radiation quantity at an instant ¢ which
is fixed. The photon path is generated in a reverse way from the end of the optical path
at time t and position x = L, until the begining of the optical path at time ¢ty =t — %,
where d is the total length of the optical path inside the system. This algorithm is

similar to the algorithms presented in the previous section, and corresponds to the

following integral:

1
Ta(t) = o)) I(x = L,u,t)(u-n)du

+oo
= / pU(’U,)d’U,/ le(El)dgl/ pUl(ul)dul X Wq (39)
2 0 47

where n is the outgoing normal at the face x = L. The pdf pg,(¢;) and py,(u;) are
given by Eqs. 16 and 17, respectively. The pdf for the random generation of w is given
by py(u) = “*, and the MC weight is expressed as:

T b
Wy = [—H(dl — 01) exp [— / kadﬁ] {[c(ajl, Ue, t1)p(ug|ue) + 142, ul,tl)} (40)
0 0

where t; =t — %, dy = u—Ln and ;1 = L — u - nf;. The algorithm deduced from Egs.
39 and 40 generates an optical path in the reverse way from the position x = L. At
each new scattering position z; inside the slab, the collimated radiation I.(z;, u.,t;)
(where t; =t — @) is calculated using Eq. 34 and added to the MC weight. The
generation of the optical path stops when it leaves the system.

This algorithm is easily adapted to the HTD model following the procedure de-
scribed in section 2.3. If we set Ty(t) = pli%[(f’t) + T.(t), the MCM estimates T, which
can be written as:

1
T.(t) = o)) e(r=L,u,t)(u-n)du

+oo
= / pU(’U,)d’U,/ le(gl)dgl/ pUl(ul)dul X We (41)
2 0 47
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where the MC weight is given by

Zl S im t
we = %H(ﬁl — dy) exp [— / kadg} {w + H(d: — £I)€<x17“17t1)}' (42)
0 0 s

The MC algorithm used to estimate T.(t) differs from the algorithm that estimates

T4(t) only in the source term added to the MC weight (like in the previous sections).

4.5. Results obtained with the DOM

The DOM has been used to compare the efficiency of the RTE and the HTD formu-
lations. The computational time required by the RTE and by the HT'D models is almost
identical (tgrp ~ 1.02tgrg), since the time needed to solve the DE is very short in
comparison with the time needed to solve the mesoscopic equations (tpg ~ 0.005trrE).

In figure 4, the results of the estimated transmittance obtained with the different
models are displayed for an optical thickness 7 = 10, an albedo w = 0.5, and an isotropic
phase function. The P1 solution is strongly inaccurate because the transmittance is a
quantity defined at the boundary of the domain, where the error on the DE resolution
is significant. Concerning the others models, the HTD/DOM solution has the same
level of accuracy as the RTE/DOM.

In figure 5(a), the optical thickness has been increased to 20. The HTD/DOM
solution has a smaller error than the RTE/DOM for the albedo equal to 0.5. When
the albedo is changed to 0.9, like in figure 5(b), the difference between the solutions
obtained with the RTE/DOM and the HTD/DOM is larger. The poor performance
of the RTE/DOM in this case is caused by the influence of the in-scattering term
ks [, p(u-u’)Idu’ in Eq. 33. When the scattering coefficient is high, the in-scattering
term of the RTE dominates the others terms of the equation, and therefore the simula-
tions are very sensitive to any error on this term. That’s why the RTE/DOM at large
optical thickness is difficult to handle. In the DOM/HTD model, the in-scattering term
ks f 4 P(u - u')e;du’ is considered in the mesoscopic equation. It can be related to the
total in-scattering term according to the following relation (using the decomposition of

the radiative intensity in Eq. 36):

lim
k:S/ plu-u)du' = kspd— + ks/ p(u - u)Idu' (43)
4m 4m 4m
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When the scattering coefficient increases, the diffusion approximation yields better
accuracy inside the domain, and consequently % gets closer to the solution Iz, while
€4 tends to 0 by definition. Therefore, at large optical thicknesses, k, [, p(u - u’)e,du’
does not dominate the other terms of the equation like in the RTE/DOM, and the
multi-scale model performs better than the RTE.

In figures 6, the optical thickness and the albedo are maintained at 20 and 0.9,
respectively, and the influence of the asymmetry factor is investigated. In the case
of g = 0.5 (see figure 6(a)), the HTD/DOM solution is again very close to the refer-
ence MC estimations, while the classical RTE/DOM fails. Note that the RTE/DOM
could be improved by using a higher-order numerical scheme for the time and space
discretization, but the computational cost would increase significantly. Therefore, the
HTD model is still a very good alternative to the RTE when the DOM is used. In figure
6(b), the asymmetry factor has been increased to 0.9. In this case, the HTD model
cannot correct the initial error of the classical DOM, which is inaccurate in forward
peaked scattering media [31, 32]. In future work, the performance of the DOM when
the asymmetry factor is close to 1 must be improved in order to compare the different

models with DOM when scattering is forward-peaked.

4.6. Results obtained with the MCM

In this section, the performance of the HTD model is compared to the RTE when
the MCM is applied. In figures 7 and 8, one symbol of the MCM curves represents one
Monte Carlo calculation. In figure 7, the estimated transmittance 7" and its uncertainty
or are displayed for an optical thickness 7 = 10, an albedo w = 0.5, and an isotropic
phase function. The transmittance estimated by the HTD model is equal to T' =T, +
17, + Tpim, where T, (given by Eq. 41) is estimated by MCM, T, = I.(L, e, t)(u. - n)
is given analytically by Eq. 34 and Tim = pl%, is estimated by the DE (Eq. 35).

In figure 7(a), the transmittance estimated with the RTE and with the HTD model
are merged as expected. The uncertainties of the estimations, given in figure 7(b), show
that the statistical errors are of the same order. The HTD model gives better results
for a time ¢ > 3.8 x 107s, while at previous times, the statistical error is higher than

that of the RTE. The total transmittance is null at the beginning, and consequently,
the MCM estimates a negative T, in order to correct the error made by the DE for the
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estimation of T)um. It is well-known that trying to estimate a very small quantity by
the sum of two larger opposite values (7)im and 7,) remains numerically more difficult
than calculating directly the quantity. But as soon as T, becomes positive, the HTD
model has a smaller error on the estimation of 7'

In figure 8, the uncertainties of the MCM estimation are displayed for an optical
thickness of 7 = 20, and an albedo w = 0.9. In figure 8(a), the phase function is
isotropic. As already discussed in the previous section, the medium in this case is close
to the diffusive regime, and consequently the HT'D model becomes much more efficient
than the RTE. The statistical uncertainties displayed in figure 8(a) confirm the results
observed with the DOM at the same optical thickness, albedo and asymmetry factor.

In figure 8(b), the phase function is strongly anisotropic which means that the P1
approximation is not valid anymore in a large part of the domain. In this case, the
error of the HTD solution remains equivalent to the error of the RTE solution, and
confirms that the HTD model works correctly, even in propagation media far from
the diffusive regime. It is concluded that the HTD model can deal with the diffusive
and the kinetic regimes, and offers consequently a good alternative to the RTE for the

treatment of multi-scale problems where both regimes can be found.

5. Conclusion

A new multi-scale hybrid transport-diffusion model for radiative transfer calcula-
tions is proposed in this work. This model is based on a transport equation for a
mesoscopic quantity that estimates the difference between the RTE and the DE solu-
tions. The HTD model enables to recover the solution of the RTE by simply adding
the solution of the mesoscopic part and the solution of the diffusion part. Results are
presented for stationary and transient radiative transfer in academic example of solar
concentrated and optical tomography applications.

It is shown that the proposed model allows to improve the efficiency of radiative
transfer calculations when the propagation medium is close to the diffusive regime.
Moreover, a simple procedure to couple the RTE and the DE can be developed using
the HT'D model, and avoid the difficult treatment of the interface between the meso-

scopic and the macroscopic subdomains. Another advantage of the HTD model is that
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the mesoscopic equation is very similar to the RTE, and consequently the numerical
methods (MCM, DOM or FVM) developed over the last decades for the RTE can be
applied without any additional difficulties.

In future work, the HTD model will be used for the development of an efficient
domain-decomposition method, in order to couple the macroscopic DE and the RTE in
a multidimensional solar absorber where frequency-dependent spectrum will be consid-
ered. The objective is to improve the radiative transfer calculations in terms of trade-off
between accuracy and computational requirements in order to study the coupling with
the fluid dynamics in the absorber. The domain-decomposition method will consist
in evaluating radiative transfer with the DE in all the domain, and completing this
estimation with the HTD model in zone where the macroscopic model is inaccurate,
namely close to the boundaries of the absorber. This would require less CPU time than
using a method that solves the RTE in the whole domain, for an equivalent accuracy,
and the usual difficulties of the interface treatment [19, 20] between the mesoscopic
model and the macroscopic model in domain-decomposition methods are completely

bypassed using the HTD model.
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A. Monte Carlo algorithm for the estimation of the photon fluence rate

The MCM may be regarded as a numerical method for solving integrals [6, 33].
Therefore, a MC algorithm can be deduced from an integral as shown in the following.
The MC algorithm presented hereafter serves as a basis for the MC algorithm presented

in section 2.3. The photon fluence rate p at position & can be written according to the
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RTE in its integral form:
plx) = / I(x,u)du
4m

_ /Mdu{[(wwl,u) exp | - /0 dl(ka+ks)d£] + /0 " e - /0 Zl(ka+k5)d£]d£1{

b)) + ) [ ptufun)I(en undu | (44)

Am
where dy = || —@w1||, Tw1 is located at the boundary of the domain, and @, is defined
by 1 = * — ¢; X u. The notations used to describe the equations and the algorithm

are illustrated in figure 1. The integral in Eq. 44 is reformulated as:

o(x) = /4Wdu/0+ooexp[—/OZI(k:a+k8)d€]dfl{H(£1—dl)I(mwl,u)Jr
(= )] (1= @)ien) +olw) [ ptulus) o un)dus | f5)

The MC algorithm is deduced by first defining the set of pdfs (given by Egs. 15, 16
and 17) used to generate randomly the scattering positions and directions, and then

by introducing these pdfs in the integral. The following integral is obtained

o) = [ otwdu [ et [ g
(46)

with the corresponding MC weight

w = 47{1{(@1 — d) (@1, w) + H(d) — el){ (1= w(@)) Iy(z1) + w (@1, ul)}<}n7)

Note that the expression of w is recursive, the radiative intensity I(x;,u;) can be
developed similarly to I(x,w). The algorithm deduced from the integral in Eq. 45 is

described hereafter:
e 1. i =1, aloop over the Nth optical path is started

e 2. A direction u is generated according to the pdf py(w). The factor W is
intialized to W = 47, the MC weight to w; = 0, and j = 0.

e 3. j = j+ 1. The optical path continues with the random generation of a path

length /;. A new scattering position is deduced x; = x;_1 — uj;_1/;.
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e 4. Two scenarios are possible:

— 4.1 The position «; is inside the domain (¢; < d; where d; = ||Tw; —xj_1|).
The MC weight takes into account the emission at x; : w; = w; + W x (1 -
w(x;))Ip(z;). A scattered direction is generated according to the phase
function p(w;|u;_1). The factor W is implemented by the albedo : W =
W x w(zx;).

Go to step 3.

— 4.2 The position x; is outside the domain (¢; > d;). w; = w; + W X

I(Xapj, wj—1).

Go to next step.
e 5. Two scenarios are possible:

—51Ifi<N,1=1i+1, go to step 2 for generating a new optical path.

— 5.2 Ifi= N, pis estimated by

1 N
P:N;wi (48)

and its uncertainty o, by

= v (v ) 19
End of the algorithm
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T=1 7=5 7=10 7=20

turp | 1.3 0.85 0.6 0.35

lrTE

Table 1: Ratio of the CPU times needed for solving the HT'D and the RTE models for different optical
thicknesses. The albedo is 0.5 (k, = ks) and the phase function is isotropic.
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Figure 1: Illustration of the notations used in the integrals related to the MC algorithms with an

example of a multiple scattering optical path.
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Figure 2: (a) Estimation of the photon fluence rate p(z,y = 0.6,z = 0.6) in the cubic domain. MCM
solutions of the RTE and the HTD model, and P1 solution. The optical thickness is 7 = 10, the
albedo w = 0.5 and the cubic side is equal to 1m. (b) Statistical error related to the RTE and HTD

simulations.
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Figure 3: Irradiation profile inside the 1D solar absorber: (a) comparison between the RTE model
estimated with MCM (reference solution), P1 and HTD models for an optical thickness 7 = k,+ks = 4,
an albedo w = 0.5 and a diffuse sphere phase function. (b) Statistical error related to RTE and HTD

simulations
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Figure 4: Time history of the dimensionless transmittance: comparison between the RTE solution
estimated with MCM (reference solution), the RTE with DOM, the DE and the HTD models for an

optical thickness 7 = k, + ks = 10, an albedo w = 0.5, and an isotropic phase function.
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Figure 5: Time history of the dimensionless transmittance: comparison between the RTE solution
estimated with MCM (reference solution), the RTE with DOM, the DE and the HTD models for an

optical thickness 7 = k, + ks = 20, an albedo w = 0.5 (a) and 0.9 (b), and an isotropic phase function.
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Figure 6: Time history of the dimensionless transmittance: comparison between the RTE model

estimated with MCM (reference solution), the RTE with DOM, the DE and the HTD models for an
optical thickness 7 = k, + ks = 20, an albedo w = 0.9, and a Henyey-Greenstein phase function with

g =0.5 (a) and with ¢ = 0.9 (b).
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Figure 7: MCM solutions of the RTE and the HTD models. Time history of the dimensionless
transmittance (a), and of the statistical uncertainties (b) for an optical thickness 7 = k, + ks = 10,

an albedo w = 0.5, and an isotropic phase function.
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Figure 8: Statistical uncertainties of the MCM solutions obtained by the RTE and by the HTD model
for an optical thickness 7 = k, + ks = 20, an albedo w = 0.9, and an isotropic phase function (a) or a

Henyey-Greenstein phase function with g = 0.9 (b).
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