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Résumé

Conception optimale de centrales solaires à concentration : application aux
centrales à tour et aux installations « beam down »

Depuis les années quarante, la consommation énergétique mondiale n’a cessé d’augmen-
ter. Cette énergie étant majoritairement d’origine fossile avec dégagement fatal de di-
oxyde de carbone, il en résulte une augmentation globale de la température terrestre. De
ce fait, il est devenu urgent de réduire les émissions de gaz à effet de serre pour stopper
le changement climatique. Dans ce contexte, le développement de la production d’élec-
tricité à partir d’énergie solaire concentrée par voie thermodynamique est une solution
prometteuse. Les efforts de recherche visent à rendre cette technologie plus efficace et
plus compétitive économiquement. Dans ce but, ce manuscrit présente une méthode de
conception optimale pour les centrales solaires à récepteur central. Elle tire parti des mé-
thodes développées depuis de nombreuses années par le groupe de recherche StaRWest,
regroupant notamment des chercheurs des laboratoires RAPSODEE (Albi), LAPLACE
(Toulouse) et PROMES (Odeillo). Couplant des algorithmes de Monte Carlo à hautes
performances et des algorithmes stochastiques d’optimisation, le code de calcul implé-
mentant cette méthode permet la conception et l’optimisation d’installations solaires. Il
est utilisé pour mettre en évidence les potentialités d’un type de centrales à récepteur
central peu répandu : les centrales à réflecteur secondaire, également appelées centrales
de type « beam down ».

Mots clés : Transfert radiatif, Énergie solaire concentrée, Optimisation par essaim par-
ticulaire, Centrale solaire à récepteur central, Estimation de sensibilités, Concentrateur
beam down
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Abstract

Optimal design of solar thermal power plants : application to solar power
tower and « beam down » concentrators

Since the early 40’s, world energy consumption has grown steadly. While this energy
mainly came from fossil fuel resulting in the production of carbon dioxide, its use has
included an increase in temperatures. It has become urgent to reduce greenhouse gas
emissions to halt climate change. In this context, the development of concentrated solar
power (CSP) is a promising solution. The scientific community related to this topic has
to focus on efficiency enhancement and economic competitiveness of CSP technologies.
To this end, this thesis aims at providing an optimal design method applied to cen-
tral receiver power plants. It takes advantage of methods developed over many years by
the rechearch group StaRWest. Both RAPSODEE (Albi), LAPLACE (Toulouse) and
PROMES (Odeillo) researchers take an active part in this group. Coupling high per-
formance Monte Carlo algorithms and stochastic optimization methods, the code we
developed allows an optimal design of concentrated solar systems. This code is used to
highlight the potential of an uncommon type of central receiver plants : reflective towers,
also called « beam down » central receiver systems.

Keywords : Radiative transfer, Concentrated solar power, Swarm-based optimization,
Central receiver system, Beam down concentrator
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DLR Deutches Zentrum für Luft- und Raumfahrt : centre national de recherche aéro-
nautique et spacial allemand

DNI Éclairement énergétique de rayonnement solaire (Direct Normal Irradiance) : flux
de rayonnement solaire incident par unité de surface (W · m−2)

DSE Développement en série entière
DYNACTOM Dynamiques Complexes et Réseaux d’Interactions dans les Sociétés Ani-

males

EDStaR Environnement de Développement en Statistiques Radiatives
ETR Équation de Transfert Radiatif : équation de transport de la luminance

GA Algorithme génétique :Algorithme de recherche utilisant des règles inspirées de
phénomènes biologiques (la sélection naturelle, les mutations ou la reproduction
sexuelle), qui accumule des informations et les utilise pour diminuer l’espace de
recherche et produire de nouvelles solutions plausibles.

GePEB Génie des Procédés, Energétique et Biosystèmes
GES Gaz à effet de serre
GREPHE Groupe de Recherche Energétique, Plasma, Hors-Equilibre

LAPLACE LAboratoire PLAsma et Conversion d’Énergie
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MCFD Monte Carlo Fixed Date : algorithme de Monte Carlo estimant la puissance
thermique collectée par une centrale pour une date donnée

MCST Monte Carlo Sun Tracker : algorithme de Monte Carlo estimant l’énergie ther-
mique collectée par une centrale solaire durant une année ou plus

NREL National Renewable Energy Laboratory : le laboratoire national sur les énergies
renouvelables, situé à Golden (Colorado) aux États-Unis est le principal laboratoire
national du département de l’Énergie des États-Unis. Il est consacré à la recherche
et au développement sur les énergies renouvelables et l’efficacité énergétique.

OEP Optimisation par Essaim Particulaire

PBRT Physically Based Rendering Techniques : logiciel de synthèse d’image faisant
largement appel à la méthode de Monte Carlo et incluant les principales techniques
issues de la recherche informatique concernant l’accélération du suivi de rayons en
géométrie complexe

pdf Fonction densité de probabilité
PROMES PROcédés, Matériaux et Énergie Solaire

RAPSODEE Centre de Recherche d’Albi en génie des Procédés des Solides Divisés, de
l’Énergie et de l’Environnement

SA Méthode du recuit simulé : Méthode qui transpose dans le domaine de l’optimisation
l’algorithme de Metropolis (1953) utilisé pour simuler le procédé de recuit.

StaRWest Statistiques Radiatives du sud ouest
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Introduction

1.1. Contexte énergétique mondial
En hausse constante depuis le début du dix-neuvième siècle, soit le début de l’exploi-
tation du charbon et de la révolution industrielle, la demande énergétique mondiale
n’a pas cessé de d’augmenter depuis. L’avènement de la « société de consommation »,
après la seconde guerre mondiale, a entraîné une hausse spectaculaire de cette demande.
Les modes de vie des pays « développés » (Europe de l’Ouest, Amérique du Nord) ont
évolué avec l’apparition de nouveaux besoins (modes de déplacement, de production de
consommation de biens et de service, etc). C’est une conséquence directe de l’utilisation
de nouvelles sources d’énergie plus « performantes » et « concentrées » : le pétrole puis
le gaz et l’uranium. Aujourd’hui, l’émergence de nouvelles puissances, à forte croissance
économique et démographique, telles que le Brésil, l’Afrique du Sud, l’Inde ou la Chine,
mais aussi les pays du Moyent-Orient fait craindre une croissance toujours plus rapide
de cette demande sans une prise de conscience collective. Ainsi, l’Agence Internationale
de l’Énergie (AIE) prévoit que les besoins mondiaux d’énergie continueront d’augmenter
au cours des 25 prochaines années malgré les contextes de crises économiques des pays
« riches » alors même que les intérêts économiques et énergétiques sont bien souvent
opposés. Par exemple, pour l’année 2013, la limite de « régénération » des ressources
naturelles a été atteinte par l’humanité le 20 août [1]. À partir de cette date, nous pui-
sons donc dans les réserves ou stocks de la terre. En moins de huit mois nous avons
déjà épuisé l’équivalent des ressources naturelles que la Terre peut produire en un an.
On constate également une accélération du réchauffement climatique de la planète avec
comme conséquence de plus en plus visible une augmentation de la fréquence des phé-
nomènes météorologiques extrêmes et des fontes record des calottes glaciaires. Selon les
conclusions des travaux du Groupe Intergouvernemental d’Etudes sur le Climat (GIEC),
chaque année, c’est une part de plus en plus importante des émissions mondiales anthro-
piques de gaz à effet de serre (GES) qui ne sont pas réabsorbées par les écosystèmes
continentaux et océaniques et qui s’accumulent dans l’atmosphère. Pour remédier à ce
phénomène, il faudrait notamment ramener, d’ici 2030, les émissions globales de dioxyde
de carbone dues au secteur énergétique aux niveaux de 2005 [2]. Dans ce contexte fort
peu enthousiasmant, la production d’énergie à partir de ressources renouvelables semble
pouvoir apporter une partie de la solution à ce problème mondial. La réduction de la
consommation d’énergie et l’utilisation plus efficace de cette énergie étant une autre
partie de la réponse que l’humanité doit s’apporter dans les plus brefs délais. Parmi ces
énergies renouvelables (éolienne, hydraulique, géothermique), le recours à l’énergie so-
laire devrait permettre de combler une partie non négligeable des besoins en électricité.
Pour transformer l’énergie solaire en énergie utilisable, trois filières existent :

• Le photovoltaïque utilisant l’effet photoélectrique pour produire de l’électricité
utilisable instantanément ou pouvant être stockée la plupart du temps dans des
batteries électrochimique. Cependant, ce stockage est très limité du fait du prix
des batteries.

• Le solaire thermique sans concentration est utilisé en premier lieu afin de fournir
de l’eau chaude sanitaire. Cela reste un procédé de petite échelle.
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1.2. Centrale solaire à concentration

• Le solaire thermodynamique à concentration représente une filière prometteuse
pour la production d’électricité. Cette filière a l’avantage de pouvoir stocker de
façon efficace la chaleur produite et ainsi de produire de l’électricité de façon quasi-
continue.

Le principal inconvénient de l’énergie solaire est la discontinuité de la ressource. Si l’on
fait le parallèle entre la filière photovoltaïque et la filière solaire thermodynamique, la
possibilité de stockage de la seconde est un avantage non-négligeable.

1.2. Centrale solaire à concentration
La production d’électricité par voie thermodynamique à partir d’énergie solaire a débuté
au début des années 80 [3]. Le principe général commun consiste à chauffer un fluide. Pour
cela, le rayonnement solaire doit être concentré afin d’obtenir des niveaux de température
suffisants. L’énergie thermique ainsi produite est d’abord convertie en énergie mécanique
par un cycle thermodynamique, puis en énergie électrique grâce à un alternateur. Une
autre filière consiste à stocker l’énergie solaire non plus sous forme de chaleur mais en
énergie chimique par le biais de réactions chimiques endothermiques.
Deux grands principes de concentration coexistent et sont déclinés à plusieurs échelles :

Les concentrateurs linéaires La concentration s’effectue sur des tubes de grandes lon-
gueurs dans lesquels circule un fluide caloporteur. Ces tubes se trouvent sur la
ligne focale des réflecteurs concentrant le rayonnement solaire. Cette technologie
nécessite un suivi du soleil sur au moins un axe. Les capteurs cylindro-paraboliques
(voir figure 1.1a) et les capteurs de Fresnel (voir figure 1.1d) fonctionnent sur ce
principe.

Les concentrateurs ponctuels La concentration s’effectue sur un récepteur central. Le
dispositif concentrateur suit le soleil sur deux axes : en azimut et en élévation.
Ce principe est utilisé par les concentrateurs paraboliques (voir figure 1.1c) et les
centrales à tour (voir figure 1.1b).

Actuellement, une grande majorité des centrales en fonctionnement utilisent la tech-
nologie à capteurs cylindro-paraboliques. Il s’agit d’une technologie mature ayant fait
ses preuves depuis de nombreuses années. Pour autant, la recherche mondiale continue
d’explorer de nouvelles pistes et deux axes de recherche se distinguent :

• Des installations moins chères : il s’agit alors d’améliorer les capteurs linéaires de
Fresnel ;

• Des installation plus efficaces : on s’oriente alors vers des systèmes à concentration
ponctuelle tels que les centrales à tour ou, à plus faible puissance, les concentrateurs
paraboliques

Les travaux de thèse présentés dans ce manuscrit portent exclusivement sur les concen-
trateurs ponctuels de grande taille que sont les centrales solaires à récepteur central.
Alors que leurs développements a débuté à la fin des années 70 en réponse aux chocs
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Introduction

(a) Capteurs cylindro-paraboliques :
Centrale solaire de Kaehole à
Hawaï [4]

(b) Centrales à tour : Centrale Thé-
mis à Targasonne [4]

(c) Concentrateurs paraboliques :
Projet DISH-STIRLING à
Odeillo [4]

(d) Capteurs linéaires de Fresnel :
Centrale Novatec Biosol

Fig. 1.1. : Les différentes technologies de concentration de l’énergie solaire
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1.2. Centrale solaire à concentration

pétroliers, les centrales solaires à tour connaissent un regain d’intérêt depuis quelques
années. Plusieurs centrales sont d’ores et déjà en activité ou en construction :

• PS10 (11MW) et PS20 (20MW) à Séville (connectées en 2007 et 2009) [5],
• Centrale GEMASOLAR (19,9MW) à Séville (connectée en 2011) [6],
• Réouverture de Thémis à Odeillo à travers le projet PEGASE (centrale de re-

cherche),
• Centrale Ivanpah Solar Power Facility de BrightSource Energy [7] (392MW)

à Ivanpah, Californie (connectée en 2014)
• Centrale Crescent Dunes Solar Energy (110MW) de SolarReserve à Tonopah,

Nevada (en construction depuis 2011)

Plusieurs projets ont été annoncés à travers le monde :

• Projet Ashalim power station (250MW) en Israël [8]
• Projet Khi Solar One en Afrique du Sud (50MW) [9]
• Projets Palen Solar Power, BrightSource PPA5, BrightSource PPA6, Bright-

Source PPA7 de BrightSource Energy en Californie [10]
• Projet Rice Solar Energy [10] de Rice Solar en californie
• Projet Crossroads Solar Energy [11] de SolarReserve en Arizona
• Projet eSolar 1 et eSolar 2 de eSolar [10] en Californie
• Projet Alcázar Solar Thermal Power de SolarReserve en Espagne [12]
• Projet Ordos en Chine [13]
• Projet Noor III CSP au Maroc [14]

Le schéma représenté sur la figure 1.2 décrit le fonctionnement général de ce type d’ins-
tallation. Les héliostats assurent le suivi du soleil et concentrent le rayonnement solaire
sur un récepteur placé en haut d’une tour. Parmi les premières centrales à voir le jour,
Solar One (10MWe, Californie, États Unis) utilise une technologie à vapeur d’eau et
Thémis (2,5MWe, Pyrénées Orientales, France) utilise une technologie à sels fondus.
Les technologies de production d’électricité sont aujourd’hui encore basées sur la généra-
tion directe de vapeur [5] et l’utilisation de sels fondus [15]. L’un des avantages notables
des centrales thermodynamiques par rapport aux autres énergies renouvellables (éolien,
solaire photovoltaïque) est l’utilisation possible d’un stockage thermique [16]. Certaines
centrales peuvent ainsi produire de l’électricité de façon quasi-continue [17].
Le développement à long terme de la filière solaire thermodynamique repose sur des
installations de grande taille. Cela se justifie notamment par la nécessité d’obtenir de
bons rendements (turbine de puissance supérieure à quelques MW, températures élevées
supérieures à 1000K) pour des applications à fort potentiel tels que le cycle combiné ou
les procédés de thermochimie (combustible de synthèse : H2, gaz de synthèse, stockage
sous forme chimique).

1.2.1. Les récepteurs
La volonté d’améliorer les rendements par l’obtention de températures plus hautes a
entrainé l’émergence de nouvelles géométries de récepteurs. Ce récepteur doit aujourd’hui
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S

R

T

H

Fig. 1.2. : Principe de fonctionnement d’une centrale à tour : Le rayonnement issu du
soleil S est concentré par les héliostats H puis réfléchi vers le récepteur R qui
se trouve en haut de la tour T

connaître des améliorations importantes, à la fois d’un point de vue thermique et d’un
point de vue géométrique. Les importants cyclages thermiques issus de la discontinuité
de la source solaire soulèvent également la question des matériaux adéquats [18].

De nouvelles géométries prometteuses Dans le but de proposer des récepteurs à la
fois performants en rendement de collecte et résistants aux discontinuités de la ressource
solaire, des études menées ont d’ores et déjà proposé plusieurs types de géométries :

1. Récepteur à nid d’abeilles dans le cadre du projet SOLGATE
2. Récepteur surfacique à air dans le cadre des projets PEGASE [19] et SICSOL[20]
3. Récepteur volumétrique à air préssurisé [21]
4. Récepteur à lit fluidisé [22, 23]

S’il est vrai que les centrales à tour ont une efficacité supérieure aux autres technologies
solaires à concentration, il reste un point noir à améliorer. Il s’agit du prix associé à la
construction de la tour. Il existe une alternative permettant d’avoir une bonne efficacité
à moindre coût.

1.3. Une alternative : les centrales beam down
Nous avons vu aux sections précédentes que la production d’électricité par des centrales
solaires à tour offrait des perspectives intéressantes. Toutefois, la présence de la tour est
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1.3. Une alternative : les centrales beam down

un inconvénient majeur à plusieurs titres :

• La tour a un coût non négligeable (estimé à $25 kWth [24]) qui impacte fortement
la rentabilité de la centrale : la tour doit supporter le récepteur et une partie des
équipements lourds du procédé de conversion d’énergie afin de diminuer les pertes
thermiques .

• Le récepteur étant placé en haut de la tour, il en découle de nombreuses compli-
cations techniques, de maintenance et de manutention.

Une alternative existe : les centrales « beam down ». Pour la première fois évoqué
par Rabl [25] au milieu des années 70, ce concept se base sur l’introduction d’un miroir
réflecteur en hauteur en lieu et place du récepteur classique. Son rôle est de renvoyer
le rayonnement du champ d’héliostats vers le récepteur qui se trouve au sol. De ce
fait, aucune installation thermique ne se trouve en hauteur, il y a seulement besoin
de mâts pour soutenir le réflecteur. Ceci rend caduque la construction d’une tour plus
imposante devant soutenir certaines installations thermiques (récepteur, éventuellement
pompes, turbines, ...). Hasuike et al. ont estimé de 30% à 50% l’économie réalisée
par rapport à la construction d’une tour conventionnelle. L’introduction d’une seconde
réflexion entraîne une perte d’efficacité optique mais dans le même temps le coût de la
centrale est nettement diminué. Le schéma représenté sur la figure 1.3 illustre ce principe.

1.3.1. Les installations « beam down » dans le monde
Très peu d’équipes dans le monde se sont intéressées à ce concept. Une grande partie de
la bibliographie portant sur les centrales à réflecteur secondaire est issue des équipes de
recherche du « Weizmann Institut of Science » à Rehovot en Israël. Ils bénéficient par
ailleurs d’une optique « beam down » dans un but d’expérimentation (voir figure 1.4).
Une autre installation pilote de 100 kW a été contruite à Masdar (Abu Dhabi), développée
par le Tokyo Institute of Technology [27]. Il s’agit d’un réflecteur à anneaux multiples mis
au point dans le cadre du projet TokyoTech-Cosmo-MASDAR. Ce réflecteur est constitué
d’hyperboloïdes multiples ayant les mêmes points focaux. La figure 1.5 représente une
coupe du réflecteur à anneaux multiples. Les avantages mis en avant sont nombreux [28] :

• Une structure moins lourde
• Une meilleure ventilation
• Une réduction de la prise au vent
• Un meilleur refroidissement des miroirs
• Un coût inférieur

Les prototypes construits n’ont jusqu’alors pas fourni de résultats significatifs plaidant
pour cette technologie alors que des études leurs accordent des performances au moins
comparables aux centrales à tour traditionnelles [29, 30] pour un coût de construction
bien inférieur [26]. C’est une des raisons à l’origine de la question que nous posons à la
section suivante.
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S

R
HH

BD

Fig. 1.3. : Principe de fonctionnement d’une centrale « beam down » : Le rayonnement
issu du soleil S est concentré par les héliostats H puis réfléchi vers le réflecteur
secondaire BD qui réfléchi à son tour ce rayonnement vers le récepteur R qui
se trouve au sol

Fig. 1.4. : Réflecteur secondaire de type « beam down » au Weizmann Institute of
Science [4]
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1.4. Contexte de la thèse

Point focal bas

Point focal haut

Fig. 1.5. : Réflecteur à anneaux multiples

1.4. Contexte de la thèse
La thèse présentée dans ce manuscrit a été financée par l’entreprise Total dans le cadre
d’un contrat CIFRE. Elle s’est déroulée au sein du laboratoire RAPSODEE de l’École
des Mines d’Albi sous la direction de Mouna El Hafi et Jean-Jacques Bézian. Elle a
été supervisée par Hélène Bru de Total Énergies Nouvelles (R&D Technologies Solaires
Concentrées). Elle a été co-encadrée par Olivier Fudym (RAPSODEE) et Richard Four-
nier (LAPLACE). Les travaux de recherche ont été effectués dans le cadre du groupe
StaRWest qui regroupe des équipes de plusieurs laboratoires :

• Le groupe GREPHE du laboratoire LAPLACE (Toulouse, UMR 5213)
• L’équipe Rayonnement et centrales solaires du laboratoire PROMES (Odeillo-

Perpignan, UPR 8521)
• L’équipe DYNACTOM du laboratoire CRCA (Toulouse, UMR 5169)
• L’équipe GePEB de l’Institut Pascal (Clermont-Ferrand, UMR 6602)
• L’équipe Transfert radiatif - Solaire à concentration du laboratoire RAPSODEE

(Albi, UMR 5302)

Par son lien avec l’industrie, cette thèse a pour objectif final d’apporter une réponse à
la question : Une centrale solaire à récepteur central de type « beam down »
peut-elle être compétitive par rapport à une centrale à tour ? Nous avons tenté
d’apporter une réponse en développant de nouveaux modèles appliqués aux centrales
solaires à récepteur central et en les couplant avec un code d’optimisation. Pour cela, il a
été nécessaire d’améliorer les outils et méthodes de modélisation d’installations solaires
à concentration existants. Dans ce contexte, la réalisation de cette thèse au sein du
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groupe StaRWest prend tout son sens. En effet, autour de la thématique des sciences
pour l’ingénieur, ce groupe développe depuis plus d’une dizaine d’années des codes de
calcul basés sur la méthode de Monte Carlo (MMC) dont les applications vont bien au
delà de l’optimisation radiative des centrales solaires à concentration. Quelques exemples
d’applications sont cités ci-après :

• La paramétrisation du rayonnement au sein de l’atmosphère terrestre dans le cadre
de l’étude du changement climatique

• L’étude du rayonnement au sein des atmosphères planétaires solaires et extra-
solaires

• L’étude de l’impact du rayonnement sur les concentrations d’espèces polluantes en
sortie des chambres de combustion

• L’imagerie médicale en diffusion multiple dans le proche infrarouge
• La modélisation cinétique des transferts thermiques à micro-échelle en écoulements

diphasiques
• La modélisation cinétique des phénomènes de morphogénèse auto-organisée et d’in-

telligence collective en biologie
• L’optimisation radiative des procédés de type photobioréacteur,
• ...

Cette transversalité, voulue et cultivée par le groupe, débouche sur le développement de
méthodes communes centrées sur la physique du transport et en particulier du rayonne-
ment thermique.
D’un point de vue thématique, cette thèse fait suite aux travaux de thèse de J. de La
Torre [31] intitulés « Calculs de sensibilités par la méthode de Monte Carlo pour la
conception de procédés à énergie solaire concentrée », de G. Baud [23] intitulés « Concep-
tion de récepteurs solaires à lit fluidisé sous flux radiatif concentré », de F. Veynandt
[32] intitulés « Cogénération héliothermodynamique avec concentrateur linéaire de Fres-
nel : modélisation de l’ensemble du procédé » et de J. Dauchet [33] intitulés « Analyse
radiative des photobioréacteurs ». Ces thèses abordent la thématique de l’énergie solaire
concentrée et servent de point de départ à ces travaux. Les avancées issues de l’en-
semble de ces travaux ont donné lieu à une publication qui constitue le point de départ
scientifique de cette thèse [34].

1.5. Organisation du manuscrit
Le manuscrit se compose de six autres chapitres. Le deuxième chapitre constitue un état
de l’art des divers outils de modélisation de centrales solaires puis présente succincte-
ment la méthode de Monte Carlo comme introduction à un algorithme de Monte Carlo
estimant la puissance reçue par une centrale à tour à un instant donné.
Le troisième chapitre présente une méthode innovante pour l’estimation des perfor-
mances des centrales solaires à récepteur central par l’intégration temporelle de la puis-
sance thermique reçue au récepteur. L’utilisation de la MMC et plus particulièrement
de la formulation intégrale permet, par l’ajout d’une intégrale sur le temps d’évaluer les
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performances d’une installation solaire en termes d’énergie collectée annuellement. De
plus, la prise en compte du vieillissement de la centrale lors de sa période d’exploitation
est possible sans sacrifier la précision des calculs.
Le quatrième chapitre apporte une brique supplémentaire à la modélisation des centrales
solaires. Nous nous intéressons à la conversion de l’énergie thermique collectée : la fi-
nalité d’une installation à récepteur central n’est pas obligatoirement la production de
chaleur : la production d’électricité grâce à un cycle thermodynamique (exemple : géné-
ration directe de vapeur et cycle de Rankine) mais également la thermochimie sont deux
autres voies possibles d’utilisation de l’énergie solaire. Nos modèles prédictifs peuvent
être pertinents grâce à la prise en compte par la MMC des non-linéarités d’une fonction
de conversion de l’énergie thermique en énergie électrique ou chimique.
Le cinquième chapitre aborde la problématique de l’optimisation des installations solaires
et plus particulièrement l’utilisation de l’optimisation par essaim particulaire (OEP).
Nous développons les avantages de cette méthode lorsque nous nous intéressons à la
conception optimale des installations solaires.
Dans le sixième chapitre, nous apportons la réponse à la question qui a engendré ce
sujet de thèse en proposant un modèle d’estimation des performances d’une centrale de
type « beam down ». Des résultats de simulation sont comparés avec les performances
d’installations à tour de taille comparable.
Le septième chapitre constitue une ouverture sur le calcul de sensibilités aux paramètres
géométriques d’une installation solaire et la place qu’il peut occuper dans un processus
d’optimisation.
Pour finir, nous concluerons ce manuscrit en faisant un bilan des réalisations de cette
thèse et en présentant quelques perspectives quant aux suites à donner aux travaux
présentés dans ce mémoire.
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Chapitre

2
Modélisation et résolution
numérique des centrales so-
laires à tour

Résumé

La simulation numérique est une part importante de l’étude des centrales solaires à concen-
tration. En effet, que ce soit pour optimiser la conception des centrales d’un point de vue
technico-économique ou pour simuler le fonctionnement de l’installation et en prédire les
performances, le recours aux outils de simulation est systématique. Ce chapitre n’a pas pour
finalité d’être une revue large et complète de tous les codes de calculs appliqués aux tech-
nologies solaires à concentration existant. De nombreuses études de ce type existent et sont
bien plus exhaustives [35, 36]. Nous allons passer en revue les codes de calcul les plus mar-
quants et les plus reconnus. Nous présenterons alors les critères nous amenant au choix d’un
code de simulation précis parmi l’ensemble des codes disponibles. Nous poursuivrons par la
présentation d’un modèle permettant le calcul de la puissance thermique reçue au récepteur
d’une centrale solaire pour une centrale à tour et une centrale beam down. Pour ce faire,
nous présenterons plus particulièrement les différentes méthodes d’implantation de champs
d’héliostats et nous détaillerons celle que nous avons implémentée dans notre code de calcul.
Nous introduirons également le formalisme général utilisé tout au long de ce manuscrit.
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2.1. Outils de modélisation
De nombreux codes de calcul ont été développés, depuis les années 70 jusqu’à aujourdhui.
Une première génération de codes, principalement basés sur des langages fortran et
Matlab a précédé une nouvelle génération, profitant des progrès réalisés au niveau
informatique. Il existe principalement deux types de codes :

• Les codes basés sur une méthode déterministe (produits de convolution, optiques
de cônes) ;

• Les codes basés sur une méthode statistique (lancer de rayon, Monte Carlo).

2.1.1. Première génération de codes
Mirval Développé au Laboratoire SANDIA en 1979 [37], ce logiciel basé sur les mé-
thodes de Monte Carlo a été développé par la Deutches Zentrum für Luft- und Raum-
fahrt (DLR) dans le but d’évaluer les performances des systèmes optiques et notamment
des héliostats. Il possède un module permettant d’optimiser la position des miroirs au
sol à partir de critères énergétiques. Manquant de flexibilité, il n’avait pas permis de
modéliser le champ de la centrale Thémis [31].

Autres Parmi les autres codes issus de la première génération, nous pouvons citer :

• DELSOL ;
• UHC ;
• HFLCAL ;
• VEGAS ;
• FIAT LUX.

2.1.2. Nouvelle génération de codes
Les améliorations informatiques, notamment en terme de vitesse de calcul et de langage
de programmation ont permis l’émergence de nouveaux outils de simulation, basés sur
des langages orientés objet (C++). Alors que les anciens codes sont le plus souvent mono-
réflexion, les nouveaux codes prennent en compte les multi-réflexions (à l’exception de
Stral). De même, la nouvelle génération de codes prend en charge un éventail complet
de géométries complexes et sont adaptables à plusieurs types d’installation, alors que les
codes de la génération précédente sont souvent moins polyvalents et utilisés pour une
configuration donnée.

SolTrace Bien qu’il ait été développé en 2003 au National Renewable Energy Laborato-
ry (NREL) [38], il a été complètement reécrit en C++ en 2011 et tire parti des techniques
modernes de calcul parallèle. Il s’agit d’un code polyvalent permettant de modéliser de
nombreux systèmes à énergie solaire concentrée (fours solaires, centrales à tour, capteurs
cylindro-paraboliques, fresnel). Utilisant la méthode des lancers de rayons, il fonctionne
très bien avec des géométries complexes et bénéficie d’outil de visualisation. Il excelle
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notamment dans la production de cartes de flux [31]. Il s’est notamment montré très
performant dans la représentation du champ solaire du projet PEGASE à Thémis [35].

Tonatiuh Le projet Tonatiuh est un projet open source orienté objet écrit en C++.
Tonatiuh est axé sur trois modèles élémentaires :

• Un modèle pour le système de concentration ;
• Un modèle pour le rayonnement solaire incident ;
• Un modèle pour les interactions basiques entre le rayonnement et les éléments du

système de concentration.

Le modèle représentant le système de concentration consiste en une ouverture d’entrée,
un volume et un ensemble de surfaces, réelles et/ou virtuelles. Les surfaces virtuelles
sont mises en place pour obtenir notamment des données sur le flux incident, la puis-
sance totale reçue, etc. Le rayonnement solaire incident prend la forme d’une surface
généralement plane dont chaque point a une irradiance et une direction définies. Cette
configuration permet de n’utiliser que deux valeurs pour définir le vecteur spécifiant
la position du soleil. Les interactions entre le rayonnement incident et le système de
concentration sont modélisées à l’aide des méthodes de Monte Carlo et les techniques de
lancer de rayon sont utilisées pour suivre les trajets des photons à travers le système de
concentration, jusqu’à leur sortie ou leur absorption [39]. Parmi ses atouts, nous pouvons
citer :

• Fonctionnement sur les principaux systèmes d’exploitation : Windows, Mac Os,
Unix, Linux ;

• Une interface utilisateur 3-D très efficace ;
• La possibilité de calcul parallèle ;
• Une schéma de lancer de rayon rapide et précis, adaptable à de nombreuses géo-

métries disponibles ;

Toutefois, l’utilisation d’un algorithme de Monte Carlo analogue (voir section 2.2.2) le
rend moins performant en terme de convergence que des codes de calcul utilisant la
formulation intégrale de la méthode de Monte Carlo (MMC) [40].

Stral Il s’agit d’un nouveau logiciel de lancer de rayon codé en C++ et développé par
la DLR [41]. Son but est de réaliser des cartes de flux à partir de champs d’hélio-
stats. Il a pour particularité d’être très rapide en comparaison à des codes plus anciens
servant de référence à la DLR. Ces résultats ont été comparés avec ceux obtenus par
des simulations réalisées par Mirval (voir section 2.1.1). Sa conception est basée sur
le constat que les principaux codes de calcul utilisés pour la simulation et le design
de champs d’héliostats introduisent une distribution normale incluant un écart-type
spécifique pour simuler les erreurs surfaciques des miroirs constituants les héliostats.
Cette méthode donne des résultats globalement justes de par la superposition d’un grand
nombre de miroirs, mais une mesure effectuée sur un unique miroir ne représente pas
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une distribution aussi simple. Pour cela, Stral recherche un plus grand degré de précision
et s’appuie sur des données issues de la géométrie « exacte » de l’héliostat. Ainsi, l’hé-
liostat est discrétisé en 40 000 sous-surfaces par m2 et chacune de ces surfaces possède
sa propre normale. L’inconvénient principal de cette démarche réside dans la taille des
fichiers contenant les données géométriques des champs d’héliostats :

• Environ 3GB pour 2000 vecteurs normaux par m avec le champ d’héliostats de la
centrale PS10 ;

• Environ 320GB pour 2000 vecteurs normaux par m avec le champ d’héliostats de
la centrale Solar Tres.

Stral implémente une nouvelle méthode de lancer de rayon, lui permettant un gain
de temps important. En effet, contrairement à l’approche classique de Monte Carlo
programmée dans Mirval qui prévoit un tirage uniforme des rayons sur la surface projetée,
Stral génère une trame uniforme sur la surface réflective des héliostats. Un ensemble
de rayons, appartenant au cône solaire, est également généré à partir de la surface.
Par la suite, chaque sous-surface possèdant son propre vecteur normal, chaque rayon
réfléchi suit un vecteur réfléchi r⃗i issu de la combinaison d’un vecteur normal n⃗i et
d’un vecteur solaire s⃗i. Cette méthode, semblable à celle utilisée par de La Torre [31]
pour la simulation d’un champ d’héliostats sous l’Environnement de Développement en
Statistiques Radiatives (EDStaR), présente plusieurs intérêts :

• Adaptée à l’utilisation des données géométriques ;
• Pas de nécessité de pré-processing de ces données ;
• Pas de rayons tirés sur le sol et inutiles ;
• Répétition d’une même opération : groupement des rayons pour un temps de calcul

plus court.

Les différentes simulations réalisées avec Stral sont très proches des mesures expérimen-
tales. Les temps de calcul pour 58 320 000 rayons, en comparaison avec Mirval, plaident
largement en faveur de Stral, qui s’avère particulièrement performant dans ce domaine :

• Stral : 18s ;
• Mirval : 237s

La rapidité du logiciel est due à sa programmation. En effet, les routines de calcul font
appel à un langage de bas niveau (type assembleur) et sont optimisées pour proposer
des performances de haut niveau. De plus, la gestion de la mémoire est également opti-
misée puisqu’elle est libérée après chaque test d’impact. Il faut toutefois souligner que
cet aspect présente une difficulté majeure dans l’utilisation de Stral puisqu’il n’est pas
possible de conserver les données d’un impact et de s’en servir dans le cadre de réflexions
multiples. Ce logiciel, conçu pour fonctionner sous l’environnement Windows, est prévu
pour être modulaire et peut être interfacé avec des outils tels que MATLAB et LAB-
VIEW. Son interface graphique semble également être un point fort puisqu’elle permet de
fixer des paramètres de configuration, de visualiser les résultats et également d’observer
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le champ d’héliostats en 3D. Il faut également souligner que les données géométriques
des héliostats sont obtenues à partir d’une méthode de déflectométrie développée par
la DLR. Elle consiste en un algorithme qui traite des images représentant des bandes
horizontales et verticales, obtenues par une caméra digitale. Cet algorithme calcule les
vecteurs normaux à la surface avec une grande précision. Le développement de Stral se
poursuit actuellement et il doit être utilisé conjointement à un système de contrôle de
récepteur solaire basé sur LABVIEW dans le cadre d’expérimentations sur la plateforme
solaire d’Alméria.

Autres codes D’autres codes récents sont actuellement utilisés ou en développement.
Il nous semble intéressant de citer Campo qui a notamment été utilisé pour réaliser une
étude de performances de champs d’héliostats [42] ainsi que CRS4-2 [43] qui a été utilisé
pour simuler des installations de type « beam down » [44].

EDStaR Nous avons fait le choix de travailler avec l’environnement de développement
EDStaR. Il s’agit d’un environnement de développement récent dont le but est de propo-
ser un environnement privilégié pour les ingénieurs ou chercheurs [45]. Il est développé
par le groupe de recherche StaRWest animé par les laboratoires PROMES-LAPLACE-
RAPSODEE [46]. Cet environnement permet de modéliser des scènes très complexes
par leur géométrie et d’implémenter des algorithmes de Monte Carlo parallélisés avec
un suivi de rayon efficace. Ainsi, il ne s’agit pas de proposer un logiciel « clé en main »
mais plutôt d’offrir la possibilité à l’utilisateur de construire un code, à partir de briques
pré-existantes, en fonction des spécificités du problème étudié lorsque l’offre logiciel n’est
pas suffisante [31].
EDStaR s’appuie sur les outils de la communauté scientifique de recherche en synthèse
d’image, suite aux travaux de thèse de P. Perez [47] où cette approche a été mise en
œuvre pour des applications relatives à la combustion. En effet, la synthèse d’images
sur des géométries très complexes comprend nécessairement une approche des propriétés
optiques des interfaces et des calculs d’intersection pour le suivi de photons dans la
géométrie. Les outils, notamment de la synthèse d’image, étant arrivés à un niveau de
maturité prouvé dans le monde informatique, il est possible de les utiliser dans le cadre
du transfert radiatif. Le choix de l’équipe s’est porté sur le projet Physically Based
Rendering Techniques (PBRT) écrit en C++. Ce moteur de rendu très performant
possède de nombreux atouts :

• il est basé sur la modélisation des phénomènes optiques physiques ;
• son code est open source, bien écrit et bien commenté ;
• il dispose d’un bon compromis entre performances et possiblités d’extension ;
• Il est accompagné d’un très bon ouvrage pédagogique, bien adapté aux physiciens

[48].

Parmi les avantages de EDStaR nous pouvons citer la systémisation des calculs de sen-
sibilité liée à la formulation de l’équation de transfert radiatif sous sa forme intégrale
(voir chapitre 7) et l’utilisation des techniques de Monte Carlo. Néanmoins le point clé
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qui fait de EDStaR l’outil de simulation idéal pour ces travaux de thèse, réside dans le
découplage entre la gestion de la géométrie complexe et l’algorithme utilisé. Cette qualité
est importante dans le cadre d’un process d’optimisation durant lequel de nombreuses
géométries doivent être testées indépendamment de l’algorithme.

2.2. Modèle d’estimation de la puissance thermique
Nous faisons le choix de l’utilisation de l’environnement de développement EDStaR no-
tamment dans le but de tirer parti de l’utilisation de la MMC. De récents développements
de cette méthode appliquée aux procédés solaires présentés par J. de La Torre et al.
[34] constituent le point de départ des travaux de cette thèse. Ce manuscrit s’inscrit dans
la continuité de ces travaux. Ainsi, nous présenterons de nouveaux modèles à même de
répondre aux questions que peut se poser la communauté « solaire concentré ».

2.2.1. La méthode de Monte Carlo
Proposée initialement par Metropolis et Ulam en 1949 [49], la MMC a depuis lors fait
l’objet d’un grand nombre d’études dans des domaines d’application très variés. Ici, nous
nous focalisons sur le transfert radiatif qui se classe parmi les phénomènes de transport
linéaire (il n’y a pas d’interaction entre les photons). Certains ouvrages font référence
quant il s’agit d’aborder la MMC en transport linéaire parmi lesquels la monographie
de Hammersley et Handscomb [50] constitue l’ouvrage de référence au sein de la
communauté. Plus récemment, Dunn et Shultis [51] ont publié un ouvrage très complet
et didactique sur la MMC. La revue de Howell [52] est centrée plus spécifiquement sur
les applications d’ingénierie. Nous présentons dans les sections suivantes la MMC telle
que nous la pratiquons dans ce manuscrit, c’est à dire comme une méthode de calcul
intégral [53]. Un des avantages de cette méthode est la stricte correspondance entre
la formulation intégrale d’une équation de transport et l’algorithme de Monte Carlo
associé. Nous introduisons la méthode d’optimisation des algorithmes de Monte Carlo
la plus utilisée au cours de ces travaux : la formulation intégrale

Méthode de Monte Carlo et approche intégrale La MMC est tout d’abord une mé-
thode statistique de calcul intégral : elle sert à estimer une quantité définie par une ou
plusieurs intégrales. Afin d’en illustrer le principe général, nous allons étudier un cas
simple : l’évaluation de l’aire Sf d’une surface de forme quelconque comprise dans un
carré de coté c comme présentée sur la figure 2.1. Nous considérons la surface Sf comme
inconnue : elle n’est pas définie par une fonction.
Nous pouvons exprimer cette aire comme l’intégrale de l’ensemble des points r(x, y)
appartenants à la surface Sf selon l’équation (2.1).

(2.1)S =
∫

DRf

dr
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0
x

y

xmax

ymax

x1

y1 •
ŵ(x1, y1) = 1

x2

y2 •
ŵ(x2, y2) = 0

Fig. 2.1. : Calcul de l’aire d’une surface quelconque par la méthode de Monte Carlo

Nous pouvons réécrire l’équation (2.1) en introduisant un test qui prend la forme d’une
fonction de Heaviside. Ce test a pour but de déterminer si un point r(x, y) appartient
à la surface Sf . Nous pouvons alors intégrer sur tous les points de l’espace. La présence
du test permet de modifier le domaine de définition de l’intégrale. L’intégration se fait
indifféremment sur la surface Sf et sur le carré. Nous pouvons par contre déterminer si
un point appartient ou non à la surface.

(2.3a)S =
∫

DR
dr × H (r(x, y) ∈ Sf ) =

∫ xmax

0
dx ×

∫ ymax

0
dy × f(x, y)

avec la fonction f(x, y) :

(2.3b)f(x, y) = H (r(x, y) ∈ Sf ) =
{

0 si r /∈ Sf

1 si r ∈ Sf

Nous pouvons introduire des fonctions densité de probabilité uniformes normées pour les
variables aléatoires X et Y . Nous avons ainsi un tirage uniforme des deux coordonnées
d’un point r à l’intérieur du carré contenant Sf . L’introduction des fonctions densité de
probabilité est compensé par la division de l’expression par ces mêmes pdf.

(2.5a)Sf =
∫ xmax

0
pX(x) dx

∫ ymax

0
pY (y) dy × ŵSf (x, y)

avec le poids de Monte Carlo ŵSf (x, y) :

(2.5b)ŵSf (x, y) = f(x, y)
pX(x) × pY (y)

= H (r(x, y) ∈ Sf ) × xmax × ymax
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x

y

0

1

Fig. 2.2. : Fonction de Heaviside

En mathématiques, la fonction de Heavi-
side (également fonction échelon, fonction
marche d’escalier ou, par erreur de traduc-
tion de l’anglais step, fonction d’étape ou
encore indicatrice de R+, du nom de Oli-
ver Heaviside, est une fonction H disconti-
nue prenant la valeur 0 pour tous les réels
strictement négatifs et la valeur 1 partout
ailleurs.

(2.2)∀x ∈ R, H (x) =
{

0 si x < 0
1 si x ≥ 0

C’est une primitive de la distribution de Dirac. Dans le cadre de la MMC la fonction
de Heaviside est utilisée comme fonction de test : nous définissons l’appartenance d’un
point à une surface à l’aide de la notation H (r ∈ S). Cela signifie que si le point r
appartient à la surface S, l’affirmation r ∈ S est vrai et la fonction de Heaviside
H (r ∈ S) est égale à 1. Dans le cas contraire, elle est égale à 0

Remarque 1 : Fonction de Heaviside

et les pdf

(2.5c)pX(x) = 1
xmax

(2.5d)pY (y) = 1
ymax

Nous obtenons l’algorithme 2.1 permettant de calculer l’aire de la surface Sf à partir de
la formulation intégrale présentée dans l’équation (2.5a).

2.2.2. Estimation de la puissance thermique reçue par une centrale solaire

Nous allons maintenant nous intéresser à l’estimation de la puissance thermique reçue
par une centrale solaire. Pour cela, nous nous inspirons des travaux de J. de La Torre
[31] afin de construire un algorithme de Monte Carlo estimant cette grandeur pour une
centrale à tour puis pour une centrale de type « beam down ».
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2.2. Modèle d’estimation de la puissance thermique

On appelle fonction densité de probabilité d’une variable aléatoire continue X, toute
fonction f continue et positive sur un intervalle I telle que :

(2.4)pX(x) =
∫

I
f(x) dx = 1

Remarque 2 : Fonction densité de probabilité

Algorithme 2.1 : Estimation de l’aire de la surface Sf

(1) Une coordonnée x est uniformément échantillonnée entre 0 et xmax selon l’équation (2.5c)

(2) Une coordonnée y est uniformément échantillonnée entre 0 et ymax selon l’équation (2.5d)

(3) L’appartenance du point r(x, y) à la surface Sf est testée

(a) Si r(x, y) /∈ Sf le poids de Monte Carlo est égale à 0 et l’algorithme boucle à l’étape (4)

(b) Sinon le poids de Monte Carlo est égale à 1 et l’algorithme boucle à l’étape (4)

(4) L’algorithme boucle à l’étape (1) jusqu’à obtention du nombre de réalisations souhaité

Géométrie des héliostats Nous commençons par présenter la géométrie des héliostats
que nous allons utiliser tout au long de ce manuscrit. Nous avons utilisé deux géométries
distinctes. Une première géométrie simple où l’héliostat est représenté comme un miroir
plan et une seconde géométrie plus réaliste où l’héliostat est focalisant : il s’agit d’un
portion de sphère.

Modèle de réflexion Lors de l’estimation des performances d’une centrale solaire nous
sommes amener à prendre en compte une certain nombre d’erreurs :

Les erreurs de pointage Elles prennent en compte les erreurs du système mécanique
des héliostats assurant le suivi du soleil.

Les erreurs de courbure Elles concernent la forme des héliostats et du réflecteur secon-
daire dans le cas d’une installation de type « beam down ». Cette forme n’est pas
parfaite dans le cas d’une installation réelle. Les contraintes mécaniques peuvent
entraîner des déformations, des éclats peuvent apparaître avec le temps, etc.

Les erreurs de spécularité Elles représentent les erreurs de surface des surfaces réflec-
tives de la centrale. Des rayures, des poussières peuvent fausser la réflexion.

Lors de la phase de conception d’une centrale, la prise en compte de ces erreurs ne
peut se faire que de façon statistique1. C’est le rôle de la fonction densité de probabilité

1Lorsque la centrale est en fonctionnement, la prise en compte des erreurs réelles nécessite la connais-
sance des données géométriques des héliostats. Elles peuvent être obtenues entre autres à partir d’une
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(pdf) pNh1 présentée dans l’équation (2.7e). Elle définit la distribution statistique de la
normale effective nh a une surface par rapport à la normale idéale n. Cette distribution
se fait selon le modèle de micro-facettes de Blinn [48, 54] utilisé en synthèse d’image.
La définition d’une normale apparente autour de la normale théorique, permet ainsi de
prendre en compte les erreurs de réflexion générées par l’ensemble des erreurs optiques
(erreurs de pointage, erreurs de courbure, erreurs de spécularité). L’ensemble de ces
erreurs est compris dans un angle ε appelé erreur angulaire. Le lien entre cette erreur
angulaire et le paramètre b de la distribution de fait selon la équation (2.6).

(2.6)ε =
√

⟨θ2
h⟩ ≃

√
⟨sin2(θh)⟩ =

√√√√√√√√√√√1 −
2 + 1

b

1 + 1
b

×
1 −

(√
2

2

)4+ 1
b

1 −
(√

2
2

)2+ 1
b

avec θh l’angle entre la normale effective nh et la normale réelle n. Une valeur de ε est
choisie afin de respecter les caractéristiques supposées des héliostats. À partir de cette
valeur, le paramètre de blinn b est calculé selon l’équation (2.6).

Lors du suivi des rayons, les impacts entre ces rayons et les surfaces de la géomé-
trie étudiée sont appelés intersections. Nous les définissons grâce au rayon impactant
une surface. Chaque rayon est lui-même défini par son origine ri et sa direction ωi.
L’intersection ri+1 entre le rayon issu de ri dans la direction ωi et une surface est
notée ri+1(ri,ωi). Nous testons alors l’appartenance de cette intersection à une surface
donnée par un test de Heaviside. Il est également possible qu’une intersection n’existe
pas : nous avons alors un rayon n’impactant aucune surface.

Remarque 3 : Intersection d’un rayon et d’une surface

Algorithme appliqué à une centrale à tour Notre observable est la puissance thermique
Pth reçue au récepteur d’une installation solaire à un instant donné. Nous reprenons ici
la formulation utilisée par J. de La Torre [31] dans ces travaux de thèse :

(2.7a)Pth =
∫

DH+
pr1(r1) dr1

∫
DωS

pωS (ωS) dωS
∫

DNh

pNh1(nh1|ωS ; b) × ŵPth

avec le poids de Monte Carlo ŵPth :

(2.7b)ŵPth =


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×
{

H (r2 /∈ R) × 0
+H (r2 ∈ R) ×DNI × ρH × (ωS · nh1) × SH

}
méthode de déflectométrie [41]
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avec les fonctions densité de probabilité :

(2.7c)pR1(r1) = 1
SH

(2.7d)pΩS (ωS) = 1∫
DΩS

dωS
= 1

2π(1 − cos θS)

(2.7e)pNh1(nh1|ωS ; b) =
1 + 1

b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ωS · n1)

)) × (nh1 · n1)1+ 1
b

La figure 2.3 reprend de façon schématique la formulation intégrale présentée dans les
équations (2.7a) et (2.7b).
L’équation (2.7a) peut être traduite comme un algorithme de Monte Carlo. Cet algori-
thme évalue la puissance thermique Pth collectée au récepteur d’une centrale pour un
instant donné, déterminant la position du soleil. Nous obtenons alors l’algorithme 2.2
que nous appelons Monte Carlo Fixed Date.

Algorithme 2.2 : Estimation de Pth par Monte Carlo Fixed Date (MCFD)
pour une tour

(1) Une position r1 est uniformément échantillonnée sur l’ensemble de la surface réflective du champ
d’héliostats H+

(2) Une direction ωS est uniformément échantillonnée dans le cône solaire ΩS de rayon angulaire
θS

(3) Une normale effective nh1 est échantillonnée autour de la normale idéale n1

(4) La position r0 est définie comme la première intersection entre le rayon issu de r1 dans la
direction ωS et une surface

(a) Si r0 /∈ S il y a ombrage du point r1 et l’algorithme boucle à l’étape (5) avec le poids
ŵPth = 0

(i) Sinon la direction ω+ est obtenue par réflexion spéculaire de la direction ωS par rapport
à la normale effective nh1 et la position r2 est définie comme la première intersection
entre le rayon issu de r1 dans la direction ω+

(1) Si r2 n’appartient pas au récepteur R il y a blocage ou pertes par débordement et
l’algorithme boucle à l’étape (5) avec le poids ŵPth = 0 ;

(2) Sinon l’algorithme boucle à l’étape (5) avec le poids ŵPth = DNI×ρH×(ωS ·nh1)×SH

(5) L’algorithme boucle à l’étape (1) jusqu’à obtention du nombre de réalisations souhaité

Intérêt de la formulation intégrale des algorithmes de Monte Carlo Nous allons
nous servir de l’algorithme 2.2 pour illustrer l’intérêt de reformuler de manière intégrale
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r0 S

n1 nh1ωS

ω+

H+

r2

r1

R

Fig. 2.3. : Représentation schématique de l’algorithme Monte Carlo Fixed Date (Monte
Carlo Fixed Date (MCFD)) :

r1 Un point généré aléatoirement sur la surface réflective des héliostats SH selon la pdf présentée
dans l’équation (7.6c).

ωS Une direction générée aléatoirement à l’intérieur du cône solaire ΩS selon la pdf présentée dans
l’équation (7.6d).

nh1 Une normale effective générée selon le modèle de Blinn (la pdf présentée dans l’équation (7.6e))
autour de normale idéale n1 au point r1 selon la direction incidente ωS.

r0 La première intersection entre le rayon issu de r1 dans la direction ωS et une surface pouvant
être le soleil, un autre héliostat, la tour ou le récepteur.

ω+ La direction obtenue par la réflexion spéculaire de la direction ωS selon la normale apparente
nh1 au point r1.

r2 La première intersection entre le rayon issu de r1 dans la direction ω+ et une surface pouvant
être le récepteur, un autre héliostat ou la tour.
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le calcul de l’observable par la MMC. Cette méthode vise à améliorer la convergence
d’un algorithme de Monte Carlo par la modification de la formulation intégrale corres-
pondante. Il en résulte un nouvel algorithme de Monte Carlo présentant une variance
plus faible à nombre de réalisations égal. Ce procédé d’optimisation d’un algorithme
de Monte Carlo s’avère être le moyen le plus efficace lors de sa mise en œuvre. Afin
d’illustrer cette efficacité, nous comparons l’algorithme 2.2 à un autre algorithme visant
également à estimer la puissance reçue par le récepteur d’une centrale solaire à concen-
tration [40]. Il s’agit d’un algorithme analogue : il consiste à suivre des photons de leur
point de départ (le soleil) à leur point d’arrivée (le récepteur). L’algorithme analogue
débute d’une position sur le disque solaire et suit une direction incidente en direction du
champ d’héliostats. Une part non négligeable des réalisations de cet algorithme aboutit
à une intersection entre ce rayon incident et le sol : il n’y a pas d’intersection avec la
surface réflective et donc de nombreuses réalisations ont un poids nul. L’algorithme 2.2
a été obtenu initialement par reformulation de l’algorithme analogue. Ainsi, l’algorithme
débute par l’échantillonnage d’une position sur les héliostats et non d’une position sur
le soleil. De ce fait, les rayons suivis peuvent bien sur subir des phénomènes optiques de
type ombrage, blocage ou pertes par débordement, mais il n’y a pas de contribution nulle
due à des intersections avec le sol. Pour un nombre de réalisations égales, l’écart-type ob-
tenu avec l’algorithme 2.2 est bien inférieur à celui obtenu avec un algorithme analogue.
Ceci a été démontré par Roccia et al. [40] dans le cadre d’une comparaison entre des
logiciels (Soltrace, Tonatiuh) implémentant un algorithme analogue et le logiciel Solfast
tirant parti de la formulation intégrale des algorithmes de Monte Carlo.

Phénomènes optiques Lors de l’estimation de la puissance thermique telle que nous
venons de la présenter, certains phénomènes optiques peuvent apparaître et conduisent
à une puissance thermique nulle.

Ombrage une surface se trouve entre le soleil et un héliostat
Blocage : une surface bloque le rayon réfléchi par l’héliostat avant son impact avec la

cible
Pertes par débordement : les rayons réfléchis venant des héliostats franchissent le plan

contenant la cible sans impacter cette dernière

Il est possible, à partir de l’algorithme 2.2 d’évaluer dans le même temps la fréquence
d’apparition de ces phénomènes. Ils fournissent des informations importantes quand au
comportement de l’installation. La différence par rapport aux équations présentées précé-
demment réside dans l’expression des poids de Monte Carlo associés aux équations (2.7a)
et (2.7b). Nous allons expliciter les formulations intégrales obtenus dans le cas d’une cen-
trale à tour. Dans le cas d’une installation de type « beam down », les phénomènes de
blocage et de pertes par débordement peuvent se produire après la réflexion sur les hélio-
stats et après la réflexion sur le réflecteur secondaire mais le principe général de chaque
phénomène reste le même et nous considérons comme trivial l’extension au cas « beam
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Fig. 2.4. : Représentation schématique des phénomènes de pertes optiques : Il peut s’agir
d’ombrage O si une surface quelconque se trouve entre le point r1 et le soleil S, de blocage
B si une surface quelconque se trouve entre le point r1 et le récepteur R ou de pertes par
débordement P si l’intersection r2 n’existe pas.

down ».
(2.8a)ŵO = H (r0 /∈ S)
(2.8b)ŵB = H (r0 ∈ S) × H (r2 /∈ R) × H (r2∃)
(2.8c)ŵP = H (r0 ∈ S) × H (r2 /∈ R) × H (r2∄)
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Connaître la position du soleil est primordiale
lorsque l’on s’intéresse aux centrales solaires à
concentration. En effet, les éléments réflecteurs, les
héliostats dans le cas des installations à récepteur
central, suivent la course du soleil afin de réfléchir
le rayonnement solaire sur le récepteur. Des algo-
rithmes très complets permettent de connaître la
position précise du soleil [55].

Ouest

Sud

Zénith

ϕS

υS

Nous faisons le choix de définir la position du soleil par rapport à la terre selon deux
angles :

υS L’élévation varie de 0° pour un soleil à l’horizon à 90° pour un soleil au zénith.
ϕS L’azimut est, dans le cas d’une centrale située dans l’hémisphère nord, négatif le

matin (−90° lorsque le soleil est à l’est), nul à midi solaire (0° lorsque le soleil
est au sud) et positif l’après-midi (90° lorsque le soleil est à l’ouest).

Ces coordonnées varient suivant le jour γ et l’heure η de l’année. Des variables sup-
plémentaires nous permettent de positionner de façon précise le soleil suivant les
équations (2.9a) à (2.9d).

Φ La latitude du lieu de la centrale
δS La déclinaison du soleil varie au cours de l’année de −23,45° le 21 décembre à

23,45° le 21 juin. Cet angle définit la position du soleil sur l’écliptique et l’équateur
céleste.

Ω L’angle horaire évolue de 15° par heure. Il vaut −45° à 9 h du matin, 0° à midi
solaire et 90° à 18 h

(2.9a)cos ϕS = sin δ × cos Φ − cos h × cos δ × sin Φ
cos υS

(2.9b)sin υS = cos Ω × cos δS × cos Φ + sin δS × sin Φ

(2.9c)δS = 23,45 × sin
(

360 × 284 + γ

365

)
(2.9d)Ω = (η − 12) × 15

Pour une localisation donnée et une période d’étude, chaque position du soleil corres-
pond à une valeur d’éclairement énergétique de rayonnement solaire (Direct Normal
Irradiance) (DNI) suivant un fichier de données météo associé (extension .tmy).

Remarque 4 : Position du soleil
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2.2.3. Modèle pour l’implantation de champs d’héliostats
La conception d’une centrale solaire à récepteur central comprend la génération d’un
champ d’héliostats. Le champ d’héliostats est une composante essentielle de toute cen-
trale à énergie solaire concentrée (Concentrated Solar Power) (CSP). Il représente en
règle générale environ 50% du coût global d’une centrale solaire à lui seul [56]. De
nombreux paramètres influencent les performances d’un tel champ :

• La latitude de la centrale
• La météorologie
• La topographie
• La nature du terrain

De ces contraintes résultent un grand nombre de possibilités quant à la conception du
champ. Tout d’abord, les héliostats peuvent prendre des formes diverses. Ils peuvent
être carrés, rectangulaires, ronds, etc. Ils peuvent également être de tailles très variées.
Ajoutons à ceci qu’un champ d’héliostats peut être circulaire, symétrique orienté au
nord, asymétrique et avoir une implantation en quinconce, en épis de maïs, en spirale
phyllotaxique, etc. Nous pouvons donc affirmer que le grand nombre de paramètres
permettant de concevoir un champ d’héliostats rend l’exercice difficile. Le nombre
de méthodes proposées dans la littérature en est la preuve. De fait, la conception optimale
d’un champ d’héliostats fait l’objet de recherches depuis les premiers pas des centrales
solaires à tour. Les travaux fondateurs de Lipps et Vant-Hull [57] ont introduit la
méthode dite « Cell-Wise » qui définit une implantation radiale en quinconce des hélio-
stats dans le champ. C’est cette implantation qui s’est imposée lors de la construction
des premières centrales. Toutefois, l’identification des phénomènes de blocage comme
responsables des pertes optiques les plus importantes [58] a conduit à limiter autant que
possible ce phénomène. Ceci a permis l’apparition d’une méthode graphique visant à
limiter au maximum les phénomènes de blocage. Cette méthode a été formulée mathé-
matiquement puis implémentée dans un code de calcul appelé MUEEN [59].
Parmi les paramètres les plus influents, nous retrouvons entre autres la situation géo-
graphique, l’ensoleillement du site, la hauteur de la tour, l’ombrage et le blocage entre
héliostats, l’atténuation atmosphérique, l’effet cosinus. Il convient également de citer les
défauts surfaciques, les défauts d’alignement et de poursuite du soleil (« tracking ») des
héliostats comme des sources d’erreurs non négligeables [60]. Dans le cas d’une centrale
de type « beam down », les champs d’héliostats circulaires auraient des performances
supérieures aux autres angles d’ouverture [61].

2.2.3.1. Des champs optimisés

Lors du développement des centrales de type « beam down », des recherches ont été
mises en œuvre afin de proposer des champs d’héliostats efficaces [60]. Ainsi, les cartes
de flux pour chaque héliostat du champ de la centrale TokyoTech ont été répertoriées et
comparées en terme d’énergie totale reçue par le récepteur et de distribution de flux, celle-
ci incluant des paramètres de centrage et de concentration. Ceci a permis l’identification
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d’ombrages et d’erreurs de concentration sur ce champ d’héliostats. Malgré tout, ces
observations ne revêtent pas un caractère général applicable aux centrales de type « beam
down » dans leur ensemble. Des recherches plus globales ont également été menées dans
le but d’aider à la conception de champs d’héliostats optimaux en prenant en compte un
bilan annuel global [62]. La dépendance à la météorologie des performances d’une centrale
à concentration en général et d’un champ d’héliostat en particulier a conduit Sánchez
et Romero à développer un nouvel outil : la carte surfacique de l’énergie normalisée
annuellement. Programmé dans MATLAB, ce code a notamment été comparé à un
code robuste (Delsol). La méthodologie a été validée et l’objectif est de l’appliquer à
des exemples plus complexes en terme de complexité du terrain et de forme de champ.
La génération d’une implantation débute par le positionnement de la première rangée du
champ. Les rangées suivantes sont placées dans le but de maximiser l’énergie annuelle
normalisée. Toutefois, afin de prendre en compte les contraintes mécaniques, une rangée
vide est insérée entre deux rangées consécutives.
De nouveaux modèles d’implantations ont récemment vu le jour, suite aux travaux de
Noone, Torrilhon et Mitsos [63]. Le principe d’implantation reprend une structure
géométrique présente dans la nature et régissant notamment l’implantation des graines
dans une fleur de tournesol. La nature faisant bien les choses, cette disposition permet
à chaque graine de bénéficier d’un maximum d’ensoleillement. Cette méthode améliore
légèrement la compacité du champ d’héliostats alors que les performances optiques glo-
bales sont conservées. Cette technique est cependant moins souple que l’implantation
radiale étagée que nous allons maintenant détailler.

2.2.3.2. L’agencement radial étagé

Parmi les différentes méthodes permettant de générer un champ d’héliostats, nous nous
sommes concentrés sur un des agencements les plus connus et répandus. Il s’agit de
l’agencement radial étagé. Il a pour principe de limiter au maximum les phénomènes
de blocage en proposant une construction géométrique du champ. Pour cela, nous nous
appuyons sur le code MUEEN [59]. Toutefois, l’objectif de blocage nul semble bien trop
restrictif et nous apportons ici certains assouplissements à la formulation existante. Les
héliostats sont divisés en groupes, eux-mêmes répartis en anneaux concentriques numé-
rotés en partant du pied de la tour. Les anneaux impairs sont les anneaux « originaux »
alors que les anneaux paires sont les anneaux « étagés ». Cette méthode prend en compte
la pente β du terrain comme présenté sur la figure 2.5 lors de la génération du champ.
Dans ce processus, un héliostat est représenté par une sphère englobante comprenant
toutes les positions que peut prendre l’héliostat lors du suivi du soleil. Son diamètre
caractéristique DH est présenté dans l’équation (2.10) : il est égal à deux fois la plus
grande dimension de l’héliostat. Le positionnement des héliostats dans un groupe j est
défini par l’angle azimutal aHj entre deux héliostats et le rayon RHi,j de chaque anneau
i.

(2.10)DH = 2 × max(lH, LH)

L’ajout de chaque anneau se fait par le calcul du rayon correspondant. Il faut ici distin-
guer le rayon du premier anneau original du premier groupe du champ (soit le premier
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anneau du champ) des premiers anneaux des groupes suivants. En effet, le rayon du
premier anneau original du premier groupe RH1,1 constitue le point de départ de la gé-
nération du champ. Il est déterminé en fonction de la hauteur de la tour HT . Pour cela,
plusieurs propositions sont présentées dans la littérature :

• RH1,1 = HT [64]
• RH1,1 = 0,75 × HT [58]

Nous introduisons ici un premier facteur d’optimisation αH1 ∈ [0,25; 1] donnant le rayon
RH1,1 tel que RH1,1 = αH1 × HT .
Le cas particulier du premier anneau du champ fixé, les calculs suivants s’appliquent
de manière itérative à tous les groupes d’héliostats. L’angle azimutal aHj du groupe
est déterminé selon l’équation (2.11), une fois le rayon RH1,j connu. Cet angle est tel
que la distance entre deux héliostats consécutifs dans la première rangée d’un groupe
est approximativement égal à DH. Il définit également le nombre d’héliostats nH qui
constitueront les anneaux originaux du groupe en fonction de l’ouverture angulaire Ψ du
champ comme présenté sur l’équation (2.12). Le rayon du premier anneau étagé RH2,j est
obtenu grâce à l’équation (2.13). La distance entre les deux premiers anneaux de chaque
groupe est la plus faible possible comme présenté sur la figure 2.6. Cette distance est
égale à la hauteur du triangle équilatéral de coté DH. Cet agencement garantit également
une absence d’interférence entre les structures lors du suivi du soleil. Par la suite, pour
i > 2, le rayon RHi,j de chaque nouvel anneau est obtenu en appliquant le principe
géométrique de non blocage. Comme présenté sur la figure 2.5, le rayon minimal RHij

est obtenu si le segment [a, b] est tangent aux cercles Ci−1 et Ci. Ce rayon est obtenu
par les calculs d’intersection présentés dans les équations (2.15b) à (2.15g).

(2.11)aH1 = DH
RH1,1

(2.12)nHj = Ψ
aHj

+ 1

(2.13)RH2,j = RH1,j × cos aHj

2
+

√
D2

H −
(

RH1,j × sin aHj

2

)2

(2.14)RHi,j = −B −
√

B2 − 4AC

2A
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(2.15a)A = −
[
(2zRyr + tan β) tan β + z2

Ry2
r )
]

(2.15b)B = 2(zR − zi−1)(zRyr + tan β)

(2.15c)C = L2
H
4

(1 + z2
Ry2

r ) − (zR − zi−1)2

(2.15d)yr = −b +
√

b2 − 4ac

2a

(2.15e)a = z2
R

(
L2

H
4

− R2
Hi−1,j

)
(2.15f)b = 2RHi−1,jzR(zR − zi−1)

(2.15g)c = L2
H
4

− (zi−1 − zR)2

L’ajout de nouveaux anneaux dans un groupe j se fait avec un espacement azimutal
constant. Il en résulte un espacement de plus en plus important des héliostats dans ce
groupe. La création d’un nouveau groupe j + 1 va permettre de définir un nouvel espa-
cement azimutal aHj+1 et ainsi de densifier le champ tout en respectant la contrainte
de blocage minimum. Un critère de densité δi,j est introduit pour créer ce nouveau
groupe de manière opportune. Cette densité de surface réflective est calculée selon l’équa-
tion (2.16). Après chaque calcul de rayon RHi,j , un rayon R̃Hi−1,j est calculé grâce aux
équations (2.15b) à (2.15g) dans lesquels RHi−1,j est remplacé par RHi,j . R̃Hi−1,j est
considéré comme le rayon du premier anneau d’un nouveau groupe et permet le calcul
d’une nouvelle densité δ̃1,j+1. Deux cas sont alors possibles :

δi,j > δ̃1,j+1 un anneau de rayon RHi,j est ajouté au groupe en cours ;
δi,j ≤ δ̃1,j+1 un nouveau groupe est créé et le premier anneau a pour rayon R̃Hi−1,j ;

(2.16)δHi,j = Surface de miroir de la rangée
Surface au sol de la rangée
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Ci−1
Ci

a

bRHi−1,j
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Fig. 2.5. : Génération d’un champ d’héliostats selon le principe géométrique de blocage
nul

DH

Angle azimutal

Espacement radial
Ψ

Fig. 2.6. : Schéma d’implantation du champ d’héliostats selon l’agencement radial étagé
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2.3. Modélisation d’une centrale semblable à PS10
Pour des besoins de comparaison et de validation, l’algorithme 2.2 est appliqué à une
centrale solaire à tour reprenant les caractéristiques d’une centrale existante. La centrale
PS10, une centrale de 11MW a fait l’objet de plusieurs études et de nombreuses données
sont disponibles dans la littérature [65, 63, 66, 67, 5, 68, 69]. La centrale solaire PS10 est
la première centrale solaire thermique à tour commerciale en Europe. Elle se situe près
de Séville, en Espagne. Son champ d’héliostats est constitué de 624 héliostats implantés
suivant un agencement radial étagé [59]. Chaque héliostat a une surface d’environ 121m2.
Les rayons du soleil sont réfléchis vers un récepteur placé en haut d’une tour de 115m
de haut. Ce récepteur alimente une turbine à vapeur. Cette centrale est dimensionnée
pour produire environ 23GWhe et 95GWhth par an [70]. Notre cas test se base donc
sur cette centrale. Les champs d’héliostats ne sont pas strictement similaires :

• Nous ne tenons pas compte de la topographie du terrain,
• L’agencement du cas test n’est pas rigoureusement identique au champ réel
• Les héliostats simulés présentent des dimensions semblables aux héliostats réels

mais sont constitués d’une facette sphérique unique
• La courbure des héliostats est fixée pour chaque groupe annulaire obtenu lors de

la génération de l’agencement radial étagé
• Toutefois, les surfaces réflectives totales des deux cas sont identiques

Nous effectuons deux simulations avec l’algorithme 2.2. Elles concernent la puissance
thermique reçue au récepteur de la centrale pour deux dates : le 21 mars à midi solaire
et le jour de plus fort DNI. Nous avons ainsi deux cartes de flux correspondantes à ces
deux dates. La carte de flux obtenue le 21 mars à midi solaire est présenté sur la figure 2.7
alors que la carte de densité de flux maximale reçue par le récepteur est présenté sur la
figure 2.8. Ces cartes ont été obtenues avec une réflectivité des miroirs ρH égale à 0,88
et une erreur optique angulaire ε de 5mrad.

Tab. 2.2. : Temps de calcul et nombre de réalisations de l’algorithme Monte Carlo Fixed
Date (MCFD) à 0,1% d’erreur

Réalisations Temps de calcul Puissance thermique
en s en MW

947 1,3 66,7
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Fig. 2.7. : Carte de densité de flux au récepteur de la centrale PS10 le 21 Mars à midi
solaire avec un DNI de 1000W · m−2 en kW · m−2
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Taille du récepteur (m)

−6

−4

−2

0

2

4

6

Ta
ill

e
du

ré
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Fig. 2.8. : Carte de densité de flux maximale au récepteur de la centrale PS10 pour le
plus fort DNI (940W · m−2) en MW · m−2
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2.4. Conclusion
Nous avons passé en revue lors de ce chapitre les outils de modélisation existant dans le
communauté solaire à concentration dont l’environnement de développement EDStaR,
utilisé au cours de cette thèse. Nous avons ensuite présenté un modèle de calcul de la
puissance thermique reçue à une date donnée au récepteur d’une centrale à tour. Après
une courte introduction à la méthode de Monte Carlo, nous avons introduit un algori-
thme de Monte Carlo estimant le modèle de la puissance présenté auparavant. Après
avoir réalisé un état de l’art des champs d’héliostats, nous avons décrit un algorithme
d’implantation basé sur l’agencement radial étagé. Pour finir, ces algorithmes nous ont
servi à estimer les performances d’une centrale semblable à la centrale PS10.
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Chapitre

3
Estimation de l’énergie ther-
mique collectée annuellement

Résumé

Lors de la phase de conception d’une centrale solaire à concentration, l’estimation, obtenue
par simulation numérique, des performances annuelles de la future installation est cruciale. De
ce fait, plusieurs groupes de chercheurs ont, depuis les vingt dernières années, centré leurs
efforts sur le développement de codes de calcul sophistiqués à-même de répondre à cette
interrogation. Toutefois, le plus souvent des approximations sont faites dans le but de rendre
le temps de calcul acceptable. Une attention particulière est portée à ces approximations afin
de s’assurer qu’elles n’impactent pas de façon trop importante la qualité des résultats obtenus.
Dans ce chapitre nous proposons une approche alternative aux méthodes existantes grâce à
l’utilisation de la méthode de Monte Carlo (MMC). L’effort d’approximation est remplacé par
une travail de reformulation intégrale de l’équation définissant l’énergie thermique collectée
annuellement. Ceci nous conduit à un algorithme de Monte Carlo estimant de façon précise,
grâce à la connaissance des barres d’erreur, de cette énergie. Les besoins informatiques
nécessaires à l’utilisation de cet algorithme sont identiques à ceux nécessaires à l’utilisation de
l’algorithme 2.2 estimant la puissance thermique obtenue à un instant précis. Nous présentons
dans ce chapitre les développements théoriques nécessaires à l’écriture de cet algorithme qui
est ensuite utilisé afin de simuler une installation comparable à la centrale PS10.
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3.1. De la puissance à l’énergie

Une pratique couramment employée dans la communauté des chercheurs travaillant sur
les centrales à énergie solaire concentrée consiste à concevoir une installation en prenant
pour référence le jour de l’équinoxe de printemps, le 21 mars à midi solaire. Le but de
la conception est alors d’obtenir la meilleure efficacité en termes de puissance solaire
collectée. En effet, c’est à cette date que le soleil occupe le point central de l’ensemble
de ses trajectoires annuelles dans le ciel. L’installation ainsi dimensionnée est optimale
pour une date précise. Qu’en est-il des autres jours de l’année ? Nous allons ici chercher à
étendre le temps pris en compte en phase de conception, non seulement à une année en-
tière mais également à la durée d’exploitation de la centrale. Pour cela, nous raisonnons
non plus en puissance mais en énergie. Nous pouvons alors estimer le productible d’une
centrale solaire. D’un point de vue économique, cela permet une évaluation plus précise
de la rentabilité de la centrale. Dans la littérature, plusieurs codes permettent d’esti-
mer les performances annuelles de centrales solaires de grande taille tels que HFLCAL
[71], System Advisor Model [72], UHC, DELSOL, etc. Ces codes sont performants en
termes de temps de calcul mais ils font appel à certaines approximations. Par exemple,
HFLCAL utilise une convolution simplifiée du flux reçu par chaque héliostat [35]. Une
autre étude présente une méthodologie basée sur la réduction du nombre d’héliostats
pris en compte en choisissant des héliostats « représentatifs » du champ [62]. Il en ré-
sulte une diminution du temps de calcul pour la génération d’un champ d’héliostats.
Le travail présenté dans [73] permet une évaluation rapide de l’efficacité annuelle d’un
champ d’héliostats où les effets d’ombrage et de blocage sont pris en compte de façon
très simplifiée. Nous souhaitons ici tenir compte de façon précise de toutes les erreurs
pouvant exister dans une centrale solaire à récepteur central, que ce soit des défauts de
surface microscopiques sur les miroirs ou des erreurs de pointage et de suivi des hélio-
stats. Pourquoi avons nous besoin d’une telle précision ? Il est bien évident que si nous
voulons atteindre des températures maximales au sein du récepteur pour maximiser les
rendements thermodynamiques, une grande précision de la tâche solaire obtenue devient
nécessaire. De plus, la détermination de points chauds sur la paroi réceptrice est une in-
formation primordiale pour le maintien dans le temps des performances de l’installation.
Pour répondre à cette question de précision, les récents développements des méthodes
de Monte Carlo appliquées aux installations solaires [34] nous permettent d’obtenir des
codes de calcul précis grâce à la connaissance des barres d’erreur sur les grandeurs es-
timées. Nous cherchons donc à estimer par ces méthodes l’énergie thermique annuelle
moyenne produite par une centrale solaire au cours son exploitation. Ceci passe par la
connaissance de lois dépendantes du temps caractérisant le vieillissement de l’ensemble
des composants d’une centrale solaire à récepteur central. Il peut s’agir de l’évolution
de la réflectivité et de l’état de surface des miroirs, de la fiabilité des moteurs assurant
le suivi du soleil, du comportement du récepteur, etc.
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3.2. Intégration temporelle

Nous avons introduit à la section 2.1.2 l’algorithme 2.2 Monte Carlo Fixed Date (MCFD)
permettant l’estimation de la puissance thermique reçue à l’entrée d’un récepteur solaire.
Nous y avons vu que cet algorithme est la stricte correspondance de la formulation inté-
grale présentée dans l’équation (2.7a). La modification de l’un entraîne une modification
de l’autre et vice et versa. Nous cherchons ici à estimer une nouvelle grandeur qui est
l’énergie thermique reçue annuellement par le récepteur pendant la durée de vie de la
centrale. Deux solutions s’offrent à nous pour procéder à ce calcul. Premièrement, il est
possible de discrétiser le temps de fonctionnement de la centrale et de faire une estima-
tion de la puissance thermique Pth à chaque pas. Cette méthode présente l’inconvénient
de demander un grand nombre de simulations et donc un temps de calcul considérable.
La deuxième solution consiste à ajouter une intégrale sur le temps à l’équation (2.7a).
Cette proposition permet de calculer directement la grandeur physique d’intérêt sans
passer par des calculs intermédiaires. Pour cela, nous introduisons une nouvelle fonction
densité de probabilité présentée dans l’équation (3.1).
L’intégrale sur le temps est séparée en deux sommes d’entiers représentant les années
(ζ) et les jours (γ) et une intégrale représentant les heures (η) de la journée (voir l’équa-
tion (3.1)). Chaque instant, obtenu par tirage aléatoire, correspond à une position du
soleil dans le ciel et un éclairement énergétique de rayonnement solaire (Direct Normal
Irradiance) (DNI), calculé par interpolation linéaire à partir d’un fichier de données mé-
téorologiques (fichier .tmy) comme présenté à la section 2.2. NA représente le nombre
d’années de fonctionnement de la centrale. Les trois variables aléatoires Z, Γ et H sont
regroupées dans le vecteur τ. Nous introduisons une valeur limite de DNI, notée DNIl,
en dessous duquel la centrale ne fonctionne pas car la puissance solaire incidente est
insuffisante.

(3.1)
∫

Dτ
pτ(t) dt =

NA∑
ζ=1

pZ(ζ) dζ
365∑
γ=1

pΓ(γ) dγ

∫
H

pH(η) dη

avec Z ∈ {0, NA}, Γ = {1, 365}, H = [0, 24].
En ajoutant cette intégrale sur le temps, nous obtenons la formulation intégrale présen-
tée à l’équation (3.2a). L’algorithme 3.1 MCST est la stricte correspondance de cette
formulation.

Eth =
∫

Dτ
pτ(t) dt︸ ︷︷ ︸

équation (3.1)

∫
DH+

pr1(r1) dr
∫

DΩS

pΩS
(ωs) dω

∫
Dnh1

pnh1(nh1|ωS ; p) dnh1 × ŵEth

︸ ︷︷ ︸
équation (2.7a)

(3.2a)

avec ŵEth le poids de Monte Carlo associé :
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(3.2b)

ŵEth =

H (DNI(t) < DNIl) × 0

+H (DNI(t) > DNIl) ×



H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H (r2 /∈ R) × 0
+H (r2 ∈ R)
×DNI(t) × ρH

×(ωS(t) · nh1) × SH






et les fonctions densité de probabilité :

(3.2c)pr1 = 1
SH

(3.2d)pΩS = 1∫
DΩS

dωS
= 1

2π(1 − cos θS)

(3.2e)pnh1 =
1 + 1

b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ωS · n1)

)) × (nh1 · n1)1+ 1
b

L’algorithme 3.1 est implémenté dans l’Environnement de Développement en Statistiques
Radiatives (EDStaR) et la barre d’erreur de chaque algorithme (MCFD et MCST) en
fonction du nombre de réalisations est comparée à la section suivante.

3.2.1. Une centrale solaire existante comme cas test
Pour des besoins de comparaison et de validation, les différents algorithmes présentés ici
sont appliqués à une centrale solaire à concentration existante. Comme à la section 2.3
nous utilisons la centrale PS10 comme cas d’étude. L’énergie thermique collectée annuel-
lement estimée à l’aide de l’algorithme MCST est de 97GWhth. Ceci concorde bien avec
les données disponibles dans la littérature : le calcul effectué avec EDStaR nous a fourni
un résultat comparables aux prévisions en termes de quantité d’énergie collectée [74].

3.2.2. Précision et temps de calcul de l’algorithme Monte Carlo Solar
Tracker (MCST)

Pour illustrer les implications de l’intégration temporelle en termes de précision, la fi-
gure 3.2 présente les écarts types relatifs obtenus pour les algorithmes MCFD et MCST.
Il faut bien garder à l’esprit que cette comparaison se fait entre deux algorithmes n’éva-
luant pas la même quantité : nous cherchons à illustrer ce qu’implique l’intégration
temporelle en termes de convergence. Nous remarquons, comme attendu, la plus
grande précision de l’algorithme MCFD qui concerne une date fixe : le DNI est le même
pour chaque réalisation, les seuls effets créant de la variance sont dans ce cas dus à l’effet
cosinus. Cet effet cosinus varie avec le point échantillonné sur la surface réflective et la
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r0(t1)
r0(t2)

S
S

nh1(t1)
nh1(t2)

ωS(t1) ωS(t2)

ω+(t1)
ω+(t2)

H(t1) H(t2)

r2(t1)

r2(t2)

r1(t1) r1(t2)

R

T

Fig. 3.1. : Représentation schématique de l’algorithme Monte Carlo Sun Tracking
(MCST) avec, pour chaque temps (t) échantillonné :

r1 Un point généré aléatoirement sur la surface réflective des héliostats SH selon la fonction
densité de probabilité (pdf) présentée dans l’équation (7.6c).

ωS Une direction générée aléatoirement à l’intérieur du cône solaire ΩS selon la pdf présentée dans
l’équation (7.6d).

nh1 Une normale effective générée selon le modèle de Blinn (la pdf présentée dans l’équation (7.6e))
autour de normale idéale n1 au point r1 selon la direction incidente ωS.

r0 La première intersection entre le rayon issu de r1 dans la direction ωS et une surface pouvant
être le soleil, un autre héliostat, la tour ou le récepteur.

ω+ La direction obtenue par la réflexion spéculaire de la direction ωS selon la normale apparente
nh1 au point r1.

r2 La première intersection entre le rayon issu de r1 dans la direction ω+ et une surface pouvant
être le récepteur, un autre héliostat ou la tour.
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Lors du calcul de l’énergie thermique Eth il est possible de calculer à partir du même
algorithme des grandeurs additionnelles intéressantes lors de la conception d’une cen-
trale solaire.
Le nombre annuel moyen d’heures de fonctionnement ⟨Nhaf ⟩ : En bénéficiant
des tirages aléatoires utilisés pour le calcul de l’énergie thermique, le calcul d’un nou-
veau poids ŵNhaf nous permet d’estimer cette nouvelle grandeur. L’augmentation du
temps de calcul engendré par cet ajout est imperceptible.

(3.3a)
⟨Nhaf ⟩ =

∫
Dτ

pτ(t) dt ×
∫

DH+
pr1(r1) dr ×

∫
DΩS

pΩS
(ωs) dω

×
∫

Dnh1

pnh1(nh1|ωS ; p) dnh1 × ŵ⟨Nhaf ⟩

avec ŵ⟨Nhaf ⟩ le poids de Monte Carlo associé à cette grandeur :

(3.3b)ŵ⟨Pth⟩ =


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×
{

H (r2 /∈ R) × 0
+H (r2 ∈ R) × 1

}
Ce calcul nous permet d’estimer la puissance thermique moyenne reçue au récepteur
grâce à l’estimation de l’énergie thermique annuelle Eth.
La puissance thermique maximale Pth max : Lors de l’initialisation de l’algo-
rithme, le fichier de données météorologiques est chargé en mémoire. Il est possible
d’identifier l’instant de plus fort DNI à cette étape puis d’effectuer un calcul de puis-
sance avec l’algorithme 2.2 avec ces données. On obtient alors la puissance thermique
maximale reçue par le récepteur. Ceci donne des indications quant aux conditions
extrêmes auxquelles le récepteur sera soumis.

Remarque 1 : Calcul de grandeurs additionelles

direction ωS à l’intérieur du cône solaire. Comme présenté dans le tableau 3.2, l’algo-
rithme MCST nécessite environ 186 fois plus de réalisation pour obtenir une précision
comparable à l’algorithme MCFD. Néanmoins, pour 50 000 réalisations de l’algorithme,
le coefficient de variation Cv obtenu selon l’équation (3.4) pour l’algorithme MCST est
d’environ 0,3%, ce qui constitue une précision suffisante. La figure 3.2 illustre cette
différence en termes de coefficient de variation en fonction du nombre de réalisations.

(3.4)Cv = σ

µ
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3.2. Intégration temporelle

Algorithme 3.1 : Estimation de l’énergie thermique Eth par Monte Carlo
Fixed Date (MCST)

(1) Un instant t est uniformément échantillonné sur le temps de vie de la centrale solaire

(2) Une position r1 est uniformément échantillonnée sur l’ensemble de la surface réflective du champ
d’héliostats H+

(3) Une direction ωS est uniformément échantillonnée dans le cône solaire ΩS de rayon angulaire
θS

(4) Une normale effective nh est échantillonnée autour de la normale idéale n1 et le poids de Monte
Carlo ŵEth est estimé

(a) Si DNI(t) < DNIl alors la centrale ne fonctionne pas et l’algorithme boucle à l’étape (5)
avec le poids ŵEth = 0

(b) Sinon la position r0 est définie comme la première intersection entre le rayon issu de r1 dans
la direction ωS et une surface

(i) Si r0 /∈ S, l’algorithme boucle à l’étape (5) avec le poids ŵEth = 0

(ii) Sinon la direction ω+ est obtenue par réflexion spéculaire de la direction ωS par rapport
à la normale effective nh1 et la position r2 est définie comme la première intersection
entre le rayon issu de r1 dans la direction ω+

(1) Si r2 n’appartient pas au récepteur R l’algorithme boucle à l’étape (5) avec le poids
ŵEth = 0 ;

(2) Sinon l’algorithme boucle à l’étape (5) avec le poids ŵEth = DNI × (ωS · nh) × SH

(5) L’algorithme boucle à l’étape (1) jusqu’à obtention du nombre de réalisations souhaité
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Tab. 3.2. : Comparaison du temps de calcul pour les algorithmes Monte Carlo Fixed
Date et Monte Carlo Sun Tracker à 0,1% d’erreur

MCFD MCST
Temps de calcul en s 1,3 203
Nombre de réalisations 2407 448 400

Chaque position du soleil correspond à une valeur de DNI obtenue à partir d’informa-
tions météorologiques. Nous avons besoin d’une valeur de DNI à chaque instant alors
que nous utilisons ici des données horaires stockées dans des bases de données. Nous
interpolons linéairement ces données pour obtenir un DNI à l’instant souhaité [75].

Remarque 2 : Obtention d’un DNI pour chaque instant

3.2.2.1. Un calcul précis de l’énergie moyenne collectée annuellement par une
centrale solaire

Nous venons de voir que l’estimation de l’énergie collectée annuellement par une centrale
à tour durant sa période d’exploitation est tout à fait réalisable grâce à la formulation in-
tégrale des grandeurs à calculées. Par rapport au temps de calcul nécessaire pour estimer
la puissance thermique collectée à un instant t, le temps de calcul pour l’estimation de
l’énergie thermique annuelle est 150 fois plus long en considérant une barre d’erreur de
0,1%. Une alternative consiste à discrétiser le temps et évaluer pour chaque pas la puis-
sance thermique dont nous prendrions la moyenne. Cette méthode de calcul n’étant plus
statistique, nous ne sommes pas en mesure d’estimer la précision de ce calcul par l’ajout
de barre d’erreur. De plus, nous effectuons chaque calcul de puissance avec un nombre
suffisant de réalisations grâce à l’algorithme 2.2 MCFD afin de garantir la convergence
de cet algorithme (pour 2407 réalisations, la barre d’erreur est égale à 0,1%). Nous avons
effectué ce calcul pour une année en utilisant un fichier de DNI correspondant à Séville.
Un calcul de puissance pour chaque heure dont le DNI est supérieur à zéro est réalisé. Il
y a donc 3893 estimations de puissance par l’algorithme 2.2. En terme de temps de cal-
cul, ceci correspond à environ 84min. Nous obtenons une énergie annuelle de 110GW · h
alors que l’algorithme 3.1 donne, pour les mêmes conditions, 104,4GW · h avec une barre
d’erreur de 0,1% en 20,8 s. Nous remarquons que la prise en compte du vieillissement
de la centrale nécessite d’effectuer le calcul discrétisé pour chaque année d’exploitation
de l’installation alors que cet aspect est intégré à l’algorithme MCST. Considérant que
ce travail s’inscrit dans une démarche de recherche d’optimum, le modèle direct se doit
d’être performant en termes de temps de calcul car ce modèle direct sera appelé un grand
nombre de fois lors d’une opération d’optimisation comme nous le verrons au chapitre 5.
Il devient alors primordial de chercher à diminuer le temps de calcul. La section suivante
va porter sur l’optimisation du temps de calcul et présente deux essais de réduction de
ce temps.
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Fig. 3.2. : Comparaison de l’écart type relatif obtenu avec les algorithmes Monte Carlo
Fixed Date et Monte Carlo Sun Tracker en fonction du nombre de réalisations

3.3. Optimisation du temps de calcul
Dans le cadre d’une procédure d’optimisation par des méthodes stochastiques, telle que
celle décrite à la section 5.2, nous allons faire appel au modèle direct un grand nombre de
fois. Si ce modèle direct est coûteux en termes de temps de calcul, l’optimisation prendra
un temps d’autant plus important. Le modèle direct étant l’algorithme de Monte Carlo
MCST, cela nécessite de s’intéresser à ses performances de ce point de vue. Ce constat
nous amène à explorer diverses pistes pour réduire le temps de calcul. Nous explorons
deux pistes d’optimisation amenant à différentes versions du code ce calcul :

MCSTa est l’algorithme original (voir section 3.2)
MCSTb est obtenu à la suite de la première optimisation (voir section 3.3.1) et porte

sur la modification de la formulation intégrale en échantillonnant plusieurs rayons
pour chaque temps t considéré

MCSTc est obtenu à la suite de la seconde optimisation (voir section 3.3.2) et porte sur
la gestion informatique de l’orientation des héliostats

3.3.1. Échantillonnage systématique des rayons
L’ajout d’une intégrale sur le temps suivant l’équation (3.2a) implique une augmentation
du temps de calcul, indépendamment du nombre de réalisations de l’algorithme MCST,
comme démontré à la section 3.2. Ceci s’explique par la nécessité de modifier l’orientation
des héliostats de la centrale pour chaque temps t. Les héliostats suivent la position
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du soleil afin de réfléchir ses rayons vers l’entrée du récepteur R. Cette opération de
réorientation entraîne le surplus de temps de calcul. Afin d’en limiter l’effet, nous essayons
ici de réduire le nombre de dates échantillonnées, i.e. de réalisations de l’algorithme,
tout en préservant la précision du calcul. Pour cela, nous reformulons l’équation (3.2a)
en utilisant le concept d’échantillonnage systématique [51]. Pour chaque temps t,
nous mettons à profit la réorientation du champ pour générer plusieurs chemins optiques
dans le but de diminuer la variance de l’algorithme. Ceci doit permettre d’utiliser le
nouvel algorithme MCSTb avec un nombre de réalisations significativement plus faible
à précision comparable par rapport à l’algorithme MCSTa. La formulation intégrale
de MCSTb est présentée dans l’équation (3.6). Elle est la stricte correspondance de
l’algorithme 3.2.

(3.6)
Eth =

∫
Dτ

pτ(t) dt
Nr∑

n=1

1
Nr

∫
DH+

pr1(r1) dr∫
DΩS

pΩS
(ωs) dω

∫
Dnh1

pnh1(nh1|ωS ; p) dnh1 × ŵEth

L’algorithme MCSTb apporte une légère amélioration de coefficient de variation par
rapport à l’algorithme MCSTa comme observé sur la figure 3.3. Toutefois, elle ne s’avère
pas suffisante pour envisager l’utilisation de MCSTb avec un nombre de réalisations plus
faible vis à vis de MCSTa. L’amélioration de la précision n’est pas suffisante. Dans le cas
des applications solaires, la source de variation se situe dans l’intégration sur le temps.
Elle est plus précisément due aux positions du soleil : le DNI et l’effet cosinus sont des
fonctions du temps. Le DNI varie de 0 à environ 1000W · m−2 alors que l’effet cosinus
varie de 0 à 1. Il en résulte des différences significatives pour les estimations de puissances
entre deux dates. Pour diminuer les temps de calcul il est nécessaire d’échantillonner
moins de dates. Or, dans le cas présent, nous devons échantillonner un nombre d’instants
comparable, comme indiqué dans le tableau 3.3 et sur la figure 3.3, pour obtenir une
précision comparable entre les algorithmes MCSTa et MCSTb, et ceci quelque soit la
valeur du paramètre Nr. Malgré tout, une optimisation de ce type peut représenter un
intérêt pour des applications où la source principale de variation se trouverait dans la
partie de l’algorithme concernée par l’échantillonnage systématique.

3.3.2. Deuxième essai d’optimisation : implémentation de la géométrie
dynamique

Nous procédons à un second essai de réduction du temps de calcul centré sur les aspects
numériques. Le suivi du soleil réalisé durant l’exécution de l’algorithme MCST implique
que la géométrie de l’installation solaire évolue avec chaque position du soleil. Les hélio-
stats doivent être orientés pour réfléchir le rayonnement solaire vers le récepteur. D’un
point de vue numérique, ce re-positionnement des héliostats consiste en des multipli-
cations successives de matrice de taille 4 × 4. Chaque héliostat possède une matrice
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définissant son positionnement exact dans le champ. Les différents tests d’intersection
impliquent chaque rayon suivi et les divers composants de l’installation. Le temps de
calcul passé à cette étape de réorientation du champ représente une grande part du
temps total lors de la simulation d’une centrale à tour de grande taille comprenant plu-
sieurs milliers d’héliostats. Cette réorientation est la cause de la différence de temps de
calcul entre les algorithmes MCFD et MCST à nombre de réalisations égal. C’est une
dépense de temps due à la gestion de la géométrie complexe par EDStaR. En agissant
sur cet aspect du code de calcul, nous pouvons diminuer de façon importante ce sur-
plus de temps non dédié aux calculs. De plus, seuls quelques héliostats sont impliqués
lors d’une réalisation de l’algorithme : les héliostats pouvant interférer entre l’héliostat
d’où part le rayon appelé précédemment r1 et la direction du soleil dans le cas d’un
phénomène d’ombrage ou du récepteur dans le cas d’un phénomène de blocage. Fort
de ce constat, nous avons implémenté une stratégie de réorientation des héliostats per-
mettant un gain considérable de temps de calcul. Chaque héliostat est inclus dans une
boite englobante représentée par un cube. Cette boite englobante comprend toutes les
positions que pourra prendre un héliostat lors du suivi du soleil. Pour réduire le nombre
de réorientations, i.e. le nombre de multiplications de matrices, des tests d’intersection
sont tout d’abord réalisés entre les rayons suivis et les boites englobantes. Ces tests sont
très rapides et permettent d’identifier les héliostats qui peuvent éventuellement inter-
agir avec les rayons. De ce fait, seuls les héliostats contenus dans des boites englobantes
intersectées sont repositionnés. Le temps de calcul devient alors indépendant du nombre
d’héliostats de la centrale. De plus, comme précisé dans l’encart 2, l’algorithme MCSTc
est strictement identique à l’algorithme MCSTa, les différences se situent dans la gestion
des intersections dans la géométrie complexe. La procédure de réorientation est décrite
dans l’algorithme 3.3.

3.3.3. Un temps de calcul compétitif
Le tableau 3.2 est une comparaison des temps de calcul à 0,1% d’erreur 1 des différents
algorithmes MCST. L’algorithme MCFD apparaît dans ce tableau afin de rappeler les
implications de l’intégration temporelle en termes de précision et de temps de calcul.

• L’algorithme MCSTb réduit d’ environ 25% du nombre de réalisations alors que
paradoxalement le temps de calcul connaît une augmentation d’environ 25% éga-
lement. Cette première tentative d’optimisation n’est pas satisfaisante. Le but
était d’accomplir moins de réalisations tout en obtenant un résultat comparable en
termes de précision et ainsi de gagner du temps de calcul. Dans le cas « solaire »,
cette tentative d’optimisation n’est pas convaincante. Le gain de précision n’est
pas assez significatif comme présenté à la section 3.3.1.

• L’algorithme MCSTc est 10 fois plus rapide que l’algorithme MCSTa. La seconde
tentative d’optimisation est donc efficace en termes de temps de calcul.

1Les temps de calcul sont donnés pour un poste de bureau avec un processeur AMD Phenom II X6
1055T 2,8 GHz et 12 Go RAM.
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Fig. 3.3. : Comparaison de l’écart type relatif obtenu avec deux algorithmes Monte Carlo
Sun Tracker, MCSTa et MCSTb avec 10 rayons par date, en fonction du
nombre de réalisations
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L’échantillonnage systématique se base sur une subdivision du domaine d’intégration
Dr en M sous-domaines contigus Drm tels que :

(3.5a)Dr =
M∑

m=1
Drm

La probabilité Pm d’échantillonner un vecteur r dans un sous-domaine Drm avec∑M
m=1 Pm = 1 est égale à :

(3.5b)Pm =
∫

Drm
pr(r) dr∫

Dr
pr(r) dr

=
∫

Drm

pr(r) dr

car la fonction densité de probabilité pr(r) est normée sur Dr. On définit la fonction
densité de probabilité prm(r) :

(3.5c)prm(r) =


pr(r)
Pm

, r ∈ Drn

0 , sinon


Nous avons bien :

(3.5d)
∫

Drm

prm(r) dr = 1
Pm

∫
Drm

pr(r) dr = 1

Le concept d’échantillonage systématique présuppose que les probabilités Pn sont
connues et définies selon :

(3.5e)Nm = Pm × N

avec N le nombre de réalisations l’algorithme considéré et m le nombre de vecteur r
qui doivent être échantillonnés pour chaque sous-domaine Vm. L’estimateur de ⟨A⟩ est
alors :

(3.5f )⟨A⟩ =
M∑

m=1

Pm

Nm

Nm∑
im=1

a(rim)

Remarque 3 : Échantillonnage systématique

Tab. 3.3. : Comparaison des temps de calcul des algorithmes MCFD, MCSTa, MCSTb
et MCSTc à 0,1% d’erreur

MCFD MCSTa MCSTb MCSTc
Temps de calcul en s 1,3 203 244 20,8
Nombre de réalisations 2407 448 400 348 100 448 400
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Algorithme 3.2 : Estimation de l’énergie thermique Eth par MCSTb

(1) Un instant t0 est uniformément échantillonné sur le temps de vie de la centrale solaire et le
nombre de rayon généré Nrg est mis à 0

(2) Une position r1 est uniformément échantillonnée sur l’ensemble de la surface réflective du champ
d’héliostats H+

(3) Une direction ωS est uniformément échantillonnée dans le cône solaire ΩS de rayon angulaire
θS

(4) Une normale effective nh est échantillonnée autour de la normale idéale n1

(5) Le nombre de rayon généré Nrg est incrémenté

(a) Si Nrg ≤ Nr, le poids de Monte Carlo ŵEth est estimé et l’algorithme boucle à l’étape (2)

(i) Si DNI(t0) < DNIl alors la centrale ne fonctionne pas et l’algorithme boucle à l’étape
(2) avec le poids ŵEth = 0

(ii) Sinon la position r0 est définie comme la première intersection entre le rayon issu de r1
dans la direction ωS et une surface de la géométrie

(1) Si r0 existe l’algorithme boucle à l’étape (2) avec le poids ŵEth = 0

(2) Sinon la direction ω+ est obtenue par réflexion spéculaire de la direction ωs par
rapport à la normale effective nh1 et la position r2 est définie comme la première
intersection entre le rayon issu de r1 dans la direction ω1

(a) Si r2 n’appartient pas au récepteur R l’algorithme boucle à l’étape (2) avec le
poids ŵEth = 0 ;

(b) Sinon l’ algorithme boucle à l’étape (2) avec le poids ŵEth = DNI × ρH × (ωS ·
nh) × SH

(b) Sinon le poids de Monte Carlo ŵEth est évalué et l’algorithme boucle à l’étape (6)

(i) Si DNI(t0) < DNIl alors la centrale ne fonctionne pas et l’algorithme boucle à l’étape
(6) avec le poids ŵEth = 0

(ii) Sinon la position r0 est définie comme la première intersection entre le rayon issu de r1
dans la direction ωS et une surface de la géométrie

(1) Si r0 appartient à la surface des héliostats H ou à la tour T , il y a ombrage et
l’algorithme boucle à l’étape (6) avec le poids ŵEth = 0

(2) Sinon la direction ω+ est obtenue par réflexion spéculaire de la direction ωS par
rapport à la normale effective nh1 et la position r2 est définie comme la première
intersection entre le rayon issu de r1 dans la direction ω1

(a) Si r2 n’appartient pas au récepteur R, il y a un phénomène de blocage et l’algo-
rithme boucle à l’étape (6) avec le poids ŵEth = 0 ;

(b) Sinon l’ algorithme boucle à l’étape (6) avec le poids ŵEth = DNI × ρH × (ωS ·
nh) × SH

(6) L’algorithme boucle à l’étape (1) jusqu’à obtention du nombre de réalisations souhaité
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Algorithme 3.3 : Orientation dynamique des héliostats

(1) Une position r1 est échantillonnée sur le surface réflective du champ d’héliostats H+

(2) Une direction ωS est uniformément échantillonnée dans le cône solaire ΩS de rayon angulaire
θS

(3) L’héliostat auquel r1 appartient est positionné

(4) Un test d’intersection entre le rayon issu de r1 dans la direction ωS et les boites englobantes
de chaque héliostat est réalisé : il concerne les phénomènes d’ombrage

(a) Si une boite englobante est intersectée, l’héliostat contenu est positionné

(5) Un test d’intersection entre le rayon issu de r1 dans la direction réfléchie ω+ et les boites
englobantes de chaque héliostat est réalisé : il concerne les phénomènes de blocage

(a) Si une boite englobante est intersectée, l’héliostat contenu est positionné
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3.4. Carte de flux et carte d’énergie
Nous avons vu à la section section 3.2 que l’obtention de l’algorithme 3.1 permettait
d’estimer l’énergie thermique reçue par un récepteur solaire. Il est également possible
d’obtenir une carte d’énergie qui se trouve être l’intégrale sur le temps des cartes de flux
que l’on obtiendrait à chaque instant t. L’information que l’on peut retirer de cette carte
concerne en premier lieu le récepteur. Une telle carte illustre la répartition de l’énergie
reçue au cours du fonctionnement de la centrale. Il est ainsi possible d’anticiper les
éventuels phénomènes de surchauffe pouvant apparaître sur certaines zones du récepteur.
La figure 3.4 représente la carte de flux obtenu le jour de plus fort DNI et la figure 3.5
représente la carte d’énergie pour une année de fonctionnement.
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Fig. 3.4. : Carte de densité de flux maximale au récepteur de la centrale PS10 pour le
plus fort DNI en MW · m−2
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Fig. 3.5. : Carte de densité d’énergie au récepteur en MW · h · m−2

3.5. Conclusion
Dans ce chapitre, nous avons introduit un nouvel algorithme de Monte Carlo dédié
à l’estimation de l’énergie solaire moyenne récoltée annuellement par une centrale à
concentration. Nous remarquons que l’effort pour faire ce calcul sur la durée de vie d’une
centrale est peu important grâce à la formulation intégrale des algorithmes de Monte
Carlo. Cette estimation se fait sur la durée d’exploitation de l’installation et permet
la prise en compte du vieillissement de la centrale. Cette estimation se fait moyennant
une augmentation raisonnable du temps de calcul par rapport à un calcul classique
de puissance thermique réalisé traditionnellement. Cette évolution de la simulation des
centrales solaires à récepteur central est principalement rendu possible par les récents
développements méthodologiques de la méthode de Monte Carlo, en particulier grâce
à la formulation intégrale des modèles. Nous avons utilisé comme cas test une centrale
solaire comparable à une installation existante (PS10) et les résultats de simulation ont
permis de valider cette démarche par comparaison avec la littérature.
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Chapitre

4
Estimation de la production
d’énergie électrique ou chi-
mique d’une installation so-
laire à concentration

Résumé

La finalité d’une centrale solaire à concentration ne se limite pas à la production de
chaleur. Lors de ce chapitre, nous allons présenter une méthode permettant de traiter, par
la méthode de Monte Carlo (MMC) des fonctions de conversion non-linéaires de l’énergie
thermique en une autre forme d’énergie. Nous présenterons deux exemples d’applications
associées aux centrales solaires : la production directe de vapeur par un cycle de Rankine
et la réduction d’oxyde de zinc par procédé thermochimique. Nous verrons alors qu’il est
possible d’estimer, à partir de la méthode de Monte Carlo, les performances de centrales
solaires, non plus à partir de l’énergie thermique collectée mais à partir de la production
d’énergie finale.
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T Tour, sans le récepteur [-]
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

4.1. De l’énergie thermique à la productivité

Lors du chapitre 3 notre attention s’est portée sur le calcul de la production annuelle
d’énergie thermique d’un système solaire à récepteur central. Il est évident que la connais-
sance de cette quantité permet d’évaluer la performance d’une installation solaire. De
même, il est légitime de considérer cette grandeur comme un objectif à maximiser lors
d’une opération d’optimisation en phase de conception. Toutefois, une installation solaire
à récepteur central n’a pas forcément pour finalité de produire de la chaleur. L’énergie
solaire concentrée est ensuite transformée. Pour cela, deux filières existent :

1. La production d’électricité grâce à l’utilisation d’un cycle thermodynamique en
sortie du récepteur

2. La thermochimie

D’un point de vue industriel, il est donc plus intéressant de dimensionner une centrale
solaire en fonction des grandeurs caractéristiques de ces procédés et non en fonction d’une
grandeur intermédiaire telle que l’énergie thermique concentrée au récepteur. C’est en
effet la production d’énergie finale qui va déterminer la rentabilité d’une installation. Ces
grandeurs d’intérêt sont respectivement l’énergie électrique Eelec fournie au réseau et le
rendement de conversion moyen du réacteur ⟨ηréacteur⟩. Ce sont des grandeurs moyennes,
obtenues respectivement par l’intégration temporelle de la puissance électrique Pelec selon
l’équation (4.1a) et du rendement du réacteur ηréacteur selon l’équation (4.1b).

(4.1a)Eelec =
∫

τ
Pelec(t) dt

(4.1b)⟨ηréacteur⟩ =
∫

τ
ηréacteur(t) dt

Il s’agit de fonctions de la puissance thermique Pth(t) définie par l’équation (4.6a). Nous
avons vu au chapitre 2 comment estimer Pth(t) par la méthode de Monte Carlo avec
l’algorithme 2.2.

(4.6a)Pth(t) =
∫

DΞ

pΞ(ξ) dξ × ŵPth

avec le poids de Monte Carlo ŵPth :
(4.6b)ŵPth

=



H (DNI(t) < DNIl) × 0

+H (DNI(t) > DNIl) ×


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H (r2 /∈ R) × 0
+H (r2 ∈ R) ×DNI(t) × ρH

×(ωS(t) · nh1) × SH






66



4.1. De l’énergie thermique à la productivité

Nous allons introduire un formalisme dont le but sera de simplifier les écritures. Nous
pouvons réécrire les équations (4.2) et (4.3) introduite au chapitre 2 en regroupant les
variables aléatoires utilisées dans un seul vecteur aléatoire Ξ tel que :

(4.2)Pth =
∫

DH+
pr1(r1) dr1

∫
DωS

pωS (ωS) dωS
∫

DNh

pNh1(nh1|ωS ; b) × ŵPth

(4.3)ŵPth =


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×
{

H (r2 /∈ R) × 0
+H (r2 ∈ R) ×DNI × ρH × (ωS · nh1) × SH

}

(4.4)Ξ =


r1
ωS

nh1

Nous obtenons alors l’équation (4.5) :

(4.5)Pth =
∫

DΞ

pΞ(ξ) dξ × ŵPth

Remarque 1 : Écriture simplifiée des formulations

La fonction densité de probabilité (pdf) pΞ comprend les pdfs des trois variables aléa-
toires :

(4.6c)pr1 = 1
SH

(4.6d)pΩS = 1∫
DΩS

dωS
= 1

2π(1 − cos θS)

(4.6e)pNh1 =
1 + 1

p

2π ×
(

1 − cos2+ 1
p

(
π

4
− 1

2
× arccos (ωS(t) · n1)

)) × (nh1 · n1)1+ 1
p

avec

pr1 Une pdf uniforme utilisée pour échantillonner une position de réflection sur la surface
réflective H+

pΩS Une pdf uniforme utilisée pour échantillonner une direction incidente ωS à l’inté-
rieur du cône solaire ΩS

pNh1 Une pdf utilisée pour échantillonner une normale effective nh1 en r1 autour de la
normale théorique n1 selon le modèle de Blinn présenté plus en détail à la section 2.2
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

Une difficulté apparaît néanmoins : les lois de couplage présentées aux équations (4.7a)
et (4.7b) sont non-linéaires. Nous cherchons donc à intégrer par Monte Carlo une
fonction non-linéaire d’une grandeur obtenue par un algorithme de Monte
Carlo.

(4.7a)Pelec(t) = f(Pth(t))
(4.7b)ηréacteur(t) = f(Pth(t))

Une méthode visant à résoudre cette difficulté a été proposée récemment dans les travaux
de J. Dauchet [33] dans le cas de calcul de rendement de procédés de type photobioréac-
teurs.

4.2. Principe de la méthode

Dans un but pédagogique, nous reprenons ici le principe général de la méthode d’estima-
tion par la méthode de Monte Carlo (MMC) de fonctions non-linéaires tel que présenté
dans les travaux de thèse de Dauchet [33, section 6.3]. Nous transposons les illustra-
tions relatives aux fonctions quadratiques et développables en série de Taylor, présentées
dans le cadre d’une intégration volumique, en intégration temporelle mais le principe est
le même. Pour cela, nous considérons une grandeur P fonction du temps. Cette grandeur
est estimée par un algorithme de Monte Carlo dont la formulation intégrale est présentée
dans l’équation (4.8) :

(4.8)P(t) =
∫

DΞ

pΞ(t)(ξ) dξ × ŵ(ξ)

Cette grandeur permet, par l’intermédiaire d’une fonction de conversion non-linéaire fc,
l’estimation d’une grandeur A :

(4.9)A(t) = fc(P(t))

La moyenne sur le temps ⟨A⟩ s’écrit :

(4.10)⟨A⟩ =
∫

τ
pτ (t) dt × fc

(∫
DΞ

pΞ(t)(ξ) dξ × ŵ(ξ)
)

1er cas pédagogique : fc est une fonction quadratique Considérons une fonction de
conversion quadratique :

(4.11)fc(P(t)) = k × (P(t) + β)2

Dans ce cas, l’équation (4.10) s’écrit :

(4.12)⟨A⟩ =
∫

τ
pτ (t) dt ×

[∫
DΞ

pΞ(t)(ξ) dξ (ŵ(ξ) + β)
]2
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4.2. Principe de la méthode

L’idée est alors d’introduire deux vecteurs aléatoires Ξ1 et Ξ2 constitués de variables
aléatoires parentes aux variables aléatoires du vecteur aléatoire Ξ. L’équation (4.12)
devient alors :

⟨A⟩ =
∫

τ
pτ (t) dt ×

[∫
DΞ1

pΞ1(t)(ξ1) dξ1 (ŵ(ξ1) + β)
]

×
[∫

DΞ2

pΞ2(t)(ξ2) dξ2 (ŵ(ξ2) + β)
]

(4.13)

Les vecteurs aléatoires Ξ1 et Ξ2 étant indépendants, nous pouvons reformuler l’équa-
tion (4.13) afin de retrouver le formalisme d’une intégrale d’une fonction sur un domaine
de définition pouvant être infini :

(4.14a)
⟨A⟩ =

∫
τ

pτ (t) dt

∫
DΞ1

pΞ1(t)(ξ1) dξ1∫
DΞ2

pΞ2(t)(ξ2) dξ2 × ŵ(ξ1, ξ2)

avec ŵ le poids de Monte Carlo :
(4.14b)ŵ(ξ1, ξ2) = k × (ŵ(ξ1) + β) × (ŵ(ξ2) + β)

Aux équations (4.14a) et (4.14b) nous pouvons maintenant associer un algorithme de
Monte Carlo. Il est présenté dans l’algorithme 4.1. La démarche présentée ici est bien

Algorithme 4.1 : Estimation d’une grandeur à partir d’une fonction de
conversion quadratique

(1) Un instant t est uniformément échantillonné sur l’ensemble du temps de fonctionnement de
l’installation considérée

(2) Le vecteur aléatoire Ξ1 est échantillonné au temps t

(3) Le vecteur aléatoire Ξ2 est échantillonné indépendamment de Ξ1 au temps t

(4) Le poids de Monte Carlo ŵ est estimée selon l’équation (4.14b)

(5) L’algorithme boucle à l’étape (1) jusqu’à obtention du nombre de réalisations souhaitées

sur extensible à des fonctions de puissances entières du type fc = k × (P(t) + β)n avec
n ≥ 2 et plus généralement à des fonctions que l’on peut décomposer sur des bases
polynomiales. Cette généralisation consiste à générer des vecteurs aléatoires Ξn à l’ordre
n.

2ème cas pédagogique : fc est une fonction développable en série de Taylor Il est
évident que nous ne rencontrerons pas simplement des fonctions de puissance entière.
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

Lorsque des variables aléatoires ont le même domaine de définition et la même densité
de probabilité, on dit qu’elles sont parentes. Ici, nous avons bien

(4.15a)DΞ ≡ DΞ1 ≡ DΞ2

et
(4.15b)pΞ ≡ pΞ1 ≡ pΞ2

ce qui nous permet d’écrire :

(4.15c)

[∫
DΞ

pΞ(t)(ξ) dξ (ŵ(ξ) + β)
]2

=
∫

DΞ1

pΞ1(t)(ξ1) dξ1 (ŵ(ξ1)

+ β)
∫

DΞ2

pΞ2(t)(ξ2) dξ2 (ŵ(ξ2) + β)

Remarque 2 : Variables aléatoires parentes

Cette méthode est donc étendue aux fonctions non-linéaires analytiques infiniment dé-
rivables. En passant par un développement en série de Taylor, la fonction de conversion
d’intérêt est alors développée autour d’une valeur P0 donnée selon l’équation (4.16a) :

(4.16a)fc(P(t)) = Λ0 +
+∞∑
n=1

Λn(P(t) − P0)n

avec
(4.16b)Λ0 = fc(P0)

(4.16c)Λn = f
(n)
c (P0)

n!

où f
(n)
c (P0) est la dérivée nième de fc prise en P0. Nous appliquons la démarche proposée

dans les équations (4.14a), (4.14b) et (4.11) à (4.13) à chaque ordre du développement
et nous obtenons :

(4.17a)
⟨A⟩ =

∫
τ

pτ (t) dt

∫
DΞ1

pΞ1(t)(ξ1) dξ1∫
DΞ2

pΞ2(t)(ξ2) dξ2 · · · ŵprod

avec le poids de Monte Carlo

(4.17b)ŵprod = Λ0 +
+∞∑
n=1

Λn

n∏
q=1

(ŵ(ξq) − P0)

Cette intégrale est constituée d’une suite infinie d’intégrales. Afin de pouvoir l’évaluer
numériquement, nous devons introduire un critère d’arrêt. Il prend la forme d’un test
de Bernoulli nous permettant de stopper la génération de vecteurs aléatoires Ξj sans
introduire de biais ni tronquer le développement en série de Taylor.
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4.2. Principe de la méthode

Nous introduisons une probabilité p d’arrêt de l’algorithme et une probabilité 1 − p
de poursuite de l’algorithme. Pour cela nous faisons appel à l’intégrale d’une pdf
uniforme pR(r) égale à 1 d’une fonction de Heaviside. Cette fonction de Heaviside
sert de comparaison entre une valeur r obtenue selon la pdf pR(r) et la probabilité p.
L’écriture intégrale complète de ce test est donc :

(4.18a)
∫ 1

0
pR(r) dr × H (r < p) = p

L’introduction de ce test dans un formulation intégrale doit se faire sans biais, il faut
donc normaliser l’équation (4.18a) :

(4.18b)
∫ 1

0
pR(r) dr ×

H (r < p) × 1
p

+H (r > p) × 0

 =


1
ou
0


Cette méthode d’arrêt est une application du test de Bernoulli, également appelé
épreuve de Bernoulli, de paramètre p ∈ [0; 1]. Il s’agit d’une expérience aléatoire
avec deux résultats possibles :

• La réussite
• L’échec

Le paramètre p représente la probabilité d’une réussite alors qu’un échec à une proba-
bilité 1 − p. L’expérience X est égale à 1 si elle est réussie et égale à 1 − p sinon ce
qui se traduit par :

(4.18c)
{

P (X Réussite) = p

P (X Échec) = 1 − p

}

Remarque 3 : Test de Bernoulli

Si nous considérons l’intégrale sur un vecteur aléatoire Ξj , nous pouvons écrire :

∫
DΞj

pΞj(t)(ξ) dξjŵj(ξj) =
∫

DΞj

pΞj(t)(ξ) dξj

∫ 1

0
pRj (rj) drj ×


H (rj > Pj) × 0

+H (rj < Pj) × ŵj(ξj)
Pj


(4.19)
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

Nous développons l’expression du poids de l’équation (4.17b) et nous reportons l’équa-
tion (4.19) dans l’équation (4.17a) il vient :

⟨A⟩ =
∫

τ
pτ (t) dt × Λ0 +

∫
DΞ1

pΞ1(t)(ξ1) dξ1

∫ 1

0
pR1(r1) dr1 × Λ1 × (ŵ1(ξ1) − P0)

×



H (r1 > P1) × 0
+H (r1 < P1) × 1

P1

∫
DΞ2

pΞ2(t)(ξ2) dξ2
∫ 1

0 pR2(r2) dr2 × Λ2 × (ŵ2(ξ2) − P0)

×

H (r2 > P2) × 0
+H (r2 < P2) × 1

P2
+ · · ·




(4.20)

Nous faisons apparaître des poids de Monte Carlo pour chaque test de Bernoulli :

(4.21a)

⟨A⟩ =
∫

τ
pτ (t) dt

∫
DΞ1

pΞ1(t)(ξ1) dξ1

∫ 1

0
pR1(r1) dr1

×


H (r1 > P1) × ŵprod

1
+H (r1 < P1) +

∫
DΞ2

pΞ2(t)(ξ2) dξ2
∫ 1

0 pR2(r2) dr2

×
{

H (r2 > P2) × ŵprod
2

+H (r2 < P2) + · · ·

}


avec les poids de Monte Carlo
(4.21b)ŵprod

1 = Λ0

(4.21c)ŵprod
2 = Λ0 + Λ1 × ŵ(ξ1) − P0

P1

On obtient une formulation intégrale de l’algorithme 4.2 estimant ⟨A⟩ à partir des équa-
tions (4.21a) à (4.21c) :

(4.22a)
⟨A⟩ =

∫
τ

pτ (t) dt ×
∫

DΞ1

pΞ1(t)(ξ1) dξ1∫ 1

0
pR1(r1) dr1 ×

{
H (r1 > P1) × ŵprod

1
+H (r1 < P1) × I1

}
avec le terme de récursion Ij

(4.22b)Ij−1 =
∫

DΞj

pΞj(t)(ξj) dξj

∫ 1

0
pRj (rj) drj ×

{
H (rj > Pj) × ŵprod

j

+H (rj < Pj) × Ij

}

et les poids de Monte Carlo
(4.22c)ŵprod

1 = Λ0

(4.22d)ŵprod
j >1 = Λ0 +

j−1∑
n=1

Λn

n−1∏
q=0

ŵ(ξq) − P0
Pq
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4.3. Fonction de conversion non linéaire et énergie solaire

Algorithme 4.2 : Estimation à partir d’une fonction de conversion infini-
ment dérivable

(1) La valeur 1 est affectée à l’indice j

(2) Un instant t est uniformément échantillonné sur l’ensemble du temps de fonctionnement de
l’installation considérée

(3) Le vecteur aléatoire Ξj est échantillonné au temps t

(4) Un nombre aléatoire rj est uniformément échantillonné entre 0 et 1 suivant la pdf pRj

(5) La probabilité Pj est calculée

(a) Si rj > Pj la génération de vecteurs aléatoires est stoppée et le poids est calculé suivant
ŵprod

j et l’algorithme boucle à l’étape (4)

(b) Sinon, l’algorithme boucle à l’étape (3) et l’indice j est incrémenté de 1

(6) L’algorithme boucle à l’étape (2) jusqu’à obtention du nombre de réalisations souhaitées

4.3. Fonction de conversion non linéaire et énergie solaire
Nous raisonnons ici dans un cas général et nous voulons estimer une grandeur A(t)
dépendante du temps. Cette grandeur, caractérisant la productivité de la centrale solaire,
est une fonction de la puissance thermique Pth(t) au même instant t. La fonction de
conversion fc permettant de passer de Pth(t) à A(t) est une fonction non linéaire :

(4.23)A(t) = fc(Pth(t))

Nous cherchons à intégrer A(t) sur le temps de fonctionnement τ de la centrale pour
obtenir la productivité moyenne ⟨A(t)⟩ selon l’équation (4.24).

(4.24)⟨A⟩ =
∫

τ
dt

1
τ

A(t)

Or l’algorithme 2.2 permet l’estimation de Pth(t). Nous avons vu au chapitre 3 que
l’intégration temporelle de la puissance était possible avec une précision suffisante et
peu de temps de calcul supplémentaire : nous obtenons une estimation de l’énergie
thermique collectée annuellement. Dans ce cas précis, la fonction de conversion était
linéaire (fc(Pth) = Pth). Nous voulons maintenant calculer une énergie annuelle produite
qui est liée à la puissance thermique par une fonction de conversion non linéaire. Comme
la ressource solaire est variable dans le temps, l’intégration temporelle d’une telle fonction
de conversion pose le problème de la gestion de cette non linéarité. Nous allons proposer
dans cette section une méthode nous permettant de répondre à cette difficulté.
L’estimation de ⟨A⟩ ne présente à priori pas de difficulté de convergence ou de temps de
calcul. La difficulté qui apparaît dans ce cas précis est la non-linéarité de la fonction de
conversion fc.
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

Nous utilisont la méthode présentée par J. Dauchet [33] en prenant en considération
les spécificités des technologies solaires à concentration. Nous cherchons à estimer la
grandeur ⟨A⟩ définie précédemment comme l’intégration temporelle de la productivité
instantanée A(t). Cette productivité est obtenue à l’aide de la fonction de conversion
fc à partir de la puissance thermique Pth(t) définie par l’équation (4.6a) et estimée par
l’algorithme 2.2.
Nous introduisons une puissance de référence Pref (t) définie dans l’équation (4.25)
comme le produit de la puissance solaire incidente à l’instant t DNI(t) et de la sur-
face de miroir SH .

(4.25)Pref (t) = DNI(t) × SH

Pref (t) est un majorant de Pth(t). Nous pouvons définir la puissance thermique transmise
au cycle comme étant dépendante du rendement optique ηoptique. Il dépend de l’effet
cosinus et des phénomènes optiques (ombrage, blocage, pertes par débordement).
Ce rendement, implicitement calculé dans les équations (4.6a) à (4.6e), est défini dans
les équations (4.26a) et (4.26b).

(4.26a)ηoptique(t) =
∫

DΞ

pΞ(ξ) dξ × ŵoptique

avec le poids de Monte Carlo ŵoptique :

(4.26b)ŵoptique =


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×
{

H (r2 /∈ R) × 0
+H (r2 ∈ R) × (ωS(t) · nh)

}
Nous pouvons réécrire l’équation (4.23) et obtenir l’équation (4.27) :

(4.27)
A(t) = fc(Pref (t) + Pth(t) − Pref (t))

= fc

(
Pref (t) ×

[
1 + Pth(t) − Pref (t)

Pref (t)

])

Nous introduisons une puissance α = 1 :

(4.28)A(t) = fc

Pref (t)α ×
[
1 + Pth(t) − Pref (t)

Pref (t)

]α

︸ ︷︷ ︸
(1+x)α


Nous voyons ainsi apparaître une expression de la forme (1 + x)α avec x ∈ [−1, 0[. Cette
expression peut être développée en série entière en appliquant la définition présentée
dans l’équation (4.29).

(4.29)∀x ∈ ]−1, 1[ , ∀α /∈ N, (1 + x)α = 1 +
+∞∑
n=1

α × (α − 1) × · · · × (α − n + 1)
n!

× xn
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que l’on peut réécrire :

(4.30)∀x ∈ ]−1, 1[ , ∀α /∈ N, (1 + x)α = 1 +
+∞∑
n=1

n−1∏
q=0

q − α

q + 1
×

n−1∏
q=0

(−x)


Soit, en reportant l’équation (4.30) dans l’équation (4.28) :

(4.31)A(t) = fc

Pref (t)α ×

 1︸︷︷︸
Λ0

+
+∞∑
n=1


n−1∏
q=0

q − α

q + 1︸ ︷︷ ︸
Λn

×
n−1∏
q=0

Pref (t) − Pth(t)
Pref (t)







(4.32)A(t) = fc

Pref (t)α × Λ0︸ ︷︷ ︸
Λ̃0

+
+∞∑
n=1

Pref (t)α × Λn︸ ︷︷ ︸
Λ̃n

×
n−1∏
q=0

Pref (t) − Pth(t)
Pref (t)




Le développement en série entière présenté à l’équation (4.30) a un rayon de conver-
gence égale à 1. Cela implique que la quantité x doit être comprise dans le seg-
ment ]−1, 1[. Nous appliquons ce développement en série entière (DSE) pour x =
Pref (t) − Pth(t)

Pref (t)
. Or, la possibilité d’avoir Pth−Pref

Pref
= −1 existe dans le cas ou Pth = 0,

alors Pref = 0 et DNI = 0. Toutefois, la présence d’un test de Heaviside dans les
équations (4.6a) et (4.6b) avec une valeur d’éclairement énergétique de rayonnement
solaire (Direct Normal Irradiance) (DNI) limite rend ce cas impossible.

Remarque 4 : Rayon de convergence du développement en série entière

Nous pouvons remplacer Pth(t) dans l’équation (4.32) par l’expression présentée dans
l’équation (4.6a). L’ensemble des intégrales peuvent être déplacées à l’avant de l’équation
car les fonctions densité de probabilité utilisées sont normées. Il vient alors :

(4.33)
A(t) = fc

∫
DΞ1

pΞ1(ξ1) dξ1 · · ·
∫

DΞn

pΞn(ξn) dξn

×

Λ̃0 +
+∞∑
n=1

Λ̃n ×
n−1∏
q=0

Pref (t) − ŵPth(t)
Pref (t)


Si la fonction de couplage fc est une fonction non-linéaire de type puissance telle que :

(4.34)fc(x) = k × xα
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en appliquant l’équation (4.33) nous linéarisons la fonction de couplage fc. Il suffit de
modifier la valeur de α dans l’expression de Λ̃n et de multiplier tous les termes par le
coefficient k :

(4.35)
A(t) =

∫
DΞ1

pΞ1(ξ1) dξ1 · · ·
∫

DΞn

pΞn(ξn) dξn

×

k × Λ̃0 +
+∞∑
n=1

k × Λ̃n ×
n−1∏
q=0

Pref (t) − ŵPth
q (t)

Pref (t)


À ce stade, l’équation (4.33) peut être vue comme la formulation intégrale d’un algo-
rithme de Monte Carlo. Nous remarquons toutefois qu’il s’agit d’une expression infinie
puisque la somme à la fin de l’expression est évalué de n = 1 jusqu’à l’infini. Cela étant,
nous pouvons maintenant estimer notre grandeur d’intérêt ⟨A⟩. Pour cela, nous ajoutons
une intégrale sur le temps, comme présentée dans l’équation (4.24), à l’équation (4.33) :

(4.36)⟨A⟩ =
∫

Dτ

pτ (t) dt

∫
DΞ1

pΞ1(ξ1) dξ1 · · ·
∫

DΞn

pΞn(ξn) dξn × ŵprod

avec

(4.37)ŵprod = k × Λ̃0 +
+∞∑
n=1

k × Λ̃n ×
n−1∏
q=0

Pref (t) − wPth
q (t)

Pref (t)


Nous devons suivre une infinité de rayons dans notre centrale solaire. L’expression est
infinie et nous ne pouvons l’estimer numériquement. Nous devons trouver le moyen
d’interrompre la génération de rayons tout en garantissant l’exactitude du résultat final
par l’introduction d’un test de Bernoulli comme présenté dans l’équation (4.19). Il permet
de limiter le nombre de rayons générés dans le champ d’héliostats pour chaque date
sans apporter de biais ni tronquer le développement en série entière. Pour cela, nous
devons faire apparaître une probabilité Pj ∈]0, 1]. Cette probabilité est déjà présente

dans l’équation (4.36) puisque nous savons que le rapport
Pref (t) − wPth

j (t)
Pref (t)

répond à

cette condition.

(4.38a)
⟨A(t)⟩ =

∫
Dτ

pτ (t) dt

∫
DΞ1

pΞ1(ξ1) dξ1

∫ 1

0
pR1(r1) dr1 ×

{
H (r1 > P1) × ŵprod

1
+H (r1 < P1) × I1

}

avec la récurrence :

(4.38b)Ij−1 =
∫

DΞj

pΞj (ξj) dξj

∫ 1

0
pRj (rj) drj ×

{
H (rj > Pj) × ŵprod

j

+H (rj < Pj) × Ij

}
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et

(4.38c)

Pj =
Pref (t) − ŵPth

j (t)
Pref (t)

= 1
Pref (t)

×

Pref (t)

−


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×
{

H (r2 /∈ R) × 0
+H (r2 ∈ R) × DNI(t) × (ωS(t) · nh) × SH

}


(4.38d)ŵprod
1 = Λ̃0

(4.38e)ŵprod
j = Λ̃0 +

j−1∑
n=1

Λ̃n

n−1∏
q=0

Pref (t) − ŵ
PPth
q (t)

Pref (t)
× 1

Pj︸ ︷︷ ︸
=1

= Λ̃0 +
j−1∑
n=1

Λ̃n

(4.38f)Λ̃0 = Pref (t)α

(4.38g)Λ̃n = Pref (t)α ×
n−1∏
q=0

q − α

q + 1

Nous pouvons maintenant énoncer l’algorithme 4.3 construit à partir de la formulation
intégrale présentée aux équations (4.38a) à (4.38e).

Algorithme 4.3 : Estimation de la productivité moyenne ⟨A(t)⟩

(1) La valeur 1 est affectée à l’indice j

(2) Un instant t est uniformément échantillonné sur l’ensemble du temps de fonctionnement de
l’installation considérée

(3) Le vecteur aléatoire Ξj est échantillonné au temps t

(4) Un nombre aléatoire rj est uniformément échantillonné entre 0 et 1 suivant la pdf pRj

(5) La probabilité Pj est calculée suivant la loi adéquate

(a) Si rj > Pj la génération de vecteurs aléatoires est stoppée et le poids est calculé suivant
ŵprod

j et l’algorithme boucle à l’étape (6)

(b) Sinon, l’algorithme boucle à l’étape (3) et l’indice j est incrémenté de 1

(6) L’algorithme boucle à l’étape (2) jusqu’à obtention du nombre de réalisations souhaitées
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4.4. Mise en œuvre
Afin d’illustrer l’apport de cette méthode dans le cas des installations solaires à concen-
tration, nous allons la mettre en œuvre pour deux applications différentes ayant chacune
une grandeur caractéristique. Il s’agit de la génération directe de vapeur et la production
d’oxyde de zinc par thermochimie. Le but de ce chapitre est de montrer comment se fait
la mise en œuvre de la MMC pour des fonctions non-linéaires. Les modèles thermiques
utilisés sont simplifiés : ils ne prennent pas en compte les phénomènes d’inertie des cycles
thermodynamiques et nous ne considérons que des pertes thermiques par rayonnement.

4.4.1. Génération directe de vapeur : calcul de l’énergie électrique Eelec

L’eau liquide constitue un très bon fluide de transfert. Elle offre un excellent coefficient
d’échange tout en possédant une forte capacité thermique. Elle peut être utilisée direc-
tement comme fluide thermodynamique dans un cycle de Rankine. La centrale PS10 [70,
65, 74, 5, 68] fonctionne sur ce modèle avec la présence d’un stockage tampon pouvant
alimenter le cycle pendant une durée de trente minutes. Nous utilisons comme cas test
cette technologie représentée sur la figure 4.11. Toutefois, nous ne prenons pas en compte
la présence d’un stockage. En premier lieu, nous cherchons une fonction de conversion
entre la puissance thermique reçue par la centrale solaire et transmise au cycle thermo-
dynamique.

p = 40 bar, T = 513K, X = 1

p = 40 bar, T = 513K, X = 0

p = 0,06bar

T = 323K
X = 1

p = 0,06bar

T = 323K
X = 0

Fig. 4.1. : Cycle thermodynamique de Rankine à génération directe de vapeur

1Il est a noter que ce schéma de principe ne représente pas les différents préchauffages intervenant entre
la sortie du compresseur et l’entrée du récepteur.
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Tab. 4.2. : Efficacité d’une turbine vapeur en fonction du rapport Puissance thermique
en entrée du cycle - Puissance nominale

Pth/Pnom νturbine
0,2907 0,3598
0,5239 0,3998
0,7563 0,4148
1,0 0,4183

4.4.1.1. Fonction de conversion Pelec(t) = fc(Pth(t))

Dans le cas d’un cycle de Rankine, le débit de fluide va s’ajuster de façon à conserver
une température constante au récepteur lorsque la puissance solaire incidente le permet.
La puissance thermique utilisée par le cycle se répartit en pertes thermiques Ppertes

et en puissance utile Putile. Les pertes thermiques dans ce cas présent sont estimées
selon l’équation (4.39). La vapeur obtenue est détendue dans une turbine entraînant une
génératrice. On obtient ainsi une puissance électrique Pelec en sortie de cette génératrice.
L’efficacité du cycle est donc pilotée par l’efficacité de la turbine. Pour connaître cette
efficacité, nous utilisons des données issues de [76] et présentées dans le tableau 4.2. Nous
obtenons une courbe caractéristique présentée sur figure 4.2 pour une centrale solaire
dont la puissance thermique maximale est de 100MW. Un ajustement de courbe de ces
données nous donne l’équation (4.40a).

(4.39)Ppertes = Aouverture × ε × σ × T 4
réacteur

(4.40a)νturbine(t) = keff ×
(

Pth(t)
Pnom(t)

)αeff

(4.40b)νturbine = 0,425267 ×
(

Pth(t)
PNom(t)

)0,125788

Grâce à l’équation (4.40b) nous obtenons les données présentées dans le tableau 4.3. Ces
données nous permettent d’obtenir la figure 4.3.
Un ajustement de courbe de ces données nous donne l’équation (4.41b).

(4.41a)Pelec(t) = kPth(t)α

(4.41b)Pelec(t) = 0,099941Pth(t)1,125784

Nous nous retrouvons dans le cas de figure présenté à la section 4.1. Nous appliquons la
méthode développée à cette section pour obtenir un algorithme de Monte Carlo similaire
à l’algorithme 4.3 en prenant comme paramètres k = 0,099941 et α = 1,125784. Nous
voyons sur la figure 4.3 que la fonction de conversion présentée dans l’équation (4.41b)
est peu non-linéaire. Il est en effet possible de réaliser un ajustement de données donnant
la fonction linéaire présentée dans l’équation (4.42) :

(4.42)Pelec(t) = 0,430131 × Pth(t) − 1369,390909
3Obtenue par l’équation (4.40a)
3Obtenue par l’équation (4.41b)

79



Chapitre 4. Estimation de la production d’une installation solaire à concentration
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Fig. 4.2. : Courbe d’efficacité d’une turbine à vapeur de puissance nominale 100MW
en fonction du rapport Puissance thermique en entrée du cycle - Puissance
nominale

Tab. 4.3. : Correspondance entre la puissance thermique en entrée de cycle Pth, l’effica-
cité de la turbine νturbine

2et la puissance électrique produite par la turbine
Pelec

3

Pth Pth/Pnom νturbine Pelec
en MW en MW
100 000 1,0 0,4253 42 526,7
90 000 0,9 0,4197 37 770,1
80 000 0,8 0,4135 33 079,7
70 000 0,7 0,4066 28 462,6
60 000 0,6 0,3988 23 928,0
50 000 0,5 0,3898 19 487,9
40 000 0,4 0,379 15 158,8
30 000 0,3 0,3655 10 965,1
20 000 0,2 0,3473 6946,6
10 000 0,1 0,3183 3183,3

0 0,0 0,0 0,0

80



4.4. Mise en œuvre

0 20000 40000 60000 80000 100000

Puissance thermique Pth en kW

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

P
ui

ss
an

ce
él

ec
tr

iq
ue

P
e
le
c

en
kW

Données
Courbe d’ajustement non linéaire
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Fig. 4.3. : Puissance électrique produite en fonction de la puissance thermique reçue

4.4.1.2. Simulation et résultats

Nous effectuons des simulations pour une centrale semblable à PS10, comme lors des
chapitres précédents (voir section 2.3 et section 3.2.1) afin de comparer l’approche li-
néaire et l’approche non-linéaire. Nous utilisons l’algorithme 4.3 et nous comparons les
résultats obtenus avec un algorithme semblable à l’algorithme 2.2 utilisant la fonction
de conversion linéaire de l’équation (4.42). Ces résultats sont rassemblés dans la ??. On
remarque que les résultats des deux algorithmes sont proches puisque l’on observe envi-
ron 4% d’écart entre les deux valeurs pour 100 000 réalisations. De plus, la convergence
des deux algorithmes est bonne : les barres d’erreur sont faibles.
Le tableau 4.4 est une comparaison des temps de calcul des deux algorithmes. Nous
voyons qu’ils sont du même ordre de grandeur. Cela s’explique par le caractère faible-
ment non-linéaire de la fonction de conversion utilisée. En effet, lors d’une simulation
comprenant 100 000 réalisations de Monte Carlo, le nombre d’ordre moyen du dévelop-
pement en série entière est égale à 1,08. Nous pouvons en conclure que la probabilité
choisie pour le test de Bernoulli est très bien adaptée au cas présent.

4.4.2. Production d’oxyde de zinc : calcul du rendement de conversion
moyen ⟨ηréacteur⟩

Les hautes températures que l’on peut atteindre avec les technologies solaires concentrées
permettent l’utilisation de procédés de thermochimie tels que la production de métaux,
la fusion de minéraux, la production d’hydrogène, etc. De nombreuses études ont été me-
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Tab. 4.4. : Comparaison du temps de calcul pour les algorithmes d’estimation de la
production électrique par les approches linéaire et non linéaire à 1% d’erreur

Algorithme non-linéaire Algorithme linéaire
Réalisations Temps de calcul Réalisations Temps de calcul

en s en s
5826 2,6 10 464 4,7

nées afin de produire de l’hydrogène à partir de l’énergie solaire. De plus, ces technologies
sont particulièrement bien adaptées aux centrales de type « beam down » [77]. Ces pro-
cédés en deux étapes reposent sur les oxydes métalliques dont fait partie l’oxyde de zinc
ZnO. Ce système d’oxydation-réduction à permis d’obtenir des rendements supérieurs
à 30%. Le schéma de principe d’une installation à énergie solaire concentrée utilisant
cette technologie est présenté sur la figure 4.4. La production de zinc à partir d’oxyde

H2O H2

ZnO

Zn

H2O + Zn −−→ H2 + ZnO

ZnO −−→ Zn + 1
2O2

Fig. 4.4. : Production de dihydrogène

de zinc est un processus intéressant car il ne nécessite pas des niveaux de température
trop élevés pour ce type d’application (environ 1200 °C). L’étape de réduction se déroule
dans le réacteur. Elle est présentée dans l’équation (4.43a). Le zinc produit est alors
utilisé dans un réacteur de dissolution de l’eau. La réaction d’hydrolyse est présentée
dans l’équation (4.43b).

(4.43a)ZnO −−→ Zn + 1
2

O2

(4.43b)Zn + H2O −−→ ZnO + H2
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4.4.2.1. Fonction de conversion ηréacteur(t) = fc(Pth(t))

La puissance thermique utilisée par le réacteur se répartit en pertes thermiques Ppertes

et en puissance utile Putile. La puissance utile Putile est exprimée selon l’équation (4.44).
Nous pouvons ainsi calculer le rendement du réacteur ηréacteur. La littérature propose
notamment une expression de ce rendement présenté dans l’équation (4.45b) [78, 79] .

(4.44)Putile(t) = ν(Tréacteur) × (Hr(Tréacteur) + ∆H(Tréacteur))

(4.45a)ηréacteur(t) = Putile(t)
Pth(t)

(4.45b)ηréacteur(t) = ν(Tréacteur) × (Hr(Tréacteur) + ∆H(Tréacteur))
Pth(t)

Nous nous concentrons ici sur la mise en œuvre d’un algorithme de Monte Carlo dans le
cas où la fonction à intégrer est non-linéaire. Comme dans l’application précédente, nous
faisons plusieurs hypothèses simplificatrices concernant le comportement thermique du
réacteur :

• Les pertes thermiques dans un récepteur solaire représentent environ 10% de la
puissance nominale reçue [76] [66], nous considérons donc un rendement thermique
du récepteur ηr = 90% 4

• La température à l’intérieur du réacteur est uniforme
• Les pertes par convection et conduction sont négligées

Nous pouvons évaluer les pertes thermiques par rayonnement en fonction de la tempé-
rature de réacteur selon l’équation (4.46)

(4.46)Ppertes(t) = Aouverture × ε × σ × T 4
réacteur

Nous avons également :
(4.47)Ppertes(t) = (1 − ηr) × Pth(t)

Nous pouvons ainsi exprimer la température à l’intérieur du réacteur Tréacteur en fonction
de la puissance thermique reçue à l’entrée du récepteur Pth :

(4.48)Tréacteur = 4

√
1 − ηr

Aouverture × ε × σ︸ ︷︷ ︸
kT

×Pth(t)1/4

Nous voulons estimer par Monte Carlo le rendement de conversion du réacteur présenté
dans l’équation (4.45b). Les relations liant ν(Tréacteur) , Hr(Tréacteur) et ∆H(Tréacteur)

4Nnous ne cherchons pas ici à caractériser le comportement thermique du récepteur, ceci fait actuelle-
ment l’objet d’une thèse au laboratoire RAPSODEE (C. Spiesser)
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à la température du réacteur sont présentées dans les équations (4.49a) à (4.49c) [79].

(4.49a)ν(Tréacteur) = Vréaction × k0 exp
( −Ea

R × Tréacteur

)
(4.49b)Hr(Tréacteur) = 5,96 × 106 − 161,32 × Tréacteur − 2,66 × 10−2 × T 2

réacteur

(4.49c)∆H(Tréacteur) =
∫ Tréacteur

t
Cp,ZnO(T ) dT

=



−3,03 × 10−9

5
× T 5

réacteur + 7,34 × 10−6

4
× T 4

réacteur − 6,8 × 10−2

3
× T 3

réacteur

+3,01 × 10−1

2
× Tréacteur + 41,6 × T 2

réacteur − ∆H(t) si 293K ≤ Tréacteur ≤ 693K

−1,06 × 10−5

3
× T 3

réacteur + 3,127
2

× T 2
réacteur + 522,6 × Tréacteur − ∆H(t)

si 693K < Tréacteur ≤ 2000K

Nous cherchons à exprimer ces grandeurs en fonction de la puissance thermique reçue
Pth(t) en reportant l’équation (4.48) dans les équations (4.49a) à (4.49c).

(4.50a)
ν(Pth(t)) = Vréaction × k0

× exp
( −Ea

R × kT
× Pth(t)−1/4

)

(4.50b)Hr(Pth(t)) = 5,16 × 10−6 − 161,32 × kT × Pth(t)1/4

− 2,66 × 10−2 × k2
T × Pth(t)1/2

(4.50c)∆H(Pth(t))

=



−3,03 × 10−9

5
× k5

T × P
5/4
th + 7,34 × 10−6

4
× k4

T × Pth − 6,8 × 10−2

3
× k3

T × P
3/4
th

+3,01 × 10−1

2
× k2

T × P
2/4
th + 41,6 × kT × P

1/4
th − ∆H(t) si 1063W ≤ Pth(t) ≤ 33 279W

−1,06 × 10−5

3
× k3

T × P
3/4
th + 3,127

2
× k2

T × P
1/2
th + 522,6 × kT × P

1/4
th − ∆H(t)

si 33 279W < Pth(t) ≤ 2 308 664W

Nous devons donc estimer les trois grandeurs ν(Pth(t)), Hr(Pth(t)) et ∆H(Pth(t)) repré-
sentées sur la figure 4.5.

Calcul de la vitesse de réaction ν(Pth(t)) L’équation (4.49a) présente une fonction
non-linéaire de la puissance thermique à l’intérieur d’une autre fonction non-linéaire.
Nous avons une écriture du type :

(4.51)A(t) = gc(fc(Pth(t)))
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Fig. 4.5. : Grandeurs intermédiaires au calcul du rendement de conversion du réacteur
en fonction de la puissance thermique Pth
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

Nous avons vu à la section 4.3 comment traiter une fonction puissance du type k × xα.
Nous allons maintenant appliquer une méthode similaire pour linéariser la fonction ex-
ponentielle5. Nous faisons appel au développement en série entière de la fonction expo-
nentielle présentée dans l’équation (4.52) :

(4.52)exp(x) = 1 +
+∞∑
n′=1

xn′

n′!
= 1 +

+∞∑
n′=1

n′∏
q′=1

x

q′

En appliquant l’équation (4.52) à l’équation (4.50a) nous pouvons écrire :

(4.53)ν(Pth(t)) = Vréaction × k0 ×

1 +
+∞∑
n′=1

( −Ea

R × kT

)n′

× Pth(t)−n′/4

n′!︸ ︷︷ ︸∑
ν


Une difficulté apparaît dans l’équation (4.53) : les termes consécutifs de la somme ∑ν

sont de signes différents. Cette alternance de signe pose un problème de convergence
de cette série. Pour cela, nous reformulons l’équation (4.53) en faisant intervenir un
majorant de −Ea

R × kT
×Pth(t)−1/4. Ce majorant est une fonction de la puissance minimale

nécessaire au fonctionnement de la centrale Pmin = DNILim ×SH , soit −Ea

R × kT
×P

−1/4
min :

(4.54a)
exp

( −Ea

R × kT
× Pth(t)−1/4

)
= exp

( −Ea

R × kT
× P

−1/4
min

)
× exp

( −Ea

R × kT
× Pth(t)−1/4 − −Ea

R × kT
× P

−1/4
min

)
En appliquant le DSE présenté à l’équation (4.52), on obtient :

(4.54b)

exp
( −Ea

R × kT
× Pth(t)−1/4

)
= exp

( −Ea

R × kT
× Pmin(t)−1/4

)

×

1 +
+∞∑
n′=1

( −Ea

R × kT
× Pth(t)−1/4 + Ea

R × kT
× P

−1/4
min

)n′

n′!


5Nous aurions pu adopter une démarche différente qui aurait consistée à traiter la fonction A(t) grâce

à un développement en série entière de Taylor, comme présenté à l’équation (4.15c). Nous avons
préféré conserver le développement en série entière de la fonction f × xα qui présente une excellente
convergence et réaliser un autre développement en série entière pour la fonction exponentielle. Il
pourrait être intéressant de compléter ce travail avec une approche par le développement en série de
Taylor dans un but de comparaison.
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En développant cette expression nous avons :

(4.54c)

exp
( −Ea

R × kT
× Pth(t)−1/4

)
= exp

( −Ea

R × kT
× Pmin(t)−1/4

)
︸ ︷︷ ︸

Λν

+
+∞∑
n′=1

exp
( −Ea

R × kT
× Pmin(t)−1/4

)
︸ ︷︷ ︸

Λν

×
n′∏

q′=1

A(t)︷ ︸︸ ︷
−Ea

R × kT
× Pth(t)−1/4 + Ea

R × kT
× P

−1/4
min

q′

En reportant l’équation (4.54c) dans l’équation (4.50a), nous obtenons :

(4.55)ν(Pth(t)) = Vréaction × k0 ×

Λν +
+∞∑
n′=1

Λν
n′∏

q′=1

A(t) + Ea

R × kT
× P

−1/4
min

q


Nous avons une grandeur A(t) semblable celle obtenue à l’équation (4.35), c’est à dire
de la forme k × P α

th. En appliquant la méthode présentée à la section 4.3, nous pouvons
remplacer A(t) par l’expression obtenue à l’équation (4.35) :

(4.56a)

ν(Pth(t)) = Vréaction × k0 ×

Λν +
+∞∑
n′=1

Λν
n′∏

q′=1

1
q′

×

∫
DΞ1

pΞ1(ξ1) dξ1 · · ·
∫

DΞn

pΞn(ξn) dξn

×

k × Λ̃0 +
+∞∑
n=1

k × Λ̃n ×
n−1∏
q=0

Pref (t) − ŵPth
q (t)

Pref (t)

+ Ea

R × kT
× P

−1/4
min


avec le poids de Monte Carlo ŵPth

q

(4.56b)ŵPth
q

=



H (DNI(t) < DNIl) × 0

+H (DNI(t) > DNIl) ×


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H (r2 /∈ R) × 0
+H (r2 ∈ R) ×DNI(t) × ρH

×(ωS(t) · nh1) × SH





et la puissance thermique de référence Pref (t)

(4.56c)Pref (t) = DNI(t) × SH

Nous voyons apparaître deux sommes infinies :
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

• la première somme en n concerne le développement en série entière de l’expression
k × xα

• la seconde somme en n′ concerne le développement en série entière de l’exponen-
tielle

À la section 4.3 nous avons déjà traité la somme en n. Nous appliquons la même méthode
pour stopper cette somme infinie grâce à un test de Bernoulli et nous reportons les
équations (4.38a) et (4.38b) :

(4.57a)ν(Pth(t)) = Vréaction × k0 ×

Λν +
+∞∑
n′=1

Λν
n′∏

q′=1

1
q′ ×

[
I0 + Ea

R × kT
× P

−1/4
min

]
avec le poids de Monte Carlo ŵprod

i

(4.57b)ŵprod
1 = Λ̃0

(4.57c)ŵprod
i = Λ̃0 +

i−1∑
n=1

Λ̃n

n−1∏
q=0

Pref (t) − ŵPth
q (t)

Pref (t)
× 1

Pi︸ ︷︷ ︸
=1

= Λ̃0 +
i−1∑
n=1

Λ̃n

et la récurrence :

(4.57d)Ii−1 =
∫

DΞi

pΞi(ξi) dξi

∫ 1

0
pRi(ri) dri ×

{
H (ri > Pi) × ŵprod

i

+H (ri < Pi) × Ii

}

Nous nous retrouvons alors avec une expression comportant une seule somme infinie en
n′. Nous allons introduire un test de Bernoulli, comme à la section 4.3 afin de pouvoir
tronquer cette expression sans introduire de biais. Pour cela il est nécessaire d’introduire
une probabilité PNn . Cette probabilité doit répondre à deux conditions :

(4.58a)
+∞∑
n =1

PNn = 1

(4.58b)PNn ∈ [0; 1]

Nous avons alors :

(4.58c)
ν(Pth(t)) = Vréaction × k0 ×

Λν +
+∞∑
n′=1

Λν × PNn

n′∏
q′=1

1
PNn

× 1
q′ ×

[
I0 + Ea

R × kT
× P

−1/4
min

]
De plus, afin de tronquer de façon efficace l’équation (4.54b), le choix de la probabilité
PNn est important : il va déterminer l’efficacité de l’algorithme. Cette probabilité va
définir l’ordre du développement en série entière que nous devrons atteindre.
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4.4. Mise en œuvre

Connaître la probabilité optimale revient à évaluer une grandeur A définie par l’équa-
tion (4.59a) avec un algorithme de Monte Carlo en une seule réalisation. Pour cela la
pdf optimale est définie par l’équation (4.59b) :

(4.59a)A =
∫ b

a
f(x) dx =

∫ b

a
pX(x) dx × f(x)

pX(x)

(4.59b)popt
X (x) = f(x)∫ b

a f(x) dx
= f(x)

A

Cela nécessite de connaître à priori la grandeur
A que l’on cherche à calculer. Alors que les résul-
tats des réalisations d’un algorithme de Monte Car-
lo sont habituellement distribués selon une gaus-
sienne, nous avons alors un dirac en A. Il s’agit
là d’un cas irréel : si l’on connaît une valeur,
nous ne mettrons pas en œuvre un algorithme de
Monte Carlo pour la retrouver. Nous pouvons tout
de même tirer parti de cette propriété dans le cadre
d’une démarche de variance nulle[80, 81]. Une ex-
pression analytique proche de la pdf optimale va
permettre d’accélérer la convergence d’un algori-
thme.

A

Remarque 5 : Probabilité optimale et variance nulle

La probabilité optimale P opt
Nn

est :

(4.60)P opt
Nn

= exp
( −Ea

R × kT
× P

−1/4
min

)
×

( −Ea

R × kT
× Pth(t)−1/4 − −Ea

R × kT
× P

−1/4
min

)n

exp
( −Ea

R × kT
× Pth(t)−1/4

)
× n!

Pour pouvoir utiliser l’équation (4.60) nous avons besoin de connaître la valeur de Pth(t)
avant de la calculer. Il nous faut donc trouver une probabilité assez proche de la pro-
babilité optimale P opt

Nn
que nous pouvons calculer sans avoir à connaître Pth(t). Nous

allons utiliser la puissance de référence Pref (t) minorée par un facteur 0,7 représentant
un rendement optique moyen estimé. Il vient :

PNn = exp
( −Ea

R × kT
× P

−1/4
min

)
×

( −Ea

R × kT
× (0,7 × Pref (t))−1/4 + Ea

R × kT
× P

−1/4
min

)n

exp
( −Ea

R × kT
× (0,7 × Pref (t))−1/4

)
× n!

(4.61)
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Chapitre 4. Estimation de la production d’une installation solaire à concentration

L’obtention d’une probabilité proche de la probabilité optimale nous permet de stopper
la somme infinie en n′ et ainsi d’obtenir une formulation intégrale de la vitesse de réaction
à partir de l’équation (4.58c) :

(4.62a)ν(Pth(t)) = J0

avec les récurrences

(4.62b)Jj−1 =
∫ 1

0
pR′

j
(r′

j) dr′
j ×

H
(
r′

j < PNj

)
× I0

+H
(
r′

j > PNj

)
× Jj


(4.62c)Ii−1 =

∫
DΞi

pΞi(ξi) dξi

∫ 1

0
pRi(ri) dri ×

{
H (ri > Pi) × ŵji

+H (ri < Pi) × Ii

}

avec les poids de Monte Carlo
(4.62d)ŵ11 = Vréaction × k0 × Λν × Λ̃0

(4.62e)
ŵji = Vréaction × k0 × Λν ×

1 +
j∑

n′=1

n∏
q′=1

1
q′ × PNq′

×
[
Λ̃0 +

i−1∑
n=1

Λ̃n − −Ea

R × kT
× P

−1/4
min

]
Le calcul de la vitesse de réaction ν(Pth(t)) présente plus de difficulté que le calcul des
autres grandeurs du fait de la double récursivité. Pour cela, nous allons présenter un
algorithme spécifique pour le calcul de cette grandeur. Les équations (4.62a) à (4.62e)
ont une correspondance stricte avec l’algorithme 4.4.

Calcul de l’enthalpie de réaction Hr(Pth(t)) L’équation (4.50b) présente une somme
de deux expressions de la forme k×xα. Afin d’estimer l’enthalpie de réaction à l’intérieur
du réacteur, nous réalisons donc l’algorithme 2.2 à deux reprises avec des paramètres k
et α adaptés.

Calcul de la variation d’enthalpie ∆H(Pth(t)) Nous ne prenons en compte qu’une seule
des expressions de la variation d’enthalpie : le cas où Pth > 33 279W. L’équation (4.50c)
présente une somme de deux expressions de la forme k ×xα. Afin d’estimer l’intégrale de
la chaleur massique par rapport à la température à l’intérieur du réacteur, nous réalisons
donc l’algorithme 2.2 à trois reprises avec des paramètres k et α adaptés.

Calcul du rendement de conversion moyen annuel ⟨ηréacteur⟩ Nous savons à pré-
sent exprimer toutes les composantes permettant de calculer le rendement de conversion
moyen annuel. Nous écrivons ci-après la formulation intégrale de cette grandeur. Celle-ci
nous permettra de construire par la suite un algorithme de Monte Carlo.
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4.4. Mise en œuvre

Algorithme 4.4 : Estimation de la vitesse de réaction ν(Pth(t))

(1) La valeur 1 est affectée à l’indice j

(2) Un instant t est uniformément échantillonné sur le temps de vie de la centrale solaire

(3) L’algorithme 2.2 est réalisé pour déterminer la puissance thermique Pth à l’instant t par l’équa-
tion (4.6a)

(4) Un nombre aléatoire r′
j est uniformément échantillonné entre 0 et 1 suivant la pdf pR′

j

(5) La probabilité PNj est calculée suivant la loi adéquate

(6) L’algorithme 4.3 est réalisé avec k = −Ea

R × kT
et α = −1/4

(a) Si r′
j > PNj la génération de vecteurs aléatoires est stoppée et le poids est calculé suivant

ŵij et l’algorithme boucle à l’étape (7)

(b) Sinon, l’algorithme boucle à l’étape (3) et l’indice j est incrémenté de 1

(7) L’algorithme boucle à l’étape (2) jusqu’à obtention du nombre de réalisations souhaitées

(4.63a)

⟨ηréacteur⟩ =
∫

Dτ

pτ (t) dt

∫
DΞ1

pΞ1(ξ1) dξ1

∫ 1

0
pR′

1
(r′

1) dr′
1 × 1

ŵPth
× J0

×





∫ 1
0 p

R
H1
1

(rH1
1 ) drH1

1 ×

H
(
rH1

1 > P H1
1

)
× ŵH1

1

+H
(
rH1

1 < P H1
1

)
× IH1

1


+
∫ 1

0 p
R

H2
1

(rH2
1 ) drH2

1 ×

H
(
rH2

1 > P H2
1

)
× ŵH2

1

+H
(
rH2

1 < P H2
1

)
× IH2

1


+5,96 × 106



+



∫ 1
0 p

R
H3
1

(rH3
1 ) drH3

1 ×

H
(
r1

1 > P H3
1

)
× ŵH3

1

+H
(
rH3

1 < P H3
1

)
× IH3

1


+
∫ 1

0 p
R

H4
1

(rH4
1 ) drH4

1 ×

H
(
rH4

1 > P H4
1

)
× ŵH4

1

+H
(
rH4

1 < P H4
1

)
× IH4

1


+
∫ 1

0 p
R

H5
1

(rH5
1 ) drH5

1 ×

H
(
rH5

1 > P H5
1

)
× ŵH5

1

+H
(
rH5

1 < P H5
1

)
× IH5

1


−∆H(t)




avec les récurrences
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(4.63b)Jj−1 =
∫ 1

0
pR′

j
(r′

j) dr′
j ×

H
(
r′

j < PNj

)
× Iν

0

+H
(
r′

j > PNj

)
× Jj


(4.63c)Iν

i−1 =
∫

DΞν
i

pΞν
i
(ξν

i ) dξν
i

∫ 1

0
pRν

i
(rν

i ) drν
i ×

{
H (rν

i > P ν
i ) × ŵν

ji

+H (rν
i < P ν

i ) × Iν
i

}

(4.63d)Ik
i−1 =

∫
DΞk

i

pΞk
i
(ξk

i ) dξk
i

∫ 1

0
pRk

i
(rk

i ) drk
i ×

H
(
rk

i > P k
i

)
× ŵk

i

+H
(
rk

i < P k
i

)
× Ik

i


et les poids de Monte Carlo

(4.63e)ŵPth =


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H (r2 /∈ T ) × 0
+H (r2 ∈ T ) ×DNI(t) × ρH

×(ωS(ξ1, t) · nh(ξ1)) × SH



(4.63f)ŵ11 = Vréaction × k0 × Λν × Λ̃0

(4.63g)
ŵji = Vréaction × k0 × Λν ×

1 +
j∑

n′=1

n∏
q′=1

1
q′ × PNq′

×
[
Λ̃0 +

i−1∑
n=1

Λ̃n + Ea

R × kT
× P

−1/4
min

]
(4.63h)ŵk

1 = Λ̃0

(4.63i)ŵk
j = kk ×

Λ̃0 +
j−1∑
n=1

Λ̃n


(4.63j)Λ̃0 = Pref (t)α

(4.63k)Λ̃n = Pref (t)α ×
n−1∏
q=0

q − αk

q + 1

(4.63l)P k
i = Pref (t) − DNI(t) × ρH(ωS(ξk

i , t) · nh(ξk
i )) × SH

Pref (t)

4.4.2.2. Simulation et résultats

Afin de définir une géométrie pour le réacteur, nous utilisons les données proposées
par Schunk, Lipiński et Steinfeld [79] présentées dans le tableau tableau 4.5. Nous
considérons deux réacteurs (10 kW et 1MW). Nous comparons dans un premier temps
les estimations des rendements à la puissance nominale avec des valeurs présentées dans
la littérature puis nous estimons le rendement annuel de ces réacteurs. Nous pouvons
remarquer que l’algorithme 4.5 demande un nombre de réalisations plus important par
comparaison avec l’algorithme 3.1.
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Fig. 4.6. : Rendement de conversion d’un réacteur de 1MW en fonction de la puissance
thermique Pth

Algorithme 4.5 : Estimation de la productivité moyenne ⟨η⟩

(1) Un instant t est uniformément échantillonné sur le temps de vie de la centrale solaire

(2) L’algorithme 2.2 est réalisé pour déterminé la puissance thermique Pth à l’instant t par l’équa-
tion (4.6a)

(3) L’enthalpie de réaction est estimée par deux réalisations de l’algorithme 4.3 pour k = 161,32×kT

et α = 1/4 puis pour k = 2,66 × 10−2 × k2
T et α = 1/2

(4) L’intégrale de la chaleur massique est estimée par deux réalisations de l’algorithme 4.3 pour
k = 2,127 × kT et α = 1/4 puis pour k = 1,06 × 10−5 × k2

T et α = 1/2

(5) La vitesse de réaction est estimée par la réalisation de l’algorithme 4.4

(6) Le rendement du réacteur à l’instant t est estimé par l’équation (4.45b) et l’algorithme boucle
à l’étape (1) jusqu’à atteindre le nombre de réalisations voulu
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Tab. 4.5. : Dimensions et performance de réacteurs solaires

Réacteur 10 kW Réacteur 1MW
Diamètre de l’ouverture mm 60 600
Diamètre de la fenêtre mm 240 790
Diamètre de la cavité mm 160 1600
Longueur de la cavité mm 230 2400
Rendement issu de [79] % 1,1 55,9

Rendement estimé par l’algorithme 4.5 % 2,2 40,2

La convergence de l’algorithme 4.5 est comparé à l’algorithme 3.1 dans le tableau 4.6.
Nous voyons que ce nouvel algorithme met un temps non négligeable à converger à 1%
d’erreur. Les différentes récursivités, principalement lors de l’estimation de la vitesse de
réaction ν(Pth(t)) avec la double récursivité, consomme du temps. Par contre, comme
indiqué dans le tableau 4.7, les calculs faisant appel au développement en série entière
d’une fonction du type puissance ne nécessite pas l’atteinte d’ordre de développement
important (Hr(Pth(t)) et ∆H(Pth(t))) . En fait, si nous réalisons une comparaison avec
ce que nous avions à la section 4.4.1 pour une fonction de conversion peu non-linéaire,
nous remarquons que l’ordre du développement est le même alors que nous traitons des
fonctions ayant des non-linéarités plus importantes.

Tab. 4.6. : Temps de calcul et nombre de réalisations à 1% d’erreur pour le calcul de
l’énergie thermique Pth et le rendement de conversion chimique annuel moyen

Eth ⟨ηréacteur⟩
Temps de calcul en s 39,8 453
Nombre de réalisations 595 266 2 871 679

Tab. 4.7. : Nombre d’ordre des développements en série entière

Expression Nombre d’ordre du DSE
ν 11,75
Hr(Pth(t)) 1,08
∆H(Pth(t)) 1,08

4.5. Conclusion
Au cours de ce chapitre nous avons proposé une extension de la MMC en appliquant la
même méthodologie que J. Dauchet dans sa thèse pour le cas des photobioréacteurs.
Cette méthode permet d’estimer des grandeurs non linéaires avec des algorithmes de
Monte Carlo. Nous avons appliqué pour la première fois cette méthode aux centrales so-
laires à concentration et plus spécifiquement à deux filières de transformation de l’énergie
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Chapitre

5
Méthodes d’optimisation :
cas des centrales solaires à
concentration

Résumé

D’un point de vue mathématique, l’optimisation est la spécialité cherchant à analyser et à
résoudre des problèmes par l’identification du meilleur élément d’un ensemble. Une fonction,
généralement appelée fonction objectif ou fonction coût, permet d’évaluer chaque élément de
l’ensemble pour déterminer l’élément optimum selon un critère quantitatif. Réaliser ce type
d’opération afin d’optimiser les performances d’une installation de production d’énergie est
complexe. De nombreux paramètres entrent en ligne de compte lorsque l’on veut décrire de
tels procédés. Ceci est d’autant plus vrai si ce procédé est basé sur une énergie renouvelable
où la source d’énergie est discontinue comme l’énergie solaire. Nous ne cherchons pas à
développer une méthode d’optimisation appliquée à l’énergie solaire : c’est un champ de
recherche vaste qui fait d’ores et déjà l’objet d’études poussées [82, 83]. Nous cherchons
à définir quelle méthode est à même de répondre au mieux à notre problématique. Pour
cela, après avoir réalisé une revue succincte des différentes familles de méthodes couramment
employées, ce chapitre présentera les critères de sélection qui nous ont amenés à faire le choix
de l’optimisation par essaim particulaire (OEP). Nous présenterons ensuite cette méthode
d’optimisation puis nous en proposerons une évolution.
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Notations
Hf Matrice hessienne de la fonction objectif [-]
Jf Matrice jacobienne de la fonction objectif [-]
αk Pas de descente à l’itération k [-]
γk Scalaire agissant sur la direction de l’itération k − 1 [-]
x∗ Vecteur des variables optimales x∗

i [-]
x Vecteur des variables d’optimisation xi [-]
c1 Paramètre cognitif de l’OEP [-]
c2 Paramètre social de l’OEP [-]
dk Direction de descente à l’itération k [-]
fobj Fonction objectif [-]
gi Fonctions des inégalités contraintes [-]
hi Fonctions des égalités contraintes [-]
k Itération d’un algorithme d’optimisation [-]
pi Meilleure position d’une particule de l’essaim [-]
pi Meilleure position de la particule i [-]
rdi Nombre aléatoire uniformément échantillonné dans [0; 1] [-]
vk

i Vitesse de la particule i à l’itération k [-]
w Paramètre d’inertie de l’OEP [-]
xk

i Position de la particule i à l’itération k [-]
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5.1. Méthodes numériques de recherche d’optimum
Les problématiques rencontrées au jour le jour par les scientifiques et ingénieurs sont
généralement dépendantes de plusieurs variables. De ce fait, une opération d’optimisa-
tion revient à trouver un optimum parmi une multitude de cas. En effet, les variations
de chaque variable, indépendamment les unes des autres, générent une multitude de
solutions possibles. Résoudre un problème d’optimisation équivaut donc à rechercher,
parmi ces solutions répondant aux contraintes imposées, la ou les solutions répondant
le mieux à la problématique. Des techniques mathématiques ont donc été développées
pour répondre à ces questions, à la fois en termes de pertinence du résultat et en termes
de rapidité de calcul.

5.1.1. Notion de conception optimale
L’optimisation géométrique constitue un cas particulier des problèmes de conception
optimale. En effet, en opposition aux problèmes dit de valeurs aux frontières pour
lesquels la géométrie existe et où l’on recherche par exemple une distribution optimale de
la température ou du flux de chaleur sur une surface, les problèmes dit géométriques
ont pour but la définition d’une géométrie optimale pour des conditions aux limites don-
nées (flux de chaleur ou profil de température sur une surface) [84]. Ces travaux de thèse
s’inscrivent dans cette classe de problèmes. En effet, nous voulons définir les variables
de conception régissant l’élaboration d’une centrale solaire à récepteur central. Ces pa-
ramètres concernent en premier lieu le champ d’héliostats (forme du champ, nombre et
taille des héliostats, ...), la hauteur de la tour (dans le cas d’une centrale à tour) ou
la forme du réflecteur secondaire (dans le cas d’une installation « beam down »). Le
choix final de ces variables est soumis à diverses contraintes auquel l’optimum (ou les
optimums) doit répondre. En effet, il faut entre autres veiller à ce que la taille et la
hauteur des installations (tour ou « beam down ») soient réalistes, le champ d’héliostats
doit avoir une surface au sol la plus faible possible, présentant des ombrages et blocages
minimaux.

5.1.2. Démarche générale
Un problème d’optimisation débute en général par la transcription du problème en une
(ou plusieurs1) fonction objectif, mesurant la qualité de la solution utilisée. La première
étape est donc la définition de cette fonction et des éléments composant les contraintes du
problème. Les éléments connus sont les paramètres du problème. Les éléments inconnus
devenant les variables du problème. Mathématiquement, cela revient à chercher le vecteur
x∗ tel que :

(5.1)x∗ = [x∗
1, x∗

2, . . . , x∗
n]

Ce vecteur doit satisfaire les m inégalités contraintes :
1Dans le cas d’une optimisation multi-objectif, nous avons un vecteur de fonctions à optimiser.
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(5.2)gi(x) ≥ 0 avec i = 1, 2, . . . , m

les p égalités contraintes :
(5.3)hi(x) = 0 avec i = 1, 2, . . . , p

et optimiser la fonction objectif :
(5.4)fobj(x)

avec x = [x1, x2, . . . , xn] le vecteur des variables de décision. Nous cherchons donc, parmi
l’ensemble des nombres résolvant les équations (4.42), (5.2) et (5.4), l’ensemble particulier
x∗

1, x∗
2, . . . , x∗

n qui induit les valeurs optimales pour la fonction objectif.
Deux approches sont possibles lorsque l’on souhaite réaliser l’optimisation d’un système :

Les méthodes complètes Toutes les solutions possibles sont calculées puis comparées
afin de retenir la meilleure : l’exploration complète de l’espace des solutions garantit
l’obtention de l’optimum. D’un point de vue du temps de calcul, c’est une méthode
à éviter.

Les méthodes approchées Également appelées approximatives, elles explorent une sous-
partie de l’espace de recherche. Ce sont des méthodes locales partant d’un point
de l’espace des solutions considéré comme « bon » pour essayer d’améliorer cette
solution.

5.1.3. Des méthodes d’optimisation
Dans cette section, nous allons présenter différentes méthodes de recherche d’optimum
ainsi que leurs algorithmes. Le but n’est pas de réaliser une présentation exhaustive de
toutes les méthodes existantes mais plutôt de dresser un paysage synthétique des diffé-
rentes approches que l’on rencontre lorsque l’on s’intéresse aux méthodes d’optimisation.
De ce fait, les méthodes présentées ci-après nous semblent être les plus représentatives.
Une fois définie la fonction à optimiser, il s’agit de choisir une méthode adaptée au pro-
blème que l’on souhaite résoudre. Nous avons fait le choix de classer ces méthodes en
deux grandes familles :

Méthodes déterministes Elles exécutent toujours la même suite d’opérations.
Méthodes stochastiques Également appelées probabilistes, elles sont guidées par des

tirages aléatoires.

5.1.3.1. Méthodes déterministes

Méthodes de descente Les méthodes de descente regroupent un ensemble de méthodes
dont le principe général repose sur un procédé itératif de recherche d’optimum. Elles
consistent à optimiser successivement la fonction objectif par une suite d’évaluations.
Une itération s’effectue toujours en deux étapes bien distinctes :

• Le calcul d’une direction de descente qui consiste à déterminer vers quelle direction
d nous devons parcourir la fonction objectif ;
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• Le calcul du pas de descente qui détermine la distance parcourue dans cette direc-
tion ;

Elles démontrent une grande efficacité pour les problèmes où l’évaluation de la fonction
objectif est très rapide ou lorsque que l’on connaît a priori la forme de cette fonction.
Elles risquent par contre de converger vers un minimum local et dépendent de ce fait de
l’initialisation du problème. Les différentes méthodes de descente sont caractérisées par
la façon dont la direction de descente d est calculée et par la valeur du pas de descente
α dans la direction d. Cette approche a été proposée initialement par Rosenbrock en
1960[85].

Algorithme 5.1 : Algorithme général des méthodes de descente

(1) Initialisation de l’algorithme avec le choix d’une position de départ x0

(2) Évaluation de la fonction objectif pour le point xk

(3) Calcul de la direction de descente dk

(4) Calcul du pas de descente αk

(5) Calcul de la position xk+1

(6) Si le critère d’arrêt n’est atteint, l’algorithme boucle à l’étape (2)

Méthode de la descente de gradient Concernant la méthode du gradient, également nom-
mée méthode de plus forte pente, l’idée est simple : elle consiste à prendre comme di-
rection de descente d la direction opposée au gradient de la fonction objectif au point
x :

(5.5a)dk = −Jf (xk)

Où Jf est la matrice jacobienne de la fonction objectif fobj . Le nouveau point xk+1 où
la fonction objectif est estimée est alors

(5.5b)xk+1 = xk + αk × dk

Cette méthode présente une vitesse de convergence très faible n’est plus utilisée mais
sert de base à toutes les méthodes modernes [86].

Méthode du gradient conjugué Un procédé d’accélération consiste à ajouter à la direction
calculée par la méthode du gradient un multiple de la direction précédente. On a alors
à la première itération la direction définie selon la méthode du gradient puis pour les
itérations suivantes :

(5.6a)dk = −Jf (xk) + γk × dk−1
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Le nouveau point xk+1 où la fonction objectif est estimée est alors
(5.6b)xk+1 = xk + αk × dk

Cette méthode introduit un concept fondamental des méthodes modernes : le calcul de
la direction dépend de l’itération précédente. Toutefois, la tendance actuelle est à son
abandon [86]. Plusieurs formules permettent de calculer le coefficient de conjugaison
γ. Toutefois, ces méthodes sont lentes et ralentissent à mesure que l’on converge vers
l’optimum local.

Méthode de Newton La méthode de Newton, dérivée d’un développement fait appel aux
dérivées secondes de la fonction objectif lors du calcul de la direction de descente.

(5.7a)dk = −Hf (xk) × Jf (xk)

Où Hf est la matrice hessienne de la fonction objectif fobj . Le nouveau point xk+1 où la
fonction objectif est estimée est alors

(5.7b)xk+1 = xk + αk × dk

Conformément au cadre général des méthodes de descente, après avoir déterminé la
direction de descente, on effectue une recherche linéaire le long de cette direction. Cette
méthode a pour principal inconvénient le calcul des dérivées secondes. Pour éviter cela,
des méthodes de quasi-Newton ont été mises au point. Elles consistent à définir une
estimation de la matrice hessienne [86]. Parmi ces méthodes nous pouvons notamment
citer la méthode BFGS (Broyden-Fletcher-Goldfarb-Shanno).
Toutes ces méthodes de descente sont des méthodes locales, elles sont donc dépendantes
du point de départ de l’optimisation. Dans le cas de fonctions objectif convexes2, l’at-
teinte d’un optimum global relève du coup de chance. De plus, ces méthodes convergent
lentement, notamment à l’approche du minimum local (les gradients tendent alors vers
zéro).

Méthode du Simplex Une autre méthode qui a connu un certain succès, est la méthode
de Nelder et Mead, ou méthode du Simplex. Elles consistent à évaluer la fonction objectif
en un ensemble de n + 1 vecteurs des variables de la fonction objectif (formant un
simplexe de dimension n ), puis à déplacer cet ensemble dans l’espace des variables
selon les résultats obtenus. Ces approches ont été proposées par Spendley, Hext et
Himsworth en 1962 [87], étendues par Nelder et Mead en 1965 [88] et revisitées plus
récemment par Dennis et Torczon en 1991 [89].

2La dérivée seconde de la fonction objectif est toujours de même signe sur le domaine de définition
étudié.
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Algorithme 5.2 : Algorithme du Simplex

(1) On commence par calculer la fonction objectif fobj de n paramètres pour n + 1 points formant
un polyèdre non dégénéré (un triangle dans R2, un tétraèdre dans R3, etc). Une telle figure est
appelée un simplexe.

(2) À partir de ces n + 1 valeurs de fobj , on détermine celui donnant la pire valeur que l’on appelle
xi. x∗ est le centre de gravité du simplexe. Sur la demi-droite issue de xi et passant par x∗ , on
détermine un nouveau point xi+1 tel que f(xi+1) soit une meilleure solution de fobj(xi).

(3) L’algorithme boucle à l’étape (1) tant que le volume du simplexe est supérieur à un critère
donné.

Méthodes d’interpolation Elles consistent à interpoler localement la fonction objectif
en différents vecteurs des paramètres, puis à minimiser localement cette interpolation
dans une région de confiance. Le résultat permet alors de mettre à jour les supports
de l’interpolation, dans une procédure itérative. Ces méthodes ont été proposées par
Winfield en 1973 [90], puis revisitées par Powell en 1994 [91, 92] et d’autres auteurs
récemment [93, 94, 95].

5.1.3.2. Méthodes stochastiques

Ces méthodes globales sont utilisées dans les cas plus complexes (temps de calcul im-
portant, nombreux optima locaux, fonctions non-dérivables, fonctions bruitées, etc) pour
lesquels elles sont plus efficaces que les méthodes déterministes. Ces méthodes utilisent
des processus aléatoires permettant d’explorer l’espace de recherche plus efficacement.
Elles sont donc particulièrement adaptés aux fonctions objectifs présentant de nombreux
minima locaux.

Algorithmes évolutionnaires Ces algorithmes se basent sur la théorie de l’évolution de
Darwin. Le principe consiste en la simulation de l’évolution d’une population d’indivi-
dus divers auxquels on applique différents opérateurs génétiques (croisement, mutation).
Chaque génération est ensuite soumise à un processus de sélection. Ces algorithmes sont
de plus en plus utilisés dans l’industrie car ils sont particulièrement adaptés aux pro-
blèmes d’optimisation comportant de nombreux paramètres [96]. Initialement proposée
en 1975 par Holland [97], ils ont été popularisés par les travaux de Goldberg et al.
[98].

Algorithmes d’intelligence artificielle en essaim Ils sont basés sur une analogie avec le
comportement collectif de groupes d’insectes et d’animaux. Chaque membre du groupe
tend à trouver la meilleure source de nourriture, compte tenu de sa mémoire et des
communications venant des autres membres. Ces algorithmes ont été mis en oeuvre par
Kennedy et Eberhart en 1995 [99]. De nombreuses variantes ont vu le jour :
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Algorithme 5.3 : Algorithme génétique

(1) Initialisation aléatoire de la population à la génération k = 1

(2) Évaluation de chaque individu de la population grâce à la fonction objectif

(3) Sélection des meilleurs individus
(4) Croisement et mutation des individus sélectionnés afin d’obtenir la génération k + 1

(5) Évaluation du critère d’arrêt
(a) Si le critère n’est pas atteint, l’algorithme boucle à l’étape (2)

(b) Sinon, l’algorithme s’arrête et l’on obtient les résultats

• Essaim particulaire
• Colonie de fourmi
• etc

5.1.3.3. Méthodes hybrides

Les méthodes hybrides consistent en l’association de au moins deux méthodes d’optimi-
sation dans le but d’en combiner les performances. L’objectif est de parcourir l’ensemble
de la fonction objectif fobj avec une méthode globale permettant d’atteindre l’optimum
global type méthodes stochastiques combinée à une méthode locale permettant d’ob-
tenir plus rapidement l’optimum une fois la région optimale atteinte type méthodes de
descente. Un grand nombre d’études portent sur ces méthodes mettant en lumière leur
efficacité [100, 101, 102, 103, 104].

5.1.3.4. Bilan

Nous avons passé en revue les méthodes d’optimisation les plus couramment rencontrées
ainsi que leurs avantages leurs inconvénients.
Nous allons à présent porter notre attention sur l’optimisation de procédés basés sur
l’énergie solaire concentrée afin d’en définir les spécificités qui guideront notre choix
d’une méthode d’optimisation permettant de répondre à notre problématique.

5.2. Optimisation et solaire à concentration
L’utilisation d’énergies renouvelables afin de répondre aux besoins toujours croissants
d’énergie au niveau mondial amène les acteurs de la production d’énergie impliqués dans
leur développement à s’interroger quant à la maximisation de leurs performances. De
ce fait, de nombreux travaux portent sur l’optimisation de tels systèmes. Ils mettent en
avant le caractère fortement discontinu des fonctions objectifs utilisées ainsi que l’utilisa-
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tion de plus en plus fréquente de méthodes d’optimisation métaheuristiques3 [105]. Cette
remarque est également valable si l’on considère plus précisément l’énergie solaire comme
c’est le cas dans ce manuscrit. Les fonctions objectifs que l’on cherche à optimiser sont en
général non-convexes du fait de la complexité du système et du nombre de paramètres.
La recherche d’optimum passe donc plutôt par l’utilisation de méthode d’optimisation
globale et non locale. Des méthodes telles que les algorithmes génétiques, les réseaux
neuronaux articifiels[83], les algorithmes de colonies de fourmis [106], l’optimisation par
essaim particulaire (OEP)[107], la méthode du recuit simulé (Simulated Annealing) (SA)
et autres [108, 109] sont couramment utilisées dans le but d’optimiser des systèmes à
énergie solaire concentrée [82, 110]. Il est donc pertinent d’orienter notre réflexion vers
ces méthodes stochastiques. Afin de faire un choix judicieux parmi ces méthodes, il est
important de bien analyser et comprendre l’objet de l’optimisation à laquelle nous allons
procéder qui va porter sur la conception de centrale solaire à récepteur central à tour
et de type « beam down ». En premier lieu, si l’on considère la génération d’un champ
d’héliostats selon la méthode présentée à la section 2.2.3.2, la modification, même très
faible, d’une cote des héliostats entraine la génération de champs d’héliostats pouvant
avoir des performances optiques différentes . Nous serons donc confrontés à l’apparition
de discontinuités lors de l’évaluation des performances d’une centrale dont les paramètres
d’optimisation concerne la conception du champ d’héliostats. De plus, contrairement à la
méthode de conception de centrale « beam down » proposé par Segal [61], nous souhai-
tons optimiser conjointement le champ d’héliostats et la tour, quel que soit son type (à
tour ou « beam down »). Nous avons fait le choix d’utiliser la méthode de l’optimisation
par essaim particulaire à partir des critères suivants :

1. elle a démontré sa capacité à s’adapter à des fonctions objectifs discontinues [111]
2. elle est simple à mettre en œuvre comme présenté à la section suivante
3. elle est robuste : lors d’études ayant pour but de comparer des méthodes d’opti-

misation appliquées à des problèmes spécifiques, elle répond souvent de façon très
satisfaisante même si d’autres méthodes sont ponctuellement plus performantes
[111]

4. elle est évolutive comme le prouvent les nombreuses méthodes dérivées [112, 113,
114, 115, 116, 117]

5. même si elle semble basée sur une idée essentiellement intuitive, sa pertinence d’un
point de vue mathématique a été prouvé [118]

5.3. Optimisation par essaim particulaire
L’optimisation par essaim particulaire (OEP) est une métaheuristique d’optimisation.
Elle a été proposée par Kennedy et Eberhart [99]. Cet algorithme s’inspire du monde
vivant. Plus précisément, il s’appuie sur des travaux ayant pour but de simuler artifi-
ciellement la vie (déplacements de groupes d’oiseaux ou de bancs de poissons) [119].

3Les métaheuristiques forment une famille d’algorithmes d’optimisation visant à résoudre des classes
générales de problèmes mathématiques en combinant des procédures de recherche pour trouver rapi-
dement une bonne approximation de la meilleure solution.
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Principe de la méthode L’essaim est initialisé avec un placement aléatoire des parti-
cules (membres de l’essaim) sur l’espace des possibles et la recherche d’optimum global
se fait par la mise à jour itérative de l’essaim. Contrairement aux algorithmes génétiques,
l’OEP ne fait pas appel à des opérateurs évolutionnaires tels que les croisements ou les
mutations. Chaque particule parcourt l’espace des solutions à la recherche de l’optimum
global de la fonction objectif. Pour cela, la particule est influencée par ses propres ré-
sultats d’exploration passés mais également par les résultats de l’ensemble de l’essaim.
C’est en cela que cette méthode d’optimisation tient compte du comportement social
d’individus au sein d’un groupe ainsi que d’un effet de mémoire.
l’algorithme se constitue de :

xi
k La position d’une particule i à l’itération k

vi
k La vitesse d’une particule i à l’itération k

pi La meilleure position d’une particule i
pg La meilleure position de l’essaim
c1 Le paramètre cognitif
c2 Le paramètre social
rd1 et rd2 Des nombres aléatoires compris entre 0 et 1 échantillonnés uniformément
w Un paramètre d’inertie

Algorithme 5.4 : Algorithme d’optimisation par essaim particulaire

(1) Chaque particule de l’essaim est initialisée aléatoirement à l’itération k = 0 : xi
0 et vi

0.

(2) La fonction objectif fobj est évaluée pour chaque particule.

(3) Si fobj(xi
k) > fobj(pi), alors la meilleure position de la particule i pi est mise à jour.

(4) Si fobj(xi
k) > fobj(pg), alors la meilleure position de l’essaim pg est mise à jour.

(5) Si l’objectif est satisfait ou si le nombre d’itération kmax est atteint, l’algorithme s’arrête.

(6) Sinon, les vitesses de chaque particule sont mises à jour :
vi

k+1 = w × vi
k + c1 × rd1 × (pi − xi

k) + c2 × rd2 × (pg − xi
k)

(7) Puis les positions sont mises à jour :
xi

k+1 = xi
k + vi

k+1

(8) L’algorithme boucle à l’étape (2) avec une incrémentation à k + 1

Optimisation sous contraintes et hybridation de l’OEP L’OEP est utilisée également
pour des problèmes d’optimisation sous contraintes. Toutefois, la formulation générale
présentée précédemment n’est pas propice à cette utilisation. Il faut donc procéder à
des modifications de cette formulation. De nombreux travaux portant sur ces problé-
matiques existent [120]. Dans le cas de l’optimisation sous contraintes, l’idée générale
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qui prévaut consiste à initialiser les particules uniquement dans des régions de l’espace
répondant aux contraintes puis à modifier la procédure de sélection afin de ne retenir
que des particules satisfaisant ces contraintes. Il est également possible de tirer profit
de l’hybridation de l’OEP avec d’autres méthodes d’optimisation, notamment locales,
afin de limiter les faiblesses de chaque méthode. Un certain nombre d’OEP hybrides ont
été proposés avec un point commun : ces méthodes hybrides sont mises au point dans
la cadre d’applications spécifiques pour lesquelles elles sont particulièrement efficaces.
Banks, Vincent et Anyakoha ont réalisé une brève revue de ces méthodes [120].

5.4. Conclusion et perspectives
Dans ce chapitre nous avons passé en revue les différentes méthodes d’optimisation que
nous pouvons utiliser afin d’optimiser des centrales solaires à concentration. Nous avons
présenté les raisons nous ayant amenés à choisir la méthode d’optimisation par essaim
particulaire. Cet algorithme va nous permettre de générer au chapitre 6 plusieurs géomé-
tries de centrales solaires à concentration afin de trouver une configuration optimale. Son
couplage avec EDStaR constitue l’outil informatique de conception optimale que nous
souhaitions mettre en place au cours de cette thèse. Certaines perspectives s’offrent à
nous afin d’améliorer le process d’optimisation. Afin d’orienter le process d’optimisation
vers la solution optimale et ainsi d’accélérer la convergence de l’algorithme d’optimisa-
tion, l’intégration à l’optimisation par essaim particulaire de sensibilités aux variables
géométriques, telles qu’elles sont présentées au chapitre 7, à travers une hybridation
de l’OEP avec une méthode d’optimisation locale tirant parti du jacobien semble une
direction à creuser. De même, l’introduction de métamodèles afin de limiter l’appel aux
algorithmes de Monte Carlo , coûteux en temps de calcul par rapport à l’algorithme
d’optimisation, serait une option à ajouter à notre code de simulation.
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Chapitre

6
Modélisation et optimisa-
tion des installations de type
« beam down »

Résumé

Lors de ce chapitre, nous allons modéliser des centrales solaires de type « beam down »
puis nous mettrons en œuvre l’outil informatique de conception de centrales à récepteur
central pour quelques cas illustrant les potentialités de ce code. À ce titre, nous com-
parerons les performances de centrales à tour et de centrales « beam down » ainsi que
l’influence de certains paramètres tels que l’erreur de réflexion.
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6.1. Principe des centrales de type « beam down »
Nous avons présenté à la section 1.3 le principe des centrales solaires à réflecteur secon-
daire, également appelé « beam down ». Nous allons approfondir ci-après le principe et
la modélisation de ces installations.

6.1.1. Des surfaces quadratiques à double focale

De nombreuses études ont été réalisées afin de déterminer la forme la plus efficace pour
le réflecteur secondaire. Les principales conclusions donnent comme possibilité l’utilisa-
tion de géométries quadratiques (ellipsoïde1, hyperboloïde2). Ces géométries à symétrie
de révolution ont l’avantage de présenter deux points focaux comme le présentent les
figures 6.1a et 6.1b. Nous noterons toutefois que ces études ont donné de meilleurs résul-
tats pour les formes hyperboloïdes [121]. En effet, ces dernières ont pour particularité
d’avoir leurs deux points focaux de part et d’autre de la géométrie (voir figure 6.1a),
contrairement aux ellipsoïdes. Ceci entraine plusieurs faiblesses pour les ellipsoïdes si
l’on veut obtenir des taux de concentration semblables :

• Les tours doivent être plus hautes ;
• L’angle d’admission du miroir est inférieur ;
• Le chemin optique est plus long ;
• Le réflecteur est plus grand.

Nous en concluons que dans le cas d’une installation de grande taille, il n’y a pas de
raison d’utiliser un réflecteur ellipsoïdique plutôt qu’un réflecteur hyperboloïdique.

6.1.2. Avantages et inconvénients

L’inconvénient majeur de ce type de centrale provient de l’agrandissement de la tâche
solaire par le réflecteur [27, 121]. L’héliostat reçoit du rayonnement provenant du cône
solaire. La réflexion de ce rayonnement ne peux pas atteindre un point unique, même
si l’on considère des héliostats focalisants. De part et d’autre du point focal haut nous
voyons apparaître une tâche focale représentant la dispersion angulaire des rayons in-
cidents. Lorsque les rayons intersectent le réflecteur secondaire ils sont réfléchis vers le
récepteur. Or, ils ne sont pas tous réfléchis parfaitement vers le point focal bas en raison
de cette même dispersion angulaire. La tâche focale obtenue à l’entrée du récepteur est
alors de plus grand diamètre que la tache focale qui serait obtenue au point focal haut.
Ceci est représenté sur la figure 1.3. L’agrandissement est défini comme le rapport entre
le diamètre de l’image sur le second plan focal et le diamètre de l’image au point de visée
du champ d’héliostats tel que présenté dans l’équation (6.1a). Il s’agit d’une fonction du

1D’équation cartésienne
(

x2

a2 + y2

b2 + z2

c2 = 1
)

2Hyperboloïde à 2 nappes d’équation cartésienne
(

x2

a2 + y2

b2 − z2

c2 = −1
)
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Point focal bas

Point focal haut

(a) Hyperboloïde

Point focal bas

Point focal haut

(b) Éllipsoïde

Fig. 6.1. : Points focaux des figures quadratiques

rapport des distances du miroir au point focal haut et au point focal bas. Cette fonction
est linéaire pour une très grande part du rapport (voir équation (6.1b)) [29].

(6.1a)M = Dimage point focal bas

Dimage point focal haut

(6.1b)M = 0,09228 + 0,4299 × d2
d1

Des solutions permettant de limiter cette déformation existent mais elles entrainent
d’autres difficultés. Par exemple la diminution de la hauteur du réflecteur permet d’ob-
tenir une tâche solaire plus concentrée mais, dans le même temps, il faut agrandir le
réflecteur et l’angle d’admission des rayons arrivant sur le récepteur au sol augmente. Il
y a donc un compromis à trouver entre tous ces paramètres lors de la conception de la
centrale. Il faut également souligner les pertes optiques plus importantes, dues à la fois à
la double réflexion (héliostat-réflecteur secondaire) et à l’allongement du chemin optique.
Un autre facteur limitant à prendre en compte est l’augmentation de température que
subit le réflecteur secondaire. En effet, il est conseillé de se limiter à des températures de
l’ordre de 130 °C à 140 °C pour obtenir un temps de vie raisonnable du réflecteur secon-
daire avec un seuil acceptable maximum fixé à 160 °C [122]. Ces centrales présentent de
nombreux avantages. En premier lieu, elles sont moins couteuses en termes de génie civil
car il n’est pas nécessaire de maintenir en hauteur tout un ensemble d’équipement très
lourd (pompes, turbines, ...). Elles facilitent l’utilisation des technologies à sels fondus
car il n’y a plus besoin de pomper le sel fondu en haut de la tour. C’est cette technologie
qui a été choisie pour équiper l’installation du projet TokyoTech-Cosmo-MASDAR [27].
Des recherches ont été menées afin de mettre en lumière les écarts existants entre les
centrales à tour et celles de type « beam down » [29]. Les simulations réalisées pour
un champ d’héliostats donné, commun (ou comparable) aux deux types d’installation
concluent à une puissance nette obtenue dans le récepteur très voisine pour ces deux
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types de centrale. On peut toutefois remarquer que les centrales de type « beam down »
obtiennent de meilleurs résultats à mesure que l’aire de la surface réflective 3 s’accroît
[30]. On peut en conclure que cette technologie est adaptée aux installations de fortes
puissances.

6.1.3. Conception de centrale « beam down »
Une méthode de conception existante Segal et Epstein [123] ont proposé une mé-
thode de conception de centrale solaire à réflecteur secondaire. Cette méthode est basée
sur le calcul du rapport fh présenté dans l’équation (6.2). Il s’agit du rapport entre la
distance d1, soit la distance du sommet de l’hyperboloïde S au point focal haut f1, et
la distance d2 + d1, la distance d2 étant la distance du sommet S au point focal bas.
Les distances d1 et d2 définissent la valeur de fh et la forme de l’hyperboloïde. Il est a
noter que pour une valeur de fh égale à 0,73 on obtient le taux moyen de concentration
maximum [61]. La méthode de conception proposée se déroule en deux étapes. Tout
d’abord un champ d’héliostats est conçu selon un agencement radial étagé avec pour
objectif d’atteindre une puissance supérieure à la puissance nominale. Par la suite, les
héliostats présentant les contributions annuelles les plus faibles sont éliminées jusqu’à
l’obtention de la puissance nominale désirée. La deuxième étape consiste à dimensionner
le réflecteur secondaire et éventuellement un surconcentrateur.

(6.2)fh = d2
d1 + d2

6.1.4. L’avancée des « beam down »
Dans le but d’obtenir un prix de l’électricité compétitif dans un futur proche, des op-
timisations sont opérées sur les installations « beam down ». Nous voyons par exemple
émerger une solution consistant en plusieurs tours avec un champ d’héliostats pouvant
viser une tour parmi les autres suivant les paramètres d’ensoleillement, comme indiqué
sur la figure 6.3b. Ceci contraste avec l’utilisation habituelle des champs d’héliostats,
pour lesquels chaque héliostat vise uniquement une tour, présentée sur la figure 6.3a.
Le contrôle multi-tour du champ d’héliostats est plus efficace avec une augmentation
du flux incident reçu de 10% en moyenne et 20% maximum [124].Les installations de
type « beam down » sont aujourd’hui très peu nombreuses dans le monde mais elles
doivent permettre d’ouvrir la voie à des applications qui sont moins adaptées aux tours
classiques (hautes températures, cycle combiné à haut rendement, récepteur au sol et
champs circulaires).

3Aire totale du champ d’héliostats
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Point focal bas

Point focal haut

BD

d1

d2

Fig. 6.2. : Définition des distances d1 et d2 pour le calcul du paramètre de dimension-
nement fh

(a) Contrôle indépendant (b) Contrôle commun optimisé

Fig. 6.3. : Comparaison uni-tour - multi-tour
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6.2. Modélisation des centrales « beam down »
Nous définissons l’optique « beam down » en nous reportant à l’équation cartésienne de
l’hyperboloïde à deux nappes présentée dans l’équation (6.3). Afin de définir cette forme
dans l’environnement EDStaR, nous utilisons une paramétrisation de cette surface (voir
équation (6.4)) et nous intégrons cette paramétrisation dans le logiciel Physically Based
Rendering Techniques (PBRT). Il est ainsi possible d’utiliser la géométrie complexe de
l’hyperboloïde à deux nappes dans les simulations à venir. La forme de cette surface
géométrique est alors dépendante des valeurs des coefficients a, b et c. Ce sont ces coeffi-
cients que nous ferons varier lors du process d’optimisation afin d’obtenir l’hyperboloïde
la mieux adaptée au cas d’étude.

(6.3)x2

a2 + y2

b2 − y2

c2 = −1

(6.4)


x = a × sinh(u) × cos(v)
y = b × sinh(u) × sin(v)
z = c × cosh(u)

6.2.1. Modèle d’estimation la puissance thermique pour une centrale
« beam down »

Nous allons à présent modifier le modèle présenté à la section 2.2 afin de pouvoir l’utiliser
dans le cas d’une centrale de type « beam down ». La prise en compte d’un réflecteur
secondaire nous amène à modifier les équations (2.7a) et (2.7b). En effet, l’ajout d’une
réflexion amène l’introduction d’une nouvelle norme apparente lors de la réflexion sur
l’optique « beam down »4. L’estimation de la puissance thermique Pth dans le cas d’une
centrale de type « beam down » devient alors :

Pth =
∫

DH+
pR1(r1) dr1

∫
DΩS

pΩS (ωS) dωS
∫

DNh

pNh1(nh1|ωS ; b)
∫

DNh

pNh2(nh2|ω+; b′)

× ŵPth

(6.5a)

avec le poids de Monte Carlo ŵPth :

ŵPth =



H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H (r2 /∈ BD) × 0

+H (r2 ∈ BD) ×


H (r3 /∈ R) × 0
+H (r3 ∈ R) ×DNI × ρH × ρBD

×(ωS · nh1) × SH





(6.5b)

4Toutefois, le réflecteur secondaire est fixe et nous considérerons les réflexions comme spéculaires lors
des calculs qui vont suivre
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et les fonctions densité de probabilité :

(6.5c)pR1(r1) = 1
SH

(6.5d)pΩS (ωS) = 1∫
DΩS

dωS
= 1

2π(1 − cos θS)

(6.5e)pNh1(nh1|ωS ; b) =
1 + 1

b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ωS · n1)

)) × (nh1 · n1)1+ 1
b

pNh2(nh2|ωS ; b′) =
1 + 1

b′

2π ×
(

1 − cos2+ 1
b′

(
π

4
− 1

2
× arccos (ω+ · n2)

)) × (nh2 · n2)1+ 1
b′

(6.5f)

La figure 6.4 reprend de façon schématique la formulation intégrale présentée dans les
équations (6.5a) et (6.5b). Les équations (6.5a) et (6.5b) peuvent être traduites comme
un algorithme de Monte Carlo. Nous obtenons ainsi l’algorithme 6.1.

6.2.2. Modèle d’estimation l’énergie thermique pour une centrale « beam
down »

Nous allons à présent modifier le modèle présenté à la section 4.1 comme nous l’avons
fait pour l’estimation de la puissance thermique. Nous pourrons alors estimer l’énergie
thermique reçue annuellement au récepteur d’une installation « beam down ». La prise en
compte d’un réflecteur secondaire nous amène à modifier les équations (3.2a) et (3.2b).
L’estimation de l’énergie thermique Eth dans le cas d’une centrale de type « beam down »
devient alors :

(6.6a)Eth =
∫

Dτ
pτ(t) dt

∫
DH+

pr1(r1) dr1

∫
DΩS

pΩS
(ωs) dωS

∫
Dnh1

pnh1(nh1|ωS ; p) dnh1 × ŵEth

avec ŵEth le poids de Monte Carlo associé :
(6.6b)ŵEth

=



H (DNI(t) < DNIl) × 0

+H (DNI(t) > DNIl) ×



H (r0 /∈ S) × 0
+H (r0 ∈ S)

×


H (r2 /∈ BD) × 0

+H (r2 ∈ BD) ×


H (r3 /∈ R) × 0
+H (r3 ∈ R) ×DNI(t) × ρH × ρBD

×(ωS(t) · nh1) × SH







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r0S

n1

n2

nh

nh2

ωS

ω+

ω− ω+spec

ω−spec
H+

r3

r2

r1

R

BD

Fig. 6.4. : Représentation schématique de l’algorithme Monte Carlo Fixed Date
(MCFD) pour un « beam down » :

r1 Un point généré aléatoirement sur la surface réflective des héliostats H+ selon la fonction densité
de probabilité (pdf) présentée dans l’équation (6.5c).

ωS Une direction générée aléatoirement à l’intérieur du cône solaire ΩS selon la pdf présentée dans
l’équation (6.5d).

nh1 Une normale effective générée selon le modèle de Blinn autour de normale idéale n1 au point r1
selon la direction incidente ωS selon la pdf présentée dans l’équation (6.5e).

nh2 Une normale effective générée selon le modèle de Blinn autour de normale idéale n2 au point r2
selon la direction incidente ω+ selon la pdf présentée dans l’équation (6.5f).

r0 La première intersection entre le rayon issu de r1 dans le direction ωS et une surface qui pouvant
être le soleil, un autre héliostat, la tour ou le récepteur.

ω+ La direction obtenue par la réflexion spéculaire de la direction ωS selon la normale apparente nh1
au point r1.

ω+spec La direction obtenue par la réflexion spéculaire de la direction ω+spec selon la normale apparente
nh2 au point r2.

r2 La première intersection entre le rayon issu de r1 dans le direction ω+ et une surface pouvant être
le réflecteur secondaire, un autre héliostat ou le récepteur.

r3 La première intersection entre le rayon issu de r3 dans le direction ω+ et une surface pouvant être
le récepteur, un autre héliostat ou la tour.

120



6.2. Modélisation des centrales « beam down »

Algorithme 6.1 : Estimation de Pth par MCFD pour un « beam down »

(1) Une position r1 est uniformément échantillonnée sur l’ensemble de la surface réflective du champ
d’héliostats H+

(2) Une direction ωS est uniformément échantillonnée dans le cône solaire ΩS de rayon angulaire
θS

(3) Une normale effective nh1 est échantillonnée autour de la normale idéale n1

(4) La position r0 est définie comme la première intersection entre le rayon issu de r1 dans la
direction ωS et une surface

(a) Si r0 /∈ S il y a ombrage du point r1 et l’algorithme boucle à l’étape (5) avec le poids
ŵPth = 0

(b) Sinon la direction ω+ est obtenue par réflexion spéculaire de la direction ωS par rapport à
la normale effective nh1 et la position r2 est définie comme la première intersection entre le
rayon issu de r1 dans la direction ω+

(i) Si r2 n’appartient pas au réflecteur secondaire BD il y a blocage ou pertes par déborde-
ment et l’algorithme boucle à l’étape (5) avec le poids ŵPth = 0 ;

(ii) Sinon la direction ω− est défini comme l’opposée de ω+ et la direction ω+spec est
obtenue par réflexion spéculaire de la direction ω− par rapport à la normale effective
nh2 au point r2 et la position r3 est définie comme la première intersection entre le rayon
issu de r2 dans la direction ω+spec

(1) Si r3 n’appartient pas au récepteur R il y a blocage ou pertes par débordement et
l’algorithme boucle à l’étape (5) avec le poids ŵPth = 0 ;

(2) Sinon l’algorithme boucle à l’étape (5) avec le poids ŵPth = DNI ×ρH ×ρBD × (ωS ·
nh1) × SH

(5) L’algorithme boucle à l’étape (1) jusqu’à obtention du nombre de réalisations souhaité
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(a) Centrale « beam down » : Vue de dessus (b) Centrale « beam down » : Vue de coté

Fig. 6.5. : Représentations d’une centrale de type « beam down » avec EDStar (il s’agit
simplement d’une image de synthèse : les dimensions n’ont pas été optimisées)

et les fonctions densité de probabilité :

(6.6c)pr1 = 1
SH

(6.6d)pΩS = 1∫
DΩS

dωS
= 1

2π(1 − cos θS)

(6.6e)pnh1 =
1 + 1

b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ωS · n1)

)) × (nh1 · n1)1+ 1
b

pNh2(nh2|ωS ; b′) =
1 + 1

b′

2π ×
(

1 − cos2+ 1
b′

(
π

4
− 1

2
× arccos (ω+ · n2)

)) × (nh2 · n2)1+ 1
b′

(6.6f)

Les équations (6.6a) et (6.6b) peuvent être traduites comme un algorithme de Monte
Carlo. Nous obtenons ainsi l’algorithme 6.2.

Représentation d’une centrale solaire de type « beam down » avec EDStaR Grâce
à EDStaR nous pouvons représenter une centrale solaire à récepteur central de type
« beam down » en image de synthèse. Les figures 6.5a et 6.5b représentent une centrale
« beam down » avec un champ circulaire constitué de 200 héliostats de 100m2.
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6.2. Modélisation des centrales « beam down »

Algorithme 6.2 : Estimation de l’énergie thermique Eth par Monte Carlo
Fixed Date (MCST) pour une centrale « beam down »

(1) Un instant t est uniformément échantillonné sur le temps de vie de la centrale solaire

(2) Une position r1 est uniformément échantillonnée sur l’ensemble de la surface réflective du champ
d’héliostats H+

(3) Une direction ωS est uniformément échantillonnée dans le cône solaire ΩS de rayon angulaire
θS

(4) Une normale effective nh1 est échantillonnée autour de la normale idéale n1 et le poids de Monte
Carlo ŵEth est estimé

(a) Si DNI(t) < DNIl alors la centrale ne fonctionne pas et l’algorithme boucle à l’étape (5)
avec le poids ŵEth = 0

(b) Sinon la position r0 est définie comme la première intersection entre le rayon issu de r1 dans
la direction ωS et une surface

(i) Si r0 /∈ S, l’algorithme boucle à l’étape (5) avec le poids ŵEth = 0

(ii) Sinon la direction ω+ est obtenue par réflexion spéculaire de la direction ωS par rapport
à la normale effective nh1 et la position r2 est définie comme la première intersection
entre le rayon issu de r1 dans la direction ω+

(1) Si r2 n’appartient pas au réflecteur secondaire BD il y a blocage ou pertes par dé-
bordement et l’algorithme boucle à l’étape (5) avec le poids ŵEth = 0 ;

(2) Sinon la direction ω− est défini comme l’opposée de ω+ et la direction ω+spec est
obtenue par réflexion spéculaire de la direction ω− par rapport à la normale effective
nh2 au point r2 et la position r3 est définie comme la première intersection entre le
rayon issu de r2 dans la direction ω+spec

(a) Si r3 n’appartient pas au récepteur R il y a blocage ou pertes par débordement
et l’algorithme boucle à l’étape (5) avec le poids ŵEth = 0 ;

(b) Sinon l’algorithme boucle à l’étape (5) avec le poids ŵEth = DNI × ρH × ρBD ×
(ωS · nh1) × SH

(5) L’algorithme boucle à l’étape (1) jusqu’à obtention du nombre de réalisations souhaité

123



Chapitre 6. Modélisation et optimisation des installations de type « beam down »

6.3. Comparaison centrale à tour - centrale « beam down »
6.3.1. Code d’optimisation
Nous avons présenté au chapitre 5 l’algorithme d’optimisation que nous utilisons : il
s’agit d’un algorithme d’optimisation par essaim particulaire. Nous avons codé cet algo-
rithme en C++ selon le principe de la programmation orientée objet. Ce code est couplé à
EDStaR et peut utiliser les différents algorithmes de Monte Carlo que nous avons présen-
tés jusqu’ici : estimation de la puissance thermique, de l’énergie thermique, de l’énergie
électrique ou encore du rendement moyen de conversion. Nous avons ainsi la possibilité
d’optimiser une centrale solaire selon de nombreux critères, et cela pour des centrales à
tour ou des centrales de type « beam down ». Les particules de l’essaim représentent des
centrales solaires dont la configuration évolue tout au long du process d’optimisation.
Le code complet ainsi obtenu fonctionne selon l’algorithme 6.3.

Algorithme 6.3 : Fonctionnement du code d’optimisation

(1) L’algorithme d’optimisation génère les variables d’optimisation des particules de l’essaim (les
variables définissant la configuration des centrales)

(2) Les performances de chaque particule sont évaluées par un algorithme de Monte Carlo selon la
fonction objectif

(3) Le code d’optimisation récupère les résultats de chaque particule

(4) Les variables des particules sont modifiées selon les formules de l’OEP

(a) Si le nombre d’itérations de l’algorithme d’optimisation n’est pas atteint, l’algorithme boucle
à l’étape (2)

(b) Sinon, l’algorithme s’arrête

Variables et paramètres d’optimisation Nous pouvons utiliser de nombreuses variables
d’optimisation définissant une centrale solaire. De même, de nombreux paramètres défi-
nissant des contraintes de conception entrent en jeu. Nous le listons ci-dessous :

• Variables d’optimisation
– Concernant le champ d’héliostats :

* Taille des héliostats
– Concernant la tour :

* Hauteur de la tour
– Concernant le réflecteur secondaire :

* Coefficients de l’hyperbole a, b et c

• Paramètres fixés
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– Concernant le champ d’héliostats :
* L’angle d’ouverture
* Le type d’héliostats (plan ou sphérique)
* L’aire totale de surface réflective

– Concernant le récepteur :
* Diamètre du disque représentant le récepteur

– Concernant l’algorithme d’optimisation :
* Coefficients c1 et c2
* Inertie w

6.3.2. Résultats de simulation
Les différentes optimisations dont nous présentons les résultats ont pour fonction objectif
l’énergie thermique annuelle reçue par une cible de diamètre donné placée au sol.

Optimisation globale de centrales Notre première comparaison entre les centrales à
tour et les centrales « beam down » concerne aussi bien le champ d’héliostats que la
tour (ou le réflecteur secondaire). Nous effectuons une comparaison entre une centrale à
tour et une centrale « beam down » en fixant un certain nombre de paramètres :

• L’aire totale de surface réflective est de 15 000m2

• Le champ d’héliostats à la forme d’un tiers de cercle (ouverture de 120°)
• Le diamètre du récepteur est de 4m
• Les coefficients de comportement de l’OEP c1 = c2 = 1

Avec les variables d’optimisation présentées à la section 6.3.1, nous effectuons un process
d’optimisation pour une centrale à tour et pour une centrale « beam down ». Les variables
d’optimisation sont bornées :

• Hauteur minimum de la tour : 50m
• Hauteur maximum de la tour : 150m
• Longueur minimum des héliostats : 2m
• Longueur maximum des héliostats : 10m
• Largeur minimum des héliostats : 2m
• Largeur maximum des héliostats : 10m
• Coefficients a et b minimum : 15
• Coefficients a et b maximum : 35
• Coefficient c minimum : 10
• Coefficient c maximum : 25

Nous fixons également certains paramètres : afin de pouvoir utiliser le même récepteur,
symbolisé par un disque d’un diamètre de 4m, le champ d’héliostats de la centrale à tour
est de forme tiers de cercle (120°) alors que le champ de la centrale « beam down » est
circulaire [61]. Nous comparons les résultats des deux centrales optimisées ainsi obtenus.
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Ces résultats sont regroupés dans le tableau 6.2. Nous remarquons un léger avantage
pour la centrale à tour, de l’ordre de 13% d’énergie supplémentaire, ce qui était attendu.
Néanmoins, les performances de la centrale « beam down » s’avèrent tout à fait correctes
d’un point de vue optique. Si l’on considère l’avantage apporté par le placement au sol
de toutes les installations de production d’énergie et la différence de coût entre la tour et
le réflecteur secondaire, la centrale « beam down » nous semble compétitive. Toutefois,
une analyse économique plus précise s’avère nécessaire afin de valider cette conclusion.

Tab. 6.2. : Performances et résultats de l’optimisation à 1% d’erreur pour une centrale
à tour et une centrale « beam down »

Centrale à tour Centrale « beam down »
Énergie thermique (MW · h) 24 334 21 128
Nombre de réalisations 3417 8544
Temps de calcul (s) 8 13
Longueur des héliostats (m) 2 3
Largeur des héliostats (m) 2,5 2,1
Hauteur de la tour (m) 79
Coefficients a et b 26,6
Coefficients c 12
Hauteur du réflecteur secondaire (m) 41,2

De plus, nous obtenons pour chaque centrale une carte de densité d’énergie (voir les
figures 6.6 et 6.7). On note que la carte de densité d’énergie dans le plan cible est
beaucoup plus étalée pour la centrale à tour (la conception d’un champ d’ouverture à
120° a pour conséquence la présence d’héliostats beaucoup plus éloignés de la cible).

Optimisation de tours « beam down » À présent, nous allons considérer des héliostats
ayant des caractéristiques communes pour chaque centrale (Largeur et longueur des hélio-
stats égale à 2,65m similaires aux miroirs utilisés pour la centrale solaire d’Ivanpah [7]).
L’optimisation va concerner le réflecteur secondaire (coefficients a, b et c de l’hyperbole)
et nous ferons varier le diamètre du récepteur (4m, 3m et 2,5m) et l’angle d’ouverture
du champ (360° ou 120°). Nous considérons des réflexions spéculaires sans erreur à la
fois sur les héliostats et sur le réflecteur secondaire.
L’ensemble des résultats est présenté dans les tableaux 6.3 et 6.4. Nous remarquons
là aussi que les champs circulaires concentrent de façon plus précise que les champs à
ouverture 120°.

Prise en compte des erreurs de réflexion Afin de quantifier l’importance des erreurs
de réflexion, nous avons simulé le cas 1 en les faisant varier entre 0 et 3mrad. Pour
un champ d’une centrale à tour (de type PS10), on ne cherche pas à avoir de hautes
densités de flux : l’erreur moyenne est de l’ordre de 2,9mrad [63]. Le tableau 6.5 illustre
l’importance de la précision de l’optique et du suivi dans les performances des centrales
de type « beam down ».
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6.3. Comparaison centrale à tour - centrale « beam down »
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Fig. 6.6. : Carte de densité d’énergie annuelle au récepteur d’une centrale « beam down »
optimisée en MW · h · m−2. Cette carte obtenue à partir d’un champ d’hélio-
stats circulaire dans l’hémisphère Nord est légèrement décalée vers le sud
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Fig. 6.7. : Carte de densité d’énergie au récepteur d’une centrale à tour optimisée en
kW · h · m−2
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Chapitre 6. Modélisation et optimisation des installations de type « beam down »

Tab. 6.3. : Performances optiques de centrales « beam down » pour un champ circulaire
et différents diamètres de récepteur

Données cas 1 cas 2 cas 3
Diamètre du récepteur en m 4 3 2,5
Ouverture du champ d’héliostats en ° 360 360 360
Énergie annuelle en MW · h 21 870 20 340 17 890
Pertes optiques
Ombrage en % 3,5 4 4
Débordement réflecteur en % 0 0 1
Débordement cible en % 3,1 10,7 19,5
Largeur du réflecteur en m
Pertes mécaniques en MW · h 2021 4444 7315
Pertes cosinus en MW · h 7245 6352 5931
Pertes cosinus 21 18,4 17,2

Tab. 6.4. : Performances optiques de centrales « beam down » pour un champ de forme
tiers de cercle et différents diamètres de récepteur

Données cas 4 cas 5
Diamètre du récepteur en m 4 3
Ouverture du champ d’héliostats en ° 120 120
Énergie annuelle en MW · h 21 930 15 664
Pertes optiques
Ombrage en % 3,5 4
Débordement réflecteur en % 0 3,4
Débordement cible en % 11,6 32,4
Largeur du réflecteur en m
Pertes mécaniques en MW · h 4575 11 617
Pertes cosinus en MW · h 4631 3855
Pertes cosinus 13,4 11,2

Tab. 6.5. : Évolution de la puissance thermique collectée en fonction de l’erreur de ré-
flexion ε

Erreur de réflexion ε 0mrad 0,3mrad 0,9mrad
Énergie annuelle en MW · h 21 870 20 574 19 712

Erreur de réflexion ε 1,8mrad 3mrad
Énergie annuelle en MW · h 18 243 16 400
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6.4. Conclusion et perspectives

6.4. Conclusion et perspectives
Lors de ce chapitre nous avons proposé deux modèles permettant d’estimer respective-
ment la puissance thermique Pth et l’énergie thermique annuelle Eth collectées par une
centrale solaire à concentration de type « beam down ». Grâce à ces deux modèles, nous
avons pu optimiser une centrale solaire « beam down » et une centrale solaire à tour
de caractéristiques similaires et comparer leurs performances. Il apparaît que ces deux
types de centrales présentent des caractéristiques proches.
Nous avons ensuite optimisé les réflecteurs de centrales constituées d’héliostats standar-
disés (héliostats carré de 2,65m de coté). Il apparaît que lorsque la taille du récepteur
diminue alors un champ circulaire présente de meilleures performances optiques.
Le principe des centrales « beam down » introduit une seconde réflexion, nous avons
quantifié l’effet de l’erreur de réflexion du champ d’héliostats pour ce type d’installation.
Nous considérons l’optique secondaire comme parfaite. En effet, cette optique étant fixe,
nous considérons qu’une fois réglée lors de la construction, l’erreur de réflexion sera
inférieure à 1mrad. Il apparaît très nettement une influence importante des erreurs de
réflexion : la seconde réflexion amplifie ces erreurs. La précision du champ d’héliostats
revêt donc une importance particulière lorsque l’on construit une centrale de type « beam
down ».
L’outil informatique de conception de centrale solaire mis au point a été mis en œuvre
lors de ce chapitre. Les premiers résultats obtenus démontrent les nombreuses possibi-
lités offertes par cet outil. Les suites à donner à ce travail sont nombreuses. Il serait
intéressant, par exemple, d’intégrer le coût de construction d’une tour et d’une optique
« beam down » afin d’utiliser une fonction objectif tenant compte de critères écono-
miques. De plus, la forte influence des erreurs de réflexion nous incite à réaliser une
étude de sensibilité de la fonction objectif à l’erreur de réflexion. Cela a déjà été réalisé
pour d’autres applications solaires [32]. Un modèle permettant d’évaluer le coût des hé-
liostats en fonction de leur précision permettrait d’aller plus loin sur la recherche d’un
optimum technico-économique.
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Chapitre

7
Estimation de sensibilités
aux paramètres géométriques
d’une centrale solaire à
concentration

Résumé

Dans le cadre d’une phase de conception optimale d’un procédé, il est intéressant de quantifier
l’influence de chaque paramètre géométrique sur la grandeur que l’on cherche à optimiser.
Nous nous sommes intéressés lors de cette thèse, à la sensibilité des performances d’une
centrale solaire à concentration à des paramètres géométriques définissant cette installation.
Sous l’angle de la méthode de Monte Carlo (MMC), cela correspond à une thématique
bien connue : le calcul de sensibilité aux paramètres géométriques. Ce type de calcul
est reconnu comme étant une difficulté méthodologique de la MMC. Il s’agit également
d’un sujet d’investigation au sein du groupe StaRWest. Pour cela, nous abordons le calcul de
sensibilité aux paramètres géométriques par MMC sous un angle nouveau, puisque l’approche
privilégiée jusqu’alors [125, 126, 127, 128] s’est heurtée à plusieurs difficultés de mise en
œuvre lors de l’étude de centrales solaires à concentration [31]. Cette démarche, appliquée
à l’étude radiative des photobioréacteurs, a été précédemment présentée par J. Dauchet
[33]. Avec cette approche, nous abandonnons l’idée d’utiliser des algorithmes identiques pour
estimer la grandeur et ses diverses sensibilités comme proposé par M. Roger [125, 126, 127].
Nous raisonnons à partir de la formulation locale de l’équation de transfert radiatif (ETR)
pour obtenir un modèle de sensibilité. Nous obtenons alors une équation d’évolution pour la
sensibilité avec ses conditions aux limites associées. Dans ce chapitre, nous nous concentrons
sur une approche intuitive de cette méthode afin de construire un algorithme de Monte Carlo
estimant la sensibilité de la puissance thermique collectée par une centrale solaire à tour par
rapport à la taille des héliostats constituant le champ de cette centrale. L’annexe A détaille
la démonstration formelle de cet algorithme.
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132



b Paramètre définissant les erreurs de réflection selon le modèle de Blinn (-)
c Cote des héliostats (m)
ka Coefficient d’absorption (m−1)
kd Coefficient de diffusion (m−1)
pI(i) Fonction densité de probabilité de la variable aléatoire I pour sa réalisation i (+)
sA Sensibilité de la grandeur A à un paramètre (+)
ΩS Angle solide représentant le cône solaire (sr)
ωi Vecteur direction (-)
π Paramètre géométrique dont dépend le calcul de sensibilité (-)
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7.1. Estimation de sensibilités à la déformation du domaine par
la méthode de Monte Carlo

Tous les algorithmes de Monte Carlo décrits dans ce manuscrit peuvent faire l’objet
de calcul de sensibilités dites paramétriques. Il est en effet intéressant de connaître la
sensibilité à la réflectivité des miroirs ou aux erreurs de pointage d’une installation
solaire. Divers travaux menés au sein de l’équipe StarWest portent sur cette classe de
sensibilités [32] et il n’apparaît aucune difficulté pratique spécifique lors de la mise en
œuvre informatique de ces calculs. Toutefois, la problématique de cette thèse nous amène
à nous concentrer principalement sur les sensibilités géométriques ou sensibilités à
la déformation du domaine. La démarche de conception optimale place au centre de
notre réflexion la géométrie de la centrale solaire puisque nous recherchons à optimiser
la forme et la taille des divers composants de l’installation (héliostats, tour, réflecteur
secondaire, récepteur, etc). Ce chapitre portera donc exclusivement sur les sensibilités à
la déformation du domaine. Il aura pour finalité de proposer des algorithmes de Monte
Carlo servant à estimer la sensibilité d’une grandeur d’intérêt (puissance thermique,
énergie thermique ou électrique, le rendement de conversion chimique moyen, etc) par
rapport à différents paramètres géométriques (taille et rayon de courbure des héliostats,
hauteur de la tour, forme du réflecteur secondaire, etc).
Le calcul de sensibilités par la méthode de Monte Carlo est depuis longtemps un sujet
d’étude prioritaire du groupe StaRWest, en collaboration étroite avec l’entreprise HPC-
SA [40]. Depuis les travaux fondateurs de A. de Guilhem de Lataillade [129], A.
de Guilhem de Lataillade et al. [128], M. Roger [127] et M. Roger et al. [125],
plusieurs illustrations centrées sur les centrales solaires à concentration ont été proposées,
notamment par de La Torre et al. [34]. Ces exemples ont montré tout l’intérêt que peut
prendre l’estimation de sensibilités géométriques pour les applications solaires. Toutefois,
ces travaux soulignent des limitations importantes suite à des difficultés significatives
rencontrées lors de mise en œuvre informatique de la méthode pour des cas réels. Ceci
nous a conduit à privilégier une démarche différente qui a émergé des travaux de thèse
de J. Dauchet [33] intitulés « Analyse radiative des photobioréacteurs ».

Estimation simultanée d’une grandeur et de ses sensibilités La sensibilité d’une gran-
deur A à un paramètre π est la dérivée de cette grandeur par rapport à ce paramètre :

(7.1)sA = ∂πA

La méthode détaillée par M. Roger [127] et utilisée dans un contexte solaire par J.
de La Torre [31] se base sur l’estimation simultanée de la grandeur d’intérêt et de
ses sensibilités. Pour cela, la formulation intégrale de la grandeur A est dérivée selon le
paramètre π afin d’obtenir la formulation intégrale de sA. Par un jeu d’écriture mathé-
matique, les fonctions densité de probabilité ainsi que le domaine d’intégration associés
à la sensibilité sont identiques à ceux utilisés pour l’estimation de la grandeur. De ce
fait, l’estimation de la grandeur et de sa sensibilité s’exprime grâce aux mêmes lois de
tirages, i.e. grâce au même algorithme de Monte Carlo où seuls les poids associés ŵA et
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ŵsA diffèrent. Les estimations de A et sA sont donc simultanées. Toutefois, on rencontre
des difficultés qui rendent le calcul de sensibilités à des paramètres géométriques dans
les géométries réelles très difficile à mettre en œuvre. Ces difficultés ont été recensées
par J. de La Torre [31, Chap. 4]. Nous choisissons donc dans notre contexte d’utiliser
une autre approche présentée dans la section suivante.

7.2. Estimation séquentielle d’une grandeur et de ses
sensibilités

Contrairement à la méthode issue des travaux de M. Roger [127, pp. 44-56], nous
n’allons pas utiliser l’avantage d’une estimation simultanée de la grandeur et de ses
sensibilités. En contre partie, cela va nous permettre de proposer une alternative qui
permet de surmonter les difficultés de mise en œuvre pour l’étude d’une centrale réaliste
composée d’un grand nombre NH de miroirs. Pour cela, un algorithme de Monte Carlo,
basé sur l’algorithme 2.2 que nous avons construit à la section 2.2 pour l’estimation de
la puissance thermique Pth, va être conçu spécifiquement pour le calcul de la sensibilité
de Pth à la taille des héliostats.

7.2.1. Principe de la méthode
La solution d’un problème de transfert radiatif passe par la connaissance de la luminance
L(r,ω; π) en tout point de l’espace de définition. L’équation de transfert radiatif (ETR)
et les conditions aux limites permettent de définir ce problème. L’équation (7.2) présente
l’ETR :

(7.2)
ω ·

−−→gradr L(r,ω; π) = −(ka + kd) × L(r,ω; π) + kaLeq(r)

+ kd

∫
4π

L(r,ω′; π) × ϕ(ω|ω′) × dω′

Considérons maintenant un modèle de sensibilité pour la grandeur sL(r,ω; π). C’est
une grandeur mésoscopique qui s’obtient par dérivation de la luminance par rapport au
paramètre π, comme présenté au début de ce chapitre :

(7.4)sL(r,ω; π) = ∂πL(r,ω; π)

La loi de comportement de la sensibilité s’obtient grâce à la dérivation de l’ETR par
rapport au paramètre géométrique π1 :

ω ·
−−→gradr sL(r,ω; π) = −(ka + kd) × sL(r,ω; π) + kd

∫
4π

sL(r,ω′; π) × ϕ(ω|ω′) × dω′

(7.5)

Nous avons donc un champ de sensibilité qui obéit à des lois de transport linéaire simi-
laires aux lois de transport de la luminance. Nous pouvons donc reprendre les images

1Les coefficients ka et kd, la fonction de phase ϕ(ω|ω′) ainsi que la luminance du corps noir Leq ne
dépendent pas des paramètres géométriques.

135



Chapitre 7. Estimation de sensibilités aux paramètres géométriques

La grandeur de référence dans la communauté « solaire concentré » est l’éclairement
énergétique de rayonnement solaire (Direct Normal Irradiance) (DNI). Il s’agit de
la quantité de rayonnement solaire reçu par unité de surface. Cette grandeur s’ex-
prime en W · m−2. Le DNI reçue sur Terre est en moyenne égale à 1360W · m−2 hors
atmosphère. Il s’agit de la grandeur de référence utilisée dans ce manuscrit. Cepen-
dant, nous raisonnons ici en luminance, soit la grandeur mésoscopique décrivant le
rayonnement en un point de l’espace des phases. La luminance L(r,ω) s’exprime en
W · m−2 · sr−1. Il s’agit de la puissance par unité de surface normale à la direction ω
par unité d’angle solide. Elle est solution de l’ETR. L’équation (7.3) relie le DNI à la
luminance grâce à l’angle solide ΩS = 6,79 × 10−5 sr sous lequel le soleil est vu de la
terre :

(7.3)L(r,ω) = DNI

ΩS

Remarque 1 : DNI et luminance

intuitives de transport de photons qui nous permettent de développer des algorithmes
de Monte Carlo, et les adapter au calcul de sensibilité. L’écriture d’un algorithme de
Monte Carlo estimant la sensibilité de la puissance thermique à la taille des héliostats
consiste donc à identifier les sources de sensibilité et à suivre le transport de ces sources
de sensibilité comme on suit le transport des sources de luminance lors du calcul d’une
grandeur radiative.

7.2.2. Estimation de la sensibilité de la puissance thermique à la taille des
héliostats

Dans le but de faire le parallèle entre le calcul de la puissance et le calcul de sa sensibilité
à la taille des héliostats, nous rappelons ici de façon détaillée l’algorithme MCFD déjà
présenté à la section 2.2. Notre observable est la puissance thermique Pth reçue au
récepteur d’une installation solaire2 :

(7.6a)Pth =
∫

DH+
pR1(r1) dr1

∫
DΩS

pΩS (ωS) dωS
∫

DNh1

pNh
(nh|ωS ; b) × ŵPth

avec le poids de Monte Carlo ŵPth :

(7.6b)ŵPth =


H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H (r2 /∈ R) × 0
+H (r2 ∈ R) ×DNI × ρH

×(ωS · nh1) × SH




2Les algorithmes présentés dans ce manuscrit ne prennent pas en compte les réflexions multiples : au
maximum une seule réflexion est ici considérée. Cette prise en compte n’est pas un obstacle en soit,
elle nécessite l’introduction de termes récursifs.
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avec les fonctions densité de probabilité :

(7.6c)pR1(r1) = 1
SH

(7.6d)pΩS (ωS) = 1∫
DΩS

dωS
= 1

2π(1 − cos θS)

(7.6e)pNh1(nh1|ωS ; b) =
1 + 1

b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ωS · n1)

)) × (nh1 · n1)1+ 1
b

La figure 7.1 reprend de façon schématique la formulation intégrale présentée dans les
équations (7.6a) et (7.6b). Dans la suite du présent chapitre, nous allons nous intéresser
à la sensibilité sPth

qui est est la dérivée de la puissance thermique Pth par rapport
au paramètre géométrique π décrivant la taille des héliostats. Nous considérons une

L’illustration de la démarche proposée porte sur la sensibilité de la puissance ther-
mique Pth collectée au récepteur d’une centrale solaire aux paramètres géométriques
définissant cette centrale. Cette démarche pourrait s’appliquer indifféremment à la
sensibilité de l’énergie thermique Eth moyenne collectée annuellement. L’ajout d’une
intégrale sur le temps, comme présenté au chapitre 3, n’a pas d’incidence sur les déve-
loppements mathématiques suivants puisque l’intégrale ajoutée n’a pas de dépendance
aux paramètres géométriques.

Remarque 2 : Extension à l’énergie

configuration de centrale solaire à concentration simplifiée : les héliostats sont des miroirs
carrés et plans. Nous cherchons à estimer la sensibilité de la puissance thermique collectée
à la taille des héliostats. Il n’y a ni diffusion ni absorption dans le milieu et les réflexions
sur les héliostats sont considérées spéculaires. Les héliostats se déforment d’une longueur
π répartie de part et d’autre des miroirs, tel que représenté sur la figure 7.2. Un héliostat
subissant une déformation voit la longueur de ses cotés modifiée d’une quantité π. Tous
les héliostats du champ subissent la même déformation. La formulation intégrale de la
sensibilité qui sera expliquée plus loin, correspondant à l’algorithme 7.1, est présentée
dans les équations (7.7a) et (7.7b).

(7.7a)
sPth

=
∫

DδH+
pR1(r1) dr1

∫
DΩS

pΩS (ωS) dωS
∫

DNh

pNh
(nh1|ωS ; b)

∫
DNh

pNh
(nh3|ω+; b)

∫
DNh

pNh
(nh5|ωS ; b)ŵδπPth
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r0 S

n1 nh1ωS

ω+

H+

r2

r1

R

Fig. 7.1. : Représentation schématique de l’algorithme Monte Carlo Fixed Date (Monte
Carlo Fixed Date (MCFD)) :

r1 Un point généré aléatoirement sur la surface réflective des héliostats SH selon la fonction
densité de probabilité (pdf) présentée dans l’équation (7.6c).

ωS Une direction générée aléatoirement à l’intérieur du cône solaire ΩS selon la pdf présentée dans
l’équation (7.6d).

nh1 Une normale effective générée selon le modèle de Blinn (la pdf présentée dans l’équation (7.6e))
autour de normale idéale n1 au point r1 selon la direction incidente ωS.

r0 La première intersection entre le rayon issu de r1 dans la direction ωS et une surface pouvant
être le soleil, un autre héliostat, la tour ou le récepteur.

ω+ La direction obtenue par la réflexion spéculaire de la direction ωS selon la normale apparente
nh1 au point r1.

r2 La première intersection entre le rayon issu de r1 dans la direction ω+ et une surface pouvant
être le récepteur, un autre héliostat ou la tour.
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nd
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nd nd

π/2

π/2

π/2 π/2

Fig. 7.2. : Déformation d’un héliostat

R

T

H+

S

nh1

ωS ω+

r1

Fig. 7.3. : Schéma d’une centrale solaire avec un champ d’héliostats dont les dimensions
se déforment
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avec ŵδπPth le poids de Monte Carlo :

ŵδπPth = ρH × DNI × PδH
2

×



H (r2 /∈ R) × 0

+H (r2 ∈ R) ×



H
(
r3 /∈ H+)× 0

+H
(
r3 ∈ H+)×

{
H (r4 /∈ S) × 0
−H (r4 ∈ S) ×

(
ω+ · nh3

)}
+H (r0 /∈ S) × 0
+H (r0 ∈ S) ×

(
ωS · nh1

)


+H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H
(
r5 /∈ H+)× 0

+H
(
r5 ∈ H+)×

{
H (r6 /∈ R) × 0
−H (r6 ∈ R) ×

(
ωS · nh5

)}



(7.7b)

et les fonctions densité de probabilité :

(7.7c)pR1(r1) = 1
PδH

(7.7d)pΩS = 1∫
DΩS

dωS
= 1

2π(1 − cos θS)

(7.7e)pNh
(nh1|ωS ; b) =

1 + 1
b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ωS · n1)

)) × (nh1 · n1)1+ 1
b

(7.7f)pNh
(nh3|ωS ; b) =

1 + 1
b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ω+ · n3)

)) × (nh3 · n3)1+ 1
b

(7.7g)pNh
(nh5|ωS ; b) =

1 + 1
b

2π ×
(

1 − cos2+ 1
b

(
π

4
− 1

2
× arccos (ωS · n5)

)) × (nh5 · n5)1+ 1
b

La figure 7.4 reprend de façon schématique la formulation intégrale présentée dans les
équations (7.7a) et (7.7b).
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ω+

ωS

ω−
ω+spec

ωSspec

ω−S

nh1

nh3

nh5

r0

r2

r3

r4

r5

r6

r1

R

D

S

T

Fig. 7.4. : Représentation schématique de l’algorithme de calcul de sensibilité avec :
r1 Un point généré aléatoirement sur le périmètre des héliostats PδH selon la pdf uniforme présentée

dans l’équation (7.7c).
ωS Une direction générée aléatoirement à l’intérieur du cône solaire ΩS selon la pdf présentée dans

l’équation (7.7d).
nh1 Une normale effective générée selon le modèle de Blinn autour de la normale idéale n1 au point

r1 selon la direction incidente ωS (voir la pdf présentée dans l’équation (7.7e)).
nh3 Une normale effective générée selon le modèle de Blinn autour de la normale idéale n3 au point

r3 selon la direction incidente ω+spec (voir la pdf présentée dans l’équation (7.7f)).
nh5 Une normale effective générée selon le modèle de Blinn autour de la normale idéale n5 au point

r5 selon la direction incidente ωS (voir la pdf présentée dans l’équation (7.7g)).
r0 La première intersection entre le rayon issu de r1 dans la direction ωS et une surface.
ω+ La direction obtenue par la réflexion spéculaire de la direction ωS selon la normale apparente

nh1 au point r1
r2 La première intersection entre le rayon issu de r1 dans la direction ω+ et une surface.
ω− La direction opposée à la direction ω+.
r3 La première intersection entre le rayon issu de r1 dans la direction ω− et une surface.
ω+spec La direction obtenue par la réflexion spéculaire de la direction ω+ selon la normale apparente

nh3 au point r3.
r4 La première intersection entre le rayon issu de r3 dans la direction ω+spec et une surface.
ω−S La direction inverse de la direction ωS.
r5 La première intersection entre le rayon issu de r1 dans la direction ω−S et une surface.
ωSspec La direction obtenue par la réflexion spéculaire de la direction ωS selon la normale apparente

nh5 au point r5.
r6 La première intersection entre le rayon issu de r5 dans la direction ωSspec et une surface.
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L’expression de la sensibilité (équation (7.7a)) est construite en étudiant comment une
déformation en r1 va agir sur le système. Il faut se poser comme question : En quoi ce
point r1, qui auparavant n’était pas sur l’héliostat mais dans l’atmosphère va
modifier la puissance thermique reçue au récepteur maintenant qu’il est situé
sur l’héliostat ? C’est ce que nous allons détailler en décrivant les trois contributions
au poids de Monte Carlo de notre algorithme. En effet, les différentes intersections pou-
vant intervenir lors du transport de sensibilité sont regroupés dans le poids de Monte
Carlo ŵδπPth (équation (7.7b)). Elles représentent les phénomènes optiques que nous
avons rencontrés auparavant (voir section 2.2) : ombrage, blocage et pertes par débor-
dement. Ces phénomènes se traduisent par des contributions positives et négatives à la
sensibilité lorsque la taille des miroirs varie. En effet, l’augmentation de la taille des mi-
roirs a pour conséquence des possibilités d’ombrage et de blocage supplémentaires (Pth

diminue ; contribution négative) mais également une surface de miroir plus importante
(Pth augmente ; contribution positive). Inversement, la diminution de la taille des mi-
roirs raréfie l’apparition de phénomènes d’ombrage et de blocage mais diminue la surface
de réflexion. Ces différentes contributions sont parfaitement identifiables à partir de la
réécriture suivante du poids de Monte Carlo présentée dans l’équation (7.8) :

(7.8)ŵδπPth = ŵP + ŵB + ŵO

Puissance réfléchie ŵP L’agrandissement d’un miroir permet de collecter plus d’éner-
gie solaire s’il n’y a pas d’ombrage ni de blocage entre la surface supplémentaire de miroir,
le soleil et le récepteur. Pour être prise en compte, la contribution ŵP doit vérifier plu-

sieurs conditions :

• le rayon issu du point r1 sur l’arête d’un
miroir dans la direction ω+ intersecte le
récepteur R en r2 : il n’y a pas de blocage
entre l’héliostat H+ et le récepteur R

• le rayon issu d’un point r1 sur l’arête
d’un miroir dans la direction ωS inter-
secte le soleil S en r0 : il n’y a pas d’om-
brage entre l’héliostat H+ et le soleil S

• la contribution correspond à la puissance
apportée par le changement de taille des
héliostats au récepteur R

ω+

ωS

nh1

r0

r2

r1 T

D

R

S

Fig. 7.5. : Estimation de la puissance col-
lectée par les arêtes des miroirs

(7.9)ŵP = ρH × DNI × PδH
2

× H (r2 ∈ R) × H (r0 ∈ S) ×
(
ωS · nh1

)

Blocage ŵB L’agrandissement d’un miroir bloque la collecte d’énergie solaire qui ve-
nait d’un miroir plus éloigné du récepteur . Pour être prise en compte, la contribution
ŵB doit vérifier plusieurs conditions :
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ω+

ω−

ω+spec

nh3

r2

r3

r4

r1

T

D

R

S

Fig. 7.6. : Estimation de la puissance blo-
quée par les arêtes des miroirs

• le rayon issu du point r1 sur l’arête d’un
miroir dans la direction ω+ intersecte le
récepteur R en r2 : il n’y a pas de blocage
entre l’héliostat H+ et le récepteur R

• le rayon issu d’un point r1 sur l’arête
d’un miroir dans la direction ω− inter-
secte un héliostat H+ en r3 : l’héliostat
d’origine bloque un autre héliostat

• le rayon issu d’un point r3 dans la direc-
tion ω+spec intersecte le soleil S en r4 :
il n’y a pas d’ombrage en r4

• la contribution négative correspond à la
puissance bloquée par le changement de
taille des héliostats H+

(7.10)ŵB = −ρH × DNI × PδH
2

×H (r2 ∈ R)×H
(
r3 ∈ H+

)
×H (r4 ∈ S)×

(
ω+ ·nh3

)

Ombrage ŵO L’agrandissement d’un miroir bloque le rayonnement solaire qui était
réfléchi par un miroir plus éloigné en faisant de l’ombrage à ce miroir. Pour être prise en
compte, la contribution ŵO doit vérifier plusieurs conditions :
• le rayon issu d’un point r1 sur l’arête

d’un miroir dans la direction ωS inter-
secte le soleil S en r0 : il n’y a pas d’om-
brage entre l’héliostat H+ et le soleil S

• le rayon issu d’un point r1 sur l’arête
d’un miroir dans la direction ω−S inter-
secte un héliostat H+ en r3 : l’héliostat
d’origine ombre un autre héliostat

• le rayon issu du point r5 dans la direction
ωSspec intersecte le récepteur R en r6 :
il n’y a pas de blocage entre l’héliostat
et le récepteur R

• la contribution négative correspond à la
puissance ombrée par le changement de
taille des héliostats

ωS

ωSspec

ω−S

nh5

r0

r5

r6r1

T

D

R

S

Fig. 7.7. : Estimation de la puissance om-
brée par les arêtes des miroirs

(7.11)ŵO = −ρH × DNI × PδH
2

×H (r0 ∈ S)×H
(
r5 ∈ H+

)
×H (r6 ∈ R)×

(
ωS ·nh5

)
Ainsi, en tenant compte de l’influence que peut avoir la déformation d’un miroir sur le
rayonnement transmis jusqu’au récepteur, nous avons pu reconstruire une expression de
la sensibilité qui nous a permis de développer l’algorithme 7.1 présenté ci-après.
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Algorithme 7.1 : Calcul de sensibilité à la taille d’héliostats plans

(1) Un point r1 est uniformément échantillonné sur le périmètre PδH des héliostats

(2) Une direction ωS est uniformément échantillonnée à l’intérieur du cône solaire ΩS de rayon
angulaire θS

(3) La normale effective nh1 est échantillonnée autour de la normale idéale nH en r1 puis la direction
réfléchie ω+ est obtenue par réflexion spéculaire de ωS par rapport à nh1

(4) Deux normales effectives nh3 et nh5 sont échantillonnées autour des normales idéales n2, n4
respectivement par rapport aux directions ω+ et ωS , respectivement en r3 et r5

(5) Le poids de Monte Carlo est initialisé ŵδπPth = 0

(6) La position r0 est définie comme la première intersection entre un rayon issu de r1 dans la
direction ωS et une surface

(7) La position r2 est définie comme la première intersection entre le rayon issu de r1 dans la
direction ω+ et une surface

(a) Si r2(r1,ω+) /∈ R l’algorithme boucle à l’étape (c) : il y a ombrage entre r1 et le récepteur
R

(b) Sinon, la position r3 est définie comme la première intersection entre le rayon issu de r1 dans
la direction ω− et une surface

(i) Si r3(r1,ω−) /∈ H+ l’algorithme boucle à l’étape (iii) : l’héliostat contenant r1 ne bloque
pas un autre héliostat

(ii) Sinon, la position r4 est définie comme la première intersection entre le rayon issu de r3
dans la direction ω+spec et une surface

(1) Si r4(r3,ω+spec) /∈ S l’algorithme boucle à l’étape (iii) : il y a ombrage entre l’hélio-
stat bloqué et le soleil

(2) Sinon l’algorithme boucle à l’étape (iii) et le poids est incrémenté de la quantité
−(ω+spec · nh3) : il y a une contribution négative due au blocage

(iii) Si r0(r1,ω−) /∈ S l’algorithme boucle à l’étape (c) : il y a ombrage entre le point r1 et le
soleil S

(iv) Sinon l’algorithme boucle à l’étape (c) et le poids est incrémenté de la quantité (ωS ·nh1) :
il y a une contribution positive due à la puissance apportée par le changement de taille
des héliostats

(c) Si r0(r1,ωS) /∈ S l’algorithme boucle à l’étape (8) : il y a ombrage entre le point r1 et le
soleil S

(d) Sinon, la position r5 est définie comme la première intersection entre le rayon issu de r1 dans
la direction ω−S et une surface

(i) Si r5(r1,ω−S) /∈ H+ l’algorithme boucle à l’étape (8) : l’héliostat contenant r1 n’ombre
pas un autre héliostat

(ii) Sinon, la position r6 est définie comme la première intersection entre le rayon issu de r5
dans la direction ωSspec et une surface

(1) Si r6(r5,ωSspec) /∈ R l’algorithme boucle à l’étape (8) : il y a blocage entre r6 et le
récepteur R

(2) Sinon l’algorithme boucle à l’étape (8) et le poids est incrémenté la quantité −(ωS ·
nh5) : il y a une contribution négative due au blocage

(8) Le poids de Monte Carlo est multiplié par la quantité ρH×DNI×PδH
2 et l’algorithme boucle à

l’étape (1) jusqu’à obtention du nombre de réalisations souhaité
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7.3. Mise en œuvre de l’algorithme

Nous avons effectué une série de calculs afin de valider la démarche. Nous considérons
un champ d’héliostats constitué de 250 héliostats plans. Ce champ est construit selon
l’agencement radial étagé présenté à la section 2.2.3.2 pour des héliostats carrés de côté
c égale à 1 mètre. Nous faisons varier la taille de ces héliostats entre 0,8 mètre et 1,2
mètre par pas de 0,2 mètre. Le calcul de la sensibilité se fait grâce à l’algorithme 7.1
avec 106 réalisations. Nous comparons les résultats obtenus par la méthode de Monte
Carlo (MMC) à calcul basé sur les différences finies. Ce calcul à partir des différences
finies est réalisé à partir d’estimation de puissances thermiques par l’algorithme 2.2
avec 106 réalisations : pour un côté c donné, deux calculs de puissance sont réalisés
pour c ± 0,01m. L’écart-type relatif est d’environ 0,03% et le temps de calcul pour
chaque valeur de c est d’environ une minute. La figure 7.8 présente les résultats de ces
simulations. Il apparaît une très bonne concordance entre l’estimation de sensibilité et les
calculs par différences finies. On note également que les incertitudes sur les sensibilités
sont nettement inférieures avec notre démarche à celles obtenues par un calcul basé sur
les différences finies.
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Fig. 7.8. : Calculs de sensibilités à la taille des héliostats : comparaison entre l’algo-
rithme de calcul de sensibilités et le calcul par différences finies
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7.4. Conclusion
Au cours de ce chapitre nous avons proposé une nouvelle approche du calcul de sen-
sibilité appliqué à un cas réaliste de centrale solaire. Nous avons obtenu la sensibilité
de la puissance thermique à la taille des héliostats dans le cas d’une installation solaire
à récepteur central. Si nous nous référons aux travaux menés jusqu’ici dans cette thé-
matique [31], il était jusqu’alors seulement possible de réaliser ce genre de calcul pour
des cas académiques très simplifiés avec un seul héliostat pris en considération et une
géométrie en deux dimensions. Il s’agit là d’une avancée significative dans le domaine de
la conception optimale de centrale solaire.
La mise en œuvre de l’algorithme obtenu n’a pas présenté de difficulté : le temps de calcul
est raisonnable et nous avons pu obtenir de bonnes convergences moyennant quelques
travaux de reformulation. De plus, cet algorithme présente l’avantage d’être très intuitif.
Il reste très proche, dans sa conception et sa compréhension, des algorithmes utilisés clas-
siquement pour le calcul de la puissance thermique : les phénomènes optiques rencontrés
sont identiques (ombrage, blocage, pertes par débordement). Nous identifions et suivons
le transport de sources de sensibilité et leurs interactions avec les diverses composantes
de la centrale (héliostats, tour, récepteur) comme nous le faisons habituellement avec la
puissance solaire concentrée.
Une limitation demeure toutefois présente dans ce chapitre : nous considérons des hélio-
stats plans. L’introduction d’une courbure, afin d’avoir des héliostats focalisants comme
dans une centrale réelle, entraîne l’apparition de nouveaux termes issus de la dépendance
à la déformation des normales utilisées lors des calculs des directions réfléchies. D’un
point de vue formel, il en résulte l’apparition de couplages entre le modèle de sensibilité
et le gradient directionnel de la luminance −−→gradL ω (voir l’annexe B et [33]). Il va en
découler de nouvelles sources de sensibilités à traiter conjointement avec celles que nous
avons identifiées dans ce chapitre.
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Chapitre

8
Conclusion

Lors de la présentation de ces travaux de thèse au chapitre 1, nous nous étions posé la
question : Une centrale solaire à récepteur central de type « beam down »
peut-elle être compétitive par rapport à une centrale à tour ?. Tout au long de
ce manuscrit, nous avons développé de nouveaux modèles dans le but d’évaluer de façon
pertinente les performances des centrales solaires à récepteur central, que ce soit pour
des centrales à tour ou des centrales « beam down ». En partant de l’estimation de la
puissance thermique collectée par ces installations, nous avons d’abord construit un algo-
rithme de Monte Carlo permettant l’estimation de l’énergie thermique annuelle moyenne
collectée par une centrale pendant toute la durée de son exploitation. Ceci permet entre
autre de prendre en compte le vieillissement des installations (miroirs, récepteur, etc).
Nous avons présenté, au cours du chapitre 3, une méthode permettant de traiter par la
méthode de Monte Carlo des fonctions non-linéaires. De ce fait, il devient possible d’es-
timer les performances d’une centrale solaire à travers l’énergie effectivement produite,
cette énergie finale étant en général une fonction non-linéaire de la puissance thermique.
Nous avons appliqué cette méthode pour deux technologies : la production par cycle
thermodynamique de Rankine et la réduction d’oxyde de zinc par voie thermochimique.
Afin de constituer un outil de conception optimale de centrale solaire à récepteur cen-
tral, nous avons besoin d’introduire un algorithme d’optimisation. Pour cela nous avons
présenté l’optimisation par essaim particulaire. Le couplage de cet algorithme avec les
différents algorithmes de Monte Carlo constitue le code de conception de centrales so-
laires optimisées. Lors du chapitre 6, nous avons mis en œuvre cet outil informatique afin
d’évaluer le potentiel des centrales de type « beam down » par rapport aux centrales
traditionnelles à tour. D’un point de vue optique, l’introduction d’une seconde réflexion
entraîne quelques pertes. Toutefois, les avantages que l’on peut tirer de l’utilisation d’un
réflecteur secondaire à la place d’une tour (coût, placement des équipements de produc-
tion d’énergie, maintenance, manutention, géométrie de récepteur, etc) nous semble être
de nature à justifier la réalisation de pilotes ou au moins une analyse économique précise
de rentabilité. Lors du chapitre 7 nous avons proposé une approche nouvelle dans le but
d’estimer par la méthode de Monte Carlo la sensibilité de la puissance thermique par
rapport à la taille des héliostats. Nous avons mis en œuvre l’algorithme de Monte Carlo
obtenue pour une centrale aux caractéristiques semblables à une centrale commerciale
existante.
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8.1. Perspectives
Le code de conception réalisé au cours de cette thèse doit faire l’objet d’une utilisation
plus poussée. Nous n’avons fait qu’illustrer ces possibilités à l’heure actuelle. De plus, de
nombreuses évolutions peuvent y être ajoutées. En premier lieu, un algorithme d’optimi-
sation hybride permettrait d’intégrer l’estimation de sensibilité au process d’optimisation
afin d’orienter ce process et d’accélérer la convergence vers l’optimum.
La prise en compte dans la fonction objectif de critères économiques nous apparaît
comme une évolution nécessaire du code. Alors que le recours aux installations de type
« beam down » nous semble une alternative crédible, l’ajout de ce critère économique
constituerait le juge de paix des débats du type pour ou contre le « beam down ».
De plus, le code développé doit permettre de tester différents algorithmes d’implanta-
tion de champs d’héliostats en fonction des caractéristiques du site et de la finalité de
l’installation (production d’électricité, de chaleur, de matériaux à forte valeur ajoutée,
etc).
Une autre évolution importante à apporter concerne les modèles utilisant les fonctions
de conversion non-linéaires de la puissance thermique : le développement de modèle
thermique du récepteur doit permettre une meilleure prise en compte du comportement
du récepteur. Ce travail fait notamment l’objet d’une thèse débutée en octobre 2013 au
laboratoire RAPSODEE par C. Spiesser.
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Annexe

A
Sensibilité de la puissance
thermique à la taille des hé-
liostats

Cette annexe est un complément au chapitre 7. Lors de ce chapitre, nous avons développé
un algorithme de Monte Carlo visant à estimer la sensibilité de la puissance thermique
collectée au récepteur d’une centrale solaire par rapport à la taille d’héliostats carrés
plans. Pour cela, nous avons utilisé une démarche basée sur les images intuitives de
transport de photons nous permettant de développer des algorithmes de Monte Carlo.
Lors de cette annexe, nous allons estimer cette même sensibilité par deux approches
différentes :

• Dérivation d’un modèle de la puissance thermique
• Écriture d’un modèle de sensibilité

A.1. Dérivation d’un modèle de la puissance thermique
Cette démarche, consistant à dériver un modèle sur la grandeur d’intérêt par rapport un
paramètre, a été présentée par M. Roger [127, 125]. Nous allons dériver l’expression de
la puissance thermique Pth selon le paramètre π caractérisant la déformation d’héliostats
carrés et plans de coté c. La taille des héliostats après déformation est alors de c + π.

(A.1)
Pth =

∫
DH+

dr1 ×
∫

DΩS

pΩS (ωS) dωS ×
∫

DNh1

pNh1(nh1|ωS ; b) × H (r0 ∈ S)

× H (r2 ∈ R) × DNI × ρH × (ωS · nh1) × SH︸ ︷︷ ︸
ŵPth

Nous identifions les termes dépendant de π :

• La surface réflective des héliostats DH+ :
∫

DH+
dr1 =

∑Nm
i=1

∫ π/2
−π/2 dxi

∫ π/2
−π/2 dyi

• Le test de Heaviside H (r0 ∈ S) : r0 est l’intersection entre le rayon
[
r1,ωS

)
1 et

une surface. Pour que r0 ∈ S, il ne faut pas que le rayon
[
r1,ωS

)
intersecte un

1On défini un rayon grâce à son point d’origine r et sa direction ω. On le note alors [r,ω)
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autre héliostat (pas d’ombrage en r1) ou une surface autre que le soleil S. Cela se
traduit par :

H (r0 ∈ S) = H
([

r1,ωS
)

̸∩ H
)

×H
([

r1,ωS
)

̸∩ H
)

×H
(
H
([

r1,ωS
)

/∈ H
)

∩ S
)

• Le test de Heaviside H (r2 ∈ R) : r2 est l’intersection entre le rayon
[
r1,ω+) et une

surface. Pour que r2 ∈ R, il ne faut pas que le rayon
[
r1,ω+) intersecte un autre

héliostat (pas de blocage en r1) ou une surface autre que le récepteur R. Cela se
traduit par :

H (r2 ∈ R) = H
([

r1,ω+
)

/∈ H
)

×H
([

r1,ω+
)

/∈ H′
)

×H
(
H
([

r1,ω+
)

/∈ H
)

∩ S
)

Nous pouvons exprimer la sensibilité de la puissance thermique par rapport au paramètre
π ∂πPth comme la somme de trois contributions :

(A.2a)∂πPth = sπ1 + sπ2 + sπ3

(A.2b)sπ1 = ∂π

[∫
DH+

dr1

]
×
∫

DΩS

pΩS (ωS) dωS ×
∫

DNh1

pNh
(nh|ωS ; b) × ŵPth

(A.2c)
sπ2 =

∫
DH+

dr1 ×
∫

DΩS

pΩS (ωS) dωS

×
∫

DNh1

pNh
(nh|ωS ; b) × ŵPth

×
∂πH

([
r1,ωS

)
∩ H

)
H ([r1,ωS) ∩ H)

(A.2d)
sπ3 =

∫
DH+

dr1 ×
∫

DΩS

pΩS (ωS) dωS

×
∫

DNh1

pNh
(nh|ωS ; b) × ŵPth

× ∂πH
([

r1,ω+) ∩ H
)

H ([r1,ω+) ∩ H)

A.1.1. Calcul de sπ1

Le point r1 est défini par ses coordonnées (x1, y1, z1). Nous avons :

∂π

[∫
DH+

dr1

]
=

Nm∑
i =1

∂π

∫ π/2

π/2
dx1

∫ π/2

π/2
dy1

=
Nm∑
i=1

∫ π/2

−π/2
dy1

1
2

[
f

(
π

2
, y1

)
+f

(
−π

2
, y1

)]
+

Nm∑
i=1

∫ π/2

−π/2
dx1

1
2

[
f

(
x1,

π

2

)
+f

(
x1, −π

2

)]
=
∫

DδH+
dr1 × 1

2
(A.3)

Donc

(A.4)
sπ1 =

∫
DδH+

dr1 ×
∫

DΩS

pΩS (ωS) dωS

×
∫

DNh1

pNh1(nh1|ωS ; b)× ρH × DNI ×ωS · nh1
2

×H (r0 ∈ S)×H (r2 ∈ R)
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A.1.2. Calcul de sπ2

Nous calculons ∂πH
([

r1,ωS
)

̸∩ H
)
:

(A.5a)H
([

r1,ωS
)

̸∩ H
)

=
Nm∑
i=1

H
([

r1,ωS
)

̸∩ Hi

)
or

(A.5b)H
([

r1,ωS
)

̸∩ H
)

i
= 1 − H

([
r1,ωS

)
∩ Hi

)
et donc

(A.5c)H
([

r1,ωS
)

∩ H
)

i
= H

(
π

2
− xi

)
× H

(
π

2
+ xi

)
× H

(
π

2
−i

)
× H

(
π

2
+ yi

)
avec

(A.5d)


xi = x1 + t × ωS

x

yi = y1 + t × ωS
y

zi = 0

(voir [48]) où

(A.5e)t = −z

ωS
z

Nous avons donc :

(A.5f)

∂πH
([

r1,ωS
)

∩ H
)

i
= 1

2

[
δ
(

π

2
− xi

)
+ δ

(
π

2
+ xi

)]
× δ

(
π

2
− yi

)
× δ

(
π

2
+ yi

)
+ 1

2

[
δ
(

π

2
− yi

)
+δ

(
π

2
+ yi

)]
×δ

(
π

2
− xi

)
×δ

(
π

2
+ xi

)
= 1

2
H (ri ∈ DδH)

avec ri = r1 + tωS

Nous avons donc :

sπ2 =
∫

DH+
dr1 ×

∫
DΩS

pΩS (ωS) dωS ×
∫

DNh1

pNh1(nh1|ωS ; b) × ρH × DNI ×ωS · nh1
2

× H (r2 ∈ R) × H
([

r1,ωS
)

∩ S
)

×
[
−

Nm∑
i=1

H (ri ∈ DδHi
)
]

(A.6)

Nous pouvons réaliser le changement de variables suivant :

(A.7a)ri = r1 + tωS

(A.7b)dr1 = dri
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(A.8)
sπ2 = −

∫
DδH+

dri ×
∫

DΩS

pΩS (ωS) dωS ×
∫

DNh1

pNh1(nh1|ωS ; b)

× ρH × DNI ×ωS · nh1
2

× H (r2 ∈ R) × H
([

r1,ωS
)

∩ S
)

En reprenant les notations du chapitre 7 il vient :

(A.9)
sπ2 = −

∫
DδH+

dr1 ×
∫

DΩS

pΩS (ωS) dωS ×
∫

DNh5

pNh5(nh5|ωS ; b)

× ρH × DNI ×ωS · nh5
2

× H (r6 ∈ R) × H
([

r1,ωS
)

∩ S
)

A.1.3. Calcul de sπ3

En reprenant le raisonnement développé à la section précédente, nous retrouvons facile-
ment le terme sπ3

(A.10)
sπ3 = −

∫
DδH+

dr1 ×
∫

DΩS

pΩS (ωS) dωS ×
∫

DNh3

pNh3(nh3|ω+; b)

× ρH × DNI ×ω+ · nh3
2

× H (r2 ∈ R) × H
([

r1,ω−) ̸∩ H
)

A.1.4. Bilan
En appliquant cette méthode nous retrouvons une formulation intégrale pour le calcul
de la sensibilité d’intérêt identique à celle présentée au chapitre 7. Nous retrouvons
également les trois contributions que nous avons précédemment identifiées.

A.2. Écriture d’un modèle de sensibilité
Nous voulons écrire un modèle sur la sensibilité. Cette sensibilité obéit aux mêmes lois
de transport linéaire que les lois de transport de la luminance. La difficulté de cette
méthode réside dans l’obtention de l’expression des conditions aux limites du modèle de
sensibilité. Cette méthode a notamment été mise en œuvre par J. Dauchet [33].

A.2.1. Conditions aux limites du modèle de sensibilité
On considère un héliostat carré plan H de coté c dont la déformation est décrite au
chapitre 7.
On se place dans le plan contenant l’héliostat. Un point r ∈ H a alors pour coordonnées

r
∣∣∣∣∣ x

y
. La luminance dans ce plan est :
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π/2

π/2

π/2 π/2

y

x
n
ωωspec

r

(a) Vue de face

x

0

−c/2 − π/2
−c/2

c/2
c/2 + π/2n

ω

ωspec

(b) Vue de coté

Fig. A.1. : Déformation d’un héliostat

L(r,ω, π) = ρH ×L(r, −ωspec, π)×H (r ∈ H)×H (ω · n > 0)+Lext(r,ω, π)×H (r /∈ H)
(A.11)

Nous raisonnons dans un premier temps sur une coupe de l’héliostat et nous considérons
un seul coté de l’héliostat où x > 0. Nous avons alors :

(A.12)
L(x, y,ω, π) = ρH × L(x, y, −ωspec, π) × H

(
c + π

2
− x

)
× H (ω · n > 0) + Lext(x, y,ω, π) × H

(
x − c + π

2

)

En dérivant cette expression par rapport à π, il vient :

∂πL(x, y,ω, π) = ρH × L(x, y, −ωspec, π) × 1
2

× δ
(

c + π

2
− x

)
× H (ω · n > 0)

− Lext(x, y,ω, π) × 1
2

× δ
(

x − c + π

2

)
+ ρH × ∂πL(x, y, −ωspec, π)

×H
(

c + π

2
− x

)
×H (ω · n > 0)+∂πLext(x, y,ω, π)×H

(
x − c + π

2

)
(A.13)

En prenant la limite π → 0 :
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(A.14)

sπ(r,ω) = lim
π→0

∂πL(r,ω)

= ρH × L(x, y, −ωspec) ×
δ
(

c

2
− x

)
2

× H (ω · n > 0)

− Lext(x, y,ω) ×
δ
(

x − c

2

)
2

+ ρH × sπ(x, y, −ωspec)

× H
(

c

2
− x

)
× H (ω · n > 0) + sext

π (x, y,ω) × H
(

x − c

2

)
Revenons maintenant à la géométrie complète du système. Trois cas distincts sont pos-
sibles :

• Le point r se situe sur l’héliostat r ∈ H ≡
{

c/2 − |x|> 0
c/2 − |y|> 0

• Le point r se situe sur la frontière de l’héliostat r ∈ δH ≡
{

c/2 − |x|= 0
c/2 − |y|= 0

• Le point r ne se situe pas sur l’héliostat2 r ̸∈ H ≡
{

c/2 − |x|< 0
c/2 − |y|< 0

Nous avons deux conditions aux limites distinctes : une sur la surface de l’héliostat et
une autre sur l’arête de l’héliostat :

• Sur la surface de l’héliostat r ∈ H :

(A.15)
sπ(r ∈ H,ω) = ρH × sπ(r, −ωspec) × H (ω · n > 0)

= 1
2

× ρH × L(r, −ωspec) × H (ω · n > 0)

Lorsque le point r ∈ H, la luminance en ce point dans la direction incidente −ωspec

ne dépend pas du paramètre π. Ainsi nous avons ∂πL(r, −ωspec) = sπ(r, −ωspec) =
0.

• Sur les arêtes de l’héliostat r ∈ δH :

(A.16)sπ(r ∈ δH,ω) = 1
2

×ρH×L(r, −ωspec)×H (ω · n > 0)− 1
2

×Lext(r,ω)

On a une source de sensibilité sur les arêtes qui fait intervenir un couplage avec le
modèle sur la luminance.

Nous pouvons faire le parallèle entre la formulation obtenue au chapitre 7 et ce que nous
venons d’obtenir. Le terme sπ(r ∈ H,ω) est non nul lorsqu’il y a ombrage de l’héliostat
concerné par un autre héliostat. Nous avons une contribution sur la ligne d’ombrage
qui évolue en fonction du paramètre π (voir la équation (A.16)). Nous retrouvons la
contribution d’ombrage ŵO présentée au chapitre 7. D’un point de vue algorithmique,
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LO
O

��O
ωspec

ω

r

Fig. A.2. : Représentation de la contribution sπ(r ∈ H,ω)

il est plus pratique de prendre en compte l’ombrage fait par l’héliostat considéré sur
d’autres héliostats que l’inverse.
Le terme sπ(r ∈ δH) regroupe une contribution positive et une contribution négative.
Elles correspondent respectivement aux contributions ŵP et ŵB identifiées au chapitre 7.

A.3. Conclusion

Lors de cette annexe nous avons présenté deux méthodes permettant l’obtention de la
sensibilité de la puissance thermique collectée au récepteur d’une centrale par rapport
à la taille des héliostats. Ces deux approches aboutissent à une formulation intégrale
identique à celle obtenue au chapitre 7.

(A.17a)
sPth

=
∫

DδH+
pR1(r1) dr1 ×

∫
DΩS

pΩS (ωS) dωS ×
∫

DNh

pNh
(nh1|ωS ; b)

×
∫

DNh

pNh
(nh3|ω+; b) ×

∫
DNh

pNh
(nh5|ωS ; b) × ŵδπPth

avec ŵδπPth le poids de Monte Carlo :

2Ce terme ne nous intéresse pas car nous cherchons les conditions aux limites sur l’héliostat.
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ŵδπPth = ρH × DNI × PδH
2

×



H (r2 /∈ R) × 0

+H (r2 ∈ R) ×



H
(
r3 /∈ H+)× 0

+H
(
r3 ∈ H+)×

{
H (r4 /∈ S) × 0
−H (r4 ∈ S) ×

(
ω+ · nh3

)}
+H (r0 /∈ S) × 0
+H (r0 ∈ S) ×

(
ωS · nh1

)


+H (r0 /∈ S) × 0

+H (r0 ∈ S) ×


H
(
r5 /∈ H+)× 0

+H
(
r5 ∈ H+)×

{
H (r6 /∈ R) × 0
−H (r6 ∈ R) ×

(
ωS · nh5

)}



(A.17b)
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Nous allons définir un formalisme et une méthode visant à obtenir un modèle de sensibi-
lité à une déformation d’une surface. Nous recherchons une méthode globale permettant
l’obtention d’une sensibilité à un paramètre géométrique.
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B.1. Le calcul de sensibilité
B.1.1. L’approche classique d’un calcul de sensibilité
La recherche de sensibilités à un paramètre associée aux méthodes de Monte Carlo est
bien connue. La démarche suivie consiste à estimer simultanément la grandeur recher-
chée A et ses sensibilités ∂πiA par apport à des paramètres πi. Pour cela, on dérive
l’expression de l’algorithme de Monte Carlo utilisé pour calculer la grandeur d’intérêt
par le paramètre en question, comme présenté dans les relations Eqs.équation (B.1) et
équation (B.2).

(B.1)A =
∫

DX
pX(x) dx

∫
DY

pY(y|x) dyŵ(x, y; π)

(B.2)∂πA =
∫

DX
pX(x) dx

∫
DY

pY(y|x) dyŵπ(x, y; π)

En définitif, l’algorithme sur la grandeur est très peu modifié et le temps de calcul
supplémentaire est très faible car on utilise les mêmes lois de tirage pour les variables
aléatoires.
Toutefois, comme présenté dans [31], on peut classer les calculs de sensibilités en 4 cas
distincts en répondant à 3 questions :

1. Est-ce que les lois de tirage dépendent du paramètre π ?
2. Est-ce que le domaine d’intégration dépend de π ?
3. Est-ce que π apparaît à l’intérieur des tests conditionnels de l’algorithme ?

Dans les cas où les réponses aux questions 1 et 2 sont positives, on quitte le domaine
des sensibilités paramétriques pour entrer dans celui des sensibilités à la déformation
du domaine également appelées sensibilités géométriques. Si la réponse à la question 3
est négative, une méthode a été mise au point dans le cadre de la thèse de M. Roger
[127]. Elle repose sur l’introduction d’un champ de vitesse de déformation du domaine.
Les résultats sont alors obtenus par un travail de reformulation mathématique sur les
expressions.
Si la réponse à la question 3 est positive, il a été montré dans [31] qu’il est possible,
par un travail mathématique de reformulation d’obtenir un résultat. Toutefois, si nous
sortons des cas académiques, cette méthode présente des difficultés majeures.

B.1.2. Une démarche originale
Pour cela, nous proposons ici une approche différente pour traiter les problèmes néces-
sitant un calcul de sensibilité géométrique. Ces problèmes comprennent notamment les
problèmes relatifs au design d’installations où les critères géométriques sont prépondé-
rants.
Pour cela, au lieu de chercher à exprimer la grandeur mesurée et sa sensibilité dans le
même algorithme, on va poser un modèle sur la grandeur et un modèle sur la sensibilité.
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La difficulté se reporte sur la recherche des conditions aux limites pour le modèle de
sensibilité. C’est une approche nouvelle dans le cadre des méthodes de Monte Carlo.
Elle nécessite 2 algorithmes de Monte Carlo mais permet l’obtention d’une sensibilité
géométrique.

B.1.2.1. Un modèle sur la grandeur A

Nous avons donc un algorithme qui permet de connaitre l’estimation de notre grandeur
d’intérêt A :

(B.3)A =
∫

DX
pX(x) dx

∫
DY

pY(y|x) dyŵ(x, y; π)

B.1.2.2. Un modèle sur la sensibilité à π de la grandeur A

Nous posons la sensibilité Sπ, la sensibilité de la grandeur A par rapport au paramètre
géométrique π :

(B.4)Sπ = ∂πA

B.2. Aspects géométriques
B.2.1. Calculs sur la géométrie : définitions
Nous nous plaçons dans un repère en 2D, en considérant l’angle φ connu et fixé, comme
présenté sur la figure figure B.2. Le repère choisi est un repère de Frénet ayant pour
origine le point rs que l’on observe. L’abscisse est ainsi selon la tangente à la surface à ce
point et l’ordonnée selon la normale à la surface à ce point. La figure figure B.1 reprend
cette description. La surface est définie par une fonction paramétrique f , dépendante de
l’abscisse et d’un paramètre π. Ce paramètre π fait intervenir une grandeur caractéris-
tique p de la surface et une perturbation infinitésimale δπ de cette grandeur. Un point
quelconque r(rx, ry) appartenant à la surface voit donc ses coordonnées répondre à la
relation :

(B.5)ry = f(rx, δπ)

avec :
(B.6)π = p − δπ

Nous définissons 2 surfaces distinctes :

1. La surface de référence pour laquelle δπ = 0 que l’on désigne par Sπ avec f(rx, 0) ;
2. Toute autre surface pour laquelle δπ > 0 que l’on désigne par S ′

π avec f(rx, δπ)

Exemple : pour une sphère en 3D, nous nous ramenons à un cercle en 2D où la fonction
donne :

(B.7)f(x, δπ) =
√

(R − δπ)2 − x2 − R + δπ
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S ′
π

Sπ

rs

Vπ

n

tr′
s

δπ

Fig. B.1. : Transformation suivant le vecteur vitesse de déformation

B.2.2. Caractériser la déformation
Afin de s’affranchir de cas particuliers, nous cherchons à définir la déformation en toute
généralité. Pour cela, nous nous appuyons sur le travail de Maxime Roger [127] relatif
au vecteur vitesse de déformation du domaine en introduisant le vecteur Vπ. Ce champ
vectoriel représente la déformation du domaine en fonction d’une perturbation δπ du
paramètre π. Nous définissons une transformation de la surface Sπ vers la surface S ′

π,
qui fait correspondre à une position quelconque rs de Sπ, une position r′

s de S ′
π, comme

représenté sur la figure figure B.1 :

(B.8)

r′
s − rs = −sign [Vπ · n] × δπ × Vπ

r′
s − rs

= −δπ × Vπ

r′
s

= −δπ × Vπ + rs
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t y

z

x

n

t

φ

Fig. B.2. : Passage de 3D vers 2D

B.3. Le problème
B.3.1. Configuration radiative étudiée
Nous sommes en présence d’une configuration radiative donnée, dont la géométrie est
définie par un paramètre π. Nous pouvons citer quelques exemples :

• Dans une configuration de photobioréacteur :
– Le rayon des fibres,
– La distance entre les fibres, ...

• Dans une configuration solaire à concentration :
– La distance focale d’un miroir,
– La position du récepteur,
– La forme d’une optique beamdown,...

La grandeur d’intérêt est la luminance L(r,ω; π) obeïssant à l’ETR (Eq. équation (B.9))
et aux conditions aux limites (Eq.équation (B.10)) associées au problème étudié. Il faut
bien prendre en compte la dépendance de ce domaine au paramètre π.

(B.9)ω ·
−−→gradr L = −ka × L(r,ω; π) + kd ×

∫
4π

L′(r,ω; π) × p(ω|ω′) dω′

(B.10)L(r ∈ ∂Ω(π),ω+; π) ≡


Fixé
ou

f [L(r ∈ ∂Ω(π),ω−; π)]
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Nous pouvons alors distinguer de nombreux cas pour nos conditions aux limites :

1. Fixé :
• Corps noir : L+ = L0(r)H (ω · n(r)) ;
• Corps noir et température homogène : L+ = L0H (ω · n) ;
• Laser : L+ = L0(r)δ(ω+ −ωs(n(r))) ;

2. Réflexion :

• Réflexion diffuse : L+ = ρ
∫

dω
1

4π
L(r,ω−; π)H (ω · n(r)) ;

• Réflexion spéculaire : L+ = ρL(r,ωspec; π) ;

Cas particuliers définissant B
Nous détaillons les cas pouvant apparaître suivant la nature de S :

• S est un corps noir ;
• S est réfléchissant :

– La réflexion est diffuse ;
– La réflexion est spéculaire.

Cas 1 : S est un corps noir
B.3.2. Modèle de sensibilité
On pose sπ la sensibilité par rapport au paramètre π :

(B.11)sπ = ∂πL

On dérive directement de l’ETR :

(B.12)ω ·
−−→gradr Sπ(r,ω; π) = −kaSπ(r,ω; π) + kd

∫
4π

dω′S′
π(r,ω; π)p(ω|ω′)

Qui s’écrit également :

(B.13)ω ·
−−→gradr ∂πL(r,ω; π) = −ka∂πL(r,ω; π) + kd

∫
4π

dω′∂πL′(r,ω; π)p(ω|ω′)

Il faut maintenant exprimer les conditions aux limites sur une surface qui se déforme.
La démarche consiste à chercher, pour δπ ≪ π l’expression de L(rs,ω+; δπ) en fonction
des luminances entrantes dans la sous-couche L(rs,ω−; δπ) solution de la configuration.
Nous exprimons ensuite la sensibilité de cette grandeur selon le paramètre géométrique
∂3L(rs,ω+; δπ). À ce stade, nous prenons δπ → 0 pour obtenir ∂3L+, les conditions aux
limites du problème en sensibilité.
Dans le cadre de ce travail dans un sous-problème (la sous-couche entre Sπ et S ′

π) avec
δπ infinitésimal, nous allons écrire la solution L(r1,ω+; δπ) comme un développement
limité en ordre de diffusion :
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Sδπ
Sπ

rδπ rs

ω

Fig. B.3. : Configuration

(B.14)L(r1,ω+; δπ) = L(0)(r1,ω+; δπ) + L(1)(r1,ω+; δπ) + . . .

Les termes de diffusion supérieurs ou égales à l’ordre 2 comprendront des termes en
δπn avec n ≥ 2. De ce fait, lorsque nous les dériverons et prendrons la limite quand
δπ → 0, ils ne contribueront pas. D’un point de vue physique, nous sommes dans un
milieu optiquement mince, nous pouvons dire qu’il n’y aura presque pas de diffusion
dans une sous-couche de largeur δπ avec δπ → 0, donc si il n’y a que peu de diffusion,
la probabilité de voir deux diffusions ou plus est inexistante.
Le terme de diffusion simple a été étudié précédemment dans le cas d’une configuration
slab :

• Il ne pose pas de problème : les conditions aux limites existent ;
• Intuitivement, il n’y a pas de raison que l’introduction de la courbure de Sπ intro-

duise de difficulté.

Nous allons donc nous concentrer sur les termes balistiques. En effet, l’étude dans la
configuration slab met en lumière une difficulté lorsque l’on considère des conditions
aux limites avec réflexion en géométrie 2D. De plus, on pressent que la courbure va avoir
un effet sur ce terme de par l’existence de 3 cas distincts, comme représenté sur la figure
figure B.4.

B.3.3. Contribution des balistiques
Comme indiqué au annexe B.2.1, nous nous plaçons dans un cas 2D. Cela implique que
nous prenons une configuration avec un angle φ connu. En toute généralité, il faudrait
rajouter une dépendance à la tangente dans les expressions qui vont suivre.
La figure figure B.4 illustre les différentes contributions que nous pouvons avoir. Nous
pouvons ainsi exprimer L(rs,ω+; δπ) comme :
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S ′
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S ′
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Éclairement direct
Fig. B.4. : Différentes contributions

(B.15)
L(rs,ω+; δπ) = H (ω · n > µl(δπ))

[
L0(rδπ(δπ),ω; n(rδπ(δπ)))

+ LR(rδπ(δπ),ω; n(rδπ(δπ)), δπ)
]

exp[−k|rs − rδπ|]

+ H (ω · n < µl(δπ))LD(rδπ(δπ),ω−; δπ) exp[−k|rs − rδπ|]

Nous dérivons cette expression par δπ 1 :

(B.16)∂3L(rs,ω+; δπ) = δ (ω · n = µl(δπ)) × ∂δπµl

[
L0(xδπ(δπ),ω; n(xδπ(δπ)))

+ LR(xδπ(δπ),ω; n(xδπ(δπ)), δπ) − LD(xδπ(δπ),ω−; δπ)
]

exp[−k|rs − rδπ|]

+H (ω · n > µl(δπ))
[
−k∂δπ|rs−rδπ|

(
L0(xδπ(δπ),ω; n(xδπ(δπ)))+LR(xδπ(δπ),ω; n(xδπ(δπ)), δπ)

)
+∂δπrδπ

(−−→grad1 L0(xδπ(δπ),ω; n(xδπ(δπ)))+
−−→grad1 LR(xδπ(δπ),ω; n(xδπ(δπ)), δπ)

)
+∂δπn(rδπ)

(−−→grad3 L0(xδπ(δπ),ω; n(xδπ(δπ)))+
−−→grad3 LR(xδπ(δπ),ω; n(xδπ(δπ)), δπ)

)
+∂4LR(xδπ(δπ),ω; n(xδπ(δπ)), δπ)

]
exp[−k|rs−rδπ|]+H (ω · n < µl(δπ))×

[
−k∂δπ|rs−rδπ|LD(xδπ(δπ),ω−; δπ)

+ ∂3LD(xδπ(δπ),ω−; δπ)
]

exp[−k|rs − rδπ|]

B.3.4. Limite quand δπ → 0

Lorsque nous faisons tendre δπ vers 0, alors, nous avons également θl → 0 et rδπ → rs.
En utilisant les expressions obtenues par le travail de géométrie (voir annexe B.2.1), nous
obtenons :

1Un travail précédent sur les intégrales de la luminance nous a amené à la conclusion que l’on pouvait
dériver directement l’expression de la luminance
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(B.17)∂3L(rs,ω) = δ (ω · n = 0) × ∂δπµl(0)︸ ︷︷ ︸
−Vπ · n
ω · n

×C

×
[
L0(rs,ω; n(rs)) + LRrs,ω; n(rs))

+ L(rs,ω)
]

+ k ∂δπ|rs − rδπ|(δπ = 0)︸ ︷︷ ︸
si ω · n ̸= 0 : −Vπ · n

ω · n
si ω · n = 0 : 0

×
[
L0(rs,ω) + LRrs,ω)

]

+ ∂δπrδπ(δπ = 0)︸ ︷︷ ︸
−Vπ · n
ω · n

×ω

[−−→gradr L0(rs,ω) +
−−→gradr LR(rs,ω)

]

+ ∂δπn(δπ = 0)
[−−→gradn L0(rs,ω) +

−−→gradn LR(rs,ω)
]

+ ∂3LR(rs,ω; 0)

Nous allons maintenant chercher à expliciter les termes de la relationéquation (B.17).
Nous avons des termes provenant de la réflexion, des termes provenant de l’émission.

B.3.5. Termes issus de la réflexion
Dans le cas d’une réflexion diffuse.

(B.18)LR(rδπ(δπ),ω; n(rδπ)) = ρ

∫
4π

dω− 1
2π

L(rs,ω−; δπ)H ((ω · n < 0)

(B.19)

−−→grad1 LR(xδπ(δπ),ω; n(xδπ(δπ)), δπ)

= ρ

∫
h−(n(rδπ))

dω−p(ω|ω−; n(rδπ))

×
[
(∂rδπ

rs) ×
−−→grad1 L(rs(rδπ),ω−; δπ) −k

−−→gradrδπ
|rs − rδπ|

× L(rs,ω−; δπ)
]

exp(−k|rs − rδπ|)

Lorsque δπ → 0, alors, nous avons également rδπ → rs et r′
s → rs. De ce fait, nous avons

(∂rδπ
r′
s) → Id. Nous avons la relation :

(B.20)−−→gradr LR(rs,ω) = ρ

∫
h−(n(rs))

dω−p(ω|ω−; n(rs)) ×
−−→gradr L(rs,ω−)

B.4. Intersection et équation de droite
Nous identifions un cas limite lorsque la demi-droite R passant par rs et portant le
vecteur ω est tangente à S ′

π en ys. Cette configuration est représentée sur la figure
figure B.5. Cette demi-droite peut être définie à partir des coordonnées du point rs, de
la direction ωl et d’un réel σ ∈ [0, +∞]. Elle est constituée de l’ensemble des points r
tels que :
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Fig. B.5. : Existence du point ys

(B.21)
r = rs − σωl

=
∣∣∣∣∣r1 − σ sin θl

r2 − σ cos θl

Le point ys est le point d’intersection entre la demi-droite R et la surface S ′
π défini pour

une valeur fixée de σ = σ∗. Ce point appartenant à la surface S ′
π, nous pouvons donc

écrire :

(B.22)
y2 = f(y1, δπ)

y2 − σ∗ cos θl

= f(y1 − σ∗ sin θl)

Autour de ce cas limite, 2 cas distincts peuvent exister si l’on parcours les directions
possibles suivant les angles θ ∈

[
0, π

2
[
:

• Quand θ > θl, alors ys ∈ Sπ ;
• Quand θ < θl, alors ys ∈ S ′

π ;

Par définition, nous avons f(0, p) = 0, r1 < 0, rs = 0 et r2 = f(r1, p). Nous cherchons à
exprimer la distance σ∗. Pour cela, à partir de la relation entre r1 et r2, nous réalisons
un développement limité autour de r1 = 0 :

(B.23)
r2 = f(r1, p)

= f(0, p) + ∂1f(0, p)r1 + 1
2

∂2
1f(0, p)r2

1 + · · ·

Le point ys appartient à de la surface S ′
π donc ces coordonnées vérifient la relation

y2 = f(y1, p) avec
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(B.24)
y2 = f(y1, p)

− σ∗ω2
= f(−σ∗ω1, p)

Nous avons une racine triviale pour σ∗ = 0, soit rs = ys. La solution à notre problème
nécessite d’aller à l’ordre 2. Nous les injectons à la relation équation (B.23) pour obtenir :

(B.25)

−σ∗ω2 = f(0, p) + ∂1f(0, p)(−σ∗ω1) + 1
2

∂2
1f(0, p)(−σ∗ω1)2 + · · ·

− σ∗ω2

= 1
2

∂2
1f(0, p)(−σ∗ω1)2 + · · ·

σ∗

= − 2
∂2

1f(0, p)
× ω2

ω2
1

σ∗

= − 2
C

× cosω
1 − cos2ω

où C est la courbure au point rs.
Nous avons maintenant la surface S ′

π dont les points sont définis par la relation f(r1, π)
pour δπ > 0. Nous réalisons, comme précédemment un développement limité autour de
r1 = 0 :

(B.26)
r2 = f(r1, δπ)

= f(0, δπ) + ∂1f(0, δπ)r1 + 1
2

∂2
1f(0, δπ)r2

1 + · · ·

Par la suite, nous réalisons un développement limité autour de δπ = 0 :

r2 = f(0, 0) + ∂2f(0, 0)δπ + ∂2
2f(0, 0)δπ2 +

[
∂1f(0, 0) + ∂2∂1f(0, 0)δπ + ∂2

2∂1f(0, 0)δπ2
]

× r1 + 1
2

[
∂2

1f(0, 0) + ∂2∂2
1f(0, 0)δπ + ∂2

2∂2
1f(0, 0)δπ2

]
× r2

1 + · · ·
(B.27)

Nous allons introduire des notations afin de simplifier les expressions et leur lecture :

r2 = f(0, 0) + ∂2f(0, 0)δπ + ∂2
2f(0, 0)δπ2︸ ︷︷ ︸

P0=a0+b0δπ+c0δπ2

+

∂1f(0, 0) + ∂2∂1f(0, 0)δπ + ∂2
2∂1f(0, 0)δπ2︸ ︷︷ ︸

P1=a1+b1δπ+c1δπ2

× r1

+ 1
2

∂2
1f(0, 0) + ∂2∂2

1f(0, 0)δπ + ∂2
2∂2

1f(0, 0)δπ2︸ ︷︷ ︸
P2=a2+b2δπ+c2δπ2

× r2
1 + · · ·

(B.28)
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Dans ce cas, le point ys appartient à une surface pour laquelle δπ > 0 donc à la surface
S ′

π. Ses coordonnées vérifient la relation :

(B.29)
y2 = f(y1, π)

− σ∗ω2
= f(−σ∗ω1, δπ)

Nous pouvons injecter les coordonnées du point ys dans la relation équation (B.28) :

(B.30)
−σ∗ω2 = P0 + P1 × (−σ∗ω1) + P2 × (−σ∗ω1)2

P0 + (ω2 − P1ω1) × σ∗ + P2 × ω2
1σ∗2

= 0

Nous avons un polynôme de degré 2 en σ∗. Pour obtenir l’expression de σ∗, nous avons
seulement besoin du premier ordre. En effet, seule la première intersection entre la demi-
droite et la surface S ′

π nous intéresse. Nous avons donc :

(B.31)

P0 + (ω2 − P1ω1) × σ∗

= 0
σ∗

= −P0
ω2 − P1ω1

Nous recherchons maintenant l’expression de l’angle caractéristique θl définissant la tan-
gente issue de rs à la surface Sδπ, comme présentée sur la figure ...Pour cela, nous allons
chercher le racine double de la relation équation (B.30). En effet, pour obtenir θl nous
ne pouvons avoir qu’une seule et unique valeur pour σ∗ puisque nous n’avons qu’une
intersection avec la tangente. Nous recherchons le discriminant :

(B.32)∆ = (ω2 − P1ω1)2 − 4P0P2ω2
1

Comme nous l’avons dit, nous recherchons la distance σ∗ entre les points rs et ys. Nous
recherchons l’expression de θl pour ∆ = 0 :

(ω2 − P1ω1)2 − 4 × P0 × P2 × ω2
1 = 0

(cos θl − P1 sin θl)2 − 4P0P2 sin2 θl

= 0
cos2 θl − 2P1 cos θl sin θl + P 2

1 sin2 θl − 4P0P2 sin2 θl

= 0[
P 2

1 − 4P0P2
]

× tan2 θl − 2P1 tan θl + 1
= 0

(B.33)

Nous obtenons une équation du second degré en tan θl. Nous recherchons ses racines :
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(B.34)

∆′ = P 2
1 − P 2

1 + 4P0P2
= 4P0P2
S1

= P1 +
√

4P0P2
P 2

1 − 4P0P2
S2

= P1 −
√

4P0P2
P 2

1 − 4P0P2

Nous savons, par définition que θl ∈
[
0,

π

2

[
, de ce fait, nous avons une contrainte pour

évaluer la valeur de tan θl ∈ [0, +∞[. Nous allons rechercher quelle racine répond à cette
contrainte. Les racines sont de la forme :

(B.35)
S = a ± b

a2 − b2

= a ± b

(a − b) × (a + b)

où a = P1 et b =
√

4P0P2.

Cas 1 : Signe +

Nous avons alors :

(B.36)
S+ = a + b

(a − b) × (a + b)

= 1
(a − b)

Cas 2 : Signe −

Nous avons alors :

(B.37)
S− = a − b

(a − b) × (a + b)

= 1
(a + b)

En nous appuyant sur la géométrie (figure ...), lorsque θl → π

2
nous recherchons la racine

positive :

(B.38)lim
δπ →0

S = +∞
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Nous avons :

(B.39)S = 1
P1 ±

√
4P0P2

Nous développons cette expression puis nous la divisons par
√

δπ :

(B.40)
S = 1

b1δπ ±
√

4 × b0δπ × (a2 + b2δπ)

= 1/
√

δπ

±2
√

a2b0 + 2 ×
√

δπ
(
b1 ±

√
b0b2

)
Soit en prenant la limite de S pour δπ → 0 :

(B.41)lim
δπ →0

S =

→+∞︷ ︸︸ ︷
1/

√
δπ

± 2
√

a2b0︸ ︷︷ ︸
>0

+ 2 ×
√

δπ
(
b1 ±

√
b0b2

)
︸ ︷︷ ︸

→0

Nous en déduisons l’expression de tan θl :

(B.42)tan θl = 1
P1 +

√
4P0P2

Nous pouvons maintenant exprimer l’angle limite θl :

(B.43)θl = arctan
[ 1

P1 +
√

4P0P2

]
Nous avons besoin de l’expression de la dérivée de l’angle limite θl par selon la défor-
mation infinitésimale δπ, soit ∂δπθl. D’après la relation équation (B.43), nous pouvons
écrire :

(B.44)
∂δπθl = 1

1 +
[ 1

P1 +
√

4P0P2

]2 × ∂δπ

[ 1
P1 +

√
4P0P2

]

= 1
1 + tan2 θl

× ∂δπ

[ 1
P1 +

√
4P0P2

]
Nous avons lim

δπ→0
∂δπθl = ∞ or, nous allons démontrer que ∂δπθl tend vers l’infini comme

1
cos θl

(on a vu que θl tend vers π
2 lorsque δπ tend vers 0 ce qui nous est nécessaire pour

l’écriture des conditions aux limites.
Nous pouvons donc écrire :
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∂δπθl = 1
cos θl

1[
1 + tan2 θl

]3/2 × ∂δπ

[ 1
P1 +

√
4P0P2

]
= 1

cos θl

1[
1 +

( 1
P1 +

√
4P0P2

)2
]3/2 × ∂δπ

[ 1
P1 +

√
4P0P2

]

= 1
cos θl

1[
1 +

( 1
P1 +

√
4P0P2

)2
]3/2 × −1

(P1 +
√

4P0P2)2 × ∂δπ

[
P1 +

√
4P0P2

]

= 1
cos θl

− tan2 θl[
1 + tan2 θl

] × 1√
1 +

( 1
P1 +

√
4P0P2

)2
× ∂δπ

[
P1 +

√
4P0P2

]
︸ ︷︷ ︸

A

(B.45)

Nous développons :

(B.46)

∂δπ

[
P1 +

√
4P0P2

]
= b1 − b0a2 + 2b0b2δπ√

b0a2δπ + b0b2δπ2

1 +
( 1

P1 +
√

4P0P2

)2

= 1 +
[ 1

b1δπ + 2
√

b0a2δπ + b0a2δπ + b0b2δπ2

]2

A

=
b1 − b0a2 + 2b0b2δπ√

b0a2δπ + b0b2δπ2√√√√1 +
[

1
b1 +

√
4(b0a2δπ + b0b2δπ2

]2

×
√

b0a2δπ + b0a2δπ + b0b2δπ2
√

b0a2δπ + b0a2δπ + b0b2δπ2

= b1
√

b0a2δπ + b0b2δπ2 − 2b0b2δπ − b0a2b0a2δπ + b0b2δπ2 +

 1

1 + b1
√

δπ√
b0a2 + b0b2δπ


2

1/2

Nous avons donc :

(B.47)∂δπθl = −1
cos θl

tan2 θl

1 + tan2 θl
× A

Nous recherchons la limite de ∂δπθl quand δπ → 0 :
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(B.48)lim
δπ →0

tan2 θl

1 + tan2 θl
= lim

δπ→0

x

1 + x
= 1

(B.49)lim
δπ →0

A = −b0a2

On obtient donc :

(B.50)lim
δπ →0

∂δπθl = 1
cos θl

b0a2

Sous-modèle sur la grandeur
Nous posons alors un sous-modèle sur la grandeur, en nous intéressant à une portion très
réduite du système, c’est à dire à ce qu’il se passe à l’approche de la surface subissant
la déformation. En toute généralité, l’équation de transfert radiatif s’écrit :

(B.51)ω ·
−−→gradr L = −kaL + kd

∫
4π

dω′L′p(ω|ω′)

Nous allons définir certaines notations afin de clarifier les expressions mathématiques
suivantes. Pour cela, nous définissons les quatre grandeurs (produits scalaires) suivantes :

(B.52)

ω · nr1 > 0 −→ ω+
nr1

ω · nr1 < 0 −→ ω−
nr1

ω · nr2 > 0 −→ ω+
nr2

ω · nr2 < 0 −→ ω−
nr2

Avec nr1 et nr2 les vecteurs normaux respectivement en rs et r2, et
vomega une direction comme représenté sur la figure figure B.3. Nous exprimons les
conditions aux limites de ce sous-problème :

(B.53)en rs : L(rs,ω+
nr1

; rs, r2) = L̃(rs,ω+
nr1

; rs, r2)

en r2 : L(rs,ω+
nr2

; rs, r2) = B
[
L(r2,ω+

nr2
; rs, r2); r2,ω+

nr2
, r2

]
Où B[· · ·] est la luminance issue de la surface S2 et L̃(rs,ω+

nr2
; rs, r2) est la solution de

la configuration réelle (la solution du modèle sur la grandeur).
Il est possible de distinguer 3 cas, comme représenté au annexe B.3.3 et sur la figure
figure B.4 :

• rδπ ∈ S ′
π : la luminance est égale à la luminance émise ou réfléchie par Sδπ et

atténuée sur la distance ∥rδπ − rs∥ ;
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S2
S1

rs ω

rδπ

y

x

S2
S1

rs

ω

rδπ

Fig. B.6. : 2 cas possibles d’entrer dans la sous-couche

• rδπ ∈ Sπ : la luminance est égale à la luminance entrante dans S en rδπ et atténuée
sur la distance ∥rδπ − rs∥ ;

Nous pouvons écrire cette luminance grâce à des fonctions de Heaviside :

(B.54)
L(rs,ω; δπ) = H(rδπ

∈ Sδπ)L0 exp(−Kext × ∥rδπ − rs∥) + H(rδπ

∈ Sπ)L(rδπ,ω; δπ) exp(−Kext × ∥rδπ − rs∥)
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Glossaire

A | B | D | E | F | H | M | N | P | R | S | T
A
anthropique

Relatif à l’activité humaine. Qualifie tout élément provoqué directement ou indi-
rectement par l’action de l’homme : érosion des sols, pollution par les pesticides
des sols, relief des digues,... . Du grec anthropos (homme).

B
Bernoulli

Jacques ou Jakob Bernoulli (27 décembre 1654, Bâle - 16 août
1705) est un mathématicien et physicien suisse, frère de Jean
Bernoulli et oncle de Daniel Bernoulli et Nicolas Bernoulli
[130].

D
Darwin

Charles Robert Darwin (né le 12 février 1809 à Shrewsbury
dans le Shropshire - mort le 19 avril 1882 à Downe dans le
Kent) est un naturaliste anglais dont les travaux sur l’évo-
lution des espèces vivantes ont révolutionné la biologie avec
son ouvrage De l’origine des espèces paru en 1859. Célèbre au
sein de la communauté scientifique de son époque pour son
travail sur le terrain et ses recherches en géologie, il a formulé
l’hypothèse selon laquelle toutes les espèces vivantes ont évo-
lué au cours du temps à partir d’un seul ou quelques ancêtres
communs grâce au processus connu sous le nom de « sélection
naturelle » [131].
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Annexe B. Glossaire

Dirac
Paul Adrien Maurice Dirac (8 août 1902 à Bristol, Angleterre -
20 octobre 1984 à Tallahassee, Floride, états-Unis) est un phy-
sicien et mathématicien britannique. Il est l’un des « pères »
de la mécanique quantique et a prévu l’existence de l’antima-
tière. Il est colauréat avec Erwin Schrödinger du prix Nobel
de physique de 1933 « pour la découverte de formes nouvelles
et utiles de la théorie atomique » [132].

E
effet cosinus

Lorsque l’on considère de rayonnement direct, on appelle rayonnement direct nor-
mal le rayonnement direct mesuré perpendiculairement aux rayons du soleil. Sur
un plan non perpendiculaire, le même rayonnement irradie une surface plus grnade,
il est donc mon intense, c’est ce que l’on appelle l’effet cosinus.

effet photoélectrique
Phénomène d’interaction entre le rayonnement et la matière, caractérisé par l’ab-
sorption des photons et la libération consécutive d’électrons.

F
Fresnel

Augustin Jean Fresnel, né le 10 mai 1788 à Broglie et mort
le 14 juillet 1827 à Ville-d’Avray, est un physicien français.
Fondateur de l’optique moderne, il proposa une explication
de tous les phénomènes optiques dans le cadre de la théorie
ondulatoire de la lumière [133].

H
Heaviside

Oliver Heaviside FRS (18 mai 1850 - 3 février 1925) est un
physicien britannique autodidacte. Il a formulé à nouveau et
simplifié les équations de Maxwell sous leur forme actuelle
utilisée en calcul vectoriel [134].

héliostat
Instrument à miroirs destiné à projeter les rayons solaires sur un point, sans être
perturbé par la rotation de la Terre.

M
moteur de rendu

Un moteur de rendu (rendering engine) est un logiciel permettant de générer des
images à partir de données.

métaheuristique
Les métaheuristiques forment une famille d’algorithmes d’optimisation visant à
résoudre des classes générales de problèmes mathématiques en combinant des pro-
cédures de recherche pour trouver rapidement une bonne approximation de la
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meilleure solution.
N
Newton

Isaac Newton (4 janvier 1643 G – 31 mars 1727 G, ou 25
décembre 1642 J – 20 mars 1727 J)N 1 est un philosophe,
mathématicien, physicien, alchimiste, astronome et théologien
anglais. Figure emblématique des sciences, il est surtout recon-
nu pour avoir fondé la mécanique classique, pour sa théorie de
la gravitation universelle et la création, en concurrence avec
Leibniz, du calcul infinitésimal. En optique, il a développé une
théorie de la couleur basée sur l’observation selon laquelle un
prisme décompose la lumière blanche en un spectre visible. Il
a aussi inventé le télescope à réflexion composé d’un miroir
primaire concave appelé télescope de Newton [135].

P
photobioréacteur

Un photobioréacteur est un système assurant la production de micro-organismes
photosynthétiques en suspension dans l’eau, tels que les bactéries photosynthé-
tiques, les cyanobactéries, les microalgues eucaryotes, les cellules isolées de plante
pluricellulaires, des petites plantes comme les gamétophytes de macroalgues et
les protonemata de mousse. Cette production se fait par culture, le plus souvent
clonale, en milieu aqueux sous éclairage. L’amplification jusqu’à des volumes indus-
triels pouvant atteindre des centaines de mètres cubes s’effectue selon des étapes
successives où le volume d’une étape sert à inoculer le volume suivant. Pour récol-
ter la population microbienne et assurer la production de biomasse, le volume de
chaque étape peut être renouvelé partiellement tous les jours (culture en continu)
ou changé totalement (culture en lots). À ces étapes correspondent des photobio-
réacteurs de volume croissant et de nature différente [136].

programmation orientée objet
La programmation orientée objet (POO), ou programmation par objet, est un
paradigme de programmation informatique élaboré par les Norvégiens Ole-Johan
Dahl et Kristen Nygaard au début des années 1960 et poursuivi par les travaux
d’Alan Kay dans les années 1970. Il consiste en la définition et l’interaction de
briques logicielles appelées objets ; un objet représente un concept, une idée ou
toute entité du monde physique, comme une voiture, une personne ou encore une
page d’un livre. Il possède une structure interne et un comportement, et il sait
interagir avec ses pairs. Il s’agit donc de représenter ces objets et leurs relations ;
l’interaction entre les objets via leurs relations permet de concevoir et réaliser les
fonctionnalités attendues, de mieux résoudre le ou les problèmes [137].

R
rayon de convergence

Soit ∑ anzn une série entière, alors il existe R un réel positif ou +∞ tel que :

R = sup
{

r, r ∈ R+,
∑

anrn converge
}
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R est appelé le rayon de convergence de ∑ anzn.
S
simplexe

En mathématiques, et plus particulièrement en géométrie, un simplexe est une
généralisation du triangle à une dimension quelconque.

stochastique
Se dit de phénomènes qui, partiellement, relèvent du hasard et qui font l’objet
d’une analyse statisitique

T
Taylor

Brook Taylor est un homme de science anglais, né à Edmon-
ton, aujourd’hui un quartier de Londres, le 18 août 1685, et
mort à Londres le 29 décembre 1731. Principalement connu
comme mathématicien, il s’intéressa aussi à la musique, à la
peinture et à la religion [138].

192





Résumé

Depuis les années quarante, la consommation énergétique mondiale n’a cessé d’augmen-
ter. Cette énergie étant majoritairement d’origine fossile, il en résulte une augmentation
globale de température terrestre. De ce fait, il est devenu urgent de réduire les émis-
sions de gaz à effet de serre pour stopper le changement climatique. Dans ce contexte,
le développement de la production d’électricité à partir d’énergie solaire concentrée par
voie thermodynamique est une solution prometteuse. Les efforts de recherche visent à
rendre cette technologie plus efficace et plus compétitive économiquement. Dans ce but,
ce manuscrit présente une méthode de conception optimale pour les centrales solaires à
récepteur central. Elle tire parti des méthodes développées depuis de nombreuses années
par le groupe de recherche StaRWest, regroupant notamment des chercheurs des labo-
ratoires RAPSODEE (Albi), LAPLACE (Toulouse) et PROMES (Odeillo). Couplant
des algorithmes de Monte Carlo à hautes performances et des algorithmes stochastiques
d’optimisation, le code de calcul implémentant cette méthode permet la conception et
l’optimisation d’installations solaires. Il est utilisé pour mettre en évidence les potentia-
lités d’un type de centrales à récepteur central peu répandu : les centrales à réflecteur
secondaire, également appelées centrales de type « beam down ».
Mots clés : Transfert radiatif, Énergie solaire concentrée, Optimisation par essaim par-
ticulaire, Centrale solaire à récepteur central, Estimation de sensibilités, Concentrateur
beam down

Abstract

Since the early 40’s, world energy consumption has grown steadly. While this energy
mainly came from fossil fuel, its use has included an increase in temperatures. It has
become urgent to reduce greenhouse gas emissions to halt climate change. In this context,
the development of concentrated solar power (CSP) is a promising solution. The scientific
community related to this topic has to focus on efficiency enhancement and economic
competitiveness of CSP technologies. To this end, this thesis aims at providing an optimal
design method applied to central receiver power plants. It takes advantage of methods
developed over many years by the rechearch group StaRWest. Both RAPSODEE (Albi),
LAPLACE (Toulouse) and PROMES (Odeillo) researchers take an active part in this
group. Coupling high performance Monte Carlo algorithms and stochastic optimization
methods, the code we developed allows an optimal design of concentrated solar systems.
This code is used to highlight the potential of an uncommon type of central receiver
plants : reflective towers, also called « beam down » central receiver systems.

Keywords : Radiative transfer, Concentrated solar power, Swarm-based optimization,
Central receiver system, Beam down concentrator
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