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o paramétre de forme d’une distribution de Malkmus

®(u,u’) fonction de phase, exprimée comme la densité de probabilité qu'un photon incident
suivant une direction u soit diffusé selon la direction u’

I cosinus de l’angle 6

v fréquence (Hz)

Y fréquence de centre de raie (Hz)

Av largeur d’un intervalle spectral, exprimé en fréquence (Hz)

wo albédo de diffusion simple

w angle solide (st)

w pulsation (rad.s™!)

p masse volumique (kg.m™?)

P réflectivité hémisphérique

19 facteur optico-géométrique

Indices

g sol (ground)

1,7 numéros de mailles atmosphériques
espace (space)

v grandeur monochromatique

Exposants

+ grandeur montante

— grandeur descendante
relatif & un chemin optique de diffusion généré & partir d’un point situé sur
la paroi d’un élément de volume

CcG sous 'approximation de Curtis-Godson



Nomenclature

12

Abréviations

AA Approximation d’absorption
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Chapitre 1

Introduction

1.1 Simulation numérique des climats

1.1.1 Rapide historique des modéles numériques de prévision du

climat

A conception d’une simulation numérique, en tenant compte de tous les phénoménes phy-
L siques nécessaires, ainsi que de leurs interactions, dans le but de réaliser un calcul de
létat futur du climat (cartes de températures, de vitesse et de direction des vents, antici-
pation des précipitations, etc.), n’est pas une idée nouvelle. Au début du vingtiéme siécle,
le norvégien Vilhem Bjerknes a proposé un systéme de 7 équations qui devait, en principe,
permettre de modéliser les mouvements atmosphériques de grande échelle. Cependant, les
faibles puissances de calcul ainsi que le manque de précision des données d’observation n’ont
pas permis ’aboutissement de cette méthode de prévision du climat [60]. En 1922, Lewis Fry
Richardson a développé a son tour un modéle de simulation du climat, basé sur les équations
différentielles de Bjerknes, et une méthode de résolution en différences finies [67]. Cependant,
ce n’est pas avant les années 1940, avec ’apparition des premiers calculateurs numériques,

que cette technique a pu étre utilisée pour des simulations & I’échelle régionale.

En 1946, John Von Neuman propose d’utiliser le récent calculateur ENIAC pour réaliser
des prévisions du climat & partir d’'un modéle numérique similaire & celui de Richardson [1].
Les premiéres simulations numériques, réalisées en 1950, permettaient de couvrir le continent
nord-ameéricain. Si les résultats n’étaient pas parfaits, ils ont permis de justifier la poursuite

des travaux. Différents modéles sont alors apparus, toujours orientés vers des applications

13
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de type météorologique a une échelle locale. Dans le méme temps, est apparue une nouvelle
classe de modeles, destinés a la simulation de la circulation générale atmosphérique, c’est-a-

dire a 1’échelle de la planéte.

1.1.2 Les Modéles de Circulation Générale

De nos jours, les Modéles de Circulation Générale (MCG, le terme GCM pour “Ge-
neral Circulation Model” sera également employé) peuvent étre utilisés a la fois pour des
applications de type prévisions météorologiques, et pour des applications de type prévisions
climatiques. Dans les deux cas, les modéles permettent une simulation a 1’échelle de la planéte
entiére. Cependant, un MCG utilisé dans le but de réaliser des prévisions météorologiques
sont en permanence alimentés par les données issues de l’observation. Les résultats qu’ils
permettent d’obtenir peuvent étre utilisés a leur tour par un modéle régional, utilisant une
résolution spatiale fine, & ’échelle d’un pays ou d’un continent. D’un autre coté, les applica-
tions de type climatique ont pour but des simulations du climat a long terme (typiquement
plusieurs décennies) a 1’échelle d’une planéte entiére. Lorsqu’ils sont utilisés pour effectuer
des simulations du climat a long terme, les MCG permettent d’étudier la réponse du systéme
climatique a divers forgages, comme par exemple une variation du flux solaire incident ou
d’importantes émissions (naturelles ou anthropiques) de dioxyde de carbone. Des modéles
de circulation générale simplifiés, utilisant un jeu réduit de paramétres, peuvent permettre
une compréhension des phénomeénes physiques majeurs qui pilotent la dynamique climatique
d’une planéte (voir [40] pour la mise au point d’'un modéle simplifié pour I’atmosphére de
Titan. Un travail similaire a été initié pour ’atmosphére de Vénus). Dans le cadre de la pré-
paration de missions spatiales, un MCG peut également étre utilisé dans le but d’analyser en
détail la structure de ’atmosphére d’une planéte, ou d’aider a 'interprétation des données
satellitaires [81]. Toujours dans le cadre de la planétologie, les MCG peuvent étre utilisés afin
d’établir une base de données concernant le climat et les conditions de surface d’une planéte,
comme dans le cas de Mars [28, 46]. Enfin, des MCG sont utilisés en paléoclimatologie (no-
tamment pour I’étude des atmosphéres primitives), ou dans le cadre de la compréhension de
la chimie atmosphérique (interactions entre les éléments chimiques naturellement présents

dans I’atmosphére et ceux apportés par ’homme).

Un modéle de simulation de la circulation générale aux équations primitives (tel le GCM
a l’origine de nos travaux) est basé sur un ensemble d’équations de base de la météorologie
(équations du mouvement, de I’énergie, équation hydrostatique et les équations de continuité)

qui permettent de réaliser des bilans d’énergie, de masse et de quantité de mouvement au
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niveau local. Le modeéle, basé sur les équations primitives, doit étre en mesure de simuler tous
les phénoménes qui pilotent la circulation générale. Certains éléments de ce modéle (comme
par exemple la diffusion verticale turbulente, ou les interactions entre le rayonnement et
les différents constituants d’une atmosphére), s’ils étaient pris dans toute leur complexité,
seraient beaucoup trop coiiteux (d’un point de vue numérique) pour étre utilisés dans un
GCM. 1l faut donc trouver une autre facon de tenir compte des effets de ces phénomeénes
physiques que 'utilisation des modéles de référence; on parle alors du développement d’une
paramétrisation. Il est possible, par exemple, d’utiliser un réseau de neurones mis au point
a partir des résultats d’un modéle de référence pour tenir compte des effets d’'un phénoméne
particulier. Une autre possibilité consiste a développer une paramétrisation a partir des
connaissances que 1’on a du probléme dans un contexte donné. Nous allons revenir sur la
notion de paramétrisation au paragraphe suivant, au travers de la difficulté associée a la
prise en compte des effets du rayonnement infrarouge.

1.2 Paramétrisation du transfert radiatif infrarouge

1.2.1 Les paramétrisations dans un Modéle de Circulation Générale

Les interactions entre rayonnement infrarouge et matieére appartiennent a la catégorie
des phénoménes physiques qui doivent nécessairement faire ’objet d’une paramétrisation.
La raison générale de cette nécessité a été mentionnée au paragraphe précédent, tentons ici
d’apporter une explication plus concréte dans le cas précis du rayonnement. Dans 1’état actuel
de nos connaissances, il est possible de résoudre trés précisément les problémes de transfert
radiatif dans I’atmosphére terrestre[11] : les phénoménes d’interaction entre rayonnement
et matiére pouvant avoir lieu dans notre atmosphére sont maintenant bien connus, et les
hypothéses nécessaires a la mise au point d’un modéle de transfert radiatif atmosphérique de
référence sont justifiables. Il est possible de disposer de facon précise des données spectrales
concernant la caractérisation de ces phénoménes : les apports d’énergie radiative par le
soleil, les propriétés d’absorption, d’émission et de diffusion par les différents constituants
de "atmosphére et les propriétés d’émission et de réflexion des différents types de sol ou de
couverture végétale sont mesurables ou quantifiables pour toutes les valeurs des paramétres
descriptifs : température, pression, etc. Cependant, I'utilisation d’un tel modéle de transfert
radiatif de référence n’est pas envisageable dans le cadre d’un modéle de circulation générale,
pour des raisons de temps de calcul prohibitifs. Il faut alors envisager une approche moins

directe, c’est a dire une paramétrisation : une méthode qui permettra de résoudre le probléme
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de transfert radiatif de fagon aussi précise que nécessaire dans le contexte GCM, avec un
coiit (en temps de calcul) aussi faible que le nécessitent les contraintes de simulation sur
plusieurs décennies, en se servant pour cela de notre connaissance préalable de la classe de

problémes auxquels nous sommes spécifiquement confrontés.

En effet, il ne s’agit pas de développer une méthode générale moins coiiteuse, qui serait
a4 méme de résoudre tous les problémes de transfert radiatif comme ’aurait fait un modéle
de référence doté des bases de données appropriées. Au lieu de quoi, une paramétrisation
se contentera d'un champ d’applicabilité réduit. Il s’agit ici, en I’occurence, du probléme du
transfert radiatif atmosphérique pour le cas de la Terre : nous savons déja quelles sont les es-
péces chimiques en présence, dans quelles quantités et a quelles altitudes elles sont présentes,
les plages de température et de pression que nous allons rencontrer, a quelles plages de lon-
gueur d’onde nous nous intéressons, quels types d’interactions ne jouent aucun role dans ce
cas précis, etc. D’autre part on peut, préalablement & un exercice de paramétrisation, com-
mencer par affiner cet ensemble de connaissances. Une formulation adaptée aux problémes
qui sont rencontrés, et une analyse détaillée des résultats obtenus a 'aide des modéles de
référence peuvent permettre d’accroite notre compréhension, pour servir d’appui a la mise
au point d’une paramétrisation adéquate. Nous reviendrons ultérieurement sur cet aspect de
formulation et d’analyse des phénoménes physiques. Finalement, on peut dire qu’une para-
métrisation des transferts radiatifs pour I’atmosphére terrestre cherche a étre trés spécifique,

au risque de ne pas étre extensible facilement au traitement d’un autre type d’atmosphére.

1.2.2 Le probléme de la paramétrisation des transferts radiatifs in-

frarouges

Intéressons-nous maintenant aux problémes rencontrés par la paramétrisation des trans-
ferts radiatifs infrarouges actuellement utilisée par le GCM terrestre développé au Labora-
toire de Météorologie Dynamique (LMD). Ce GCM utilise un maillage en longitude/latitude
qui permet de découper ’atmosphére en un certain nombre de colonnes. Un maillage vertical
est ensuite utilisé a I'intérieur de chaque colonne atmosphérique : ce maillage sera plus res-
serré au bas de 'atmosphére pour mieux modéliser la couche limite. Nous désignerons par m
le nombre de mailles utilisées pour la discrétisation verticale de chaque colonne atmosphé-
rique. Le transfert radiatif doit étre résolu pour chaque colonne atmosphérique [29, 30, 74].
La paramétrisation des transferts radiatifs infrarouges qui est actuellement utilisée est ba-
sée sur une formulation en flux : il s’agit de calculer les flux & chaque altitude, comme la

somme des contributions venant de chaque élément de I’atmosphére, soit m? échanges ra-
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diatifs considérés séparément. D’autre part, le modéle spectral utilisé est un modéle & bande
large, ce qui implique notamment que les transmittivités moyennes a l'intérieur de chaque
bande large ne suivent pas une loi de décroissance en exponentielle. L’existence de ces cor-
rélations spectrales a pour conséquence directe I'impossibilité de calculer la transmittivité
entre deux mailles données comme le produit de deux transmittivités déja connues. A I'inté-
rieur de chaque bande large, I’évaluation des m? échanges passe donc par le calcul effectif de
m? transmittivités. Le temps de calcul associé & cette paramétrisation est donc directement

proportionnel a m?.

De plus, le calcul des transmittivités entre mailles, dans cette paramétrisation, est effectué
sans prise en compte du phénoméne de diffusion du rayonnement infrarouge par les particules
en suspension : gouttelettes d’eau et cristaux de glace présents dans les nuages, aérosols
minéraux, etc. Or, il a été montré que des erreurs non négligeables (de 'ordre de la dizaine
de pourcents) peuvent étre commises sur le calcul des taux de chauffage atmosphérique en
négligeant ce phénoméne [20, 22, 32, 61, 75, 77].

Ces deux aspects (dépendance a m? du temps de calcul et non prise en compte du
phénomeéne de diffusion), vont avoir des conséquences prévisibles dans les prochaines années,

du fait de la constante augmentation des exigences en termes de précision.

— Un raffinement du maillage spatial signifie notamment ’augmentation du nombre de
mailles m utilisées dans la discrétisation verticale des colonnes atmosphériques. Comme
on I'a vu, le temps de calcul associé a la paramétrisation des transferts radiatifs infra-
rouges qui est actuellement utilisée dans le GCM du LMD est directement proportion-
nel & m?2. Sans modifier cette paramétrisation, une augmentation de m, par exemple
d’un facteur 2, signifie donc une augmentation par un facteur 4 du temps de calcul
associé. Or, le cotit associé a la représentation des phénomeénes de transfert radiatif (a
la fois dans le domaine visible et infrarouge) dans le GCM terrestre est estimé a 50 %
du temps de calcul total du GCM. La majeure partie de ces 50 % étant dédiée a la
paramétrisation des transferts radiatifs dans le domaine infrarouge. Dans I’état actuel
des choses, augmenter le nombre de mailles utilisées pour la discrétisation verticale, ne
serait-ce que d’un facteur 2, poserait un véritable probléme.

— Le second aspect, la nécessité d’utiliser une paramétrisation plus précise va deman-
der la prise en compte du phénoméne de diffusion. Méme en utilisant une méthode
simple qui permette de modifier la paramétrisation actuelle de fagon a ce que les effets
de la diffusion ne soient plus négligés, cela signifie obligatoirement une augmentation

supplémentaire du temps de calcul.



Chapitre 1 Introduction 18

1.2.3 Meéthodologie de travail

La solution actuellement envisagée pour pallier & ces difficultés consiste a tenter de mettre
au point une nouvelle paramétrisation, a la fois moins cotiteuse et plus précise, en particulier
avec possibilité de prise en compte du phénomeéne de diffusion. Comme il a été mentionné
plus haut, cet exercice de paramétrisation sera mené & partir d'un choix de formulation
adéquate, et d’une analyse détaillée des résultats obtenus par un modéle de transfert radiatif

de référence, appliqué au cas de 'atmosphére terrestre.

Notre idée de départ s’inspire d’un travail similaire effectué dans le cadre du GCM martien
développé au LMD [21, 28, 39, 46]. La paramétrisation des transferts radiatifs infrarouges
actuellement utilisée dans ce GCM a été mise au point a partir d’'une analyse basée sur une
formulation des transferts radiatifs en termes de puissances nettes échangées; cette formu-
lation permet d’identifier rapidement les échanges radiatifs nets dominants permettant de
reconstruire les taux de chauffage atmosphériques. Dans le cas de ’atmosphére de la planéte
Mars, constituée a 95% de CO,, les échanges nets dominants dans le domaine infrarouge
sont les échanges nets a trés courte distance (échanges nets avec le sol et avec 'espace). Il a
été montré que seuls les facteurs optiques d’échange correspondants avaient besoin d’un cal-
cul précis et fréquent pour reconstruire avec précision les taux de chauffage atmosphériques.
La composition de ’atmosphére martienne étant relativement constante au cours du temps,
tous les autres facteurs optiques d’échange peuvent étre considérés comme invariants sur de
grandes périodes (typiquement plusieurs jours, voire semaines). Au final, I’analyse physique
en Puissances Nettes Echangées a permis de ramener le temps de calcul d’une dépendance

en m? a une dépendance en 4m.

Dans un cadre de travail identique, un modéle de circulation générale simplifié doit étre
développé prochainement pour l’atmosphére de Vénus. Ce modéle simplifié doit servir a
identifier les phénoménes physiques qui pilotent la circulation générale de la planéte, et no-
tamment le phénoméne connu sous le nom de superrotation (I’atmosphére tournant bien plus
vite que la planéte elle-méme). L’atmosphére de Vénus est le siége de nombreuses réactions
chimiques, et comporte des nuages optiquement trés épais, ce qui se traduit notamment par
des valeurs trés élevées de I'albédo de diffusion simple pour certaines fréquences. Il est donc
impossible de négliger ici le phénoméne de diffusion, comme cela avait été possible dans le
cas de Mars. Dans un premier temps, il est envisagé de mettre au point une paramétrisation
simple, basée sur la méme analyse en termes de puissances nettes échangées, afin d’identi-
fier les échanges nets dominants ayant besoin d’étre calculés précisément, mais en ne tenant

compte des variations du profil atmosphérique qu’au travers des variations correspondantes
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de la fonction de Planck (la composition de I’atmosphére et les propriétés optiques du milieu

étant considérées constantes).

En ce qui concerne la Terre, des difficultés supplémentaires apparaissent : il ne s’agit pas
dans ce cas de mettre au point un modéle de circulation générale simplifié, mais au contraire
un modeéle trés précis. L’atmosphére terrestre comporte un certain nombres de composants
qui vont absorber, émettre et diffuser le rayonnement infrarouge : nuages d’eau ou de glace,
et dont la concentration peut étre trés fluctuante. Au premier plan, la grande variabilité du
cycle hydrologique est & l'origine d’une diversité de formes, de tailles et de composition des
nuages, ainsi que de leur déplacement rapide. Pour plus de précisions sur la complexité de la
physique atmosphérique terrestre, on pourra se reporter a l'ouvrage de M.L. Salby [70]. Se
lancer, pour la Terre, dans un travail de paramétrisation similaire & celui mené pour Mars

et envisagé pour Vénus, va donc demander un travail approfondi d’analyse.

Mais avant méme d’envisager une analyse des transferts radiatifs dans un certain nombre
de configurations typiques de l’atmosphére terrestre, il a été nécessaire de développer un
modéle de référence permettant de réaliser des simulations suffisamment précises des trans-
ferts radiatifs infrarouges, disposant d’une souplesse compatible avec le large champ d’études
envisagées. L’orientation qui a été retenue a été le développement d’un algorithme de Monte-
Carlo, en mettant ’accent sur ’ensemble des optimisations possibles pour une application

spécifique au probléme du transfert radiatif atmosphérique.

1.3 Présentation du travail

1.3.1 Objectif du travail

Deux objectifs sont poursuivis dans ce travail de thése. Tout d’abord, la mise au point d’un
outil numérique permettant la modélisation précise et ’analyse des transferts radiatifs in-
frarouges dans les milieux absorbants et diffusants, et plus particuliérement les atmosphéres
planétaires. Ensuite, I’outil développé servira & conduire un certain nombre d’analyses en
termes de puissances nettes échangées des transferts radiatifs infrarouges dans le cadre de
I’atmospheére terrestre. Sur la base de ces analyses, nous proposerons ensuite des pistes per-
mettant d’aboutir ultérieurement & une paramétrisation satisfaisant aux exigences de rapidité
et de précision du GCM terrestre. La mise au point de cette paramétrisation en elle-méme

sort du cadre de ce travail.

Parmi les méthodes actuellement disponibles dans le but de mettre au point un tel modéle
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de transfert radiatif, nous avons choisi la méthode de Monte-Carlo, pour plusieurs raisons :
d’une part, la méthode de Monte-Carlo présente ’avantage majeur d’étre une méthode pré-
cise, non pas au sens oil elle permet d’obtenir des résultats exacts, mais au sens ou elle
permet & tout instant une quantification fiable des erreurs numériques sur chaque résultat
calculé; par la suite, ces résultats peuvent étre affinés autant que nécessaire en augmentant
graduellement 'effort de calcul. D’autre part, c’est une méthode statistique, basée sur la
simulation d’un grand nombre d’événements aléatoires, en stricte analogie avec les proces-
sus physiques du transport corpusculaire. Il est donc facile de tenir compte des différents
phénoménes d’interaction entre rayonnement et matiére (absorption, émission et diffusion).
Ensuite, cette méthode permet une trés grande souplesse en terme d’analyse des résultats :
la contribution de chaque phénoméne physique peut étre facilement identifiée et toutes les
composantes d’un résultat donné peuvent étre rapidement isolées; par exemple, un taux
de chauffage peut étre décomposé en termes de puissances nettes échangées, ou en termes
de contribution au terme source par les différents éléments du systéme (volumes de gaz,

éléments de surface), ou encore en termes d’analyse spectrale.

Malgré ses nombreux avantages, la méthode de Monte-Carlo a été trés peu utilisée dans
le domaine des transferts radiatifs infrarouges [77], car il est connu qu’elle rencontre des
difficultés de convergence numérique dans les systémes optiquement épais [42]. Or, le domaine
infrarouge présente de fortes bandes d’absorption (bandes de ’eau, du C'Os, de I'ozone), et
I’épaisseur optique de ’atmosphére est trés importante & certaines fréquences. Cependant,
cette difficulté numérique a pu étre résolue sur la base d’un travail initié au Laboratoire
d’Energétique [13, 15]. Dans ce contexte, la méthode de Monte-Carlo devenait un candidat
naturel pour la mise au point d’un modéle de transfert radiatif de référence dans le domaine
infrarouge. De plus, un travail récent [14]| a permis de montrer que cette méthode permet sans
colit de calcul supplémentaire, d’associer a chaque résultat la sensibilité de ce résultat a tous
les paramétres du systéme. Ce genre de calcul de sensibilité et le type d’analyse qu’il permet
n’ont pas encore été concrétement mis en oeuvre dans le modéle de transfert radiatif présenté

ici; cet aspect reléve cependant des perspectives de développement futur de ce modéle.

1.3.2 Organisation de ’exposé

Les quatre chapitres dont est composé le présent manuscrit permettent de présenter en
détail ce travail de thése. Le chapitre 2 s’attache a décrire les grandeurs descriptives du
transfert radiatif, les phénoménes d’interaction entre rayonnement et matiére, ainsi que les

différents modéles spectraux utilisables dans le cadre des problémes de transfert radiatif.
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Le chapitre 3 traite plus spécifiquement des problémes de transfert radiatif atmosphérique,
et des méthodes que 1’on peut envisager d’utiliser pour le traitement de ces problémes. Les
choix méthodologiques ayant conduit & adopter la méthode de Monte-Carlo seront notam-
ment développés. L’objet du chapitre 4 sera naturellement de présenter en détail la méthode
de Monte-Carlo, puis I'algorithme de transfert radiatif général qui a été mis au point sur
la base d’une reformulation du transfert radiatif en termes de Puissances Nettes Echangées,
et d’optimisations fondées sur 'utilisation de lois de densité de probabilité adaptées a la
physique du rayonnement. Ce chapitre présentera ensuite le code de transfert radiatif atmo-
sphérique, qui a pu étre mis au point a partir de ’algorithme de Monte-Carlo général. Enfin,
le chapitre 5 présentera les résultats obtenus a I'aide de ce code radiatif atmosphérique, dans
un certain nombre de configurations terrestres typiques. Ces résultats serviront de base a une
analyse physique détaillée des transferts radiatifs infrarouges au sein de 'atmosphére ter-
restre. Finalement, nous montrerons dans une conclusion de quelle fagcon les résultats d’une
analyse physique telle que celle qui aura été détaillée pourront aider a mettre au point une
paramétrisation des transferts radiatifs infrarouges suffisamment précise et rapide pour étre
utilisée par le GCM terrestre.
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Chapitre 2

Rayonnement dans les milieux

semi-transparents

2.1 Généralités

Ce travail s’intéresse a la physique du rayonnement atmosphérique, ot les dimensions ca-
ractéristiques des systémes sont de I’ordre de plusieurs kilométres. Il s’agira, dans ce contexte,
de proposer une modélisation adaptée des phénomenes de transport, d’échange et de redis-

tribution du rayonnement thermique infrarouge.

Il est possible de représenter le phénoméne radiatif par des approches de modélisation trés
différentes, en fonction des objectifs, des besoins et des hypothéses inhérentes au probléme.
Nous serons en particulier amenés dans ce travail & discuter les points de vue corpuscu-
laire et ondulatoire pour ce qui concerne les effets de propagation. En pratique, notre seule
contribution concerne I’approche corpusculaire, la vision ondulatoire n’intervenant de fagon
nécessaire pour notre travail que dans la description des processus de caractérisation des
propriétés de diffusion. Nous adopterons une description mésoscopique des phénoménes qui
s'inspire directement des théories du transport corpusculaire. Les hypothéses généralement
admises pour ce type de modélisation consistent a considérer que 1’énergie se transporte sous
forme de quanta élémentaires appelés photons, et pour lesquels il est possible de négliger
les interactions mutuelles. Ainsi, les photons n’interagissent pas entre eux, mais uniquement
avec un milieu matériel que ’on supposera fixe, les constituants de ce milieu étant répartis

de facon aléatoire.

D’un point de vue formel, la représentation mathématique des phénoménes se fait a partir

23
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d’une équation de type Boltzmann (équation d’évolution de la fonction de distribution). Les
hypothéses que nous avons énoncées correspondent & une écriture particuliére du terme de
collision, ce qui se traduit généralement par une forme linéaire de 1’équation résultante,
connue sous le nom d’équation de Boltzmann-Lorentz. L’équation de transfert radiatif entre
complétement dans le cadre de cette description.

Il est important de bien voir que la description mésoscopique ne représente pas une échelle
de description nouvelle au sens ot la statistique sous-jacente a 1’établissement de 1’équation
présente les mémes contraintes de temps et d’espace que la description macroscopique. Dit
autrement, les points de vue mésoscopique et macroscopique ne différent que par la quantité
d’informations que 1’on garde pour faire la description de ’état du systéme. La description
meésoscopique, bien que raisonnant en valeur moyenne, conserve l'information dans 1’espace
des phases, alors que la vision macroscopique ne s’attache qu’a décrire les phénoménes dans
I’espace physique. La raison de ce choix est évidente en ce qui concerne le rayonnement, car
le passage d’une description mésoscopique a une description macroscopique demande de faire
des hypothéses sur la quasi isotropie des grandeurs représentatives (luminance, sources, etc.)

qui sont loin d’étre toujours pertinentes.

Pour préciser quelque peu les notions que nous aurons & manipuler par la suite, il faut
noter que la grandeur d’intérét en rayonnement est plus souvent la densité d’énergie que la
densité de photons. On passe de I'une & I’autre en associant a chaque particule une fréquence v
et en admettant que ’énergie transportée obéisse a la relation de proportionnalité AE = huv.
Cette énergie correspond a la transition entre deux niveaux énergétiques F, et E; de la

molécule qui a émis ce quanta d’énergie (AE = FE, — E).

Cependant, I'étude des phénoménes de transport dans le cadre d’une description mé-
soscopique telle qu’elle est présentée ici nécessite la connaissance des propriétés optiques
macroscopiques de la matiére dont la détermination implique une description fine des inter-
actions entre rayonnement et matiére. L’échelle de description se situe alors au niveau de la
molécule et une représentation adaptée des effets quantiques est nécessaire. Les propriétés
qui nous intéressent sont relatives aux processus d’émission, d’absorption et de diffusion de

I’énergie radiative.

A ce stade il est utile d’avoir une vision ondulatoire du phénoméne, non pas pour décrire
de facon rigoureuse toute la théorie sous-jacente mais juste pour définir les quelques mots
de vocabulaire que nous serons amenés a utiliser par la suite. Il possible de montrer & partir
des équations de I’électromagnétisme que le champ produit par une charge en accélération

contient une partie dite “électrostatique” et une partie dite “rayonnée”. Le photon émis est
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maintenant vu comme un train d’ondes de fréquence v, dont I’émission par une molécule
correspond a l’accélération des charges de cette molécule suite & des mouvements de vibration
et de rotation (cf. figure 2.1(a)). Les charges en accélération créent un champ électrique
périodique E et un champ magnétique B associé.

champ électrique E
dipole oscillant —

(a) Emission d’un train d’onde (b) Projection du vecteur E

F1G. 2.1: (a) : Dipole orienté selon (O, z) : émission d’une onde suivant z, champs E et B
perpendiculaires; (b) : projection du vecteur champ électrique E dans le plan d’onde

Par projection dans un plan paralléle au plan (zOy) (plan d’onde), 'extrémité du vecteur

tournant E décrit une ellipse, comme le montre la figure 2.1(b) :

Ex = |E|cos(wt — ¢)ex

(2.1)
E, = |E|sin(wt — ¢)ey

La facon dont tournent les vecteurs E et B décrit la polarisation de 'onde : dans le cas
général, les ondes électromagnétiques ont une polarisation elliptique (cf. Eq. 2.1), horaire ou

antihoraire.

L’absorption du rayonnement est globalement le processus inverse de 1’émission : si un
photon vient a croiser la trajectoire d’'une molécule, et si le quanta d’énergie hv transporté par
le photon correspond précisément a la différence d’énergie entre deux niveaux énergétiques
E, et E, de la molécule (Ey > Ej), alors la molécule peut absorber le quanta d’énergie, et

ainsi passer du niveau F, au niveau Fj.

La diffusion, quant a elle, est conceptuellement une absorption suivie d’une émission trés

rapide. En fait, si on veut décrire les choses d’un point de vue ondulatoire, lorsqu’une molécule
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est soumise a l’action d’un champ électrique incident, ce champ électrique va induire une
accélération dipolaire. Le dipole induit va & son tour émettre un champ (induit) électrique
et magnétique, ce qu'on peut également interpréter comme 1’émission de photons. Dans
Pabsolu, ces photons peuvent avoir une fréquence différente des photons incidents (diffusion
inélastique). Ils peuvent également étre diffusés dans une direction différente de la direction

de propagation des photons incidents, et peuvent également avoir une polarisation différente.

Pour les problémes qui nous intéressent, les effets de polarisation et de diffusion inélas-
tique ne seront pas considérés. Une autre hypothése, que nous garderons tout au long de
ce travail, consiste a ne pas tenir compte des effets de diffusion dépendante, ce qui se justi-
fie parfaitement pour toutes nos applications du fait des fractions volumiques de particules
diffusantes assez faibles [58|. On peut alors décrire les choses d’un point vue corpusculaire,
et il est possible de décrire les propriétés de diffusion & partir de la connaissance du libre
parcours moyen de diffusion et d’une fonction de phase ®(u,u’) définie comme la densité
de probabilité qu’'un photon incident sous la direction u soit diffusé dans la direction u’.
Un méme photon peut subir de nombreuses diffusions (diffusion multiple) dans le cas ou la
densité de centres diffuseurs dans le milieu au sein duquel il voyage est suffisamment élevée.
D’un point de vue ondulatoire, la diffusion multiple correspondant dans ce cas a la diffusion
des ordres successifs des champs induits. Si on ne considére pas les mécanismes internes de la
diffusion, un événement de diffusion peut étre vu comme une modification de la trajectoire

de propagation des photons.

2.2 Définitions et rappels

Dans cette partie, nous allons définir les grandeurs macroscopiques descriptives du phé-
nomeéne de transport. Nous établirons ensuite I’équation de transfert radiatif, dont on a vu
qu’elle est une forme particuliére de 1’équation de Boltzmann appliquée au transport des
photons : la luminance est en général préférée a la fonction de distribution de Boltzmann.
Enfin, nous irons vers une description des modéles spectraux utilisés dans les applications

de rayonnement atmosphérique.

2.2.1 Grandeurs descriptives du rayonnement

— Luminance : on appelle luminance 1’énergie radiative (nombre de photons multiplié par

hv), passant dans la direction u, par unité d’angle solide dw, au point x, par unité de
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surface normale & u, a la fréquence v, par unité de fréquence, au temps ¢, par unité de
temps. Elle s’exprime en W/m?/st/Hz, et elle est notée L(x,t,u,v).

ds,

do

F1G. 2.2: Si dS,, est une surface élémentaire fictive, perpendiculaire & la direction u, alors la
puissance d® du rayonnement qui traverse d.S,, & I'instant ¢, dans I’angle solide élémentaire
dw centré autour de u, et dans la bande de fréquence dv centrée autour de la fréquence v
est : d® = L(x,t,u,v)dS,dwdv

— Luminance d’équilibre : ou luminance noire, ou luminance de corps noir isotherme.
Il s’agit de la luminance d’équilibre a l'intérieur d’une cavité isotherme fermée : en
tout point de la cavité, on a une luminance isotrope, qui n’est fonction que de la
température de la cavité, égale a la luminance émise par un corps noir isotherme a
la méme température. ' Son expression, issue de la loi de Planck, est donnée par les

relations suivantes, en fonction de la longueur d’onde A (Eq. 2.2) ou de la fréquence v

(Eq. 2.3). Y
B(T,\) = 2’“; A (2.2)
exp(/\k;T> -1
—2..3
B(T,v) = — 21V (2.3)

exp(%) —1
ou h est la constante de Planck, kp la constante de Boltzmann, et 7' la tempé-
rature du corps noir. Les deux formules précédentes sont reliées par la relation :
B(T,\)d\ = —B(T,v)dv

— Intensité : 'intensité J(x, n, ¢, u, v) traversant une surface dS de normale n dans I’angle

1Un corps noir est un corps qui permet & tout rayonnement incident de pénétrer sa surface (pas d’énergie
réfléchie), et qui absorbe intégralement ce rayonnement (pas d’énergie transmise).
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solide élémentaire dw centré autour de la direction u, au point x, a I'instant ¢, et dans

la bande de fréquence dv centrée autour de v, est : J(x,n,t,u,v) = L(x,t,u,v)u.n

Fi1G. 2.3: Si dS est une surface élémentaire réelle, de normale n, alors la puissance d®
du rayonnement qui traverse dS, a l'instant ¢, dans I’angle solide élémentaire dw centré
autour de u, et dans la bande de fréquence dv centrée autour de la fréquence v est :
d® = J(x,n,t,u,v)dSdwdy

— L’émittance : est égale a I'intégrale de I'intensité sur I’hémisphére sortant d’une surface
réelle de normale n :

M(x,n,t,v) = / J(x,n,t,u,v) dv(u) (2.4)

2
Pour une surface a émission et réflexion isotrope (c’est a dire que les luminances émise
et réfléchie par la paroi dans la direction u sont indépendantes de la direction u), alors
ona:M(x,n,tv)=rL(xtuv)Yu

— Le flux radiatif : c’est une grandeur vectorielle, qui caractérise la densité de puissance
rayonnée qui traverse une surface donnée :

(%, 1, 1) = /4 L(x,t,u, v)u dw(u) (2.5)

La composante suivant n du vecteur flux radiatif est alors représentative du flux net

radiatif & travers un élément de surface normale & n. C’est donc la différence de 1’émit-
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tance dans la direction n et de I’émittance dans la direction —n :

ar(x,t,v).n = / L(x,t,u,v)u.n dw(u)

47

:/4 J(x,n,t,u,v) dw(u) (2.6)

= M(x,n,t,v) — M(x,—n,t,v)

2.2.2 Propriétés des milieux semi-transparents

En introduction, nous avons vu que les propriétés optiques macroscopiques des milieux
semi-transparents découlent des interactions entre le rayonnement et la matiére. La déter-
mination de ces propriétés n’est pas 'objet du présent travail. Nous utiliserons, en général,
les propriétés spectroscopiques issues de la littérature ; nous décrirons ces données plus en

détail ultérieurement.

Considérons une colonne de milieu semi-transparent, de section S, le long d’un axe orienté
suivant la direction u, entre les abscisses x et z + dz (cf. Fig. 2.4). On suppose que les
constituants du milieu semi-transparent (molécules gazeuses, particules solides ou liquides)
sont répartis dans 1’espace de facon homogéne, mais totalement aléatoire : en particulier, les
interactions entre le champ électromagnétique incident et les centres absorbants et diffusants

n’induisent aucune corrélation de position entre ces centres diffusants et absorbants.

Soit un flux de photons (tous a la méme fréquence v) ¢,(z) incident en x, suivant la
direction u; le flux sortant en x+dz est ¢, (r+dx). La partie [¢,(z) — ¢, (z + dz)] correspond
a la partie du flux incident qui a été absorbée par le milieu entre x et  + dx. L’hypothése de
répartition aléatoire des centres absorbants et diffusants permet de définir do,, la section

efficace d’absorption macroscopique de la colonne de section S et de longueur dx, de la facon

60) = dulo+ds) __ db(o)
¢ () ¢ ()

Son unité est le m2. Physiquement, elle représente la surface d’interception des photons par

suivante :

daa,u =S (27)
les particules constituant le milieu semi-transparent.

Le coefficient d’absorption macroscopique k,, est défini comme :

_dog, 1 do(z)
K = Sdx  ¢(x) dx (2:8)

Autrement dit, d(z”((;)) = —kq,dz, soit ¢, (z) = ¢,(0)exp(—k, ), en faisant I’hypothése d’un
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centres absorbants et diffusants

F1G. 2.4: Colonne de milieu semi-transparent

milieu semi transparent homogeéne. ¢,(0) est la valeur du flux monochromatique incident en
x = 0. Il s’agit de la loi de Beer, traduisant 1’atténuation monochromatique en exponentielle.

En milieu inhomogeéne, cette loi s’exprime :

o (z) = gby(())exp(— /0 ' ka,y(a)da) (2.9)

Le coefficient d’absorption est exprimé en m~!. Etant homogéne a I'inverse d’une lon-

gueur, on peut écrire : k,, = /\L avec )\, le libre parcours moyen d’absorption a la fréquence
a,v

v. C’est la distance moyenne que parcourront les photons avant d’étre absorbés.? De la méme

fagon, on peut définir le coefficient de diffusion k,, = /\L, avec Ay, le libre parcours moyen

de diffusion, distance moyenne qu’effectueront les photons entre deux diffusions.

Les coefficients k,, et kg, sont des caractéristiques du milieu semi-transparent, pour
une fréquence v donnée. Le coefficient k, = k., + ks, est le coefficient d’extinction to-
tale monochromatique. On peut également définir I'albédo de diffusion simple monochro-

matique comme le rapport du coefficient de diffusion et du coefficient d’extinction totale :

2En physique atmosphérique, on utilise également un coefficient d’absorption spécifique (ou massique),
Kaw = kau/p(2), correspondant & la définition de ’absorption monochromatique par une colonne de gaz
atmosphérique de masse fixée, le coeflicient d’absorption &, , correspondant pour sa part & la définition de
I’absorption monochromatique le long d’un trajet optique de longueur fixée.
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_ ks,v

wV — _ ks,v

kv - ka,u“l‘ks,u
leurs trés différentes en fonction de la valeur de la fréquence. C’est un des éléments de la

. Nous verrons par la suite que ces coefficients peuvent prendre des va-

complexité du probléme de la modélisation et de la simulation des transferts radiatifs. Nous

y reviendrons trés largement par la suite.

2.3 Les hypothéses liées a la diffusion du rayonnement

atmosphérique

Afin de pouvoir écrire I’équation de transfert radiatif, il est nécessaire d’effectuer un

certain nombre d’hypothéses sur le modéle de diffusion adopté dans ce travail.

Le phénoméne de diffusion est & I’origine de nombreux phénoménes atmosphériques sur
Terre. Les plus facilement observables se situent dans le domaine visible du spectre électro-
magnétique, bien entendu : en tout premier lieu, on peut citer la couleur bleue du ciel et le
halo rouge des soleils couchants, diis a la diffusion moléculaire de Rayleigh. Les arcs-en-ciel
font également partie de la classe des phénoménes naturels atmosphériques diis & la diffu-
sion ; il ne s’agit plus dans ce cas de diffusion par les molécules du gaz atmosphérique, mais
par des gouttes d’eau. Dans une classe d’applications trés proche de celle de I'atmosphére,
on peut citer le probléme de la couleur des océans, également dominé par la diffusion des
ondes électromagnétiques du spectre visible par des particules biologiques et minérales. La
polarisation de la lumiére visible est également le résultat de la diffusion moléculaire ; méme
si nous ne pouvons en observer directement les effets, d’autres espéces animales, comme
certains insectes, se servent de cette propriété pour retrouver leur chemin. Enfin, on peut
citer des cas historiques assez rares oul les observations font état d’un soleil et d’une lune de
couleur bleue, aprés une éruption volcanique particuliérement puissante ou des incendies de

grande ampleur, ou encore d’une lune de couleur rouge [5].

Deux hypothéses, que nous avons déja mentionnées, permettent d’écrire ’équation de

transfert radiatif qui figure au paragraphe suivant :

— L’hypothése de diffusion indépendante : dans le cas ol un champ électromagnétique
interagit avec un grand nombre de centres diffuseurs, on doit en toute rigueur tenir
compte des interactions entre les ordres successifs de champs diffusés : le champ incident
sur une molécule donnée est la somme du champ électromagnétique incident, et de tous
les champs diffusés par toutes les autres molécules. Le champ diffusé par une molécule

particuliére sera a son tour diffusé par toutes les autres molécules. En un point donné,
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le champ électromagnétique va résulter de I'interaction entre tous les champs diffusés
un nombre infini de fois. ’hypothése de diffusion indépendante revient a négliger
les interférences de phase entre les champs diffusés. En d’autres termes, le calcul de
I'intensité du champ électromagnétique en un point revient a sommer les intensités
de tous les champs diffusés considérés indépendamment. En pratique, on doit utiliser
I’hypothése de diffusion indépendante pour pouvoir écrire le terme source de diffusion
de I’équation de transfert radiatif (cf. Eq. 2.10), c’est a dire apport par diffusion a la
luminance dans une direction de propagation donnée u.

— L’hypothése de diffusion élastique : lorsqu’un photon incident d’énergie v entre en
collision avec une particule (en mouvement), il peut se produire un échange d’impul-
sion entre le photon incident et la particule diffusante. Le photon diffusé peut avoir
une énergie (fréquence) différente de celle du photon incident. Par analogie avec les
collisions entre particules matérielles, ce phénoméne sera appelé diffusion inélastique.
L’hypothése de diffusion élastique revient & considérer que tous les photons diffusés au-
ront la méme fréquence que les photons incidents. Cette hypothése est nécessaire pour
écrire les termes de puits et de source par diffusion de ’équation de transfert radiatif
telle qu’elle est présentée au paragraphe suivant, a savoir qu’on peut effectuer un bilan
sur la population de photons possédant une fréquence donnée v. Dans le domaine des
transferts radiatifs atmosphériques infrarouges, ’hypothése de diffusion élastique est
justifiée car le phénomeéne de diffusion inélastique se traduit par des décalages fréquen-
tiels négligeables devant la plus petite des échelles de fréquence que nous considérons

ici, a savoir 1’échelle des raies spectrales des gaz atmosphériques [80].

2.4 Equation de Transfert Radiatif monochromatique

Reprenons 'exemple de la figure 2.4, ou 'on considére cette fois-ci une luminance mo-
nochromatique incidente L(z,¢,u,v). La luminance qui sortira en x + dx sera noté L(x +

dz,t,u,v).

La luminance L(z,t,u, ) sera diminuée des termes :

— d’absorption par le milieu

— de diffusion dans toutes les directions de I’espace
D’autre part, elle sera augmentée des termes :

— d’émission par le milieu, & sa température propre

— de diffusion : rayonnement provenant de toutes les directions u’ diffusé dans la direction u.
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F1G. 2.5: Colonne de milieu semi-transparent

Ce qui se traduit par I’équation suivante, appelée Equation de Transfert Radiatif (ETR),
sous sa forme monochromatique la plus générale :

10L(x,t,u,v) OL(z,t,u,v)
E at + afL‘ - — (ka,u + k57V)L(x7 t7 u, ]/)

+ koo B <T(a:, ), y)

+k3,,,/ O(u',u)L(z, t, v, v) dw(u)
47

(2.10)

Avec :

— Terme 1 du membre de gauche : terme temporel
— Terme 1 du membre de droite : terme d’atténuation par absorption et diffusion
— Terme 2 du membre de droite : terme source par émission

— Terme 3 du membre de droite : terme source par diffusion

En pratique, on néglige souvent le terme temporel de I'Equation de Transfert Radiatif
(ETR), car le rayonnement est un mode de transfert d’énergie quasiment instantané au

regard des temps caractéristiques des autres phénoménes. Du fait de la valeur élevée de c,
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I’équation de transfert radiatif tend trés rapidement vers sa solution stationnaire, et le terme
temporel de I’équation 2.10 devient négligeable devant les autres. > C’est le cas, du moins,

en physique du rayonnement atmosphérique.

Les termes 2 et 3 du membre de droite de la relation 2.10 sont communément appelés
termes sources de 1’équation de transfert radiatif. Le terme 2 est le terme source d’émission,

et le terme 3 est le terme source de diffusion.

L’équation de transfert radiatif peut étre réécrite sous la forme suivante, non plus en fonc-
tion des coefficients d’absorption &, , et de diffusion %, , monochromatiques, mais en fonction

du coefficient d’extinction totale k, et de ’albédo de diffusion simple w, monochromatiques :

10L(x,t,u,v) N OL(x,t,u,v)

. T p =—k,L(z,t,u,v)

+k,(1 —w,,)B(T(x,t),y) (2.11)

+kyw,,/ O(u',u)L(z, t, v, v) dw(u)
4m

2.5 Conditions aux limites

La résolution de 'ETR appliquée & une configuration atmosphérique, dans le domaine
infrarouge, requiert 1'utilisation de conditions aux limites spécifiques. Ces conditions aux
limites sont de deux types :

— Pour le sol : le sol est considéré comme une surface absorbante, réfléchissante et émis-
sive. L’émission et la réflexion du sol sont généralement considérées comme diffuses,
c’est & dire que les photons émis ou réfléchis au niveau du sol se distribuent suivant une
densité de probabilité angulaire en accord avec la loi de Lambert. Sous ces hypothéses,
a chaque fréquence, pour définir les propriétés de surface, on a besoin de connaitre
I'émissivité hémisphérique ¢,, 'absorptivité hémisphérique «,, (dans nos conditions,
ces grandeurs sont égales sous ’hypothése de ’équilibre thermodynamique local, en
accord avec les lois de Kirchoff) et la réflectivité hémisphérique p, égale a 1 — «,, aussi
appelée ’albédo hémisphérique. *

— Pour 'espace : tout photon émis atteignant ’espace étant perdu, ’espace est considéré

comme une surface parfaitement absorbante (corps noir). De plus, on traite séparément,

3En astrophysique, par exemple, on ne peut plus négliger le terme temporel du fait des trés grandes
distances parcourues par les ondes électromagnétiques.

“De plus, le sol émet un rayonnement infrarouge ¢, B, (T) & sa température propre 7', selon la loi de
Planck (cf. Eq. 2.2 et Eq. 2.3).
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le transfert radiatif concernant les photons issus du soleil et les autres transferts radia-
tifs. Pour nous, le flux descendant incident au sommet de ’atmosphére en provenance
du soleil n’apparaitra pas, il sera traité dans ’étude des flux solaires et ’espace sera

considéré, dans le domaine infrarouge, comme un corps noir a une température nulle.

2.6 Les modeéles spectraux des gaz

A T’heure actuelle, I’état de ’art concernant les propriétés optiques des gaz est regroupé
dans les modéles raie par raie (ou line by line, LBL). Un modéle raie par raie permet de tenir
compte de l'influence de chaque raie individuelle d’'un gaz donné. Les modéles raie par raie
doivent étre associés & une base de données spectroscopiques qui regroupe les informations
relatives & chaque raie spectrale d’'un certain nombre de molécules. Un code de transfert
radiatif basé sur un modéle raie par raie permettra par exemple de calculer avec précision
I’émission, ’absorption et la transmission d’un volume de gaz donné. On peut citer a titre
d’exemple les modeéles A4 [71] et STRANSAC [83]. Pour des applications qui ne nécessitent
pas une grande précision, des modéles spectraux simplifiés ont été développés. Ils permettent
de synthétiser la complexité du spectre de raies a 1’aide d’un petit nombre de paramétres.
Les modéles raie par raie permettent de mettre au point et de valider ces modéles spectraux

simplifiés.

2.6.1 Les modéles raie par raie

Un modéle raie par raie doit étre en mesure de tenir compte de I'influence de chaque
raie spectrale du gaz. Chaque raie est définie & partir d’une fréquence de centre de raie v
et d’une intensité S. Elle sera caractérisée par ’association de son intensité et d’un profil de

raie, par exemple le profil de Lorentz :

fr(v) = ar (2.12)

(v — 1)+ a?

Ou vy, la fréquence de centre de raie et o, demi-largeur a mi-hauteur, sont les deux para-

meétres du profil de Lorentz.

Le coefficient d’absorption & une fréquence donnée v doit étre calculé en tenant compte de
I’effet de chaque raie. La figure 2.6 représente le coefficient d’absorption d’un gaz fictif dont le

spectre ne comporte que deux raies. Ce coefficient d’absorption & une fréquence donnée doit



Chapitre 2 Rayonnement dans les milieux semi-transparents 36

0.7 . ' _
raie 1 ——
rale2 -------

o8 rajes 1 et 2 -~ ]

= 0B F |
k]
—~ 04 |
-
&

03+ |

0.2 |

0.1 |

0 T : . -
290 295 300 305 310 315

v (em™

F1G. 2.6: Superposition de deux raies de Lorentz.

étre calculé en sommant la contribution de chacune des deux raies spectrales. En pratique,
pour un gaz réel, il faut tenir compte de la superposition d’un grand nombre de raies afin
d’obtenir le coefficient d’absorption monochromatique de ce gaz (typiquement 10° raies).

7 l=toom :
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F1G. 2.7: Absorption par une colonne de gaz de longueur [ = 1m, [ = 10m, et [ = 100m.

D’autre part, la figure 2.7 représente ’absorption, en fonction de la fréquence v, par une
colonne de gaz fictif qui ne comporterait que les deux raies représentées dans la figure 2.6. La
dimension de la colonne de gaz a été successivement fixée & 1m, 10m et 100m. On peut voir
sur cette figure que si, pour une colonne de dimension [ = 1m on pourra négliger 'influence
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des ailes de raies, ce n’est plus le cas pour de plus grandes dimensions. Pour [ = 10m,
on a un effet de saturation faible (au centre de la raie de gauche, 'absorption est totale),
qui s’accentue pour [ = 100m. Il n’est donc pas possible, pour des applications de type
transfert radiatif en milieu atmosphérique, ou les dimensions caractéristiques du systéme
sont de I'ordre de plusieurs kilométres, de négliger I'influence d’une raie sur ’absorption par
le gaz, méme pour des fréquences fortement éloignées du centre de la raie. En conclusion,
les modéles spectraux raie par raie doivent & toute fréquence tenir compte de 'influence
de chaque raie sur le coefficient d’absorption monochromatique d’un gaz, sous peine d’une

mauvaise représentation des transferts radiatifs a grande distance.

Les informations concernant le profil de chaque raie spectrale sont regroupées, pour un
certain nombre de molécules, dans des bases de données spectroscopiques. A titre d’exemple,
la base de données spectroscopiques HITRAN [69] contient plus de 1080000 raies spectrales,
pour 36 molécules différentes. La base de données GEISA [43| contient les informations
spectrales relatives & 42 molécules, et plus de 1300000 raies spectrales. Le probléme de la
production de ces banques de données ainsi que la question de leur niveau de précision ne

sera pas abordé ici.

Les temps de calculs associés a l'utilisation d’un code de transfert radiatif utilisant un
modéle spectral raie par raie sont toujours trés importants : il s’agit de réaliser une intégration
de I’équation de transfert radiatif pour un grand nombre d’intervalles spectraux (typiquement
108). Dans bon nombre de situations (lorsqu’on désire effectuer de nombreux calculs de
transfert radiatif, par exemple lorsqu’on a besoin de coupler un code de transfert radiatif
avec un autre processus physique, pour les simulations météorologiques, ou de facon générale,
dans tous les cas ol on désire utiliser un outil rapide et flexible pour obtenir une solution
approchée & un probléme de transfert radiatif), on ne pourra pas utiliser un modéle raie
par raie. Des modéles spectraux simplifiés, produits et testés a 'aide de modéles raie par
raie, répondent & ces besoins de rapidité et de flexibilité. Parmi ces modéles simplifiés, nous
allons principalement nous intéresser aux modéles de bande étroite, qui consistent & définir
les propriétés optiques moyennes d’un milieu dans un certain nombre d’intervalles spectraux,
d’une part suffisamment larges pour contenir un nombre significatif de raies spectrales, mais
d’autre part suffisamment étroits pour que la luminance de corps noir puisse étre considérée

comme constante dans chaque intervalle [80].
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2.6.2 Les modéles de bande

Les modeéles de bande sont basés sur la discrétisation du spectre en intervalles fréquentiels
Av plus ou moins larges. Ils peuvent étre divisés en deux principales catégories : les modéles
a bande étroite, et les modeéles a bande large [59]. Tandis qu’un modéle a bande large dis-
crétise le spectre en intervalles spectraux a l'échelle d’une bande de rotation-vibration (cf.
Fig. 2.8), un modéle en bandes étroites utilise des intervalles spectraux moins larges, conte-
nant un nombre suffisamment élevé de raies spectrales pour pouvoir considérer les propriétés
statistiques moyennes du gaz a I’échelle de la bande étroite, mais suffisamment étroits pour
que la luminance noire puisse étre considérée comme constante dans chaque bande étroite.

La dimension typique d’une bande étroite est 25 cm™! (cf. Fig. 2.9).
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F1G. 2.8: Spectre du principal isotope du dioxyde de carbone, %2CO,, lié¢ 4 la bande de
vibration-rotation 0000 — 0001, & 3000 K, a I’échelle d’une bande large de largeur 500 cm !,
s’étendant entre 1950 et 2450 cm ™! (dans la bande d’absorption du CO, a 4,3 pum). D’apreés
Gas IR radiative properties : from spectroscopic data to approrimate models de J. Taine et
A. Soufiani [76].

Dans la suite de ce paragraphe, nous allons essentiellement nous intéresser aux modéles
a bande étroite formulés en transmittivité moyenne (modéle statistique de Malkmus) et en
k-distributions. Une description compléte des différents modéles de bande est effectué dans

Pouvrage Atmospheric radiation : Theoretical Basis par R.M. Goody et Y.L. Yung [33].

L’avantage majeur résidant dans l'utilisation d’'un modéle spectral a bande étroite est la
possibilité d’effectuer des calculs de transfert radiatif plus rapides qu’en utilisant un modéle
spectral raie par raie : un modéle raie par raie, dans le domaine infrarouge, doit tenir compte
de I'influence d’environ 108 raies, chacune discrétisée par exemple en une centaine d’inter-
valles spectraux a haute résolution. Un code de transfert radiatif utilisant un tel modéle

raie par raie devra donc effectuer de I’ordre de 10® calculs monochromatiques. Un modéle &
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F1G. 2.9: Identique & Fig. 2.8, a I’échelle d’une bande étroite de largeur 25 cm ™!, entre 2300
et 2325 em~!. On voit apparaitre les raies spectrales indépendantes. D’aprés Gas IR radiative
properties : from spectroscopic data to approzimate models de J. Taine et A. Soufiani [76].

bande étroite utilisant une résolution spectrale de 20 cm~! permettra de définir les proprié-
tés optiques moyennes du gaz pour 121 bandes étroites, entre 4 et 100 um (100-2500 cm™1).
Un code de transfert radiatif utilisant un tel modéle spectral & bande étroite devra donc
effectuer un calcul dans chaque bande étroite. La premiére solution consiste a effectuer un
calcul moyen dans chaque bande étroite (traitement en transmittivité moyenne, en tenant
compte des phénoménes de corrélations spectrales, cf paragraphe 2.6.2.1 ci-dessous). La se-
conde alternative consiste a évaluer le résultat dans chaque bande étroite comme la somme
pondérée d’une dizaine de calculs simples, & multiplier par le nombre de bandes étroites (voir
paragraphe 2.6.2.2). Dans les deux cas, on parle ici de temps de calcul inférieurs de plusieurs

ordres de grandeur au temps de calcul associé & un modele raie par raie.

2.6.2.1 Les modéles de bande étroite formulés en transmittivité moyenne

Dans le cas d'un milieu homogéne en concentration, température, pression, etc. les mo-
déles de bande étroite formulés en transmittivité moyenne fournissent une expression de la
transmittivité moyenne 7(I) d'une colonne de gaz de dimension [ sur une bande étroite de
largeur Av [33] :

(1) = é/m exp(—k‘a,ul)dv (2.13)

Le modéle de Malkmus [50] auquel nous allons principalement nous intéresser, propose un

modéle & deux paramétres de cette transmittivité moyenne :

7(l) = exp[® — ®*(1)] (2.14)
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Avec :
i} N3
o (1) = <I><1 + 2€> (2.15)

Ce modéle est basé sur les hypothéses suivantes :

— Le nombre de raies contenues dans la bande étroite Av est suffisamment grand pour
qu’on puisse raisonner de facon statistique dans cette bande.

— Le profil des raies utilisé est un profil de Lorentz. Toutes les raies spectrales présentes
dans la bande étroite possédent la méme demi-largeur a mi-hauteur 7.

— Les fréquences de centre de raies a I'intérieur de l'intervalle Av sont réparties de fagon
aléatoire, selon une densité de probabilité uniforme. On peut définir §, I’espacement
moyen entre deux raies spectrales consécutives.

— L’intensité des raies, S, est distribuée suivant une loi de densité de probabilité expo-
nentielle inverse : p(S) = S.%(R) [exp(—%) - exp(—%)} ou S, est la valeur maximale
de l'intensité des raies dans la bande étroite considérée, et R le rapport entre la valeur
maximale et la valeur minimale de I'intensité des raies dans la bande étroite [76]. Dans
les développements, on suppose de plus R << 1, et les deux paramétres supplémen-
taires R et S,, disparaissent du modéle final, ne laissant que le paramétre d’intensité
moyenne, directement lié & k,.

— L’intervalle spectral considéré Av est entouré d’une infinité d’autres intervalles spec-
traux, aux propriétés statistiques identiques. Les fréquences des ailes des raies conte-
nues dans cette infinité d’autres intervalles spectraux contribue & 1’absorption dans

I'intervalle considéré Av.

Les deux paramétres du modéle sont k, le coefficient d’absorption moyen sur la bande

étroite, défini par la relation 2.16 et ¢ le paramétre de forme défini par la relation 2.17.

— 1 o0
o (2.16)
B — %7 (2.17)

Il est & noter que Zhu [89] a proposé un modéle statistique pour une distribution d’in-
tensité de raies plus générale que la loi exponentielle inverse de Malkmus. Le modéle de

Malkmus correspond a un cas particulier de cette formulation générale [38|.
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2.6.2.2 Les modéles de bande étroite formulés en k-distribution

Une alternative aux modéles de bande étroite formulés en transmittivité moyenne consiste
& considérer une représentation du coefficient d’absorption & I’'intérieur de la bande étroite
Av. C’est le principe des k-distributions, consistant & considérer la distribution statistique
du coefficient d’absorption. En milieu homogéne, le seul parameétre dépendant de la fréquence
a Dintérieur d’une bande étroite est le coefficient d’absorption k,,.% Il est donc possible, a
I’intérieur d’une bande étroite donnée, de remplacer la dépendance en v par une dépendance
a k,,. L'intégrale fréquentielle d’une grandeur radiative A quelconque est équivalente a une

intégrale de A sur les valeurs de k,, :

1

5 . A(l/)dV = /0 A(ka>f(ka)dka (218)

Ou f est la fonction de distribution des coefficients d’absorption. Les intégrales sur la fré-

quence peuvent étre reformulées comme intégrales sur k,. Par exemple, Eq. 2.13 devient :

() = /Ooo f(ka)exp(—Fkql)dkq (2.19)

On voit alors que 7(1) est une transformée de Laplace de f. Si on note £ la transformée de

Laplace, on a :

7(1) = £(f(ka)) (2:20)

Le choix d’une fonction de distribution f détermine le modéle en k-distribution utilisé.
Nous allons nous intéresser & deux formes possibles des modéles en k-distribution : les mo-
déles en k-distributions ou la fonction f est exprimée a I'aide d’'un modéle de transmittivité
moyenne, comme le modéle en transmittivité moyenne de Malkmus, et les modéles en k-

distribution basés sur une discrétisation des valeurs du coefficient d’absorption.
1 - Modéle en k-distributions exprimé en termes de transmittivité moyenne

Une fagon de choisir la fonction f consiste & utiliser un modéle de transmittivité moyenne
statistique. Domoto utilisa le modéle de Malkmus [16], qui propose un modéle statistique a

deux paramétres pour la transmittivité moyenne (cf. paragraphe 2.6.2.1). Si on note £7! la

5Nous avons vu que la luminance de corps noir pouvait étre considérée comme constante 3 ’intérieur d’une
bande étroite. Pour les applications de type atmosphérique, les propriétés optiques des particules (coefficient
d’absorption, de diffusion, albédo de diffusion simple) doivent également étre considérées comme indépen-
dantes de la fréquence a l'intérieur d’une bande étroite pour pouvoir utiliser un modéle en k-distributions.
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transformée inverse de Laplace, la relation 2.20 permet d’écrire :

flka) = £ (F(l)) (2.21)

La fonction f(k,) est aussi appelée fonction de transmittivité inverse. En utilisant le

modeéle statistique de Malkmus, la fonction f(k,) s’exprime de la fagon suivante :

fka) = fu(ka) = (2.22)

2mk3 “r 2

(I)k_a q)(ka_k_a)2
2

Dufresne et al. [19] ont montré que cette fonction fy, est une fonction Gaussienne inverse,
aux propriétés mathématiques bien connues, qui ont notamment permis un échantillonnage

optimisé des coefficients d’absorption, dans un algorithme de Monte-Carlo.
2 - Modéle en k-distributions basé sur une discrétisation des valeurs de k,

Une autre maniére permettant d’obtenir la fonction f consiste, & partir du spectre de k,

issu d’'un modéle raie par raie, a découper l'intervalle Av en M intervalles (ici indicés ¢) a

I'intérieur desquels k, varie de fagon monotone entre k7 .. et k... On obtient la fonction
f suivante :
1 - 1
ko) = — Wi(k, 2.23
Pk = 55 D Witk (223
= dv

k,l

a,max

Avec Wi(k,) = 1si k € [k!

a,min’

|, sinon W;(k,) = 0. Ainsi exprimée, la fonction f
est aussi complexe & manipuler que le spectre de k, (). On introduit alors g la fonction de
répartition de f, définie de la fagon suivante : g(k,) = foa f(k)dk. La fonction g est une
fonction monotone, croissante et définie sur l'intervalle [0, 1], ce qui permet de l'inverser.
Soit g~! la fonction inverse de g. Le calcul d’une grandeur radiative A quelconque (Eq. 2.18)

peut étre reformulé de la facon suivante :

& [ Awr = [T g s - | A(ka(9)dg (2.24)

AI/ Av
A ce stade 14, la fonction k,(g), correspondant & un ré-arrangement des valeurs de k,, contient
toute l'information du spectre de raies. Encore une fois, comme f dans Eq. 2.23, elle est
donc aussi complexe a utiliser que la fonction k,(v) initiale. Mais k,(g) étant croissante, il

est possible de lui appliquer une quadrature, afin d’estimer rapidement de facon approchée
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le résultat de toute intégrale fréquentielle :

é N A(v)dv = /01 A<k‘a(9)>d9 ~ éwﬂ(kz(gj)) (2.25)

Ou NV, est 'ordre de la quadrature. On choisit généralement parmi les quadratures de Gauss,

une quadrature qui permet de bien représenter la distribution k,(g) dans la limite g — 1.

A partir du probléme consistant & calculer une grandeur A moyennée sur une bande
étroite, ol la transmittivité n’est pas exponentielle, et ot il était donc impossible d’utiliser les
techniques de résolution du calcul monochromatique, la méthode des k-distributions permet

6 ott on peut utiliser une méthode de résolution de

donc de se ramener & N, calculs gris
I’ETR monochromatique. La solution se présente alors sous la forme d’une somme pondérée

de calculs gris.

2.6.3 Prise en compte des hétérogénéités

Les modéles spectraux présentés faisaient jusqu’a présent I’hypothése d’un milieu homo-
géne en concentrations, pression, température, etc. Dans un probléme atmosphérique, cela
revient & négliger les fortes hétérogénéités (notamment de pression, mais aussi de concentra-
tions et de température) de 'atmosphére terrestre. Or, dans le cas général, on veut pouvoir

tenir compte des hétérogénéités des propriétés optiques des gaz sur la verticale.

Dans un modéle de bande étroite formulé en transmittivité moyenne, il est classique
d’utiliser 'approximation de Curtis-Godson, qui consiste a considérer que la transmittivité
moyenne 7¢og d'une colonne de gaz hétérogéne de dimension [ suit la transmittivité moyenne
d’une colonne homogéne équivalente. Dans le cas du modéle de Malkmus, le coefficient d’ab-

sorption équivalent k, c¢ et le parametre de forme ®¢ sont définis comme :

kaca(l) = % (2.26)
— fé ko(0)®do
Qo = —fol T (o)do (2.27)

611 ne s’agit pas de calculs monochromatiques, étant donné qu’a une valeur de k, correspondent plusieurs
fréquences. Cependant, les méthodes de résolution de P’ETR monochromatique sont utilisables pour chacun
de ces N, calculs gris.
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La transmittivité moyenne d’une colonne de gaz hétérogéne de dimension [ devient :

Tea = enp|@oq — Biall)| (2.28)
Avec : )

% . ka’cgl 2

ca(l) = @cq <1 + 27@0(; ) (2.29)

Dans un modeéle de bande étroite formulé en k-distribution, on retiendra la méthode C-K
(ou méthode des k-corrélés). Méme si la présence d’hétérogénéités ne permet plus d’écrire,
pour I’ensemble du systéme, une fonction f et sa fonction de répartition g, on peut cependant
définir, en chaque point x, une fonction de transmittivité inverse f,, la fonction de répartition
gz, €t définir un champ de k,(g), c’est a dire une fonction £,(g), différente en chaque point,
dans le méme esprit que ’on a une fonction k,(v) en chaque point, de telle fagon que le

calcul de la grandeur radiative A puisse s’exprimer de la fagcon suivante :

/AV A(ka(u))dy s /01 A(ka(g))dg (2.30)

102 T T T T T T T T T T T T T T
10"
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. 107
£
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=
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A (1 m)

F1G. 2.10: Spectre de k, (en m™!) en fonction de la longueur d’onde A, pour une atmosphére
aux moyennes latitudes et en été, représenté pour deux altitudes : z =0 km et z =5 km.

Dans le cas général, la relation précédente n’est vérifiée que lorsque la forme du spectre de
k, ne change pas lorsqu’on passe d'un point du milieu & un autre. En situation atmosphérique,
cela revient & considérer que les spectres de k, a deux altitudes différentes peuvent se déduire

I’'un de l'autre par une simple homothétie. Cependant, comme le montre la figure 2.10,
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le spectre de k, se déforme de facon assez importante avec laltitude, a cause des effets
d’élargissement des raies avec la pression, et ’apparition ou la disparition de raies a différentes
altitudes (présence d’ozone trés localisée, absence de vapeur d’eau au-dessus d’une certaine
altitude, etc), cf. chapitre 3.

2.7 Caractérisation des propriétés de diffusion

Nous décrirons de facon succincte dans ce paragraphe les modéles qui permettent d’éva-
luer les propriétés radiatives des particules présentes dans I’atmosphére. Ces particules en
suspension sont principalement les gouttelettes d’eau dans les nuages et les brouillards, les
aérosols (plutdt présents en bas de 'atmosphére) et les cristaux de glace que ’on trouve dans

les nuages de haute altitude.

Nous avons mentionné dans un précédent paragraphe, les hypothéses relatives au phéno-
meéne de diffusion qui permettent d’écrire I’équation de transfert radiatif. Les parameétres qui
permettent de caractériser le phénoméne de diffusion dans 'ETR sont, sous ces hypothéses,
le libre parcours moyen de diffusion en fonction de la fréquence (inverse du coefficient de dif-
fusion), ainsi que la fonction de phase de diffusion. Les particules diffusantes dont on parle ici
interagissent également avec le rayonnement au travers du phénoméne d’absorption, ce qui
rajoute au coefficient d’absorption des gaz un coefficient d’absorption propre aux particules.

Nous allons décrire les modéles qui permettent d’obtenir ces grandeurs macroscopiques.

2.7.1 Les modéles classiques

La diffusion du rayonnement par les particules est généralement modélisée de fagon dif-
férente en fonction des valeurs du parameétre de taille (z, = %) qui représente le rapport
entre la dimension caractéristique des particules (D) et la longueur d’onde du rayonnement
incident () :

— Pour les grandes valeurs de x,, (supérieures a 10), les particules sont trés grandes devant
la longueur d’onde et les lois de I'optique géométrique peuvent s’appliquer; on utilise
plutot le vocabulaire de réflexion et de réfraction. La théorie de I'optique géométrique
est basée sur les lois de Descartes. Le phénomeéne des arcs-en-ciel (diffusion de la lumiére
visible par des gouttes d’eau par exemple) peut étre entiérement expliqué d’aprés les
lois de 'optique géométrique.
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— Pour les faibles valeurs de z, (inférieures a 0,1), on peut utiliser I’approximation de
diffusion de Rayleigh. Les tailles des centres diffuseurs étant petites devant la longueur
d’onde du rayonnement incident, il est possible de considérer le champ uniforme a
I’échelle de la zone d’interaction. Cette simplification permet de montrer assez facile-
ment que la section efficace de diffusion (que I’on raméne au libre parcours moyen de
diffusion connaissant les concentrations de centres diffuseurs) varie comme 'inverse de
la puissance quatriéme de la longueur d’onde (oc A™*). Une manifestation bien connue
de ce résultat est ’apparence bleue du ciel ; les rayonnements de courte longueur d’onde
(le bleu dans la partie visible du spectre) ont un libre parcours moyen plus faible que
les rayonnements de grande longueur d’onde (rouge). Compte tenu de la plage de lon-
gueur d’onde rencontrée dans le domaine de I'infrarouge, ce mécanisme de diffusion est
négligeable.

— Pour tous les cas intermédiaires, sous entendu pour des valeurs de z,, proches de 'unité,
il n’est pas possible d’utiliser les approximations décrites précédemment. Il est donc
nécessaire de développer une théorie plus générale. La théorie de Mie, qui fait I'hypo-
thése de sphéricité des particules est trés utilisée dans la pratique pour rendre compte
des propriétés macroscopiques de diffusion, y compris pour des particules non sphé-
riques comme les cristaux de glace ou les aérosols minéraux [87]. Il a été montré qu’il
est nécessaire de tenir compte de la non-sphéricité de ces particules afin de calculer de
fagon correcte leurs concentrations a partir de mesures radiométriques (effectuées au
sol ou a bord de satellites) [17, 56]. Par contre, I'utilisation de la théorie de Mie pour
calculer les propriétés radiatives de particules non sphériques a peu d’influence sur le
calcul des flux au sol et au sommet de I’atmosphére[57].

On peut noter a titre d’illustration le cas des particules agrégées : on rencontre dans
les phénoménes de combustion des agrégats de suie, formés par des particules élémen-
taires sphériques, de diamétre de l'ordre de la dizaine de micrométres. Les agrégats
eux-mémes pouvant atteindre des dimensions de ’ordre du millimétre, et compter plu-
sieurs milliers de particules élémentaires. Dans ce cas, les effets de diffusion dépendante
ne peuvent plus étre négligés. Cependant, aucune méthode ne permet actuellement de
prendre en compte ces effets de maniére satisfaisante en des temps de calcul raison-
nables. Encore une fois, c’est la théorie de Mie qui permettra de calculer les propriétés
optiques d’'une particule élémentaire. Les effets de I'agrégation de ces particules élé-
mentaires peuvent &tre représentés a I’aide de la théorie de Rayleigh-Debye [25], valable
pour des particules dont I’indice de réfraction m est proche de 'unité.

Pour tous les cas qui nous concernent, les propriétés de diffusion et d’absorption des

particules en suspension seront évaluées a ’aide d’un code de calcul basé sur de la
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théorie de Mie. Pour ce faire il est important d’avoir une idée précise de la distribution
des tailles des particules présentes. Nous verrons dans un chapitre ultérieur qu’une
représentation de cette distribution des tailles est souvent possible & partir d’un seul
parameétre géométrique, le “rayon effectif”, et de la connaissance de la fraction volu-
mique de 1’espéce considérée.

2.7.2 Représentation de la fonction de phase

Nous avons dans le paragraphe précédent assez peu discuté des formes possibles que
peut prendre la fonction de phase dans le cadre de la théorie de Mie. La fonction de phase
®(u,u’) telle qu'elle est définie dans la relation 2.10 est une densité de probabilité qu’un
rayon incident dans une direction u soit diffusé dans une direction u’. Dans un cas tout a
fait général, la fonction dépend de ’angle zénithal et de ’angle azimuthal. Cette fonction de
phase, bien que pouvant prendre des formes complexes, est souvent caractérisée par une forte
composante de la partie diffusée dans le sens du rayonnement incident (diffusion “avant”)(cf.
[58]). Dans notre contexte, il serait trop fastidieux de rendre compte de fagon exacte de la
forme de ces fonctions. En pratique, pour des applications de type atmosphérique, on utilise
en général une forme fonctionnelle 4 un paramétre relativement simple, la fonction de Henyey-
Greenstein [36]. Il a été montré que 'utilisation de cette fonction permettait d’obtenir une
bonne précision sur le calcul des flux radiatifs atmosphériques [84]. Elle permet également

de bien représenter les fonctions de phase présentant un fort pic de diffusion vers I’avant.

La symétrie azimuthale de la fonction de phase permet une écriture en fonction de la
seule variable #. Pour des raisons de commodité, on introduit une variable intermédiaire
qui représente le cosinus de cet angle (1 = cos(f)). La fonction de phase normalisée de

Henyey-Greenstein peut alors s’écrire :

1 1—g?
Pra(p) = =

3
W[Hg?—?gu i

(2.31)

On note que cette fonction ne dépend que du seul paramétre g, appelé facteur d’asymétrie
de la fonction de phase. Il correspond a la moyenne des cosinus, soit :

g= /_ p®(p)dp (2.32)

1

Ce facteur d’asymétrie a une interprétation directe : la valeur ¢ = 0 correspond & une
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fonction de phase symétrique, c’est a dire que la probabilité de diffusion vers les directions
avant (p > 0) sera égale & la probabilité de diffusion vers les directions arriéres (p < 0).
Dans le cas de la fonction de phase de Henyey-Greenstein, cette valeur de g correspond
a une fonction de phase isotrope. La valeur ¢ = —1 caractérise une fonction de phase qui
diffuse tout rayon incident dans la direction inverse de la direction d’incidence (rétrodiffusion
pure, Dirac arriére). La valeur g = 1 caractérise une fonction de phase qui diffuse tout rayon
incident dans la direction d’incidence (Dirac avant), ce qui revient & une apparence de non

diffusion des rayons incidents.

2.8 Complément de bibliographie

En plus des références bibliographiques mentionnées au fil du texte dans ce chapitre, il est
utile de préciser que divers éléments ont été repris et adaptés des cours du DEA Energétique
et Transferts de 'UPS (Richard Fournier, Mouna El Hafi, Alain Trombe), du cours de DEA
de Yves Fouquart, (Université des Sciences et Technologies de Lille 1), du cours de DEA de
Patrick Snabre (Université de Perpignan), ainsi que du cours de J.J. Greffet (Ecole Centrale

Paris) pour ’école de printemps de rayonnement thermique, Oléron.



Chapitre 3
Transferts radiatifs atmosphériques

Dans une premiére partie, ce chapitre donne un apergu de la complexité des interactions
entre le rayonnement infrarouge et les composants de ’atmosphére terrestre. Puis nous ver-
rons quelles sont les principales méthodes de résolution de I’équation de transfert radiatif qui
peuvent étre utilisées afin de mettre au point un code de modélisation des transferts radiatifs
infrarouges dans les atmosphéres planétaires. Enfin nous énoncerons les choix méthodolo-
giques qui nous ont permis de mettre au point ’algorithme numérique qui sera présenté au

chapitre suivant.

3.1 Physique du rayonnement atmosphérique

[’atmosphére terrestre peut étre vue comme une immense machine thermodynamique,
qui posséde sa propre circulation [38], couplée avec la dynamique de redistribution de ’énergie
par les océans. Le moteur de la circulation générale atmosphérique est constitué par le
chauffage différentiel de 'atmosphére : la densité de flux solaire recue par la Terre sera plus
importante a I’équateur qu’aux poles. Il en résulte une advection d’air chaud dans les zones
tropicales. Pour une planéte qui ne tourne pas (ou qui tourne trés lentement comme Vénus),
cet air chaud est ensuite transporté jusqu’aux poles, ot il est refroidi avant de retourner en
direction des tropiques. Pour une planéte animée d’'un mouvement de rotation rapide, comme
la Terre, les particules d’air chaud se dirigeant vers les hautes latitudes se mettent a tourner
plus vite que la planéte, du fait de la conservation de leur moment cinétique : il y a création
d’un vent qui va freiner la circulation méridienne. Cet effet a été expliqué par Hadley en

1735, ce qui a permis de comprendre la formation des alizés. D’autres processus, appelés

49
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instabilités, vont étre a l'origine de redistributions de l'énergie cinétique de 1’écoulement
moyen. On pourra trouver une description plus approfondie des phénoménes régissant la

circulation générale atmosphérique, par exemple dans le travail de F. Hourdin [38§].

Avant de nous concentrer sur le rayonnement infrarouge, nous allons donner une bréve

description de la structure et de la composition de I’atmosphére terrestre.

3.1.1 Structure dynamique et thermique de ’atmosphére terrestre

L’accélération de la gravité, en imposant une force verticale a toute molécule de gaz at-
mosphérique, s’équilibre avec la force centrifuge résultant des forces de pression différentielles

(force d’Archiméde) pour créer une stratification verticale de matiére dans I’atmosphére.

En effet, si on considére un volume de gaz élémentaire dV' de section dS et de hauteur
dz, les forces verticales qui s’exercent sur ce volume sont :
— Son poids, force centripéte de valeur p(z).g.dV, avec g l'accélération de la gravité, et
p(z) la masse volumique du gaz a I’altitude z.
— La force de pression centrifuge p(z).dS en z sur sa section inférieure.
— La force de pression centripéte p(z + dz).dS en z + dz sur sa section supérieure.

On aboutit donc a I’équation d’équilibre hydrostatique :

— —p(2).g (3.1)

En faisant ’approximation que le gaz atmosphérique se comporte comme un gaz par-
fait, on peut écrire : p(z) = 152;2)’ avec R la constante spécifique du gaz : R = R*/ M =
287,04 Jkg L. K~! si R* = 8,3144 Jmol~'. K~ est la constante universelle des gaz parfaits,

et M = 28,966 g.mol~! est la masse molaire de I’air sec. Finalement, on obtient :

p(2) :poexp<— /OZ RTg(z’) dz’) (3.2)

Ol py est la pression au sol. Comme le montre la figure 3.1, la pression décroit globalement

suivant une loi exponentielle avec I'altitude.

L’atmosphére terrestre est divisée en différentes régions : dans la troposphére, qui s’étend
jusqu’a une altitude de 10 km environ (100 hPa), la température décroit approximativement
de fagon linéaire, d’environ 6,5 K/km (cf. Fig. 3.2). La température reste ensuite a peu prés

constante jusqu’a la stratosphére, qui est séparée de la mésosphére par la stratopause, a
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FiGg. 3.1: (a) : pression (Pa) en fonction de laltitude pour l'atmosphére terrestre, aux
moyennes latitudes, et en été; (b) : idem, en échelle logarithmique
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F1G. 3.2: Profil de température (K) dans I’'atmosphére terrestre, aux moyennes latitudes, en
été

environ 50 km d’altitude (1 hPa). La température augmente dans la stratosphére, puis
décroit de nouveau dans la mésosphére, qui culmine a environ 85 km (0,01 APa). Au-dessus
de la mésosphére se trouve la thermosphére, ol la température croit rapidement : elle atteint
environ 500°C' & 120 km, et 1700°C' & 600 km d’altitude.

En dessous de 100 km d’altitude, le transport turbulent est largement dominant sur
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L est trés petit : il est de

le transport diffusif, car le libre parcours moyen des molécules
lordre de 10~ m au niveau du sol. Le transport turbulent dominant dans cette zone permet
d’homogénéiser les concentrations de toutes les espéces gazeuses; la zone située en dessous

de 100 km d’altitude est dénommée homosphére.

Au-dessus de 100 km d’altitude, on observe une transition dans les processus qui controlent
la stratification de masse et la composition de I’air. En effet, le libre parcours moyen des mo-
lécules augmente de fagon exponentielle avec I’altitude : il est de 1 m a 100 km d’altitude. A
partir de 100 km, le mode de transport dominant est le transport diffusif. La zone comprise
entre 100 et 500 km d’altitude est dénommé hétérosphére. Etant donné que c’est la diffusion
moléculaire qui va dominer la stratification de masse dans cette zone, la concentration des

espéces les plus lourdes va décroitre plus vite que celles des espéces plus légéres.

A partir du niveau critique, situé a environ 500 km d’altitude, se situe I’exosphére. Les
collisions moléculaires deviennent alors si rares que les molécules suivent des trajectoires
paraboliques qui les aménent dans ’espace. Ces trajectoires sont déterminées par la vitesse
et la direction des molécules au niveau critique. Les molécules qui possédent une vitesse
supérieure a la vitesse de libération (environ 11 km.s~! pour la Terre) disposent donc d’une
énergie cinétique suffisante pour leur permettre de quitter définitivement 1’atmosphére. En
pratique, les atomes d’hydrogene, les plus légers, produits par la photo-dissociation de 1’eau

1 et une fraction de

a des niveaux inférieurs, possédent une vitesse moyenne de 4,08 km.s~
0,01 % de ces atomes posséde une vitesse supérieure a la vitesse de libération. Ce phénoméne

explique que la concentration d’hydrogéne dans ’atmosphére terrestre soit trés faible.

3.1.2 Composants gazeux de ’atmosphére terrestre

L’atmosphére terrestre est composée a environ 78 % d’azote et 21 % d’oxygeéne, mais
ces deux gaz ne sont pas actifs d’'un point de vue radiatif, car les molécules diatomiques
sont dépourvues de moment dipolaire, et ne présentent pas de transition de type rotationnel.
Nous allons uniquement nous intéresser a la faible proportion des composants gazeux de
I’atmosphére terrestre qui présentent des transitions de type rotationnel et vibrationnel, et

qui interagissent avec le rayonnement dans la plage infrarouge.

!Distance que parcourent en moyenne les molécules entre deux chocs successifs
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F1G. 3.3: Epaisseur optique moyenne de 1'atmosphére terrestre pour la partie du spectre
comprise entre 4 et 100 um, représentée en fonction (a) de la fréquence v (en em—1) et (b) de
la longueur d’onde A\ (en pm), pour trois atmosphéres standard : une atmosphére tropicale

séche, une atmosphére aux moyennes latitudes en été, et une atmosphére sub-arctique en
hiver.

3.1.2.1 L’eau

L’eau est présente sous trois formes dans ’atmosphére terrestre : sous forme de vapeur,
elle est mélangée aux autres gaz ; sous forme liquide, elle constitue les gouttelettes qui forment
les nuages, et sous sa forme solide, elle forme des cristaux de glace qui se trouvent dans les
nuages d’altitude.

Sous forme gazeuse, 1’eau est intensément active dans le domaine infrarouge : c¢’est méme
le premier gaz & effet de serre 2, loin devant le CO,. En effet, son spectre de raies est
trés complexe. Deux bandes d’absorption majeures de I’eau sont présentes dans le domaine
infrarouge auquel s’intéresse cette étude (entre 4 et 100 pum) : la région spectrale s’étendant

entre 5,5 um et 7,14 um, ainsi que la région s’étendant de 30 pm a 100 pum (cf. figure 3.3).

La plus grande partie de la vapeur d’eau présente dans I’atmosphére est produite par
évaporation au-dessus des océans dans les zones tropicales. La vapeur d’eau est ensuite
transportée par de grandes cellules de convection, mais également par des mouvements d’ad-
vection (mouvements horizontaux dis aux tourbillons de grande échelle).

2Le terme “effet de serre” utilisé dans ce manuscrit correspond a effet d’¢lévation de la température
du sol résultant des différences entre les propriétés de transmission de I’atmosphére dans le domaine visible
et dans le domaine infrarouge : on pourra donc parler d’effet de serre dd & un composant particulier de
Patmosphére (nuage, vapeur d’eau, C02, ozone, etc.)
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F1G. 3.4: (a) : concentration en vapeur d’eau (¢g.m~3) en fonction de I’altitude pour l’atmo-

2

sphére terrestre, aux moyennes latitudes, et en été; (b) : idem, en échelle verticale logarith-
mique

On peut voir (cf. Fig. 3.4) que la concentration en eau dans ’atmosphére terrestre décroit
trés rapidement avec l'altitude, de fagon quasi-exponentielle jusqu’a environ 15 km. En
pratique, considérons un volume élémentaire d’air chargé en eau, plus chaud que le milieu
extérieur, et qui se déplace donc vers le haut sous l'effet de la convection. En montant,
ce volume d’air se détend de facon adiabatique 3, et sa température décroit : le travail
correspondant & I’expansion du volume est fourni par son énergie interne, ce qui fait chuter
sa température. L’humidité relative de I’air augmente donc. Arrivé a un certain niveau, ’air
est saturé en eau, et cette eau commence a se condenser. C’est le mécanisme de formation
des nuages, et le niveau a partir duquel la vapeur d’eau commence a se condenser est appelé
niveau de saturation ou Liquid Condensation Level (LCL).

Une augmentation de la température moyenne de I’atmosphére peut conduire, par éva-
poration de ’eau des océans dans les zones tropicales, & 1’accroissement de la quantité de
vapeur d’eau contenue dans l’atmosphére ; une augmentation de la quantité de vapeur d’eau
dans I'atmosphére va conduire & une augmentation de 'effet de serre di a cette vapeur
d’eau, ce qui va avoir pour conséquence d’augmenter de nouveau la température moyenne

de I’atmosphére. C’est ce qu’on appelle “rétroaction a la vapeur d’eau”.

3Le temps caractéristique de la convection est de quelques minutes & un jour, ce qui est faible devant
le temps caractéristique des ajustements thermiques, évalué 4 deux semaines [70]p58 pour l’atmosphére
terrestre



Chapitre 3 Transferts radiatifs atmosphériques 55

D’autre part, le mécanisme de condensation évite que les molécules d’eau soient entrainées
trop haut, ou elles seraient alors détruites par photo-dissociation en atomes d’oxygene et
d’hydrogéne, ces derniers finissant irrémédiablement par quitter ’atmosphére terrestre (cf.
paragraphe 3.1.2.1). Le phénoméne de condensation explique donc qu’il y ait encore de 1’eau

sur Terre.

3.1.2.2 Le dioxyde de carbone

Le C'O, est présent en faible concentration dans I’atmosphére terrestre (environ 365 ppmv,
constant sur la verticale jusqu’a 100 km), et c’est un gaz trés actif dans I'infrarouge : il est a
I’origine de deux bandes d’absorption, la premiére entre 4,2 et 4, 3 um, la seconde entre 14,5
et 15,6 pum (cf. figure 3.3). De maniére similaire au cycle de la vapeur d’eau, il existe bien
un cycle du CO, sur Terre : relaché dans ’atmosphére lors des processus de combustion et
de respiration, le CO, est ensuite fixé par les végétaux, ou dissous dans les océans. Depuis le
début de I’ére industrielle, en revanche, la concentration de C'O, atmosphérique a tendance
a augmenter, a cause de la libération de carbone présent dans les hydrocarbures, et qui ne
fait pas partie du cycle & court terme du carbone atmosphérique : en effet, la concentration
de CO, a augmenté de 280 ppmuv & 365 ppmuo depuis le début de ’ére industrielle. Le taux de
C'O, prévu pour 2100 varie de 550 & 950 ppmu selon les scénarios envisagés [63]. On attribue
a ces rejets atmosphériques de C'O, et a D'effet de serre qu’ils entrainent, un réchauffement

global, qui ne sera pas discuté plus avant ici.

3.1.2.3 L’ozone

zone, présent a 1’é r n m ere terrestr : ment un ur
L’ozone, présent a I'état de traces dans I’atmosphére terrestre, est également acte
important sur la scéne des transferts radiatifs. Il assure la pérennité de la vie sur Terre en

interceptant les rayonnements ultraviolets dangereux.

L’ozone est a 1’origine d’une bande d’absorption entre 9,4 et 9,8 um, située a 'intérieur
d’une fenétre de transparence appelée fenétre atmosphérique, qui s’étend de 8 & 13 um
environ au niveau du sol (cf. figure 3.3). Comme le montre la figure 3.5, I'ozone se situe
principalement dans la stratosphére, en dessous de 30 km. L’ozone est créé par la photo-
dissociation de la molécule de dioxygéne, sa concentration est donc plus importante aux
tropiques en raison d’un flux solaire incident plus important. Dans la troposhére, I’ozone est
rapidement détruit par oxydation. Par contre, son temps de vie moyen dans la stratosphére

est de plusieurs semaines. A une altitude de 30 km, son temps de vie moyen n’est plus que
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F1G. 3.5: (a) : concentration en ozone (g.m~3) en fonction de l'altitude pour 1'atmosphére

terrestre, aux moyennes latitudes, en été; (b) : idem, en échelle verticale logarithmique

d’un jour, et de seulement une heure a la stratopause (50 km).

3.1.3 Autres composants gazeux

Parmi les autres gaz qu’on trouve a 1’état de traces dans I’atmosphére terrestre et qui

sont radiativement actifs dans ’infrarouge, on peut citer :

— Le méthane : produit principalement par des processus naturels (activités des bacté-

ries), et depuis quelques décennies, par des processus anthropiques (activités indus-

trielles), qui peuvent représenter jusqu'a 20 % de la production totale de méthane.

Le méthane a une durée de vie de l'ordre de 10 ans, d’ol sa concentration homogéne

dans 'atmosphére (environ 1,7 ppmwv). Il est principalement détruit par oxydation

dans la stratosphére, ce qui conduit a la formation d’eau stratosphérique. Le méthane

est un gaz a effet de serre, incriminé au méme titre que le C'O, dans le réchauffement

climatique global.

Les chlorofluorocarbones : produits par ’activité industrielle humaine, ces composés ont

une durée de vie de ’ordre de plusieurs décennies, et ne sont pas solubles dans I'eau, ce

qui fait qu’ils ne sont pas sujets a étre éliminés de I’atmosphére par les précipitations. En

plus d’étre impliqués dans des séries de réactions chimiques qui conduisent a diminuer

les concentrations d’ozone stratosphérique, les chlorofluorocarbones sont des gaz a effet

de serre.
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— Les composés nitreux : NoO est naturellement produit par les bactéries dans le sol. Les
sources anthropiques de N>O sont a l'origine d’environ 25 % des rejets totaux. NoO
a une grande durée de vie, et sa dissociation dans la stratosphére est a 'origine du
NO stratosphérique, également impliqué dans des réactions catalytiques conduisant a
la destruction de 1’ozone.

3.1.4 Composants non gazeux de ’atmosphére terrestre

L’atmosphére terrestre comporte un certain nombre d’autres composés, qui ne se pré-
sentent pas sous forme gazeuse, et qui jouent un réle d’un point de vue radiatif dans le

domaine infrarouge.

3.1.4.1 Les nuages

Les nuages jouent un role dominant dans les échanges radiatifs qui pilotent le systéme
climatique. Vue de l'espace, la moitié de la surface de la Terre est en permanence cachée
par des nuages. Les nuages présentent un trés large éventail de dimensions, de formes, et
de propriétés microphysiques. Ils peuvent étre constitués de gouttes d’eau ou de cristaux
de glace. Les nuages jouent deux roles essentiels dans le climat terrestre : d’une part, ils
opacifient ’atmosphére dans le domaine visible, et empéchent ainsi une partie du flux solaire
d’atteindre le sol. D’autre part, ils absorbent fortement le rayonnement infrarouge émis par le
sol et 'atmosphére. De plus, les nuages émettent un rayonnement dans toutes les fréquences

de 'infrarouge.

Les nuages ne jouent pas seulement un grand roéle d’un point de vue radiatif : la conden-
sation de la vapeur d’eau qui formera les nuages s’accompagne de la libération de I’énergie

latente de vaporisation accumulée par la vapeur d’eau évaporée au niveau des tropiques.

Enfin, la précipitation de ’eau contenue dans les nuages entraine avec elle les espéces
chimiques qui sont solubles dans I’eau, qui servent d’ailleurs souvent de noyaux de conden-
sation aux gouttes d’eau et aux cristaux de glace. Les nuages jouent donc un role dans le

cycle des aérosols, présentés au paragraphe suivant.

Les nuages se forment pour la plupart au travers des mouvement de convection, lorsque
Pair humide est entrainé au-dessus du niveau de saturation (cf. paragraphe 3.1.2.1) et devient

sursaturé en eau. On peut classer les nuages en trois catégories principales :
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F1G. 3.8: Identique a Fig. 3.7 pour le facteur d’asymeétrie de la fonction de phase

— Les nuages stratiformes : (de “strate”=couche nuageuse de grande échelle). Se forment
a partir du mouvement ascendant d’une couche d’air humide, stable, de grande taille.
Vitesse de déplacement typique menant au développement de stratus : 1 ecm.s~!. Durée
de vie : de 'ordre de 24 h.

— Les nuages cumuliformes : (empilement) se forment lors de 'ascension de parcelles
d’air humide par convection turbulente. Le moteur de la turbulence est alors I’énergie
latente fournie lors de la condensation de la vapeur d’eau. Ordre de grandeur des
vitesses verticales : 1 m.s~! dans les cumulus en cours de formation, peut atteindre
plusieurs dizaines de métres par seconde dans les cumulonimbus. Durée de vie : de
quelques minutes & plusieurs heures.

— Les nuages cirriformes : (fibres) peuvent se former par les deux mécanismes précédem-
ment cités. Les cirrus se trouvent a haute altitude, et sont principalement composés
de cristaux de glace. Malgré leur faible épaisseur optique, leur influence sur le climat

terrestre n’est pas négligeable [49].

Les nuages peuvent également se former non pas au travers de la convection naturelle, mais
par convection forcée, lorsqu’une masse d’air s’éléve par écoulement le long d’une pente
ascendante (montagne). On parle de nuages orographiques, et ils sont structurés sous forme

d’ondes.
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3.1.4.2 Les aérosols

On regroupe sous le terme d’aérosols toutes les particules solides ou liquides en suspen-
sion dans le gaz atmosphérique, avec des tailles caractéristiques allant de 0,01 a 10 um, et
des durées de vie qui peuvent aller de quelques heures & plusieurs années. Cette définition
peut varier selon les auteurs. On exclut du terme d’aérosols les gouttes d’eau qui forment
les nuages. Les interactions entre aérosols, nuages et rayonnement infrarouge, ainsi que les
conséquences que ces interactions peuvent avoir sur le climat sont nombreuses. On peut

notamment citer :

— Les particules liquides en suspension dans ’atmosphére et la surface des particules
solides sont le siege de nombreuses réactions chimiques, qui affectent la formation ou
la destruction de gaz actifs dans l'infrarouge (comme ’ozone).

— Effets directs : les aérosols renvoient une partie de I’énergie solaire incidente vers 1’es-
pace. Dans le domaine infrarouge, les plus grosses particules d’aérosol (taille supérieure
a 1 pm) absorbent, diffusent et émettent de facon significative le rayonnement.

— Effets indirects sur le climat : les aérosols constituent une source de noyaux de conden-
sation. La présence d’aérosols augmente donc la quantité de gouttelettes formées par
condensation dans les nuages. A quantité d’eau condensée identique, la présence d’aé-
rosols fait donc diminuer la taille moyenne des gouttelettes, ce qui diminue ’albédo
de diffusion simple des nuages. D’autre part, les aérosols, en modifiant la coalescence
des gouttelettes, sont responsables de la diminution de la quantité d’eau précipitable.
Leur présence va donc augmenter la quantité d’eau en suspension dans I’atmosphére.
En modifiant les propriétés radiatives des nuages, les aérosols jouent donc un réle sur

le bilan thermique du sol.

La classification des aérosols est un probléme en soi. La liste suivante, si elle ne permet pas
d’établir une classification précise des aérosols, permet en revanche d’en citer les principales
familles :

— Les aérosols minéraux, telles les poussiéres désertiques qui sont arrachées au sol par le
vent, et dont la vitesse de chute naturelle est trés petite devant la vitesse de transport
qui leur est imposée par la convection.

— Les aérosols marins, petites gouttes d’eau chargées en sels, produites par les vagues et
entrainées par le vent.

— Les suies, chaines carbonées résultant de réactions de combustion (qu’il s’agissent de
combustions relatives a I'industrie humaine ou des combustions naturelles comme les
incendies de forét).

— Les aérosols volcaniques : cendres émises lors des éruptions volcaniques.
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Le total des émissions d’aérosols naturels est estimé & environ 3 milliards de tonnes par
an. Par comparaison, le total des émissions d’aérosols anthropiques est estimé a environ 390

millions de tonnes par an.

3.1.5 Illustration

Aprés I’ensemble des descriptifs précédents, et avant de rentrer dans les détails techniques
de la simulation du rayonnement, nous pouvons fixer quelques ordres de grandeur concernant,
le role des phénoménes radiatifs dans le bilan énergétique et les redistributions énergétiques
internes de ’atmosphére terrestre. Commencons classiquement par le cas d’une Terre fictive
pour laquelle tous les constituants de ’atmosphére sont transparents dans l'infrarouge, si-
tuée sur la méme orbite, et possédant les mémes conditions de surface, notamment 1’albédo
planétaire, qui est défini comme la part de flux incident & I'extérieur de ’atmosphére qui
sera réfléchie vers I'espace, et dont la valeur moyenne est estimée a 0,3 pour la Terre. Dans
ce cas-1a, I’équilibre entre le flux solaire incident, le flux réfléchi par le sol et le flux émis
par le sol résulterait en une température de surface en moyenne de —18°C'. L’atmosphére,
et notamment les gaz radiativement actifs dans 'infrarouge, permet donc une élévation de

la température de surface, phénoméne désigné sous le terme d’effet de serre.

On peut montrer, avec quelques détails, au travers d’un bilan d’énergie moyen, de quelle
facon agit I’atmosphére dans son role de régulateur de la température de surface. On considére
généralement une valeur moyenne? du flux solaire incident de 342 W/m?, dans le domaine
des ondes courtes. C’est une moyenne sur le cycle diurne, sur I’année, et sur ’ensemble de la
surface terrestre (les poles étant moins ensoleillés que 1'équateur). Seulement 49,3 % de ce
flux incident est absorbé par le sol : 6,1 % sont réfléchis par les gaz atmosphériques, 20,1 %
sont réfléchis par les nuages, 4,7 % sont réfléchis par la surface, 5,8 % sont absorbés par
les nuages et 14 % sont absorbés par le gaz. En moyenne, seulement 169 W/m? sont donc

absorbés par le sol.

Dans le domaine des ondes longues (infrarouge), et en considérant une température de
surface moyenne de 288 K, le sol émet 390 W/m? en moyenne. On voit tout de suite que cette
émission dans l'infrarouge est bien supérieure aux apports solaires. Il faut prendre en compte
le fait que le sol va absorber en moyenne 327 W/m? d’énergie infrarouge émise par I’atmo-
sphére. Le bilan radiatif du sol peut s’écrire de la facon suivante : flux solaire absorbé par le
sol (169 W/m?) + flux infrarouge émis par I’atmospheére et absorbé par le sol (327 W/m?)
- flux infrarouge émis par le sol (390 W/m?) = 106 W/m?, le réchauffement radiatif de la

4Les valeurs numériques données dans ce paragraphe sont issues de 'ouvrage de M.L. Salby [70]
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surface. Cette énergie est bien siir évacuée, d’une part par la convection naturelle (16 W/m?)
et d’autre part par 'absorption de chaleur latente de vaporisation lors de 1’évaporation de
I'eau des océans (90 W/m?). Si ces deux derniers mécanismes ne permettaient pas d’évacuer
le réchauffement radiatif du sol, la surface devrait étre plus chaude de 50 K pour pouvoir

évacuer ce flux sous forme de rayonnement infrarouge.

En faisant le bilan radiatif moyen de I’atmosphére (cf. [70]), on se rend compte que la
puissance émise par 'atmosphére dans le domaine infrarouge est supérieure de 106 W/m? a
la puissance absorbée par atmosphére (totale sur tout le spectre). Ce déficit de 106 WW/m?,
le refroidissement radiatif de I’atmosphére, correspond précisément aux termes d’apports par

chaleur latente et sensible.

On voit donc, a travers ces quelques ordres de grandeur, que le systéme climatique ter-
restre repose sur un couplage complexe mais aujourd’hui assez bien cerné, entre les phéno-
menes d’absorption et d’émission de rayonnement et les autres mécanismes de redistribution

internes de ’énergie.

3.2 Les méthodes de simulation numérique du transfert

radiatif avec diffusion

Face & nos besoins d’analyse des transferts radiatifs infrarouges dans les atmosphéres
planétaires, nous avons di effectuer une série de choix méthodologiques, notamment en ce
qui concerne la méthode numérique sous-jacente. Comme il a été montré au paragraphe
3.1, le probléme de la modélisation des transferts radiatifs infrarouges atmosphériques est
complexe : il faut tenir compte de la présence de nombreux éléments (gaz, nuages, aérosols)
radiativement actifs et en constante interaction au travers des phénoménes d’absorption et

de diffusion du rayonnement.

Nous allons brievement explorer dans ce paragraphe les choix qui s’offrent en matiére de
méthodes permettant une simulation numérique des transferts radiatifs infrarouges, et plus
particuliérement les méthodes qui ont été développées ou appliquées dans le cadre spécifique
des atmosphéres planétaires. Parmi le grand choix de méthodes qui peuvent entrer dans ce
cadre, ne sont présentées ici que celles qui permettent de produire des résultats de référence,
c’est a dire des méthodes qui permettent de résoudre 1'équation de transfert radiatif sous
sa forme générale (notamment avec prise en compte de la diffusion), et qui permettent

d’approcher la solution du probléme d’aussi prés qu’on le désire.
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La présentation qui est faite ici de ces méthodes étant assez sommaire, les lecteurs inté-
ressés par des informations supplémentaires concernant les variantes de ces méthodes, ou les
innombrables améliorations dont elles ont fait 1’objet, sont invités a se référer au travail de
compilation effectué par Thomas et Stamnes [80], & 'ouvrage de M.F. Modest [58] et, dans

une moindre mesure, & I'ouvrage de R. Siegel et J.R. Howell [73].

3.2.1 Préambule : formulation des problémes de transfert radiatif

atmosphérique

3.2.1.1 Modéle physique et aspects géométriques

La composition de ’atmosphére a une altitude donnée est constante sur de grandes
distances horizontales. Par contre, les concentrations des différents constituants et surtout la
pression varient avec 'altitude. Les atmosphéres sont donc souvent modélisées en géométrie
plan-paralléle, ou la seule variable est I'altitude. L.’atmosphére est ensuite discrétisée suivant

la verticale.

Dans le contexte GCM qui est le notre, les effets tridimensionnels des nuages, dans la
plage infrarouge, sont communément négligés (a I'exception de quelques travaux [77] °),
et nous nous en tiendrons ici a cette approximation. Le modéle physique utilisé pour les
nuages sera de plus bati sur ’hypothése que les propriétés optiques (coefficient d’extinction,
albédo de diffusion simple, fonction de phase de diffusion) sont considérées comme homogénes
dans chacune des mailles utilisées pour la discrétisation verticale de l'atmosphére. Nous
reviendrons sur cette hypothése, et de facon générale sur le modéle physique de description
de ’atmosphére au paragraphe 4.6.1. Les propriétés spectrales du nuage se rajouteront a
celles du gaz atmosphérique dans chaque maille de pour définir les propriétés optiques du

mélange air-nuage.

Retenir une configuration plans-paralléles a une conséquence immeédiate : toutes les gran-
deurs descriptives du transfert radiatif ne dépendront plus de I'angle azimuthal : on ne

considérera plus que des moyennes azimuthales.

5Dans le domaine visible du spectre, de nombreux travaux concernant la prise en compte des effets
tridimensionnels des nuages(effets d’occultation, de réflexion, etc.) ont été menés dans les dix derniéres
années.
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3.2.1.2 Formulation des transferts radiatifs

Chaque méthode permet de calculer une ou plusieurs grandeurs radiatives. Générale-
ment, la formulation des transferts radiatifs est propre a la méthode de résolution. Il s’agit

généralement de formulations en flux ou en luminance.

3.2.1.3 Reformulation de 'ETR

L’Equation de Transfert Radiatif monochromatique donnée par la relation 2.10 est refor-

mulée de la fagon suivante en moyenne azimuthale :

oL(T,
. (7, 1)

D L) = (- w)B(r) + 2 / D 1)L ) (3.3)

4
Avec :
— 1= cos(0), 0 étant I’angle zénithal.
— 7 I’épaisseur optique totale monochromatique le long d’une direction repérée par p,
comptée positivement depuis l'espace (7 = 0 au sommet de I’atmosphére).
— L(1, ) la luminance monochromatique moyenne sur les directions azimuthales, au

point repéré par I’épaisseur optique 7, sur une direction repérée par pu.

B(7) la luminance noire au point repéré par la coordonnée 7

wo ’albédo de diffusion simple monochromatique, rapport du coefficient de diffusion et
du coefficient d’extinction totale : wy = ky/(k, + ks)

— ®(p, p') la fonction de phase de diffusion, probabilité qu’un rayonnement incident dans
une direction repérée par u soit diffusé dans une direction repérée par y'.

3.2.2 La méthode des harmoniques sphériques (F,)

La méthode des harmoniques sphériques a été suggérée par Eddington en 1916. Elle
consiste a multiplier I’équation de transfert radiatif par les puissances croissantes de . = cosf,
(0 est 'angle zénithal) pour obtenir un systéme d’équations. La résolution directe de ce sys-
téme étant impossible, car le systéme comporte une équation de moins que le nombre d’incon-
nues introduites, le champ de luminance L(7, i) est décomposée sur une base d’harmoniques

sphériques, ou polynomes de Legendre :

00 !

Lir,p) =Y > LPMn)Y"(u) (3.4)

=0 m=-1
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Ou Y™ (1) sont les harmoniques sphériques normalisées données par :

1
2

AL =mt S ime) P () (3.5)

Y = |\ i

Avec i = y/—1 et ¢ I'angle azimuthal. P™(u) sont les polynomes de Legendre de premiére
espéce [73|. En pratique, on ne peut pas, bien entendu, exprimer la luminance L(7, 1) comme
une somme infinie, et on est obligé de tronquer la série aprés un nombre donné de termes,
n. Pour n = 1, on obtient la plus simple décomposition de L(7, 1), et la méthode associée
est appelée méthode P;. Cette méthode est explicitée a titre d’exemple en annexe C.

Dans le cas particulier d’une configuration plans-paralléles, la luminance est indépendante
de I’angle azimuthal ¢, ce qui ce traduit par L;” = 0 pour m # 0. Dans ce cas, on a donc
Y™ (p) = 0 pour m # 0, et la relation 3.4 devient :

L(r.p) = Y Li(r)R(p) (36)
1=0
La fonction de phase, quant a elle, s’exprime sous la forme :

O, 1) = Y A Pon(18) P11 (3.7)

Avec M Tordre d’approximation de la fonction de phase. Il est & noter qu’il est inutile
d’utiliser une valeur de M supérieure a la valeur de n : 'information sur la fonction de phase

sera perdue pour m > n.

Les conditions aux limites doivent étre données pour les n+ 1 inconnues introduites L; (I
variant de 0 a n). Dans le cas général, ces conditions aux limites sont complexes a exprimer

[58], et ne seront pas explicitées ici.

3.2.3 La méthode des ordonnées discrétes (5))

La méthode des ordonnées discrétes consiste a écrire 1’équation de transfert radiatif sur
un nombre défini de directions. Les intégrales angulaires sont remplacées par des quadra-
tures (généralement une quadrature de Gauss). Le systéme d’équations a résoudre comporte
n(n 4 2) équations, sauf dans le cas de la méthode Sy, qui comporte deux équations, ce qui

explique qu’elle soit également appelée méthode a deux flux. Le cas de la méthode S, est
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développé en annexe D a titre d’exemple.

3.2.4 La méthode du “doubling-adding”

Cette méthode a été largement utilisée en physique du rayonnement atmosphérique. Une
atmosphére inhomogeéne est divisée en m mailles. A I'intérieur de chaque maille, les pro-
priétés optiques du milieu sont considérées homogénes. La méthode consiste a évaluer la
transmittivité et la réflectivité de chaque maille atmosphérique, sur un certain nombre de
directions, et ensuite de les combiner (adding) pour obtenir la transmittivité et la réflectivité
de I'atmosphére compléte, sachant que les intégrations angulaires sont remplacées par des
quadratures, de facon similaire aux intégrations angulaires effectuées dans la méthode des

ordonnées discrétes.

Le probléme d’obtenir la transmittivité et la réflectivité d’une maille atmosphérique aux
propriétés optiques homogénes, dans une direction donnée, est résolu par une méthode qui
part d’une tranche de gaz élémentaire homogéne dont on connait les propriétés de trans-
mission et de réflexion, pour arriver a la transmittivité et la réflectivité de deux tranches
élémentaires jointes et identiques & la premiére (doubling). Ce processus est répété jusqu’a
obtention des propriétés de transmission et de réflexion pour une maille de gaz homogeéne
d’épaisseur souhaitée. L’épaisseur des tranches élémentaires est prise aussi faible qu’il le faut

pour pouvoir faire ’hypothése de diffusion simple dans une tranche.

R TR, T'R\RR]T

VA /
X X

(TR)
TT

-’;R]RITI

F1aG. 3.9: Principe du “doubling”

Le principe du “doubling” est illustré figure 3.9. Si on considére deux tranches élémentaires

de réflectivité R, et de transmittivité 77, la réflectivité R et la transmittivité® 7 de ’ensemble

611 est & noter que R,7,R1 et 77 sont ici des matrices de transmission et de réflexion, étant donné qu’on
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constitué par les deux tranches élémentaires sont :

R=Ri+TRT+TRiR\RiT + ...

o . 3.8
=Ri+ TR Y RY (38)

i=0

T=TTH+TRiRTi+TTIRiIRiIR\R\Th + ...
o . 3.9
=77 R{ 9
i=0
R, IR, 1, ,R,RR, I,

/
-~ X

(T;R,)

F1G. 3.10: Principe du “adding”

Le principe du “adding” est illustré figure 3.10. Si on considére deux tranches de gaz
(élémentaires ou non) de réflectivité et transmittivité (R, ; 77) pour la premiére, et (Ry ; 75)
pour la seconde, la réflectivité R et la transmittivité 7 de I’ensemble constitué par les deux

tranches sont :

R =TRi+TiRTh + TRy R RTh + ...

= 3.10
=R+ TR Y Ri (310)
=0
T =TT+ TRR T + TRyRRaR Ty + ..
> , (3.11)
=T% Y (RiRy)
1=0

considére un flux incident discrétisé sur un nombre donné de directions.
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En pratique, les transmittivités et réflectivités des tranches élémentaires peuvent étre
obtenues par n’importe quelle méthode. On a vu qu’on pouvait prendre les tranches élé-
mentaires aussi fines qu’il le faut pour pouvoir faire I’hypothése de diffusion simple dans
une tranche élémentaire, et ainsi calculer plus facilement la transmittivité et la réflectivité
de cette tranche. Cependant, comme le temps de calcul de la méthode “doubling-adding”
sera directement, proportionnel au nombre d’étapes “doubling” nécessaires pour calculer les
propriétés d’une maille atmosphérique homogéne, on peut imaginer calculer directement les
propriétés des mailles atmosphériques complétes pour passer directement a 1’étape de “ad-

ding”. On peut, par exemple, utiliser pour ¢a la méthode Sy (cf. annexe D).

3.2.5 Autres méthodes

Parmi les autres méthodes qui ont été utilisées pour tenter de résoudre numériquement
I’Equation de Transfert Radiatif de facon aussi précise qu’on le souhaite, on pourra citer
les méthodes “Invariant Imbedding” et “méthode des fonctions X et Y” mises au point par
Chandrasekhar 8|, ainsi que la “méthode des ordres successifs de diffusion” [80], méthode
itérative qui peut se résumer briévement ainsi : dans une premiére étape, on fait ’hypothése
de diffusion simple (les photons ne peuvent étre diffusés qu’une seule fois). Le résultat de ce
premier calcul est ensuite injecté dans le terme source de I’ETR, qui est résolue une seconde
fois en faisant 'hypothése que les photons peuvent étre diffusés 2 fois. A chaque étape n, le
résultat du calcul de I’étape précédente n — 1 sert a résoudre ’ETR en considérant que les

photons peuvent étre diffusés n fois.

Les développements mathématiques relatifs & ces méthodes étant complexes, elles ne

seront pas présentées ici.

3.2.6 La méthode de Monte-Carlo

Largement répandue dans tous les domaines scientifiques, le principe général de la mé-
thode de Monte-Carlo consiste a calculer un estimateur statistique d’une grandeur donnée,
au travers de la réalisation d'un grand nombre d’événements statistiques. Dans le domaine
du transfert radiatif, cette méthode, dans sa forme la plus usuelle, consiste & simuler I’émis-
sion d’un certain nombre de photons individuels, ainsi que leurs interactions avec la matiére
(absorptions et diffusions), en analogie avec les processus de la théorie du transport corpus-
culaire. D’un point de vue formel, cette approche peut aussi étre vue comme l'illustration

d’une méthode statistique permettant d’approcher la solution de ’Equation de Transfert
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Radiatif sous sa forme intégrale. Si les méthodes de Monte-Carlo sont souvent présentées
comme nécessitant des temps de calcul importants, elles ont en revanche I’avantage majeur
d’estimer ’erreur associée a chaque résultat au travers de 1’écart-type statistique attaché
a lestimateur du résultat. Cette propriété leur confére souvent le statut de méthode de
référence pour la validation d’autres méthodes numériques.

Nous détaillerons au chapitre 4 cette méthode ainsi que les améliorations dont elle a

récemment fait 1’objet.

3.3 Choix méthodologiques pour le développement d’un
code de transfert radiatif atmosphérique permettant
la production de solutions de référence et une analyse

en Puissances Nettes Echangées.

Apres ces considérations d’ordre général, nous remettons ici en perspective nos objectifs
initiaux, en particulier en termes d’analyse, afin de justifier les options méthodologiques que
nous avons retenues pour la mise au point d’'un modéle numérique permettant d’effectuer des
calculs de transfert radiatif pour 'atmosphére terrestre dans le domaine spectral infrarouge,
quelles que soient les conditions atmosphériques. Comme annoncé en introduction, nous
souhaitons mener une analyse de ces transferts radiatifs en termes de Puissances Nettes
Echangées. La formulation correspondante est de type intégral; il va donc étre beaucoup
plus simple techniquement de faire appel & une méthode numérique qui est elle-méme basée
sur une formulation intégrale. C’est 1a certainement 'une des principales raisons qui nous

ont amené 3 choisir la méthode de Monte-Carlo.

Tous les bilans d’énergie radiative estimés par la méthode de Monte-Carlo seront effec-
tivement calculés comme la somme d’échanges radiatifs nets bien identifiés entre les divers
éléments du systéme. Le bilan radiatif d'une couche atmosphérique est, par exemple, calculé
comme la somme des échanges entre cette couche et toutes les autres couches, le sol et 1’es-
pace. Pour des besoins d’analyse, on peut donc trés simplement extraire cette information

détaillée qui apparait explicitement dans 1’algorithme.

Il est & noter que l’on aurait, bien siir, pu également calculer les Puissances Nettes
Echangées entre les éléments du systéme a partir d’une méthode de type différentiel telle que

la méthode aux harmoniques sphériques ou la méthode aux ordonnées discrétes. Cependant,
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il aurait alors fallu répéter le calcul autant de fois qu’il y a d’éléments dans le systéme : tour
a tour on aurait di artificiellement imposer une température de 0 K dans le systéme entier,
sauf pour un élément donné (une couche atmosphérique ou le sol). Chacun de ces calculs
complets (sur une atmospheére thermiquement modifiée) nous aurait permis de déterminer
I’ensemble des puissances échangées entre une 1’élément considéré et tous les autres éléments.
Les Puissances Nettes Echangées auraient alors été construites a partir de I’ensemble de ces
calculs par différences deux a deux des puissances échangées entre les divers éléments. Au
début de ce travail, nous avons effectivement utilisé une approche de ce type avec un modéle
de transfert radiatif approché tel que celui proposé par Toon et al. en 1989 [82|(méthode a
deux flux utilisée avec une hypothése de luminance isotrope par hémisphére). Mais ce modéle

ne satisfaisait pas & nos besoins de précision.

Cette question de la précision est la seconde raison qui nous a conduit & retenir une
méthode de Monte-Carlo, en particulier en ce qui concerne nos besoins de représentation
de la diffusion dans 'infrarouge. Si la question se pose aujourd’hui de tenir compte de la
diffusion dans les paramétrisations du rayonnement infrarouge dans les GCM, c’est pour
répondre & un accroissement des exigences de précision et nous verrons au chapitre 5 qu’une
bonne caractérisation des effets de la diffusion va exiger un haut niveau de confiance sur
les résultats des simulations. La méthode de Monte-Carlo est réputée pour étre trés précise,
au point qu’elle est souvent qualifiée de “méthode exacte”. Cette image est incorrecte a de
trés nombreux titres, mais il n’en reste pas moins que la méthode de Monte-Carlo présente
I’énorme avantage d’associer systématiquement un intervalle de confiance a chaque résultat.
Dans notre contexte, cela nous permettra simplement d’adapter ’effort de calcul au niveau

de précision requis.

Faisons maintenant une mention au contexte dans lequel ce travail a été conduit. La
méthode de Monte-Carlo est utilisée depuis longtemps au sein du Laboratoire d’Energétique
dans le contexte de la simulation des transferts radiatifs infrarouge, pour des besoins aussi
divers que I’étude du couplage entre les phénoménes du transfert radiatif et de la convection
naturelle [31] ou la modélisation des couplages entre rayonnement infrarouge et cinétique
chimique dans les phénomeénes de combustion [13]. Plus récemment, ces compétences ont
pu étre utilisées pour la mise au point d’un algorithme tridimensionnel de simulation du
rayonnement au sein de géométries complexes telles que celles rencontrées dans le domaine
de la conception de moteurs [62|. Le développement du modéle de transfert radiatif infra-
rouge atmosphérique que nous présenterons au chapitre 4 s’est appuyé sur I’ensemble de ces
développement méthodologiques. Ils concernent pour une part les aspects liés a I'intégration

spatiale et fréquentielle (travaux de reformulation et optimisation des lois de tirage aléatoire).
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Mais ce sont surtout les optimisations associées a la prise en compte des fortes épaisseurs
optiques [15] qui s’avérent étre essentielles pour une application atmosphérique. Sans elles,
les temps de calculs associés a l’'utilisation d’un modéle de transfert radiatif atmosphérique
dans l'infrarouge basé sur une méthode de Monte-Carlo seraient prohibitifs.

Enfin, un travail récent [14] a permis d’initier une nouvelle dynamique de recherche qui
concerne le calcul de sensibilités par la méthode de Monte-Carlo. Concrétement, la méthode
de Monte-Carlo permet d’estimer la sensibilité de chaque grandeur a chaque parameétre du
probléme, a faible coiit de calcul supplémentaire. Dans notre domaine d’études, il serait
par exemple envisageable de calculer la sensibilité des taux de chauffage atmosphérique a
la concentration de toutes les espéces radiativement actives comme C'O,, H50, etc. Méme
si ce genre d’analyse de sensibilités n’a pas encore été mis en oeuvre a 1’heure ou ce travail
est présenté, il correspond & une perspective de développement intéressante, qui apporte un
nouvel élément de justification de notre choix d’utilisation de la méthode de Monte-Carlo

afin de simuler les transferts radiatifs infrarouges atmosphériques.
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Chapitre 4

Méthode de Monte-Carlo et algorithmes

4.1 Introduction

Les bases de la méthode de Monte-Carlo (Monte-Carlo Method, M.C.M.) ont été posées
en 1946 par Ulam qui, lors d’une convalescence, désirait calculer la probabilité de gagner une
partie de jeu de cartes de “solitaire”!, et qui pensa ensuite avec Von Neuman et Metropolis
a appliquer la méthode au probléme de la diffusion des neutrons dans un matériau fissile.
La formalisation de la méthode de Monte-Carlo date quant & elle de ’article fondateur de
Metropolis et al. en 1953 [55], qui ont proposé un algorithme désormais trés utilisé pour la

simulation des systémes de particules en interaction.

La méthode de Monte-Carlo sera ici vue comme une technique numérique qui permet de
résoudre des intégrales multiples d’ordre élevé (voire infini). Cependant, afin d’illustrer de
facon pédagogique la mise en oeuvre d’une méthode de Monte-Carlo, nous allons commencer
par envisager un exemple simple de résolution d’une intégrale a une dimension. Mais aupa-
ravant, il est indispensable de faire quelques rappels concernant les générateurs aléatoires

que 'on utilise dans un code de calcul basé sur la méthode de Monte-Carlo.

1Puis, par extension aux autres jeux ot le résultat est purement aléatoire, et ne dépend pas (en principe!)
d’un quelconque facteur extérieur (roulette russe, etc.), le nom “Monte-Carlo” fait référence a la principauté
ol abondent casinos et jeux de hasard.

73
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4.2 Présentation théorique de la méthode de Monte-Carlo

4.2.1 Préambule : les générateurs aléatoires uniformes sur |0, 1]

Le terme de “générateur aléatoire” est utilisé pour désigner un processus informatique
capable de restituer une suite de nombres d’apparence aléatoire. Un générateur aléatoire
uniforme sur |0, 1[ délivre donc des nombres compris entre 0 et 1, de fagon uniforme, c’est
a dire que toutes les parties de l'intervalle |0, 1[ sont échantillonnées de la méme fagon. Les
générateurs aléatoires sont maintenant d’usage courant, et sont fournis avec la plupart des
langages de programmation. Bien que la production d’un générateur aléatoire ait posé de
tous temps des problémes conceptuels importants, le générateur RANLUX disponible sous
la forme de la routine CERNLIB V115, RANLUX, semble actuellement étre une référence.

Ce paragraphe ne se veut pas exhaustif dans sa description des générateurs aléatoires.
Il s’agit seulement d’un bref récapitulatif des propriétés qui doivent étre vérifiées par un

générateur aléatoire.

Le terme méme de “générateur aléatoire” est impropre. Il serait plus approprié de parler de
“générateur pseudo-aléatoire”. En effet, méme s’il est possible de créer un processus qui génére
des résultats réellement imprévisibles, on ne choisit jamais cette solution, car la séquence de
nombres engendrés pourrait avoir des propriétés statistiques a long terme non désirables.
Au lieu de quoi, on préfére utiliser un processus parfaitement non aléatoire, mais dont le
comportement statistique a long terme est connu et maitrisé. En pratique, un générateur

pseudo-aléatoire va générer une séquence de chiffres & partir d’un germe donné.
Les deux critéres essentiels que doit absolument vérifier un générateur aléatoire sont :

— L’uniformité de la distribution. Toutes les zones de I'intervalle |0, 1] doivent étre échan-
tillonnées de la méme facon, suivant une densité de probabilité constante et uniforme.
— L’indépendance : tous les tirages d’une séquence de nombres pseudo-aléatoires doivent

étre non corrélés avec tous les autres tirages de la méme séquence.

Parmi les autres propriétés essentielles d’'un générateur aléatoire, il faut rappeler que la
séquence de nombre générés sera toujours périodique. En effet, la méthode de codage méme
des nombres réels en informatique impose une limite au nombre de réels qu’il est possible
de représenter ; sachant que techniquement, la génération d’un nombre aléatoire dépend du
nombre aléatoire précédent, il existe de facto une période maximale pour tous les générateurs
pseudo-aléatoires, c’est a dire le nombre de réels que le générateur pourra sélectionner avant

de boucler sur la méme séquence. Certains générateurs peuvent avoir des périodes plus
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courtes pour d’autres raisons, et on préférera les générateurs qui ont les plus grandes périodes

possibles.

En terme de variable aléatoire, et en supposant satisfaites les propriétés précédentes, un
générateur pseudo-aléatoire uniforme sur |0, 1[ sera pour nous, par la suite, un moyen de
simulation des observations indépendantes d’une variable aléatoire continue et uniforme sur
10, 1].

Peu de générateurs pseudo-aléatoires peuvent satisfaire aux critéres définis par la pro-
cédure de test “DIEHARD” [51]. On peut citer un générateur mis au point par Marsaglia,
Zaman et Tsang [52], qui a une période de 10%3. Ce générateur a été adapté sous la forme
de la routine CERNLIB V113, RANMAR par F. Carminati et F. James. On peut également
citer le générateur pseudo-aléatoire RAN2 de Numerical Recipes [65]. D’autres générateurs
sont couramment utilisés, bien que ne satisfaisant pas a tous les critéres de test ; par exemple,
les générateurs congruentiels linéaires [45]. Malheureusement, ils ont des périodes typique-
ment inférieures a 232, ils sont donc rapidement épuisés par les moyens de calcul modernes,

et doivent étre évités.

4.2.2 Exemple : calcul de 7
On peut introduire le principe de la méthode de Monte-Carlo au travers de ’exemple

suivant qui consiste & estimer le nombre 7 a ’aide d’un algorithme basé sur la méthode de

Monte-Carlo et qui est certes peu efficace, mais d’un intérét pédagogique certain.

YA

succes

_|_

X

F1G. 4.1: Tirage aléatoire de points dans le premier quadrant



Chapitre 4 Méthodes de Monte-Carlo et algorithmes 76

Considérons le schéma représenté Fig. 4.1 : un cercle de rayon unité, dans le premier
quadrant trigonométrique. On sait que la valeur du nombre 7 est égale a 4 fois le rapport de
I’aire du quart de cercle et de celle du carré entourant ce quart de cercle. Supposons que 1’on
dispose d'un générateur pseudo-aléatoire capable de générer de fagon uniforme des nombres
entre 0 et 1. Utilisons 'algorithme suivant pour estimer le rapport des deux aires :

— Génération des coordonnées (z,y) d’un point situé dans le carré a l'aide de deux
nombres aléatoires r; et 75 choisis de fagon uniforme entre O et 1 : x =17y et y = rs.

— Incrémentation des compteurs : si le point de coordonnées (x,y) se trouve a l'intérieur
du quart de cercle (si z? + y? < 1), alors on augmente d’une unité le compteur du
nombre de succés n,. Sinon on augmente d’une unité le compteur du nombre d’échecs
Ne.-

— Au bout de N tirages (on a forcément N = ng + n.), on détermine une estimation m

de 7 par la relation suivante : m = 4% sachant que n,/N représente un estimateur du

s
4

La valeur de 7 ne peut étre atteinte que pour un nombre infini de réalisations aléatoires :

. 2
rapport des deux aires : -/ r? =

. Ns
T = A}l_r)noo 4ﬁ (4.1)

Dans ce qui suit, on va essayer de formaliser le raisonnement précédent en termes sta-
tistiques, en particulier pour accéder & une quantification de 'incertitude que ’on commet
en estimant une valeur de 7 (par utilisation d’un nombre N fini de réalisations aléatoires).
Nous allons tout d’abord rappeler le théoréme limite central, qui est a la base de tout le
raisonnement qui va étre fait. Les notions d’espérance (notée E) et de variance (notée Var)
d’une variable aléatoire sont supposées connues. L’écart-type d’une variable aléatoire sera

noté o.
Théoréme limite central :

Soient W1,Ws,...,W,, une suite de n variables aléatoires indépendantes et parentes. On
suppose que E(W;) = m et Var(W;) = 0% quel que soit i. On forme alors S,, = W + Wy +

_ Sp—n.m
.+ W, et U, = =

La loi limite pour n — oo de U, est une loi de Laplace-Gauss de valeur moyenne 0 et

d’écart-type 1.
Conséquence pratique de ce théoréme :

Pour une valeur suffisamment grande de n, .S, obéit sensiblement & la loi de Laplace-

Gauss de valeur moyenne n.m et d’écart-type o.,/n
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Comment utiliser ce résultat dans notre cas?

On pose X1, Xo,...,Xn et Y1, Ys,...,Yn, (2IV) variables aléatoires indépendantes et parentes
de densité uniforme sur [0 ; 1]. On construit W; = 4H(1 — X? — Y;?), une suite de variables
aléatoires de moyenne m et d’écart-type o. H est la fonction de Heaviside : H(1—x22 —y?) = 1
si 2?2 + y? < 1, et 0 sinon. On construit également Sy = le\il W; et My = SWN D’aprés
la conséquence pratique du théoréme limite central, My a approximativement? une valeur

moyenne m et un écart-type \/Lﬁ

L’algorithme de Monte-Carlo construit sur ces bases peut étre vu comme effectuant
une réalisation unique de la variable aléatoire My. Cette réalisation a une probabilité
0,683 de se trouver dans 'intervalle [m — \/Lﬁ; m + ﬁ], une probabilité 0,954 de se trouver
dans l'intervalle [m — 3%; m —+ 3\/;%], une probabilité 0,997 de se trouver dans 'intervalle

[m — 5\/;%; m 4+ 5\/Lﬁ] La question qui se pose maintenant est : comment estimer m et o ?

m et o sont respectivement la moyenne et I’écart-type de la variable aléatoire W; (quel que
soit 7). On peut, cette fois-ci, voir I’algorithme de Monte-Carlo comme un moyen d’obtenir
N réalisations de W; (quelle que soit la valeur de 7). Si N est suffisamment grand, on peut
considérer que la moyenne et I’écart-type associé aux N réalisations wq, ws,...,wyN sont de

) ) o
bonnes estimations de m et de ik

Dans le cas particulier de cet exemple, on peut exprimer de fagon analytique la variance
de la variable aléatoire My ; on sait que Var(My) = +Var(W) = wVar(4H(1 - X7 - Y?)),

- N
d’ou :
1 2 2
Var(My) = < Var <4H(1 X2y, ))
2 (4.2)
= 5 |B(0 - x2 - v2) - (R0 - X2 - YD)
On a:
B(HA(1 = X2 = Y2)) = & S8 M1 —a? = ) = & S8 H —a? =) = 3
2 2 2 )2 (4.3)
B (H(1- X2 - Y?)) = ()
Donc, finalement :
167 T
Var(My) = NZ<1 - Z> (4.4)

Le tableau suivant présente les valeurs de m (calculé par la méthode de Monte-Carlo a

2Gi N est assez grand, I’écart 3 la loi limite est trés faible et cette approximation est excellente.
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l'aide de N réalisations aléatoires), o, I’écart-type calculé par la méthode de Monte-Carlo
et oy écart-type théorique de la variable aléatoire My. Les résultats sont présentés pour
différents nombres de réalisations aléatoires N. On peut comparer les valeurs de o, obtenues

aux valeurs théoriques de o,; & IV identique.

N m Om, oM

10! 2,8 5,79655.107! | 5,19304.10~*
102 2,9 1,75454.107% | 1,64218.10°¢
104 3,09 |1,67713.1072 | 1,64218.1072
109 || 3,142 | 1,64161.1073 | 1,64218.1073
108 || 3,1417 | 1,64207.10~* | 1,64218.10~*

TAB. 4.1: Valeurs de m, o,, et o); obtenues pour différentes valeurs de N, le nombre de
réalisations aléatoires.

Pour chaque valeur de NV, 7 se situe dans U'intervalle [m — o,,, m + 0,,] avec une probabi-
lité 0, 683, dans l'intervalle [m — 30,,, m + 30,,] avec une probabilité 0, 954 et dans I'intervalle
[m — 50, m + 50,,] avec une probabilité 0,997. On constate bien que o;; est mieux estimé

par 0, pour un grand nombre de réalisations aléatoires N.

Enfin, il est clair que cette méthode peut étre considérée comme numériquement lente :
elle ne permet pas de converger trés rapidement vers la valeur 7. L’incertitude décroit comme
1

TN lorsqu’on augmente d’un facteur 100 le nombre de réalisations aléatoires (et donc,

directement, le temps de calcul), I'incertitude ne diminue que d’un facteur 10.

4.2.3 Estimation d’intégrales & une seule dimension par la méthode
de Monte-Carlo

Méme si la méthode de Monte-Carlo se révéle particuliérement efficace pour I’estimation
d’intégrales multiples, le principe de la méthode générale va tout d’abord étre expliqué pour

des intégrales a une seule dimension.

4.2.3.1 Méthode de Monte-Carlo simple

Soit une fonction f définie et continue sur 'intervalle [a, b]. Comme le montre la Fig. 4.2,
I'intégrale définie par la relation 4.5 peut étre graphiquement représentée comme ’aire sous

la courbe de f(z) entre a et b :
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A / f(x)da (4.5)

YA

f(x)

N
/

7
iz

(6] a b

=Y

F1G. 4.2: Représentation graphique de la fonction f

L’équation 4.5 peut étre reformulée de la fagon suivante :

A=(b—a) / . ! ~f(a)da (4.6)

On définit une variable aléatoire X, de densité de probabilité uniforme sur [a,b]. Le
probléme de l'estimation de A peut étre reformulé, a partir de la relation 4.6, en termes de
I’estimation de I’espérance de la variable aléatoire X :

A=(b— a)E[f(X)] (4.7)

En pratique, on génére une suite de N nombres aléatoires x; compris entre a et b et
distribués selon une densité de probabilité uniforme dans I'intervalle considéré. A partir de

cette suite de nombres aléatoires, on calcule un estimateur m de A :

m="20 ) (48)

Nous avons vu sur 'exemple précédent que pour N suffisamment grand, ’écart-type de m
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est :

o(f(X)) (4.9)

am:\/< f(x? > —m? ~

L
VN

YA

f(x)

=Y

F1G. 4.3: Exemple de fonction f présentant une forte variation localisée

Comme dans I'exemple précédent, la valeur de I'intégrale recherchée est la valeur prise

par m pour un nombre infini de réalisation aléatoires :

A= lim m= lim b_aZf(a:i) (4.10)

N—oo N—oo N

Un algorithme basé sur ce principe peut rencontrer des problémes de convergence, no-
tamment dans le cas ou la fonction f présente de fortes variations localisées (cf. Fig. 4.3) :
I'intervalle [a,b] étant échantillonné de fagcon homogéne, on visite de fagon équiprobable
toutes les zones entre a et b, ce qui peut conduire a des vitesses de convergence numérique

relativement faibles.

4.2.3.2 Optimisations possibles du processus de convergence

On introduit maintenant une variable aléatoire X de densité de probabilité pdfx sur [a, 0],
telle que pdfx soit continue et positive sur [a,b]. L’équation 4.5 peut s’écrire sous la forme

suivante :

A:/ pde(x)]%dx:/ pdfx(x)g(z)dz (4.11)
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Le calcul de A peut encore une fois se ramener au calcul d’une espérance :

A=E [g(X)} (4.12)

Suivant Eq. 4.11, A se présente maintenant comme la moyenne de la fonction g, pondérée

par pdfy. La fonction g est définie par :

g=— (4.13)

Comme précédemment, & chaque nombre aléatoire x; généré selon la densité de probabilité

pdfx, va correspondre une valeur g(z;) utilisée pour calculer m et son écart-type o, :

m = b ]_\fa ;g(zz) (4.14)
o = /< 9@ > — < g(zs) 2 ~ \/Lﬁa[g(X)] (4.15)

Cette liberté sur le choix des fonctions de densité de probabilité peut conduire a un écart-
type o, plus faible que dans le cas d’un échantillonnage uniforme, pour un méme nombre
de réalisations aléatoires N ; il suffit, en effet, que la fonction pdfy “imite” le comportement
de f sur [a, b] pour que les valeurs g(z;) soient plus rassemblées autour de leur moyenne m :
la variance de g(X) sera moins importante que celle de f(X) dans ce cas particulier (leurs
espérances restant par ailleurs égales). Méme si la loi de décroissance de o, en x/_lﬁ ne change
pas, il est possible d’obtenir une convergence plus rapide de 1’algorithme en choisissant de

facon judicieuse la fonction pdfy.

Allons jusqu’au bout de ce raisonnement : dans le cas extréme ol on sait échantillonner
W, on obtient : g(z) = fab f(x)dx = A, et donc Var [g(X)] =0.

Cela revient a calculer A pour chaque événement aléatoire, la variance de ’estimateur m de-

suivant la fonction pdfx =

vient donc nulle. Cette situation constitue une illustration du cas limite oul on connait la
fonction de pondération pdfyx idéale, et donc le résultat A. Il va sans dire que l'utilisation
d’un algorithme de Monte-Carlo est dans ce cas inutile. Par contre, il est possible d’utiliser
les résultats connus dans un ou plusieurs cas limites pour construire une fonction pdfy en
accord avec les cas limites, et adaptée au probléme dans les cas intermédiaires. Pour donner
un exemple concret dans le domaine d’étude des transferts radiatifs, il est souvent possible

d’obtenir la solution du probléme dans les cas limites optiquement épais et optiquement
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mince. Nous utilisons alors ces résultats, connus pour les deux cas limites, afin de trouver
une fonction de pondération pdfx qui soit égale a la fonction aux limites optiquement

. f
fa f(z)dz

f
f; f(z)dz
dans les cas intermédiaires.

mince et épaisse, et la plus proche possible de

4.2.3.3 Exemple

Afin d’illustrer sur un exemple simple les propriétés de convergence des algorithmes de

Monte-Carlo optimisés, considérons l'intégrale suivante :

b
A:/ e dx (4.16)

Le résultat de cette intégrale, calculé analytiquement pour a = 0 et b = 0,05 est :

A=1-e"%~4 8771072 (4.17)

donné avec une précision de 107°.

L’équation 4.16 peut se réécrire, de fagon générale, sous la forme suivante :

A / pde(x)]#zx)dx (4.18)

ou pdfx est une fonction de densité de probabilité. Dans un premier temps, choisissons

par exemple une fonction de densité de probabilité uniforme; la relation 4.18 s’écrit alors :

b
1
- 4.1
A /ab a(b a)e” “dx (4.19)

Cette premiére formulation permet de concevoir un algorithme de Monte-Carlo (que nous
appellerons algorithme 1) qui utilise la fonction de densité de probabilité uniforme pdf;(z) =
ﬁ pour générer une suite de N nombres aléatoires indépendants r; de fagon uniforme entre
a et b, pour calculer un estimateur m; de A de la fagon suivante : m; = Zf\il wy,; dans lequel

Ti

les wy ;, que I'on nomme traditionnellement poids, sont définis par : w;; = e~ ",

En introduisant une densité de probabilité pdf, non nulle sur Iintervalle [a, b], on peut

écrire l'intégrale 4.18 sous la forme :
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—T

b
e
A / pdfs(2)——d (4.20)
a pdfg(ﬂf)
L’algorithme de Monte-Carlo basé sur cette formulation (que nous appellerons algo-
rithme 2) utilise la fonction de densité de probabilité pdfs pour générer une suite de N
nombres aléatoires indépendants x; répartis entre a et b, afin de calculer un estimateur ms

de A de la fagon suivante : mo = Zfilwzi, les facteurs wy; étant les poids associés a ce
e %

pdfa(z;)

exemple, la fonction de densité de probabilité pdfs(z) = a(1 — ), développement limité au

second algorithme, et qui sont définis par : wy; = g(z;) = . Nous avons choisi, pour cet

premier ordre de la fonction e~ autour de zéro, a étant la valeur qui permet de normaliser
__ 1
ff(l—x)d:c

L’échantillonnage suivant pdf; se fait de la fagon suivante :

la fonction pdfs sur I'intervalle [a,b] : on a ici a =

— Choix d’un nombre aléatoire r; de fagon uniforme sur [0, 1]
— Inversion de la fonction de répartition (ou fonction cumulée) cdf; de pdfs pour obtenir
le nombre z;.3

Dans cet exemple, on peut connaitre les écarts-types théoriques oy, et oy, :

o3, = %0? |F(0)] = % (BLPAX)] - B2[1(X)])

2 12 1 2 2 (4.21)
o3, = %0?[9(X)| = £ (E[¢*(X)] - E*[g(x)])
On obtient finalement :
oNy R ﬁ?, 039.10~4 (4.22)

o, & 1,877,107

L’écart-type théorique oz, que ’on obtient en optimisant le tirage aléatoire est inférieur

d’un ordre de grandeur a 1’écart-type théorique o), obtenu avec un tirage uniforme.

Nous reportons dans la table 4.2 les résultats obtenus par le calcul Monte-Carlo pour les

3La fonction de répartition cdf; associée & la densité de probabilité pdf; est dans ce cas définie par :
cdfz(z) = [ pdfa(2’)da’. Soit une variable aléatoire X de densité de probabilité pdfx définie sur un intervalle
[a,b] ; on note cdfx la fonction de répartition associée telle que cdfx = faw pdf (2’)dz’ qui est une fonction
monotone croissante. La variable aléatoire C' = cdfx (X)) a une densité de probabilité uniforme sur [a, b]. Ce
qui permettra, dans le cas ol la primitive de pdfx est connue, de générer un nombre aléatoire x; selon la
densité de probabilité pdfx, suivant la procédure :

— On génére un nombre aléatoire r; uniforme sur [a, b].

— On calcule z; = cdf " (r;)
Dans le cas général, cependant, la fonction pdfx n’est pas connue analytiquement, ou est trop complexe
pour étre inversée analytiquement. La méthode acceptance/rejet de Von Neuman présente dans ce cas-1a une
alternative pour échantillonner une variable aléatoire X suivant la fonction pdfx.
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deux méthodes, ainsi que les valeurs théoriques.
N my Omy oM, Mo Oy O M,
101 4,87.107% | 2,2231.107% | 2,2260.10~* | 4,8769.1072 | 6,3021.107% | 5,9345.1076
102 || 4,880.1072 | 6,9189.107° | 7,0393.107° || 4,8768.107% | 1,8386.107% | 1,8767.107°
10 || 4,8765.107% | 7,0189.107% | 7,0393.107¢ || 4,87706.1072 | 1,8657.10~" | 1,8767.10~7
106 || 4,87716.1072 | 7,0393.1077 | 7,0393.10~7 | 4,877055.1072 | 1,8708.10~% | 1,8767.10~®

TAB. 4.2: Valeurs de m, o0,, et o); obtenues pour différentes valeurs de N, par les méthodes
de Monte-Carlo : #1 : avec tirage aléatoire uniforme entre a et b; #2 : avec optimisation du
tirage aléatoire.

On peut constater que les écarts-types o,,, obtenus avec optimisation du tirage aléatoire
sont toujours inférieurs d’un ordre de grandeur aux écarts-types o,,, obtenus avec tirage
uniforme. D’autre part, les estimateurs o,,, et 0,,, de oy, et 0,7, sont obtenus avec d’autant

plus de précision que le nombre de réalisations aléatoires N est important.

Dsitribution des poids ®
0-6 T T T — T T T

@4
.
0.5 | 2 1
0.4 | 1
g 03} d ]
o
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01} I 1
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 101}

o !
0.047 0.0475 0.048 0.0485 0.049 0.0495 0.05 0.0505
X

F1G. 4.4: Représentation graphique des poids calculés par les deux algorithmes de Monte-
Carlo.

Enfin, la figure 4.4 représente la distribution des poids w; et w, obtenus par les deux
algorithmes, pour N = 10* tirages aléatoires. On peut constater que si les poids calculés par
I’algorithme 1 semblent répartis de fagon uniforme, ce n’est pas le cas pour les poids obtenus
par le second algorithme : I'utilisation d’une fonction pdf, qui “imite” les variations de la
fonction f sur 'intervalle [a, b] permet de générer des poids we; = g(z;) dont les valeurs sont
trés rassemblées autour de la valeur de A (ici A ~ 4,877.1072), ce qui permet d’expliquer la

faible variance o?(M,) associée & Pestimation de A par le second algorithme.
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4.2.4 Calcul d’intégrales multiples

Le principe du calcul d’intégrales multiples (de dimension supérieure a 1) par la mé-
thode de Monte-Carlo est strictement identique a celui qui a été présenté pour le calcul des

intégrales de dimension un [64]. Soit I'intégrale A suivante, de dimension n :

A:/ dxl/ dxg.../ dx, f(z1, xa, ..., Ty) (4.23)
Dl DQ n

Comme dans ’exemple précédent, il est possible d’échantillonner chaque variable aléatoire
Xy, Xo, ...,X,, uniformément. On peut également définir une fonction de densité de proba-
bilité pdf (z1, xs, ..., x,) définie sur le domaine D = Dy x Dy X ... X D,, permettant d’échan-

tillonner I’ensemble des variables aléatoires X; suivant cette fonction de densité de probabi-

lité :
A:/ dxl/ de.../ dx,pdf (x1, T2, ..., Ty) @1, 22, Tn) (4.24)
Dl DQ n

pdf (x1, Ta, ..., Tp)

Une autre solution consiste a définir n fonctions de densité de probabilité pdfx,, pdfx,, ... ,pdfx,
associées aux n variables aléatoires X, X,, ..., X, : chaque variable aléatoire X, sera échan-
tillonnée suivant sa fonction de densité de probabilité associée pdfx,, définie sur le domaine
Dz’ :

n

A= /Dl pdfx, (z1)dz /D2 pdeQ(xQ)de-../ pdfx, (z,)dz,g(x1, T2, ..., Ty, (4.25)

avec :
f(zy, 2o, ..., xy)

~ pdfx, (21)pdfx, (2) . pdf x, (€n)

g(x1, Toy vy ) (4.26)

Les n fonctions de densité de probabilité pdfx, sont indépendantes les unes des autres.
Par contre, ces fonctions de densité de probabilité peuvent étre définies de telle facon que
I’échantillonnage d’une variable aléatoire particuliére dépende de la valeur obtenue par une
autre variable. Par exemple, dans I’équation 4.25, on peut échantillonner la variable X7, indé-
pendante de toutes les autres variables aléatoires, selon la fonction de densité de probabilité
idéale :

dxs... dx, f(x1, T, ..., Tp)
pAf X, ideat(T1) = Je Jo, 1 (4.27)

Ensuite la variable aléatoire X, sera échantillonnée a son tour. Il est possible que X,

dépende de X, auquel cas I’échantillonnage de X, sachant X; se fera suivant la loi de
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densité de probabilité idéale :

st dxs... fDn dx, f(x1, 29, ..., Ty)
fD2 dxs... fDn dx, f(x1, 2, ..., Tp)

PAf Xy ideal (T2/T1) = (4.28)

Donnons un exemple concret de telles variables aléatoires dépendantes, sous la forme
d’un algorithme de Monte-Carlo appliqué a la simulation des transferts radiatifs. Un tel
algorithme, basé sur le modéle physique classique de transport corpusculaire des photons,
devra simuler numériquement 1’émission de photons a I'intérieur d’un volume de gaz donné,
puis le transport de ces photons dans le systéme. Considérons un milieu semi-transparent
purement absorbant. Les trajectoires des photons sont alors des droites. Pour un photon
donné, les choix de la position du point d’émission et de la direction de propagation ne sont
& priori pas corrélés, et ces choix peuvent se faire dans n’importe quel ordre. Cependant,
dans un souci d’optimisation de 1’algorithme de Monte-Carlo, on peut souhaiter choisir en
premier la direction de propagation et ensuite seulement la position du point d’émission.
C’est le choix qui a été effectué pour la mise au point de I’algorithme de transfert radiatif
présenté par A. de Lataillade [15], afin de résoudre le probléme de convergence de ’algorithme
dans les milieux optiquement épais purement absorbants. Dans ce cas précis, le choix de la
position d’émission des photons dépend du choix précédemment effectué sur la direction de

propagation de ces photons.

4.2.4.1 Algorithmes de Monte-Carlo, formulation mathématique et modéle phy-

sique

Nous avons choisi de présenter, dans ce début de chapitre, la méthode de Monte-Carlo
d’un point de vue mathématique. Nous avons notamment accordé une importance particu-
liére & la formulation des problémes, et c’est de fagon naturelle que les algorithmes basés sur
la méthode de Monte-Carlo qui sont présentés en exemples découlent de cette formulation.

Cependant, il est tout a fait envisageable de mettre au point un algorithme basé sur
la méthode de Monte-Carlo sans expliciter I’étape de formulation. Restons dans le cadre
des problémes de simulation des transferts radiatifs. Un algorithme de Monte-Carlo visant
a effectuer une simulation de transfert radiatif peut parfaitement étre basé sur un modéle
physique simple de transport corpusculaire de photons : émission de photons par les élé-
ments du systéme (surfaces et volumes de gaz pour l'infrarouge), transport de ces photons,

éventuellement avec prise en compte du phénoméne de diffusion et finalement absorption des
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photons par les différents éléments du systéme. *

Dans une configuration simple (parois noires, calculs monochromatiques), un tel algo-
rithme de Monte-Carlo est facile & mettre en oeuvre, et la formulation sous-jacente du trans-
fert radiatif n’a pas besoin d’étre explicitée. Méme dans le cas ol on désire introduire des
fonctions de densité de probabilité adaptées aux différents choix qui doivent étre effectués
(choix d’une fréquence, d’une direction, d’une position, ou d’une longueur avant la prochaine
diffusion), il est toujours possible de ne jamais s’intéresser a la formulation, méme si celle-ci

peut aider a effectuer ces choix dans un ordre judicieux.

En revanche, dés que le probléme physique devient plus complexe, par exemple si on doit
tenir compte de réflexions multiples aux parois, ou si on veut choisir les directions de diffusion
selon une densité de probabilité différente de la fonction de phase du milieu, afin d’explorer
I’espace des chemins optiques de maniére plus efficace et donc de réduire la variance associée
au résultat, ’algorithme de Monte-Carlo qui en résultera peut étre partiellement ou méme
totalement découplé du modéle physique de transport corpusculaire initial. La formulation du
probléme devient alors essentielle. Il est méme possible de reformuler le transfert radiatif en
ayant pour objectif I'optimisation des lois de tirage aléatoire, et de construire un algorithme
de Monte-Carlo sur la seule base de cette formulation. Auquel cas I'image que 'on a du
modeéle physique de transport corpusculaire reste valable, mais n’a plus de lien direct avec
I’algorithme existant. C’est dans ce contexte qu’a été mis au point I’algorithme de Monte-
Carlo présenté au paragraphe suivant, et qui sert de base au modéle de transfert radiatif

atmosphérique qui sera présenté par la suite.

4.3 Présentation de Palgorithme pour calcul des trans-

ferts radiatifs en milieu absorbant et diffusant

Les développements théoriques présentés ici ont conduit a la mise au point d’'un algo-
rithme basé sur la méthode de Monte-Carlo, permettant la modélisation des transferts ra-
diatifs dans le cadre trés général des milieux absorbants et diffusants. Méme si les exemples
donnés sont des applications en géométrie unidimensionnelle, la formulation utilisée est 3D,

et les lois de densité de probabilité qui sont présentées sont valables quelle que soit ’épaisseur

4Un tel algorithme peut également étre vu comme une méthode de simulation d’une chaine de Markov
constituée par la succession des événements d’absorption et de diffusion. Dans cette optique, 1a méthode de
Monte-Carlo vue comme une méthode de résolution d’intégrales multiples (cf. paragraphe 4.2) permettra de
résoudre la suite d’intégrales résultant d’une formulation en termes de chaine de Markov.
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optique du systéme. Les optimisations de la méthode de Monte-Carlo qui sont présentées
font suite au travail d’Amaury de Lataillade [13, 15] dans lequel est présenté un algorithme

de Monte-Carlo optimisé pour les milieux optiquement épais purement absorbants.

Les optimisations apportées ici a la méthode de Monte-Carlo appliquée au domaine du
transfert radiatif peuvent étre regroupées en deux catégories : d’une part, les optimisations
liées aux lois de densité de probabilité, qui permettent de réduire la variance de 'intégrale
multiple qu’il s’agit d’estimer ; et d’autre part, une reformulation des transferts radiatifs en
termes de Puissances Nettes Echangées (PNE), basée sur le principe de réciprocité °, qui a
permis de poser des intégrales dont la variance sera naturellement réduite. Ces deux points

peuvent étre illustrés sommairement de la fagon suivante.

1 - La nécessité de trouver des lois de densité de probabilité adaptées au probléme a
été démontrée au paragraphe précédent. I s’agit d’estimer le résultat de l'intégration a
une précision donnée, en diminuant autant que possible le nombre de réalisations aléatoires
nécessaires pour atteindre cette précision. Dans le cas d’un milieu épais purement absorbant,
par exemple, si on choisit de facon uniforme les positions d’émission de rayons dans un
volume de gaz, la plupart des rayons sortiront de ce volume presque totalement absorbés, et
ne contribueront que trés peu a I’échange de ce volume de gaz avec le reste du systéme. En
revanche, si on utilise une loi de densité de probabilité qui permet de choisir les positions
d’émission de facon privilégiée a proximité des parois des volumes de gaz, la plupart des
rayons seront émis prés des parois du volume, seront donc trés peu absorbés en sortie du
volume d’émission, et chaque rayon contribuera donc de facon plus importante au bilan
total du volume émetteur avec le reste du systéme, ce qui permet de réduire la variance
sur l’estimation de ce bilan (meilleur convergence numeérique). Ce point constitue une des
principales optimisations de ’algorithme de Monte-Carlo présenté en 2002 par Lataillade et
al. [15].

2 - Les avantages d’une reformulation des transferts radiatifs en termes de Puissances
Nettes Echangées ont été amenés par Green et Hottel [34, 37] en 1967. Parmi les grandeurs
radiatives que 1’on souhaite souvent estimer, les termes sources occupent une place privilé-

giée notamment pour les besoins d’analyse. Un terme source s’exprime comme une somme

5Le principe de réciprocité appliqué au transfert radiatif peut s’énoncer de la facon suivante : si un trajet
lumineux, aussi complexe soit-il, permet & un photon émis depuis un point A (source) de rejoindre un point
B (capteur), alors il existe un trajet lumineux qui permettra & un photon émis depuis le point B d’arriver
au point A. De plus, 'atténuation le long du chemin reliant les points A et B étant la méme dans les deux
sens de propagation, la probabilité d’existence du chemin sera identique dans les deux sens. En d’autres
termes, le principe de réciprocité permet d’intervertir les positions de la source et du capteur. Le principe
de réciprocité satisfait donc au second principe de la thermodynamique.
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de puissance nettes échangées : il est donc nécessaire, pour le calcul, d’estimer les puissances
nettes échangées entre les divers éléments du systéme. Calculer les puissances nettes échan-
gées U,;; dans un code basé sur une méthode de Monte-Carlo formulée en flux nécessite le
calcul de la puissance ¢;_.; émise par ¢ et absorbée par j et de la puissance ¢;_,; émise par
7 et absorbée par 7 :

Wij = bimj = Pji (4.29)

La formulation en PNE a ensuite été utilisée dans des algorithmes basés sur la méthode de
Monte-Carlo |9, 10, 21]. Elle a permis d’améliorer la convergence des algorithmes dans le cas
de la simulation des transferts radiatifs dans les milieux quasi-isothermes : en effet, si deux
volumes de gaz 7 et j ont des températures trés proches, ¢;_,; aura une valeur trés proche de
¢j—i. L'estimateur de la différence [gzﬁz-_d = qﬁj_,z-} aura une convergence trés lente. Les deux
puissances doivent donc étre estimées avec une grande précision pour que leur différence
puisse étre estimée avec une précision suffisante, ce qui demande d’effectuer deux calculs par
la méthode de Monte-Carlo avec un grand nombre de réalisations aléatoires. En revanche,
si on formule directement les transferts radiatifs en termes de puissances nettes échangées,
c’est & dire si on cherche & calculer V;; = ¢,_.; — ¢;_; (sous forme d’une intégrale multiple),

la convergence numérique du résultat sera plus rapide.

Le reste du paragraphe 4.3 est constitué d’un article qui a été soumis pour publication
dans Journal of Quantitative Spectroscopy and Radiative Transfer, intitulé A Boundary-
Based Net Exchange Monte-Carlo Method for absorbing and scattering thick
media, par V. Eymet, R. Fournier, S. Blanco and J.-L. Dufresne [26].
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4.3.1 Introduction

The Monte-Carlo Method (MCM) has been widely used in the field of transport pheno-
mena simulation, and more specifically in the field of radiative transfer computing [35, 41, 42].
In this particular case, the method mainly consists in simulating numerically the physical
statistical model of photons transport, from their emission to their absorption in a poten-
tially scattering medium. A well known advantage of this method is that the corresponding
computing code is easy to set up and to modify. Another main advantage is that it is a refe-
rence method : as the MCM is a statistical method, a standard deviation may be computed
in addition to each result, that may be interpreted as a numerical uncertainty. Also, it has
recently been shown that the MCM allows the computation of parametric sensitivities with
no extra significant computing [14]. This can be helpful for design needs, or when radiative
transfer is coupled with other physical processes. Finally, the MCM is known to be well adap-
ted to the treatment of configurations with a high level of complexity (complex geometries,
complex spectral properties, ...). However, in spite of these advantages over other methods
and in spite of the regular increase of available computational powers, the computational

effort requirement of MCM often remains a significant drawback.

Different works in the last fifteen years tried to preserve the main advantages of the
method, in particular its strict analogy with physical processes, and the ability to solve
complex problems, while trying to improve convergence qualities. There are mainly two
ways MCM convergence can be enhanced : formulation changes and adaptation of sampling
laws [35]. As far as formulation is concerned, most attention has been devoted to reverse
Monte-Carlo algorithms [85], that make use of reciprocal transport formulations (application
of the reciprocity principle to the integral form of the radiative transfer equation), and
to net-exchange Monte-Carlo algorithms [9, 10, 18, 79|, that make use of net exchange
transport, formulations (combination of forward and reciprocal formulations, photons being
followed both ways along each optical path). Net-exchange Monte-Carlo algorithms allowed
in particular to bypass the problem of standard Monte-Carlo algorithms for quasi-isothermal
configurations. As far as sampling laws optimization is concerned, numerous works have
successfully used the biasing of sampled directions toward the parts of the system that most
contribute to the addressed radiative quantity [53|, or the biasing of sampled frequencies as

function of temperature field and spectral properties [10, 19].

Recently, the combination of formulation efforts and sampling laws adaptations permitted
to solve the well known convergence problem of traditional Monte-Carlo algorithms in the

case of strong optical thickness configurations [15]. If a gas volume is optically very thick,
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most emitted photons are absorbed very close to their emission position, and thus do not
take part to the exchange of the gas volume with the rest of the system. Consequently,
very large numbers of statistical realizations are required to reach satisfactory convergences.
This problem could be solved in the case of purely absorbing systems thanks to a net-
exchange formulation in which emission positions are sampled, starting from the volume
boundary, along an inward oriented sampled direction (a formulation that will be named
here a "boundary-based net-exchange formulation"). All sampling laws (frequency, boundary
position, direction and emission position) where also finely optimized in order to insure that
the algorithm automatically adapts to system optical thickness in the whole range from the

optically thin to the optically thick limits.

The present paper is one of a series that seek to improve the MCM through such metho-
dological developments. It proposes techniques to take into account scattering in the above
mentioned boundary-based net-exchange algorithm. The formulation used in [15] has been ge-
neralized and clarified in order to take into account the scattering phenomena. Developments
are fully 3D, but convergence illustrations are presented for plane parallel configurations that

are specifically meaningful in the atmospheric science community.

Sec. 4.3.2 of this article puts the emphasis on the multiple integral theoretical develop-
ments on which our Monte-Carlo algorithm is based. Sec. 4.3.3 presents gas volume emission
results in a simple test case, thus revealing the algorithm convergence qualities together with
its limits of applicability. Finally, Sec. 4.3.4 completes this convergence illustration in terms

of radiative flux divergence profiles.

4.3.2 Theoretical developments

The three next paragraphs deal with improvements that were brought to the standard
bundle transport MCM during the last few years, through a number of different methodolo-

gical developments.

4.3.2.1 Exchange Formulation

Let us consider that, for the purpose of a 3D radiative transfer computation, the conside-
red system is divided into volume and surface elements. Until further mention, this geometric
division is only motivated by the required level of analysis and it therefore implies no phy-
sical assumption : the volume and surface elements have any geometrical shapes and are

inhomogeneous.



Chapitre 4 Méthodes de Monte-Carlo et algorithmes 92

F1G. 4.5: Discretization of an absorbing and scattering semi-transparent medium into volume
elements

The energy rate £;; emitted by an arbitrary gas volume ¢ and absorbed by an arbitrary

gas volume j may be expressed as :

[eS) l'T,n
B, - / dv,(P) / deo(uo) / P, PLug)dy k(P) ST, / do(P)
Vi ax L(P,ug) n=1 bom (4.30)

(2

n da’ka(a')>
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(P B(Pean(~ [

1
where B(P) is the monochromatic blackbody intensity at point P. I'(py,) represents the
space of (infinite) optical paths « originated from point P, in the direction ug, distributed
according to p(7, P, ug). Every such path will finally reach volume V; and will even cross it
an infinite number of times. [, is the curvilinear coordinate along the optical path v and [, ,
are the values of this curvilinear coordinate at the positions of the n'* intersection between
optical path v and gas volume Vj : [ stands for the n'" entry point coordinate, and Zj, "
stands for the n' exit point coordinate. o, is the curvilinear abscissa of point P in the
n'" intersection interval between v and Vj. T,,, is the transmittivity between point P and
the position [, : it is a product of exponential attenuations and of surface reflectivities for

surface reflexions.
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The integral over I'(py,) according to the distribution p(v, P, ug) will not be detailed in
this paper, because the purpose of this work is to put the emphasis on the Net Exchange For-
mulation itself, and not to deal with the physical model used for optical paths representation.
These paths are purely random walk optical paths, and all the complexities associated with
the formulation of scattering angles and free path length are deported into the expression of

p(7, P, ug), that represents formally the existence probability density of a given optical path
Y-

This formulation may be used to derive a standard path integrated Monte-Carlo algo-

rithm, that may be described as follows :

— First, the emission point P is randomly chosen in the gas volume V;, and the emission
direction ug is randomly chosen in the unit sphere (47 st).

— The optical path v is generated with a standard random walk technique.

— Each time this optical path reaches the gas volume Vj}, a point P’ is randomly chosen
along the part of v that intersects V;.

— Finally, the optical path 7 ends when it is long enough for the energy bundle to be
considered as totally attenuated (as function of the required level of accuracy).

Using a Monte-Carlo algorithm based on a traditional formulation, the Net Radiative
Budget is expressed as the difference between approximate emitted and absorbed energy
rates that are computed separately, and that can be close the one to the other for nearly

isothermal configurations, inducing numerical convergence difficulties.

4.3.2.2 Net Exchange Formulation

The Net Exchange Formulation is based on the Net Exchange Rates V;; between all pairs
of elements (either surface or volume elements) ¢ and j, which is defined as the difference
between the energy rate emitted from element ¢ and absorbed by element j, and the energy
emitted from element j and absorbed by element i.

The advantages of formulating radiative transfers in terms of Net Exchange Rates have
been shown by Green [34|. The Net Exchange Formulation has been introduced in the MCM
by [9, 10]. This radiative transfer formulation solved the convergence problem encountered
by the MCM in nearly isothermal configurations. A general formulation of a Net Exchange

Rate ¥,; between two gas volumes ¢ and j may be directly deduced from the energy rate
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equation Eq. 4.30, replacing B(P) by [B(P) — B(P’)} [18] :

e’} lfyr’n
vy = [ av(p) [ dotua) [ s Pouaddy (P)Y T [ don(P2)
v n L(pug) mri

(P [B(P) = BEean(~ [ do'hu(o)

lym

™ (4.31)

(2

where B(P!) is the monochromatic blackbody intensity at point P, in volume V; (see
Fig. 4.5). Similarity of equations Eq. 4.30 and Eq. 4.31 makes fairly easy the implementation
of a Net Exchange Formulation in a standard Monte-Carlo algorithm : the monochromatic
blackbody intensity B(P) has to be replaced by [B(P) — B(P))].

Using a Net Exchange Formulation, the Net Radiative Budget of a gas volume ¢ may be

expressed as a sum of Net Exchange Rates :

=)0y (4.32)
J

Here, using a Monte-Carlo algorithm based on a Net Exchange Formulation means that
all Net Exchange Rates are computed separately (as pondered sums of blackbody intensity
differences [B (P)— B(P' )}, which induces no numerical difficulty) and are then added to
produce the Net Radiative Budget. In the limit case of nearly isothermal configurations, no
convergence difficulty will be encountered : as it does no longer compute the difference bet-
ween two very close approximate values, a Monte-Carlo algorithm based on a Net Exchange
Formulation will lead to much better accuracies than traditional Monte-Carlo algorithms
|9, 10].

4.3.2.3 Boundary-Based Net Exchange Formulation

A typical difficulty that is encountered by any standard MCM (both bundle transport and
path integrated MC algorithms) © is the problem of optically thick systems. Let us consider
the computation of the emission F from a given gas volume, using a standard path integrated
Monte-Carlo algorithm. In the case of an optically thick gas volume, the computation of £

will suffer from a convergence problem : most bundles emitted into the gas volume will be

6The term “bundle transport algorithm” is used for algorithms in which the photon bundle’s energy is
totally absorbed at a stochastically determined position. The term “path integrated algorithm” is used for
algorithms in which the photon bundle’s energy is exponentially attenuated along the photon bundle’s optical
path
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totally attenuated when they cross the volume boundary. Only those emitted very close to
the boundary will have a chance to leave the gas volume with a significant computational
weight. Thus, the computation of £ will require a great number of statistical realizations N
in order to get a good accuracy over E. This convergence difficulty is due to the fact that
emission positions are chosen uniformly among the gas volume. A possible way to solve this
problem would be to sample more often emission positions close to the volume boundary, so
that most bundles would leave the gas volume with a significant energy, thus contributing
more significantly to £. Modifying the way emission positions are sampled means to modify
sampling laws used in the algorithm, without modifying the result of the multiple integral ;
in order to do this, we choose to use a net exchange formulation different from the initial
formulation presented in Eq. 4.31. This reformulation - that brings forward the distance

between emission point and first exit point - is the purpose of the present section.

Eq. 4.31 starts with an integration over all locations P within volume V;, then one in-
tegrates over all optical paths 7 starting at P and v happens to cross the boundary of V;
(here noted S;) at a location ) (see Fig. 4.6) : this boundary does not appear as an expli-
cit integration domain. On the contrary, the following formulation (that will be referred as
“Boundary-Based Net Exchange Formulation”) starts with an integration over all exit loca-
tions () on S;, then one integrates over the exit hemisphere at () and then over all the optical
paths initiating within V; and crossing its boundary at the retained exit location and exit
direction : the boundary of V; appears as an explicit integration domain, but not the volume
V; itself.

W, = /S a5(0) / dofu) uan L,(Q.wo) /F bl Qi

(4.33)
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where L;(Q,ug) is the fraction of the intensity at () in direction ug that corresponds to
photons emitted within V; and crossing .S; for the first time. Using the optical path reciprocity
principle, it is possible to formulate L;(Q,ug) as :

LiQuo) = [ p7: @ -uo)ds /f’ld&w) (- [Carnian) sy

1—‘(Qy—uo)

where I'(g,_u,) is the space of optical paths originated from point @, in the direction —ug
and Z:r , stands for the point at which 7 first exits V; (see Fig. 4.6).



Chapitre 4 Méthodes de Monte-Carlo et algorithmes 96

The Monte-Carlo algorithm that was derived from this new formulation of Net Exchange

Rates VU;; may be described as follows :

— First, a point () is randomly chosen on the boundary .S; surrounding gas volume V,
and the initial direction ug is randomly chosen in the exit unit hemisphere (27 st).

— Starting at () in the direction —ug, the optical path 7 is generated with a standard
random walk technique until it first exits V; and P is then randomly chosen within V;
along this truncated path.

— Starting at () in the direction ug, the optical path 7 is generated with a standard
random walk technique.

— Each time v reaches volume V}, a point P’ is randomly chosen along the part of -y that
intersects V.

— Finally, the optical path v ends when it is long enough for the net-exchange bundle to
be considered as totally attenuated (as function of the required level of accuracy).

F1G. 4.6: Boundary-based reformulation of net exchange rates

At this point of the developments, only the boundary-based reformulation of net exchange
rates has been achieved. In the next section, it will be shown how the sampling laws that arise
from this formulation (Monte-Carlo computation of the corresponding multiple integrals)

may be optimized in order to solve convergence difficulties at the optically thick limit.
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4.3.2.4 Optimization of sampling laws

The above described algorithm principle requires successive random generations’ of an
exit position @, an exit direction ug, a first exchange position P (via the curvilinear abscissa
), and second exchange positions P’ (via the curvilinear abscissa o). It can be easily shown
that any non zero probability density function may be used for each such sampling insuring
the same integral solution at the limit of an infinite number of bundles. One way of illustrating
this point is to rewrite Net Exchanges Rates ¥;;, starting from Eq. 4.33 and transforming
all successive integrals into statistical averages :

P o
= [ 1@ | pfa(uo)is(uo)

s (4.35)
[ 0w [ b @)ds(p)
T'@,—ug) 0
p(v; Q,ug)dy < pdfs, (on)doy, (P ) { I, }
/F(Q»uo) ’ 7:1[;[1 /lwn . Z ﬂn
where [, is the net-exchange density :
I, = (ug.n) ka(P)exp<— /0 ka(&f)d&') T, ko(P)) [B(P) - B(Pé)}exp(— /lnda'k;a(a’))
T (4.36)
and [ the correction term :
B = pdfs(Q)pdfa(w)pdfs(c)pdfs, (o) (4.37)

Eq. 4.35, Eq. 4.36 and Eq. 4.37 insure a continuous link between the retained photon
transport model (with a given formulation choice, here Eq. 4.33) and the Monte-Carlo al-
gorithm : successive integral averages are translated into successive random sampling events
and for each set of sampled variables the retained quantity is the sum of all Inﬁin (whose

average value will be an approximation of ¥;;). Once the transport model and the integral

"The random walk sampling laws corresponding to the generations of 7 and ~ are left apart in the present
article because no optimization is proposed concerning this part of the algorithm. Such an optimization
process is non trivial and none of the attempts made at date have enough generality to be implemented on a
standard basis. Among the most successful attempts, a specific mention can be made to the work of Berger
and al. reported in [35] for simulation of optically thick radiation shields.
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formulation have been chosen the only remaining question is the choice of the sampling
probability density functions : this last choice does not modify the algorithmic structure,
neither does it change the solution after convergence, but it strongly affects algorithmic
convergence via the variance of > > | I, 6% The more physical knowledge is introduced in
these probability density functions, the smaller the variance of > I, ﬁin and the faster
the convergence [35]. The probability density functions proposed hereafter are designed to
insure satisfactory convergence speeds for a wide range of absorption and scattering optical
thicknesses. The main objective was generality, hopping that such a set of probability den-
sity functions can serve as a starting point for more detailed adjustments when addressing

specific configurations families.

— Sampling of exit points )
The boundary sampling law pdfs(Q) has been chosen as uniform : pdfs(Q) = 1/5;.
In the general case, having no information concerning the parts of S; through which
V; exchanges most radiative energy with its environment, no better pdf adjustment
could be proposed. Obviously, for specific configurations where V; exchanges radiation
with hot spots at identified locations, this information can be directly used to modify
pdfs(Q) so that the areas of stronger net-exchanges are more frequently sampled.

— Sampling of exit directions ug
In the work of De Lataillade and al.(|15]), the angular sampling law pdfo(uo) was
optimized for the case of a purely absorbing medium. The lambertian distribution was
used for strong optical thicknesses, whereas the isotropic distribution was used in cases
of optically thin gas volumes. The limit between weak and strong optical thicknesses
was set to 7, = 1 where 7, is the absorption optical thickness of the considered volume :

1 .
pdfa(uo) =5 if T <1
T

pdfa(ue) =

(4.38)

Ug.1N

if 1, >1

In the present work, the limit criteria is modified in order to account for the effect of

scattering.

1 .
pdfa(uo) =5 if Teq=Ta+(1—g)Ts <1

pdfa(ue) =

(4.39)

Up.1

if Teqg=Ta+(1—g)15s > 1

where 7, is the scattering optical thickness of the considered volume and g is the phase

function asymmetry parameter. In the case of a purely absorbing medium, 7., = 7,
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and we are back to the proposition of [15] : when 7, > 1, the absorption mean free
path \, = i is smaller than the system size which insures that the specific intensity
of emitted photons (photons emitted within the gas volume that reach the boundary)
is close to isotropy. Multiple scattering also induces an isotropic distribution of specific
intensity at the volume boundary, but here the relevant scale is not the scattering mean
free path \; = ki but the scattering transport mean free path 1>\ng which accounts for
the shape of the scattering phase function (forward scattering induces higher values of
the transport mean free path) [7]. When the medium both absorbs and scatters, the
relevant scale is the total transport mean free path )., defined as /\%q == ,\_la + 1}\_—59 which
leads to the proposition of Eq. 4.39.

— Sampling of first exchange position P
As in [15], the first exchange position P along 7 is sampled by use of a randomly ge-
nerated abscissa ¢ between 0 and Z{ | (see Fig. 4.6). The main interest of the proposed
boundary based formulation is that the sampling law can be chosen as function of the
absorption optical thickness in order to favor emission positions close to the boun-
dary at the optically thick limit. This is done using an exponential probability density
function for 7, which corresponds to an ideal adaptation for isothermal gas volumes :

koexp(—k,0)

dfs(o) = =
pdfs(o) 1 —exp(—kal:;l)

(4.40)

Random generation of 4 is simply performed on the basis of a uniform random gene-

ration of r in the unit interval according to :

o= —kiln (1 - 7’(1 - exp(—k:J{ﬁ)) (4.41)

For small values of absorption coefficient k, (optically thin limit), the above expression
reduces to 7 ~ rz;r,l, which is equivalent to choosing uniformly & within [0, l?; 1J- The
physical significance of this, is that each point of /5 contributes the same way to the
radiative transfer, because the energy emitted at each point is totally transmitted out
of the gas volume. On the contrary, for strong values of k, (optically thick limit),
Eq. 4.41 reduces to 7 ~ —k—laln(l —r). l;r,l is no longer taken into account and most
exchange positions P are sampled in the immediate vicinity of the boundary : most
statistical events have a significant contribution to the net-exchange and the statistical
variance is reduced.

— Sampling of second exchange positions P/
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Similarly, second exchange positions are generated along v by use of randomly genera-
ted abscissa o, according to :
kaexp(—ko(on — 1 ,))

pdfs,(0n) = 71— e (kal, = L)) (4.42)

Unlike in [15], when the medium is both absorbing and scattering, the impact of these
sampling laws on the behavior of the associated Monte-Carlo algorithm is configuration

dependent : sampling law adaptation is not satisfactory in the whole parameter range. The

ks
ka+ks

leading parameter is the single scattering albedo : w =

— For w << 1, scattering is negligible compared to absorption. In this case, the medium
may be considered as purely absorbing, and it has been shown in [15] that the proposed
sampling laws are suitable for such configurations. In particular, they solve the conver-
gence difficulty encountered by Monte-Carlo algorithms in optically thick absorption
configurations.

— For usual values of w (w €]0, 1] except for values very close to unity), scattering in-
creases optical path lengths, and the use of the presented sampling laws results in a
correct sampling of both exchange positions P and P’.

— For w =~ 1, absorption is negligible compared to scattering. In this particular case, the
proposed sampling laws fail to sample efficiently the optical path space. The difficulty
may be described as follows : when scattering is the dominant process, the medium
may be considered as optically thin from the point of view of absorption. In this case,
all points into a given gas volume contribute equally to the exchange between this gas
volume and the rest of the system. Even if the use of the proposed law for pdfs (&)
will result in a uniform sampling of first exchange positions P along all generated
optical paths, most of these paths will be very short, because of the medium strong
scattering properties (intense backscattering from point @)). First exchange positions
P will therefore be mainly sampled in the vicinity of the volume boundary which is not
in accordance with the physics of radiative net-exchanges in little absorbing and highly
scattering configurations. The proposed algorithm will therefore encounter convergence
difficulties. We will see however that this difficulty is partly compensated by a reduction
of the average number of scattering events to be numerically generated, the overall cost

of the algorithm remaining satisfactory up to high albedo levels.
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4.3.3 Convergence illustration : non-isothermal slab emission

As in [15], the proposed algorithm is first tested using the academic problem of monochro-
matic slab emission. A single horizontal slab is considered, constituted of semi-transparent
medium, with uniform absorbing and scattering optical properties, between two black boun-
daries at OK. The slab physical thickness is H and the z-axis is downward-positive. The
temperature profile across the slab is such that the blackbody intensity at the considered
frequency follows a linear profile B(z) from 0 at the top to By at the bottom of the slab.
The addressed quantity is the downward slab emission, which is also the net-exchange rate
between the slab and the bottom boundary.

Fig. 4.7a-4.10a display the number of statistical realizations N needed in order to get a

1 percent standard deviation over the slab emission value, as a function of slab total optical

ks
ka+ks

Fig. 4.7b-4.10b display the mean number of scattering events < N, > along each sampled

thickness 7y, for 4 different values of the single scattering albedo w =

. Correspondingly,

optical path.

1e+07 ; ; ; 10 ;

e algo #1 - algo #1 -
algo #2 ---X-- algo #2 ---x--

algo #3 —— S | algo#3 ——

1e+06 ¢
100000

10000 F -

1000 : . . 0.0001 } : . .
0.01 0.1 1 10 100 0.01 0.1 1 10 100

T L

(a) N for w=0.01 (b) < Ny > for w =0.01

F1G. 4.7: (a) : Number of statistical realizations N required to compute slab emission with
a relative standard deviation of 1 percent as function of slab total optical thickness 7. (b) :
Average number of scattering events < Ny > as function of slab total optical thickness 7.
Calculations held with w = 0.01. Presented results correspond to three different algorithms :
standard Monte-Carlo algorithm (algo #1), boundary-based net-exchange algorithm (algo
#2), boundary-based net-exchange algorithm without the optimization of angular sampling
as function of scattering (algo #3).

In each figure, N is displayed for three different Monte-Carlo algorithms :
— 1- A standard Monte-Carlo algorithm, in which bundles are generated uniformly within

the layer, with isotropic directions, and are attenuated along their multiple scattering
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(a) N for w = 0.50 (b) < Ns > for w = 0.50
F1G. 4.8: Same as Fig. 4.7, except that w = 0.50
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* )
100000 + ]

H

(b) < Ns > for w =0.90

(a) N for w=0.90

F1G. 4.9: Same as Fig. 4.7, except that w = 0.90
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optical paths until they leave the layer (algorithm based on an exchange formulation
with a uniform law for volume sampling and an isotropic law for angular sampling, see
Eq. 4.30).
— 2 - The boundary-based net-exchange algorithm proposed in Sec. 4.3.2.
— 3 - The same algorithm except that the angular sampling law of [15] is used (see
Eq. 4.38), instead of the sampling law in which we attempted to account for scattering
(see Eq. 4.39).
It can be seen in Fig. 4.7(a) that for small values of the single-scattering albedo (w = 0.01),
N is stabilizing for algorithms 2 and 3 (boundary based algorithms) as the slab total optical
thickness 7 increases, while for algorithm 1 (standard MC algorithm), N keeps increasing
for large values of 7. In the case of intermediate single-scattering albedoes (Fig. 4.8(a),
w = 0.50) and even for moderately strong single-scattering albedoes (Fig. 4.9(a), w = 0.90),
convergence with a 1 percent error always requires a lower number of statistical realizations

for algorithms 2 and 3.

It is no longer the case for extremely strong single-scattering albedoes (Fig. 4.10(a), w =
0.9999) ; this convergence difficulty for high albedoes was explained in the previous section :
for a high value of w, the medium is optically thin for absorption, and first exchange points
P should be sampled uniformly within the slab. This is what the standard algorithm does,
whereas most optical paths sampled by algorithms 2 and 3 (starting from the slab boundaries)
are very short (because of the medium’s strong scattering coefficient) thus first exchange
positions P are mainly sampled close to the boundaries. Altogether, in the limit of extremely
high albedoes, algorithms 2 and 3 require a greater number of statistical realizations because

of a non-adapted P sampling law.

1e+06 ; . . 10000

algo #1 - algo #1 -
algo #2 ---x-- algo #2 ---x-- 1
algo #3 —— H 1000 + algo #3 —5—

100

100000

- +++++ et
10000 : ‘ : 0.01 : ‘ ‘
0.01 0.1 1 10 100 0.01 0.1 1 10 100
Ty Ty
(a) N for w =0.9999 (b) < Ns > for w = 0.9999

F1G. 4.10: Same as Fig. 4.7, except that w = 0.9999
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Fig. 4.11: N < N, > for 7y = 10
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FiG. 4.12: N < N > for 7 = 100
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However, the numerical cost of the algorithm is not directly the number of required
statistical realizations /N, but the product Nx < N; > where < N, > is the average number
of scattering events. Concerning < N, >, Fig. 4.7(b) - 4.10(b) illustrate that :

— For low values of 7 and w, the mean number of scattering events < N, > required for

each statistical realization is of the same order of magnitude for all three algorithms.

— In the special case of both high 74 and high w, < N, > can be about 10 times greater

for the standard algorithm than for algorithms 2 and 3.
This may be explained, making the assumption that < Ny >~ % =< L >k, with < L >
the average path length and \; = ki the scattering mean free path. For algorithms 2 and 3,
it has been shown (see. [4]) that < L > is independent of scattering properties : < L >= 2H.
For algorithm 1, it can be easily shown that < L > is proportional to H7,.® At high values
of w, this finally gives < N, >~ 7% for algorithm 1 and < N, >~ 27y for algorithms 2 and
3.

These two competing effects combine at high albedo and results are shown in Fig. 4.11
and Fig. 4.12. These figures display the product Nx < N; > for 7y = 10 and 75 = 100,
as a function of the single scattering albedo w. It appears that the two effects previously
emphasized for high albedo (N lower for algorithm 1 than for algorithms 2 and 3, and
< N > greater for algorithm 1 than for algorithms 2 and 3) result in the fact that algorithm
2 remains faster than algorithm 1 up to relatively high values of w, and becomes slower
above a critical value of w. The value w. at which both algorithms converge at the same
speed depend on 74, w, increasing as 7y increases (w. =~ 0.91 for 7 = 10 and w, =~ 0.998
for 7y = 100).

4.3.4 Convergence illustration : radiative flux divergence within a
non-isothermal slab

In the preceding example a linear blackbody intensity profile was used for convergence
tests concerning slab emission. This kind of blackbody intensity profile is not relevant for
radiative flux divergence computations in the limit of strong optical thicknesses : with
the underlying idea of Rosseland (diffusion) approximation, the radiative budget is in-

8This property may be derived directly from Markov theory with absorbing states [27] in a one-dimensional
case, with constant free path length (problem well known as the “Gambler’s ruin problem”). Extension to
exponentially distributed free path length is tedious but is accessible without any specific mathematical
difficulty. To our knowledge, extension to three dimensions is not available, but it may easily be observed
experimentally that the proportionality property remains valid, at least for qualitative reasonings such as
those made in the present text.
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deed only function of the blackbody profile second order derivative. Fig. 4.13-4.15 there-
fore present convergence tests with the same slab configuration as above, but with a pa-
rabolic blackbody intensity profile (By at slab boundaries and By + AB at slab center) :
B(z) = By+ AB {1 —4<

2
== %) } . Computations are performed using a slab discretization
into 20 layers of same thickness, with N = 10* statistical realizations per layer. Presented

results are the average value of the radiative flux divergence within each layer.

Fig. 4.13a-4.15a display the radiative flux divergence profile for different values of the
slab total optical thickness 75. In these successive three figures, the single scattering albedo
is respectively equal to 0.01, 0.50 and 0.90. For the same values of single scattering albedo,
Fig. 4.13c - 4.15¢ and Fig. 4.13d - 4.15d display radiative flux divergence averages in layers
3 and 10 respectively, as function of slab total optical thickness 7. Standard deviations are
presented in Fig. 4.13b - 4.15b, Fig. 4.13e - 4.15e and Fig. 4.13f - 4.15f.

Results concerning layer 3 and layer 10 are presented in logarithmic scale in order to
highlight the behaviors at the optically thin and optically thick limits where Monte-Carlo
algorithms commonly encounter convergence difficulties. In the optically thin limit, the ra-
diative flux divergence is proportional to k,, and therefore to 75 (when both layer width H
and single scattering albedo w are fixed). In the optically thick limit, short-distance energy
redistribution processes are dominant and the radiative flux divergence follows the diffusion
approximation. In the case of a parabolic blackbody intensity profile, it is constant across
the slab and (for fixed values of H and w) inversely proportional to 75 (see 4.3.6). Analytical
results corresponding to the diffusion approximation are superimposed to the Monte-Carlo
results in Fig. 4.13c-4.15¢ and Fig. 4.13d-4.15d. Also presented are the analytical results cor-
responding to the pure absorption approximation (neglecting scattering) : these analytical
solutions are available, in the specific case of a parabolic blackbody intensity profile, thanks
to the 4th and 5th exponential integral functions (see appendix 4.3.6).

The results of Fig. 4.13 lead to the same conclusions as those of figure 7-8 in [15] :
for low albedoes, the convergence qualities of the present algorithm are similar to those
of the previous algorithm designed for purely absorbing media °. This is compatible with
the fact that, for w = 0.01, the pure absorption approximation appears as accurate for all
optical thicknesses from 1072 to 102. Using 10? statistical realizations per layer, the statistical
uncertainty (more precisely the standard deviation) remains lower than a few percents for
layer 10; it reaches 10% for layer 3 at 7y = 10 and is independant of optical thickness

9Note that a scaling error was made in [15] : results of figure 8 were presented omitting to divide by a
factor 25 corresponding to the narrow band width dn = 25¢m ™! with which computations were held
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above 7y = 10. As explained in [15], the fact that the uncertainty becomes independant of
optical thickness at high optical thicknesses (whereas it diverges for standard Monte-Carlo
algorithms) comes from the fact that the boundary-based sampling of emission positions
is idealy adapted to optical thickness and that the only remaining task is to perform the
integration over the blackbody intensity profile, which is independant of optical thickness.
The fact that higher uncertainties are observed for layer 3 than for layer 10 is due to symetry
reasons : the radiative balance of layer 10 is the sum of the net-exchanges through its bottom
and top interfaces, that are of same sign, whereas the radiative balance of layer 3 is the
difference between a heating and a cooling term, all net-exchanges being computed with

similar uncertainties.

Fig. 4.14 and Fig. 4.15 lead to very similar observations which means that in terms
of required numbers of statistical realizations, the conclusions of Sec. 3 are still valid for
radiative flux divergence calculations : no specific difficulty is encountered with the proposed
algorithm up to extreme values of both absorption and scattering optical thicknesses (except
for extreme cases where both optical thickness 75 and single scattering albedo w are very
high, typically 74 = 100 and w = 0.9999). The average numbers of scattering events are not
displayed in these figures as no additional observation can be made compared to those made
in the preceding section : it increases less rapidly with the present algorithm than with a
standard Monte-Carlo algorithm, which partially compensates the convergence limit at high

7 and high w.

4.3.5 Conclusion

The above presented algorithm is an extension to scattering media of the algorithm in-
troduced in [15] as a way to bypass the difficulties encountered by standard Monte-Carlo
algorithms at the optically thick limit. It is based on a boundary-based net-exchange for-
mulation together with a detailed optimization of optico-geometric sampling laws. It is little
sensitive to optical thickness up to both extreme values of absorption optical thickness and
scattering optical thickness, two major difficulties of standard Monte-Carlo algorithms. As
it is based on a net-exchange formulation, it also encounters no difficulty when applied to
quasi-isothermal configurations. As will be presented in a forthcoming publication, this al-
gorithm is in particular suitable for detailed analysis of infrared radiation in the terrestrial
atmosphere, in which are simultaneously encountered wide ranges of absorption optical thi-
cknesses (because of the line spectra of atmospheric gases) and wide ranges of scattering
optical thicknesses (from optically thin dust clouds to optically thick water clouds) (23, 24].
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F1G. 4.13: Average value of the radiative flux divergence within each of the 20 layers using
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Structurally speaking, the proposed algorithm is very much similar to most standard
Monte-Carlo algorithms, except for the sampling of emission positions that is modified accor-
ding to the boundary-based approach. All optimized sampling laws are also mathematically
very simple and corresponding random generation procedures introduce no specific difficulty.
Altogether, the proposed algorithm should therefore be easy to implement on the basis of
any existing Monte-Carlo code. We also hope that the presented formal derivations should
allow that the reader derives its own sampling laws for best optimization in front of specific

configurations.

Finally, a difficulty remains in the limit of very high scattering optical thicknesses com-
bined with very low absorption optical thicknesses. We believe that this difficulty (that was
already well identified and intensively explored for nuclear shielding applications |3, 35| )
can only be faced working on the diffusive random walk itself, using formulation efforts and
sampling laws adaptations. This point was not addressed in the present paper and it will
undoubtedly require further detailed analysis of the statistics of multiple scattering optical

paths in finite size systems.

4.3.6 Appendix A : radiative flux divergence expressions at the
scattering optically thin and optically thick limits.

4.3.6.1 Diffusion approximation in a plane parallel configuration.

In the case of optically thick configurations, the diffusion approximation (which is equi-
valent to the Rosseland approximation) may be used. The radiative flux ¢,(z) can be written

as

hve oG
Q%ANV = |gww A&mﬁwv

with G(z) = - [, I(z,u)dw(u) the local photon density, where I(z,u) is the specific

intensity at altitude z in direction u and D = In optically thick systems, we can make

1
3(1-wg)”
the assumption that G(z), the local photon density, is equal to the equilibrium intensity at

the local temperature : G(z) = +Z B(z), with B(z) the local blackbody intensity. With the

hve

2
assumption of a parabolic blackbody intensity profile B(z) = By + AB T — %Am — wv %

the radiative flux becomes :
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327AB

4 (z) = gﬁm - mv (4.44)

H 2

And its divergence is :

div(g,)(2) = &W‘MWM@ (4.45)

Finally, the average radiative flux divergence between altitudes z;_; and z; may be written

as .

[7 div(g.(2)) 391 AB 1 32rAB
< div(g,) >= ==L — D=—""7D 4.46
@GAQ v Zi — Zi—1 QA: + \AMVN‘NM TH H A v

Note that even at the optically thick limit, the diffusion approximation is not valid for
the computation of the average flux divergence in the bottom and top layers (layers 1 and
20 in the text). The diffusion approximation is only valid far from the boundaries.

4.3.6.2 Absorption approximation in a plane parallel configuration with black

boundaries and a parabolic black intensity profile.

The average radiative flux divergence in layer ¢ (between altitudes z;_; and z;) may be

expressed as :

. H®~+vatv©~|ﬂmultv
A%@SLVI wﬁ\o .:A P + % v&t E.md

with 7 (z,u) and I~ (z, —pu) respectively the upward and downward specific intensities at
altitude z, in the zenithal direction 6 with ;1 = cos(f). Under the pure absorption approxi-

mation, these intensities may be written as :

\AQA

mp%

I (o) = BOeap(~ [ 2

\v 0 (4.48)

Q%

\
I™(z,—p) Hmtﬂvm&il\N ka(2') \

H
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2

B(2)=B,+AB[1-4 (% |wv ]

layer 1

F1G. 4.16: Plane-parallel slab with n homogeneous layers and parabolic black intensity profile.

2
Introducing the parabolic Planck profile B(z) = By + AB T — RAW wv g into the

above expressions leads to :

< div(q,) VHN& IMMTH NND\M E, A\aam@v - Ey A\?N\THV - E, A\?C@ — NLV
v @Q@E - Nivv v % By A\iv o ?}Lv (4.50)

H@DmmNs - NS.IHV
3k, H?

— By (ka(H = 2)) + Bs (ka(H = 2-1)) | +

with £, the n'* exponential integral :

E,(x)= \OH RTMS%AIMV&: (4.51)
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4.4 Eléments complémentaires

Ce paragraphe présente un aspect de I’algorithme de Monte-Carlo qui n’a pas été expli-
cité dans le paragraphe précédent. Il s’agit du critére de troncature des chemins de diffusion,
non présenté dans l'article précédent car il ne s’agit pas & proprement parler d’une optimisa-
tion de la méthode de Monte-Carlo. L’ajout de ce critére est pourtant incontournable dans

I’algorithme qui a été présenté.

En effet, dans le paragraphe 4.3, I’algorithme proposé utilise une formulation en puis-
sances nettes échangées basée sur une génération de chemins optiques de diffusion depuis
les éléments de discrétisation du systéme (éléments de volume ou de surface) qui composent
le systéme. De plus, I'atténuation de 1’énergie transportée par les “paquets de photons” est
intégrée le long du trajet optique '°. Dans un algorithme basé sur une telle formulation, les
chemins optiques des rayons générés ne s’achévent que lorsqu’ils arrivent a une paroi noire,
ol ils sont absorbés. Dans une configuration ot le milieu participant est peu diffusant, cela ne
pose aucun probléme. En revanche, lorsque le milieu participant est fortement diffusant, les
chemins optiques de diffusion peuvent devenir trés longs avant de rencontrer une paroi noire.
De la méme fagon, le probléme de ’arrét des chemins optiques devient insoluble dés que le
systéme ne comporte que des parois réfléchissantes : chaque fois qu’un paquet de photons
rencontre une paroi, une partie de 1’énergie qu’il transporte est absorbée par la paroi, mais
il faut continuer de générer le chemin optique pour la partie réfléchie. Le temps de calcul
de 'algorithme associé étant proportionnel & la longueur moyenne des trajets optiques, la

génération de chemins optiques de longueur infinie serait rédhibitoire.

Une facon de résoudre ce probléme consiste a définir un critére d’arrét de génération
des chemins optiques de diffusion. En effet, il n’est d’aucune utilité de générer un chemin
optique tellement long que, de toute facon, 'atténuation exponentielle le long de ce chemin
sera totale & la précision de la machine de calcul prés. Un critére possible pour arréter
les chemins optiques est donc le suivant : lorsque 1’énergie transportée par un rayon donné
devient inférieure & un niveau fixé arbitrairement, alors le processus de génération du chemin

optique du rayon peut étre arrété.

Deux problémes se posent maintenant : quel estimateur de 1’énergie transportée par le

rayon peut-on choisir, et quel niveau fixer sur cet estimateur pour tronquer les chemins?

L’énergie transportée par le rayon, dans ’algorithme de Monte-Carlo, sera mesurée par

0Dans notre algorithme, chaque paquet de photons est absorbé le long de son trajet optique suivant la loi
d’atténuation en exponentielle ; il ne s’agit pas d’un algorithme ot les positions d’absorption sont déterminées
de facon stochastique.
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la contribution du rayon & un résultat du transfert radiatif. Dans notre algorithme, deux
grandeurs sont principalement calculées : les bilans radiatifs et les flux; étant donné que ce
sont les mémes générations aléatoires qui servent a calculer a la fois les bilans radiatifs et les
flux, nous avons choisi de prendre un estimateur de I’énergie transportée par chaque rayon
a partir de la contribution de chaque rayon & la fois aux bilans radiatifs et aux flux, ce qui

donne deux estimateurs de 1’énergie transportée par le rayon :

— €y est un estimateur basé sur la contribution de chaque rayon au calcul des bilans
radiatifs.

— €4 est un estimateur basé sur la contribution de chaque rayon au calcul des flux.

On définira des valeurs minimales ey, et €4min permettant d’arréter la génération
des chemins optiques. Nous reviendrons au probléme consistant a fixer les valeurs de ces
parameétres aprés avoir décrit les critéres permettant de tronquer la génération des trajets

optiques.

Les processus d’émission et de suivi des paquets de photons a l'intérieur du milieu consti-
tuent des problémes distincts. Examinons, pour chacun de ces deux processus, quels critéres

vont permettre de cesser la génération des trajets optiques.

— Processus d’émission : les paquets de photons peuvent étre émis soit par un élément
de surface du systéme, soit par un élément de volume de gaz. Nous ne parlerons pas
du cas oul un paquet de photons est émis par un élément de surface du systéme, car
dans ce cas 14, il suffit d’identifier le point d’émission situé sur I’élément de surface.
Dans le cas ol un paquet de photons est émis par un élément de volume de gaz, 1’al-
gorithme de Monte-Carlo commence par choisir un point de sortie du volume (Q) et
une direction de sortie (ug), puis génére un trajet optique “inverse” 4 a partir de Q,
dans la direction —ug (cf. Fig. 4.6 p. 96). Ce trajet optique 7 est construit par étapes
successives. Chaque étape correspond & un événement de diffusion ou de réflexion & une
paroi du rayon. On peut arréter de construire le trajet optique v & partir du moment
ou I’épaisseur optique 75 ,, (& I’étape n) de ce trajet devient tellement grande que ’atté-
nuation exponentielle le long de ce trajet est quasiment totale. En d’autres termes, on
peut arréter la génération du trajet optique 5 & I'étape n si AB,, o exp(—75.5) < €wmin
ol AB,,.. est la différence de luminance noire maximale dans le systéme, ou encore
lorsque By maz€TP(—T5.n) < €pmin OU Bem maz €st la luminance noire maximale dans

le volume de gaz qui émet le paquet de photons. Autrement dit, le critére permettant
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d’arréter la génération du trajet optique v a I’étape n est le suivant :

(4.52)

€U min €p,min v

|zz: < ) ;
m,&@m ﬂfv SNSADmSQH mmSJSQH

— Processus de suivi de rayon : lorsqu’un paquet de photons a été émis par un élément
de surface du systéme, un trajet optique = est généré a partir du point d’émission. Le
critére permettant alors de tronquer ce trajet v est identique au critére présenté par la
relation 4.52, ot B, e €st remplacé par B.,,, la luminance noire au point d’émission,
choisi sur I’élément de surface. Dans le cas ou le paquet de photons est émis par un
volume de gaz, le trajet optique 7 est initié au point Q, dans la direction ug (cf.
Fig. 4.6 p. 96). L’énergie transportée par le rayon au point Q correspond maintenant
a I’émission le long de 7, soit T — m&ﬁlﬁé ou 75 est I’épaisseur optique le long de
7. Le critére permettant d’arréter a ’étape n le trajet optique ~ est donc dans ce cas :

€U min €p,min A#mwv

exp(=Tyn) < min T - @%Almi ABuar T - %%TJL Ben

ou 7., est I'épaisseur optique du trajet v a I’étape n, et B.,, la luminance noire au
point Q.

Il reste & savoir comment fixer les niveaux ey pin €t €4 min- Il y a deux facons de procéder :

— Si on sait a I’avance quel sera 'ordre de grandeur des bilans radiatifs ou des flux avant
la résolution par le code de calcul, on peut fixer comme objectif au code de Monte-
Carlo d’atteindre une incertitude o,,,, sur les résultats (0,4, représente 1’écart-type
maximal qui sera estimé par le code). On fixera alors € de telle fagon que lerreur de
troncature que 'on commet a chaque tirage soit négligeable devant o,,,, ’écart-type
statistique. Dans ce cas, il est inutile d’effectuer le calcul Monte-Carlo avec un nombre
d’événements aléatoires plus grand que celui qui est nécessaire pour atteindre o,,,;.

— Si on ignore quel sera l'ordre de grandeur des résultats, on peut envisager deux solu-
tions :

N

1. La premiére consiste a effectuer un premier calcul Monte-Carlo rapide, avec un
faible nombre d’événements aléatoires. En pratique, nous considérons que 10*
tirages aléatoires permettent d’atteindre des incertitudes de 'ordre de 1 % sur les

résultats. ! Ce premier calcul permet de connaitre I’ordre de grandeur des bilans

Hle fait que ce critére soit respecté par I’algorithme de Monte-Carlo que nous présentons n’est pas un
hasard. Au cours de la phase de mise au point de ’algorithme, de nombreuses validations, notamment des lois
de pondération, ont été nécessaires. Les lois de pondération ont toujours été pensées dans le but d’atteindre
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radiatifs et des flux. On est alors ramenés au premier cas : on va pouvoir fixer une

incertitude maximale sur les résulats au cours d’'un second calcul, plus précis.

N

2. La seconde méthode consiste a ne pas faire de troncature, en fixant le critére
¢ a la valeur minimale supportée par le langage de programmation utilisé (en
fortran 77, nous utilisons la valeur ¢ = 1073%). Dans ce cas, les trajets optiques
ne s’arrétent que lorsque la loi d’atténuation en exponentielle a totalement épuisé
I’énergie transportée par chaque paquet de photons. Bien entendu, cette option
peut conduire & des temps de calcul plus longs. C’est cependant ’option qui a
été choisie pour tous les résultats montrés au paragraphe 4.3. C’est également le
choix qui a été effectué pour obtenir tous les résultats qui seront montrés dans ce

manuscrit.

4.5 Validation de I’algorithme monochromatique en confi-

gurations monodimensionelles

Ce paragraphe est dédié a la validation de I’algorithme monochromatique précédem-
ment présenté (noté “algo#2” dans le paragraphe 4.3), utilisé dans des configurations plan-
paralléle : un milieu semi-transparent, structuré en mailles, est encadré par deux parois qui
possédent des propriétés d’émission et de réflexion, et dont on fixera la température. Nous
raisonnerons dans chaque cas a I’aide d’un profil de luminance noire, ce qui se traduit par un
profil de température, dont ’explicitation n’est pas nécessaire dans ces étapes de validation,
méme si dans les systémes réels c¢’est le profil de température qui pilote le transfert radiatif.
D’autre part, un profil de température non uniforme entraine nécessairement une variation
des propriétés optiques du milieu. Cependant, toujours dans un souci de proposer des valida-
tions simples, chaque maille de milieu semi-transparent sera considérée a propriétés optiques
homogénes. Ce genre de configuration se justifie d’autant plus que cette hypothése de mailles
a propriétés optiques homogeénes est utilisée dans les Modéles de Circulation Générale, et sera
utilisée dans le code de modélisation de transfert radiatif infrarouge proposé au paragraphe
4.6.

La validation d'un code de calcul basé sur une méthode de Monte-Carlo n’est pas triviale.
C’est une phase majeure du développement du code, qui doit faire I’objet d’une certaine ri-
gueur, car les problémes numériques que 1’on rencontre au cours de la mise au point d’un

tel code de calcul ne sont pas faciles a identifier. En effet, la méthode de Monte-Carlo étant

des incertitudes de ’ordre de 1 % en réalisant 10* tirages aléatoires.
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une méthode statistique, basée sur le tirage de nombres pseudo-aléatoires, le code peut
rencontrer des problémes numériques trés spécifiques pour certaines valeurs de ces nombres
pseudo-aléatoires. Une valeur pouvant entrainer un probléme numeérique peut apparaitre trés
rarement du fait de I'utilisation de certaines lois de pondération : on parlera alors “d’événe-
ments rares” (typiquement une valeur aléatoire sur 10°) qui peuvent entrainer, directement
ou indirectement, un effondrement complet de ’algorithme mis au point. Des cas encore plus
insidieux peuvent étre rencontrés (un cas sur 10° par exemple) lorsque I’événement rare a
pour origine le tirage de plusieurs nombres aléatoires successifs & des valeurs bien spécifiques
qui peuvent entrainer un effet “boule de neige” dans les lois de pondération conditionnelles :
par exemple, le tirage d’un angle & une valeur particuliére entrainant un probléme numérique
sur la loi de pondération des positions d’émission, mais seulement dans le cas ou I’épaisseur
optique repérant la position d’émission, utilisée dans la seconde loi, prend une valeur parti-

culiére. Nous reviendrons sur un exemple de “bug” numérique au paragraphe 4.6.2.2.

La méthodologie de validation qui est présentée dans ce paragraphe est basée sur une
approche de validation par étapes : chaque configuration proposée ci-dessous permet de
valider un aspect particulier du code. Une fois toutes ces étapes franchies, le code de calcul
sera validé pour ’ensemble des configurations qui relévent de la famille de problémes pour
lesquels il a été mis au point. Il est évident que la réussite d’un certain nombre de tests fera
office de validation, mais par définition, la validation totale d’un code est un concept qui n’a

pas de sens.

Dans un premier temps, avant de nous intéresser a la prise en compte du phénomeéne de
diffusion multiple, nous allons considérer un ensemble de problémes ou seules I’absorption
et I’émission monochromatique de rayonnement sont considérées. Le but de cette premiére
série de validations étant de reconstruire un algorithme monochromatique semblable a celui

présenté par A. de Lataillade [13, 15], utilisé dans une configuration plan-paralléle.

— Dans un premier temps, nous avons voulu vérifier que l’algorithme de Monte-Carlo
permet de reconstruire les lois en exponentielle qui découlent des phénomeénes d’at-
ténuation et d’émission. Pour cela, nous avons utilisé une configuration monodimen-
sionelle : le calcul a été effectué sur une direction unique, pour une seule maille de
gaz aux propriétés optiques homogénes, confinée entre deux parois noires. Un profil
de luminance noire plat est utilisé. La configuration et les résultats analytiques sont
présentes en annexe A.l.

— Nous avons ensuite vérifié que le code gérait de fagon correcte les problémes mono-
dimensionels en présence de plusieurs mailles de gaz. La configuration est présentée

en annexe A.2. Ce calcul a été effectué sur une direction unique, en présence de deux
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mailles de gaz. Dans chacune des deux mailles, un profil de luminance noire plat est
utilisé (valeurs différentes dans les deux mailles).

— Puis nous avons vérifié que le code permettait de réaliser une intégration angulaire :
la configuration, présentée en annexe A.3, dans le cas particulier d’une maille de gaz
unique et d’un profil de luminance noire plat, est identique & celle de la premiére
validation, mais le calcul est cette fois-ci réalisé en trois dimensions. Cette validation
montre que le code permet de reconstruire des exponentielles intégrales d’ordre 3.

— La quatriéme validation a permis de vérifier que le code prend en compte de facon
correcte les configuration anisothermes, multicouches, dans le cas général d’un calcul
tridimensionnel : le code reconstruit dans ce cas des exponentielles intégrales d’ordre 4.
La configuration est celle de 'annexe A.3, dans le cas ou le profil de luminance noire
est linéaire entre les deux parois du systéme, avec un nombre quelconque de mailles.

— Enfin, cette derniére validation permet de tester le comportement de ’algorithme dans
la limite optiquement épaisse : nous utilisons, pour ce test générique, la configuration
de ’annexe A.4. Le calcul est tridimensionnel, multicouche, avec un profil de luminance
noire parabolique entre les parois du systéme. Dans le cas du test précédent (profil de
luminance noire), les bilans radiatifs moyens calculés dans chaque maille sont nuls a la
limite optiquement épaisse (résultat que I’on peut retrouver a partir de ’approximation

de Rosseland pour les milieux purement absorbants |73]).

A ce stade de la procédure de validation, on est uniquement assuré d’avoir reconstruit un
algorithme similaire & celui développé par A. de Lataillade ([13, 15]), adapté a une configu-
ration monochromatique plans paralléles infinis. C’est pourquoi ces validations ne seront pas
détaillées davantage dans ce document. L’originalité du présent travail résidant dans le dé-
veloppement d’un algorithme de Monte-Carlo prenant en compte le phénoméne de diffusion

multiple, 'accent sera mis sur les validations suivantes :

— Tout d’abord, nous avons vérifié que le code prend en compte les effets de diffusion
multiple. Les problémes de transfert radiatif avec prise en compte de la diffusion n’ont
pas de solution analytique simple dans le cas d’un transport tridimensionnel. Dans un
premier temps, nous nous sommes intéressés au cas oul les rayons sont confinés sur
une direction unique, ol une solution est connue de facon analytique et facilement
calculable.

— Enfin, nous nous sommes assurés que le code de calcul reconstruit de fagon correcte la
statistique des trajets optiques de diffusion multiple : nous avons soumis ’algorithme

a un probléme de marche aléatoire diffuse tridimensionnelle, en configuration plan-

paralléle.
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La combinaison de ces deux tests nous rassure sur la validité de ’algorithme monochro-
matique complet. Cependant, a titre d’illustration, nous avons soumis notre code a un dernier
test dans lequel nous comparons le résultat obtenu grace au code Monte-Carlo a un résultat
standard de la littérature. Sauf mention explicite, tous les résultats présentés dans la suite
de ce chapitre ont été effectués a 1'aide de N = 10* réalisations aléatoires par élément de

discrétisation.

4.5.1 Calcul sur une direction avec diffusion arriére pure

Les flux ascendants et descendants sont connus de facon analytique dans la configuration

suivante :

Z) \ F'(H)

k,=cst
B(z)=0  k,=cst

y =

F1G. 4.17: Couche isotherme, diffusion arriére

— 1 maille de gaz, propriétés optiques constantes
— Calcul sur une direction
— Eclairage (laser) par le bas (z=0). B(z) = 0 pour le gaz (milieu froid).

— Diffusion avec fonction de phase arriére (g = —1).

Les relations qui permettent d’obtenir les flux ascendant et descendant en fonction de

Paltitude z sont les suivantes :
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heost A (112) | ha k). simn 3 (11-2)

Ft(z) = F(0)

fusint [7(11-2) |

Acosh. (N H)+(ka+ks)-sinh(X\.H) (4.54)

F~ ANV = .TTTAOV A.cosh(AH)+(ka+ks).sinh(AH)

Avec : X\ = \/k2 + 2k.k;

Les figures suivantes (fig. 4.18,4.19 et 4.20) représentent la fraction de flux incident trans-
mis en z = H : FT(H)/F*(0) et la fraction de flux incident rétrodiffusée en z = 0

F~(0)/F*(0), pour trois valeurs de I’épaisseur optique totale de la maille de gaz 7y =

(ko +ks)H : 7y = 0.1, 7y = 1 et 7y = 10, en fonction de ’albédo de diffusion simple variant

entre 0,9 et 1 (diffusion pure).
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(a) FT(H)/F*(0) pour 7y = 0.1
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/F*(0) pour T
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(b) F=(0)/F*(0) pour 7y = 0.1

F1G. 4.18: (a) Fraction de flux incident transmise par la maille de gaz en z = H, pour une
épaisseur optique totale 77 = 0, 1; (b) Fraction de flux incident rétrodiffusée en z = 0.

On peut voir que dans chaque cas, les résultats obtenus par I’algorithme MC corres-

pondent & ceux prévus par le calcul analytique, avec une incertitude correspondant a ’écart-

type obtenu sur chaque valeur. Ces résultats permettent de valider la prise en compte des

effets de diffusion multiple, dans le cas d’un calcul monodimensionel. Il reste maintenant a

vérifier que le code permet de retrouver la statistique des chemins de diffusion multiple en

configuration tridimensionnelle.
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F1G. 4.19: (a) Fraction de flux incident transmise par la maille de gaz en z = H, pour une

épaisseur
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optique totale 7y = 1,0; (b) Fraction de flux incident rétrodiffusée en z = 0.

0.9

0.8
0.7
0.6
05
04 r
0.3 r
0.2 r
0.1 1

MC
analytique

01 02 03 04 05 06 0.7 08 0.
()

(b) F~(0)/F*(0) pour 74 = 10

(a) Fraction de flux incident transmise par la maille de gaz en z = H, pour une

optique totale 7z = 10,0; (b) Fraction de flux incident rétrodiffusée en z = 0.
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4.5.2 Calcul tridimensionnel avec diffusion quelconque

Le théoréme de Cauchy permet de montrer que pour une maille de gaz purement ab-
sorbant d’épaisseur H, éclairée de facon isotrope, la longueur moyenne des chemins que
parcourent les photons dans ce volume de gaz (des droites dans le cas de gaz purement
absorbant) vérifie la propriété : < L >= 2H. Il a été montré récemment ([4]) que cette
propriété reste vérifiée dans le cas oil le milieu est également diffusif, quelle que soit la valeur
du coefficient de diffusion k, et la fonction de phase du milieu diffusif. Nous avons voulu
vérifier que le code de Monte-Carlo développé dans ce travail pouvait retrouver cette pro-
priété concernant la statistique des chemins de diffusion multiple. Dans ce but, un calcul a
été fait pour une configuration plan-paralléle, en présence d’un milieu absorbant et diffusif.
On considére dans ce calcul :

— Propriétés optiques constantes et homogénes dans la maille de gaz. En particulier,
diffusion isotrope (g = 0).

— Emission diffuse par la paroi du bas : By en z = 0 et B(z) = 0 dans le gaz (milieu
froid).

Dans ce cas simple, la puissance nette échangée entre le sol et la maille de gaz, ¥s1—gqz, @

pour expression :
+o0o
@m&lmmw = \\ﬂmo\ @Qv ﬁH - @&.ﬁA|\A®NL dl A#m@v
0
ol [ est la longueur des trajets optiques de multidiffusion.

A la limite optiquement mince en absorption (quand k, — 0), on trouve :
@m&lmaw = ﬁ.mo.\aa <L> A#mmv

Ot < L > est la longueur moyenne des trajets optiques dans le milieu.

Si le processus de suivi de rayon tridimensionnel en présence de diffusion multiple permet

de retrouver la statistique des longueurs de chemin, on doit alors trouver < L >= 2H, soit :

@m&lmmw = Mﬁ.mo\ﬂmm A%Uﬂv

Les trois figures suivantes représentent d’une part la puissance nette échangée entre le
sol et le gaz, sp—g4q. (d’aprés I'équation 4.56) normalisée par 7By, calculée avec N = 10*
réalisations aléatoires, et d’autre part la grandeur 2k, < L >, pour une valeur de I’albédo de

diffusion simple variant entre 0 et 1, et ceci pour trois valeurs de I’épaisseur optique totale
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de la maille de gaz, 7y = 0,1, 7y = 1,0 et 7y = 10, 0.

T

o.om<<<<<
V sol-gaz/TBOMC - - - -
0.018 r °=2 2K, <L> |

0.016 1
0.014 - D 1
0.012 r 1
0.01 1
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O I I I I I I I I I
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()

F1G. 4.21: Ys01—ga- /T By pour 75 = 0.1

0.2 ; . . :
0.18 2k, <L> 1
0.16 | ™7 1
0.14 s 1
0.12 N 1
0.1 r == 1
0.08 > 1
0.06 N 1
0.04 1
0.02 1

O I I I I I I I I I
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
(O}

F1G. 4.22: ¢501_ga./m By pour 7y =1

On peut voir sur les figures 4.21, 4.22 et 4.23, que les deux courbes se confondent a
la limite optiquement mince en absorption (wy — 1). Lorsque I’albédo de diffusion simple
tend vers 1, le coefficient de diffusion ks, domine et on retrouve bien la valeur de la longueur
moyenne diffusée dans la maille de gaz par le code de calcul. Ceci quelque soit la valeur du
coefficient de diffusion k,. Les résultats qui sont présentés ont été obtenus avec utilisation

d’une fonction de phase de Henyey-Greenstein, avec une valeur du paramétre d’asymeétrie
)
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N T T T T T T
V golqar/TBOMC - - 1 --
18} %0-9% ok <L ]

16+ :
14+ ]
12+ .

\_ L 4
08 | ]
06 | ]
04t T .
02t SN

O L L L L L L L L L
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

(O}

F1G. 4.23: s01—gaz /7By pour 7 = 10

g = 0, ce qui revient a considérer une fonction de phase isotrope. Cependant, les conclusions

auraient été strictement les mémes pour n’importe quelle autre fonction de phase.

En résumé, les deux résultats obtenus dans ce paragraphe confirment que 'algorithme

proposé représente correctement la statistique des chemins de diffusion multiple.

4.5.3 Comparaison a un résultat de la littérature

Les deux tests précédents permettent d’assurer la validité de I'algorithme présenté, pour
le traitement des problémes de transfert radiatif en milieu absorbant et diffusant, dans des
configurations plan-paralléle. A ce stade, il n’est pas forcément nécessaire de poursuivre les
étapes de validation. Cependant, nous allons maintenant comparer les résultats du code de
Monte-Carlo a des résultats de la littérature, dans le cas d’une configuration plan-paralléle,

pour un calcul tridimensionnel avec prise en compte du phénoméne de diffusion multiple.

Le travail de L. Tessé [78] mentionne diverses solutions de référence pour les configurations
plans-paralléles. Les auteurs, Ozisik et Siewert [90], puis Lii et Ozisik [48], donnent des valeurs
numériques de référence, basées sur le travail de Chandrasekhar [8] permettant d’obtenir la
réflectivité R et la transmittivité 7 d’une maille de gaz gris, diffusant de fagon isotrope, non

émissif, confiné entre deux parois grises a réflexion spéculaire et a émission diffuse.

Le flux incident F'*(0), est isotrope. La réflectivité R et la transmittivité 7 de la maille
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F'(0)

F(0) «

F1G. 4.24:

sont définies comme suit (cf. Fig. 4.24 :

R = F~(0)/F*(0)
T = F*(H)/F*(0)

(4.58)

Un test numérique a été effectué a ’aide de I'algorithme de Monte-Carlo, pour la confi-
guration suivante :

-H=0,2m

-1y = (ks +ko)H =5

— wo =ks/(ks +ks) =0,9

— Ilen découle : k, =2,5m~t et k, =225 m™L.

Le tableau suivant présente les valeurs de référence, ainsi que celles qui ont été obtenues
a l'aide du code de Monte-Carlo pour N = 10* et N = 10° tirages aléatoires, avec les

incertitudes sur ces résultats.

Référence [90] | MC N = 10? MC N = 10°
T 0,0534 0,054 £ 0,0015 | 0,0534 + 0,00012
R 0,4763 0,4705 + 0,0037 | 0,4758 + 0,00037

TAB. 4.3: Valeurs de 7 et R de référence et calculées par I'algorithme de Monte-Carlo

Ces résultats sont en accord avec les valeurs de référence, aux incertitudes statistiques
prés, ce qui permet de vérifier que 1’algorithme de Monte-Carlo prend en compte de fagon

correcte le phénoméne de diffusion multiple.
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4.5.4 Conclusions

Toutes les validations effectuées dans le cas des milieux participants purement absorbants,
ajoutées aux validations détaillées ci-dessus et qui concernent le phénoméne de diffusion,
ont permis d’établir pas a pas la validité de I’algorithme de Monte-Carlo monochromatique
proposé, ainsi que la fiabilité de sa mise en oeuvre informatique. Le code de transfert radiatif
qui sera construit sur la base de cet algorithme monochromatique, devra notamment effectuer
une intégration spectrale sur le domaine infrarouge. La prise en compte des données spectrales

sera bien entendu validée par la suite.

4.6 Application a Patmosphére

L’algorithme de Monte-Carlo qui est présenté a été validé pour la résolution des problémes
de transfert radiatif dans les configurations plan-paralléle, dans les milieux absorbants et
diffusants inhomogénes, quelles que soient les épaisseurs optiques d’absorption et de diffusion.
Cet algorithme est donc adapté & une application aux problémes de transfert radiatif dans
les atmosphéres planétaires. Sa plage de validité lui permet par exemple de traiter les cas
des atmosphéres de Mars, Vénus, ou de la Terre. Dans ce travail, nous ’avons utilisé pour
mettre au point un code de transfert radiatif pour une application terrestre. Deux choix ont

été faits dans le but de mettre au point ce code de calcul :

— Le modéle spectral utilisé pour les gaz est un modéle en k-distributions utilisant 1'hy-
pothése C-K. A ce titre, il a fallu rajouter une loi de pondération afin de choisir la
bande étroite (fréquence du paquet de photons) et le numéro du gaz gris a I'intérieur
de la bande étroite.

— La fonction de phase utilisée est une fonction de phase de Henyey-Greenstein (cf. para-
graphe 2.7.2). Les valeurs du paramétre d’asymétrie sont fournies par le modéle spec-
tral utilisé pour calculer les propriétés optiques des nuages et aérosols (cf. paragraphe
4.6.2.2).

Tous les calculs réalisés a I’aide de ce code de calcul et qui sont présentés par la suite ont

été obtenus sur cette base. Cependant, ces choix auraient pu étre différents :

— En ce qui concerne le modéle spectral des gaz, il aurait été possible d’utiliser 'hypo-
thése CKFG [76] (gaz fictifs) : sous cette hypothése, les propriétés optiques du gaz dans
une bande étroite sont obtenus en commencant par regrouper en un certain nombre de
classes les raies spectrales de méme énergie. Ainsi, les spectres obtenus a deux tempé-

ratures différentes seraient quasiment homothétiques. Enfin, on utilise la méthode C-K
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pour obtenir un ensemble de gaz gris pondérés a l'intérieur de chaque classe (chaque
classe représente un “gaz fictif”).

— Pour ce qui est de la fonction de phase, il est envisageable d’utiliser n’importe quelle
fonction de phase au lieu d’une fonction de Henyey-Greenstein. Cependant, si on ne
connait pas la fonction de phase de facon analytique, et si on ne sait pas inverser sa
fonction de répartition de facon analytique, on peut étre amené & utiliser une méthode
d’inversion numeérique, cotteuse en temps de calcul (cf. paragraphe 4.2.3.3). A cette
alternative, on préférera certainement échantillonner les directions de diffusion a partir

d’une fonction de phase de Henyey-Greenstein ® g, et pondérer le calcul par un facteur

de correction emmmm ol D4 est la véritable fonction de phase du milieu.

4.6.1 Présentation du modéle physique d’atmosphére

Le code de calcul atmosphérique présenté ici a pour but de réaliser une analyse des
transferts radiatifs infrarouges dans les atmospheéres planétaires. Le but final étant de se
servir des résultats de ces analyses pour mettre au point une paramétrisation des transferts
radiatifs infrarouges dans un Modéle de Circulation Générale (General Circulation Model,
GCM) terrestre.

m mailles horizontales

F1G. 4.25: Maillage GCM d’une atmosphére planétaire

Il a donc été indispensable d’utiliser le méme modéle physique d’atmosphére que celui qui

est utilisé pour la paramétrisation des transferts radiatifs dans le GCM terrestre en question
[38].
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4.6.1.1 Maillage de ’atmosphére

Dans la communauté GCM, le maillage associé & une atmosphére planétaire est sché-
matisé Fig. 4.25 : il s’agit d’un maillage en coordonnées géographiques (longitude/latitude)
définissant un certain nombre de colonnes atmosphériques. Chaque colonne est a son tour

discrétisée en m mailles horizontales.

On considére chaque colonne atmosphérique comme relevant d’une configuration plan-
paralléle : en effet, si les dimensions latérales d’une colonne sont de 'ordre de 400 km
au niveau de I’équateur, 'essentiel du maillage vertical ne concerne que les 30 premiers
kilométres de I'atmosphére, et les derniéres mailles ne s’étendent que jusqu’a 100 km. Du
fait de ces dimensions, les colonnes d’atmosphére sont communément considérées comme
indépendantes les unes des autres d’un point de vue radiatif, le probléme de calculer les taux
de chauffage pour une colonne donnée étant donc totalement découplé de ce qui se passe
dans les autres colonnes. La configuration retenue pour chaque colonne atmosphérique est
donc une configuration plan-paralléle, comme le montre la figure 4.26. Etant donné qu’en
fait I’algorithme de Monte-Carlo & partir duquel est construit notre code de transfert radiatif
est un algorithme qui utilise une formulation tridimensionnelle, il serait possible de mettre
au point un code de transfert radiatif entiérement tridimensionnel. Cela peut constituer une

perspective intéressante au travail présenté.

Z
7 A espace=maille m+1 Tespace
7 maille m
m-1 .
7 maille m—1
m-2 -
z - L
Z., maille j
Profil de température T(z)
linéaire entre centre de mailles
Z, BN oy
7., maille i
7 \ maille 2
7, =0 maille 1

sol=maille 0 T

F1G. 4.26: Modéle physique d’atmosphére
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4.6.1.2 Maillage d’une colonne atmosphérique

Chaque colonne atmosphérique est donc divisée en m mailles horizontales, d’extension
supposée infinie du point de vue des transferts radiatifs. La maille numéro i étant située entre
les altitudes z;_; et z;. Le profil de température T'(z) est considéré linéaire entre centres de
mailles de gaz (cf. schéma 4.26). Deux remarques importantes doivent étre faites en ce qui

concerne ce profil de température :

— Méme si le profil de température réel est considéré linéaire entre centres de mailles,
les propriétés optiques moyennes du milieu seront calculées en considérant une tem-
pérature moyenne a l’intérieur de chaque maille. Les propriétés spectrales du mi-
lieu (coefficient d’absorption k,, coefficient de diffusion k;, albédo de diffusion simple
wo = ks/(kq+ks), facteur d’asymeétrie de la fonction de phase g) seront donc considérées
comme homogénes a l'intérieur de chaque maille.

— Il est cependant important de faire 'hypothése d’un profil de température linéaire entre
centres de mailles, et non pas, par exemple, d’un profil de température constant dans
chaque maille. Considérons deux mailles de gaz (i et i+ 1), la différence de température
maximale entre ces deux mailles étant par exemple de 1 K (cf. Fig. 4.27 ). Aux fortes
épaisseurs optiques, les échanges radiatifs entre ces deux mailles de gaz seront restreints

a une zone (ici dénommée “locale”) située a proximité de l'interface entre ces deux

mailles. Si le profil de température est linéaire entre centres de mailles (Fig. 4.27(a)),

la différence de température maximale & I'intérieur de la zone d’échange sera faible, et

I’échange net entre les deux mailles sera bien calculé : & la limite optiquement épaisse,

cette différence de température va tendre vers zéro, et on va bien retrouver un échange

net nul. Maintenant, si on considére que le profil de température est constant par maille

(Fig. 4.27(b)), la différence de température a I'intérieur de la zone d’échange locale sera

toujours de 1 K, quelle que soit I’épaisseur optique, et donc la dimension de la zone

d’échange locale. A la limite optiquement épaisse, I’échange net entre les deux mailles

sera surestimé, puisqu’on ne trouvera pas une valeur nulle.

Les conditions aux limites qui sont imposées par la nature du probléme sont de deux

types :

— La premiére concerne la température de ’espace (plan supérieur), qui est fixée a 0 K
pour traduire le fait que notre code de transfert radiatif s’intéresse uniquement aux
transferts radiatifs atmosphériques concernant des photons émis par le systéme Terre-
atmospheére. Le traitement des photons arrivant sur Terre (émis par le soleil, etc.)

faisant ’objet d’un code totalement distinct.
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| W |

maille i+1 N maille i+1

AT, =0,05K
| zone a'echange 7" | zone awechange
locale locale

maille i maille i T(z)
(a) Profil de T'(z) linéaire entre centres de (b) Profil de T'(z) constant par maille
mailles

F1G. 4.27: Illustration du probléme consistant a évaluer ’échange net entre deux mailles de
gaz pour lesquelles le profil de température est (a) : constant dans chaque maille et (b) :
linéaire entre centres de mailles.

— La seconde condition aux limites concerne le sol : les propriétés du sol (émissivité,
réflectivité) sont fixées pour chaque bande étroite. La température du sol est également
une donnée du probléme. En pratique, tous les résultats qui sont présentés par la suite
ont été obtenus en considérant une émissivité €, = 1, ce qui revient a fixer la réflectivité
p, = 0 dans chaque bande étroite (corps noir), méme si le code de transfert radiatif a

été testé et validé pour des valeurs quelconques de ’émissivité du sol.

La table 4.4 p. 143 donne les altitudes de haut de maille z; pour le maillage utilisé dans

les calculs qui seront présentés au chapitre 5.

4.6.1.3 Représentation des nuages

Les nuages ont une influence majeure sur les flux radiatifs atmosphériques : au premier
ordre, on peut considérer que les nuages absorbent une partie du flux infrarouge émis par le

sol, et qu’il émettent également un flux infrarouge non négligeable.

b

Dans notre modéle physique d’atmosphére, les nuages occupent un nombre déterminé
de mailles de gaz. Les propriétés optiques monochromatiques des nuages sont considérées
comme constantes par maille, et se superposent aux propriétés optiques du gaz. Les effets

tridimensionnels des nuages ne sont généralement pas pris en compte dans les calculs de
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transfert radiatif (sauf [77]). Par exemple, supposons la présence d’'un nuage dans une maille
atmosphérique donnée. Soient k,(gaz), ks(gaz)'?, wo(gaz) et g(gaz) les propriétés optiques
(monochromatiques) du gaz dans cette maille (pour une fréquence donnée). Soient k,(nuage),
ks(nuage), wo(nuage) et g(nuage) les propriétés optiques du nuage, a la méme fréquence.
Les propriétés optiques k,(7), ks(i), wo(i) et g(gi) de la maille ¢ considérée se calculent de la

fagon suivante :

(Fa(i) = ka(gaz) + ka(nuage)

) 1) = kulgaz) + k. (nuage) .
A v ks(gaz)+ks(nuage) )
wo ka(gaz)+ka(nuage)+ks(gaz)+ks(nuage)
A v ks(gaz)g(gaz)+ks(nuage)g(nuage)
ks(gaz)+ks(nuage)

4.6.2 Modéle spectral et données spectrales pour ’atmosphére ter-

restre

Le modéle spectral qui a été utilisé pour la mise au point du code atmosphérique est un
modeéle en bandes étroites formulé en k-distributions, exprimé en discrétisation des valeurs
de k,, présenté au chapitre 2. Il aurait été possible d’utiliser un modéle en transmittivité
moyenne comme le modéle de Malkmus [50] (cf. 2.6.2.1). L’utilisation d’un tel modéle est
simple, mais nécessiterait cependant de repenser les lois de pondération pilotant I’émission et
I’absorption dans notre algorithme. Ces lois sont actuellement baties sur la loi d’atténuation
en exponentielle, qui ne peut pas étre utilisée avec un modéle en transmittivité moyenne du

fait des corrélations spectrales dont il faut tenir compte dans ce cas.

4.6.2.1 Propriétés spectrales du gaz

Les données spectrales pour le gaz qui sont utilisées dans cette étude sont issues de la
base de données moléculaire HITRAN 2000, qui contient une information détaillée pour plus
d’un million de lignes spectrales, concernant 36 molécules différentes [69]. Ces données sont
ensuite traduites en un ensemble d’épaisseurs optiques k-corrélées [44] pour chaque bande
étroite, a l'aide du modéle radiatif SBMOD |[88]. La premiére étape de cette conversion
consiste & évaluer le profil spectral a 1’aide d’un modéle raie par raie, pour chaque bande
étroite, et dans chaque maille de gaz de I'atmosphére. Ensuite, ces profils sont échantillonnés

12Méme si, en pratique, le coefficient de diffusion du gaz est extrémement faible dans 'infrarouge par
rapport au coefficient d’absorption du gaz, ces formules sont ici données dans le cas général
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a haute résolution spectrale, et classés par ordre d’épaisseur optique d’absorption croissante,
pour calculer la fonction de transmittivité inverse f(k,). On obtient alors une représentation
croissante de la distribution des épaisseurs optiques d’absorption pour chaque bande étroite.
Enfin, une quadrature d’ordre 16 est appliquée sur ces distributions (cf. relation 2.25).

La plage spectrale couverte par le modeéle de référence atmosphérique s’étend de 4 a
100 pm (100 — 2500 em ™). Les données spectrales sont connues pour une largeur de bandes
étroites de 2, 10 et 20 em~!. Sauf mention explicite, tous les résultats présentés dans ce

1 et une quadrature

manuscrit ont été obtenus pour une résolution spectrale de 20 cm~™
d’ordre 16. Ces propriétés spectrales ont été obtenues pour différents profils atmosphériques'?
standards [54], parmi lesquels on peut citer les profils atmosphériques suivants (avec leur

désignation habituelle) :

Tropical

— D’été aux moyennes latitudes (Mid Latitude Summer, MLS)

— D’hiver aux moyennes latitudes (Mid Latitude Winter, MLW)

— D’été en région sub-arctique (Sub-Artic Summer, SAS)

— D’hiver en région sub-arctique (Sub-Artic Winter, SAW)

La table 4.5 p. 144 donne une correspondance entre le numéro des bandes étroites et la
fréquence (ainsi que le nombre d’onde) au centre de chaque bande étroite.

4.6.2.2 Propriétés spectrales des nuages et aérosols

Les propriétés spectrales des constituants de I’atmosphére autres que le gaz sont calculées
pour chaque chaque bande étroite, et ajoutées aux propriétés spectrales du gaz. Nous utilisons
un code de calcul appuyé sur la théorie de Mie, et mis au point pour le calcul des propriétés
spectrales utilisées dans le modéle SBDART (Santa Barbara DISORT Atmospheric Radiative
Transfer), [66]. Dans ce code, les particules sphériques sont caractérisées par une distribution
de taille représentée par la fonction Gamma, et un rayon effectif qui peut aller de 2 & 128 pm.
Ce rayon effectif est le rapport entre le troisiéme et le second moment de la distribution des
rayons des particules. Le code permet de calculer k,, k; et g pour les nuages de particules.
Le paramétre d’asymétrie g est ensuite utilisé, dans le code de transfert radiatif, par une

fonction de phase de Henyey-Greenstein (cf. 2.7.2).

La fonction de phase de Henyey-Greenstein (donnée par la relation 2.31) est pratique a

utiliser dans un algorithme de Monte-Carlo, car sa fonction de répartition est inversible de

138ous le terme de “profil atmosphérique”, on désigne I’ensemble des informations permettant la description
de ’atmospheére : profil vertical de température, de pression, mais aussi de concentration d’espéces chimiques
présentes dans I’atmosphére.
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fagon analytique. En effet, la génération d’un angle de diffusion 6 dans un intervalle [—7, 7]
suivant la fonction de densité de probabilité ®(6) dans un algorithme de Monte-Carlo revient

N

a échantillonner la fonction de distribution comme une variable aléatoire R uniforme sur [0, 1]
of. 1.2.3.3) :

.\teQQ&\nﬁ (4.60)

-1
r étant une réalisation de la variable aléatoire R uniforme sur [0, 1].

I1 faut donc pouvoir inverser la fonction de répartition de ®(u) pour obtenir u = cos(f).
Si on utilise la fonction de phase de Henyey-Greenstein définie par la relation 2.31, I'inversion

directe de la fonction de répartition de ® donne la relation suivante [2] :

H Hlmw w
HHM| A |v RSH
a 2g T 1—g(1—2r) (461)

On peut voir que la relation 4.61 présente un inconvénient : I'impossibilité de calculer
un angle de diffusion pour la valeur ¢ = 0. Autrement dit, 'utilisation d’une fonction de
phase de Henyey-Greenstein ne permettrait pas de calculer de facon générique des angles
de diffusion dans le cas ou la fonction de phase est isotrope. Or, on désire souvent utiliser
une fonction de phase isotrope, ne serait-ce que dans un but de validation de I’algorithme.
Cependant, aprés quelques étapes de reformulation, nous avons pu montrer que la relation

suivante, équivalente a Eq. 4.61, permettait de résoudre ce probléme purement numérique :

2r(1 + g)? TQ, —1)+ L

T —g(1— wﬂvﬁ

= 1 (4.62)

Il n’était peut-étre pas indispensable de reporter ici cette derniére relation, sachant qu’elle
peut étre facilement retrouvée a partir de Eq. 4.60; cependant, elle peut se révéler utile a
I'utilisateur qui souhaiterait mettre au point un tel algorithme!?, sans s’épuiser inutilement
dans des procédures interminables de “debug” suite a 1’effondrement inopiné de son algo-

rithme et de son travail de validation (cf. paragraphe 4.5)!

14La liste des préjudices physiques et psychologiques que ce type de travail peut entrainer ne sera pas
détaillée ici.
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4.6.3 Pondération des bandes étroites

L’algorithme de Monte-Carlo présenté en 4.3 permet d’effectuer des calculs monochro-
matiques. Le modeéle atmosphérique basé sur cet algorithme utilise un modéle spectral de
bande étroite, formulé en k-distributions, avec utilisation de la méthode C-K pour la prise en
compte des inhomogénéités. Chaque calcul sur une bande étroite revient donc a effectuer une
somme pondérée de gaz gris. Avant d’effectuer un calcul monochromatique correspondant
a ’émission d’'un paquet de photons dans une bande étroite donnée, il faut sélectionner la
bande étroite en question, puis le numéro du gaz gris a l'intérieur de cette bande étroite.
Par exemple, pour une largeur de bande étroite de 20 cm™! (le domaine infrarouge de tra-
vail étant compris entre 4 et 100 um), il faut choisir pour chaque paquet de photons une
bande étroite parmi N, = 121. La quadrature relative a ’hypothése C-K est une quadrature
d’ordre 16 : une fois sélectionnée la bande étroite, il faut ensuite choisir un gaz gris parmi les
16 que compte la bande étroite. En pratique, la pondération spectrale actuellement utilisée
permet de choisir simultanément la bande étroite et le gaz gris a I'intérieur de cette bande. La
manipulation simultanée des concepts de choix d’une bande étroite et de choix d'un gaz gris
est trop complexe. Dans un souci de clarté, le discours qui suivra n’utilisera que le concept

de choix d’une fréquence (bande étroite).

Il est utile de rappeler que le choix de la pondération n’affecte en rien le résultat du
calcul, mais seulement la vitesse de convergence de 1’algorithme : nous cherchons seulement
& réduire le nombre de réalisations aléatoires nécessaire pour atteindre une précision donnée

sur les résultats du code de calcul.

Le principe permettant de choisir les bandes étroites est le méme que celui qui est présenté
dans le travail de thése de A. de Lataillade [13] : un jeu de probabilités est associé a ’ensemble
des bandes étroites. Il s’agit donc de prévoir, avec plus ou moins de succes, la contribution

de chaque bande étroite au résultat que I’on désire calculer.

La pondération spectrale actuellement utilisée par le code de transfert radiatif consiste
& estimer, dans chaque maille atmosphérique, la contribution de chaque bande étroite au
bilan radiatif de la maille. La probabilité (discréte) p; ;. de choisir la bande étroite numéro k
(parmi N, bandes étroites) pour un paquet de photons émis par la maille i est donc :

Wi
PP L (4.63)

N
2kt Wikl

Ou U, ;, est la valeur prise par I'estimateur du bilan radiatif volumique dans la maille 7, dans

la bande étroite k. On peut imaginer diverses facons de construire un tel estimateur : par
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exemple, en calculant, au premier ordre, V;; comme la somme de ’échange net entre la
maille 7 et le sol et de I’échange net entre la maille ¢ et I’espace. Cette méthode donnera de
bons résultats pour les fréquences ou I'épaisseur optique de I’atmosphére est faible, dans des
configurations ciel clair (sans nuages). On peut imaginer calculer ¥, ; a I’aide de méthodes
plus astucieuses, basées sur une analyse détaillée des transferts radiatifs.

Cependant, nous avons décidé d’utiliser une approche plus directe : nous utilisons les rela-
tions présentées au paragraphe suivant, et en annexe A.5. Ces formules permettent d’estimer
toutes les Puissances Nettes Echangées dans le systéme. Il s’agit de formules analytiques,
obtenues en utilisant le méme modéle physique d’atmosphére que celui présenté plus haut,

a deux différences prés :

— Le phénoméne de diffusion est négligé. En effet, une solution analytique de 'ETR ne
peut étre envisagée que pour les systémes purement absorbants.

— Ce n’est pas un profil de température qui est considéré comme linéaire entre centres de
mailles mais un profil de luminance noire. Les faibles écarts de température qui régnent
au sein de I’atmosphére terrestre permettent de justifier cette hypothése.

Une fois estimées toutes les Puissances Nettes Echangées, il ne reste plus qu’a les som-
mer pour obtenir un estimateur du bilan radiatif dans chaque maille atmosphérique. Nous
reviendrons sur la validité de cette méthode.

Le code de calcul, utilisant la pondération spectrale qui vient d’étre décrite, permet
d’effectuer une simulation des transferts radiatifs atmosphériques. Les résultats obtenus sont
les bilans radiatifs de chaque maille, ainsi que les flux aux interfaces de maille. Remarquons
que la pondération spectrale utilisée n’est pas concue de facon & optimiser le calcul des flux
radiatifs. Considérons ’émission par une maille de gaz numéro i, dans une configuration
ciel clair. Si elle est effectuée de fagon correcte, I’estimation des bilans radiatifs dans cette
maille pour chaque fréquence k, va donner une probabilité plus forte aux bandes des régions
spectrales de forte absorption. Au contraire, les bandes étroites situées dans les régions
de transparence (comme la fenétre atmosphérique) auront une probabilité de tirage plus
faible, alors que le flux au sommet de I’atmosphére est principalement construit a partir de
photons émis dans les régions spectrales ol I’épaisseur optique de I’atmosphére est faible. Si
on voulait optimiser le calcul des flux atmosphériques, il faudrait utiliser une pondération
spectrale différente.

Revenons maintenant sur la précision que permet d’atteindre la méthode de calcul de
Pestimateur W, ; qui a été présentée. La figure 4.28(a) montre d’une part la probabilité de

tirage des bandes étroites dans la maille atmosphérique numéro 1, calculée d’aprés la relation
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4.63 et utilisant les formules de I’annexe A.5 pour calculer un estimateur des PNE et du bilan
V; . Elle représente d’autre part la probabilité de tirage des bandes étroites, toujours pour la
maille atmosphérique numéro 1, calculée a partir de la méme relation 4.63, mais en utilisant
cette fois-ci la valeur du bilan radiatif obtenu par le calcul Monte-Carlo en configuration ciel
clair (sans nuages, donc sans phénoméne de diffusion).
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FIG. 4.28: (a) : courbes de p; x, (probabilité d’aprés relation 4.63) et |¥; .|/ S 0", |¥; 4| (calculé
d’apres les résultats W, Monte-Carlo), pour la maille atmosphérique numéro 1, avec une
configuration atmosphérique sans nuages; (b) : idem, pour une configuration atmosphérique
ol se trouve un nuage d’eau épais dans la maille numéro 3.

On peut constater que, dans ce cas, les courbes se superposent de facon quasiment par-
faite. Les seules causes possibles de différence provenant d’une part de l'incertitude liée
au calcul Monte-Carlo, et d’autre part de I'hypothése utilisée pour obtenir les formules de
I’annexe A.5 concernant ’'utilisation d’un profil de luminance noire, et non de température,
linéaire entre centres de mailles. La figure 4.28(a) permet donc d’affirmer que cette hypothése
est justifiée : les bilans radiatifs volumiques estimés a I’aide des formules analytiques utilisant
cette hypothése correspondent exactement aux bilans radiatifs volumiques atmosphériques
réels.

Examinons maintenant ce qui se passe dans le cas ou 'atmosphére comporte un nuage :
la figure 4.28(b) représente les mémes grandeurs que la figure 4.28(a), mais dans le cas ou
un nuage d’eau épais est présent dans la maille atmosphérique numéro 3. On peut voir
cette fois-ci que les bilans radiatifs volumiques estimés a I’aide des formules analytiques (en
négligeant le phénomeéne de diffusion) ne correspondent pas exactement aux bilans radiatifs

volumiques atmosphériques calculés par le code de transfert radiatif. Les formules analytiques
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permettant d’estimer ces bilans radiatifs ne tenant pas compte du phénomeéne de diffusion,
on voit directement sur cette figure quels sont les effets du phénoméne de diffusion sur les

bilans radiatifs atmosphériques.

En conclusion, ’'utilisation des formules de 'annexe A.5 permet d’estimer avec précision
les bilans radiatifs atmosphériques dans le cas d’une atmosphére sans nuages. Dans le cas
ol ’atmosphére comporte des nuages, le code de calcul Monte-Carlo peut étre vu comme
un outil permettant de calculer la différence entre les bilans radiatifs obtenus a I’aide des
formules analytiques et les bilans radiatifs atmosphériques réels.

Ces résultats permettent d’illustrer briévement un autre aspect de la méthode de Monte-
Carlo : il serait envisageable de réaliser un premier calcul Monte-Carlo pour estimer avec
une bonne précision les bilans radiatifs atmosphériques W, . Ces résultats pourraient étre
utilisés (relation 4.63) pour calculer un nouveau jeu de probabilités p; ;. Ce nouveau jeu de
probabilités pourrait alors étre utilisé dans un second calcul Monte-Carlo, qui permettrait

d’atteindre un niveau de précision accru sur ’estimation des bilans radiatifs atmosphériques.

4.7 Validation du code de simulation des transferts ra-

diatifs atmosphériques

Le code de simulation atmosphérique utilise ’algorithme basé sur la méthode de Monte-
Carlo précédemment présenté. Chaque grandeur radiative est estimée comme une somme
pondérée des résultats obtenus pour un ensemble de calculs simples. L’algorithme mono-
chromatique permettant d’effectuer chaque calcul simple étant validé, il reste a vérifier la

pertinence de I'intégration fréquentielle pour valider le code de simulation atmosphérique.

4.7.1 Validation en configuration ciel clair

La validité du modéle atmosphérique a pu étre vérifiée dans le cas particulier ou I'atmo-
sphére ne comporte aucun autre constituant que du gaz : c’est ce que ’on appelle communé-
ment une atmosphére “ciel clair”. C’est a dire qu’aucun nuage d’eau, de glace ou d’aérosols

n’est présent dans la colonne atmosphérique.

Dans ce cas de figure particulier, on peut totalement négliger le phénoméne de diffusion.
En effet, dans la partie infrarouge du spectre électromagnétique, la diffusion par le gaz

(diffusion de Rayleigh) est largement négligeable par rapport au phénoméne d’absorption
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(cf. paragraphe 2.7.1). Pour effectuer un calcul en configuration ciel clair, on fera donc

I’hypotheése que le milieu est purement absorbant.

Sous cette hypothése, on peut exprimer la puissance nette échangée monochromatique
V;;, entre deux mailles de gaz ¢ et j, & la fréquence v, par la relation suivante :

/

Vg = | do \ dz \ = ko sl ) (Bue) = B Jean(~ [ %j

(4.64)

De la méme fagon, on peut exprimer analytiquement les PNE monochromatiques ¥, ),
entre la maille de gaz i et le sol (maille 0), et VU (im+1),, entre la maille de gaz ¢ et I'espace
(maille m + 1) :

Vo \w o \ I:\,ﬂi@xm%v ~ B, )exp(- \o %%v (4.65)

¥omens = [ do  ihoo2) (B(2) = B Yean(~ [ Mg ()

L I

Une solution analytique aux relations précédentes peut étre trouvée, moyennant 'utili-

sation des hypothéses suivantes :

— Chaque colonne atmosphérique est discrétisée en un certain nombre de mailles. Dans
chaque maille atmosphérique, les propriétés optiques moyennes du milieu sont obtenues
pour une température moyenne, et sont considérées comme homogénes dans chaque
maille.

— Les propriétés de diffusion du milieu sont négligées. Ceci est réalisé en imposant k, = 0
et w, = 0 pour chaque bande étroite, dans chaque maille de gaz.

— Un profil de luminance noire linéaire entre le bas et le haut de chaque maille de calcul
est utilisé. On désire cependant obtenir une estimation des puissances nettes échangées
entre les différents éléments d’une atmosphére ot le profil de luminance noire est linéaire
entre centres de mailles. Ce profil est schématisé sur la figure 4.26. Le maillage utilisé
sur cette figure est le maillage utilisé par le GCM. La solution utilisée pour obtenir une

estimation des puissances nettes échangées entre les différentes mailles atmosphériques
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du GCM a consisté a utiliser les relations suivantes pour un maillage dédoublé. Dans
ce maillage dédoublé, les mailles sont constituées par les demi-mailles du GCM. De
cette facon, dans le maillage dédoublé, le profil de luminance est linéaire entre le bas et
le haut de chaque maille. Il ne reste plus ensuite qu’a recombiner les différentes PNE
pour obtenir les puissances nettes échangées entre les éléments de volume utilisés par
le GCM.

On obtient donc, aprés intégration des expressions précédentes, pour deux mailles ¢ et j

telles que 7 > 7, dans le maillage dédoublé :

iy =27 | (Bolzior) = Bulzi1) + ABy(0) (5 — 501) ) Bl )

— (Bu(zi1) = Bulz 1)) By (mesy i) (21— 501))

— (Boeio) = Bulo) + ABL(0) 2 — 7i01)

— ABU§)(25 = 21) ) Ba(Temsy s+ Fanli) (25— 1) )

F(Bula) = Bl5) = ABG) — 20 Bs(mss (g
o Raw (D)2 — 2i01) + Ko () (25— 21))

N Abmé E&QJ A

b (i) | Fawl))

e?ovz\ Hwﬁ. AmtAN&IHv — mmqtv mwﬁ\ﬂmlus.lpv — AmtANs.IHv - mmvt -+ DmtAsv ANs — N&Iva

Es AﬂmﬂsL + k(1) (2 — N@.va (4.68)
+ ¥ Ey Aﬂmﬂva —FE, AﬂmﬂsL + Koy (i) (2 — N@.va
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GQQS.EE =27 AN:ANTL — By + Dm:QXQ - NTHVVNwwAﬂNTEVI

Am%?; _ mmv Fs Aﬁﬁm + ki (i) (21 — vav (4.69)

_ wm‘% Eu(resn) — Ea (7o + i)z — 7))

Avec

— B,(z) : luminance de Planck a laltitude z.

— By, : luminance de Planck du sol.

— B, : luminance de Planck de ’espace.

AB, (i) : pente du profil de B, (%) dans la maille i.
AB,(j) : pente du profil de B, (z) dans la maille j.

Tgory = St kan (1) TS —z(l — HL : épaisseur optique entre le sol et z;_;.

Tt = s Faw(l) TS —2(l — HL : épaisseur optique entre z; et I’espace.

—i+1
— kau (i) : coefficient d’absorption (homogéne) dans la maille i.

— Taz, = MNL ko (1) TS —2z(l— HL : épaisseur optique entre z,;_; et z;.

ka,(j) @ coefficient d’absorption (homogéne) dans la maille j.
— E,(z) est la fonction exponentielle intégrale, dont la définition et quelques propriétés

font ’objet de I’annexe B.

Les résultats obtenus permettent ensuite de calculer les taux de chauffage y; (en K/jour)

obtenus dans chaque maille (cf. chapitre 5).

On a vu au paragraphe précédent comment ces relations ont été utilisées pour estimer
les bilans radiatifs de chaque maille, & chaque fréquence. On a vu également que les bilans
radiatifs estimés par cette méthode correspondent de fagon précise aux bilans radiatifs atmo-
sphériques réels, dans le cas d’une atmosphére ciel clair. Ces résultats confirment que la mise
en oeuvre informatique de 'intégration spectrale sur le domaine infrarouge a été effectuée

de facon correcte.
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4.7.2 Comparaison de résultats en configuration ciel nuageux

La prise en compte du phénoméne de diffusion a été validée dans 1’algorithme monochro-
matique basé sur la méthode de Monte-Carlo ; cependant, de fagon analogue au paragraphe
précédent, on désire maintenant vérifier qu’aucun probléme n’apparait dans la lecture des
données relatives a la diffusion (coefficient de diffusion, albédo de diffusion simple, facteur
d’asymétrie de la fonction de phase), et que I'intégration fréquentielle se déroule correctement
en présence de diffusion.

Si la comparaison des résultats du code de simulation des transferts radiatifs atmosphé-
rique avec des résultats analytiques n’est pas possible, il est en revanche possible de les
comparer avec ceux d’un autre code de calcul qui peut étre considéré comme un modéle
de référence. Bien entendu, les résultats obtenus par les deux codes ne peuvent étre com-
parables qu’a partir du moment ol ce sont les mémes données spectrales qui sont utilisées
pour les deux calculs. On verra au chapitre suivant de quelle facon peuvent se comparer les
résultats du code de Monte-Carlo et ceux d’un code atmosphérique basé sur une méthode

aux ordonnées discrétes a 128 directions.
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Indice de maille | Altitude (km) || Indice de maille | Altitude (km)
1 0.125 26 6.375
2 0.375 27 6.625
3 0.625 28 6.876
4 0.875 29 7.126
d 1.125 30 7.378
6 1.375 31 7.632
7 1.625 32 7.888
8 1.875 33 8.149
9 2.125 34 8.419
10 2.375 35 8.704
11 2.625 36 9.016
12 2.875 37 9.371
13 3.125 38 9.797
14 3.375 39 10.339
15 3.625 40 11.069
16 3.875 41 12.094
17 4.125 42 13.584
18 4.375 43 15.795
19 4.625 44 19.113
20 4.875 45 24.114
21 5.125 46 31.648
22 5.375 47 42.964
23 9.625 48 59.876
24 9.875 49 85.000
25 6.125 a0 100.000

TAB. 4.4: Altitudes de haut des mailles utilisées pour la discrétisation verticale d’une colonne

atmosphérique GCM.
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TAB. 4.5: Correspondance entre numéros de bandes étroites et fréquences (et nombres
d’ondes) de centres de bandes étroites.

Numéro de bande étroite | Fréquence (um) | Nombre d’onde (cm™1)
1 4.000 2500
15 4.504 2200
26 5.000 2000
35 5.494 1820
43 6.024 1660
49 6.493 1540
35 7.042 1420
64 8.064 1240
76 10.000 1000
86 12.500 800
94 15.625 640

101 20.000 200
106 25.000 400
110 31.250 320
116 50.000 200
118 62.500 160
121 100.000 100




Chapitre 5

Analyse des échanges radiatifs dans

I’atmosphére terrestre

La majeure partie de ce chapitre constitue le corps d’un article accepté pour publication
dans un numéro spécial intitulé “Clouds and radiation” de la revue “Atmospheric Research”.
Cet article fait suite au travail présenté lors de ’assemblée commune EGS-AGU-EUG [23]

qui s’est déroulée & Nice du 6 au 11 avril 2003.

5.1 Introduction

Les résultats présentés dans ce paragraphe ont été obtenus a ’aide du code atmosphérique
de Monte-Carlo présenté au chapitre 4. On a choisi une résolution spectrale de 20 cm ™! pour
établir ces résultats, et la plage de fréquence étudiée s’étend de 4 & 100 um ; elle est donc
discrétisée en 121 bandes étroites. Les transferts radiatifs étant formulés en Puissances Nettes
Echangées, les résultats qui seront présentés sont :

— des matrices de puissances nettes échangées (W.m?)

— des profils de taux de chauffage atmosphérique (K/jour)

— des profils de bilan moyen par maille et par bande étroite (mW/m?/cm™!)

L’expression générale des PNE est donnée au paragraphe 4.3. Rappelons toutefois, dans le
cas d’une configuration plans-paralléles, en présence d’'un milieu purement absorbant et d’un
sol non réfléchissant, I'expression de ¥, ;y, la puissance nette échangée monochromatique
(en W.m™?) entre deux mailles i et j de gaz situées respectivement entre les altitudes z;_,
et z;, et entre les altitudes z;_; et z; :

145
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/

Wi \ do \ dz \ |§§ (&) (Bu(z) = Bul) ) ean(~ \ %%v

(5.1)

Les puissances nettes échangées W ; o), et W(; ni1), (en S\S@&Y respectivement la puis-
sance nette échangée monochromatique entre le sol et une maille de gaz 7, et la puissance
nette échangée monochromatique entre 1’espace et une maille de gaz ¢, peuvent s’exprimer

sous la forme suivante :

B #odz “kayn(2)
Yoy = \wa dw \ H Mtws:ﬁmv Amwg — mm&v mH@AI\o {&Nv (5.2)

W (i.mt1), \wa &E\ |E§:A VANLNV — mm&v @%AI \m %&N\v (5.3)

z

Dans ces expressions, B,(z) est la luminance noire monochromatique a l'altitude z,
B, (%) est la luminance noire monochromatique du sol et B, ,(z) est la luminance noire
monochromatique de 'espace (en pratique, cette luminance est prise nulle). k,,(z) est le
coefficient d’absorption monochromatique a ’altitude z, et on a également dw = —dud®,

avec 1 = cosf), 6 étant ’angle zénithal et ® ’angle azimuthal.

Toujours dans le but d’éclairer les résultats qui vont étre présentés et l'analyse qui en
sera faite, si on fait I’hypothése d’un profil de température uniforme dans chaque maille

atmosphérique, la relation 5.1 peut étre formulée de la facon suivante :

Vi) = S Tw:@ — B,(j) (5.4)

Ou B, (i) et B,(j) sont les luminances noires monochromatiques des mailles i et j. & ;
est un facteur optico-géométrique monochromatique. Toujours dans I’hypothése ou le E:Sc
est purement absorbant, appelons 7; ;_1), la transmittivité monochromatique entre les al-
titudes z; et z;_1, 7(; j),, la transmittivité BouonrHoBmS@cm entre les altitudes z; et z;, etc.

Le facteur &(; j),, peut étre exprimé en fonction de ces transmittivités :

mﬁs.rw.vl\ = QQ‘|“_.V¢N\ - Q|HQ4|HY \NMQ\Q I_I\le| rw Aﬁﬂvmv
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D’apres I’équation 5.5, il est facile de voir que £ ;),, > 0 quels que soient les indices et j.
Le signe de ¥ ;y,, dépend donc uniquement du signe de Tw:@ — B,(j)|, en considérant un
profil de luminance noire constant dans chaque maille atmosphérique. Les résultats qui sont
montrés dans ce chapitre ont été obtenus en considérant un profil de température linéaire
entre centres de mailles (cf. 4.6). Cependant, 'interprétation qualitative qui est donnée pour

expliquer le signe des PNE monochromatiques reste valable.

Le bilan radiatif monochromatique moyen ¥, , (en W/m?) dans chaque maille atmosphé-

rique ¢ peut étre exprimé comme une somme de PNE :

eﬁt — ‘ MU GQL.VL\ Ammv

On peut également obtenir le taux de chauffage total x; (en K/jour) intégré sur le spectre

a partir de la relation suivante :

| —

g v,
j= 5.7
X = S (5.7)

o)

Ou g est la valeur de 'accélération de la gravité, C, la capacité thermique massique de
’air, 4t la longueur du jour en secondes, dp; la différence de pression entre le bas et le haut
de la maille atmosphérique i, et W; le bilan radiatif moyen dans la maille 7, intégré sur le
domaine fréquentiel infrarouge : ¥; = % Vmaz U, ,dv, avec Vpip €t Ve les bornes du domaine

Vmin

spectral d’intégration (ici 4 et 100 pm).

Bien entendu, y; peut étre défini comme une somme de taux de chauffages correspondants

a chacune des puissances nettes échangées :

m+1
Xi = MU Xi,j (5.8)
5=0
Avec : 1
_ 9 ¥
X TG, ot dpy (59)

Et U, ; = [ U, ,dv, la puissance nette échangée entre i et j intégrée sur le spectre.

Vmin
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5.2 Résultats en configuration ciel clair

Les résultats montrés dans ce paragraphe ont été obtenus en configuration ciel clair, c’est a
dire que le milieu atmosphérique ne comporte aucun autre composant que le gaz. Les données
utilisées pour effectuer les calculs ont été présentées au paragraphe 4.6.2. Les résultats qui
suivent ont été obtenus pour deux profils atmosphériques standard de Mc Clatchey [54] :
le profil atmosphérique aux moyennes latitudes en été (MLS) et le profil atmosphérique
en région sub-arctique, en hiver (SAW). L’atmosphére compte m = 50 mailles de gaz. Les

altitudes de haut de chaque maille atmosphérique sont présentées en table 4.4.

La figure 5.1 rappelle les profils de température pour les deux atmosphéres standard MLS
et SAW.
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F1G. 5.1: Profils de température (K) pour des profils standards de Mc Clatchey MLS et
SAW. (a) : échelle verticale linéaire en altitude; (b) : échelle verticale linéaire en numéro de
maille atmosphérique.

5.2.1 Taux de chauffage
Les figures 5.2(a) et 5.3(b) représentent le profil de taux de chauffage en K/jour intégré
sur la plage spectrale entre 4 et 100 um, pour des profils atmosphériques MLS et SAW.

En ce qui concerne les profils de taux de chauffage, on retrouve des résultats connus

[32, 47]. En particulier, on peut comparer les profils de taux de chauffage obtenus aux profils

numero de maille
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i
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F1G. 5.2: (a) : profil du taux de chauffage (K/jour) pour une atmosphére MLS ciel clair,
représenté entre le sol et une altitude de 15 km. Les résultats présentés sont les taux de
chauffage calculés par le code de Monte-Carlo et les taux de chauffage publiés dans Fu et
al. [32]. (b) : matrice des PNE intégrée entre 4 et 100 um (W.m™2) pour le méme profil
atmosphérique. La couleur d’un carré repéré par les indices de mailles ¢ et j représente la
valeur de la Puissance Nette Echangée entre les mailles 7 et j. La maille 0 représente le sol,
et la maille 51 représente ’espace.
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(a) Taux de chauffage pour atmosphére SAW ciel

i
catt (b) Matrice des PNE pour atmosphére SAW

ciel clair

F1G. 5.3: Identique a Fig. 5.2 pour un profil SAW
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publiés dans [32], pour les mémes profils de température, en configuration ciel clair, obte-
nus pour une méthode aux ordonnées discrétes a 128 directions de discrétisation (D128S).
On peut constater que les taux de chauffage calculés par les deux codes sont identiques,
a quelques différences prés, qui sont attribuées au modéle physique d’atmosphére utilisé
par le code de Monte-Carlo (résolution sur la verticale grossiére, correspondant a celle du
GCM terrestre, et hypothése de propriétés optiques homogénes dans chacune des mailles

atmosphériques).

5.2.2 Les matrices de PNE

Les matrices de PNE (Fig. 5.2(b) et Fig. 5.3(b)) intégrées sur le spectre (W.m™2), en
revanche, apportent un autre éclairage sur ces résultats : chaque élément de la matrice
représente la puissance nette échangée W;; entre chaque paire de mailles atmosphériques
(i, 7). Considérons par exemple, dans la figure 5.2(b), la ligne de la matrice correspondant a
la maille ¢ = 10 : elle permet de décomposer le taux de chauffage de la maille 10 en termes
de contribution par chaque PNE. La maille de gaz numéro 10 est, par exemple, chauffée par
le sol (maille 0) plus chaud, et les mailles de gaz inférieures, plus chaudes que la maille 10.
En revanche, elle se refroidit par échange avec les mailles du dessus et 1’espace, plus froids.
Bien entendu, la matrice est antisymétrique (¥;; = —V;;). Les termes diagonaux sont nuls

car il n’y a pas d’échange net entre une maille ¢ et elle-méme.

Dans la figure 5.2(b), les termes dominants sont les échanges nets entre chaque maille at-
mosphérique et le sol (premiére ligne et premiére colonne), entre chaque maille atmosphérique
et lespace (derniére ligne et derniére colonne), ainsi qu’entre chaque maille atmosphérique
et les mailles voisines (termes proches de la diagonale). Remarquons un changement de signe
pour les mailles stratosphériques : par exemple, la maille 45 est réchauffée par les mailles
0 — 41 plus chaudes, puis la maille 45 est refroidie par les mailles 42 — 44, plus froides, et
enfin elle est de nouveau réchauffée par les mailles 46 — 48. Cette inversion de signe est due

a une inversion du profil de température MLS dans la stratosphére (cf. Fig. 5.1).

Les conclusions sont similaires pour la configuration SAW ciel clair Aﬁm. m.w?vv“ excepté
que le profil de température comporte deux inversions : la premiére & z ~ 1 km d’altitude,
et la seconde a z =~ 42 km d’altitude. Ces inversions de température ont un effet directement
visible sur la matrice des PNE. Un groupe d’échanges nets nuls est également visible pour les
mailles 38 — 43. Cet effet est dii au fait que le profil de température est quasiment constant
dans ces mailles (cf. Fig. 5.1). Les mailles 38 — 43 étant quasiment a la méme température,

les échanges nets entre elles sont quasiment nuls.
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5.2.3 Analyse spectrale

Le taux de chauffage & une altitude donnée, pour une configuration ciel clair, est donc
essentiellement di aux termes d’échanges nets avec le sol (chauffage par le sol), avec 1'espace
(refroidissement vers I’espace) et avec les mailles atmosphériques proches. Les résultats pré-
cédents (Fig. 5.2 et Fig. 5.3) montraient des matrices de PNE intégrées sur tout le spectre
infrarouge. Il est possible de tracer ces matrices pour chaque bande étroite. Au lieu de pré-
senter ce genre de matrice pour quelques bandes étroites particuliéres, nous allons nous
intéresser au bilan radiatif ¥, pour chaque maille atmosphérique ¢, moyenné sur chaque

-1

bande étroite indicée k de largeur 20 cm ™", en le décomposant en trois termes principaux :

I’échange net entre la maille atmosphérique 7 et le sol G,MMNJSﬁ I’échange net entre la maille

atmosphérique i et 'espace W7,"™“"*“ et enfin 'échange net entre la maille atmosphérique

gaz—gaz |

i et le reste de atmosphére Wy}

_ \Jy9az—sol gaz—espace gaz—gaz
Uik =Wy + Wy + Wiy (5.10)

Fig. 5.4(a) représente le bilan radiatif total en fonction de I’altitude, pour chaque bande
étroite de largeur An = 20 ecm ™! entre 4 et 100 um (voir table 4.5 p.144 pour une correspon-
dance entre les numéros de bandes étroites et la fréquence centrale de chaque bande étroite).
Fig. 5.4(b), (c) et (d) représentent les différents termes du bilan radiatif total d’aprés la
relation 5.10 : I’échange net entre chaque maille atmosphérique et le sol, entre chaque maille
atmosphérique et ’espace, et entre chaque maille atmosphérique et le reste de I’atmospheére.

La figure 5.5 montre les mémes grandeurs pour une configuration SAW ciel clair.

La figure Fig. 5.4(b) montre que 1’échange net entre chaque maille atmosphérique et le
sol GNM,T%N est positif pour une configuration MLS, ce qui signifie que le sol réchauffe toutes
les mailles atmosphériques en situation ciel clair : en effet, la température du sol est plus
importante que la température dans toutes les mailles atmosphériques. On peut voir une
décroissance de cet échange net avec 'altitude. Cette atténuation ne se fait pas strictement
selon une loi exponentielle, puisqu’on présente un résultat moyen par bande étroite. De plus,
I’échange net avec le sol est dominant dans les régions spectrales faiblement absorbantes,
comme la “fenétre atmosphérique” qui s’étend de 8 & 13 pm au niveau du sol (bandes étroites
k = 63 — 82), tandis que 1’échange net avec le sol est nul dans les bandes d’absorption forte,
comme la bande a 15 pm du CO; (k = 93) et les bandes d’absorption de I’eau (k = 30 —60 et
k = 100—121). Dans les autres bandes d’absorption, comme la bande d’absorption 4 9,2 um
de lozone (k = 72) et la bande a 4,2 um du CO, (k = 10), émme& dépend des variations
locales de I’épaisseur optique avec l'altitude. Dans une configuration SAW (Fig. 5.5(b)),
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FIG. 5.4: (a)Bilan radiatif total (mW/m?3/cm™') en fonction du numéro de bande étroite (lar-
geur de bande étroite dn = 20 cm™!, de 4 a 100 um) et du numéro de maille atmosphérique,
pour une configuration MLS ciel clair; (b) Echange net entre chaque maille atmosphérique
et le sol (mW/m?3/ecm™'); (c) Echange net entre chaque maille atmosphérique et 1’espace
(mW/m?3/em™1); (b) Echange net entre chaque maille atmosphérique et le reste de I’atmo-

sphére (mW/m?3/em™!)
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la température du gaz est plus importante que celle du sol dans la basse atmosphére Aow
Fig. 5.1). Il est donc normal de trouver que G,MMT%N est négatif pour les deux premiers
kilométres (7 premiéres mailles atmosphériques). Au-dessus de 2 km, la température du gaz

gaz—sol

passe sous la température du sol et W3 est positif.

L’échange net entre chaque maille atmosphérique et 1'espace W7}"™ =" (Fig. 5.4(c) et
Fig. m.m?vv est négatif, car I'espace est plus froid que toutes les mailles atmosphériques.
WP est dominant pour des régions spectrales oil les variations de 1’épaisseur optique
avec I’altitude sont les plus importantes. Les échanges nets entre les mailles atmosphériques et
I’espace ne sont possibles que pour les fréquences ot le gaz est “visible” depuis ’espace. Dans
les régions spectrales ol 'absorption est faible, toutes les mailles atmosphériques peuvent
échanger avec l'espace, tandis que dans les bandes d’absorption forte (comme celles de ’eau),

les échanges nets ne sont possibles qu’avec les mailles supérieures de I’atmosphére.

Les échanges nets entre chaque maille atmosphérique et le reste de 'atmosphere W/}*™9

Ammm. 5.4(d) et Fig. w.mavv sont positifs pour les mailles proches du sol, et négatifs pour

gaz—gaz

les mailles proches de I'espace. L’altitude ou le signe de Wy s’inverse est fonction de la
fréquence. Cette altitude est plus importante pour les bandes d’absorption forte. W3 7%
dépend des variations locales de I'épaisseur optique avec 1’altitude et des variations locales

des gradients de température avec l'altitude.

5.3 Résultats en ciel nuageux

Ce paragraphe présente une série de résultats dans le cas de configurations nuageuses,
pour les profils atmosphériques standard MLS et SAW. Quatre configurations nuageuses sont
utilisées; il s’agit des configurations suivantes :

— Configuration nuage bas : nuage d’eau dont 1’épaisseur optique totale dans le visible
est de 60, qui s’étend entre 1.0 et 2.0 km d’altitude en profil MLS, et de 0,54 1,5 km
d’altitude pour le profil SAW. Posséde un contenu en eau liquide (LWC) de 0,22 g.m ™3
et le rayon effectif de la distribution de taille des gouttes d’eau est r. = 5,89 um).

— Configuration nuage moyen : nuage d’eau dont 1’épaisseur optique totale dans le visible
est de 72, qui s’étend de 4,0 4 5,0 km en profil MLS, et de 2,0 & 3,0 km pour le profil
SAW, avec un LWC de 0,28 g.m ™2 et un rayon effectif r, = 6,20 um).

— Configuration nuage haut : nuages de glace avec une épaisseur optique totale dans le
visible de 0,80 qui s’étend de 10 & 12 km en MLS, et de 6 & 8 km en SAW, avec un
contenu en glace (IWC) de 0,0048 g.m™3 et un diamétre effectif pour la distribution
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de taille de cristaux D, = 41,5 um.
— Configuration tous nuages : les nuages bas, moyen et haut sont tous les trois présents
en méme temps.
Nous allons tout d’abord montrer les matrices de PNE et taux de chauffage atmosphérique
pour ces différentes configurations, avant de passer & I’analyse spectrale des bilans radiatifs

et de leurs différents termes.

5.3.1 Matrices de PNE et taux de chauffage

Les figures 5.6-5.9 montrent les taux de chauffage en K /jour pour les configurations MLS
(a) et SAW (b) nuage bas, nuage moyen, nuage haut et tous nuages. De fagon générale, le
bas de tous les nuages est réchauffé, car le sol est plus chaud que le bas des nuages. Ce n’est
cependant pas vrai dans le cas d’'un nuage bas en profil SAW : le bas du nuage est situé
a une altitude d’environ 1 km, qui est l'altitude ou le gaz atmosphérique est le plus chaud
(cf. Fig. 5.1). Dans tous les cas, le haut du nuage est refroidi par échanges radiatifs avec
les mailles du dessus et I’espace, plus froides que le haut du nuage. Pour les nuages bas et
moyens, on peut voir que le taux de chauffage au centre du nuage est trés faible : les mailles
centrales du nuage sont isolées, d’un point de vue radiatif, du reste de ’atmosphére, a cause
de la forte épaisseur optique des mailles de bord du nuage.

Les figures (c) et (d) représentent les matrices de PNE pour les mémes configurations.
Pour les configurations nuages bas (Fig. 5.6) et nuages moyens (Fig. 5.7), les échanges nets
dominants pour les mailles situées sous les nuages sont les échanges nets entre chaque maille
atmosphérique et le sol, le bas du nuage et les mailles atmosphériques proches. De facon
similaire, pour les mailles situées au-dessus des nuages, les échanges nets dominants sont les
échanges nets entre chaque maille et le haut du nuage, 1’espace, et les mailles proches. Dans
le cas de ces nuages bas et moyens, il ne peut pas y avoir d’échanges nets entre mailles situées
de part et d’autre des nuages. Ces nuages se comportent donc comme des écrans radiatifs
(comme des parois). On peut également voir, de fagon qualitative, & partir des matrices de
PNE, que le bas des nuages est réchauffé par échange avec le sol et que le haut des nuages
est refroidi par échange avec I’espace. Les échanges nets ne sont pas possibles entre le bas et

le haut des nuages.

Dans le cas des nuages hauts (Fig. 5.8), nuage de glace avec une faible épaisseur optique,
les échanges nets sont possibles entre mailles situées de part et d’autre du nuage. L’épaisseur
optique de ce type de nuage n’est pas assez élevée pour atténuer tout le rayonnement incident.

Les échanges nets dominants sont les échanges nets entre chaque maille atmosphérique et le
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FI1G. 5.6: (a) : taux de chauffage (K/jour) pour une configuration MLS nuage bas (nuage
d’eau s’é¢tendant de 1.0 & 2.0 km (mailles 5 — 9) avec LWC = 0.22 g.m™3 et 7. = 5,89 um) ;
les résultats présentés sont les taux de chauffage calculés par le code de Monte-Carlo et les
taux de chauffage publiés dans Fu et al. [32]. (b) : identique a (a) pour une configuration SAW
nuage bas (nuage d’eau s’étendant de 0,5 a 1,5 km (mailles 3 — 7), LIWC et r.identiques) ;
(¢) : matrice de PNE W.m™2) pour une configuration MLS nuage bas; (d) : identique a (c)
pour une configuration SAW nuage bas.

numero de maille
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F1G. 5.7: (a) : taux de chauffage (K/jour) pour une configuration MLS nuage moyen (nuage
d’eau s’étendant de 4.0 2 5.0 km (mailles 17—21) avec LWC = 0.28 g.m ™3 et r. = 6.20 um) ;
les résultats présentés sont les taux de chauffage calculés par le code de Monte-Carlo et les
taux de chauffage publiés dans Fu et al. [32]. (b) : identique a (a) pour une configuration SAW
nuage moyen (nuage d’eau s’étendant de 2.0 4 3.0 km (mailles 8—13), LW C et r.identiques) ;
(¢) : matrice de PNE W.m™2) pour une configuration MLS nuage moyen; (d) : identique a
(c) pour une configuration SAW nuage moyen.

numero de maille
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(c) Matrice des PNE MLS nuage haut (d) Matrice des PNE SAW nuage haut

F1G. 5.8: (a) : taux de chauffage (K/jour) pour une configuration MLS nuage haut (nuage
d’eau s’étendant de 10 a 12 km (mailles 39 — 41) avec LWC = 0,0048 g.m ™3 et D, =
41,5 pum) ; les résultats présentés sont les taux de chauffage calculés par le code de Monte-
Carlo et les taux de chauffage publiés dans Fu et al. [32]. (b) : identique & (a) pour une
configuration SAW nuage haut (nuage d’eau s’étendant de 6 a 8 km (mailles 25 — 33), LW C
et r.identiques); (c) : matrice de PNE W.m™2) pour une configuration MLS nuage haut;
(d) : identique a (c) pour une configuration SAW nuage haut.

numero de maille
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MLS tous nuages SAW tous nuages
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F1G. 5.9: (a) : taux de chauffage (K/jour) pour une configuration MLS tous nuages; les
résultats présentés sont les taux de chauffage calculés par le code de Monte-Carlo et les taux
de chauffage publiés dans Fu et al. [32]. (b) : identique & (a) pour une configuration SAW
tous nuages; (c) : matrice de PNE W.m~2) pour une configuration MLS tous nuages; (d) :
identique a (c) pour une configuration SAW tous nuages.

numero de maille
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sol, ’espace et les mailles proches, mais également les échanges nets entre mailles nuageuses

et mailles non nuageuses.

Finalement, dans le cas ou tous les nuages sont présents (Fig. 5.9), les nuages bas et
moyens se comportent d’un point de vue radiatif comme des écrans, et ils définissent des
régions d’atmosphére indépendantes, qui ne pourront pas échanger d’énergie par rayonne-
ment. On peut voir la formation de trois régions : la premiére, située sous les nuages bas,
la seconde entre les nuages bas et les nuages moyens, et la troisiéme située au-dessus des
nuages moyens. Les nuages hauts, pour leur part, ne se comportent pas comme des écrans
radiatifs et les échanges radiatifs sont possibles entre mailles situées au-dessous et au-dessus
de ce genre de nuages. Dans chaque région d’atmosphére citée ci-dessus, les échanges nets
dominants sont les échanges nets entre les mailles claires (non nuageuses) et la paroi du bas
(sol ou haut du nuage bas), entre les mailles claires et la paroi du haut (espace ou bas du
nuage moyen) et entre les mailles claires proches. Dans le cas particulier des nuages hauts,
les échanges nets entre les mailles claires et les mailles nuageuses sont également des termes

dominants.
Retour sur la validation du code atmosphérique de Monte-Carlo

Au chapitre 4, nous avons pu valider de fagon rigoureuse le code de Monte-Carlo en
configuration ciel clair par comparaison avec un jeu de solutions analytiques. En présence de
diffusion, seules des validations de I’algorithme monochromatique ont pu étre faites, et aucun
test n’a pu étre effectué quant a la prise en compte des propriétés spectrales des particules
diffusives (coefficient de diffusion, albédo de diffusion simple, facteur d’asymétrie). Nous
allons voir ici que nous retrouvons de fagon précise les résultats obtenus a I’aide de la méthode
D128S utilisée dans Fu et al. [32], pour les mémes configurations. Les différences restantes,
une fois prise en compte l'incertitude statistique de Monte-Carlo, peuvent étre attribuées aux
hypothéses concernant les modéles spectraux (utilisés pour calculer les propriétés optiques

des gaz et des nuages), ainsi qu’aux différences de maillage.

La table 5.1 p. 161 permet de comparer les flux (en W.m™2) ascendant au sommet de
Patmosphére F't(H) et descendant au sol F~(0) obtenus a 'aide du code de Monte-Carlo
(calculs avec N = 10° événements aléatoires par maille) aux valeurs publiées dans Fu et al.
[32]. Dans les figures 5.6(a)-5.9(a), les taux de chauffage publiés dans [32] sont également
comparés aux résultats du code Monte-Carlo ; les seules différences notables concernent 1’al-

titude des maxima de taux de chauffage et sont dues aux différences de maillage.
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Configuration | F*(H) D128S F*(H) MC F~(0) D128S F~(0) MC
MLS ciel clair 283,70 282,33 £ 0,19 347,40 349,70 £+ 0,056
MLS nuage bas 266,00 266,90 £ 0,15 412,10 415,672 + 0,0043
MLS nuage moyen 229,60 231,74 £ 0,10 393,60 396,64 + 0,013
MLS nuage haut 215,60 218,78 £ 0,16 355,10 357,69 £ 0,042
MLS tous nuages 188,00 192,42 + 0,11 412,10 415,674 + 0,0043
SAW ciel clair 200,70 199,18 + 0,13 168,60 171,60 = 0,056
SAW nuage bas 196,90 197,39 +£ 0,097 249,10 249,8521 £ 0,00086
SAW nuage moyen 188,20 195,64 4+ 0,079 245,30 246,755 £+ 0,0026
SAW nuage haut 169,50 169,41 + 0,11 188,70 190,56 + 0,040
SAW tous nuages 163,90 168,07 + 0,0950 249,10 250,0993 + 0,00088

TAB. 5.1: Flux ascendant au sommet de I’atmosphére F'*(H) et flux descendant au sol '~ (0)
en W.m~2 d’aprés Fu et al. [32] et d’aprés le code atmosphérique de Monte-Carlo.

5.3.2 Analyse spectrale

Au paragraphe 5.2.3, nous avions montré le bilan radiatif total ¥, ; et ses trois compo-
santes WYG* !, WILETPUC of Y9299 en fonction de l'altitude, pour chaque bande étroite
indicée k. Dans ce paragraphe, nous avons gardé la méme représentation des bilans radiatifs,

pour les quatre configurations nuageuses utilisées précédemment.

Les matrices de PNE montrées précédemment montrent que les nuages bas et moyens
se comportent comme des écrans radiatifs entre les mailles situées de part et d’autre de
ces nuages. Au contraire, les nuages hauts permettent des échanges radiatifs entre mailles
situées au-dessous et au-dessus de ce genre de nuages. Ces résultats étaient intégrés sur tout
le spectre au paragraphe 5.3.1. Les résultats qui suivent représentent donc la décomposition
spectrale de ces PNE en termes de bilans radiatifs (Fig. 5.10-5.17).

Ces figures montrent tout d’abord qu’en présence de nuages bas et moyens @Jm. 5.10-
5.11(b) et Fig. 5.14-5.15(b)), les échanges nets entre chaque maille atmosphérique et le sol, ne
peuvent avoir lieu que pour les mailles situées sous les nuages, et dans les régions spectrales
a faible absorption. Pour les bandes d’absorption forte (bandes d’absorption de 'eau et
du CO,), le rayonnement émis par le sol est totalement atténué dans la premiére maille
atmosphérique, ce qui rend impossibles les échanges nets entre le sol et les mailles suivantes.
De fagon similaire, toujours dans le cas des nuages bas et moyens G.ﬂm. 5.10-5.11(c) et

Fig. m.E-m.HonvY les échanges radiatifs nets entre les mailles atmosphériques et ’espace ne
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FI1G. 5.10: (a) : bilan radiatif total (mW/m?/cm™!) en fonction du numéro de bande étroite
et du numéro de maille atmosphérique, pour une configuration MLS nuage bas; (b) : bilan
entre chaque maille atmosphérique et le sol (mW/m?®/cm™'); (c) : bilan entre chaque maille
atmosphérique et I'espace (mW/m?3/cm™1); (d) : bilan entre chaque maille atmosphérique
et le reste de 'atmospheére (mW/m?/cm™1)
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F1G. 5.11: Identique a Fig. 5.10 pour une configuration MLS nuage moyen
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F1G. 5.12: Identique a Fig. 5

10 pour une

gaz—gaz
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(d)

MLS nuage haut

configuration MLS nuage haut
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F1G. 5.13: Identique a

Fig

MLS tous nuages
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(d)

MLS tous nuages

5.10 pour une configuration MLS tous nuages
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FIG. 5.14: (a) : bilan radiatif total (m¥W/m?/cm™!) en fonction du numéro de bande étroite
et du numéro de maille atmosphérique, pour une configuration SAW nuage bas; (b) : bilan
entre chaque maille atmosphérique et le sol (mW/m?®/cm™'); (c) : bilan entre chaque maille
atmosphérique et I'espace (mW/m?3/cm™1); (d) : bilan entre chaque maille atmosphérique
et le reste de 'atmospheére (mW/m?/cm™1)
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F1G. 5.17: Identique a Fig. 5.14 pour une configuration SAW tous nuages
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peuvent avoir lieu que pour les mailles atmosphériques situées au-dessus des nuages, et dans
les régions spectrale a faible absorption. L’effet d’écran radiatif des nuages bas et moyens et
I’absorption importante du gaz atmosphérique dans le domaine infrarouge s’ajoutent pour
annuler tous les échanges radiatifs nets sauf ceux qui se déroulent entre mailles situées d’un

méme cOté des nuages, et seulement dans les régions spectrales a faible absorption.

Dans le cas de nuages hauts (Fig. 5.12 et Fig. 5.16), on ne retrouve pas l'effet d’écran
radiatif, comme on 'avait déja vu au paragraphe 5.3.1 : les échanges radiatifs sont possibles
entre le sol et les mailles situées au-dessus du nuage, et entre l’espace et les mailles situées
au-dessous du nuage, mais toujours dans les régions spectrales a faible absorption, a cause

de l'atténuation par le gaz atmosphérique dans les bandes d’absorption forte.

Enfin, dans le cas des configurations ou sont présents tous les nuages (Fig. 5.13 et
Fig. 5.17) on retrouve 'effet de segmentation de I’atmosphére en parties radiativement in-
dépendantes les unes des autres. L’analyse spectrale nous révéle toutefois que bon nombre
d’échanges nets ne sont pas possibles méme a I'intérieur d’une région donnée de I’atmospheére,
a cause de I'atténuation par le gaz atmosphérique dans les bandes d’absorption de 1’eau et
du COs.

5.4 Effets de la diffusion

Les effets de la diffusion dans la plage infrarouge sont traditionnellement négligés dans
la communauté GCM. Cependant, les besoins croissants en précision ! rendent maintenant
nécessaire la prise en compte des effets de la diffusion dans le calcul des transferts radiatifs
infrarouges |20, 22, 32, 61, 75, 77|. Afin de mettre au point une paramétrisation des transferts
radiatifs infrarouges qui tienne compte des effets de la diffusion, nous allons dans ce chapitre
présenter quels sont les effets de la diffusion sur les résultats obtenus dans les configurations
précédemment utilisées : tout d’abord, un paragraphe sera consacré aux effets de la diffusion
sur le bilan radiatif total du sol et de ’espace ; nous verrons ensuite quelle est I'influence du
phénomeéne de diffusion sur les matrices de PNE et les profils de taux de chauffage atmo-
sphérique dans le cas d’une atmospheére nuageuse, et enfin ces résultats seront décomposés

sur le spectre pour montrer quelles sont les plages spectrales affectées par la diffusion.

'Par exemple, les bilans radiatifs du sol et de I’espace doivent étre connus avec une précision de I’ordre
de 1%



Chapitre 5 Analyse des échanges radiatifs dans 'atmosphére terrestre 171

5.4.1 Effets de la diffusion sur le bilan radiatif total du sol et de

I’espace

Configuration | ¥,; A.A. (W.m™2) | AU, (Wm™2) | AV, (%)

MLS nuage bas -8,89 + 0,0049 0,323 £+ 0.0098 | -2,69 + 0,10
MLS nuage moyen -29.45 £ 0,015 0,79 £+ 0.20 -3.68 + 0.05
MLS nuage haut -69,73 £ 0,044 0.747 £ 0.086 | -1.07 + 0.12
MLS tous nuages -8,89 + 0,0049 0,327 £ 0,0097 | -3,67 = 0,11

SAW nuage bas -2,27 + 0,00084 0,0760 4+ 0,0017 | -3,34 + 0,076
SAW nuage moyen -1,07 4+ 0,0027 0,114 + 0,0053 | -10,64 + 0,49
SAW nuage haut -70,99 + 0,044 2,38 + 0,092 -3,35 + 0,13
SAW tous nuages -2,560 £ 0,00087 -0,124 £ 0,0017 | -4,95 + 0,07

TAB. 5.2: Effets de la diffusion sur le bilan radiatif total du sol (W.m™2). La premiére
colonne présente la configuration nuageuse. La seconde colonne présente le bilan radiatif total
du sol U,, en W.m~2 calculé par le code atmosphérique dans le cadre de I’approximation
d’absorption (A.A.). La troisiéme colonne montre les effets de la diffusion sur le bilan total
du sol AW,,; en W.m~2, différence du bilan radiatif calculé en tenant compte de la diffusion
et du bilan radiatif calculé en négligeant la diffusion (A.A.). L’incertitude associée est 1’écart-
type statistique de Monte-Carlo. La quatriéme colonne montre AV, exprimé en termes de
pourcentage, ainsi que son erreur statistique associée.

Configuration Uespace AA. (Wom™2) | AVUeiuce (Wem™2) | AVogpaee (%)
MLS nuage bas 285,11 £+ 0,16 -2,52 + 0.32 -0,89 + 0.11
MLS nuage moyen 245,55 + 0,097 -3,87 + 0.20 -1,57 + 0.081
MLS nuage haut 236,61 + 0,16 -8,79 + 0.34 -3,71 £ 0.14
MLS tous nuages 206,25 + 0,10 -8,79 + 0.22 -4,26 4+ 0,10
SAW nuage bas 222,79 + 0,055 -16,70 £+ 0,15 -7,49 + 0,067
SAW nuage moyen 198,72 4+ 0,076 -3,11 £ 0,16 -1,56 £+ 0,078
SAW nuage haut 180,57 £+ 0,11 -6,28 + 0,23 -3,48 £+ 0,13
SAW tous nuages 175,05 £ 0,085 -6,91 £ 0.18 -3,95 £+ 0,103

TAB. 5.3: Identique & table 5.2 p.171 pour le bilan radiatif de ’espace W gpqce.

Les tables 5.2 et 5.3 représentent les effets de la diffusion sur les bilans totaux du sol ¥,
et de ’espace W44, pour chaque configuration nuageuse précédemment utilisée. Les calculs
ont été réalisés a 'aide du code atmosphérique, en utilisant N = 10° événements aléatoires.
Les calculs effectués sous I’hypothése de ’approximation d’absorption (AA) ont été réalisés

en imposant une épaisseur optique de diffusion nulle pour les nuages.



Chapitre 5 Analyse des échanges radiatifs dans 'atmosphére terrestre 172

On peut constater que le pourcentage de bilan radiatif total du sol di aux effets de
diffusion vont de 1 & 6 %, avec cependant un maximum & 10 % pour la configuration SAW
nuage moyen. Les écarts-type statistiques de Monte-Carlo ne dépassent jamais 0,5 %. Pour
le bilan radiatif de ’espace, la diffusion contribue a hauteur de 1 a4 5 %, avec des écarts-type
de Monte-Carlo en-dessous de 0,2 % Comme le fait remarquer [68|, 'effet de la diffusion sur

les flux au sommet de I’atmosphére est le plus important dans le cas de nuages hauts.

Le fait que le phénoméne de diffusion puisse ne pas étre pris en compte dans des calculs
de transfert radiatif dans le domaine infrarouge dépend entiérement du niveau de précision
requis sur les résultats : pour des estimations grossiéres, I’approximation d’absorption peut
étre suffisante, et permet d’obtenir rapidement des résultats. Dans le cas ot on désire obtenir
une meilleure précision (moins de 5 % d’erreur) sur les résultats, la diffusion doit étre prise

en compte.

5.4.2 Effets de la diffusion sur les matrices de PNE et profils de

taux de chauffage atmosphérique

MLS nuage bas Delta echanges entre mailles (W/m2) bﬁ
15 43 50 —0.5
H__M H H 42 45 —0.2
12 1 41 n Ho.1
11 | 140
10 + {139 m 35 —0.05
—~ 9r 136 g IHo.01
E 8¢t 133 ©
< 7t 129 T om Ho.001
N L 4 ﬂ [
m i ] mm g o 0.001
4 + 117 z 15 —-0.01
3r 113 " -0.05
2r 19
1r 15 5 -01
0 , , : , 0 -0.2
IA Iom o Om A ._ .m M 0 0 5 10 15 20 25 30 35 40 45 50 ~0.5
Effet de la diffusion sur taux de chauffage (K/jour) Numero de maille »
(a)
(b)

F1G. 5.18: (a) effets de la diffusion (K/jour) sur le profil de taux de chauffage atmosphérique
en configuration MLS nuage bas; (b) effets de la diffusion (W.m™?)sur la matrice des PNE
en configuration MLS nuage bas.

Les figures 5.18(a)-5.25(a) montrent l’effet de la diffusion sur les taux de chauffage at-

mosphérique pour toutes les configurations nuageuses. Ces résultats sont obtenus comme
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F1G. 5.19: (a) effets de la diffusion (K/jour) sur le profil de taux de chauffage atmosphérique
en configuration MLS nuage moyen ; (b) effets de la diffusion (W.m~?)sur la matrice des PNE
en configuration MLS nuage moyen.
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F1G. 5.20: (a) effets de la diffusion (K /jour) sur le profil de taux de chauffage atmosphérique
en configuration MLS nuage haut; (b) effets de la diffusion (W.m~?)sur la matrice des PNE
en configuration MLS nuage haut.
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F1G. 5.21: (a) effets de la diffusion (K/jour) sur le profil de taux de chauffage atmosphérique
en configuration MLS tous nuages; (b) effets de la diffusion (W.m~?)sur la matrice des PNE
en configuration MLS tous nuages.
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F1G. 5.22: (a) effets de la diffusion (K /jour) sur le profil de taux de chauffage atmosphérique
en configuration SAW nuage bas; (b) effets de la diffusion (W.m2)sur la matrice des PNE
en configuration SAW nuage bas.



Chapitre 5

Analyse des échanges radiatifs dans 'atmosphére terrestre

175

10

z (km)

O—=NWArUION®O

SAW nuage moyen Delta echanges entre mailles (W/m2)

43 50
H H 42 45
| E A
= 4 wmw o 35
; % %
L 129 .m 2
I H WW m 20
- 117 =
[ 183 o
\ T

1 1 1 1 O
In_ o Im Im IA IN O 0 0 5 10 15 20 25 30 35 40 45 50
Effet de la diffusion sur taux de chauffage (K/jour) Numero de maille

(a)
(b)

—0.5
—0.2
—0.1
—0.06
—0.01
—0.001
—{—0.001
={—0.01

-0.05
-0.1
-0.2
-05

F1G. 5.23: (a) effets de la diffusion (K/jour) sur le profil de taux de chauffage atmosphérique
en configuration SAW nuage moyen ; (b) effets de la diffusion (WW.m~2)sur la matrice des PNE
en configuration SAW nuage moyen.
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F1G. 5.24: (a) effets de la diffusion (K /jour) sur le profil de taux de chauffage atmosphérique
en configuration SAW nuage haut ; (b) effets de la diffusion (1W.m™?)sur la matrice des PNE
en configuration SAW nuage haut.
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F1G. 5.25: (a) effets de la diffusion (K/jour) sur le profil de taux de chauffage atmosphérique
en configuration SAW tous nuages; (b) effets de la diffusion (W.m~2)sur la matrice des PNE
en configuration SAW tous nuages.

la différence entre les résultats du code atmosphérique en tenant compte du phénomeéne de
diffusion, et les résultats du code en imposant une épaisseur optique de diffusion nulle pour
les mailles nuageuses (AA). Ces résultats montrent que la diffusion affecte principalement
les bords des nuages, et surtout le haut des nuages. L’effet est faible pour les nuages bas
et moyens : en comparant les figures 5.18(a) a 5.6(a), 5.19(a) a 5.7(a), 5.22(a) a 5.6(b) et
5.23(a) & 5.7(b), on voit que la diffusion ne modifie les taux de chauffage atmosphérique que
d’au maximum 3,5 %. Pour les nuages bas et moyens, l’effet de la diffusion est de diminuer
la valeur absolue du taux de chauffage pour les bords des nuages, ce qui se traduit par une
diminution du taux de chauffage moyen sur ’ensemble du nuage.

Dans le cas des nuages hauts, 'effet de la diffusion est cette fois-ci d’augmenter (d’environ
10 %) la valeur des taux de chauffage dans les mailles de bord des nuages (figures 5.20(a)
et 5.8(a)). Par contre, comme dans le cas des nuages bas et moyens, le taux de chauffage

moyen sur I’ensemble du nuage est diminué en valeur absolue.

Tentons ici d’apporter quelques éléments permettant d’interpréter I'effet de la diffusion
sur ces taux de chauffage. Nous allons construire un raisonnement simplifié sur la base de
quelques hypothéses : tout d’abord, nous allons supposer que quelles que soient les sources

avec lesquelles échangent les nuages, le rayonnement incident sur les nuages est isotrope;
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de plus, nous allons faire I’hypothése de nuages isothermes. Cette seconde hypothése se
justifie bien pour des échanges entre un nuage et le sol ou ’espace, étant donné les écarts de
température importants que ’on rencontre dans ces cas la. Elle ’est moins pour les échanges
avec les couches de gaz adjacentes.

Sous ces hypothéses, 'intensité de I’échange entre les sources et 1'intégralité du nuage est
pilotée par %o+8 T - @SAI\?NL p(l) dl, on k, est le coefficient d’absorption a I'intérieur du
nuage et [ est la longueur des trajets optiques de multidiffusion dans le nuage en absence
d’absorption. A I’aide de cette propriété, nous allons donc commencer par raisonner sur le
bilan total du nuage. Nous parlerons par la suite des redistributions internes d’énergie du

fait de la diffusion.

Pour un nuage purement absorbant (ks = 0), le plus petit trajet optique a l'intérieur du
nuage est de longueur [ = e, ou e est I'épaisseur du nuage. Il faut donc remplacer la borne
inférieure de I'intégrale précédente par e. On retrouve, dans ce cas, que le nuage se comporte

comme un corps noir a la limite optiquement épaisse en absorption (k,.e >> 1).

Si le nuage est diffusant (ks # 0), il faut tenir compte de la présence de trajets optiques
de diffusion trés courts. Dans ce cas 14, la borne inférieure de I'intégrale est bien zéro, et
on ne retrouve plus que le nuage se comporte comme un corps noir a la limite optiquement

épaisse en absorption.

La question qui se pose alors est : quel va étre I'effet de la diffusion sur le bilan total du
nuage ? Méme si la longueur moyenne des trajets optiques < [ > est une constante quelles que
soient les propriétés de diffusion du nuage (cf. [4]), leffet de la diffusion va étre de créer un
grand nombre de trajets optiques trés courts et quelques trajets optiques infiniment longs :
la diffusion va élargir la distribution des longueurs (augmentation de la variance de [).

— Pour les nuages optiquement minces en absorption, la présence de diffusion ne va rien
changer : on trouvera toujours que [, T — m,\&gﬁlwai p(l) dl = k, < 1 >, constant
quelles que soient les propriétés de diffusion du nuage, méme si la distribution des
longueurs a été significativement élargie.

— Pour des nuages non optiquement minces en absorption (ce qui, en pratique, est le cas
général pour 'atmosphére terrestre), la diffusion va faire diminuer %o+8 T — m,\%AINLL p(l) dl,
du fait des propriétés de convexité de I'exponentielle. L’échange total du nuage avec
les sources radiatives va donc diminuer du fait du phénoméne de diffusion. C’est bien

ce que nous retrouvons pour toutes les configurations nuageuses :

1. Dans le cas des nuages bas et moyens on voit que le bilan total du nuage est
négatif (figures 5.6(a)(b)-5.7(a)(b)), et que sa valeur absolue est diminuée par la
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diffusion (figures 5.18(a)-5.19(a) et 5.22(a)-5.23(a) ). En effet, les deux maxima
du profil de taux de chauffage, en haut et en bas du nuage, sont tous les deux

atténués proportionnellement, de facon comparable.

2. Dans le cas des nuages hauts, il faut voir sur les figures 5.8(a)(b) que le bilan total
du nuage est 1a aussi négatif, et que méme si ’effet de la diffusion est d’augmenter
localement les maxima de taux de chauffage, (cf. figures 5.20(a) et 5.24(a) ) le
taux de chauffage est plus diminué sur la partie supérieure du nuage qu’il n’est
augmenté sur la partie inférieure du nuage. Au total, I'effet de la diffusion va bien
dans le sens d’'une diminution en valeur absolue du taux de chauffage total du

nuage.

La diffusion a également un effet sur la spatialisation des taux de chauffage : on a vu
que l'effet de la diffusion, dans le cas des nuages hauts, est d’augmenter en valeur absolue
les maxima de taux de chauffage (en bord de nuage). On peut voir cet effet en comparant
les figures 5.8(a)(b)) aux figures 5.20(a) et 5.24(a) : si, globalement, 'effet de la diffusion est
de diminuer le taux de chauffage total du nuage, les maxima de taux de chauffage en haut
et en bas du nuage sont par contre augmentés en valeur absolue. La diffusion va concentrer
les échanges sur les bords des nuages, méme si au total le nuage échange moins avec le reste
du systéme. A la limite optiquement épaisse (que ce soit en absorption ou en diffusion), le

nuage va se comporter comme une paroi opaque.

Ces figures montrent également que la diffusion peut avoir une influence non négligeable
sur les PNE entre mailles non nuageuses. Ces effets ne sont pas dis a la diffusion dans les
mailles exemptes de nuages (diffusion de Rayleigh), qui a des effets négligeables dans l'infra-
rouge, mais aux effets de rétrodiffusion des nuages. Par exemple, le rayonnement ascendant
émis par une maille non nuageuse (claire) sera absorbé par les mailles claires situées au-
dessus, puis partiellement rétrodiffusé par un nuage optiquement bas ou moyen. La partie
rétrodiffusée sera ensuite absorbée par les mémes mailles atmosphériques claires au-dessus
de la maille d’émission. Les échanges nets entre la premiére maille et toutes les mailles qui
se situent au-dessus (jusqu’au nuage) seront augmentés. Cependant, dans le cas général, les
effets de la diffusion sur les PNE entre mailles claires sont faibles.

5.4.3 Analyse spectrale

Les conclusions sur les effets de la diffusion sur la décomposition spectrale des bilans ra-
diatifs (Fig. 5.26-5.33) sont globalement liées a celles du paragraphe 5.4.2. En ce qui concerne

les échanges nets entre les nuages et le sol et les échanges nets entre les nuages et 1’espace,
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FI1G. 5.26: (a) : effets de la diffusion sur le bilan radiatif total ; ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
MLS nuage bas; (b) : effets de la diffusion sur les échanges nets entre chaque maille at-
mosphérique et le sol GNMT%N (mW/m3/em™") pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.
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Delta Bilan total (mW/m®/cm™) bo.smm Delta Bilan gaz—sol (mW/m?®/cm™) bo.smm
50 I0.002 50 I-{0.002
IHo.0015 IHo.0015
I-o.001 IHo.001
° I-o.0005 ° Io.0005
m I-o.00025 m IHo.00025
3 1e-04 5 H1ie-04
2 2
m -1e-04 m H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
80 90 100 110 120 —~0.002 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
(a) AWy, (b) Agyaz—sol
’ i,k
Delta Bilan gaz—esp (mW/m®/cm™) bo.smm Delta Bilan gaz—gaz (mW/m®/cm™) bo.smm
50 I0.002 50 I-{0.002
5 IHo.0015 45 IHo.0015
0 I-o.001 40 IHo.001
° 5 I-o.0005 ° % Io.0005
m 0 I-o.00025 m ” IHo.00025
S 5 H1e—04 $ 2 H1e—04
2 2
8 |{-1e-04 8 2 H-1e-04
g g
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
-0.002 -0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
gaz—espace gaz—gaz
(c) AN (d) AN

FI1G. 5.27: (a) : effets de la diffusion sur le bilan radiatif total ; ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
MLS nuage moyen; (b) : effets de la diffusion sur les échanges nets entre chaque maille
atmosphérique et le sol @mwwéa (mW/m?/cm™') pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.
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Delta Bilan total (mW/m®/cm™) bo.smm Delta Bilan gaz—sol (mW/m?®/cm™) bo.smm
50 I0.002 50 I-{0.002
IHo.0015 IHo.0015
I-o.001 IHo.001
° I-o.0005 ° Io.0005
m I-o.00025 m IHo.00025
3 1e-04 5 H1ie-04
2 2
m -1e-04 m H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
20 30 40 50 60 70 80 90 100 110 120 —~0.002 10 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
(a) AW, (b) Apdezset
’ i,k
Delta Bilan gaz—esp (mW/m®/cm™) bo.smm Delta Bilan gaz—gaz (mW/m®/cm™) bo.smm
50 I0.002 50 I-{0.002
45 IHo.0015 45 IHo.0015
40 I-o.001 40 IHo.001
° % I-o.0005 ° % Io.0005
m ” I-o.00025 m ” IHo.00025
S 2 H1e—04 $ 2 H1e—04
2 2
m 2 |{-1e-04 m 2 H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
5 5
~0.0015 ~0.0015
20 30 40 50 60 70 80 90 100 110 120 —~0.002 10 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
gaz—espace gaz—gaz
(c) DG@.} (d) DE@.}

FI1G. 5.28: (a) : effets de la diffusion sur le bilan radiatif total ; ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
MLS nuage haut; (b) : effets de la diffusion sur les échanges nets entre chaque maille at-
mosphérique et le sol GNMT%N (mW/m3/em™") pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.
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Delta Bilan total (mW/m®/cm™) bo.smm Delta Bilan gaz—sol (mW/m?®/cm™) bo.smm
50 I0.002 50 I-{0.002
IHo.0015 IHo.0015
I-o.001 IHo.001
° I-o.0005 ° Io.0005
m I-o.00025 m IHo.00025
3 1e-04 5 H1ie-04
2 2
m -1e-04 m H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
20 30 40 50 60 70 80 90 100 110 120 —~0.002 10 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
(a) AW, (b) Apdezset
’ i,k
Delta Bilan gaz—esp (mW/m®/cm™) bo.smm Delta Bilan gaz—gaz (mW/m®/cm™) bo.smm
50 I0.002 50 I-{0.002
45 IHo.0015 45 IHo.0015
40 I-o.001 40 IHo.001
° % I-o.0005 ° % Io.0005
m ” I-o.00025 m ” IHo.00025
S 2 H1e—04 $ 2 H1e—04
2 2
m 2 |{-1e-04 m 2 H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
5 5
~0.0015 ~0.0015
20 30 40 50 60 70 80 90 100 110 120 —~0.002 10 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
gaz—espace gaz—gaz
(c) DG@.} (d) DE@.}

FI1G. 5.29: (a) : effets de la diffusion sur le bilan radiatif total ¥, ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
MLS tous nuages; (b) : effets de la diffusion sur les échanges nets entre chaque maille
atmosphérique et le sol @mwwéa (mW/m?/cm™') pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.
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Delta Bilan total (mW/m®/cm™) bo.smm Delta Bilan gaz—sol (mW/m?®/cm™) bo.smm
50 I0.002 50 I-{0.002
IHo.0015 IHo.0015
I-o.001 IHo.001
° I-o.0005 ° Io.0005
m I-o.00025 m IHo.00025
3 1e-04 5 H1ie-04
2 2
m -1e-04 m H-1e-04
Z I-{-0.00025 Z I-0.00025
I-{-0.0005 I -0.0005
-0.001 -0.001
~0.0015 ~0.0015
20 30 40 50 60 70 80 90 100 110 120 —~0.002 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
(a) AW, (b) Apdezset
’ i,k
Delta Bilan gaz—esp (mW/m®/cm™) bo.smm Delta Bilan gaz—gaz (mW/m®/cm™) bo.smm
50 I0.002 50 I-{0.002
5 IHo.0015 45 IHo.0015
0 I-o.001 40 IHo.001
° 5 I-o.0005 ° % Io.0005
m 0 I-o.00025 m ” IHo.00025
S 5 H1e—04 $ 2 H1e—04
2 2
8 |{-1e-04 8 2 H-1e-04
g g
Z I-{-0.00025 Z I-0.00025
I-{-0.0005 I -0.0005
-0.001 -0.001
~0.0015 ~0.0015
-0.002 -0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
gaz—espace gaz—gaz
(c) DE@.} (d) DE@.}

F1G. 5.30: (a) : effets de la diffusion sur le bilan radiatif total ; ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
SAW nuage bas; (b) : effets de la diffusion sur les échanges nets entre chaque maille at-
mosphérique et le sol GNMT%N (mW/m3/em™") pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.



Chapitre 5 Analyse des échanges radiatifs dans 'atmosphére terrestre 184

Delta Bilan total (mW/m®/cm™) bo.smm Delta Bilan gaz—sol (mW/m?®/cm™) bo.smm
50 I0.002 50 I-{0.002
IHo.0015 IHo.0015
I-o.001 IHo.001
° I-o.0005 ° Io.0005
m I-o.00025 m IHo.00025
3 1e-04 5 H1ie-04
2 2
m -1e-04 m H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
80 90 100 110 120 —~0.002 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
(a) AWy, (b) Agyaz—sol
’ i,k
Delta Bilan gaz—esp (mW/m®/cm™) bo.smm Delta Bilan gaz—gaz (mW/m®/cm™) bo.smm
50 I0.002 50 I-{0.002
5 IHo.0015 45 IHo.0015
0 I-o.001 40 IHo.001
° 5 I-o.0005 ° % Io.0005
m 0 I-o.00025 m ” IHo.00025
S 5 H1e—04 $ 2 H1e—04
2 2
8 |{-1e-04 8 2 H-1e-04
g g
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
-0.002 -0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
gaz—espace gaz—gaz
(c) AN (d) AN

FI1G. 5.31: (a) : effets de la diffusion sur le bilan radiatif total ¥, ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
SAW nuage moyen; (b) : effets de la diffusion sur les échanges nets entre chaque maille
atmosphérique et le sol GNMT%N (mW/m?/cm™') pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.
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Delta Bilan total (mW/m®/cm™) bo.smm Delta Bilan gaz—sol (mW/m?®/cm™) bo.smm
50 I0.002 50 I-{0.002
IHo.0015 IHo.0015
I-o.001 IHo.001
° I-o.0005 ° Io.0005
m I-o.00025 m IHo.00025
3 1e-04 5 H1ie-04
2 2
m -1e-04 m H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
20 30 40 50 60 70 80 90 100 110 120 —~0.002 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
(a) AW, (b) Apdezset
’ i,k
Delta Bilan gaz—esp (mW/m®/cm™) bo.smm Delta Bilan gaz—gaz (mW/m®/cm™) bo.smm
50 I0.002 50 I-{0.002
5 IHo.0015 45 IHo.0015
0 I-o.001 40 IHo.001
° 5 I-o.0005 ° % Io.0005
m 0 I-o.00025 m ” IHo.00025
S 5 H1e—04 $ 2 H1e—04
2 2
8 |{-1e-04 8 2 H-1e-04
g g
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
-0.002 -0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
gaz—espace gaz—gaz
(c) DG@.} (d) DE@.}

FI1G. 5.32: (a) : effets de la diffusion sur le bilan radiatif total ; ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
SAW nuage haut; (b) : effets de la diffusion sur les échanges nets entre chaque maille at-
mosphérique et le sol GNMT%N (mW/m3/em™") pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.
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Delta Bilan total (mW/m®/cm™) bo.smm Delta Bilan gaz—sol (mW/m?®/cm™) bo.smm
50 I0.002 50 I-{0.002
IHo.0015 IHo.0015
I-o.001 IHo.001
° I-o.0005 ° Io.0005
m I-o.00025 m IHo.00025
3 1e-04 5 H1ie-04
2 2
m -1e-04 m H-1e-04
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
80 90 100 110 120 —~0.002 20 30 40 50 60 70 80 90 100 110 120 —~0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
(a) AWy, (b) Agyaz—sol
’ i,k
Delta Bilan gaz—esp (mW/m®/cm™) bo.smm Delta Bilan gaz—gaz (mW/m®/cm™) bo.smm
50 I0.002 50 I-{0.002
5 IHo.0015 45 IHo.0015
0 I-o.001 40 IHo.001
° 5 I-o.0005 ° % Io.0005
m 0 I-o.00025 m ” IHo.00025
S 5 H1e—04 $ 2 H1e—04
2 2
8 |{-1e-04 8 2 H-1e-04
g g
Z I-{-0.00025 Z I-0.00025
~0.0005 ~0.0005
-0.001 -0.001
~0.0015 ~0.0015
-0.002 -0.002
Numero de bande etroite Numero de bande etroite
~0.0025 ~0.0025
gaz—espace gaz—gaz
(c) AN (d) AN

FI1G. 5.33: (a) : effets de la diffusion sur le bilan radiatif total ; ;, (mW/m?/cm™') en fonction
du numéro de bande étroite et du numéro de maille atmosphérique, pour une configuration
SAW tous nuages; (b) : effets de la diffusion sur les échanges nets entre chaque maille
atmosphérique et le sol @mwwéa (mW/m?/cm™') pour la méme configuration; (c) : effets de
la diffusion sur les échanges nets entre chaque maille atmosphérique et I'espace W7}" "™
(mW/m?/cm™') pour la méme configuration; (d) : effets de la diffusion sur les échanges
nets entre chaque maille atmosphérique et le reste de 'atmospheére W9" 9 (mW/m?/em™")

pour la méme configuration.
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la diffusion va modifier la distribution des longueurs de trajets optiques, ce qui aura pour
effet de diminuer le bilan total du nuage et de modifier la distribution spatiale des échanges
en favorisant les bords des nuages. On retrouve ces observations dans ’ensemble de 1’ana-
lyse spectrale, pour toutes les régions spectrales de faible absorption, ol les échanges sont
possibles entre les mailles nuageuses et le sol ou I’espace (ou les autres nuages pour la confi-

guration oil tous les nuages sont présents).

Finalement, on a vu que les échanges gaz-gaz peuvent étre modifiés par les effets de la
diffusion : les échanges entre une maille nuageuse et le reste de ’atmosphere sont modifiés
du fait que le nuage va rétrodiffuser une partie de I’énergie incidente a sa surface ; d’un autre
coOté, les échanges nets entre deux mailles atmosphériques claires peuvent étre augmentés par
les effets de réflexion apparente sur les nuages : la fraction d’énergie incidente & la surface
des nuages et qui est rétrodiffusée va de nouveau pouvoir étre absorbée par les mailles de
gaz claires. Encore une fois, ces effets impliquant des échanges a longue distance ne peuvent

apparaitre que dans les régions spectrales de faible absorption.
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Chapitre 6

Conclusion

6.1 Synthése

Le travail qui est présenté a notamment conduit & la mise au point d’un code de calcul
permettant une simulation des transferts radiatifs au sein des atmosphéres planétaires, dans
le domaine spectral infrarouge. Ce code est basé sur un algorithme utilisant la méthode de
Monte-Carlo dans une formulation en Puissances Nettes Echangées prenant en compte les
phénoménes d’émission, d’absorption et de diffusion du rayonnement. Le modéle spectral
utilisé est un modéle en k-distributions prenant en compte les hétérogénéités du milieu au
travers de ’hypothese C-K. D’autre part, les propriétés spectrales du gaz sont calculées a
I’aide d’un code [88| utilisant les données de la base spectroscopique HITRAN [69]. Les pro-
priétés spectrales des particules en suspension dans I’atmosphére sont quant a elles obtenues
a Paide d’un code basé sur la théorie de Mie [66], qui permet notamment de calculer le fac-
teur d’asymétrie de la fonction de phase de ces particules en suspension. Le code de transfert
radiatif de Monte-Carlo utilise ce facteur d’asymétrie comme paramétre de la fonction de
phase de Henyey-Greenstein.

Les lois de pondération utilisées par ’algorithme de Monte-Carlo ont été mises au point
dans un souci de généralité. Il en résulte que le code de transfert radiatif est utilisable pour
différentes atmosphéres planétaires. Ce code reste utilisable dans les atmosphéres purement,
absorbantes comme dans les atmosphéres fortement diffusantes. Aussi, son utilisation peut
étre par exemple envisagée aussi bien pour les atmosphéres de Mars, de la Terre, que de

Vénus.

Ce outil de simulation permet une analyse détaillée des transferts radiatifs atmosphé-

189
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riques dans le domaine infrarouge, en termes de Puissances Nettes Echangées, 'espoir étant
que les résultats de cette analyse puissent ensuite étre utilisés pour mettre au point une

paramétrisation efficace des transferts radiatifs infrarouges dans un GCM.

A titre d’exemple, on peut citer le cas d’un travail de paramétrisation effectué pour ’at-
mospheére de Mars [21], et basé sur une analyse physique de ce type. L’atmosphére de Mars
est constituée a 95 % de CO,, et elle est dénuée de nuages, a ’exception de quelques nuages
d’eau d’épaisseur optique faible. Le phénoméne de diffusion du rayonnement peut donc étre
négligé, sauf dans le cas des tempétes de poussiére qui peuvent prendre des dimensions pla-
nétaires. La plus grande partie du temps, la composition atmosphérique est stable, avec pour
seule variabilité un cycle de pression ayant pour origine la condensation du C'Oy atmosphé-
rique durant la saison froide. Les PNE ¥, ;) , sont calculées comme le produit d’un facteur
optico-géométrique &; ;) , et du terme B, (i) — B, (), différence des luminances de corps noir
entre la maille i et la maille j (cf. équation 5.4 p. 146). L’analyse en PNE a permis de mon-
trer que seuls certains termes dominants ont besoin d’étre mis & jour fréquemment dans le
GCM : il s’agit des échanges nets a courte distance entre mailles de gaz, les échanges nets
entre les parois (sol et espace) et chacune des mailles atmosphériques, ainsi que 1’échange
net entre le sol et I'espace. La contribution des autres échanges nets étant faible, ils ne sont
recalculés qu’a une fréquence beaucoup plus faible, ce qui fait que le temps de calcul associé
est négligeable. Le temps de calcul lié & cette paramétrisation est donc proportionnel a m,

m étant le nombre de mailles atmosphériques verticales utilisé par le GCM. !

Dans I’exemple précédent, ’analyse en Puissances Nettes Echangées n’a pas été réalisée
a l'aide d’un code de calcul basé sur une méthode de Monte-Carlo. En fait, une paramé-
trisation traditionnelle a été utilisée (identique a celle qui est actuellement utilisée dans le
GCM terrestre), qui a été reformulée en PNE. En ce qui nous concerne, dans le cas de I’at-
mosphére terrestre, il n’a pas été possible de suivre une logique équivalente, étant donné que
se posent, également de nouveaux problémes de précision associés a la volonté de prendre en
compte les effets de la diffusion. La paramétrisation existante ne permettait pas ce travail.
Le code de Monte-Carlo avait donc comme but de permettre de réaliser toutes les analyses
nécessaires, avec un excellent niveau de précision. De facon générale en rayonnement, la
méthode de Monte-Carlo est connue pour offrir une grande souplesse dans ces contextes
d’analyse ; cependant, les méthodes de Monte-Carlo usuelles, lorsqu’elles sont utilisées pour
la partie infrarouge du spectre, rencontrent le probléme récurrent de la convergence numé-

rique aux fortes épaisseurs optiques (épaisseurs optiques d’absorption ou de diffusion). En ce

1La paramétrisation précédente des transferts radiatifs infrarouges, en raison de corrélations spectrales
dans le modéle spectral utilisé, nécessitait le calcul des transmittivités entre chaque paire de mailles atmo-
sphériques, et son temps de calcul était donc proportionnel & m?2.
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qui concerne les systémes optiquement épais en absorption, nous avons pu contourner cette
difficulté en utilisant la solution proposée par A. de Lataillade |13, 15]. Nous avons ensuite
étendu la démarche aux systémes qui présentent de fortes épaisseurs optiques de diffusion.
L’algorithme de Monte-Carlo qui résulte de ces deux améliorations méthodologiques (ainsi
que de diverses optimisations statistiques pensées spécifiquement pour les problémes atmo-
sphériques) apparait, dans notre contexte, comme un outil d’analyse confortable pour I’étude

du rayonnement atmosphérique aux fréquences infrarouges.

Parmi les éléments de souplesse qu’offre la méthode de Monte-Carlo, et que nous n’avons
pas exploités jusqu’ici, mais qui méritent une attention particuliére, nous pouvons citer la
possibilité d’identifier simplement la contribution a chaque résultat de diverses sous-familles
de I'espace des chemins optiques. Concrétement, on pourrait envisager de quantifier la contri-
bution a chaque taux de chauffage atmosphérique associée :

— aux échanges directs entre les éléments du systéme (trajets optiques n’ayant subi au-

cune diffusion).

— aux échanges qui sont construits avec une seule diffusion, avec n diffusions, etc.

— aux échanges construits aprés une réflexion, au sol ou par un nuage.

— aux échanges construits a partir d’'un chemin de multiréflexion entre différents nuages.

— etc.

D’autre part, nous avons déja mentionné qu’il serait facile de modifier 'algorithme existant
pour déterminer la sensibilité de chaque grandeur calculée a n’importe quel paramétre du

probléme atmosphérique.

6.2 Vers une paramétrisation des transferts radiatifs dans
un GCM terrestre

Dans I'état actuel d’avancement de ce travail, nous ne sommes pas en mesure de proposer
une paramétrisation opérationnelle des transferts radiatifs atmosphériques infrarouges dans
un Modéle de Circulation Générale terrestre tel que celui du LMD. Le présent travail a
permis de développer un outil d’analyse de ces transferts radiatifs, et de proposer de premiers

éléments d’analyse de ces transferts en termes de Puissances Nettes Echangées.

Meéme si dans cette conclusion nous allons présenter des pistes qui nous semblent ac-
tuellement dignes d’étre suivies pour mener & bien un futur travail de paramétrisation sur
la base de ces éléments d’analyse, ces premiéres idées restent a mettre en pratique et a

tester. La mise au point d’une paramétrisation dans cet esprit, demande certainement un
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investissement supplémentaire de ’ordre de deux a trois ans pour étre menée a terme.

6.2.1 Méthodes numériques classiques pour la représentation de la

diffusion

Dans le travail de Fu et al. [32], est explorée la possibilité d’utiliser un certain nombre
d’approches de paramétrisation avec prise en compte du phénomeéne de diffusion. Des profils
de taux de chauffage atmosphérique sont calculés, pour les mémes configurations que celles
qui ont été utilisées dans le chapitre précédent, par cinq méthodes différentes :

— La méthode de référence, une méthode aux ordonnées discrétes utilisant une discréti-
sation angulaire sur 128 directions, notée D128S.

— La méthode dénommée “approximation d’absorption”, et notée A.A., qui consiste a ré-
soudre analytiquement 'ETR monochromatique sans diffusion sur une direction. Dans
[32], cette méthode est utilisée pour une direction caractérisée par 1/cos(f) = 1,66, ou
0 est la direction azimuthale.

— Une méthode & deux flux (méthode des ordonnées discrétes utilisée sur une direction)
qui utilise une résolution sur une direction 6 avec 1/cos(d) = 1,66, notée D2S.

— Une méthode aux ordonnées discrétes utilisant une quadrature sur 4 directions, notée
D4S.

— Enfin, une méthode ot le terme source par diffusion de 'ETR est tout d’abord calculé
par la méthode D2S, puis injecté dans la méthode D4S. Cette méthode est notée D2/4S.

Les résultats des méthodes A.A.; D2S, D4S et D2/4S sont comparés avec ceux de la
méthode de référence, D128S. Fu et al. montrent que les erreurs relatives aux méthodes A.A.
et D2S sont comparables, tandis que les méthodes D4S et D2/4S aboutissent a des erreurs
du méme ordre de grandeur, inférieures aux erreurs des deux autres méthodes. Finalement,
c’est la méthode D2/4S qui est recommandée comme proposant le meilleur compromis entre

précision et temps de calcul.

En ce qui nous concerne, les informations que nous retirons de cet article nous per-
mettent d’effectuer une bréve mise au point concernant les méthodes du transfert radiatif
qui ne nous semblent pas pouvoir étre utilisées pour développer une nouvelle paramétrisation
des transferts radiatifs infrarouges, avec prise en compte du phénoméne de diffusion, pour
I’atmosphére terrestre. En particulier, on constate qu’une méthode a deux flux classique,

qui prend en compte le phénoméne de diffusion, ne donne pas des résultats plus précis que
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Papproximation d’absorption utilisée sur une direction. 2 En d’autres termes, une méthode
numérique permettant de modéliser les transferts radiatifs atmosphériques infrarouges pre-
nant en compte le phénoméne de diffusion n’est satisfaisante qu’a partir du moment ou elle
réalise une intégration angulaire (méme en utilisant une quadrature simple sur quatre direc-
tions comme la méthode D4S). Les méthodes a deux flux classiques utilisent des hypothéses
fortes quant a la distribution angulaire de la luminance (cf. annexe D) et ne réalisent pas
une véritable intégration angulaire. En particulier, ’algorithme mis au point par O.B. Toon
[82], largement utilisé dans le domaine de la modélisation des transferts radiatifs atmosphé-
riques, ne peut pas étre employée ici sans utilisation de la technique “source function”, qui
s’appuie sur une idée similaire & la méthode D2/4S présentée plus haut. Nous avons exploré
rapidement dans une premiére phase de ce travail le comportement de I'algorithme de Toon
avec ’hypothése “hemispheric mean” et une technique “source function” avec une quadrature
a huit directions (cf. annexe E), mais nous aboutissons & des erreurs parfois conséquentes
sur le calcul des taux de chauffage, ce qui semble en contradiction avec les conclusions de Fu
[32] sur la méthode D2/4S. Nous n’avons pas poussé plus avant cette analyse.

6.2.2 Utilisation d’une formulation en PNE pour mise au point

d’une paramétrisation

Le code atmosphérique mis au point au cours de ce travail a permis une analyse des
transferts radiatifs infrarouges en termes de Puissances Nettes Echangées. Ce genre d’analyse
présente plusieurs avantages dans la perspective de la mise au point d’une paramétrisation

des transferts radiatifs pour un Modéle de Circulation Générale :

— Les taux de chauffage atmosphérique étant décomposables sous forme d’une somme
d’échanges nets (cf. Eq. 5.8 et Eq. 5.9), les échanges nets qui pilotent les transferts
radiatifs sont facilement identifiables. Autrement dit, il est facile d’identifier les termes
d’échanges nets qui doivent étre représentés par une paramétrisation des transferts
radiatifs, et ceux qui peuvent étre ignorés car contribuant de fagon négligeable aux taux
de chauffage. Une paramétrisation basée sur une analyse en PNE permet de recalculer
moins de termes & chaque pas de temps du calcul GCM. Les résultats présentés dans
ce chapitre montrent par exemple que seuls certains termes des matrices de PNE sont
essentiels a la reconstruction des taux de chauffage : dans une configuration ciel clair,
il s’agit essentiellement des échanges nets a courte distance entre mailles de gaz, et des

2A la différence des équations 4.68, 4.69 et 4.67 qui donnent une solution analytique 4 'ETR monochro-
matique sans diffusion, mais avec une intégration angulaire exacte, voir aussi annexe A.5
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échanges nets entre chaque surface et les mailles de gaz, ainsi que de I’échange entre
le sol et I’espace. Dans une configuration nuageuse, il faut également tenir compte des
échanges avec les mailles des bords des nuages dans le cas d’'un nuage optiquement
épais, et avec toutes les mailles nuageuses dans le cas d’un nuage optiquement mince.

— D’autre part, sur la base de la formulation présentée par la relation 5.4 p. 146, il
est possible de comparer les temps caractéristiques d’évolution des facteurs optico-
géométriques (; j), (dépendant principalement des concentrations d’absorbant) et des
différences de luminance noire [B, (i) — B, (j)] (dépendant des seules variations de tem-
pérature). Si par exemple les termes | B, (i) — B,(j)]) évoluent de facon beaucoup plus
rapide que les facteurs optico-géométriques &; ;) ., il est possible d’envisager de garder
constants pendant un certain laps de temps les &; ;) ,,, dont le calcul est numériquement
trés coliteux, et de ne prendre en compte durant ce laps de temps que les variations de
luminance noire associées a la variation du profil de température.

— Une analyse en termes d’échanges nets permet également de choisir des modéles phy-
siques différents pour le calcul des différents termes sans pour autant introduire de biais
en ce qui concerne la conservation de 1’énergie ou le second principe. Par exemple, dans
le cas terrestre, il est facile de voir que la prise en compte du phénoméne de diffusion
n’est pas nécessaire pour le calcul des échanges a courte distance entre mailles de ciel
clair. On peut par exemple utiliser 'approximation d’absorption sur une direction pour
calculer ces termes. Par contre, pour le calcul des échanges nets entre surfaces et entre
une surface et une maille de gaz claire, il est nécessaire de tenir compte du phénomeéne
de diffusion. Comme on I’a vu précédemment, il n’est pas envisageable d’utiliser une
méthode numérique simple comme une méthode a deux flux pour calculer ces termes.
Ces échanges nets pourraient par exemple étre calculés en utilisant une approximation
d’absorption et en affectant une réflectivité totale moyenne aux parois (sol, bords des

nuages) afin de tenir compte de la rétrodiffusion.

6.3 Perspectives

Les perspectives envisageables sont de deux ordres : d’une part, toutes les améliorations
qui pourraient étre apportées a I’outil de simulation des transferts radiatifs atmosphériques;

et d’autre part, les utilisations possibles de cet outil d’analyse.
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6.3.1 En termes d’améliorations de 1’outil d’analyse

Tout au cours du texte, nous avons mentionné des extensions ou améliorations dont le

code de Monte-Carlo pourrait bénéficier. On peut notamment citer :

— La possibilité de prendre en compte les hétérogénéités verticales des propriétés optiques
(coefficient d’absorption, de diffusion, albédo de diffusion simple, facteur d’asymétrie
de la fonction de phase) des différents constituants de l’atmosphére (gaz, nuages),
au travers d’un profil vertical donné (par exemple un profil linéaire). En effet, si le
code prend actuellement en compte les hétérogénéités verticales de température, les
propriétés optiques des constituants de I'atmosphére sont considérées homogénes dans
chaque maille atmosphérique.

— L’utilisation d’'un modéle statistique de nuages pour choisir aléatoirement la composi-
tion du nuage au cours du suivi de rayon. Cette technique est communément utilisée en
combustion, dans des applications consistant a étudier le couplage entre le rayonnement
et la turbulence.

— Le code de transfert radiatif pourrait étre ré-écrit pour des applications en configuration
tridimensionnelle, ce qui permettrait, par exemple, d’étudier les effets tridimensionnels
des nuages. Un code de transfert radiatif infrarouge tridimensionnel basé sur la méthode
de Monte-Carlo, mis au point récemment lors du travail de thése de P. Perez [62] et
utilisant des techniques issues du domaine de la synthése d’images, permet de traiter
des configurations tridimensionnelles complexes en présence d’un milieu participant
purement absorbant. L’extension de ce code aux milieux diffusants, en s’inspirant des
optimisations décrites au chapitre 4, est prévu dans le cadre du projet de recherche de
M. Roger a I’'Ecole des Mines d’Albi, qui a pour objet I’étude de systémes de combustion
en présence de particules diffusives. Lorsque ce code sera disponible, il sera directement
utilisable pour des applications atmosphériques.

— Enfin, comme il est mentionné plus haut, il est envisageable de modifier le code de
transfert radiatif pour mener des études de sensibilité. Il a été montré [14] que la mé-
thode de Monte-Carlo permettait de calculer, a faible coiit de calcul supplémentaire, la
sensibilité de n’importe quel résultat & n’importe quel paramétre du systéme. Actuel-
lement, la possibilité de réaliser une analyse de sensibilité n’a pas été mise en pratique

dans notre code de transfert radiatif.
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6.3.2 En termes d’utilisation de ’outil d’analyse

Dans un futur proche, le LMD et le Laboratoire d’Energétique vont également s’intéresser
au développement d’un premier modéle simple de circulation générale pour la planéte Vénus.
Par modéle “simple”, on entend un GCM basé sur I'utilisation d’un nombre minimal de para-
meétres, dans le but d’identifier les phénoménes physiques qui dominent la dynamique de la
circulation générale atmosphérique. La mise au point de ce GCM simplifié a pour motivation
la possibilité d’aider aux interprétations des données des instruments PFS et VIRTIS de la
prochaine mission spatiale Vénus-Express. Les objectifs généraux a moyen terme concernent
la compréhension de la dynamique (et en particulier de la superrotation atmosphérique) et
de la chimie de I’atmosphére de Vénus. A ’aide de ce modéle, et des données d’observation
fournies par les instruments de la mission Vénus-Express, on analysera en particulier (extrait
du projet Développement d’un modele de circulation générale climatique de Vénus pour in-
terpréter les résultats de la mission Vénus-Express proposé par F. Hourdin a 'ESA en tant

que co-investigateur sur les instruments PFS et VIRTIS) :

— La dynamique zonale et sa variabilité. Un modéle de circulation atmosphérique peut-il
reproduire les vents observés ? La variabilité des jets est-elle bien représentée et dans
quelle mesure est-elle reliée a I’activité ondulatoire ? Le vent zonal (observé et simulé)
montre-t-il des régions d’instabilité dynamique ?

— La circulation méridienne moyenne (existence d’une cellule de Hadley et intensité). Les
contraintes proviendront a la fois du suivi des nuages et des variations latitudinales des
espéces chimiques comme C'O ou OC'S sous les nuages. Cette partie nécessite 'inclusion
de la composante chimique dans le modéle.

— Les ondes planétaires dans la couche basse des nuages. Ces ondes transportent-elles de
la quantité de mouvement vers I’équateur ? Quelle est leur intensité? Cette intensité
est-elle corrélée au degré d’instabilité de ’écoulement moyen ?

— Lastratification verticale et la convection nuageuse. L’atmosphére est-elle stable, neutre,
ou instable 7 Dans quelles gammes d’altitudes 7 Quel est le degré de mélange vertical
par la turbulence ou la convection ? Comment explique-t-on la structure fragmentaire
des nuages sur Vénus?

— La composition chimique. Comment la dynamique influence-t-elle les distributions ?
Quel role jouent les interactions entre nuages et phase gazeuse ? Variabilité de la com-

position troposphérique, et lien notamment avec la question du volcanisme.

La premiére phase de ce projet consiste a développer un code de transfert radiatif spéci-

fique pour traiter le domaine de U'infrarouge (pour le domaine visible, des taux de chauffage
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précalculés seront utilisés dans un premier temps [12|). Le code de Monte-Carlo sera adapté
a I'atmosphére de Vénus, par utilisation de nouvelles données C-K [6] spécifiques, pour le
domaine infrarouge. Le code de transfert radiatif sera donc identique a celui de la Terre, avec
utilisation de nouvelles données spectrales.

La paramétrisation des transferts radiatifs infrarouges du Modéle de Circulation Générale
de Vénus utilisera, dans un premier temps, une méthode simple : le calcul des PNE se
fera d’aprés la relation 5.4 p. 146. Chaque matrice monochromatique des facteurs optico-
géométriques sera calculée une fois pour toute de facon précise a ’aide du code de Monte-
Carlo. Chaque PNE sera ensuite calculée comme le produit d’un facteur optico-géométrique
(constant au cours du temps) et d’une différence de luminances noires (variable au cours du

temps).
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Annexe A

Liste de configurations plan-paralléle
avec résultat connu pour validation des

codes de transfert radiatif

Cette annexe présente un catalogue de solutions analytiques utilisables pour la validation
des codes de simulation des transferts radiatifs.

Avant d’aller plus loin, il est utile de décrire la méthode utilisée pour obtenir les ex-
pressions analytiques des champs de luminance, des flux et des bilans radiatifs dans les
configurations plan-paralléle purement absorbantes qui sont présentées dans cette annexe.
L’analogie avec le modéle conceptuel d’atmosphére permet de différencier le plan inférieur et
le plan supérieur en les désignant sous le terme de “sol” et “espace”. La méme analogie nous
ameénera a parler de grandeurs ascendantes et descendantes. Tous les calculs présentés sont

monochromatiques, et I'indice v est omis.

La configuration est celle qui est présentée figure A.1 : une configuration plan-paralléle (les
plans, a réflectivité diffuse ou spéculaire, ayant une émissivité fixée), un milieu participant
semi-transparent (gaz) étant présent entre les deux plans. Si les propriétés optiques du gaz
ne peuvent pas étre considérées homogenes entre les deux plans, I’atmospheére sera divisée en
un certain nombre de mailles; les propriétés optiques moyennes du milieu seront calculées a
la température moyenne de chaque maille, et seront donc considérées comme homogénes a

I'intérieur de chaque maille. Quant au profil de luminance noire, il peut étre quelconque.

La premiére méthode permettant d’obtenir ’expression analytique du bilan radiatif ;

(moyenné sur une maille de gaz i comprise entre les altitudes z;_; et z;) consiste a connaitre,

199
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Z

7 A space

NH-_ layer m

z, 7 .

Z. layer j

7.

NM-_ layer i
\®/ W =cos(0)

Z,

- layer 1

=0

% ground

F1G. A.1: Configuration plan-paralléle

dans un premier temps, le champ de luminance montante et de luminance descendante dans

tout le gaz.

— Méthode 1a : le bilan a ’altitude z est considéré comme la divergence du flux radiatif
total a Paltitude z : U(z) = E

— Méthode 1b : bilan = émission - @vmoEuSoP d’ou :
U(z) = 4mky(2)B(2) — 27 [, _ka(2)L(2)dw

Pour appliquer ces deux méthodes, on doit obtenir tout d’abord ’expression de la lumi-
nance montante L1 (z, 1) et de la luminance descendante L~ (z,6) a Paltitude z et suivant la
direction zénithale repérée par 6 (1 = cos(f)), ainsi que leurs dérivées par rapport a z. En
effet :

M*(2) = wﬂ\o uL™(z, p)dp (A.1)

M~ (2) = wﬁ\o uL™(z, —p)dp (A.2)
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\g L(z)dw = wﬂ\o Lt (z,pn) + L™ (2, —p)du (A.3)

D’otu I'expression de W(z) par la méthode 1a :

U(z) = wﬁ\o EAQDMWE — @h%@“ Itvv&t (A4)

Et par la méthode 1b :

U(2) = drkoB(2) — 27k, \o (L* (2 1) + L™ (2, —1)) dy (A5)

La seconde méthode permettant d’obtenir I’expression analytique du bilan radiatif consiste
a utiliser une décomposition en Puissances Nettes Echangées (PNE) :

Uyo— \N d \Mpziwxm@ ~ By)exp(- \o NE%\VW (A.6)

I I

Uset — \ﬁ o \ pha(z) (B(z) — B.)eap(~ \ ’ E%\v@ (A7)

o [

/

s — \ﬁ o \ \&_@Htisixxm@ ~ B(!))eap(~ \ ) %%\\VW&W (A8)

— ¢ et j sont des mailles de gaz comprises respectivement entre les altitudes z;_; et z;,
zZj_1 et zj.

U, o est la PNE entre le sol et la maille de gaz 7.

— W, m41 est la PNE entre I'espace et la maille de gaz ¢.

— U, ; est la PNE entre les mailles de gaz i et j.

H est la distance entre les deux plans.

B, et B, sont respectivement la luminance de Planck du sol et de I’espace.

Une fois ces PNE calculées, le bilan pour une maille de gaz i est simplement :
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Cette seconde méthode, a I'aide de la formulation en PNE, présente ’avantage de per-

mettre une décomposition du bilan ¥; sous la forme :

es — GWQN|mDN I_I GWQN|®m@@O® I_l GWQN|%Q\N A>H©v

995 gtant la partie de ¥; due aux échanges nets entre la maille de gaz i et le sol,
Pyeemesrace Ja partie de U; due aux échanges nets entre la maille de gaz i et l'espace, et

WI479%% g partie de ¥; due aux échanges nets entre la maille de gaz i et le reste du gaz.
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A.1 Calcul 1D, monocouche, milieu purement absorbant

homogéne, profil de luminance noire constant

Z > wﬁ
H m .
B(2)=B(1)
@k,
0 .
B,
FiGc. A.2:
Ty, = TwE . mL T - %@T?mvv (A.11)
U, = TwE . ﬂ G - %@T?Ev (A.12)

Wy = | By = By|eap(~ ko) (A.13)
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A.2 Calcul 1D, 2 mailles de gaz, milieu purement absor-

bant inhomogéne, profil de luminance noire constant

V4 > B
maille 2 W WA: WmANv
H W
2 i
maille 1 B2 k(1)
0 | .
B
g
FiG. A.3:
Uy, = FE . mi 1 %E|§:Wv~ (A.14)
T, = [B(2) - B) &RLsEW T ~ cap(—k @wv~ (A.15)
H
Wy = [ By = Bu|eap(—(ka(1) + kal(2))5) (A.16)
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A.3 Calcul 3D, multicouche, milieu purement absorbant

205
homogéne, profil de luminance noire linéaire

N
-9 <
o]

maille j
-1

k

\
constant
a

B(z)=B,+(B-B,) Z
maille i
i-1

H

Fe
e

Fig. A.4:

ka

(A.17)
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W(2) =27 | K (Ba — By) Ba (ko) + ka(Bu = BJ) Ba (ko (H — 2))

(A.19)
B,— B
- %&@w QAQNV +

ﬁ@?xm -2))

Pour une maille 2 comprise entre les altitudes z; | et z; :

V(i) =2 Amm — mgv A@m QAQNL — E3 Q?NTLV + Am: — mmv A@m QAQAE — N@vv — FE5 Qﬂaﬁm — N@.vav

B,— B
+ ﬂ A@N QA@NL — mNQﬂmNs.IHV + mw QA@AE — Nsvv — mN A\ammm — N&Ipvvv
(A.20)
eoqs. =27 Amm — m& — ﬁ‘w&lpvmm ANQN&IHV + Aﬁﬁ — mm + m&v m_m A\A@N&v
B,— B B,— B
+ ﬂ@» A\A@N&v — ﬂ@» A\A@N&IHV
(A.21)
Vg1, =27 Amm — By — ﬁ&r@ Ej(kozio1) + Aﬁ& — B+ mgv Es(kozi)
B,—-B B,—-B
+ #&@N QA@NL - #&@N QA@N&IHV

(A.22)

Enfin, pour deux mailles i et j (j > ¢) comprises entre les altitudes z;_; et z;, z;_1 et z; :
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U, Hwﬁﬁ A&.L — Ns.vmm QAQA&L — NLV — A&L — NTvaw QAQA&.L — NTva
_ A&. — NL@W QA&A&. — N@vv + A&. — N@.Lvmm QAQA&. — NTva (A23)
+ MNA@%A?A&L - N@vv - mﬁwaéﬂl - N@.vav .

| b0

(Balkalzs — 2)) = Balkals — 200)))

I

a
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A.4 Calcul 3D, multicouche, milieu purement absorbant

homogéne, profil de luminance noire parabolique

maille j

!
i
. B
Wm constant O_ min
\

B(z)=4AB (4 1)+ B,

maille i

B +AB

g min

w!b

FiGc. A.5:

koz
=)

8AB i @mz (A.24)
p p

=& 1) W BB AB B,

He, VT mH et TH R 0T

SAB 1> 4AB
hiNJEHTwQI e WI 7 \WIAmS&:l_.DmVT&@A

AAB ﬁ@mmw 1

+mwa i%

_ 4AB - 8ABu? ko(H — 2)
L™ (z,p) =|Bs — T e e Am::.:._.DmVT&EI%V
; g (A.25)
IAB , 4AB /2 u SAB 12 4AB 4
=4 1) PR AB 4 B
e m?; TTHE ke T H R OPT
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U(z) =2 Fﬁms; + AB — By) Es(ko2) + ko(Bpin + AB — By) By (ko (H — 2))

4AB 8AB 16AB
= (Ba(ka) + By (ka(H = 2) ) + e (Ba(kaz) + Ex(ka(H = 2)) ) - ﬁg
(A.26)
Pour une maille 7 comprise entre les altitudes z;_; et z; :
Wi =27 |~ (Buin + AB = B,) (Es (ko) = Ea(kazi1))
+ (Bpin + AB — By) @&55 — %)) — By (ka(H — Nivvv
4AB
. AE%&V + By (kazie1) + Ea(ka(H — 2)) — Ey(ka(H — Nivvv (A.27)
S8AB
+ 7122 Almm QQN@V + E5 QAQNTHV + E5 QAQAE — N@vv — FEs Qaaf@ — Nﬁlevv
16AB
- wm‘w\aa ANS - NTL
4AB 4AB
eoas. =21 Amm — msiﬁ — AB + H Zi—1 — 2 Nwluvm_w QAQN&IHV
— Amm — mgs: — AB + 488 Zi — %Dwm vamw A\AQN&V
H e (A.28)

|T|

A
o (1

1— MNTHV @PQAQQLV — \§|~.~AH — m‘svmﬁ Q@m@v
8AB

- mm\aw Amm Q?NTL — Es5 QAQNLV




Annexe A Catalogue de configurations pour validation 210
4AB 4AB
Upp1s =21 Amm — Bunin — AB+ —— 2 — — vam%;m — )
4AB 4AB
- Amm - msiz — AB + H Zi—1 — mw NWIHVMw QﬂmAm — N&IHVV
A.29)
4AB 2 4AB 2 (
+ \A.g|m AH - MN&IHVNWN QAQA\MN — N&IHVV — \A@|~HNAH — mwwv NN%A\A:A\MN — Nsvv

S (Bl )~ Bl =)

Enfin, pour deux mailles i et j (j > i) comprises entre les altitudes z;_; et z;, z;_1 et z; :

U, Hﬁ —(z21— 2 — {vm&?@L — z))
+ A&L —Fi-l T NWLNMNWLV@VQAQA&L - NTLV + A& T Nw Mm&@%?@ - NLV
(2= — 4 Mw.;m&ia — ) — \WG _ G +%-QE§§L —2)
R DA
— \MAH — NTM &.V@A;& —zi1))

(A.30)
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A.5 Calcul 3D, multicouche, milieu purement absorbant
inhomogéne, profil de luminance noire linéaire entre

bas et haut de maille

H B, espace=maille m+1
" a maille m
maille |
- _WANV
maille 1
maille 2
2 = _o o\ maille 1
B, sol=maille0
Fic. A.6:

eﬁo&vqt =27 AmtAN&IHV - mm,tv mw?‘mlws.\pv - AmQAN&IHV - m.QL\ + DmtANVAN@ - Nﬁlwvv

Es ?-f + Foa (0) (2 — Nivv

+ ww N\Amv AE ?Aiv _E, ?'f 4 Foa (0) (2 — Nivvx

(A.31)
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e =27 | (Bu(si1) = By + ABy () (21 — zi1) ) Ba(re )~

Am?-; - mmv By A@l + k(i) (21 — Nivv (A.32)

_ wm‘% Ey(rn) — Ea (7o + ()2 — 7))

Wiy =27 | (Bulzior) = Bulzj1) + AB(0) (5 — 5i01) ) Bo(7z, )

(Bulei1) = Buley 1)) B (7esy s + han i) — 1))
- Am%s.-; — By(2j_1) + AB,(i)(2 — 21)
— ABU()(2 = 251) ) B (Tasy s+ han ()2 — 201 )
+ (Bu(i1) = Bulzy1) = ABG) (2 — 21) ) B (Termsy (433
b (0) (21— 2601) + ko () (25 — 21))

+ Aww:%vv + Ww\:ﬁmwvvv By Aﬂ&.lﬁl + Koo (1) (2 — NTLV

By + hasi)(z = 2m0)) = Balramsy )

= Ba((aay s R () (s = 7)) = 20))

Avec :

AB,(i) : pente du profil de B,(z) dans la maille i.
AB,(j) : pente du profil de B,(z) dans la maille j.

1—1

Tymzis = 2 =1 Kap(l) TS —2z(l— HL : épaisseur optique entre le sol et z;_;.
o H = D eiin Faw(l) TS —z(l — HL : épaisseur optique entre z; et H.

Toimzjy = Muﬁmt ko (1) TS —z(l— HL : épaisseur optique entre z; et z;_;.
ka, (i) : coefficient d’absorption (constant) dans la maille i.

ko, (j) : coefficient d’absorption (constant) dans la maille j.



Annexe B

Fonctions Exponentielles Intégrales

Une des formes possibles sous lesquelles on trouve couramment la fonction F,,, exponen-

tielle intégrale d’ordre n (n > 0), est la suivante :

M:AHVH \Hoo Wsm&ilﬁv& Cw.C

En transfert radiatif, on trouve plutot la forme suivante, car directement interprétable

dans les configurations plan-paralléle :
1
Ey(z) = \ t:|wm§m||v§ (B.2)
0

Les fonctions exponentielles intégrales présentent la propriété de récurrence suivante (cf.

[73]), trés utile en transfert radiatif, pour n > 2 :

2 Bu(r) = ~Baa(0) (B.3)

et pourn=1:

%NH (x) = IWS%AI&V (B.4)

D’autre part, la connaissance de la propriété suivante s’avére également souvent néces-

saire :

\@:AHV&H = —Fp1(x) (B.5)
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Enfin, il est utile de rappeler la valeur de E,(0), pour n > 2 :

E,(0) = (B.6)

et pourn=1:

E1(0) = +00 (B.7)



Annexe C

La méthode P

Cette annexe constitue un exemple d’application des méthodes P, (cf. paragraphe 3.2.2).
L’exemple suivant est donné pour le cas d’une configuration plan-paralléle ot le milieu semi-

transparent compris entre les deux plans est homogéne.

La méthode P; consiste tout d’abord & décomposer la luminance L(7, ;1) en tronquant la
série contenue dans ’équation 3.4 & 'ordre 1. On obtient, aprés évaluation des polynomes

de Legendre :
1
L(r, 1) = 7= |G(r) + 3ug, (7) (C1)
™

Les deux moments de la luminance ont dans ce cas une signification physique :

G(r) = \% L(7, j1)dw (C.2)

@LJH\P puL(T, p1)dw (C.3)

Le champ de luminance est donc estimée comme la somme d’un terme G(7) qui est une
densité surfacique d’énergie, qui dépend de la position 7 mais pas de la direction, et d’un

terme pq,(7) qui dépend de la direction, avec ¢.(7) la densité surfacique de flux.

Remplacer L(7, 1) dans la relation 3.3 par I’expression C.1 permet d’obtenir :

t% + 32 @MMMV + G(71) + 3qu(7) = 47 (1 — wo) B(T) + wo Tw?.v + wm??.L (C.4)

ol g = hH W ®(p, 1 )dp' est le paramétre d’asymétrie de la fonction de phase (voir exemple
paragraphe 4.6.2.2).
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Pour obtenir le systéme d’équations permettant de résoudre G(7) et ¢,.(7), on multiplie
Pexpression C.4 par pu° = 1 et par u! = p, puis on intégre les expressions obtenues pour

toutes les directions zénithales.

Pour effectuer I'intégration angulaire, on a besoin de considérer une forme pour la fonction
de phase ®(u, 1'). Dans cet exemple, on considére une fonction de phase quelconque, dont

le paramétre d’asymétrie est g.

Apreés intégration angulaire, on obtient les deux relations suivantes :

1 0g.(1)
= or = 47 B(T) (C.5)
a(r) = -p%00 (©6)

L’obtention d’expressions pour ¢,(7) et G(7) nécessite 'utilisation de conditions aux
limites. Dans le cas de la méthode P;, ceci constitue le probléme de Milne. Dans le cas

général des méthodes P, on peut utiliser les conditions aux limites de Marshak (cf. [73]).

><@0®H 3 mwwm_mmoﬂiicmgama:ooﬁnmﬁmaQm&mcmwo::Aomwmmmﬁmmsmcdzm“
alors que 'unité d’un coefficient de diffusion est le m?s™1), & cause de I’équation C.6 qui
peut étre assimilée & une équation de diffusion du rayonnement. L’annexe D présente une

discussion sur la valeur de ce coefficient.

On voit que les conditions aux limites doivent étre exprimées pour les moments du champ

de luminance G(7) et ¢.(7), et non pas pour le champ de luminance L(7, ) lui-méme.



Annexe D

La méthode 5

La méthode Sy s’applique seulement dans le cas d’une configuration plan-paralléle, qui
convient bien au traitement des transferts radiatifs atmosphériques. Elle consiste a faire
I’hypotheése que les grandeurs ascendantes et descendantes sont totalement découplées, c’est
a dire que I'on peut écrire I’équation de transfert radiatif pour une direction ascendante et une
direction descendante, le long de la coordonnée 7, épaisseur optique comptée positivement
le long de la verticale descendante, 7 € [0, 7y]. En exprimant ces deux équations en termes

de flux ascendant F*(7) et de flux descendant F~(7), on obtient le systéme d’équations

suivant :
T(r —
U — 4 FH(7) = 32F~(7) = (1= wo) B(7) D)
D) = 9 FH(r) = 1 F () + (1 — wo) B(7)
Si on effectue la somme des deux équations du systéme D.1, on obtient :
0G(T)

O les fonctions ¢.(7) et G(7) sont respectivement la densité surfacique de flux radiatif et la
densité surfacique d’énergie définies annexe C. Le paramétre D, appelé coefficient de diffusion

(également défini en annexe C) est obtenu par : D = i

Les coefficients ~; et 7, n’ont toujours pas été explicités. En fait, ils dépendent du schéma
que I’on souhaite appliquer dans la méthode Sy. Ils sont donnés ci-dessous pour deux schémas
couramment utilisés. Dans les deux cas, la fonction de phase est supposée égale a (1+g)/4x
sur I’hémisphére de diffusion avant, et a (1 — g)/47 sur ’hémisphére de diffusion arriére, g

étant le paramétre d’asymétrie de la fonction de phase (cf. paragraphe 4.6.2.2).
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N

— Le schéma “hemispheric mean” : consiste a considérer que la luminance est isotrope

par hémisphére. En d’autres termes :

Lt ()= LT (7
(7.1 = L¥(7) 02
N\IAq.v |§v = N\IA\HV
Cette hypothése n’est pas entiérement dénuée de sens pour l'atmosphére terrestre.
D’ailleurs, O.B. Toon I’a utilisée dans son algorithme [82].

Les coefficients 7, et v, s’expriment alors :

71 =2—wo(l+g)

D4
Yo = wo(1 — g) 4

mﬁo:ovﬁmin ﬁT‘Hao.s. O:<o;@c“m:cazmmiwmamgoammOméoFmogEm
“hemispheric mean”, la valeur du coefficient de diffusion est différente de la valeur
obtenue par la méthode P;.

— Le schéma d’Eddington. Il consiste & considérer une distribution du champ de lumi-
nance qui tient compte de la direction zénithale, a la différence du schéma “hemispheric
mean”. On a L(7, u) = Lo(7) 4+ L1 (7), ce qui revient & effectuer une décomposition du
champ de luminance en harmoniques sphériques, tronquée a 'ordre 1 (cf. annexe C).

On a alors :
v = WAQ —wo(4+ wmvv

Yo =—1% AH —wo(4 — va (D.5)

On obtient, dans ce cas, D = ) qui est la valeur trouvée par la méthode P;. On

I S
3(1—wog
voit qu’on arrive au méme résultat en utilisant une autre méthode de résolution, mais

avec les mémes hypothéses.

En faisant ’hypothése que la luminance noire évolue de fagon linéaire entre le bas et le

haut de la maille (B(7) = By + B;7), la solution générale du systéme D.1 est donnée par :

FH (1) = kyexp(\1) + Thoexp(—A1) + CT(7)

(D.6)
F~(1) = Tkiexp(AT) + ksexp(—A1) + C~(T)
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Avec :

CH (1) =27y mo‘_.mHAﬂlT 1 v

Y1+72

(D.7)

C= (1) =27y mo.TmHAﬂl L v

Y1+72

D’autre part, les divers paramétres de cette solution sont :

a—Ct(rg)-T AQIQIAOVV exp(—ATr)
ki = exp(Atg)—T2exp(—ATH) Aumv
ks = B —C~(0) = Thy

On a du reste A = /7% —73, T = fqm et yy = =2 Les valeurs de k; et k» données
par les relations du systéme D.8 sont exprimées pour le cas oul les parois sont noires. Les
conditions aux limites en flux sont données par : a = F'*(7y) et 8 = F~(0). Dans le cas
d’une atmosphére homogéne comprise entre deux plans paralléles infinis noirs, on peut par

exemple choisir, pour un calcul infrarouge : « = 7B(sol) et = 0.

Les conditions aux limites pour des parois parfaitement réfléchissantes de fagcon spéculaire

s’expriment de la facon suivante :

F(ty) = F~(tu) (D.9)
F*(0) = F~(0) .

Ce qui se traduit, par les valeurs suivantes des coefficients k; et ks :

AQ+A8 C- ongﬁcﬁ Aty)+C~ (te)—Ct(1H)

A VT% Arar) SRLJL (D.10)

—C~
-

ky =

\awH\AﬁlT

Dans le cas, le plus général possible, ou les parois (sol pour la paroi du bas, espace pour
) p p ) p p p , €SP p
la paroi du haut) sont des parois grises avec des émissivités €,y €t €., les conditions aux

limites en flux s’expriment :

NU+A\JGV = €501X + AH — mm&vﬁlA\J@v

(D.11)
FH(0) = €esplB + (1 — €esp) 71(0)
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Avec oo = By €t 3 = TBegp.
coefficients k; et ko sont, dans ce cas 14, donnés par les relations suivantes :

Les
- —€espP— + —Cesp j
ki = - ﬂ:m@m@v@ﬁ Leap(—Ai)(1 = €t = T) + €so + (1 = €6) O™ (701) = C* (1)
L=
erp(\ir) |1 = T(1 = eoar) | = HpE s sl eap(—Ary)
(D.12)
\AHAH, -1+ mmmﬁv +C~ AOV - mmmﬁﬁ - Q.TAOVAH — mmm@v AUHWV

w pu—
? T(1—€csp) — 1



Annexe E

Comparaison des résultats du modéle

atmosphérique et du code de Toon

E.1 Algorithme de Toon

[’algorithme de Toon basique est basé sur une méthode & deux flux (cf. chapitre 3 et
annexe D) avec hypothése de luminance isotrope par hémisphére (hémispheric mean). Les
flux ascendants et descendants a chaque altitude du maillage de la colonne atmosphérique
doivent étre calculés en méme temps. Une technique d’inversion matricielle est classiquement
utilisée pour résoudre le systéme d’équations couplées. Tandis que Shettle et Weinman [72]
et Wiscombe [86] ont directement inversé la matrice, Toon [82] a réorganisé les équations du

systéme pour obtenir une matrice tridiagonale, moins cofiteuse a inverser numériquement.

Un des inconvénients d’une méthode S0 appliquée au transfert radiatif atmosphérique
est son manque de précision dans certains cas [47]. Pour remédier a ce probléme, Toon a
utilisé une technique dite “source function” (comme I’a fait plus tard Fu [32]), qui consiste
a réinjecter le champ de luminance obtenu par la méthode SO dans le terme source de
I’équation de transfert radiatif, résolue sur un certain nombre de directions zénithales, les

intégrales étant approximées par des quadratures de Gauss.

Dans la comparaison suivante entre les résultats fournis par le code atmosphérique de
Monte-Carlo et ’algorithme de Toon, les résultats fournis par ce dernier seront obtenus a

I’aide de la technique “source function”.
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E.2 Cas tests pour validation en ciel nuageux

Afin de comparer les résultats fournis par le modéle atmosphérique proposé et 1’algo-
rithme de Toon, deux profils atmosphériques ont été utilisés : un profil d’été aux moyennes
latitudes (MLS) et un profil d’hiver en région sub-arctique (SAW). Pour les deux profils,
quatre configurations nuageuses ont été retenues :

— Nuage bas

— Nuage moyen

— Nuage haut

— Tous nuages présents (bas, moyen et haut)

Le nuage bas est un nuage d’eau dont I’épaisseur optique totale dans le visible est de
60, qui s’étend entre 1.0 et 2.0 km d’altitude en profil MLS, et de 0.5 a 1.5 km d’altitude
pour le profil SAW. 1l est caractérisé par un contenu en eau liquide (LWC) de 0.22 g.m™3
et les gouttes d’eau qui le composent ont une distribution de taille dont le rayon effectif est
re = 5.89 um). Le nuage moyen est un nuage d’eau dont ’épaisseur optique totale visible est
de 72, qui s’étend de 4.0 & 5.0 km en profil MLS, et de 2.0 a 3.0 km pour le profil SAW, avec
un LWC de 0.28 g.m™3 et un rayon effectif r, = 6.20 um). Le nuage haut est un nuage de
glace avec une épaisseur optique totale visible de 0, 80 qui s’étend de 10 & 12 km en MLS, et
de 6 & 8 km en SAW, avec un contenu en glace (IWC) de 0.0048 g.m ™3 et une distribution
de taille de cristaux dont le diamétre effectif est D, = 41.5 pum).

E.3 Comparaison des résultats.

Les figures suivantes (Fig. E.1 et Fig. E.2) présentent les taux de chauffage atmosphérique
obtenus a ’aide du modéle atmosphérique de Monte-Carlo et de I'algorithme de Toon, pour
les configurations nuageuses précédemment présentées. Tous les calculs réalisés a 1’aide du
modeéle atmosphérique basé sur la méthode de Monte-Carlo ont été effectués a 'aide de 10°

événements aléatoires par maille.

On peut constater que les résultats fournis par les deux modéles sont du méme ordre
de grandeur pour toutes les configurations. Dans la majorité des cas, on ne peut souvent
pas faire la distinction entre les deux résultats : on ne peut notamment pas voir si les deux
résultats sont égaux a l'incertitude statistique de Monte-Carlo prés, sauf dans le cas des
nuages hauts (Fig. E.1(c) et Fig. E.2(c)) ou les deux profils de résultats sont nettement
différents. Du reste, l'incertitude statistique a une valeur souvent trop faible pour étre lue

sur ces figures. Les figures E.1 et E.2 permettent donc de constater que les résultats fournis



Annexe E Code atmosphérique de Monte-Carlo / code de Toon 223
MLS nuage bas MLS nuage moyen
15 ; 43 15 43
14 1 MC - i 14 L MC - J

13  Toon {42 13  Toon 142
12 + 141 12 + 1 41
11 140 © 11+ 140
10 t 139 T 10 + 439
= 9t 136 E z 9t 136
8t 133 & 8t 133
< 7t 129 o = 7t 129
N6t 125 @ N6t 125
5t 121 E 5t 121
4t 117 4t 17
3t 113 3t 113

2+ 19 2t 19

1t 15 1r 15

O 1 1 1 1 1 O O 1 1 1 1 O

60 -50 -40 -30 -20 -10 0 -80 -60 -40 -20 0 20

taux de chauffage (K/jour) taux de chauffage (K/jour)
(a) (b)
MLS nuage haut MLS tous nuages
15 43 15 43
14 1 14 | _MC - .

13 {42 13  Toon 142
12 141 12 - 1 41
11 140 © 11+ j 140
10 139 T 10 + , 439
= 9 136 E z 9t 136
8 133 & 8t 133
< 7 {29 o = 7+ 129
N g 125 @ N6t 125
5 121 E 5t 121
4 117 4t 117
3 113 3t 113

2 19 2t 19

1 15 1t 15

0 0 0 , , , 0

4 -80 -60 -40 -20 0 20

taux de chauffage (K/jour)

()

taux de chauffage (K/jour)

(d)

Fi1G. E.1: (a) : résultats par code de Monte-Carlo et algorithme de Toon avec technique
“source function” pour une configuration MLS, nuage bas; (b)

nuage moyen; (c)
tous nuages.

: idem, configuration MLS, nuage haut; (d)

: idem, configuration MLS,
: idem, configuration MLS,

numero de maille

numero de maille
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SAW nuage bas SAW nuage moyen
15 T 43 15 43
14 1 MC - j 14 L MC - J

13  Toon {42 13  Toon 142
12 1 41 12 ¢ 1 41
11 140 2 11+ 140
10 139 ® 10 - 139
z 9 r 136 € z 9 r 136
8 r 133 8 8 r 133
< 70 129 5 = 7t 129
N6t 125 @® N6t {25
51 121 E 5t 1 21
4 117 ¢ 4 r 117
3r 113 3r 113

2t ) 19 2 r 19

1t 15 1t M 15

O 1 1 1 1 1 J O O 1 1 1 O

60 -50 -40 -30 -20 -10 0 10 -80 -60 -40 -20 0 20

taux de chauffage (K/jour) taux de chauffage (K/jour)
(a) MCvsToon SAW nuage bas (b) MCvsToon SAW nuage moyen
SAW nuage haut SAW tous nuages
15 43 15 43
14 1 14 | _MC - .

13 142 13 t Toon 142
12 141 12 141
11 140 2 11+ 140
10 139 ® 10 - 139
z 9 136 € z 9 r 136
8 133 8 8 r 133
< 7 129 5 = 71 129
N6 125 @® N6t {25
5 121 § 5t 1 21
4 117 ¢ 4 r 117
3 113 3r : 113

2 19 2 r 19

1 15 1r 15

O 1 1 1 O O 1 1 1 O

1 2 3 4 -80 -60 -40 -20 0 20

taux de chauffage (K/jour)

(¢) MCvsToon SAW nuage haut

taux de chauffage (K/jour)

(d) MCvsToon SAW tous nuages

Fi1G. E.2: (a) : résultats par code de Monte-Carlo et algorithme de Toon avec technique
“source function” pour une configuration SAW, nuage bas; (b)
nuage moyen; (c) : idem, configuration SAW, nuage haut; (d)

tous nuages.

: idem, configuration SAW,
: idem, configuration SAW,

numero de maille

numero de maille
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par les deux modéles suivent la méme tendance, sans préciser quelle est la différence entre

les résultats.

Les deux séries de figures suivantes (E.3 et E.4) représentent donc la différence entre
les résultats fournis par les deux modéles, avec une incertitude qui correspond a l'erreur

statistique sur la valeur calculée par le modéle de Monte-Carlo.

MLS nuage bas MLS nuage moyen

15 43 15 43

14 + 1 14 + 1
13 142 13 ¢ {42
12 141 12 141
11 140 @ 11 140
10 13 B 10 139
£t Bs o5t 3
< 70 129 5 S 7t 129
NoBt 125 © N6+ 125
5r 121 E 5F 121
4 117 ¢ 4 r 117
3r 113 3t 113
2+ 19 2 19
1r 15 1r 15
0 : : : 0 0 : , : : , : : 0

-1 -0.5 0 0.5 1 3 25 -2 15 -1 -05 0 05 1

difference sur taux de chauffage (K/jour) difference sur taux de chauffage (K/jour)
(a) (b)
MLS nuage haut MLS tous nuages

15 43 15 43

14 + 1 14 + 1
13 142 13 ¢ {42
12 + 1 41 12 + 1{ 41
11+ 140 o 1 r 1 40
10 139 ® 10 139
= 9r 136 m £ 9 r 136
8 r 133 8 r 133
< 74 129 9 = 7t 129
N6t 125 © N6t 125
5t 121 E 5+ {21
4+ 117 2 4t {117
3r 113 3t 113
2+ 19 2 19
1r 15 1r 15
O 1 1 1 O O 1 1 1 f O

-1 -0.5 0 0.5 1 -4 -3 -2 -1 0 1

difference sur taux de chauffage (K/jour) difference sur taux de chauffage (K/jour)
(c) (d)

F1G. E.3: (a) : Différence en K/jour entre les résultats du code de Monte-Carlo et algorithme
de Toon avec technique “source function” pour une configuration MLS, nuage bas; (b) : idem,
configuration MLS, nuage moyen; (c) : idem, configuration MLS, nuage haut; (d) : idem,
configuration MLS, tous nuages.

On peut voir sur les figures E.3 et E.4 que les résultats donnés par les deux modéles

peuvent avoir jusqu’a environ 4 K /jour de différence. Dans Fu et al. [32], le taux de chauffage

numero de maille

numero de maille
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SAW nuage bas SAW nuage moyen

15 43 15 43

14 1 14 + 1
13 142 13 ¢ 142
12 1 41 12 ¢ 1 41
1t 140 o 1 r 1 40
10 139 ® 10 139
= 9r 136 m £ 9 r 136
8 r 133 8 r 133
< 74 129 9 = 7t 129
N6 125 © N6t 125
5t 121 E 5+ 1 21
4t 117 2 4t 117
3+ 113 3t 113
2 r 19 2 19
1+ 15 1r 15
O 1 ] 1 O O 1 1 1 1 O

-1 -0.5 0 0.5 1 -2 -1.5 -1 -0.5 0 0.5 1

difference sur taux de chauffage (K/jour) difference sur taux de chauffage (K/jour)
(a) (b)
SAW nuage haut SAW tous nuages

15 43 15 43

14 1 14 + 1
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F1G. E.4: (a) : Différence en K/jour entre les résultats du code de Monte-Carlo et algorithme
de Toon avec technique “source function” pour une configuration SAW, nuage bas; (b) : idem,
configuration SAW, nuage moyen; (c) : idem, configuration SAW, nuage haut; (d) : idem,
configuration SAW, tous nuages.
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atmosphérique est calculé pour les mémes configurations, par une méthode de référence
(D128S) et par diverses autres méthodes numériques, dont une méthode D2S, correspondant
a ’algorithme de Toon. Les erreurs maximales trouvées pour la méthode D2S sont également
de lordre de 4 K/jour.
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