archives-ouvertes

The practice of recent radiative transfer Monte Carlo
advances and its contribution to the field of
microorganisms cultivation in photobioreactors
Jeremi Dauchet, Stephane Blanco, Jean-Francois Cornet, Mouna El-Hafi,

Vincent Eymet, Richard Fournier

» To cite this version:

Jeremi Dauchet, Stephane Blanco, Jean-Francois Cornet, Mouna El-Hafi, Vincent Eymet, et al.. The
practice of recent radiative transfer Monte Carlo advances and its contribution to the field of mi-
croorganisms cultivation in photobioreactors. Journal of Quantitative Spectroscopy and Radiative
Transfer, Elsevier, 2013, 128 (SI), pp.52-59. <10.1016/j.jgsrt.2012.07.004>. <hal-01688109>

HAL Id: hal-01688109
https://hal.archives-ouvertes.fr/hal-01688109
Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.archives-ouvertes.fr/hal-01688109
https://hal.archives-ouvertes.fr

The practice of recent radiative transfer Monte Carlo
advances and its contribution to the field of microorganisms

cultivation in photobioreactors

Jérémi Dauchet #%* Stéphane Blanco ¢, Jean-Francois Cornet”,
Mouna El Hafi ¢, Vincent Eymet ¢, Richard Fournier ¢
@ Clermont Université, Université Blaise Pascal, Institut Pascal - UMR 6602, BP 10448, F-63000 Clermont-Ferrand, France

b Clermont Université, ENSCCF, Institut Pascal - UMR 6602, BP 10448, F-63000 Clermont-Ferrand, France
€ Université de Toulouse; UPS, INPT; LAPLACE (Laboratoire Plasma et Conversion d’Energie); 118 route de Narbonne,

F-31062 Toulouse cedex 9, France
4 CNRS; LAPLACE; F-31062 Toulouse, France

€ Université de Toulouse; Mines Albi; CNRS; Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09, France

ABSTRACT

The present text illustrates the practice of integral formulation, zero-variance
approaches and sensitivity evaluations in the field of radiative transfer Monte Carlo
simulation, as well as the practical implementation of the corresponding algorithms, for
such realistic systems as photobioreactors involving spectral integration, multiple
scattering and complex geometries. We try to argue that even in such non-academic
contexts, strong benefits can be expected from the effort of translating the considered
Monte Carlo algorithm into a rigorously equivalent integral formulation. Modifying the
initial algorithm to simultaneously compute sensitivities is then straightforward
(except for domain deformation sensitivities) and the question of enhancing conver-
gence is turned into that of modeling a set of well identified physical quantities.
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1. Introduction

During the last 15 years, significant methodological
advances have been reported in the field of Monte Carlo
simulation of linear transport phenomena, in particular as
far as radiative transfer is concerned [1-3]. Among them,
attention is here devoted to integral formulation, zero-
variance approaches [4,5] and sensitivity evaluations [6],
as well as to the question of implementing practically the
corresponding algorithms when thinking of realistic sys-
tems involving spectral integration, multiple scattering
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and complex geometries. Such techniques all rely on the
premise that Monte Carlo algorithms can be designed in
more subtle ways than making direct analogies with the
statistics of corpuscular transport. But along this line a
main advantage of Monte Carlo practice seems to be lost.
The fact that standard radiative transfer Monte Carlo
codes can be pictured as close translations of well
established physical pictures of photon emission, diffu-
sion, scattering, reflection and absorption implies indeed
that such codes are easy to design and easy to upgrade
toward the representation of additional (or further accu-
rate) physical phenomena. If the use of advanced Monte
Carlo techniques implies that these physical pictures are
hidden behind complex algorithmic tricks, or that the
corresponding codes become so complex that implemen-
tation and upgrading are sources of strong practical



difficulties, then radiative transfer specialists will be
reluctant to make an effective use of these techniques,
whatever their expected benefits. We try to argue here (and
illustrate with a photobioreactor example) that these draw-
backs vanish as soon as a strict relationship is made, in an
explicit manner, between the considered linear transport
Monte Carlo algorithm and the corresponding integral
transport formulation. Provided that the relationship is
made systematically, whatever the complexity of the pro-
blem, the whole reasoning can be made in terms of radiative
transfer formulations, keeping all the immediate benefits of
available physical pictures. This also implies that the tech-
nical aspects that have no direct relation with physical
reasoning, in particular the statistical treatments, paralleli-
zation, pure geometrical considerations, etc, can all be
translated into scientific computation libraries and can be
used in quite straightforward manners.

Photobioreactors are processes of biomass production
in which photosynthesis is catalyzed by photosynthetic
microorganisms in aqueous suspensions constituting
non-gray absorbing and anisotropically scattering media.
Careful radiation transfer analysis of photobioreactors is
identified as the clue for efficient design and efficient
operation [7-11]. Monte Carlo methods seem to be
appropriate for such an analysis since they allow to tackle
the intermediate optical depths and quite complex geo-
metries that are encountered in this context. The present
work focuses on a cylindrical reactor prototype (cultivat-
ing the micro-algae Chlamydomonas reinhardtii) in which
the incident solar light flux density is diluted in the
volume of culture thanks to a thousand of light-diffusing
optical fibers emitting a quasi homogeneous density flux
on the totality of their surface. All details and the
corresponding notations are provided in Figs. 1 and 2
(the microorganism density # is uniform within the

culture volume V, emission is negligible, k,, =no,, and
ksv=nas, are the absorption and scattering coefficients).
The following methodological discussions address the
estimation of the specific number of photons A(Xg)
absorbed in the photosynthetically active radiation
domain [Vin, Vmax), at a location xo within the microorgan-
ism suspension:

1 Vmax
A(Xg) = 0 / dv
Vinin

LV(XOv_wO)
4ndw0ka'v T

Vmax L. (X ,—
— / dv dwoaa’yM
Vmin 4n

hy (1)
where L,(Xg,—®yp) is the intensity at Xq in the direction
—o at frequency v, and h is Planck’s constant. A(Xp)
locally determines the kinetics of production within the
culture volume since it represents the energy that enters
the photosynthesis [7]. The surface productivity of photo-
bioreactors is directly linked to their energetic efficiency
which estimation implies to calculate A(Xq) for more than
10° different locations in order to evaluate the production
rates integrated over the whole reactor volume (which
cannot be done inside the presented Monte Carlo algo-
rithm since the local production rates are non-linear
functions of A(Xg)). This calculation is then repeated for
several sets of operational and design parameters, as a
part of design/operation optimization procedures. There-
fore, the reduction of the calculation times and the
opportunity to estimate sensitivities of A(xg) at low
calculation costs (in order to accelerate the optimization
procedures, thinking for example of a method of steepest
descent) both constitute important practical concerns.
For these reasons, the simulations presented hereafter
are parallelized and make use of computation tools
developed by the computer graphics research community
for the acceleration of photon tracking in complex

Fig. 1. (a) Prototype of solar volumetrically lightened photobioreactor [8]. (b) EDStar geometry: both the reactor (R) and the 979 light-diffusing optical
fibers () are cylinders of height 1 m; reactor diameter is 16.5 cm; distance between two fiber axis is d = 4.8 mm; fiber radius is rr = 1.2 mm. R and F
are diffuse-reflective with uniform reflectivities p® and p” respectively. F is Lambertian emitting with a uniform surface flux density ¢,. (c) 2d
hexagonal lattice fiber arrangement; an optical path example within the culture medium V; at the bottom left, description of how the location of xq is

defined around a given fiber (e(0) = (dx/2)1/ cos (0)).
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Fig. 2. (a) Chlamydomonas reinhardtii. (b) Radiative properties; the absorption cross-section g, the scattering cross-section o, and the asymmetry
parameter of the single scattering phase function py, ,(w|w’) over the photosynthetically active radiation domain (data available at [12]). c: py, ,(@| ') for

two wavelengths, where 0y, is the angle between w and o'.

geometries (using the scientific computation libraries
available within the EDStar development environment,
see www.starwest.ups-tlse.fr/edstar and [3]). But we keep
these technical aspects aside and we concentrate in
acceleration potentials related to sensitivity evaluation,
in Section 3, and importance sampling in conjunction
with the zero-variance methodology, in Section 4. Both
require that a complete integral formulation be con-
structed, strictly reflecting the retained Monte Carlo
algorithm. This is the objective of Section 2.

2. Description of the initial algorithm and construction
of the corresponding integral formulation

We will now design a reverse Monte Carlo algorithm
consisting in the sampling of optical paths starting from
Xo until they are “absorbed” at the emitting surface F (see
Fig. 1¢), in order to evaluate the number of photons A(xq)
locally absorbed at Xq. Each of the corresponding sam-
pling procedures will be detailed hereafter and will be
translated into an integral motif. The combination of all
these integral motifs will gradually lead us to an integral
formulation that is the rigorous formal translation of the
proposed algorithm.

(1) First, a frequency is sampled over [Vuyin,Vmax]
according to a uniform probability density function
p‘,(v) = 1/(Vmax_vmin):

Ao = [ puwydv... @

Vinin

This frequency determines the volume and surfaces
radiative properties as well as the surface flux density
¢, emitted by the fibers F for the current optical path.
(2) Then, starting from the location X, a first direction
g is sampled over the total solid angle (noted 47 here-
after) according to an isotropic probability density func-
tion pgo(wo)=1/4n, and a first scattering length Iy is
sampled over [0, + oo] according to the Beer extinction law

Pro.v(lo: ksy) = ks y€Xp(—Ks ylo):

Vmax
Ao = [ p v A pY, (o) devy
Viin T

X /0 pLO,v(lo; ks,v) dlo . (3)

(3) Now that {Xg,wq,lp} has been sampled, the first
interaction location X; =X;(Xg,®p,lg) is determined. As
previously mentioned pure geometrical considerations
are easily translated into scientific computation libraries
that we can avoid here to describe. For a given couple
{Xg,mo}, such libraries provide us with the location
Yy =Y(Xo,mo) of the first time the half line starting at Xg
in the direction g intersects the total bounding surface
R U F. If the distance to the bounding surface lly—xpll is
smaller than the scattering length, the optical path inter-
acts with a surface, otherwise scattering occurs inside the
volume of culture:

if ly—xXoll < lo

y
X = )
1 { Xo+lpwy otherwise

Then, a branching test is performed depending on the
nature of the interaction:

e In case of an interaction with the stainless steel surface
of the reactor R, a reflection direction w; is sampled
according to the diffuse angular distribution pgl (01) =
(w;m;)/m (n; being the normal at the location x;), the
weight W is multiplied by the reactor reflectivity p®
(see the expression of w in Eq. (7)), and a new
scattering length [; is sampled according to the same
extinction law as for Iy (p, , =Py, v):

...xHX; e R)

[ v @ don [y ik .. @)
2n 0

where H(x; € R) takes the value 1 when the condition
X; € R is satisfied, and 0 otherwise.



e In case of an interaction with the fibers F, a Russian
roulette is performed. A random number r; is sampled
over the unit interval according to a uniform density
probability function pg (r1)=1. If r; is lower than the
fibers reflectivity p”, then the optical path is reflected,
thus the reflection direction w; and [; are sampled as
described above (pg1 = pgl ). Otherwise, the optical path
sampling procedure is terminated and the weight w; is
calculated according to Eq. (7). The corresponding integral
translation is:

o1
. x HX; € F) /O PR, (1) dr,

H(r1 < p7) 5,04, (@1) dox [5° pr, v, () dly .
+H(r; > p]:)W1

)

e Finally, if x; is within the volume of culture V, a
scattering direction w; is sampled according to the
single scattering phase function p}’l]'v(wl |o) of Chia-
mydomonas (see Fig. 2), and [, is sampled as described
above:

e X H(X] S V)
A P, (@1]|@o) do /O P, (ks dly ... (6)

(4) At this stage, if the path sampling procedure is not
terminated, the algorithm loops to (3) considering the
next interaction position (the index 1 being incremented
to 2), and so on until absorption occurs at the fibers.

Altogether, each sampled optical path leads to the
evaluation of a weight according to the following weight
function w;, and A(Xp) is estimated as the average of all
weights.

by

A RE kg d;
Wj:(vmax_vmin)‘lno-a,v [P ]J e G (7)

hy
n(1—p7)
where ¢, /m(1—p7%) is the equivalent blackbody intensity
emitted at the fibers surface, and [pR]" e 4 is the
absorption transmitivity along the optical path, with nf

the number of interactions with R before the jth interac-
tion (the interaction that led to an absorption at F)

nR =310l x HXg € R)+0 x HXg € FUV)], and d;=
Z{']‘:lo IXq+1—Xqll representing the total length of the
sampled optical path.

Ao = [ puwyay A Pl (o) devy /0 Py, (lo) dlo

Vmin

HX; € R) 5,08, (@1) don [5° py, () dh Ay

The corresponding integral formulation is obtained by
gathering all the successive integral motifs of Eqs. (2)-(6):
where 4; is recursively defined as

HXj 1 € R) [5P5,, (@) dodjiy 57 Py w(in) dl1Aja
+HXj.1 € f)fol Pr., (1) drjq
Aj= {H(Tj+1 < Pf)fz,zpflm(wjﬂ) doj 1 fo by, W) dlip A }
+H(rj 1 > p7)Wjiq
FHXj 1 € V) [4P, (@ 1] @) doj iy [57 Py o) dliy 1 Ay
)]

In (4), we will see that modifying this integral formulation
is a powerful mean to enhance the convergence of Monte
Carlo algorithms. But first, let us illustrate the quite
straightforward benefit of integral formulation efforts in
the context of sensitivity analysis.

3. Sensitivity analysis

When a Monte Carlo algorithm is used for the estima-
tion of a physical quantity A, a simple and fast additional
procedure can be implemented that simultaneously esti-
mates the partial derivatives of A with respect to any
parameter. Such sensitivities of A to a parameter 7 are
noted 0,A hereafter. The general methodology consists in
deriving the integral formulation of A with respect to
and reorganizing it in order to get an integral formulation
of 9zA that is identical to that of A, replacing only w; with
a new weight W,;. Both integral formulations being
identical, the sampling events needed for the evaluation
of A and 9,A are the same. The required integral formula-
tion tasks range from trivial to very tedious depending on
the studied parameter 7 (see [3] for a general overview
and [6] for the very specific case of domain deformation
sensitivities). Three classically encountered cases are illu-
strated in this section:

Case 1: Sensitivity to a parameter that only appears in
the expression of the weight w. In the context of photo-
bioreactors study, this can be illustrated through the
sensitivity to the absorption properties of the microor-
ganisms. For this purpose, let us introduce the dry mass
fraction of pigment p inside the microorganism (p=0.038
for Chlamydomonas). As a first approximation, it can be
considered that o4, =pE,, where E;, is an effective
absorption cross-section of the pigments, and the effect
of pigment concentration on the scattering properties can
be neglected. Thus, deriving the integral formulation of
A(Xp) with respect to p, an integral formulation for 3,A(Xo)
is obtained that is identical to that of A(Xg) in Eqgs. (8) and

H(ri < p7) 5,04, (@1) don 57 py, (h) dhiAq

x{ +HX; € F) [y pp,(r) dri{ +H(ry > p% )

+HX1 € V) [4,P5, ,(@1|wo) doy [° py, () dli Ay

®)



(9), replacing only w; with w,;:

Wpj=0pW; :Wj% (10

Case 2: Sensitivity to a parameter entering the expres-
sion of the sampling probability density functions. In the
present context, this can be illustrated with the sensitivity
to the biomass density #, which appears both in w and
pLj,V(l]-). When deriving Egs. (8) and (9) with respect to 7,
the term corresponding to the derivative of w is treated as
in case 1. When deriving pLjJ,(lj) , the general form of Egs.
(8) and (9) is temporarily lost. But the obtained expres-
sion can be reorganized by multiplying and dividing it by
pLj,v(lj). and reporting the terms 6,1pLj,v(lj)/pLj,‘,(lj) =
(1—ksylj)/n in the final weight function expression. An
illustration of this simple reformulation trick is provided
hereafter:

o [ [ ptordio [~ b dhv‘v}

0o 00 . |0 Dr, (10) 0 13 (11)
_ lo) dI L) diyw | 1Pk p—
A pLO( o) dlp /O le( v dhw |: pLO(lo) + Pr, (ll) :l

+ /0 p, (lo) dlo /0 py, (1) dh oy

> > - [1—ks,l
= [ puordio [ by, diviv {70
0 0 n
1—ks !
+7S'1—O'a,vd1} (11)
n
In the general case of j interaction locations, this leads to:
A [ 1k,
Wyj=Wj |:Z ﬂ_aa,vd]’ (12)
q=0

Case 3: Sensitivity to a parameter appearing in an
algorithmic test. Most of the time it corresponds to
situations where very little can be done to the date (see
[3]), but sometimes an integral reformulation can reduce
this complex case to the trivial situation of case 1. In the
present study, this can be illustrated considering the
sensitivity to the fibers reflectivity p” which appears
both in w and in the algorithmic test associated with

the Russian roulette (reflection vs. absorption at the fibers).
In Egs. (8) and (9), the integrals involving rj and p” (that
correspond to the Russian roulette) have trivial analytical
expressions: fol Pr,(1}) driH(rj < p*)=p* and f(} PR, (1})
drH(rj > p*)=1—p”. Substituting those expressions into
Egs. (8) and (9), an alternative (but equivalent) integral
formulation is obtained (in which the product of all p” is

reported in the new weight function expression W“'t):

JonPgy (@) dovj 57 py (1) ...
xHX € F)S e (13)
+W;
where v”vj‘-’ltz[pf]”ff(l—pf)wj, with njf the number of
interactions with F before the interaction at X;:
n? = S o[1 x HXg € F)+0 x HX; e RUV)] (note the
similarity with the treatment of the reflectivity at the

surface R in Eq. (7)). Deriving the above expression with
respect to p”*, we are back to case 1 with wf,'ﬁ iz

~alty  ~ale
Bpr[W]" ] =Wy o
transformation to get back to the initial expression that

involves a Russian roulette, with:

And we can finally revert the integral

n”
Wpr‘:ijL]__ (14)
Fig. 3 displays the simulation results corresponding to
A(Xo), dpA(X0), 0yA(Xo), and 8,rA(Xo) as function of the

location Xq inside the reactor, for 10° realizations (relative
standard deviation ~ 1% for all quantities at all loca-
tions). The corresponding code is available on demand,
and a very similar version is already available at [12]. We
distinguish three different zones of the reactor volume
[7]: the regions of null production rates (i.e. that the rate
of photosynthesis exactly matches the rate of respiration)
where A=A, (with the compensation point A.~0.5
mmol s—! kg™!), the regions of positive production rates
(photosynthesis) where A>A., and the regions of
negative production rates (respiration) where A <A..
The studied prototype is designed to approach the
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Fig. 3. Simulation results for A(xo) and its sensitivities dpA, 8,A and d,-A as defined in Egs. (8) and (9), with ¢, = 10’7(27'5\12/c2)exp[f(hv/KBGOOOfl)]
(oc Planck’s law at 6000 K), p” =0.1, p® = 0.5, 7 =4 kg m~3. X, referred with (r, 0) as defined in Fig. 1. In a and b the fiber is at the center of the reactor

and in c the fiber is at the edge of the reactor. (a) 0=0; (b) 0 =7/6; (c) 0=0.



maximum efficiency of photosynthesis (at the expense of
its volume productivity, see [8-10]) which is ideally
achieved when the whole reactor volume corresponds to
low productions rates (i.e A(Xp) uniform at a value close to
A¢). Nevertheless, the results of A(xg) indicate high pro-
duction rates near by the fibers (cf. a and b) and respira-
tion regions between the edge fibers and the outside
surface of the reactor (cf. c). The microorganisms density
n is the main operational parameter, but the field of
0,A(Xp) indicates a weak influence of # within the respira-
tion zones, suggesting a design optimization consisting in
a reduction of the distance between the edge fibers and
the reactor. The field of 9,-A(Xo) suggests another design
optimization consisting in the choice of reflecting fiber
materials limiting the losses and thus allowing an opera-
tion at higher densities # (i.e. an intensification). Finally,
the field o,A(Xo) indicates, as pointed out by the genetic
engineering community [11], that a diminution of the
pigment content of microorganisms leads to an homo-
genization of A(Xg), but the overall energy absorbed by the
culture decreases and losses at the fibers and the reactor
surface increase.

4. Convergence enhancement

Various techniques are available in order to reduce the
standard deviation of the set of sampled weights, for a
fixed number of realizations. Most such convergence
enhancement tasks actually consist in the injection of
our physical understanding of the system into the Monte
Carlo algorithm, in order to privilege the events (or
informations) that are important with respect to the
estimated quantity (see [1-3]). Two of those techniques
will be illustrated in the following (thanks to some of the
recent integral formulation and zero-variance perspec-
tives): importance sampling, and integral reformulation.

Importance sampling consists in working on the sam-
pling procedures. Let us consider the first two sampling
procedures, corresponding to p, and p}’zo in the integral
formulation of Egs. (8) and (9). A modification of these
sampling procedures is very easy to implement: p, and
p‘;10 are replaced with better optimized probability den-
sity functions p, ,,, and p}’lovom and the weight function is
replaced by a new expression Wgp =W(p, /p‘,,opt)p}’)o/
p}’lo'opt that insures the evaluation of the same exact
solution. However, the choice of new probability density
functions that would lead to a convergence enhancement
is commonly very subtle, and we argue here that the
concept of zero-variance is an efficient way to orient this
choice. Zero-variance algorithms are such that for each
event the weight value is strictly identical to A(Xo) itself.
This means that the sampling procedures have been
chosen such that only one single event is required to get
a perfect estimator. Let us illustrate this concept, as
developed in [4,5], on the sampling procedure of v. The
integral formulation of Egs. (8), (9) and (7) can be
rewritten in the compact form:

Vmax 1
AXp) = / onr(V) dVA(Xg, V) ———— 15
(Xo0) Jo p\,opt( ) (Xo )pv,opt(v) (15)

where A(Xo,v)1/p, ope(v) represents the rest of the integral
formulation, with A(Xqe,v) having a simple physical
meaning that is obvious from Eq. (1): A(Xq,v) is the
specific number of photon absorbed per unit frequency
ie. A(Xo,V) =(0ay/hV) [4Lv(Xo,—®0o) dwo, where [, Li(Xo,
—y) dwyg is the local monochromatic irradiance G,(Xo).
Zero-variance algorithm on the integration of v is thus
achieved for:

A(XO ’ V)

: S 16
Jore A(xo,v) dv (1o

pv,opt(v) =

v

Indeed, in this case, whatever the sampled frequency
value, the weight A(Xo,)1/p,ope(V) = [;™ A(Xo,v) dv=
A(Xp). We therefore see that the design of a zero-variance
algorithm for the estimation of A(Xg) requires an a priori
perfect knowledge of A(Xq,v) for all v, and of its integral
over v, that is to say of A(Xg) itself. This means that such
an ideal algorithm can only be practically implemented
when it is useless (when A(xp) is known). Nevertheless,
zero-variance helps us to understand the physical infor-
mation required to ideally optimize a given sampling
procedure, here the irrandiance G,(Xp), and if this infor-
mation is accessible under any approximate form, an
enhanced version of the algorithm can be designed in a
straightforward manner. The idea here is not to get a
“good approximation” of G,(Xg) but only a model that
grasps the variations of G with respect to v in order to
drive the sampling procedure. Let us make a first simple
attempt in which the probability density function is
obtained by replacing A(Xo,v) in Eq. (16) using the spectral
dependence of G,(Xq) provided by the P1 approximation.
Fig. 4a indicates that the corresponding convergence
enhancement is not significant. The reason can either be
that:

1. The frequency dependence is well grasped by the P1
approximation but frequency sampling is not a sig-
nificant source of variance (in which case further
investigations can for instance concentrate on the next
sampling procedure, as illustrated later in this text).

2. The P1 approximation was too rough to provide
enough information concerning the frequency depen-
dence of A(xq,V).

If we assume the second reason to be meaningful, then
either we look for a better irradiance model, or we try to
make use of integral reformulation.

Integral reformulation consists in transforming the inte-
gral formulation in such a way that the quantity high-
lighted by the zero-variance approach (which is to be
closely studied in order to design a better optimized
probability density function) has a clear physical meaning
and can be easily modeled. One of the simplest way to
perform this task (when applicable) is to report the
studied integration (here the integration over v) at a rank
of the integral formulation such that the remaining phy-
sics (i.e. the following integrations) is easier to handle. As a
very ideal example, we report hereafter the spectral
integration at the end of the integral formulation (i.e.
p,(v) becomes the last sampling procedure). Importance
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sampling can then be implemented without the need of
any multiple-scattering model. This is immediately
possible as soon as Chlamydomonas is approximated as
having gray scattering properties (i.e. p}/zj>0,v ~ p}}zj,eq and
Py = pLj'eq(Ij)), spectral absorption properties remaining
unchanged. This way, all dependences to v are in the
weight and the integral formulation of Egs. (8) and (9) is
easily reformulated as:

AXg) = A p}’zo(wo)dwo/o Pryeq(l0) dlo.../ p,(v) dvw;
P [ .

Vinin

17)

with Wjoc(@,/hv)aq, ek di (see Eq. (7)). The ideally
optimized probability density function is then pl(v)=
(@,/hv)aq,y e ker &/ [ (¢, [hv)Gq, e & dv.  Although
less straightforward, the same approach can be used
accounting for the spectral scattering properties: the
multiple scattering/reflection optical path is sampled
using any gray reference scattering coefficient and phase
function, the weight expression being corrected, once
frequency is finally sampled, by the product of the ratios
of the exact scattering probability density function to the
reference one. Fig. 4b shows that even in the case of an
ideal optimization of the frequency sampling procedure,
the convergence is only little enhanced. We now know
precisely that we are in the first of the two above
identified cases: frequency is not a significant source of
variance.

We therefore further investigate the convergence
enhancement opportunities by considering the next sam-
pling procedure: the sampling of the first direction p’éo.
The same zero-variance technique as in Eqgs. (15) and (16)
leads here to:

A(XO):/ pv,opt(v) dVA p};}o,opt(wo) dwO

Vinin
1

x A(Xp,V,® 18
Ko Pl o (@0) (18)
with
A(Xo,v,00) A(Xo,v,00)
vV _ —
PQy.opt(@0) = [ Ao, v,00) dwg — A(Xo,V) (19)

where A(Xog,v,mo) is the specific number of photons
absorbed at xp, per unit frequency and (now) per unit
solid angle in the direction wy ie. A(Xo,v,®0) = (Gqy/hV)

L,(Xg,—p) (see Eq. (1)). It is now an angular dependence,
for a given frequency, which we try to grasp using an
approximate model. In our first frequency optimization
attempt, we made use of the P1 approximation. This was
weakly justified considering our intermediate optical
thicknesses but we needed to deal with an angular
integrated quantity and P1 was the best approach we
could think of. Here we can do much better using the
single scattering approximation. Fig. 4a shows that the
corresponding convergence enhancement leads to a
reduction of the weight standard deviation of a factor £,
which divides by (%)2:2 the number N of required
samples (to achieve the same convergence) by compar-
ison with our first algorithm (the standard deviation of a
Monte Carlo algorithm being proportional to 1/+/N).

Note that the P1 and single scattering models [13]
have been built considering an infinite periodic fiber
arrangement (see the elementary configuration of Fig. 1c
in which the surfaces noted ... are perfect specular
mirrors). The geometry is even further simplified using
an equivalent 1d cylindrical geometry for the P1 approx-
imation and an equivalent slab for the single scattering
approximation. Altogether, the zero-variance approach
incites us to elaborate gradually simplified models at
various description scales, and this is in this sense that
such a practice leads to useful physical pictures, although
the initial objective was only acceleration.

5. Conclusion

The integral formulation tasks presented here illus-
trate our practice of radiative transfer Monte Carlo meth-
ods. Along this line, we laid the foundations of a
subsequent energetic analysis of photobioreactors (which
will necessitate the use of volume integrated growth
kinetics models). This approach already allows us to
accurately estimate the absorption field and its sensitiv-
ities (except for domain deformation sensitivities) within
a geometrically complex volume of culture. Direction
sampling appears as the source of variance that is worth
the closest attention. Using only a rough one-dimensional
simplification of the geometry in order to implement
importance sampling, convergence was significantly
enhanced, indicating that higher speedups can be
expected by precomputing and tabulating the angular



dependences as function of optical thickness and fibers
lattice features.
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