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Résumé / Abstract

Approche statistique du rayonnement dans les milieux gazeux hétéro-
génes : de I’échantillonnage des transitions moléculaires au calcul de gran-
deurs radiatives

Résumé : L’étude du transfert radiatif dans les gaz (atmosphéres planétaires,
chambres de combustion, etc.) se heurte & deux principales difficultés : les hétéro-
généités et la dépendance spectrale des propriétés radiatives du milieu d’intérét.
Les travaux présentés dans ce manuscrit proposent, au travers d’une approche
statistique du rayonnement, une solution a ces deux limites qui ne nécessite aucune
approximation de modéle physique ou numérique. Cette approche conduira au
développement d’algorithmes de Monte-Carlo considérés a I’heure actuelle comme
méthodes de référence dans la communauté du transfert radiatif. La difficulté liée
aux hétérogénéités du milieu participant sera traitée par une technique empruntée a
d’autres disciplines de la physique du transport : les algorithmes a collisions nulles.
Leur application au rayonnement consiste a ajouter arbitrairement aux événements
d’absorption et de diffusion, un troisiéme type de collision n’ayant aucun effet sur le
transport de photons : les collisions nulles. Ainsi, le coefficient d’extinction résultant
de ces trois types de collision pourra étre assumé comme homogéne. Ensuite, il
sera montré comment cette méme technique léve un second verrou permettant
de repenser de facon statistique I'idée de coefficient d’absorption. Cela ouvrira la
voie & des algorithmes de Monte-Carlo qui estiment directement une observable
radiative & partir de parameétres de transitions répertoriés dans des bases de données
spectroscopiques sans avoir a précalculer rigoureusement le coefficient d’absorption.

Mots-clés : Transfert radiatif, Gaz, Méthode de Monte-Carlo, Hétérogénéité,
Collision nulle, Raie d’absorption, Approche statistique, Transition moléculaire.
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A statistical approach of radiative transfer in heterogeneous and gaseous
media: from molecular transitions sampling to the computation of radia-
tive observables

Abstract: Two major challenges are encountered when studying radiative trans-
fer in gases (e.g. combustion chambers or planetary atmospheres): heterogeneity and
spectral dependence of radiative properties. The work introduced in this manuscript,
addresses this problem through a statistical approach of radiation that requires
no model or numerical approximation. This approach leads to the development of
Monte-Carlo methods, currently considered as reference solutions in the community
of radiative transfer. The difficulty related to heterogeneity is handled by a technique
borrowed from other fields of transport physics: null-collision algorithms. Their
application to radiation consists in adding to the events of absorption and scattering
a third arbitrary type of collision that has no effect on the photon transport. Thus,
the extinction coefficient resulting from these three types of collisions can be assumed
to be homogeneous. Then, it is shown how this very same technique opens the
door to rethinking statistically the concept of absorption coefficient. This leads to
Monte-Carlo algorithms that directly estimate radiative observables from transition
parameters indexed in molecular spectroscopic databases, without the need of
rigorously precomputing absorption coefficients.

Keywords: Radiative transfer, Gas, Monte-Carlo method, Heterogeneity, Null-
collision, Absorption line, Statistical approach, Molecular transition.
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2 Chapitre 1. Introduction

1.1 Etude du transfert radiatif dans les milieux ga-
zeux

La découverte en 1802 par W.H. Wollaston [Wollaston, 1802] de bandes sombres
dans le spectre solaire - caractéristiques de 1’absorption d’une partie du rayon-
nement provenant du soleil par l’atmosphére terrestre - marque certainement
les prémisses de I'étude du transfert radiatif dans les milieux gazeux. L’étude,
I’analyse et la modélisation des interactions entre rayonnement et gaz vont alors
connaitre, essentiellement & partir de la seconde moiti¢ du XIX®®¢ si¢cle, d’im-
portants développements théoriques, expérimentaux et méthodologiques dans des
champs applicatifs variés [Hulst, 1980, Siegel et al., 2011]. Historiquement, c’est
I’étude de 'atmosphére terrestre qui motive les premiers travaux sur ce sujet
[Fraunhofer, 1817, Langley, 1883, Arrhenius, 1896, Rayleigh, 1920]. Avec 1'appari-
tion de nouvelles méthodes et de technologies de calcul, I’étude du rayonnement
dans I'atmosphére terrestre prendra une nouvelle dimension avec le développement
de la climatologie, de la météorologie moderne ou encore de la paléoclimatologie
[Kondratyev, 1969, Goody et al., 1989|. C’est essentiellement au sein de la com-
munauté astrophysique que la théorie se développe ensuite, durant la premiére
moiti¢ du XX siécle, avec I’étude de la propagation du rayonnement dans les
atmospheéres planétaires, dans les étoiles et dans les nuages de gaz interstellaires
|Chandrasekhar, 1960, Chandrasekhar, 1963]. Par la suite, grace a I’étude de fours
verriers [Gardon, 1958, Robert, 1958|, la prise en compte du rayonnement thermique
prendra son essor dans un grand nombre d’applications industrielles ot de fortes tem-
pératures sont rencontrées : fours, moteurs a combustion, chambres de combustion,
turboréacteurs, propulsion d’engins spatiaux, centrales solaires thermodynamiques,
ete. [Viskanta et Mengiig, 1987, Siegel et al., 2011, Modest, 2013].

Malgré les importantes avancées réalisées depuis la fin du XIX®™¢ siécle et le
développement récent de puissantes technologies de calcul, I’étude du rayonnement
dans les milieux gazeux demeure encore aujourd’hui complexe a prendre en compte.
Les besoins ayant évolué dans chaque domaine d’application, les spécialistes sont a la
recherche de solutions toujours plus précises et de méthodes de calcul toujours plus
efficientes. Parmi les problématiques et enjeux actuels pour lesquels une modélisation
rigoureuse du transfert radiatif est essentielle, nous pouvons citer :

e la simulation climatique et I’élaboration de scénarios. Le contexte ac-
tuel de réchauffement global pousse les climatologues a proposer des modéles
et des scénarios climatiques pour tenter de quantifier les effets de 'activité
humaine sur le climat. Tous les échanges d’énergie entre le systéme Terre/at-
mospheére et le reste de I'univers s’effectuant sous forme de rayonnement, il est
crucial de modéliser avec précision ces interactions. Toutefois, les simulations
complexes du climat (basées sur des modéles de circulation générale), couplant
dynamique des fluides et transferts thermiques, sont souvent trés cotiteuses.
Aussi, un compromis entre précision et temps de calcul est en permanence
recherché dans ce champ applicatif.

e les prévisions météorologiques. Les besoins croissants en termes de pré-
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visions météorologiques orientent la communauté spécialisée a produire des
modeles de plus en plus finement résolus (tant spatialement que temporelle-
ment), mais également de plus en plus fiables & long terme. Il est alors nécessaire
de recourir a des modéles de plus en plus détaillés et des méthodes de calcul
de plus en plus précises, tout en respectant les contraintes de temps de calcul
qu’imposent en particulier les prévisions a court terme.

e ’analyse des atmosphéres extraterrestres. Le rayonnement des gaz étant
fortement dépendant de leurs propriétés radiatives, les astrophysiciens cherchent,
a partir d’observations spectrales, & identifier les propriétés (champs de tempé-
rature, de pression) et les compositions moléculaires des atmosphéres stellaires
ou exoplanétaires. Mais ces calculs, basés en partie sur des approches inverses,
requiérent d’étre capable d’estimer avec précision les observables radiatives d’in-
térét. Ces axes de recherche sont de plus en plus motivés par des problématiques
d’exobiologie ou d’habitabilité exoplanétaire.

e la simulation du vieillissement de composants exposés a de hautes
températures. Dans des contextes industriels, en particulier chez les moto-
ristes, il est nécessaire de pouvoir garantir la durée de vie des composants
soumis & de hautes températures et a d’importantes contraintes thermoméca-
niques. Pour ce faire, de longues périodes d’essais expérimentaux (pouvant durer
plusieurs années) sont généralement réalisées avant la mise en production d’un
nouvel élément. Ces industriels sont ainsi trés demandeurs d’outils permettant
de simuler avec précision la thermique des parois (et en particulier le transfert
radiatif) afin d’écourter, en toute confiance, ces coiiteuses phases de tests.

e la simulation des phénoménes de combustion. La conjoncture environ-
nementale actuelle encourage également les industriels a produire des systémes
de plus en plus économes énergétiquement et de plus en plus propres en termes
de rejets. Lors de la conception de chambres de combustion, la prédiction
des concentrations de substances dangereuses ou polluantes (NOx, suies, CO,
etc.) fortement dépendantes de la température et Uefficacité de la combustion
représentent deux enjeux importants. Les simulations numériques couplant
cinétique chimique, dynamique des fluides et transferts thermiques demandent
également, dans ces situations, d’étre particulierement précises.

1.2 Hétérogénéité et dépendance spectrale : les prin-
cipales difficultés

Dans leur ouvrage [Siegel et al., 2011], considéré a 'heure actuelle comme texte
de référence en transfert radiatif, les auteurs introduisent 1’étude du rayonnement en
milieu participant par :

"Two major difficulties make the study of radiation transfer in absorbing,
emitting and scattering media quite challenging. The first difficulty is the
spatial variation in radiative properties throughout the medium [...[. A
second difficulty is that spectral effects are often much more pronounced
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in gases [...] than for solid surfaces, and a detailed spectrally dependent
analysis may be required."

Si la dépendance spatiale et spectrale des propriétés radiatives du milieu pose un
probléme majeur, quel que soit I'objet d’étude, c’est que pour décrire localement une
observable radiative intégrée spectralement (ex : luminance ou bilan radiatif), il est
nécessaire de connaitre, pour tout point du milieu et pour toute longueur d’onde, ces
propriétés radiatives. Or ces derniéres, en particulier le coefficient d’absorption, sont
a la fois trés dépendantes de la pression, de la température et des concentrations des
espéces moléculaires présentes, mais aussi, et de facon encore plus prononcée, de la
longueur d’onde d’intérét. Les milieux considérés (flammes, gaz chauds, atmosphéres,
etc.) étant de fagon générale fortement hétérogénes et les coefficients d’absorption
étant extrémement variables d’une longueur d’onde a 'autre, il devient vite délicat
de réaliser une description rigoureuse de la grandeur radiative observée.

Face a cette importante complexité, les spécialistes du transfert radiatif déve-
loppent depuis plusieurs décennies des méthodes et modéles approchés, de plus en
plus précis et efficients. Ces derniers ont souvent pour vocation d’étre implémentés
et couplés avec d’autres phénomeénes (mécanique des fluides, cinétique chimique,
thermique, etc.) dans divers codes de calcul. Ces méthodes et modéles simplifiés sont
usuellement validés par des solutions dites de référence, généralement trop cotiteuses
en termes de temps de calcul pour étre compétitives en situation opérationnelle.
Les modéles sur lesquels s’appuient ces solutions de référence sont généralement
basés sur des descriptions quasi-déterministes (ex : approche raie-par-raie pour
I'intégration spectrale, ou calcul d’épaisseurs optiques par une discrétisation spatiale
des propriétés radiatives pour gérer les non-uniformités du milieu).

Les travaux présentés dans ce manuscrit proposent de répondre, par une ap-
proche purement statistique, sans modéle quasi-déterministe sous-jacent, aux deux
principales difficultés que représentent la non-uniformité et la dépendance spectrale
des propriétés radiatives des milieux gazeux.

Si une approche purement statistique est proposée, c¢’est parce que face & une
telle complexité, ce type d’approche et les méthodes stochastiques qui en découlent
(algorithmes de Monte-Carlo) ont, & de nombreuses reprises par le passé, permis
de lever diverses limitations, d’offrir certains avantages et d’ouvrir de nouvelles
perspectives. Parmi quelques récents travaux, nous pouvons citer ceux de J. Dauchet
et d’O. Farges qui ont permis, par une approche statistique, de proposer d’inté-
ressantes solutions originales. Dans [Dauchet, 2012|, les approches statistiques ont
permis le développement d’algorithmes de Monte-Carlo simulant les propriétés
électromagnétiques de micro-organismes en géométrie tridimensionnelle ou encore de
quantifier sans aucun biais statistique la production globale d’un photobioréacteur
a partir d’'une modélisation mésoscopique du transfert radiatif. Ces approches
statistiques ont également conduit au développement, dans [Farges, 2014], d’un outil
permettant d’optimiser ’agencement d’une centrale solaire thermodynamique par un
calcul non biaisé de sa production énergétique sur toute sa durée de fonctionnement.
Ces quelques résultats, difficilement imaginables auparavant, témoignent de I'intérét
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réel de reposer un probléme sous un angle purement statistique.

De facon plus générale, les approches statistiques et les méthodes de Monte-Carlo
qui en découlent sont reconnues pour offrir plusieurs avantages, dont les principaux
sont mentionnés ci-apres.

e Les approches statistiques sont par nature moins sensibles & la complexité qu'une
méthode déterministe. La prise en compte de nouvelles dimensions (passage de
deux a trois dimensions, intégration temporelle, volumique, etc.) n’a qu'un effet
modéré sur le volume de calculs nécessaire a obtenir une précision donnée. De
plus, associées a des codes de synthése d’images [Pharr et Humphreys, 2010,
Starwest, 2014a]|, ces méthodes permettent d’effectuer du suivi de trajectoires
dans les géométries les plus compliquées sans voir apparaitre de difficulté
majeure.

e Les méthodes de Monte-Carlo constituent des solutions de référence dans la
mesure ol les estimations des grandeurs d’intérét sont non-biaisées et qu’il est
en permanence possible d’estimer (et de réduire autant que nécessaire) lerreur
numeérique associée a ces estimations. Elles sont alors fréquemment utilisées
pour valider des méthodes ou modéles simplifiés.

e Ces approches statistiques offrent également d’importantes perspectives en
termes d’analyse. Il est généralement possible de tirer une analogie directe
entre méthode numérique et modeéle physique. Ce paralléle permet, par un
va-et-vient souvent fructueux, d’optimiser les méthodes et/ou de développer
un nouvel intuitif et de nouvelles images physiques conduisant & une meilleure
compréhension du modéle physique. De plus, elles permettent entre-autres,
d’estimer de fagon simultanée au cours du méme calcul, une grandeur et des
sensibilités de cette grandeur a différents parameétres, sans augmenter de fagon
significative les temps de calcul associés.

e [’implémentation et la mise en ceuvre de ces méthodes sont généralement aisées.
Les méthodes de Monte-Carlo sont habituellement trés simples d’un point de
vue algorithmique. En outre, puisqu’elles reposent sur la répétition d’un grand
nombre de réalisations indépendantes, il est trés simple de paralléliser ces
calculs.

Le positionnement de cette thése est donc le suivant. Il ne s’agit pas de rechercher
une alternative plus rapide ou plus performante que les méthodes et modéles simplifiés
utilisés dans les champs applicatifs introduits a la Sec. 1.1, ni méme de proposer des
algorithmes directement implémentables dans des codes de CFD. 1l s’agit d’étudier
les apports qu’engendrerait une approche purement statistique du transfert radiatif
en milieu gazeux, vis-a-vis de la forte complexité liée aux dépendances spatiales et
spectrales des propriétés radiatives. L’intérét est alors de proposer des approches,
un modéle et un formalisme statistique répondant & cette double complexité, de
tester la mise en application de ces approches par le développement de méthodes de
Monte-Carlo et d’éviter tout compromis sur le modéle pour conserver ’ensemble des
avantages communément associés a ces approches, en particulier leur caractére de
solution de référence.
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Néanmoins, bien que les travaux présentés dans ce manuscrit soient essen-
tiellement théoriques et exploratoires, les contextes applicatifs introduits a la
Sec. 1.1 et leurs problématiques associées ont occupé une dimension importante
dans 'orientation et la réalisation de cette thése. Le choix a été fait, pour illus-
trer, valider, et tester la faisabilité de 'approche proposée de se concentrer sur
des applications de type "chambres de combustion". Toutefois, peu de choses
séparent ces différents domaines applicatifs pour les problématiques auxquelles
tente de répondre cette thése : la complexité des hétérogénéités et de la dépen-
dance spectrale posent le méme type de difficultés quels que soient les champs d’étude.

Le choix de privilégier ces applications de combustion est motivé par plusieurs
raisons. La premiére est que ces systémes impliquent de petites dimensions et
des épaisseurs optiques généralement faibles qui sont plus aisées a gérer dans une
démarche exploratoire. Les applications de type combustion présentent également
une seconde caractéristique : les températures élevées. Or, c’est a haute température
que les propriétés radiatives sont les plus dépendantes de la longueur d’onde. La
complexité liée a cette dépendance sera donc accentuée, et nous permettra de valider
la robustesse des propositions faites ici. Enfin, dans les applications de combustion, on
peut se passer de prendre en compte les continuums d’absorption induite par collision,
la nature sub-lorentzienne des profils de raie ou encore les problématiques d’hors-
équilibre thermodynamique local, ce qui n’est généralement pas le cas dans I'étude
des atmosphéres. La prise en compte de ces effets, nécessaire dans un grand nombre
d’applications, ne présente pas dans la démarche qui est la notre d’intérét immeédiat,
puisqu’ils ne sont pas directement liés aux hétérogénéités ou a la dépendance spectrale
des propriétés radiatives. Toutefois, méme si ce manuscrit ne traite, a proprement
parler, d’aucun cas atmosphérique ou astrophysique, les problématiques associées
a ces deux domaines ont constamment conditionné notre réflexion. C’est d’ailleurs
vers ces champs applicatifs que I'on souhaite aujourd’hui se tourner.

1.3 Structure du manuscrit

Les travaux, dont ce manuscrit rend compte, ont été effectués au sein de 1’équipe
"Transfert radiatif - Solaire & concentration" du laboratoire RAPSODEE ! sous la
direction de M. El Hafi et de V. Eymet. Cette thése s’inscrit, plus généralement dans
une dynamique collective, initiée depuis plusieurs années par le groupe STARWest 2
[Starwest, 2014a| qui réunit des membres, issus de domaines applicatifs variés, autour
de problématiques liées a la physique du transport, a la modélisation statistique de
systémes complexes et a la production de solutions de référence. Les interactions
avec ces spécialistes d’horizons variés ont été d’un intérét majeur pour la réalisation
de ces travaux et ont permis de les intégrer dans des considérations beaucoup plus
transversales et riches en sens. Nous espérons que ce manuscrit reflétera les échanges

1. Centre de Recherche d’Albi en génie des Procédés, des Solides Divisés, de 'Energie et de
I’Environnement - Ecole Nationale Supérieure des Mines d’Albi-Carmaux

2. Groupement transdisciplinaire structuré autour de plusieurs équipes de recherche issues de
différents laboratoires : LAPLACE (Toulouse), RAPSODEE (Mines Albi), PROMES (Odeillo),
CRCA (Toulouse), Institut Pascal (Clermont-Ferrand).
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prolifiques qui ont eu lieu au cours ces trois années. Cette thése donne suite au stage
de fin d’études de G. Terrée |Terrée, 2011] et aux travaux exploratoires menés par B.

Piaud [Piaud, 2010].

Lors de la rédaction de ce manuscrit, une attention particuliére a été porté
a sa dimension didactique. En effet, notre pratique des approches statistiques et
intégrales, se traduit souvent par un formalisme mathématique peu attrayant. Mais
celui-ci offre, comme nous allons le voir, un intérét certain. Aussi, nous avons essayé
tout au long de ce document de présenter les travaux et I'approche qui est la notre,
de la fagon la plus progressive et cohérente possible. Ce manuscrit a été rédigé
dans l'optique de servir de base a toute personne qui souhaiterait reprendre et/ou
poursuivre le travail entrepris.

Ce dernier est structuré autour de six chapitres dont le premier constitue la
présente introduction.

Dans le Chap. 2 sont rappelées les bases de la physique du rayonnement en
milieu gazeux. Les différentes interactions rayonnement/gaz y sont présentées et
le rayonnement y est placé dans sa description mésoscopique, permettant ainsi de
formuler les équations locales et intégrales du transfert radiatif. Une importante partie
de ce chapitre est également consacrée a la description du coefficient d’absorption,
qui représente probablement une des principales difficultés (de par ses multiples
dépendances spectrales, thermodynamiques et chimiques) rencontrées lors de la
simulation du transfert radiatif dans les milieux gazeux.

Le Chap. 3 aborde, quant a lui, 'approche intégrale et statistique du rayonnement
dans les gaz et présentera les méthodes de Monte-Carlo qui en découlent. Apreés
de brefs rappels statistiques, un cas d’étude radiatif simple sera proposé et sera
complexifié progressivement, de sorte a introduire le formalisme ainsi que toutes les
pratiques, techniques et approches qui seront utilisées dans la suite du manuscrit.
L’importance des formulations intégrales et statistiques du transport de photons,
lors du développement de méthodes de Monte-Carlo, y sera également soulignée.
Ce chapitre a pour but de détailler tous ces aspects techniques et formels afin
de rendre la lecture des travaux présentés dans les parties suivantes plus aisée et fluide.

Puis, le Chap. 4 abordera, a proprement parler, les premiers travaux de ces trois
années de thése relatifs a la gestion des hétérogénéités des propriétés radiatives du
milieu. Les difficultés associées a la gestion de ces hétérogénéités par les méthodes
de Monte-Carlo, ainsi que les techniques couramment utilisées (en particulier la
discrétisation volumique) pour y répondre, seront présentées dans un premier
temps. Puis nous montrerons 'intérét qu’offre une approche utilisée depuis plusieurs
décennies dans d’autres disciplines ayant trait au transport corpusculaire : les
algorithmes a collisions nulles. Cette technique sera alors introduite et élargie au
champ d’étude du rayonnement thermique. Nous montrerons comment elle permet
de passer outre la non-linéarité qu’induit la représentation statistique du terme
d’extinction par I'ajout d’un troisiéme type de collisions (arbitraires et sans effet sur
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le transport de photons). Une étude paramétrique étudiant les conséquences des choix
de parameétres libres sera ensuite réalisée dans un cas assez général et nous montrerons
comment le caractére de solution de référence des algorithmes a collisions nulles peut
étre mis a profit dans la validation d’un code de calcul radiatif en géométrie complexe.

Ensuite, dans le Chap. 5, nous verrons que ces mémes algorithmes a collisions
nulles nous permettent de lever un second verrou relatif a l'intégration spectrale.
Il sera alors possible, grace a cette introduction de collisions fictives, de décrire de
fagon purement statistique le coefficient d’absorption au sein méme de 1’équation
du transfert radiatif. Cela conduira au développement de méthodes de Monte-Carlo
permettant d’estimer une observable radiative sans aucun biais et sans nécessiter
la production rigoureuse et préalable de spectres d’absorption haute-résolution. Le
calcul de grandeurs radiatives reposera alors sur un échantillonnage des transitions
moléculaires dont les paramétres seront extraits au cours du calcul directement
depuis des bases de données spectroscopiques. Cette proposition repose toutefois sur
un grand nombre de paramétres libres (en particulier les probabilités associées aux
raies d’absorption) qui conditionnent le taux de convergence de I'algorithme. Aussi,
nous proposerons des choix pour ces grandeurs arbitraires et étudierons, par une
mise en application dans six cas d’étude caractéristiques de systémes de combustion,
le comportement algorithmique et les perspectives qu’offre I'approche proposée
associée a ces choix de parameétres libres.

Enfin, le Chap. 6 conclura 'exposé de ces travaux de thése et exposera les
perspectives et les pistes de travail qu’offrent les propositions faites dans ce manuscrit.
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Introduction

Ce premier chapitre a pour but de présenter les éléments de physique nécessaires a
I’étude du transfert radiatif en milieu gazeux. Il n’a pas pour prétention d’étre exhaus-
tif, mais a été pensé de sorte a introduire I’ensemble des concepts et modéles utilisés
dans la suite de ce manuscrit. Le lecteur a 'aise avec ces concepts pourra passer direc-
tement au Chap. 3. Au contraire, le lecteur désireux d’approfondir ses connaissances

relatives a la physique du rayonnement pourra s’orienter vers les ouvrages de référence
[Chandrasekhar, 1960, Goody et Yung, 1996, Siegel et al., 2011, Modest, 2013].

Aprés un bref rappel de la nature et des représentations du rayonnement thermique,
ce dernier sera introduit dans sa description mésoscopique. La luminance, grandeur
de base et descripteur mésoscopique du transfert radiatif pourra ainsi étre abordée.
Enfin, les principales grandeurs intégrées de la luminance seront introduites.

La seconde section, quant a elle, traitera des interactions entre rayonnement
et milieu participant ou semi-transparents. Cela permettra de formuler 'Equation
différentielle du Transfert Radiatif (ETR), cas particulier des équations de transport
(plus connues sous le terme d’équations de Boltzmann). La solution intégrale de
I’équation du transfert radiatif sera enfin abordée, permettant ainsi de présenter les
conditions et phénomeénes se produisant aux limites du systéme d’intérét.

Enfin, 'ultime section de ce chapitre concernera la dépendance spectrale du
coefficient d’absorption, constituant probablement la principale difficulté de 1’étude
du rayonnement dans les gaz. Ce sera l'occasion d’aborder les mécanismes sous-jacents
d’absorption et d’émission, les notions de transitions énergétiques, de raies et de
spectres d’absorption.

Outre les quelques ouvrages cités ci-dessus, la rédaction de ce chapitre est en partie
inspirée des cours dispensés en Master 2 Recherche "Dynamique des Fluides, Energé-
tique et Transferts" [Fournier et El Hafi, 2010] et & I'Ecole thématique "Rayonnement
thermique en milieu semi-transparent - 2014" [Blanco et al., 2014, André et al., 2014,
Boulet et al., 2014].

2.1 Introduction au transfert radiatif

2.1.1 Nature du rayonnement thermique

Deux représentations coexistent lorsqu’il s’agit de décrire le transfert radiatif :
les approches dites ondulatoire et corpusculaire®.

L’approche ondulatoire repose sur la théorie électromagnétique développée a la
fin du XIX®™¢ siécle par J.K. Maxwell. Le rayonnement est alors considéré comme
une variation des champs électromagnétiques et est représenté comme un ensemble
d’ondes monochromatiques définies pour une fréquence v, une longueur d’onde A ou

1. Cette dualité onde-corpuscule a été étendue a I'ensemble de la matiére par L. de Broglie en
1924.
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un nombre d’onde n donné. Ces différentes grandeurs sont liées par les relations :

_ 1 v
) 77 - )\ c
oi c¢ est la vitesse du rayonnement dans le milieu considéré
(c = co = 299 792 458 m/s dans le vide et ¢ = < dans les milieux d’indice
de réfraction n). Méme si ces trois grandeurs peuvent étre utilisées indifféremment,
nous nous efforcerons dans ce manuscrit de privilégier la notion de nombre d’onde,
qui est historiquement la plus usitée en spectroscopie moléculaire?. Au cours des
découvertes, ces ondes monochromatiques ont été regroupées selon leur fréquence en

plusieurs plages spectrales présentées a la Fig. 2.1.

Rayonnement thermique

4 h
! Rayons H 1 -ondes
' Y . Y Rayons X UV : = IR K L
! & cosmiques : i Ondes radios
L | | | i | | i | L ten)
10 108 107 10° 10° 10* 10° 10? 10! 10°
| | | | | | | | | Ly 2 [
107 1074 1073 1072 107! 10° 10! 102 103 10*
| | | | | | | | | y [H2]
10%° 10'8 107 10' 10" 104 1013 1012 10! ‘

FIGURE 2.1 — Spectre électromagnétique. Les différentes plages spectrales sont schématisées en
fonction du nombre d’onde 7, de la longueur d’onde A et de la fréquence v. Elles s’étendent des
rayons cosmiques (les plus énergétiques) aux ondes radioélectriques (les moins énergétiques). Le
rayonnement thermique s’étend approximativement sur la plage [10%,10°]em ™! et comprend une
partie des ultraviolets, la totalité du rayonnement visible et le proche et moyen infrarouge.

La seconde approche dite corpusculaire, formalisée par M. Planck et A. Einstein
au début du XX siécle, est a I'origine des principes de la mécanique quantique. Elle
consiste a associer a toute onde électromagnétique monochromatique un corpuscule :
le photon, de masse nulle et d’énergie £ donnée par :

he

A

E =hv = hen (2.1)

ol h = 6.62606957 x 1073*J.s est la constante de Planck.

Les représentations corpusculaires et ondulatoires sont complémentaires. Aucune
d’entre elles ne permet de décrire I’ensemble des phénomeénes liés a la physique du
rayonnement. Aussi, selon les objets d’étude et les hypothéses posées, 'une ou l'autre
sera privilégiée (par exemple, "approche ondulatoire sera la plus appropriée pour
I’étude des phénoménes de diffusion, alors que ’approche corpusculaire permettra

2. Il est fréquent de trouver dans la littérature les nombres d’onde écrits v.
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d’expliquer Deffet photoélectrique). Nous nous concentrerons ici presque essentielle-
ment sur ’approche corpusculaire du rayonnement qui, nous allons le voir, permettra
une description mésoscopique et statistique du rayonnement, le placant dans des
considérations propres a la physique du transport.

Comme illustré dans la Fig. 2.1, le rayonnement électromagnétique s’étend des
rayons cosmiques aux ondes radios. Tout au long de ce manuscrit nous ne nous
concentrerons que sur le rayonnement thermique couvrant le domaine des nombres
d’onde allant approximativement de 10 & 10° cm™! (une partie des ultraviolets,
I’ensemble du visible et le proche et moyen infrarouge). Le rayonnement thermique
est, au méme titre que la conduction/diffusion, un mode de transfert de chaleur. I
présente cependant deux principales spécificités vis-a-vis de ses homologues :

e de par sa nature électromagnétique, le transfert d’énergie ne nécessite pas de
milieu physique pour avoir lieu : deux surfaces placées dans le vide peuvent
ainsi échanger de I'énergie.

e alors que les échanges thermiques conductifs /diffusifs sont fonction d’un gradient
de température, les échanges par transfert radiatif dépendent d’une différence
de températures élevées a la puissance 4, devenant ainsi prépondérants pour de
fortes températures. Cela souligne en particulier I'importance de la modélisation
du rayonnement dans des applications liées a la combustion.

2.1.2 Descriptions microscopique, mésoscopique et macrosco-
pique

Considérer le rayonnement selon une approche corpusculaire consiste a percevoir
ce transfert d’énergie comme ayant pour vecteur un trés grand nombre de quanta : les
photons. Lorsqu’il s’agit d’étudier un si grand nombre de particules, plusieurs descrip-
tions (ou modélisations) sont susceptibles d’étre employées : les descriptions microsco-
pique, macroscopique et mésoscopique [Piaud, 2007, Lachowicz, 2011, Dauchet, 2012].
Ces trois descriptions se différencient essentiellement par le choix des grandeurs des-
criptives du modele. Il s’agit ici bien de descriptions et non d’échelles : passer d’une
description microscopique & une description macroscopique ne signifie pas nécessaire-
ment considérer le systéme & une échelle plus globale. Ces trois types de descriptions
tirent leur origine de la physique du transport corpusculaire. Aussi, elles seront ici
présentées dans leur acceptation originelle. Leur extension au transfert radiatif sera
ensuite discutée.

Description microscopique La description microscopique consiste a associer
a chaque corpuscule, de fagon déterministe, une position et une vitesse, pour un
instant £ donné. En considérant un champ de N particules dans une configuration
tridimensionnelle, cela impliquerait donc, au moins 6 x N descripteurs (/N jeux de
deux vecteurs de dimension 3 : un pour la position et un pour la direction ayant
tous pour seule variable le temps t). Méme si cette description semble idéale, la
quantité d’information qu’elle requiert est trés difficilement manipulable® et surtout

3. Afin de donner un ordre de grandeur, une simple surface de 1m? portée a 300K peut émettre
jusqu’a 4.1 x 10?2 photons en une seconde, soit une quantité de 2.5 x 1023 variables décrivant
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difficilement conceptualisable, d’autant plus si le transport est non-linéaire (si les
particules interagissent entre-elles, ex : cinétique des gaz).

Description mésoscopique Alors que la description microscopique repose sur
une approche discréte du modéle (chaque molécule est considérée en tant que telle),
la description mésoscopique s’appuie sur des concepts de continuité. Le descripteur
du systéme est désormais une fonction de distribution f(x,v,t) définie sur I’espace
des phases (constitué de 'espace géométrique Dy et de I'espace des vitesses D).
Les positions x et les vitesses v deviennent alors, au méme titre que le temps ¢
des variables indépendantes. Cette approche est propre a la physique du transport
corpusculaire et pose les concepts nécessaires & une approche de type statistique
grace la notion de distribution qui s’interpréte comme la somme des densités de
probabilité de présence de chaque particule dans l'espace des phases {Dy, Dy }. Elle
est pertinente dans les cas ol un grand nombre d’événements se répéte, soit parce
que le nombre de particules considérées est trés grand soit parce que les particules
subissent de trés nombreuses interactions.

Description macroscopique Enfin, la description macroscopique repose égale-
ment sur l'idée de distribution. Le descripteur F'(x,t) est toujours une fonction de
distribution, mais est désormais défini uniquement sur ’espace géométrique Dy. Ce
passage se traduit par une intégration sur le domaine des vitesses du descripteur
mésoscopique et est souvent associé a une hypothése d’isotropie. Une telle description
se traduit donc par une perte conséquente de 'information relative aux vitesses des
particules et devient ainsi plus difficilement applicable & des problémes hors-équilibre.
Toutefois, du fait de I’allégement du nombre de variables indépendantes (seulement
x et t), cette description est peut-étre la plus aisée a approcher. De surcroit, les
approximations ou hypothéses associées a cette description (ex : 'approximation de
diffusion) font le plus souvent appel a des images physiques courantes et intuitives
(les température, masse volumique ou encore vitesse moyenne d’'un fluide sont autant
de grandeurs macroscopiques couramment manipulées). Cela explique notamment
le fait que cette description et ses grandeurs associées sont souvent privilégiées
dans les sciences pour l'ingénieur, du fait de la complexité des phénoménes en
présence (en particulier lorsqu’il s’agit de phénomeénes couplés). Plusieurs descripteurs
macroscopiques du transfert radiatif seront présentés a la Sec. 2.1.4.

L’étude du rayonnement reposera essentiellement ici sur des considérations méso-
scopiques. Une telle description présente en effet un double avantage :

e clle permet une description des phénoménes a 1’échelle du photon (qui feront
l'objet de la Sec. 2.2.2). En effet, les informations relatives a la position et
a la vitesse des particules & un instant donné sont contenues dans l'idée de
distribution et il sera possible d’attribuer de facon statistique une vitesse et
une position aux différents corpuscules d’intérét.

le modéle. En imaginant que 'on parvienne idéalement a stocker chacune de ces variables dans
un octet, il faudrait un espace disque de 250 milliards de téraoctets pour simplement contenir
Iinformation des photons émis par la surface en une seconde.
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e elle offre, par sa nature statistique, la capacité d’analyse des modélisations
macroscopiques pour 1’étude et la prise en compte de phénomeénes collectifs,
tout en conservant l'information relative aux distributions de vitesses.

Néanmoins, dés que l'occasion se présentera, nous nous appuierons sur les deux
autres descriptions qui permettront d’apporter d’autres images physiques, souvent
plus manipulables ou intuitives.

2.1.3 La luminance : descripteur mésoscopique du transfert
radiatif

La luminance monochromatique* L,(x,u,t) constitue la grandeur de base du
transfert radiatif. D’un point de vue énergétique, il s’agit d’une puissance par unité
de surface perpendiculaire a la direction u considérée, par unité d’angle solide autour
de la direction u (¢f. note ci-dessous), et par unité de nombre d’onde (ou de longueur

d’onde, ou de fréquence). Elle s’exprime en Wm™2sr~tem.

— NOTE : Angle solide
L’angle solide est une généralisation a la troisiéme dimension de ’angle plan.
Alors que I'angle plan (exprimé en radian) est égal au rapport de la longueur
d’un arc de cercle sur son rayon, ’angle solide €2 est défini comme le rapport
d’une surface partielle de sphére S sur le carré de son rayon R : Q = S/R%
Son unité, bien qu’adimensionnelle, est le stéradian noté sr. L’angle solide
associé a une sphére est alors égal a 47 et celui associé a un hémisphére a 2.
L’angle solide élémentaire d) (voir Fig. 2.2) correspond a la différentielle de la
direction u qui le porte et est donné par :

dS  R?dfsinfdo .

FIGURE 2.2 — L’angle solide élémentaire est donné par d)2 = df sin 0d¢

J

4. Tl est fréquent de rencontrer dans la littérature internationale la luminance notée I,, (pour
specific intensity).
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La luminance monochromatique est en fait le descripteur mésoscopique du trans-
fert radiatif. Elle est assimilable a la distribution f(x,v,t) a trois subtilités pres :

e On peut généralement considérer que la norme de la vitesse des photons est
localement constante. Il est donc possible de raisonner en directions u = [0, ¢
plutdt qu’en vitesses v = [vy, vy, v,], passant donc de l'espace des vitesses Dy a
I’espace des directions D,,.

e A D’espace des positions Dy et des directions D, se rajoute une dimension
supplémentaire : celle des nombres d’onde D,,, des longueurs d’onde D) ou
des fréquences D,. On a donc, pour une configuration tridimensionnelle, sept
variables (trois pour la position, deux pour la direction, une pour le nombre
d’onde et une pour le temps).

e Plus qu’une distribution de particules qui serait alors, aux vues des deux
considérations précédentes, définie comme f,(x,u,t)°, la notion de luminance
inclut I’énergie et la vitesse des photons. Elle est définie comme :

L,(x,u,t) = hen ¢ fr(x,a,t) (2.3)

I est important de bien saisir la notion de luminance et donc 'idée de distribution
sur 'espace D = {Dy, Dy, D, }. La distribution f,(x,u,t) est une extension de la
densité a l'espace des phases. Elle correspond a la somme des densités de probabilité
de présence de tous les photons en un point (x,u,7,t) dans espace D. Une maniére
assez intuitive d’appréhender le passage de distribution & luminance consiste a
considérer un volume dx, un angle solide du et un intervalle spectral dn élémentaires
(en d’autres termes, un sous espace infinitésimal dD de D), voir Fig. 2.3. Le nombre

dax du

A *——

FIGURE 2.3 — La distribution de photons en un point (x,u,7,t) de I'espace des phases correspond
4 la limite du nombre de photons situés & un instant ¢ en x € dx, ayant une direction u € du et un
nombre d’onde 7 € dn pour dx, du et dn tendant vers 0.

de photons dN,(x,u,t) a un instant ¢ dans dx, ayant une direction de propagation

5. Par convention le nombre d’onde 1 (ou longueur d’onde XA ou fréquence v) est indicé, dans la
mesure ol, comme nous allons le voir, aucun opérateur de I’équation du transfert radiatif ne fait
appel au nombre d’onde (sous ’hypothése de diffusion élastique).
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comprise dans du et un nombre d’onde 1 compris dans dn est alors donnée par la
relation
dN,(x,u,t) = f,(x,u,t)dxdudn (2.4)

faisant intervenir la distribution f,(x,u,t) (qui s’exprime en m=3sr~—tem). Cest

probablement le caractere discret du nombre de photons qui rend ce passage le plus
délicat et qui ne permet rien d’autre que d’accepter la distribution comme une densité
de probabilité de présence des photons. Multiplier cette distribution par I’énergie et
la vitesse des photons considérés, équivaut a étudier la puissance dP,(x, u,t) associée
aux photons de directions comprises dans du, de nombres d’onde compris dans dn
passant par un élément de surface d.S, normal & u :

dP,(x,u,n,t) = f,(x,u,t) hen c dS| dudn (2.5)

= L,(x,u,t)dS dudn '
et permet ainsi de passer a une expression fonction de la luminance (qui est alors
bien homogene a des Wm™2sr~tem), voir Fig. 2.4a. En raisonnant en énergie plutot
qu’en puissance, cela revient a observer une quantité d’énergie monochromatique
dQ,(x,u,t) qui traverse pendant un intervalle de temps dt la surface dS; dans la
direction u et donc considérer 1’énergie associée aux photons de directions comprises
dans du, de nombres d’onde compris dans dn se propageant dans le volume élémentaire
dS cdt (voir Fig. 2.4b. On a alors :

dQ,(x,u,n,t) = f,(x,u,t) hen dS | cdt dudn

2.6
= L,(x,u,t)dS  dtdudn (2:6)

(4) (B)

FIGURE 2.4 — La luminance peut étre définie comme soit :

e la limite de la puissance associée aux photons passant par dS; 3 x, de direction u € du et de
nombre d’onde 1 € dn pour dS,, du, dn tendant vers zéro (Fig. (A))

e la limite de I’énergie associée aux photons se propageant dans le volume élémentaire dS| cdt , de
direction u € du et de nombre d’onde n € dn pour dS,, dt, du, dn tendant vers zéro (Fig. (B)).

Jusqu’a présent, seule la luminance monochromatique L,(x,u,t) a été présentée,
soulignant le fait que I’espace des nombres d’onde est une dimension a part entiére
de l'espace sur lequel est défini le descripteur mésoscopique. Cependant, il est
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souvent intéressant d’étudier la luminance dite totale L(x,u,t) c’est-a-dire intégrée
spectralement sur un intervalle donné [Numin, Nmax]- La luminance totale s’exprime
alors en Wm™2sr~! et est donnée par :

Mmax
Lut)= [ Lbxutds 27)

TImin

Dans les applications présentées dans ce manuscrit, 'intervalle spectral d’intégration
[Mmins Mmax| sera généralement choisi de sorte a couvrir le domaine fréquentiel du
rayonnement thermique.

2.1.4 Grandeurs intégrées de la luminance : passage a une
description macroscopique

La luminance étant désormais décrite dans son acceptation mésoscopique, il est
possible de définir d’autres grandeurs énergétiques, celles-ci macroscopiques. Elles
seront ici uniquement exprimées de facon monochromatique. Mais, tout comme pour
la luminance, quelle que soit la grandeur considérée, le passage de son expression
monochromatique A, & son expression dite totale A se fera par intégration spectrale
sur l'intervalle d'intérét [Mmin, Mmax) :

Mmax
A= / A, dn (2.8)
TImin

L’irradiance (ou rayonnement incident) est la premiére grandeur macroscopique,
elle correspond au moment d’ordre 0 de la distribution angulaire des luminances.
En d’autres termes, elle est définie comme 'intégrale sur 'espace des directions Dy
(Dy = 4m sr pour un milieu participant) de la luminance et s’exprime en Wm™2cm.

G, (x,t) :/4 L,(x,u,t) du (2.9)

Le vecteur densité surfacique de flux correspond quant & lui au moment d’ordre
1 de la distribution angulaire des luminances. C’est une grandeur vectorielle qui
s’exprime également en W.m™2.cm et qui est donnée par :

dry(x,1) :/ L,(x,u,t)udu (2.10)
4

Il est trés fréquent de rencontrer ce descripteur en mécanique des fluides et en
thermique. Sa seule connaissance au point x permet de remonter a la densité de flux
©n(x,t) relative & n’importe quelle surface contenant x par la relation

©n(x,t) = qry(x,t).0(x) (2.11)

ol n(x) est la normale de la surface considérée en x.

Le vecteur densité surfacique de flux permet également d’exprimer, par sa diver-
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gence, le terme source radiatif (ou bilan radiatif local) :

Srn(%,t) = —div(qpr,(x,1)) (2.12)

Aux frontiéres, 'espace des directions se limite a I’hémisphére sortant (d’angle
solide égal a 27 sr). On parlera alors plutot d’émittance M, (x,t) (ou de densité de
fluz rayonné) et d’éclairement H,(x,t) pour des rayons respectivement dirigés vers
I’extérieur et vers la surface :

M,(x,t) = / y L,(x,u,t)un(x) du (2.13)

H,(x,t) = / . L,(x,u,t)u.n(x) du (2.14)

ol n(x) est la normale en x a la surface.

Meéme si nous allons désormais nous concentrer essentiellement sur une approche
mésoscopique, ces grandeurs macroscopiques ainsi que les images associées a la
description microscopique du rayonnement mettent en relief I'intérét de pouvoir
passer d'une description & 'autre. Le Tab. 2.1 dresse un bref résumé de ces trois
types de modélisation appliqués a I’étude du transfert radiatif.

Description | Descripteur(s) | Variable(s) | Type de descripteur

Microscopique {x,u,n} t déterministe et discret
Mésoscopique L, x,u,n,t statistique et continu
Macroscopique | Gy, qr,,, etc. x,1n,t statistique et continu

TABLE 2.1 — Résumé succinct des propriétés des descriptions microscopique, mésoscopique et
macroscopique appliquées a ’étude du transfert radiatif. Les descripteurs, variables et types de
descripteurs sont décrits pour chacune d’elles.

2.2 Equation du transfert radiatif en milieu partici-
pant

Définir la luminance monochromatique comme une distribution de photons (& une
constante hene prés) permet de placer plus généralement le transfert radiatif dans une
approche propre a I’étude du transport corpusculaire. Une telle modélisation repose
alors sur un formalisme de type équations cinétiques ou équations de Boltzmann
faisant appel aux concepts relatifs a la physique statistique.

Aussi, 'objet de cette section est de présenter un cas particulier des équations
cinétiques : l’équation du transfert radiatif en milieu participant (ETR) sous sa
forme locale et intégrale. Les différentes interactions entre milieu participant et
rayonnement, nécessaires a I’établissement de I’'ETR, seront ainsi abordées.
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2.2.1 Transport de photons sans interaction avec le milieu

L’équation du transfert radiatif est un cas particulier des équations de transport
ou cinétiques. Cette famille d’équations décrivant le transport de corpuscules est
fréequemment qualifiee d’équations de Boltzmann [Cercignani, 1988, Piaud, 2007],
en référence aux travaux de L. Boltzmann (1872) qui ont porté sur d’étude et la
description de la cinétique des gaz raréfiés en hors équilibre.

L’établissement d’une équation de transport requiert cependant de poser certaines
hypotheéses :

e Chaque photon doit pouvoir étre décrit par une position et une vitesse propres.
Cette hypothese, placant le photon dans une approche semi-classique, impose
que les échelles d’intérét, auxquelles se produisent les phénomeénes de transfert
radiatif, doivent étre supérieures a celles de la longueur d’onde du rayonnement
considéré.

e Les positions probables d’interaction (autrement appelés absorbeurs et diffu-
seurs) sont réparties de fagon aléatoire, indépendante et continue dans I'espace.

e Les événements d’interaction avec le milieu, ou collisions, sont supposés
quasi-instantanés et quasi-ponctuels devant les échelles d’intérét.

A ces hypothéses, propres a I'établissement des équations de transport, nous
ajouterons ici d’autres hypotheéses relatives uniquement au transfert radiatif :

e Les photons se déplacent en ligne droite et a vitesse constante tant qu’ils
n’interagissent pas avec le milieu. Sous cette hypothése, 'indice de réfraction
est alors supposé uniforme. La norme du vecteur vitesse est donc constante, ce
qui explique le passage a une description selon les directions.

e Une approximation d’équilibre thermodynamique local (ETL) est admise. Cette
hypothése consiste a considérer que 1’état microscopique du systéme est en tout
point proche d’un état d’équilibre thermodynamique dont les variables d’état
seraient celles observées localement. Cette hypothése implique en particulier
que I’émission locale de photons est identique a celle qui serait rencontrée dans
un milieu & I’équilibre thermodynamique soumis aux mémes conditions que le
point considéré (cf. Sec. 2.2.2.2). Bien qu’adaptée pour les problémes présentés
dans ce manuscrit, I’hypothése d’équilibre thermodynamique ne peut étre faite
lors de I’étude du rayonnement dans des configurations a trés faibles pressions
ou dans des systémes chimiluminescents.

e Les photons n’interagissent pas entre-eux, ils ne peuvent pas étre émis, absorbés
ou diffusés par d’autres photons. La physique du transport photonique est
alors qualifiée de linéaire.

Supposons dans un premier temps, pour établir I’équation du transfert radiatif,
que le rayonnement n’interagit pas avec le milieu (le milieu est alors considéré comme
transparent). Sans absorption ni diffusion, les photons se propagent en ligne droite
(voir Fig. 2.5). L’ensemble des photons de nombre d’onde 7 situés en x dans la
direction u a l'instant ¢ ou leur équivalent sous forme de luminance, translatent donc
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FIGURE 2.5 — Sans interaction avec le milieu les photons se propagent en lignes droites. Les photons
situés en x a l'instant ¢ dans la direction u se retrouvent & l'instant ¢t + §t en x + cudt dans la
direction u.

pendant un court intervalle de temps dt vers la position x 4+ cudt sans changement
de direction. Avec les hypothéses considérées, le théoréme de Liouville énonce que le
volume de 'espace des phases est constant le long des trajectoires du systéme. On
peut donc écrire :

L,(x,u,t) = L,(x+ cudt,u,t + 6t) (2.15)

Il est possible de faire un développement limité au premier ordre autour de x et ¢
du terme de droite en supposant 0t tres petit :

L /
Ly(x,u,t) = Ly(x,u,t) + 6t % + W VL, (x,u,t) (2.16)
Il vient alors L 8L .
LOLy 5w h) |y vL () = 0 (2.17)

c ot

qui n’est rien d’autre qu’une expression de la conservation de la luminance. Le
premier terme %E)th(x, u,t) de 'Eq. 2.17 caractérise la variation temporelle de la
luminance. Le second u.VL,(x,u,t), appelé terme de transport pur, caractérise la
variation de la luminance due au déplacement des photons.

Intégré sur l'espace des directions (47) et sur les nombres d’onde, on obtient une
équation macroscopique de conservation d’énergie :

10G(x,1)

P T —div(qr(x,t)) (2.18)

Le transfert radiatif étant généralement beaucoup plus rapide que les autres
phénomeénes observés, il est courant de le considérer en régime stationnaire, menant
alors a :

u.VL,(x,u,t) =0 (2.19)

Cette hypothése de stationnarité du rayonnement sera conservée dans la suite de ce
manuscrit.
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2.2.2 Interactions rayonnement/matiére en milieu partici-
pant

Deés lors que 1'on suppose le milieu participant ou semi-transparent, il convient

de prendre en compte les différents phénomeénes d’interaction qui vont entrer en

jeu dans la description du transport de photons. En effet, le milieu participant sera
susceptible d’émettre, d’absorber et de diffuser des photons (voir Fig. 2.6). Ces trois
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FIGURE 2.6 — Interactions entre rayonnement et milieu participant. En présence d’'un milieu
participant, le rayonnement peut étre transmis (pas d’interaction), absorbé, émis ou diffusé par
le milieu. On distingue deux types de diffusion, la diffusion entrante et sortante (selon que le
rayonnement "entre" ou "sort" d’un volume élémentaire de ’espace des phases.)

types d’'interaction et leurs grandeurs associées font I'objet de cette sous-section dans
laquelle le rayonnement est supposé stationnaire.

2.2.2.1 Absorption du rayonnement par un milieu participant

De maniére spontanée, la matiére absorbe du rayonnement (le mécanisme molé-
culaire quantique associé a cette absorption sera présenté plus en détail a la Sec. 2.3).
La variation de luminance, due & ce phénoméne, le long d’un élément différentiel dx
est donnée par :

_dLy(x,u)

Pop(x,u) = —dx = kon(x,t)L,(x, 1) (2.20)

abs

ol k,,(x,t) est appelé coefficient d’absorption.

Le coefficient d’absorption caractérise le milieu et non le rayonnement. Homogéne
a Pinverse d'une distance (m 1), il est défini comme I'inverse du libre parcours moyen
d’absorption (c’est-a-dire l'inverse de la distance moyenne que parcourent les photons
avant d’étre absorbés) et correspond donc & une fréquence spatiale d’absorption. Plus
il est important, plus le milieu participant sera absorbant. Sa valeur dépend de la
température T'(x), de la pression P(x) et des fractions molaires y,,(x) des espéces
en présence au point X, a 'instant ¢ et au nombre d’onde 1 d’intérét. L’isotropie du
coefficient d’absorption est généralement admise.

Il est courant de décomposer le coefficient d’absorption comme le produit d’une
densité volumique C,,(x) d’absorbeurs (ici des molécules) et d’une section efficace
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d’absorption o, (x)° :
kon(x) = Cp(x)0y(x). (2.21)

2.2.2.2 Emission de rayonnement thermique par le milieu participant

Tout corps & une température supérieure a 0K émet également de fagcon spontanée
du rayonnement thermique. Pour présenter ce phénomeéne, il convient d’introduire la
notion de luminance d’équilibre L;q(x) 7. Sa définition s’accompagne généralement de
Iidée de corps noir qui constitue un corps idéal absorbant I'intégralité du rayonnement
lui parvenant. A 1’équilibre, le corps noir émettra autant d’énergie qu’il en absorbe. I1
peut étre imaginé comme une cavité close et isotherme. En tout point de cette enceinte,
la luminance est alors uniforme et isotrope. Cette luminance monochromatique, dite
d’équilibre ou de corps noir, dépend uniquement de la température de la cavité et
du nombre d’onde (voir Fig. 2.7). Son expression est donnée par la loi de Planck :

1
hc
exp (kBT?X)) -1

ol kg = 1.38065 x 10722J. K1 est la constante de Boltzmann .
La luminance d’équilibre, comme toute luminance, voit sa définition varier selon
qu’elle est exprimée en fréquence, nombre d’onde ou longueur d’onde : Lflq(x) =+

Lgt . (x) # L3, /77<X)' Ce n’est qu'une fois intégrée que 1’équivalence est vérifiée :

e 2,3
L(x) = 2hc™n (2.22)

Ly(x)dn = LyL,, (x)dv = LY

v=cn )\:1/77

(x)d\ (2.23)

Les lois de Planck définies selon les fréquences et longueurs d’onde sont alors respec-
tivement données par :

2h3 1
Le(x) = 2= - (2.24)
¢ exp (—kBT”(X)) -1
« 2hc? 1
L(x) = =% (2.25)

A° h
Y <k3)\7(i(x)) —1
— NOTE : Loi de Stefan Boltzmann et loi du déplacement de Wien

Il peut étre intéressant d’intégrer et de dériver la loi de Planck, pour notamment
obtenir la luminance d’équilibre totale et la luminance d’équilibre maximale
(et son nombre d’onde associé¢) pour une température donnée.

6. La section efficace n’a pas de lien avec la taille réelle des absorbeurs, elle représente une
surface virtuelle susceptible d’intercepter le rayonnement.

7. Il est fréquent de trouver dans la littérature d’autres notations de cette luminance d’équilibre :
LY(x), Ip,(x) ou encore B, (x).
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FIGURE 2.7 — Luminance d’équilibre définie en nombre d’onde pour différentes températures. La
loi du déplacement de Wien (trait plein noir) est également présentée.

Loi de Stefan-Boltzmann La loi de Stefan-Boltzmann exprime la lumi-
nance totale d’équilibre intégrée sur l'intégralité du spectre ([0, +o0]) :

+o0o 1
L (x) = / L (x)dn = —oT(x)* (2.26)

0 T
oll 0 = 5.670373 x 1078 est dite la constante de Stefan-Boltzmann. On re-
marque alors que la luminance totale d’équilibre est bien proportionnelle a la
température élevée a la puissance 4.

Loi du déplacement de Wien La loi du déplacement de Wien exprime
le nombre d’onde, la fréquence ou la longueur d’onde pour laquelle, & une
température donnée, la luminance d’équilibre est maximale. Ces nombres
d’onde, longueurs d’onde et fréquences sont alors donnés par les relations

suivantes.
(L (1)) =T x 1.961cm™ (2.27)
V(L (1) =T x 5.879 x 10" Hz (2.28)
1
ALY ax(T)) = 7 X 2898um (2.29)

La loi du déplacement de Wien est illustrée par la courbe noire de la Fig. 2.7.

Dés qu’il s’agit d’étudier les milieux participants, il est nécessaire d’introduire,
en plus de la luminance d’équilibre, la notion de coefficient d’émission k. ,(x) qui va
permettre d’exprimer la variation de luminance associée a 1’émission le long d’un
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élément dx :
dL,(x,u)

Sep(x,u) = T

= k(%) Ly (%) (2.30)
Se.n(x,u) est donc égale au produit de la luminance d’équilibre (dépendant de la
seule température au point x) et du coefficient d’émission. S, (x, u) correspond alors
a un taux spatial d’émission.

Sous I'hypothése d’équilibre thermodynamique local, si ’'on ne considére que
I’absorption et ’émission, la condition

Seq(x,u) =P, (x, 1)
& ke y(x) Ly (x) = Ko p(x) Ly(x, 1)

(2.31)

se doit d’étre vérifiée. Or, puisqu’a I’équilibre thermique (c¢f. corps noir), la lumi-
nance est par définition la luminance d’équilibre : L, (x,u) = Ly?(x), les coefficients
d’émission et d’absorption sont donc deux grandeurs équivalentes. On oubliera donc
la notion de coefficient d’émission au profit de celle de coefficient d’absorption. Cette
équivalence est connue comme la lo: du rayonnement de Kirchhoff en hommage a
G.R. Kirchhoff qui I’a formulée en 1859.

2.2.2.3 Diffusion du rayonnement par un milieu participant

Enfin, le dernier type d’interaction entre rayonnement et matiére est la diffusion®

[Kerker, 1969, Sheng, 2006, Boulet et al., 2014]. Celle-ci entraine un changement de
direction du photon incident. Plusieurs hypothéses seront admises dans ce manuscrit
concernant la diffusion :

e La polarisation du rayonnement n’est pas prise en compte.

e Les diffusions sont supposées élastiques : I’énergie (ou le nombre d’onde) du
photon reste conservée pendant sa diffusion.

e La diffusion est supposée indépendante : les diffuseurs sont suffisamment éloignés
pour considérer que la diffusion provoquée par une particule n’influe pas sur
les diffusions d’autres particules.

Deux éléments caractéristiques du milieu diffusant sont nécessaires pour modéliser
la diffusion du rayonnement : le coefficient de diffusion kg, (x) et la fonction de
phase ¢, (u'|u, x).

Le coefficient de diffusion ky,(x) est 'analogue pour la diffusion du coefficient
d’absorption. Il est défini comme l'inverse du libre parcours de diffusion (distance
moyenne que parcours un photon avant d’étre diffusé) et correspond donc & une
fréquence spatiale de diffusion, homogéne & des m~!. La somme du coefficient d’ab-
sorption et du coefficient de diffusion &, (x) = ko, (x) + k4, (%) est appelé coefficient
d’extinction et est défini comme l'inverse du libre parcours moyen d’extinction (dis-
tance moyenne avant qu’'un photon ne soit absorbé ou diffusé). On peut également

8. On parle ici de diffusion, dans le sens de "scattering" et non de "diffusion" en anglais.
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définir a partir de ces deux coefficients des grandeurs adimensionnelles : 1'albédo de
diffusion simple wy,(x) défini comme :

dn(X) K (x)

Wy (X) = () Fr () + han ) (2.32)

5

et I'albédo d’absorption wy,(x) :

Wan(X) =1 —wey(x) = kgnniz? _ kam()lz;»:();lm(x) (2.33)

Plus I'albédo de diffusion est proche de 1, plus la diffusion sera prédominante devant
I’absorption.

La fonction de phase ¢,(x,u’|u) représente quant a elle, la probabilité qu'un
photon de direction incidente u diffuse dans une direction u’. Il est souvent difficile
de caractériser ces fonctions de phase, on peut alors se ramener alors a des modéles
approchés. Au cours de ces travaux de thése, nous nous limiterons aux milieux
isotropes. Les fonctions de phase considérées ne sont alors dépendantes que de I’angle
de déflexion 0 illustré par la Fig. 2.8.

FIGURE 2.8 — La fonction de phase associée & la diffusion d’un photon de direction incidente u
dans la direction u’ est décrite par le seul angle de déflexion 6 (la probabilité associée a 'angle ¢
est uniforme).

Nous décrivons ici seulement les trois seuls modéles utilisés dans la suite de ce
manuscrit :

e La fonction de phase isotrope (voir Fig. 2.9a) est définie de sorte que la
probabilité associée & toutes les directions u’ quel que soit u soit uniforme :

1
an,lsotrope(xy u/’u) - E (234)

e La fonction de phase d’Henyey-Greenstein (voir Fig. 2.9b) permet de rendre
compte de diffusions fortement anisotropes. Elle est trés utilisée du fait de sa
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simplicité d’'utilisation et de sa bonne représentativité pour de larges domaines
d’applications. En effet, elle ne dépend que d’un seul paramétre g(x) appelé
facteur d’asymétrie et s’exprime comme :

! 1—g(x)°
¢ ,Henyey-Greenstein \ X, u|u) = —
n yey: t ( | ) 41 (1 + g(x)2 _ 2g(x) COS(G))3/2

(2.35)

e La fonction de phase de Rayleigh (voir Fig. 2.9c) est un modéle approché
fréequemment utilisé dans des configurations ol le paramétre de taille des
diffuseurs est trés petit (2ra/A < 1 avec a une dimension caractéristique du
diffuseur et A la longueur d’onde du rayonnement). Son expression est donnée
par :

, 3
®n Rayleigh (X, 0'|1) = = (1 + Cos2(9)) (2.36)

/2

/2

(A) Isotrope (B) Henyey-Greenstein (¢) Rayleigh

FIGURE 2.9 — Représentation des trois fonctions de phase utilisées dans ce manuscrit : en (A)
la fonction de phase isotrope, en (B) la fonction d’Henyey-Greenstein pour différents parameétres
d’asymétrie g et en (C) la fonction de phase de Rayleigh. Les échelles sont arbitraires.

Lorsque 'on se place en un point de 1’espace des phases D et plus précisément
lorsque I'on s’attachera a un angle solide du, on distinguera deux types de diffusion
(strictement équivalentes d’un point de vue physique) les diffusions entrantes et
sortantes (respectivement "in-scattering" et "out-scattering" en anglais).

Diffusion entrante On parle de diffusion entrante lorsqu’un photon de direction
incidente u’ diffuse et voit sa nouvelle direction comprise dans I’angle solide d’intérét
du. ’augmentation locale de luminance le long d'un élément dx due a ce phénomeéne
de diffusion entrante est alors donnée par :

B dL,(x,u)

Sa+ p(x,0) = . = k:dﬁ(x)/4 én(x, ' |u)L,(x,u)du’  (2.37)

diff. entrante

Diffusion sortante On parle de diffusion sortante lorsqu’un photon, dont la
direction incidente est comprise dans I’angle solide d’intérét du, diffuse dans une
direction u’ non comprise cette fois dans ’angle solide d’intérét. La diminution de
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luminance le long d’un élément dx associée a ce phénoméne de diffusion entrante est
alors donnée par :

dL,(x,u)

Pd_ﬂ? (X, U_) = dx

= ka,(x)L,(x, 1) (2.38)

diff. sortante

La prise en compte rigoureuse de la diffusion est en pratique complexe et fait appel
a des considérations ondulatoires (résolution des équations de Maxwell). Ne faisant
pas l'objet des travaux présentés dans ce manuscrit, la diffusion sera uniquement
prise en compte en toute généralité dans les méthodes numériques développées.

2.2.3 Formulation locale de I’équation du transfert radiatif

La prise en compte des termes sources et puits relatifs & I’absorption, I’émission et
la diffusion du rayonnement (présentés a la Sec. 2.2.2) dans le modéle de transport de
photons (voir Eq. 2.19) méne donc, au régime stationnaire, a I’équation du transfert
radiatif suivante :

u.VL,(x,u) =P,,(x,u) + Py ,(x,u) + S, (x, 1) + Sg+ (%, 1) (2.39)

La somme de ces termes sources (terme de gauche) est connue dans la physique
du transport corpusculaire sous le nom de terme collisionnel, chacune des interactions
possibles entre rayonnement et matiére étant qualifiée de collision. Une fois ces termes
collisionnels exprimés, on obtient :

WYL, (x,0) = — kay(X) Ly (x,0) — kgp(x) Ly (%, 1) 4 Koy (x) Ly (%)
2.40
than(0) [ O, (x, )i (240
4

I1 est alors possible d’observer les effets de 'approximation d’équilibre thermo-
dynamique local posée a la Sec. 2.2.1. Cette hypothése a en effet conduit a une
expression du terme collisionnel telle qu’a I’équilibre thermodynamique 1’équation
du transfert radiatif soit validée. En effet, par définition, I’équilibre implique que le
terme de transport pur soit nul : u.VL,(x,u) = 0. La luminance d’équilibre étant
isotrope, il en résulte :

0 = —FKay(x) Lyt (x) —=ka, () Ly (X) ko (X) Lol (%) +hay [ ¢(au’) Ly (x)du’ (2.41)
A
Cette égalité est bien validée puisque les termes d’absorption/d’émission, ainsi que
les termes de diffusion s’annulent deux & deux.

2.2.4 Formulation intégrale de I’équation du transfert radiatif

Le transport de photon étant linéaire (les photons ne collisionnent pas entre-
eux), il est facilement possible, gréace au principe de superposition, de reformuler
I’équation du transfert radiatif sous une forme intégrale. En effet, pour un jeu de
conditions aux frontiéres donné, I’équation du transfert radiatif admet une unique
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solution qui peut étre exprimée sous forme intégrale. Ces solutions intégrales, leurs
valeurs statistiques, ainsi que les images physiques qui leur sont associées seront
plus longuement abordées au Chap. 3. Puisqu’il existe une infinité de configurations
d’étude et donc de formulations intégrales, cette sous-section n’a pour objet que de
présenter les éléments essentiels au passage de I’équation locale du transfert radiatif
a son analogue intégral : 'atténuation exponentielle et I’émission de la luminance
par un milieu participant. Les différentes conditions aux frontiéres seront dans un
premier temps rappelées.

2.2.4.1 Conditions aux frontiéres

On distingue trois types d’interaction rayonnement /frontiére : ’émission, 1’ab-
sorption et la réflexion du rayonnement par la paroi.

Une paroi absorbant I'intégralité du rayonnement lui parvenant constitue un corps
noir. La luminance émise par une telle paroi est donc une luminance d’équilibre :
elle dépend, pour un nombre d’onde donné, uniquement de la température de la
paroi. Cependant, une telle paroi n’est qu’une représentation idéale, toute paroi réelle
réfléchit au moins partiellement le rayonnement lui parvenant. En un point x,, de la
paroi, la fraction réfléchie de rayonnement pour une direction et un nombre d’onde
donnés est appelée réflectivité et est notée p,(x,u). Cette réflectivité vérifie I’égalité

py(x,0) + ap(x,u) =1 (2.42)

ol a,(x,u) est I'absorptivité de la paroi, qui correspond a la fraction de luminance
absorbée par la paroi. Sous I’hypothése d’équilibre thermodynamique local, cette
absorptivité est égale a la I'émissivité ,(x,u), une grandeur définie comme le ratio
entre la luminance monochromatique émise par la paroi en x,, dans la direction u
et la luminance d’équilibre qu’aurait un corps noir a la méme température que la
paroi :
L,(xy,,u
gp(x,u) = % = ay(x,u) =1 — p,(x,u) (2.43)
Concernant le type de réflexion, nous ne considérerons que deux cas extrémes
dans ce manuscrit : les réflexions dites spéculaire et diffuse

e Une surface est dite diffuse si a,)(x,u) = ¢,(x,u) = 1 — p,(x, u) ne dépendent
pas de la direction. La distribution bi-directionnelle de réflexion notée 1, (x)
est donc dans ce cas uniforme et égale & 1/27 : la probabilité qu'un photon
incident dans la direction u soit réfléchi dans une direction u’ est identique
quelle que soit u’ compris dans I’hémisphére extérieur de la paroi. Une telle
paroi est qualifiée de Lambertienne, en référence a la loi de Lambert qui énonce
ce principe.

e Le deuxiéme type de réflexion traitée est la réflexion spéculaire, cette réflexion
répond a la loi de Descartes qui stipule que le rayonnement est réfléchi de fagon
symétrique par rapport a la normale de la surface en x,,,.
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2.2.4.2 Atténuation exponentielle et absence de mémoire

L’équation locale du transfert radiatif associée a des conditions aux frontiéres,
telles que présentées précédemment, admet donc une unique solution exprimable sous
la forme d’une expression intégrale. On parle alors d’équation du transfert radiatif
sous forme intégrale. Le passage le plus délicat de I’équation locale & son équivalente
intégrale réside tres certainement dans 'objet de ce paragraphe : I'atténuation du
rayonnement le long d’un chemin optique.

Concentrons-nous d’abord sur la probabilité qu’a un photon de nombre d’onde n
émis en xy d’étre transmis sur une distance [ dans un milieu participant homogeéne et
non diffusant sans avoir été absorbé. Cette probabilité, notée 7,(I), porte le nom de
transmissivité. En ayant posé 'hypothése de distribution aléatoire des absorbeurs, il
est possible d’écrire cette probabilité comme le produit de la probabilité qu’aurait
un photon d’étre transmis sur une distance [; et de celle d’étre transmis sur une
distance [, telles que I; + 1o =1 :

To(l) = Ty(h) x Ty (l2) (2.44)

En d’autres termes, cela signifie que sous cette hypotheése, la probabilité qu’un
photon a de parcourir une certaine distance sans avoir été absorbé ne dépend pas de
son histoire ou de la distance qu’il a déja parcourue. Cette propriété, courante en
physique (ezx : désintégration nucléaire, décharge électrique d’un condensateur, etc.)
est qualifiée d’absence de mémoire. L'unique expression de la transmissivité validant
I'Eq. 2.44 est alors :

70 = (-5) (2.45)

ou [ est une valeur strictement positive caractérisant le libre parcours moyen d’ab-
sorption. Or dans la Sec. 2.2.2.1, nous avons défini le coefficient d’absorption comme
I'inverse du libre parcours moyen. Il vient alors :

Ta(l) = exp (—kanl) (2.46)

Cette loi caractérise donc 'extinction ou ’atténuation exponentiellement du rayon-
nement due a 'absorption. Elle est connue sous le nom de loi de Beer-Lambert et
peut étre étendue a un milieu hétérogene par :

T (0, 00) = exp (— / kam(x’)dx’) — exp (=7 (20 0)) (2.47)

ou 7T,(x4,xp) correspond a la probabilité quun photon soit transmis entre z, et
zp et ol T, (T4, xp) = ffab konx'dx’ est appelée épaisseur optique. Cette grandeur
adimensionnelle donne une information sur le caractére absorbant d’un milieu
le long d’'un chemin optique (ici [zq4,23]). Pour 7,(x,,2;) < 1 le milieu est dit
mince : l'essentiel du rayonnement sera transmis le long de [z, 23]). Au contraire
pour 7,(zq, ) > 5, le milieu est qualifié d’épais, une trés faible proportion du
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rayonnement sera transmis, I'essentiel étant absorbé.

Si l'on suppose a nouveau que le milieu est homogeéne, il est possible de poursuivre
ce raisonnement sous un aspect différentiel. Considérons désormais la probabilité
pc(1)dl qu'un photon soit absorbé aprés avoir parcouru une distance élémentaire dl.
La grandeur p,(1)dl correspond alors a la probabilité qu'un photon parcoure une
distance supérieure a [ mais inférieure a [ + dl. On peut donc écrire :

pe(l)dl = Ty(1) = Tyl + di) (2.48)
Sous un formalisme différentiel, il vient a partir de I'Eq. 2.46 et de I'Eq. 2.48 :

_dTy()

p,c(l) = dl

= ko exp (—kanl) (2.49)

ol ps(1) correspond alors & la densité de probabilité des libres parcours d’absorption
[ et peut étre également définie pour un milieu hétérogéne par :

pell) = ko (o + 1) exp (— /0 (ot l’)dl’) (2.50)

ou pr(l) est la fonction densité de probabilité des libres parcours [ pour des photons
ayant été émis en x,. Cette densité de probabilité est normalisée sur [0, +o00]. En
effet, la probabilité quun photon soit absorbé par un milieu absorbant sur un chemin
infini est bien égale a un.

— NOTE : Perte de I’absence de mémoire lors de I'intégration spectrale

L’absence de mémoire et 'atténuation exponentielle associée ne sont valables
que pour des grandeurs monochromatiques. Deés lors que 'on intégre les
grandeurs d’intérét sur une plage de nombres d’onde, ces comportements
exponentiels ne sont plus respectés. Une facon de s’en convaincre consiste a
considérer la transmissivité globale 7,(!) de deux couches homogénes : I'une
d’épaisseur [; et de coefficient d’absorption k1, 'autre de dimension /5 et de
coefficient d’absorption £k, , 2 telles que | = {4 + ls.

Comme nous venons de le voir, il est possible d’écrire de fagon monochroma-
tique :

E(l) = exXp (_ka,n,lll — ]{?aﬂhglg)
= exp <_ka,n,1l1) X exXp (—kam,glg) (251)
= Ty(l1) X Ty(l2)

Mais dés que 1'on souhaite intégrer spectralement cette transmissivité sur An,
il vient :

() = /A Tdn = [ Tot) x Tot)dn £ T x (1) (252)

An
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La transmissivité globale T (I) intégrée spectralement est bien différente du
produit des transmissivités intégrées T (I;) et T (l2), Iatténuation exponentielle
n’est plus applicable. L’intégration spectrale crée donc un phénomeéne de type
mémoire : alors que la distribution aléatoire des absorbeurs assurait une absence
de mémoire, la distribution spectrale des photons contient, elle, de I'information
relative & la distance qu’ils ont déja parcourue.

Transmission de rayonnement par une colonne de milieu participant Il
devient alors possible d’utiliser ces notions de transmissivité et de densité de pro-
babilité de libre parcours pour exprimer la luminance transmise par une colonne.
On souhaite étudier la luminance en z; dans la direction sortante résultant d’une
émission en x, (ou est placée une paroi noire) et atténuée entre xz, et x, par un milieu
non-émettant (de température nulle) et non-diffusant. A partir de la définition de la
transmissivité il vient :

Ly (w) = Ly (2a) Ty(a, T)
o 2.53
= L;(x,) exp (—/ kwx’d:c') (2:53)

Cette équation s’interpréte assez facilement : seule une fraction 7,(z,, ) de la
luminance Lf]q(xa) émise en x, est transmise jusqu’en x,. On constate également que
cette expression intégrale est bien solution de 1’équation locale du transfert radiatif
pour la configuration considérée (pas de diffusion ni d’émission du milieu et paroi
noire en z,). De la méme maniére, il est possible d’exprimer L (z;) en faisant appel
a la distribution des libres parcours :

Ly () = /0+0° pe(l) H (L — (zp — 74)) Ly (74)dl (2.54)

ou la fonction de Heaviside H (I — (xp — z,)) vaut 1 sil > x, — x, et 0 sinon. Ici, les
images associées & cette expression sont légérement différentes : la luminance L, (1)
est définie comme la fraction des photons (& une constante hcne prés) émis par la
paroi en z, ayant eu un libre parcours supérieur a [ et donc ayant bien été transmis
par la colonne.

Emission de rayonnement par une colonne de milieu participant Mainte-
nant, si 'on considére que le milieu émet en plus d’absorber et que la paroi n’émet
plus, il est possible d’exprimer la luminance en z;, dans la direction sortante résultant
d’une émission de rayonnement par le milieu défini sur [z,, 7] atténuée exponen-
tiellement jusqu’en x;,. Les hypothéses d’équilibre thermodynamique local et de
stationnarité imposent que la fraction de rayonnement absorbée le long d’un chemin
optique est égale a celle émise par ce méme milieu. On peut alors définir ’absorptivité
A, (24, 2p) du milieu, qui représente la probabilité qu'un photon soit absorbé sur une
distance [z, xp] donnée. Celle-ci correspond a la probabilité complémentaire de la
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transmissivité :

Ay (xq, ) =1 — Tp(x4, Tp) (2.55)

En effet, sur une distance donnée, en ’absence de diffusion, soit le photon est absorbé,
soit il est transmis.

En supposant le milieu isotherme de luminance d’équilibre L;?, la luminance
L} (xp) est alors donnée par

Ly (xy) = Lyt (1 = Ty(2a, 1)) (2.56)

La luminance L; (3) correspond alors la luminance d’équilibre du milieu pondérée
de la fraction émise sur [x,, zp).

En faisant appel a la densité de probabilité des libres parcours, on peut également
écrire pour un milieu anisotherme :

L (x) = / iy () xp (- / " kam(a:’)dx’) Lei(x) (2.57)

Dans ce cas, deux images physiques sont possibles pour interpréter cette expression
de L;r (xp) :
e soit on considére que sur chaque intervalle dr du milieu une luminance
kan(z) Lyl (z)dr est émise et que seule une fraction exp (— faib ka,n(:v’)dx’>
est transmise jusqu’en xy.

e soit que la luminance L} (z,) est définie comme I'intégrale sur [v4, ;] des
luminances d’équilibres distribuées selon la densité de probabilité des libres
parcours pg(l).

2.2.4.3 Prise en compte de la diffusion

La prise en compte de la diffusion sera traitée plus en détail au Chap. 3, cependant
nous avons vu que la diffusion contribue de deux maniéres différentes a I’équation
du transfert radiatif : la diffusion entrante et la diffusion sortante, respectivement a
I'origine d’'une augmentation et d’'une diminution de la luminance en un point de
I’espace des phases.

La disparition de luminance par diffusion est traitée de la méme maniére que
I’atténuation du rayonnement par ’absorption. En effet, la loi de Beer-Lambert
et 'absence de mémoire s’appliquent également a la diffusion, mis & part que la
fréquence spatiale de disparition est donnée par le coefficient de diffusion et non par
le coefficient d’absorption. Dans la pratique, on ne distinguera pas les atténuations
par absorption et par diffusion. On raisonnera en termes de coefficients d’extinction.
L’atténuation causée par ces deux phénomenes le long d’un chemin optique curviligne
entre 0 et ¢ est alors donnée par :

(<) = exp (— /0 o (s') + kdm(g’)dg') — exp (— /0 ( kn(g’)d§'> (2.58)
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L’apparition de rayonnement par diffusion, est quant & elle plus délicate a prendre
en compte, en particulier lorsque les événements de diffusion sont multiples. Elle
implique une récursivité du fait de la présence de la luminance dans l'intégrale
directionnelle du terme source Sy, (x,u) de I'équation locale du transfert radiatif.
Cette récursivité sera présentée plus amplement a la Sec. 3.4). Cependant, 'apport
par diffusion ne pose pas de problémes intrinséques majeurs (outre des problémes de
formalisme), il sera toujours possible d’alléger cette écriture récursive en raisonnant en
abscisses curvilignes dans une vision de type intégrales de chemins [Dauchet, 2012].

2.3 Nature, dépendances et modéles du coefficient
d’absorption en milieu gazeux

De par sa forte dépendance aux nombres d’onde, aux fractions molaires des es-
péces en présence et aux propriétés thermodynamiques du milieu, la prise en compte
du coefficient d’absorption représente une des principales difficultés rencontrées lors
de I’é¢tude du rayonnement en milieu gazeux. Les notions d’émission et d’absorption
par un milieu semi-transparent ont déja été abordés dans le but de les placer dans une
description mésoscopique. Toutefois, nous ne nous sommes pas encore intéressés aux
phénomeénes et mécanismes sous-jacents. Ces derniers, qui font appel & des concepts de
mécanique quantique, feront 1'objet de cette section (pour plus d’informations, le lec-
teur pourra se référer aux textes [Tien, 1969, Taine et Soufiani, 1999, Heitler, 2010]).
La nature méme du coefficient d’absorption et sa représentation sous forme de raies
puis de spectres d’absorption seront ainsi abordées.

2.3.1 Meécanismes d’absorption et d’émission du rayonne-
ment

L’approche corpusculaire du rayonnement a posé au début du XX™¢ siécle
les fondements de la mécanique quantique. Cette derniére émet, entre-autres, le
postulat que les états énergétiques F; d’une molécule sont discrets (ou quantifiés).
L’énergie d’une molécule est la résultante de plusieurs formes d’énergie. Dans le cas
du rayonnement, seules certaines formes d’énergie importeront, on parlera d’états
énergétiques électroniques, vibrationnels et rotationnels (ici classés du plus au moins
énergétique). Spontanément, ou suite a une interaction avec son environnement, la
molécule peut passer d’un état énergétique élevé F, a un plus faible E; et inversement :
de F; a E,. On qualifie alors ces "sauts" quantifiés de transitions énergétiques. Dans
le cas de I’étude du rayonnement dans les gaz, on distingue trois mécanismes menant
a ces transitions : ’émission spontanée, I’émission stimulée (ou émission induite
ou encore absorption négative) et ’absorption d’un photon par la matiére. Ces
trois interactions sont schématisées dans la Fig. 2.10. Il est possible, grace a la
mécanique quantique, de définir les coefficients d’absorption et d’émission relatifs a
ces interactions en faisant appel a des modéles cinétiques, basés sur des grandeurs
connues sous le nom de coefficients d’Einstein [Modest, 2013, André et al., 2014].
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FIGURE 2.10 — Mécanismes d’interaction matiére-rayonnement : (A) Absorption ; (B) Emission
Spontanée ; (C) Emission Stimulée.

Emission spontanée On parle d’émission spontanée lorsqu’une molécule dans un
état énergétique E, émet un photon passant ainsi a un état énergétique inférieur FEj.
Le nombre d’onde 7 du photon émis est directement conditionné par cette transition
et répond a l'égalité

E,— E;, = hne (2.59)

Absorption A I'opposé de I’émission spontanée : un photon d’énergie hnc peut étre
absorbé par une molécule d’énergie Ej si cette molécule posséde un état énergétique
E, validant I'Eq. 2.59.

Emission stimulée Enfin, le dernier type d’interaction photon/molécule est appelé
émission stimulée. On la rencontre lorsqu’un photon de nombre d’onde "compatible"
aux états énergétiques d’une molécule va la faire passer d'un état énergétique F, a un
état E) inférieur, émettant ainsi deux photons strictement identiques d’énergie hnc.
Alors que I'absorption et 1’émission spontanée sont isotropiques, I’émission stimulée
voit ses deux photons émis dans la direction du photon incident (cette propriété est
a lorigine du développement des lasers).

2.3.2 Raie d’absorption isolée

Toute absorption et émission de photons par la matiére est donc conditionnée par
les états énergétiques quantifiées de la molécule considérée. Si ’on souhaitait, pour
une espece m donnée et une transition énergétique ¢ isolée, tracer la raie d’absorption
associée a cette transition (c’est-a-dire représenter le coefficient d’absorption relatif a
cette transition en fonction du nombre d’onde), il serait cohérent d’imaginer cette
fonction comme un Dirac centré en le nombre d’onde 7 validant E,, — E; = hen. Mais
en pratique, ce n’est pas le cas. Plusieurs facteurs sont & ’origine d’un élargissement
sur 1’échelle des nombres d’onde de ces prétendus "Diracs". Il est alors courant de
décomposer le coefficient d’absorption? associé a la transition isolée ¢ de la molécule
m comme le produit d’une densité volumique d’absorbeurs C,,(x) et d’une section
efficace 0,,,(x) elle-méme définie comme le produit d’une intensité de raie S,(x) et

9. Tout au long de ce manuscrit, nous noterons le coefficient d’absorption associée a une raie @
isolée hq,p. et le coefficient d’absorption global, résultant d’une multitude de transitions, kq -
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d’un profil de raie f,(n) = fim(n,%x) :

ha,n,z(x) = Cpn(x) x Sy(x) X fi(n) (2.60)

ou l'intensité de raie correspond a 'intégrale selon 7 de o0,,,(x) sur [—oo, +00] et
le profil de raie est une fonction densité de probabilité normalisée sur [—oo, +o0]
caractérisant ’élargissement de la raie.
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FIGURE 2.11 — Spectre d’absorption d’une raie isolée centrée en 7. La transition est décrite par le

produit de la densité volumique de I’espéce considérée, de son intensité et du profil de raie considéré
dont le paramétre principal est la demi-largeur a mi-hauteur ~.

2.3.2.1 Elargissement des raies

On dénombre quatre principaux phénomeénes a l'origine de 1’élargissement des
raies : les élargissements collisionnels, naturels, par effet Doppler et effet Stark
[Goody et Yung, 1996, Caliot, 2006, Modest, 2013].

Elargissement collisionnel La principale cause d’élargissement des raies d’ab-
sorption est attribuée aux collisions inter-moléculaires qui causent une légére variation
des états énergétiques des molécules entrainant ainsi une légére variation de 1’énergie
(et donc du nombre d’onde) d’émission du photon. Cet élargissement est d’autant
plus prononcé que le nombre de collisions est important et donc croit avec la pression.

Elargissement naturel Une autre cause d’élargissement repose sur le principe
d’indétermination (énoncé par W. Heisenberg en 1927), on parle d’élargissement
naturel. Une des conséquences de ce principe est qu’il n’est pas possible de connaitre
sans incertitude a la fois le temps d’occupation naturel d’un état énergétique et 1’éner-
gie associée a cet état, influant ainsi sur le nombre d’onde du photon émis. Toutefois,
cet élargissement est généralement négligeable face a 1’élargissement collisionnel.

Elargissement par effet Doppler Chaque molécule ayant une vitesse propre, il
convient également de prendre I'effet Doppler en compte. En effet, si une molécule
de vitesse v,, (par rapport au référentiel de l'observateur) émet un photon, 'onde
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électromagnétique associée a ce photon va atteindre 1’observateur avec un nombre
d’onde supérieur ou inférieur au nombre d’onde théorique 7y associé a la transition
ayant conduit a I’émission. Ce nombre d’onde observé peut étre supérieur ou infé-
rieur a 7y selon que la molécule s’éloigne ou se rapproche de l'observateur. Un tel
élargissement dépend de la vitesse des molécules et sera donc d’autant plus prononcé
que la pression du milieu sera faible et que sa température sera élevée.

Elargissement par effet Stark Enfin, le dernier type d’élargissement (mentionné
ici a titre purement indicatif) est causé par l'effet Stark. En présence de forts
champs électriques, il devient largement prédominant face aux trois autres types
d’élargissement. On le rencontre particulierement dans les gaz ionisés.

2.3.2.2 Profils de raies

Ces différents types d’élargissement se caractérisent par deux principaux profils
de raies symétriques, centrés autour du nombre d’onde 7, validant F, — E; = hngc.
Ces profils sont normalisés sur | — oo, +00[ et traduisent 1’élargissement de la raie en
fonction du nombre d’onde 7.

Profil de Lorentz L’élargissement collisionnel et 1’élargissement naturel se carac-
térisent par un profil de raie de type distribution de Cauchy, couramment appelé
profil de Lorentz. Il s’exprime :

fz,L (77) = gt !

gl 2.61
T i+ (n—m)? (2.61)

ou 7y, est appelée demi-largeur de raie du profil de Lorentz (voir Fig. 2.11).

Profil de Doppler L’élargissement par effet Doppler se caractérise quant a lui
par un profil de raie de la forme d’une distribution gaussienne. Il s’exprime comme :

fuof) = 2 L e (i) ) (2.62)

™ YD YD

ol 7p est la demi-largeur de raie du profil de Doppler.

Profil de Voigt Il est cependant difficile de choisir entre le profil de Lorentz et
celui de Doppler lorsque les collisions intermoléculaires et ’effet Doppler sont du
méme ordre de magnitude. Il est donc courant d’utiliser un troisiéme profil, appelé
profil de Voigt, qui est défini comme le produit de convolution du profil de Lorentz
et de celui de Doppler :

+oo
fov(n—m) = for(n— (" —=mo) fuo( —no)dn’ (2.63)

Pour des pressions atmosphériques ou supérieures, les profils de Lorentz et de
Voigt sont quasiment identiques (voir Fig. 2.12a). Ce n’est que pour des pressions
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trés faibles qu'une différence entre ces deux profils sera constatée et pour lesquelles
le profil de Voigt - plus fidéle a la physique - devra étre privilégié (voir Fig. 2.12b).
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F1GURE 2.12 — Différence entre les profils de Lorentz et de Voigt pour la description d’une raie
isolée. Pour une pression de P = latm les deux profils sont quasiment identiques (voir Fig. (A)). Au
contraire pour une pression beaucoup plus faible de P = 10~ 3atm les deux profils se différencient
trés nettement a cause de leffet Doppler qui devient dominant (voir Fig. (B)). La raie considérée
est une raie de CO, centrée en 79 = 2041.288360cm ! a une température de 300K. La fraction
molaire de CO3 est de xco, = 0.1.

Correction de profils Il est possible que les profils de Lorentz ou de Voigt
ne soient pas suffisamment satisfaisants, en particulier lorsque les pressions ren-
contrées sont importantes. Des modifications de ces profils [Hartmann et al., 2008,
Eymet et al., 2009, Eymet, 2011b, André et al., 2014] sont alors appliquées.

e La premiére d’entre-elles concerne les ailes de raie qui sont, lorsque la pression
est importante, surestimées par les profils de raie usuels (de Lorentz ou de
Voigt) [Burch et al., 1969]. Des fonctions correctives sont alors appliquées, me-
nant & un nouveau profil qualifié de sub-Lorentzien [Perrin et Hartmann, 1989,
Tonkov et al., 1996]. Ces surestimations des ailes de raie sont essentiellement
constatées dans des bandes qualifiées de fenétres spectrales, ou les valeurs des
coefficients d’absorption sont trés faibles. Alors que leur impact est négligeable
dans la plupart des applications de types sciences de 'ingénieur (combustion
...), il devient sensible deés lors que les épaisseurs optiques du milieu considéré
deviennent importantes, en particulier pour des applications atmosphériques et
astrophysiques [Bézard et al., 1990].

e Les fortes pressions mettent également en défaut les profils de raies usuels pour
une seconde raison. En effet, ces pressions élevées engendrent, sur des temps
caractéristiques tres courts, de nouvelles espéces chimiques. Ces nouveaux élé-
ments, ayant des transitions énergétiques propres, vont avoir tendance a élargir
les profils de raies étudiés. On parlera alors d’absorption induite par collisions.
Ce phénoméne est en pratique corrigé par 'ajout d’un continuum correctif au
spectre d’absorption [Moskalenko, 1979, Gruszka et Borysow, 1997|.
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Cependant la plage de validité de ces deux types de profils correctifs demeure
généralement limitée : seules quelques bandes spectrales pour quelques espéces
chimiques ont aujourd’hui été paramétrées.

2.3.2.3 Comportement des raies d’absorption en fonction des conditions
thermodynamiques

La pression P, la température T ainsi que la fraction molaire y,, de I'espéce
considérée vont influer sur le profil f,(n) et I'intensité S, de la raie et a fortiori sur
sa section efficace o,,, = f.(n)S, et donc sur son coeflicient d’absorption h,,, =
CrnTa -

Effet de la fraction molaire. La fraction molaire de ’espéce considérée influe
sur la largeur de raie et donc sur la section efficace de la transition considérée
(voir Fig. 2.13a). Une augmentation de cette fraction molaire peut conduire & un
élargissement ol a un rétrécissement de la raie. Le coefficient d’absorption, défini
comme le produit de la section efficace et de la densité volumique de I’espéce considérée
(directement proportionnel & sa fraction molaire), & une tendance a augmenter avec
la fraction molaire (voir Fig. 2.13b).
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FIGURE 2.13 — Effet de la fraction molaire sur la section efficace et le coefficient d’absorption d’une
raie de CO, isolée centrée en 19 = 2041.288360cm ™! & une température de 300K et une pression
de latm. Le profil de raie considéré est un profil de Voigt.

Effet de la pression. La pression joue quant a elle un role a la fois sur la densité
volumique de I'espéce considérée, sur sa largeur et sa composante liée a I’effet Doppler
(si I'on considére un profil de Voigt) et également sur le nombre d’onde de centre
de raie. De facon générale, on constate qu'une augmentation de la pression a pour
conséquence un aplatissement de la raie d’absorption et au contraire que de trés faibles
pressions engendrent des raies proches de Diracs (voir Fig. 2.14). En considérant
un profil de Voigt, plus la pression est élevée, plus le coefficient d’absorption aura
tendance a étre important.
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FIGURE 2.14 — Effet de la pression sur la section efficace (donnée avec une échelle logarithmique)
et le coefficient d’absorption d’une raie de CO, isolée centrée en ny = 2041.288360cm ™! a une
température de 300K. La fraction molaire de COq est de xco, = 0.1 et le profil de raie considéré
est un profil de Voigt.

Effet de la température Enfin, la température est ’élément a 'origine du plus
grand nombre de sources de variation du coefficient d’absorption. Plus elle est
importante, plus la densité volumique de I'espéce considérée est faible. La température
influe également de fagon complexe et non monotone sur l'intensité et la largeur
de raie selon la transition considérée (voir Fig. 2.15). Il est fréquent de constater
une augmentation substantielle du coefficient d’absorption de certaines raies avec la
température, alors que pour les mémes conditions, d’autres tendent & disparaitre.
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FIGURE 2.15 — Effet de la température sur la section efficace et le coefficient d’absorption d’une raie
de COg isolée centrée en 7y = 2041.288360cm ~*. La fraction molaire de CO5 est fixée & xco, = 0.1,
la pression a latm et le profil de raie considéré est un profil de Voigt.
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2.3.3 Des transitions énergétiques au spectre d’absorption

2.3.3.1 De la raie au spectre

Jusqu’alors, nous nous sommes concentrés sur une raie isolée. Cependant lorsque
I’on étudie un gaz, celui-ci est le plus souvent composé de plusieurs espéces qui doivent
étre prises en compte. De surcroit, chaque molécule de chaque espéce occupe un état
énergétique donné. Cela se traduit par un nombre trés conséquent de transitions qui,
elles aussi doivent étre considérées. Il est alors courant de considérer le coefficient
d’absorption k,,(x) - pour un nombre d’onde, des conditions thermodynamiques et
un mélange donnés - comme la somme des participations g, ,(x) = Cy,(X)0,,(x) de
toutes les transitions N,(m) de toutes les espéces N,, du mélange (voir Fig. 2.16) :

Fan(¥) =D D haun(x) = Y C(x) Y 0uy(x) (2.64)
m=1 =1 m=1 =1
Raie 1 ——
Raie 2 ——
Raije 3 ———
Spectre ———

n(em™1)

FIGURE 2.16 — Le spectre d’absorption est égal a la somme des participations de chaque raie en
chaque nombre d’onde 7.

La description du coefficient d’absorption comme la somme des participations
de raies isolée constitue une hypothése généralement raisonnable lorsqu’il s’agit de
produire des spectres. Cette hypothése sera d’ailleurs retenue tout au long de ce
manuscrit. Cependant, en la posant, on omet en particulier de prendre en compte
un effet appelé "Line Mixing" [Hartmann et al., 2008|. En effet, des interactions
entres deux transitions d’'une méme molécule peuvent avoir lieu par un transfert de
population (on parle aussi d’échange d’intensité). C’est par exemple le cas lorsqu’un
photon d’énergie hcn sensé conduire, lors de son absorption par une molécule, & une
transition donnée, méne en fait, & cause d’une légére variation de 1’état énergétique
de la molécule (causée par des collisions moléculaires) & une autre transition trés
proche de la premiére.
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2.3.3.2 Bases de données spectroscopiques

Lors de I'étude du rayonnement en milieu participant, il est nécessaire de pouvoir
caractériser en tout point et pour tout nombre d’onde les propriétés optiques du
milieu et en particulier le coefficient d’absorption. On fait alors généralement appel
aux spectres d’absorption, définis pour un mélange (espéces en présence, fractions
molaires respectives) et un jeu de conditions thermodynamiques (pression, tempéra-
ture). Toutefois, mis & part pour quelques configurations académiques homogenes, il
est généralement nécessaire de recourir & un grand nombre de spectres pour couvrir
les hétérogénéités de propriétés du milieu. Une production expérimentale de ces
spectres serait une tache tres lourde et complexe qui devrait étre renouvelée a chaque
changement de cas d’étude ou d’hypothéses relatives au calcul du spectre (profil,
¢élargissements, troncatures, etc.). Aussi, une large communauté de spectroscopistes
s’attache, depuis plusieurs décennies & produire, pour différentes espéces molécu-
laires, des bases de données dites de transitions ou spectroscopiques (les principales
bases de données sont citées dans la Tab. 2.2). Originellement, ces bases de don-
nées spectroscopiques ont été développées pour des applications atmosphériques
[McClatchey et al., 1973] (HITRAN, GEISA, CDSD1000), et ont été étendues pour
la gestion de configurations a hautes températures (CDSD-4000, Hitemp).

BDD -+ Version Référence Espéces Gamme de T
CDSD-1000 [Tashkun et al., 2003] COq < 1000K
CDSD-4000 [Tashkun et Perevalov, 2011] COq < 4000K
Geisa 2011 [Jacquinet-Husson et al., 2011] 50 molécules Basses températures

Hit}clirtli)mQ%IO [Rothman et al., 2010] CO4, H20, CO, NO, OH é ;,888;
Hitran 2008 [Rothman et al., 2009] 42 molécules Basses températures
Hitran 2012 [Rothman et al., 2013] 47 molécules ”

TABLE 2.2 — Principales bases données spectroscopiques fournies avec leur référence bibliographique
et les espéces et gammes de températures d’application pour lesquelles elles sont établies.

Ces bases de données spectroscopiques recensent, pour un nombre conséquent
de transitions énergétiques, quelques dizaines de paramétres '°. Chaque jeu de para-
metres permet alors de produire numériquement des raies d’absorption et ainsi des
spectres [Eymet, 2011b, Eymet, 2013, André et al., 2014|. Outre certains parameétres
quantiques ne rentrant pas directement en jeu dans la production de spectres, ces
bases de données rassemblent pour chaque transition les paramétres suivants :

e m : Indice de la molécule

;50 - Indice de I'isotope

ny : Nombre d’onde central de la transition dans le vide (cm™!)

S : Intensité de raie pour la température de référence (cm™'/(molecule cm™2))

Yair : Coefficient d’élargissement par collisions avec le reste du mélange (consi-
déré comme de lair) (em™tatm™!)

10. L’ensemble des bases citées dans la Tab. 2.2 ont adopté le méme format de données, il est
donc aisé dans des considérations informatiques de passer indifféremment de I'une a I'autre
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o 75y : Coefficient d’élargissement par collisions avec des molécules de I'espece
considérée (cm ™ tatm™1)

e FEj,, : Energie du niveau bas de la transition (cm™!)
e 1, : Exposant de dépendance a la température de 7u; (—)

e n. s : Exposant de dépendance a la température de v (—) (uniquement

dans CDSD4000)
e 0p : Coefficient de décalage induit par la pression (em™'atm™).

Toutefois, cette paramétrisation est trés délicate. En effet, 1’essentiel de ces
paramétres est dépendant de la température, aussi chacune de ces bases de données
est produite pour une température de référence T,.; = 296K, mis a part pour
CDSD-1000 ou 7}y = 1000K. De plus, la définition rigoureuse de la largeur d’une
raie nécessite de connaitre les fractions molaires de I’ensemble des espéces en présence
pour quantifier les collisions inter-moléculaires conduisant a cet élargissement.
Ne pouvant étre représentatif de l'ensemble des mélanges gazeux, seules deux
contributions a cet élargissement de raie sont fournies dans ces bases de données :
celle due a I'espéce considérée (collisions entre molécules de la méme espéce), et celle
due aux collisions avec un mélange ayant la composition de I’air de ’atmosphére
terrestre. Cela signifie donc que, dés lors que 1'on s’éloignera de compositions proches
de I'atmosphére terrestre, les spectres produits & partir de ces bases de données
spectroscopiques seront plus ou moins biaisés.

Destinées originellement a I’étude de ’atmosphére terrestre, ou les températures
sont relativement faibles, ces bases de données ne recensaient que les paramétres des
raies les plus intenses aux températures caractéristiques de leur objet d’application.
Au cours du temps, avec des besoins croissants en termes de précision et de domaine
d’application, ces bases de données n’ont cessé de s’enrichir, par I'introduction
de raies de moins en moins intenses. Aujourd’hui les bases de données "basses
températures" peuvent compter jusqu’a quelques millions de transitions pour une
molécule unique.

Le besoin de bases de données pour décrire des applications "haute température"
(notamment pour le domaine de la combustion) a également poussé la communauté
de spectroscopistes a produire des bases de données encore plus importantes. En effet,
comme présenté a la Sec. 2.3.2.3, la température "active" un grand nombre de raies qui
étaient jusqu’alors imperceptibles a faible température (voir Fig. 2.17). Ces nouvelles
bases de données (CDSD, Hitemp) répertorient ainsi un nombre considérable de
transitions susceptibles d’étre sensibles & haute température (la base de données
CDSD-4000 rassemble pour la seule molécule de CO4 les paramétres de plus de 600
millions de raies pour un volume de données approchant les 80Go).

2.3.3.3 Production de spectres d’absorption haute-résolution

A partir de 'Eq. 2.64 et des paramétres contenus dans les bases de données
spectroscopiques, il est alors possible de calculer le coefficient d’absorption pour un
nombre d’onde, une température, une pression et une fraction molaire donnés (dans
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FIGURE 2.17 — Spectres d’absorption d’un mélange de gaz (5% de CO2 et 95% de No) a pression

atmosphérique pour deux températures différentes : T = 300K et T' = 2000K. Le spectre a haute
température présente un nombre beaucoup plus élevé de raies significatives.

la limite de validité de la base de données). Celui-ci s’exprime comme :

Nim Ni(m)
Fan(%) = Y Coulx) D S.(x) £l %) (2.65)

L’intensité de la raie ¢ est donnée par :

ex St | . 09
S,(x) = S(Tref)g((fzz))) exz EC?;;ZU% 1 - exz E%i};())g
ref

ref

(2.66)

o ¢o = 100hcy/kp ~ 1.4388K.cm et ou Q(T') est la fonction de partition de
I'isotope de 'espéce considérée a la température d’intérét T'. Ces fonctions de
partitions peuvent étre obtenues a partir de modeéles quantiques analytiques de type
oscillateurs harmoniques [André et al., 2014], ou & partir de tabulations et d'un
schéma d’interpolation. Au cours de ces travaux, nous utiliserons les tabulations
publiées dans [Fischer et al., 2003] (distribuées avec la base de données Hitran) en
utilisant une interpolation Lagrangienne du troisieme degré.

Concernant le profil de raie, les deux choix communs sont les profils de Lorentz
ou de Voigt. Dans les deux cas le nombre d’onde de centre de raie est donné par

N =1y +0p X P (2.67)
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Pour un nombre d’onde 7 la valeur du profil de Lorentz est donnée par

_ l 'VL,n(X>
fur (%) = — O Ty p— (2.68)

ou vz ,(x) est la demi-largeur & mi-hauteur du profil de Lorentz que I’on obtient &
partir des paramétres contenus dans les bases spectroscopiques par :

Tref
T(x)

La valeur du profil de Voigt est, quant a elle, plus difficile & calculer d’un point de
vue numérique car non analytique. En effet, il s’agit d’un produit de convolution d’un
profil de Lorentz et d'un profil de Doppler. Nous avons fait ici le choix de recourir a
'algorithme d’Humlicek [Humlicek, 1982| qui présente 'avantage de maitriser I'erreur
numérique commise. Cette routine nécessite en plus de la demi-largeur du profil de
Lorentz, la demi-largeur du profil de Doppler, donnée par :

VD (x) = Z—z\/% (2.70)

VLa(X) = ( )n [Ysetf Ps + Yair (P — Py)] (2.69)

ol M est la masse molaire de I'isotope considéré.

La production de spectres d’absorption a partir de bases de données spectrosco-
piques demeure tout de méme une tache fastidieuse. En effet, pour une résolution
spectrale déterminée, ’ensemble des contributions de chaque transition S,(x) f,,(x)
doit étre calculé. En pratique pour des cas a pression atmosphérique, la résolution
communément admise pour décrire correctement la variation spectrale du coefficient
d’absorption est de 10~2cm ™! soit prés de dix millions de points pour couvrir entié-
rement la gamme spectrale du rayonnement thermique (un exemple de spectre haute
résolution est donné a la Fig. 2.18). Pour des pressions plus faibles, il est courant de
descendre & une résolution inférieure & 10~°cm ™. Une telle production de spectres et
I'étude radiative qui s’y appuie sont connues sous le nom d’approche raie par raie (ou
LBL, pour line-by-line) et fait office de solution de référence. Pour alléger ce cotiteux
processus, il est alors courant de recourir & plusieurs hypothéses simplificatrices :

e Sélectionner uniquement les raies les plus intenses dans les gammes de tempéra-
tures d’étude. Les seuils minimum d’intensité pour une température donnée sont
généralement de ordre de 3.1072"cm/molecule voire de 3.10*c¢m /molecule
|[Rothman et al., 2013].

e La seconde méthode consiste & considérer que les raies n’apportent une contri-
bution au coefficient d’absorption que pour des nombres d’onde proches de
celui du centre de raie. Ainsi, les ailes de raie au-dela d’une certaine distance
(généralement 25cm ™) sont tronquées : P jn—no|>0 = Ocm~!. Une telle approche
peut alléger considérablement les temps de calcul puisque pour un nombre
d’onde n d’intérét, seules les raies centrées dans U'intervalle [n — 25,7 + 25] sont
prises en compte. Cette approche, connue sous le nom de troncature de raie,
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FIGURE 2.18 — Spectres d’absorption définis a haute résolution pour différents intervalles spectraux
(a gauche les échelles sont logarithmiques et a droite linéaires). Le mélange gazeux considéré est
composé de 50% de CO, et de 50% de N3 a une température de 1500K et une pression de latm.
Les calculs ont été réalisés a partir de la base de données CDSD-4000 (628 064 550 transitions)
avec une troncature d’aile de raie a 25¢cm ™! et en considérant des profils de raie Lorentzien.
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est en partie justifiée par le fait que les profils standards de raie (de Voigt et
Lorentz) sont peu représentatifs au niveau des ailes de raie lointaines.

e Enfin, en plus d’étre cotiteux a produire, ces spectres présentent le désavantage
d’étre complexes a gérer lors de calculs radiatifs du fait de I'importante
variation spectrale du coefficient d’absorption. Aussi, depuis prés d’un siécle,
un grand nombre de modeéles dégradés de spectres (analytiques, statistiques...)
ont été développés pour répondre a ce défaut. Ne faisant pas I'objet des travaux
présentés dans ce manuscrit, ces modéles approchés ne seront pas détaillés.
De plus amples informations concernant ces modéles peuvent étre trou-
vés dans [Goody et Yung, 1996, Taine et Soufiani, 1999, Siegel et al., 2011,
Modest, 2013, André et al., 2014].

Différents codes de calculs sont disponibles pour la production de tels spectres
d’absorption, parmi lesquels on peut citer deux codes exécutables directement
via une interface web "Information-calculating system Spectroscopy of Atmosphe-
ric Gases" [Semiletova, 2005] (http://spectra.iao.ru/) et "Hitran on the Web"
[Rothman et al., 2013] (http://hitran.iaoc.ru/) ou encore le code Kspectrum
|[Eymet, 2011b] (http://meso-star.com/) développé par V. Eymet qui présente
I’'avantage de pouvoir maitriser les erreurs d’interpolation spectrale grace a un
maillage & pas adaptatif.

Résumé du chapitre

Ce chapitre a eu pour but de rappeler des éléments essentiels de la physique du
transfert radiatif en milieu gazeux qui vont étre utilisés dans la suite du manuscrit.
La luminance, grandeur de base du rayonnement a été présentée et placée dans
sa description mésoscopique, permettant d’approcher le transfert radiatif dans des
considérations statistiques propres a la physique du transport corpusculaire. Les
différentes interactions entre rayonnement et gaz ont également été présentées et
I’équation du transfert radiatif, cas particulier des équations de Boltzmann, a été
établie sous ses formulations locale (ou différentielle) et intégrale. Enfin, une partie
a été consacrée aux mécanismes d’absorption et d’émission de rayonnement par la
matiére, introduisant ainsi les notions de transitions moléculaires, de coefficients
d’absorption et de spectres d’absorption. Un accent particulier a été mis sur les
différentes dépendances du coefficient d’absorption (a la pression, température,
composition chimique et au nombre d’onde) qui occuperont une place importante
dans les chapitres qui vont suivre.
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Introduction

Pour des configurations et problémes académiques particuliers, il est possible
de résoudre ’équation du transfert radiatif de fagcon analytique. De telles résolu-
tions sont le plus souvent associées a des hypothéses simplificatrices concernant
le modéle physique (milieu homogéne, milieu optiquement mince ou épais, milieu
froid, non-prise en compte des phénomeénes de diffusion, etc.). Toutefois, dés lors
que le modeéle physique se complexifie (nombre de phénoménes a prendre en compte,
géométrie 3D, dimension spectrale), il n’est généralement plus possible de résoudre
analytiquement 1’équation du transfert radiatif. Il est donc nécessaire de faire appel a
des approches alternatives afin de mener & bien ce calcul. De nombreuses méthodes,
d’une grande diversité (approches différentielles ou intégrales, déterministes ou
stochastiques), ont été développées pour y parvenir, chacune d’entre-elles présentant
ses propres avantages et inconvénients. Parmi les approches les plus usitées figurent
les méthodes aux harmoniques sphériques (ou approximation Py), les méthodes aux
ordonnées discretes, les méthodes zonales ou encore les méthodes de lancer de rayons.
Des inventaires relativement complets de ces méthodes, ainsi que quelques études
comparatives sont présentés dans [Siegel et al., 2011, Modest, 2013|.

Dans le cadre de cette thése, le choix s’est porté sur des méthodes stochastiques
de calcul intégral, dites méthodes de Monte-Carlo. Ce choix est motivé par plusieurs
raisons. La premiére d’entre-elles est que ces méthodes tirent directement profit
de la représentation statistique de la physique du rayonnement. Elles consistent a
reproduire numériquement les modéles du transport de photons. Des allers-retours,
souvent trés fructueux en termes d’images et d’analyse, peuvent ainsi étre faits entre
les images physiques associées au transfert et les outils numériques. Les méthodes de
Monte-Carlo, trés appropriées a I’étude du rayonnement, sont également considérées
a I’heure actuelle comme solution de référence. En effet, s’appuyant uniquement sur
la formulation intégrale du transfert radiatif, elles n’induisent pas de biais lors de
I’estimation d’une observable et permettent en outre d’évaluer rigoureusement et
de réduire autant que nécessaire l'incertitude statistique relative a ce calcul. Les
résultats obtenus sont ainsi toujours fournis avec un intervalle de confiance. Enfin, ces
méthodes sont particuliérement adaptées a la gestion de la complexité (géométries
complexes, fortes variations de propriétés, etc.) et offrent certains avantages en
termes d’analyse (calcul de sensibilités paramétriques) ou méme simplement de
technique (parallélisation des calculs aisée).

Ce chapitre d’introduction aux méthodes de Monte-Carlo, appliquées au transfert
radiatif, a pour but de poser I’ensemble des bases théoriques et techniques nécessaires
a une lecture aisée de la suite du manuscrit. Un accent particulier est mis sur les
liens directs existant entre les modéles statistiques du transport de photons et les
outils numériques que constituent les méthodes de Monte-Carlo. En effet, au-dela de
la valeur statistique de la luminance (une distribution sur l’espace des phases), les
représentations que l'on se fait des interactions entre la matiére et le rayonnement
sont toutes probabilisées :
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e la loi de Beer-Lambert n’est qu’une expression de la probabilité qu’ont des
photons de parcourir une distance donnée avant d’étre absorbés ou diffusés

e les albédos de diffusion simple ou d’absorption correspondent aux probabilités
qu’un photon ayant collisionné en un point x soit respectivement diffusé ou
absorbé

e la réflectivité et I’absorptivité d’une paroi représentent les probabilités quun
photon soit réfléchi ou absorbé par la paroi

e les fonctions de phases et distributions angulaires de réflexion correspondent
aux probabilités qu’'un photon initialement dans une direction u diffuse ou soit
réfléchi dans une direction u’

e le profil de raie, lui-méme, ne constitue que la probabilité d’émission ou d’ab-
sorption relative au nombre d’onde d’un photon pour une transition énergétique
donnée.

La résolution de I’équation du transfert radiatif sous sa forme intégrale consistera
essentiellement & moyenner ou a sommer les grandeurs relatives a ces différents événe-
ments pour estimer numériquement une observable d’intérét. Puisque stochastiques,
les méthodes de Monte-Carlo seront parfaitement adaptées a de telles considérations,
bénéficiant directement de la dimension statistique de la modélisation du transport
de photons.

Les deux premiéres sections de ce chapitre, essentiellement théoriques, comporte-
ront de brefs rappels statistiques et introduiront les méthodes de Monte-Carlo de
facon générale.

Plutét que de poursuivre cette présentation en toute théorie, un cas d’étude
radiatif sera proposé et servira d’illustration pour introduire et appliquer les concepts
liés a I’étude et au calcul stochastique de grandeurs radiatives en milieu participant.
Ce cas d’étude, simple au début sera progressivement complexifié de fagon a introduire
les différentes approches, techniques et travaux de reformulation intégrale couramment
utilisés lors de I’étude du rayonnement thermique.

Nous partirons ainsi de I’étude de la luminance dans un milieu monodimensionnel
infini non diffusant (Sec. 3.3). Une paroi noire sera ensuite ajoutée dans le but de
présenter comment ce type de frontiére peut étre traité de fagon statistique. Ces
deux premiéres configurations permettront d’illustrer les concepts de réciprocité des
chemins, de méthodes de Monte-Carlo analogues, et de réduction de variance.

Dans la Sec. 3.4, en plus d’émettre et d’absorber, le milieu sera considéré comme
diffusant, d’abord infini puis clos par des parois réfléchissantes. La gestion de géomé-
tries tridimensionnelles ainsi que de la diffusion multiple et de la réflexion pourront
étre alors abordées. Ce sera également 1’occasion de présenter une technique d’opti-
misation connue sous le nom d’energy-partitioning ainsi que d’aborder succinctement
le calcul de sensibilités paramétriques.

Enfin, dans la Sec. 3.5, nous exprimerons et étudierons le bilan radiatif d’un
petit volume de milieu participant, pour un cas trés général (absorption, diffusion,
émission du milieu et réflexion aux parois) dans le but de présenter la maniére
avec laquelle peuvent étre traitées les différentes intégrales angulaire, volumique et
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spectrale de la luminance.

Toutefois, nous ne nous concentrerons ici ni sur les hétérogénéités, ni sur la
dépendance spectrale des propriétés radiatives. Elles feront ’objet des deux prochains
chapitres.

3.1 Rappels statistiques

3.1.1 Variables aléatoires et probabilités

Avant d’aborder, a proprement parler, les méthodes de Monte-Carlo, il convient de
rappeler succinctement les termes et notions statistiques sur lesquels elles s’appuient.

Variables aléatoires Une variable est dite aléatoire ou stochastique s’il n’est pas
possible de déterminer a I’avance sa valeur. Celle-ci ne peut-étre déterminée que par
I’expérience. Les variables aléatoires sont définies sur ’ensemble des occurrences
(résultats possibles de 'expérience aléatoire) et peuvent étre discrétes (ez : la valeur
obtenue suite & un lancer de dé 1, 2, 3, 4, 5 ou 6) ou continues (ex : la durée exacte de
désintégration d’un noyau radioactif). Une fonction d’une ou de plusieurs variables
aléatoires est elle-méme une variable aléatoire.

Tout au long de ce manuscrit, le formalisme suivant sera adopté : les variables
aléatoires seront notées en majuscules et leurs variables muettes associées en mi-
nuscules. Les échantillons de ces variables aléatoires - c’est-a-dire les valeurs que
prennent ces variables aléatoires lors d'une expérience - seront également notés en
minuscules et indicés si plusieurs expériences sont réalisées.

Probabilités, fonctions densité de probabilité Outre par 'expérience, il
est possible de définir une variable aléatoire par une loi de probabilité et son
domaine d’application. Cette loi est un modéle caractérisant de fagon probabiliste le
comportement de la variable aléatoire. Ces modéles probabilistes se doivent d’étre
positifs et normalisés sur leur ensemble de définition. En d’autres termes, la somme
des probabilités associées a ’ensemble des éventualités doit étre égale a un.

Lorsque la variable aléatoire Y est discréte et définie sur un ensemble de NV,
éléments, cette loi de probabilité associe a chaque élément m une probabilité Py (yy,).
La normalisation de la somme de ces probabilités peut étre formalisée comme :

Npop

> Prlym) =1 (3.1)

Lorsque la variable aléatoire X définie sur [y, Tmax] €st continue, on qualifie
cette représentation, notée px(x), de fonction densité de probabilité (ou pdf pour
"probability density function"). La quantité px(z)dz correspond a la probabilité
qu’un échantillon z; de la variable aléatoire X soit compris dans l'intervalle dx autour
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de x. La normalisation de cette fonction densité de probabilité équivaut & écrire :

/xmax px(z)dr =1 (3.2)

min

Les variables aléatoires et leur description statistique par les fonctions densité
de probabilité constituent deux éléments essentiels & la description et a ’analyse
statistique de la physique du transport, certaines d’entre-elles ont d’ailleurs été
présentées dans le Chap. 2.

Fonctions de répartition Enfin, le dernier élément descriptif des variables aléa-
toires concerne les fonctions de répartition (ou cdf pour "cumulative distribution
function"). Pour une variable aléatoire continue X décrite par une fonction densité de
probabilité py (x) définie sur [Xmin, Tmax), la fonction de répartition rx () est définie
comme : .

rx(x) :/ px(2')da! (3.3)

Zmin

Cette fonction, qui est nulle pour & = x,,;, et égale & 1 pour x = ., est monotone
et croissante. Elle correspond & la probabilité qu’une réalisation aléatoire de la
variable aléatoire X soit comprise entre x,,;, et x.

De la méme maniére, pour une variable aléatoire discréte Y de probabilités
Py (Ym), la fonction de répartition Ry (y,,) est définie par :

m

Ry (ym) = Y Py (yl) (34)

Des exemples de probabilités discrétes, de densités de probabilité et de fonctions
de répartition sont données a la Fig. 3.1.
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FIGURE 3.1 — Exemples de probabilités discrétes, de densités de probabilité (pdf) et de fonctions
de répartition (cdf) couramment rencontrées en transfert radiatif. La figure (A) illustre les albédos
d’absorption et de diffusion simple assimilables aux probabilités qu’a un photon d’étre soit absorbé,
soit diffusé. La figure (B) présente la densité de probabilité des libres parcours dans un milieu
participant homogene. La figure (C) décrit un profil de raie Lorentzien correspondant a la densité de
probabilité associée aux nombres d’onde d’émission et d’absorption de photons pour une transition
moléculaire donnée.
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3.1.2 [Espérance, variance, écart-type et moments d’ordre su-
périeur & deux

Espérance - moyenne de population IL’espérance d'une variable aléatoire cor-
respond a la moyenne pondérée par sa densité de probabilité (on parle aussi de
moyenne de population). Elle représente la valeur moyenne que ’on pourrait attendre
d’une expérience aléatoire.

Pour une variable aléatoire discréte Y, son espérance est donnée par :

NPOZ’

E [Y] - Z PY(ym)ym (3'5)

oll Npp est la taille de la population, c’est-a-dire le nombre de valeurs discrétes que
peut prendre Y. De la méme maniére, 'espérance d’une variable aléatoire continue
X est définie par :

E[X] = / px (2)ade (3.6)

Les fonctions de variables aléatoires étant elles-mémes des variables aléatoires, il
est également possible d’exprimer leur espérance. Pour une fonction f dépendant
d’une seule variable aléatoire X :

b
E[f(X)] = / px(2)f(x)de (3.7)

Si la fonction f dépend d’un nombre n de variables aléatoires, son espérance est
donnée par :

bl b'n
E[f(X1,...,Xn)] :/ le(asl)dxl.../ px,, (xn)dx, f(1, ..., T,) (3.8)
al an,
Il est également possible d’exprimer 'Eq. 3.8 comme
B(f0) = [ px(x)fGix 39)
Dx

en posant X = [X1, X, ..., X,)] et Dx = [a1, b1] X ... X [ay, by]. px(x) est alors appelée
fonction densité de probabilité jointe. Si les n variables aléatoires X; sont indépen-
dantes elle est définie comme le produit de leur densité de probabilité respectives.
Dans le cas contraire, la fonction densité de probabilité jointe est donnée par :

px(X) =DPx; (:El) X Pxo|ay (‘TQ) X ... X an|(931,x2,-~,fEn—1)(xn) (310)

Ol Px;le;_, () est une densité de probabilité conditionnelle qui correspond & la
densité de probabilité de la variable aléatoire X; sachant la valeur z;_;.
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— NOTE : Caractére linéaire et projectif de ’espérance
Considérons la grandeur intégrale A définie par :

a= [y (/ § puag(onrdn ) dey (311

ai az

ot f(Z) est une fonction linéaire et g(X7, X5) une fonction quelconque. Du
fait de la linéarité de f il est possible de reformuler ’expression de A en :

b pbo
A= [ [T f (e dn @12
Ainsi, il est possible d’écrire a partir des Eq. 3.11 et 3.12 :

E|f(Elg(X0, Xo)] ) | =B |£(9(X1, X2))| (3.13)

Il a donc été possible d’exprimer la grandeur intégrale A comme une espérance
unique. Cette propriété est assurée par le caractére projectif et linéaire de
I'opérateur espérance.

Toutefois, si la fonction f(Z) n’était pas linéaire, le passage de I'Eq. 3.11
a I’Eq. 3.12 ne serait plus possible. On ne pourrait donc plus, dans ce cas,
exprimer la grandeur A comme une simple espérance, seule I’expression

A=E|f(Elg(x1 X2) )| (3.14)

serait correcte. Comme nous allons le voir par la suite, ce caractére linéaire
et projectif de ’espérance engendre de sérieuses contraintes lorsqu’il s’agit de
développer des algorithmes de Monte-Carlo pour estimer des observables dont
I’expression est non-linéaire. Les propositions faites aux Chap. 4 et Chap. 5
permettront de passer outre cette difficulté pour le cas particulier d’une fonction
f exponentielle.

Variance et écart-type de population Alors que 'espérance d’une variable
aléatoire correspond a son moment d’ordre 1, une seconde mesure permet de caracté-
riser sa distribution : la variance de population , qui correspond au moment centré
d’ordre 2. La variance de population caractérise la dispersion de la distribution de la
variable considérée par rapport a son espérance. Elle est respectivement définie pour
une variable aléatoire continue X et discréte Y comme

V(X):/ px(7)[r — E[X])*dx
—E[(X -E[x])’]
=E [X?] - (E[X])*

(3.15)
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et

V(Y) = Z PY(ym) [ym —E [YH2

—E [(Y—E[Y])Z] (3.16)

=E[Y?] - (B[]

Il sera également fréquent de rencontrer la notion d’écart-type de population,
défini comme la racine carrée de la variance et noté o :

o(X) = /V(X) (3.17)

Moments d’ordre supérieur a 3 Donnés ici a titre essentiellement indicatif,
deux autres moments d’ordres supérieurs a 3, qualifiés parameétres de forme, sont
souvent employés pour acquérir une information supplémentaire sur la distribution
statistique des variables aléatoires.

Le premier d’entre eux, nommé coefficient de dissymétrie, correspond au moment

centré réduit d’ordre trois de la variable aléatoire. Il caractérise I'asymétrie de la
distribution d’intérét et s’exprime comme :

X -E[X]\*
et | 3.18
(o) 19
Le second paramétre de forme est appelé kurtosis. Il correspond au moment
centré réduit d’ordre quatre et caractérise ’aplatissement de la distribution. Il est

donné par
(5]

3.2 Introduction aux méthodes de Monte-Carlo

MgZE

M4:E

Développées a la fin des années 1940 par N. Metropolis, S. Ulam et J. Von Neu-
mann |[Metropolis et Ulam, 1949], les méthodes de Monte-Carlo permettent d’évaluer
de facon stochastique des grandeurs intégrales. Originellement pensées pour des ap-
plications nucléaires [Metropolis, 1987], elles se sont peu a peu étendues a un grand
nombre d’autres champs disciplinaires, rencontrant une résonance et un engouement
tout particulier dans les domaines relatifs a la physique du transport. Parmi les
nombreux ouvrages consacrés a la description de ces méthodes, nous citerons ici les
deux excellentes monographies [Hammersley et al., 1965] et [Dunn et Shultis, 2012]
qui ont servi de point de départ et ont joué un role important quant aux travaux
présentés dans ce manuscrit.
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3.2.1 Les méthodes de Monte-Carlo : un outil stochastique
de calcul intégral

Le principe des méthodes de Monte-Carlo repose sur la loi des grands nombres.

Celle-ci énonce que la moyenne arithmétique d’un nombre important N,,. d’échan-

tillons indépendants z; d'une variable aléatoire X, converge presque stirement vers
I’espérance de cette variable aléatoire avec un nombre de réalisations NV,,. croissant :

lim ( ! Nix) _E[X] (3.20)

Nme—o0 me <
=1

Pour un nombre N,,. d’échantillons suffisamment grand, la moyenne arithmétique

— 1
X == X_:x (3.21)

constitue un estimateur non biaisé de I'espérance de X et est qualifiée de moyenne
d’échantillon. Plus le nombre de réalisations N,,. sera important, plus cet estimateur
sera, précis.

Or, puisqu’il est toujours possible d’exprimer une formulation intégrale ou une
somme comme une espérance (cf. Eq. 3.5 et Eq. 3.6), les méthodes de Monte-Carlo
permettent d’estimer par un processus stochastique toute grandeur pouvant étre
formulée sous un aspect intégral ou sommatoire. Elles consistent alors simplement &
réaliser numériquement un grand nombre N,,. d’échantillons (ou poids de Monte-
Carlo) indépendants z; de la variable aléatoire X pour estimer E [X]. La procédure
d’échantillonnage sera décrite plus en détail a la Sec. 3.2.3.1.

Nous distinguerons toutefois deux types de grandeurs intégrales pouvant étre
estimées par les méthodes de Monte-Carlo :

e les observables résultant d’un processus statistique, dont leur description est
probabilisée (valeur moyenne obtenue lors d’un lancer de dé, distance moyenne
a laquelle un lanceur de poids jette son projectile, etc.).

e les observables qui ne sont pas associées a des modéles statistiques, que nous
qualifierons ici de déterministes (intégration temporelle, surfacique, volumique,
etc.).

Observables statistiques Dans le premier cas, les observables constituent, de
par les représentations que 'on en fait, de simples espérances. Elles s’exprimeront
généralement sous la forme :

A :/D px(x) f(x)dx (3.22)

oll X est un vecteur aléatoire de densité de probabilité px(x) défini sur Dx et f
une fonction quelconque. En transfert radiatif, les grandeurs mésoscopiques (en
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particulier la luminance) constitueront des observables de ce type. Les algorithmes de
Monte-Carlo correspondants consisteront donc & échantillonner un grand nombre de
fois la variable f(X) et & moyenner arithmétiquement ces valeurs pour obtenir une
estimation non biaisée de A. Ils peuvent donc étre pergus comme une reproduction
numérique et stochastique de l'expérience aléatoire d’intérét. Il sera directement
possible, dans ce cas précis, de tirer une analogie entre le modele statistique et 1'outil
numérique. Deux exemples élémentaires (pour une variable discréte et une variable
continue) sont donnés dans I’encadré ci-dessous.

— EXEMPLE : Méthodes de Monte-Carlo pour une observable statistique

Lancer de dé. Attachons-nous a estimer par
un algorithme de Monte-Carlo 'espérance de
la valeur obtenue Y lors d’un lancer de dé. Le
modeéle posé admet que la probabilité que le dé
tombe sur n’importe laquelle de ses 6 faces m
est identique : Py (y,,,) = 1/6 (hypothése d’équi-
probabilité, voir figure de droite). L’espérance
de la valeur obtenue Y est donnée par :

T T rrrw—
Probabilit¢ |
Fonction de répartition mmmmmm

Probabilité

6
1
E[Y]= Y Pr(ym)ym = g(1+2+3+4+5+6) =35 (3.23)
m=1

L’algorithme de Monte-Carlo permettant d’estimer cette espérance consiste
alors a réaliser un grand nombre d’échantillons indépendants y; de la variable Y.
En d’autres termes, cela consiste a lancer de facon numérique et indépendante
un grand nombre de fois N,,. le dé et de stocker les valeurs obtenues : les
échantillons de Y ou poids de Monte-Carlo. L’estimation non biaisée Y de
E[Y] et alors donnée par :

Y = Nl Zyi (3.24)

Dans ce cas précis, le développement d’un algorithme de Monte-Carlo n’est
pas pertinent puisque E[Y] est analytiquement calculable, mais dés que
I’observable d’intérét sera plus complexe les méthodes de Monte-Carlo
s’avéreront particuliérement adaptées.
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Lanceur de poids. Pour illustrer le cas d'une

variable aléatoire continue, considérons désor- =
mais 'espérance de la distance X a laquelle un Wl /e
lanceur de poids jette son projectile. Supposons ' /
également que ce sportif soit trés constant et N /
qu’'un modéle probabiliste de X ait été fait : ' /
la variable X est décrite selon une densité de | .
probabilité px(x) (voir figure de droite). L’es- 0
pérance de X s’exprime alors comme :

E[X] = /0+Oopx($)xdx (3.25)

0.6 |

Probabilité

Dans ce cas aussi, 'algorithme de Monte-Carlo consistera a échantillonner
un grand nombre de fois la variable X selon la densité de probabilité px ().
L’estimation de la distance moyenne a laquelle est jetée le poids sera alors

donnée par :
> (3.26)

Pour aborder des problémes de ce type, deux approches sont alors possibles :
I'une basée sur le formalisme intégral et statistique de la grandeur d’intérét ; 'autre
sur une analogie avec l’expérience aléatoire et les images véhiculées par le modeéle
statistique sous-jacent. Ces deux approches, présentées plus en détail a la Sec. 3.3.2,
sont respectivement qualifiées d’approches intégrales et analogues.

Observables intégrales déterministes Les méthodes de Monte-Carlo ne se li-
mitent toutefois pas a estimer des observables ayant une valeur statistique. Elles
peuvent étre également utilisées pour estimer des intégrales ou des sommes n’ayant
aucun modele statistique sous-jacent (le calcul d’une aire par exemple, voir encadré
ci-dessous). Dans le domaine du transfert radiatif, on rencontrera ce type d’obser-
vables dés lors que l'on s’attachera a des grandeurs macroscopiques ou intégrées
spectralement. Pour illustrer ce cas, considérons 'estimation de la grandeur A définie
comme : -

A :/ f(b)db (3.27)

bmin

ol b est une variable & laquelle aucune image statistique n’est associée. Les méthodes
de Monte-Carlo ne pouvant estimer que des espérances, il est nécessaire de reformuler
I’expression de A pour se ramener a un formalisme du type de celui de I'Eq. 3.6.
Pour ce faire, une fonction densité de probabilité pp(b) (positive et normalisée sur
[binin, bmax]) doit étre introduite de fagon totalement arbitraire. L’Eq. 3.27 est alors

reformulée en :
Y fo) . | f(B)
A= [ e =2 o] (329

On vient ainsi de rendre statistique un probléme en apparence déterministe. L’al-
gorithme de Monte-Carlo correspondant consiste alors a réaliser un grand nombre
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Ny d’échantillons b; de la variable aléatoire B selon pg(b) et a calculer les poids de
Monte-Carlo f(b;)/pg(b;) correspondants. Une estimation de la grandeur A est alors
donnée par :

(3.29)

— EXEMPLE : Méthodes de Monte-Carlo pour une observable déterministe

Calcul de I’aire d’un lac. Supposons que v
I'on souhaite estimer la surface S d’un lac
(schématisée par la figure de droite), situé dans

un champ rectangulaire de cotés [0, Zyax] €t

[0, Ymax)- Cette surface peut étre exprimée par
I’expression intégrale

Tmax Ymax
S= / H({r,y} € S)dyds .
0 0 :
(3.30) o

ouH ({z,y} € S) est une fonction de Heaviside valant 1 si le jeu de coordonnées
{z,y} appartient au lac et valant 0 dans le cas contraire. Pour traiter ce
probléme par Monte-Carlo, il convient d’introduire des densités de probabilité
px () et py(y) arbitraires, de sorte & pouvoir exprimer cette surface comme
I’espérance d’une variable aléatoire :

Y e . Ymas H{z,y} €S) . HHX, Y} eS)
8 ‘/o Px( )/o W)= ) E[ pX<X>py<Y)(3]31>

L’algorithme de Monte-Carlo correspondant consiste donc pour un grand
nombre de fois V,,. a échantillonner de facon indépendante une abscisse z; et
une ordonnée y;. Si le point [x;, y;] appartient au lac, le poids de Monte-Carlo
est alors défini comme w; = 1/(px(x)py(y)), dans le cas contraire w; = 0.
L’estimation de la surface du lac est alors donnée par la moyenne arithmétique
des N,,. poids w;. Le probléme en apparence déterministe a ainsi été traité de
fagon statistique.

X

I1 est possible de se créer des images statistiques associées a cette reformulation.
En supposant que I’échantillonnage des positions se fasse de fagon uniforme
sur la surface du champ (lac compris), le rapport entre le nombre de positions
échantillonnées dans le lac et le nombre total de positions générées constitue
bien une estimation du ratio entre la surface du lac et celle du champ.

Pour une intégrale simple, I'intérét des méthodes de Monte-Carlo reste assez
limité. Des méthodes numériques de quadrature existent et sont souvent tres précises
et rapides pour évaluer une telle expression. Cependant, dés lors que les problémes
se complexifieront (intégrales multiples, domaines de définition ou géométries
complexes), les méthodes de Monte-Carlo se révéleront particuliérement adaptées.
Une fois l'observable d’intérét exprimée comme une simple espérance, elle pourra
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étre estimée par un unique algorithme de Monte-Carlo, quel que soit le degré de
complexité de sa formulation intégrale. A I'inverse des méthodes numériques, la
difficulté de résolution et les temps de calcul associés seront peu dépendants du
nombre de dimensions de ’espace d’intégration. Seule la variable aléatoire ayant la
plus forte variance conditionnera le niveau de convergence de ’algorithme.

Quel que soit le type d’observable que 1’on souhaite estimer par des méthodes de
Monte-Carlo, on mesure alors 'importance d’exprimer le probléme sous la forme d’une
espérance de variable aléatoire. Tout au long de ce manuscrit, nous nous efforcerons
donc de formaliser I'observable d’intérét a partir de sa formulation intégrale sous
une expression statistique de la forme E [IW(X)], ot W(X) est qualifiée de variable
aléatoire poids. Ce ne sera que dans un second temps, que ’algorithme de Monte-Carlo
correspondant sera présenté. Les formulations intégrales et statistiques occupent
dans notre pratique des méthodes de Monte Carlo une place essentielle. Le poids
de Monte Carlo W(X), dont I’espérance est ’observable que I'on souhaite estimer,
correspond & la variable aléatoire échantillonnée par I'algorithme (chaque échantillon
w;(x;) correspond a la valeur obtenue a la fin d’une réalisation indépendante). De
plus, uniquement & partir des formulations intégrales, il est directement possible de
concevoir 'algorithme de Monte Carlo correspondant. Chaque terme fDx px(x)dx

ou S er Py (y,.) présents dans Pexpression intégrale se traduisent respectivement
de facon numérique par une procédure d’échantillonnage de la variable aléatoire
continue X selon la densité de probabilité px(x) ou de la variable discréte Y selon
les probabilités Py (y,,) et chaque terme récursif se traduit algorithmiquement par
une boucle. Nous verrons par la suite que ’essentiel du travail d’amélioration de ces
méthodes stochastiques réside dans la reformulation de ces expressions intégrales
et statistiques, modifiant en conséquence les modeéles statistiques et les structures
algorithmiques associés.

3.2.2 Estimation de ’erreur statistique

En plus de pouvoir estimer une grandeur intégrale, les méthodes de Monte-Carlo
permettent d’évaluer l'incertitude de cette estimation, les plagant ainsi dans la
famille des solutions de référence. Cette propriété repose sur le théoreme central
limite qui énonce que toute somme de variables aléatoires identiquement distribuées
et indépendantes tend vers une variable aléatoire distribuée selon une gaussienne. Ce
théoréeme implique donc que la distribution de ’estimation d’une grandeur obtenue
par un algorithme de Monte-Carlo, qui est elle-méme une variable aléatoire, tend
vers une distribution gaussienne lorsque le nombre de réalisations indépendantes
N, augmente. Il est alors possible d’interpréter son écart-type comme une erreur
statistique.

Si l'on souhaite évaluer une grandeur A = [E [ X] par un algorithme de Monte-Carlo,
I’estimation de A est donnée par la moyenne d’un nombre important d’échantillons

de X :
A:

> w (3.32)
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et ’estimation non biaisée de 1'écart-type de A est donnée par :

s(A) = mi (x - A>2 (3.33)

Des démonstrations de cette expression sont données dans [Hammersley et al., 1965,
Dunn et Shultis, 2012]. Pour des considérations purement numériques, une écriture
alternative de cet écart-type est généralement préférée :

N . Nme o Nme .2 . . . ge ,
ou Sy = Y . w; et Sy = Y . “x;. Il sera ainsi possible d’incrémenter les va-
leurs de S} et Sy, aprés chacune des N,,. réalisations. Cela permet de calculer
~ ’ ~
s(A) a laide d’une seule série d’échantillons sans la nécessité d’estimer A dans
un premier temps (comme le laisserait penser I'Eq. 3.33) ou méme de réaliser un
grand nombre d’estimations de A pour connaitre I’écart-type associé a ces estimations.

La grandeur s(A) porte le nom d’écart-type d’échantillon de l'estimation de
Monte-Carlo. Elle permet de définir, a partir de la loi normale, un intervalle de
confiance [A — fBs, A + fs] (ou § est une valeur positive) autour de l’estimation A,
dans lequel il y a une certaine probabilité que la grandeur d’intérét A soit incluse
(on parle d’indice de confiance). La Tab. 3.1 illustre pour plusieurs valeurs de 3! les
indices de confiance associés.

Intervalle de confiance ‘ Indice de confiance

[A—1s, A+ 1s] 68.27%
[A — 25, A + 24] 95.45%
[A — 35, A + 35] 99.73%
[A—5s, A+ 53] 99.99994%

TABLE 3.1 — Intervalles de confiance de la loi normale. Ce tableau doit étre lu de la fagon
suivante : il y a une probabilité de 68.27% que la grandeur d’intérét A soit comprise dans l'intervalle

[A—1s, A+ 1s].

3.2.3 Les méthodes de Monte-Carlo en pratique

Dans cette derniére sous-section, nous aborderons les aspects techniques inhérents
au développement de méthodes de Monte-Carlo. Les procédures d’échantillonnage,
les méthodes d’évaluation de la précision et de la qualité des résultats ainsi qu'un
inventaire succinct des techniques de réduction de variance seront ainsi abordés.

1. Par convention, les résultats obtenus par des méthodes de Monte-Carlo sont donnés avec un

intervalle de confiance [A — 1s, A+ 1s] et sont illustrés graphiquement par des barres d’erreurs.
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3.2.3.1 Echantillonnage

Il est aujourd’hui aisé de générer numériquement des nombres pseudo-aléatoires
de fagon uniforme ? [James, 1990, Dunn et Shultis, 2012]. Il est toutefois plus difficile
d’échantillonner de facon stochastique une variable aléatoire dont la densité de
probabilité n’est pas uniforme.

Dans la pratique, pour produire un échantillon z; d'une variable aléatoire continue
X définie sur [Zmin, max), on échantillonne de fagon uniforme un nombre réel r; entre
0 et 1 et on résout I’équation suivante :

T = : f(z)dx (3.35)

Zmin

Cela revient a inverser la fonction de répartition pour obtenir une valeur de z; a
partir de r; (une illustration graphique de cette procédure est donnée Fig. 3.2a.
Cette manipulation est possible grace au caractére monotone et croissant des
fonctions de répartition. Il est en effet possible de tirer une bijection entre deux
fonctions de répartition : la premiére, associée a une densité de probabilité uniforme
(échantillonnage de ;) et la seconde, associée a la fonction densité de probabilité
d’intérét (échantillonnage de x;).

Il est également fréquent de rencontrer, dans les formulations statistiques, des
variables aléatoires discrétes (par exemple pour distinguer une absorption d’une
diffusion). Lorsqu’une telle variable aléatoire, notée Y, n’admet que deux valeurs
possibles y, et y,, de probabilités respectives P, et P, validant P, + P, = 1, la
procédure d’échantillonnage est qualifiée de test de Bernoulli. Elle consiste a tirer de
facon aléatoire et uniforme un nombre r; entre 0 et 1. Deux cas sont alors possibles :

e soit 0 < r; < P,, alors I'échantillon de la variable Y généré est y, ;
e soit P, < r; <P, + P, = 1, alors I'échantillon de la variable Y généré est y;;

Dans le cas ou ces variables aléatoires discrétes admettent un nombre N,,, > 2 de
valeurs possibles notées y,, de probabilités P,,, leur procédure d’échantillonnage est
qualifiée de roulette russe. Le principe est identique au test de Bernoulli : un nombre
aléatoire r; est tiré aléatoirement de facon uniforme entre 0 et 1, y; ; est échantillonné
si r; < Py, ; autrement ’échantillon y,; généré doit valider I’équation :

g-1 g
Z Pri<ri < Z Pri (3-36)
m=1 m=1

Il est possible de considérer les tests de Bernoulli et roulettes russes comme une
simple extension de l'inversion des fonctions de répartition aux variables aléatoires
discretes. Leurs probabilités sont alors assimilées a une succession de Diracs centrés
aux valeurs discrétes y,, (voir Fig. 3.2b).

2. Tout au long de cette thése, nous utiliserons comme générateur pseudo-aléatoire ranlzd?2 inclus
dans la GNU Scientific Library (http://www.gnu.org/software/gsl/). Ce générateur de haute
qualité est une implémentation de 'algorithme RANLUX de Liischer [Liischer, 1994, James, 1994].
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FIGURE 3.2 — Procédure d’échantillonnage d’une variable aléatoire continue X (A) et discréte YV
(B). L’échantillonnage de x; et y; consiste & générer de fagon aléatoire et uniforme un nombre r; et
d’inverser la fonction de répartition de la variable aléatoire d’intérét.

3.2.3.2 Précision et qualité des résultats

Les méthodes de Monte-Carlo sont, par nature, des méthodes non biaisées. Aux
incertitudes de modele prés, dés que l'algorithme est une traduction stochastique
rigoureuse de 1’observable d’intérét, ces méthodes ne nécessitent pas d’approximation
et ne sont a l'origine d’aucune erreur ou biais numérique. Toutefois, puisque les
estimations reposent sur un processus aléatoire, elles sont elles-mémes des variables
aléatoires. Il convient alors de s’assurer de leur validité et de leur représentativité
statistique. Pour ce faire, plusieurs indicateurs et techniques existent pour évaluer
a quel point une estimation A est fidele et proche de la grandeur d’intérét A. Ces
mesures statistiques et leur analyse constituent une étape trés importante lors du
développement de méthodes de Monte-Carlo.

Erreur relative Le premier indicateur est I'erreur relative (ou écart-type relatif )

notée e(A). Elle est définie comme le rapport entre I'écart-type de 'estimation s(A)
et l'estimation elle-méme :

i _ s(4)

e(A) b (3.37)
Cette mesure, souvent exprimée en pourcentage, permet de quantifier la précision
statistique de lestimation A. Plus faible sera lerreur relative, plus précise sera
I'estimation de la grandeur d’intérét. Dans [X-5 Monte Carlo Team, 2008], les
auteurs considérent quun bon résultat est une estimation ayant une erreur relative
inférieure a 5%. De facon plus générale, si 'erreur relative est supérieure a 10%, il
est couramment entendu que ’on ne peut pas réellement accorder de confiance aux
résultats obtenus. Il est alors nécessaire d’augmenter le nombre de réalisations V.
indépendantes pour diminuer ’écart-type d’échantillon et ainsi passer en dessous de
ce seuil. L’écart-type d’échantillon s(fl) étant proportionnel a \/%, il est nécessaire
de réaliser 4 fois plus de réalisations pour diviser par deux ’erreur relative.

Une pratique courante permettant d’évaluer la qualité de 1’estimation consiste
a relancer I’algorithme de Monte-Carlo avec 100 fois plus d’estimations. L’erreur



3.2. Introduction aux méthodes de Monte-Carlo 63

relative doit étre 10 fois plus faible et les deux estimations obtenues pour N,,. et
100N, réalisations doivent correspondre (aux intervalles de confiance prés). Il est
également possible de tracer I’évolution de 'estimation et de l'erreur relative en
fonction du nombre de réalisations. L’estimation doit converger vers une valeur et
Ierreur relative doit étre proportionnelle a 'inverse d’une fonction racine carrée. Si
tel n’est pas le cas, cela signifie que le comportement statistique de I’algorithme n’est
pas correctement maitrisé et que des événements dits rares ont eu lieu.

Les événements rares sont des événements ayant une probabilité d’occurrence
trés faible mais une contribution a 'estimation par Monte-Carlo non négligeable. Ces
événements ont une réelle valeur statistique et doivent étre échantillonnés pour que
la simulation ne soit pas biaisée (un exemple élémentaire est fourni dans 1’encadré
ci-dessous). Cependant, il est souvent trés complexe de les identifier et de traiter les
problémes de convergence qu’ils engendrent, tout en conservant des temps de calcul
acceptables. De tels événements, généralement peu fréquents, ont été rencontrés lors
des travaux présentés dans ce manuscrit. Leur prise en compte sera détaillée dans les
chapitres suivants.

— EXEMPLE : Evénements rares

Pour illustrer les problémes de convergence qu’entrainent les événements rares,
prenons l’exemple d’une loterie pour laquelle, sur un million de tickets vendus,
seul un est gagnant avec une valeur d’'un million d’euros. Si I'on souhaite
estimer, par des méthodes de Monte-Carlo, 'espérance du gain (qui est de
10°/10°% = 1€), il est nécessaire d’échantillonner un grand nombre de fois la
variable aléatoire associée au gain d’un ticket. Tant qu’aucun ticket gagnant
n’est échantillonné, 'estimation de Monte-Carlo est de 0€ , avec une erreur
relative nulle. Mais si ’on échantillonne 1000 tickets de facon uniforme dont
un ticket gagnant, 'estimation est alors de 1000€ et I'erreur relative de 100%.
Dans les deux cas, les résultats obtenus ne sont pas satisfaisants. Il est alors
nécessaire de réaliser un trés grand nombre de réalisations pour obtenir une
erreur relative acceptable (environ 109 réalisations pour passer en dessous de

5%).

Temps de calcul pour une erreur relative de 1% Le temps de calcul ou le
nombre de réalisations nécessaires pour obtenir une erreur relative de 1% constituent
des indicateurs permettant de caractériser la performance d’un algorithme particulier.
Ils sont souvent utilisés dans le but de comparer deux variantes algorithmiques
données. En supposant que la statistique du probléme est bien prise en compte par
I’algorithme, 'erreur relative est proportionnelle a l'inverse de la racine carrée du
nombre de réalisations. Le nombre de réalisations V. 1% nécessaire pour obtenir
une erreur relative de 1% peut alors étre estimé par I'expression

ch,l% = ch (e(A>> (338)

1%
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ou e(A) est lerreur relative estimée par un algorithme constitué de N, réalisations
indépendantes. De la méme fagon, le temps de calcul ¢4, nécessaire pour obtenir une
erreur relative de 1% est donné par :

to =t (i@) (3.39)

ou t est le temps de calcul d’une simulation ayant conduit a une erreur relative e(A).
Bien que le temps de calcul & 1% dépende du processeur avec lequel a été réalisée la
simulation, nous privilégierons cet indicateur par la suite, car il permet de donner un
ordre de grandeur des temps de calcul caractéristiques, obtenus grace aux méthodes
proposées.

Enfin, il est courant de rencontrer dans la littérature une autre grandeur appelée
facteur de mérite et notée FOM. Elle est définie comme :

—_

FOM = —— (3.40)
<e(f~1)> t

ou e(A) est lerreur relative et ¢ le temps de calcul nécessaire pour parvenir a cette
erreur relative. Excepté en début de simulation ot le bruit statistique est important, le
facteur de mérite doit étre & peu prés constant quel que soit le nombre de réalisations.
Cette grandeur est également fréquemment utilisée pour comparer deux variantes
algorithmiques : plus elle est importante, plus 'algorithme est performant.

Variance de la variance Enfin, pour des cas ot 'on suspecte de mauvais
comportements statistiques des variables aléatoires, il peut étre souhaitable de
calculer des moments d’ordre supérieur (kurtosis et facteur de dissymétrie, définis a
la Sec. 3.1.2). Ces grandeurs sont beaucoup plus sensibles® a des comportements
pathologiques que l'erreur relative ou autres moments d’ordre 2. Plus ils seront
proches de zéro, plus la distribution de ’estimation sera proche d'une gaussienne, et
donc plus les résultats et leur écart-type seront fiables.

Plutét que de calculer le kurtosis ou le facteur de dissymétrie, une troisiéme mesure
statistique est généralement préférée : la variance de la variance |Pederson, 1991,
X-5 Monte Carlo Team, 2008, Cho, 2008, Vegas-Sanchez-Ferrero et al., 2012]. Cette
grandeur relative permet d’obtenir une information sur le niveau de confiance que 1’on
peut placer dans la variance d’échantillon de I’estimation obtenue par Monte-Carlo.

3. Méme si les moments d’ordres supérieurs & 2 sont plus sensibles aux variations statistiques,
ils ne permettent évidemment pas d’identifier des événements rares qui n’auraient pas été échan-
tillonnées.
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Celle-ci peut étre estimée a partir de ’expression

2

4 _8 2_ 4 g4 L

VoV = e ;
1
()

ou Sy = S Nme g, Sy = STNme g2 Gy = ST Nme g3 ot Sy = S2Nme g4, La variance de
la variance est proportionnelle a I'inverse du nombre de réalisations. Puisque plus
sensible que la variance aux événements rares, il peut étre intéressant de tracer son
évolution en fonction du nombre de réalisations et de voir si elle est bien linéaire.
Dans [X-5 Monte Carlo Team, 2008|, les auteurs considérent par expérience, que
I'intervalle de confiance d’une estimation peut étre admis comme fiable si la variance

de la variance est inférieure a 10%.

(3.41)

3.2.3.3 Techniques de réduction de variance

Comme introduit précédemment, les méthodes de Monte-Carlo permettent
d’associer un intervalle de confiance a toute estimation. Cependant, si l'on sou-
haite réduire cet intervalle de confiance d’un facteur n, il est nécessaire de réa-
liser n? fois plus de réalisations indépendantes, ce qui peut s’avérer particu-
lierement lourd. Une autre facon pour réduire la variance associée a l’estima-
tion (et a fortiori le temps de calcul) consiste a repenser le probléme statis-
tique d’intérét. Plusieurs techniques existent pour réduire les écarts-types d’échan-
tillons sans avoir a recourir & un nombre plus important de réalisations indépen-
dantes. Des inventaires relativement complets de ces méthodes sont dressés dans
[Hammersley et al., 1965, De La Torre et al., 2014, Dunn et Shultis, 2012]. Tout au
long de ce manuscrit, nous utiliserons trois principales techniques dites de réduc-
tion de variance : 1'échantillonnage préférentiel, I’approche par variance nulle et la
reformulation intégrale.

Echantillonnage préférentiel Dans la section Sec. 3.2.1, il a été montré comment
une observable en apparence déterministe pouvait étre repensée de fagon statistique :
par l'introduction de densités de probabilité arbitraires. Le choix de ces probabilités,
bien que libre, n’est toutefois pas anodin, il jouera un réle sur la convergence
numérique de I'algorithme. Pour toute formulation intégrale (ou toute somme), il est
alors possible d’introduire de la méme fagon une densité de probabilité (ou un jeu de
probabilités discrétes) de fagon a modifier la statistique des phénomeénes d’intérét.
Prenons 'exemple d'une grandeur A définie comme :

A= / " px (@) (@)de = E[£(X)] = E[W(X) (3.42)

ZLmin

Il est toujours possible d’'insérer dans cette expression une nouvelle densité de
probabilité px(z) totalement arbitraire :

A= [ i) |2 )| r =2 [P 0| =B [W00] )

Zmin
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modifiant ainsi la variable aléatoire échantillonnée par I’algorithme de Monte-Carlo.
Celle-ci, a l'origine définie comme W (X) = f(X) et décrite par px(z), est désormais
donnée par W (X) = gi g; f(X) et est associée a la distribution arbitraire px(x). Un
choix adéquat de cette densité de probabilité peut ainsi conduire & une réduction de

la variance de ’estimation

A=

1 < px () '
N 2 (e e (3.44)

obtenue par le nouvel algorithme de Monte-Carlo.

Approche par variance nulle Plutot que de choisir de fagon totalement arbitraire
une nouvelle densité de probabilité, il est possible de recourir & une approche
dite par variance nulle, décrite dans [Assaraf et Caffarel, 1999, Hoogenboom, 2008,
De La Torre et al., 2014, Dauchet et al., 2013]. Cette approche consiste a exprimer
la densité probabilité qui assurerait que toutes les valeurs de la variable aléatoire
échantillonnée par 'algorithme de Monte-Carlo soient identiques et égales a la
grandeur d’intérét. Dans le cas présenté ci-dessus, la densité de probabilité idéale
serait donnée par :

@i @)
Pl = T T T @) fad

Zmin

(3.45)

Cette expression ne peut cependant pas étre utilisée en tant que telle puisqu’elle
dépend de l'observable d’intérét A que 'on souhaite estimer. Toutefois, s’il est
possible d’établir un modéle approché de % suffisamment représentatif de la
physique en présence, la nouvelle densité de probabilité devrait assurer une variance de
I’estimation relativement faible. L’échantillonnage préférentiel et ’approche variance

nulle seront illustrés pour des problématiques radiatives a la Sec. 3.3.4.

Reformulation intégrale Enfin, la reformulation intégrale consiste a repenser
totalement le probléme statistique pour parvenir a une réécriture intégrale de 1’ob-
servable d’intérét. Ainsi, le nouvel algorithme de Monte-Carlo estime ’espérance
d’une nouvelle variable aléatoire, qui est susceptible selon les choix de reformulation
d’avoir une variance plus faible. Chaque travail de reformulation doit étre pensé
pour l'observable et la configuration d’intérét (changement de variables, inversion
de l'ordre et des intégrales, modification des espaces d’intégration, etc.). Aussi, il
est difficile d’en faire ici un inventaire exhaustif, mais cette propriété offerte par
les méthodes de Monte-Carlo sera employée & plusieurs reprises dans la suite du
manuscrit.
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3.3 Etude de la luminance dans un milieu purement
absorbant

Le développement de méthodes de Monte-Carlo appliquées a des probléma-
tiques de transfert radiatif date des années 1960 avec les travaux de J.R. Howell
et de M. Perlmutter [Howell et Perlmutter, 1964a, Howell et Perlmutter, 1964b,
Perlmutter et Howell, 1964, Howell, 1969|. Bénéficiant des progrés méthodolo-
giques et informatiques, elles sont aujourd’hui bien maitrisées dans les appli-
cations ayant trait au rayonnement thermique dans les milieux participants
[Farmer et Howell, 1998, Howell, 1998, Modest, 2003b] ou elles occupent le role de
méthodes de référence et de validation.

Plutot que de poursuivre la présentation des méthodes de Monte-Carlo en toute
généralité, nous allons désormais les appliquer a des problématiques radiatives en
présence de milieu participant. Le cas d’étude, simple au début, sera progressivement
complexifié dans le but d’introduire les différentes techniques et approches qui seront
utilisées dans la suite de ce manuscrit.

Pour commencer, plagons-nous dans le cas particulier d’'un milieu semi-transparent
purement absorbant (les phénoménes de diffusion sont négligés). Puisque dans une
telle configuration, le rayonnement ne se propage qu’en ligne droite jusqu’a ce qu’il
soit absorbé, il est possible de ramener ce probléme & un cas monodimensionnel.
L’équation du transfert radiatif en régime stationnaire est alors donnée par :

dangi’, u) k() [LS (2, 1) — Ly(, u)] (3.46)

3.3.1 Luminance dans un milieu infini, purement absorbant

Considérons dans un premier temps ce milieu absorbant comme infini et étudions
la luminance en un point et dans une direction donnés (voir Fig. 3.3). La luminance
au point xg dans la direction uy correspond alors a l'intégrale spatiale sur le chemin
] =00, mo] d'un terme d’émission kg, (z)Ly?(z)dz atténué selon la loi de Beer-Lambert

entre x et o d'un facteur exp (— [ kqp(2')da’) -

L (o, 1) = / " o ko (@) LE9(2) oxp (— / " k;am(x’)dx’> (3.47)

—0o0

Comme introduit a la Sec. 2.2.4.2, il est possible de penser ’extinction exponen-
tielle comme une densité de probabilité et ainsi d’exprimer statistiquement L, (o, uo) :

L (0, 1y) = / " do px ()29 (2) (3.48)

—00

ot px () = kqy(z) exp (— [7° kay(2')da’) est la fonction densité de probabilité
caractéristique de la loi de Beer-Lambert (exprimée ici en position plutot qu’en libre
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F1GURE 3.3 — Milieu infini, monodimensionnel et purement absorbant. La luminance au point g
dans la direction ug est égale a I'intégrale spatiale sur le chemin | — 0o, 29] d’un terme d’émission
atténué selon la loi de Beer-Lambert entre les points d’émission = et d’intérét xg.

parcours).

La luminance L, (zo, uo) correspond alors a 'espérance de la variable aléatoire
W(X) = L(X):

Ly (w0, up) = E(W(X)) = E (L(X)) (3.49)

ou X est la variable aléatoire associée aux positions d’émission. Cette équation
illustre simplement le fait que la luminance en z( est définie comme la moyenne
pondérée par la loi de Beer-Lambert des luminances d’équilibre de tous les points se
situant sur la demi-droite | — 0o, x| définie par rapport a wg.

Reéaliser un algorithme de Monte-Carlo pour ce probléme revient donc a échan-
tillonner la variable aléatoire poids W(X) = L;?(X) et donc & réaliser un nombre
important N,,. de réalisations indépendantes (indicées i), chacune composée des
étapes suivantes :

— ALGORITHME

1. On échantillonne de facon indépendante une position d’émission x; selon
la fonction densité de probabilité px(z). Cela consiste a échantillonner
un nombre aléatoire r; entre 0 et 1 de fagon uniforme et a résoudre
I’équation r; = ff;o px (z)dz. Dans le cas ou le coefficient d’absorption
est homogene, la position de collision est donnée par z; = zo +1n(r;)/kq -

2. On calcule la luminance d’équilibre au point x; : w; = L§(z;) qui corres-
pond alors & un échantillon de la variable aléatoire poids : W (X).

Une estimation non biaisée fzn(l’g,UO) de la luminance par cet algorithme de
Monte-Carlo est alors donnée par la moyenne arithmétique des échantillons w; de la
variable aléatoire W (X) : L, (zo, ug) = 5— Zf\;”f w;. 11 est également possible de

calculer I'écart-type d’échantillon s(L,(zo, uo)) et d’autres indicateurs statistiques
comme ceux présentés a la Sec. 3.2.3.2.

Nous nous sommes volontairement placés ici dans un formalisme monodimension-
nel pour des motivations de didactique et de légereté d’écriture. Toutefois, dans la
perspective de traiter des problémes multidimensionnels, il est possible de généraliser
ce formalisme en faisant intervenir 'idée de libre parcours d’absorption, noté ici [.
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Les positions x et les directions u deviennent ainsi des grandeurs vectorielles. La
formulation intégrale de la luminance s’écrit alors :

l

+o0o
L, (x9,u9) = /0 dl ka (%0 — Iag) Ly (xo — lug) exp (—/0 ko n(x0 — l’uo)dl’>

(3.50)

On utilisera souvent une forme plus compacte en introduisant x; = xg — [ug :

+o0 l
Ly, (x0,u0) = / dl Kq (1) Lyt(x1) exp <—/ Koy (x0 — l'uo)dl’) (3.51)
0 0

qu’il est possible de reformuler statistiquement en

L (%o, 1) = /0 e L9 (x,) (3.52)

La luminance est donc désormais décrite comme 1’espérance de la luminance
d’équilibre au point d’émission X; = xy— Luy, fonction de la variable aléatoire £ dont

la fonction densité de probabilité est p, (1) = kg, (x1) exp <— fol k(X0 — l’uo)dl’> :

Ly (x0, 1) = E [L{¥(x — Lug)] = E [Li(Xy)] (3.53)

3.3.2 Approche analogue et réciprocité des chemins

L’algorithme de Monte-Carlo proposé précédemment a été établi a partir d’une
formulation statistique de l’équation intégrale du transfert radiatif. Cependant,
lorsqu’il s’agit de développer des méthodes de Monte-Carlo, il est courant de
rencontrer une autre pratique qui s’appuie presque exclusivement sur des images
tirées de la physique du transport. On parle de méthodes de Monte-Carlo analogues.
Cette approche consiste a réaliser numériquement et stochastiquement les expériences
physiques que subissent les corpuscules d’intérét a partir de leurs lois de probabilité,
supposées connues. Dans le cas du transfert radiatif, cela signifie que 1'on va "lancer"
un grand nombre N,,. de photons [Starwest, 2014b] ou de "paquets de photons"
[Modest, 2013] selon des lois d’émission et suivre leurs interactions avec le milieu et
les frontiéres.

Pour appliquer une telle approche au cas d’étude de la section précédente, il
convient de s’attarder sur la notion de réciprocité des chemins optiques [Case, 1957|
qui joue un role important lorsqu’il s’agit de construire des images physiques associées.
Cette réciprocité des chemins, faisant appel aux notions de micro-réversibilité, est
une condition nécessaire pour garantir le second principe de la thermodynamique.
Cela implique au régime stationnaire, qu'un photon dans la direction u; en x; a
la méme probabilité d’atteindre le point x, dans la direction u, que celle qu'un
photon partant de x5 dans la direction —uy atteignent le point x; dans la direction
—u;. En d’autres termes, il est possible de "lancer" des photons depuis le point
sonde d’intérét (en le considérant mentalement comme point d’émission) jusqu’a
ce qu’ils soient absorbés par le milieu. Ces points d’absorption correspondent alors
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aux points d’émission du modéle direct. Dans le cas d’un milieu infini, purement
absorbant, I'intérét de la réciprocité des chemins reste limité. Ce ne sera que lorsque
des phénomeénes de diffusions ou de réflexions multiples seront pris en compte que
cette notion de réciprocité prendra tout son sens.

Il est donc possible de développer un algorithme de Monte-Carlo en s’appuyant
uniquement sur la physique du rayonnement, sur les images qu’elle véhicule et
sur ce principe de réciprocité. Pour le cas introduit a la Sec. 3.3 dans lequel on
souhaite estimer L, (%o, 1), cela consiste a émettre un grand nombre de photons
depuis le point x; dans la direction —uy et a échantillonner un libre parcours
selon la loi de Beer-Lambert conduisant a une position d’absorption x;, interprétée
comme la position réelle d’émission. L’estimation de la luminance est alors donnée
comme la moyenne d’échantillon de Lg?(x;) pour I'ensemble des photons tirés.
Un tel algorithme correspond parfaitement a l’algorithme présenté a la section
précédente. On trouve dans la littérature internationale ce type d’algorithmes
qualifié de backward ou reverse [Walters et Buckius, 1992, Walters et Buckius, 1994,
Modest, 2003a, Siegel et al., 2011| que nous traduirons ici par Monte-Carlo réci-
proque.

Dans le cas de I'estimation de la luminance pour une configuration multidimen-
sionnelle, il est nécessaire de recourir a la réciprocité des chemins pour la construction
d’images physiques. En effet, si 'on suivait une approche directe, la probabilité
qu'un photon passe par le point x, dans la direction ug serait nulle, du fait de
la ponctualité du point et de la direction d’intérét. Cependant, pour I'étude de
grandeurs intégrées sur 'espace des phases (ex : la puissance radiative absorbée par
un élément de surface sur tout ’hémisphére entrant), une vision réciproque n’est
plus nécessaire puisque la probabilité qu’un photon soit absorbé par cette surface
n’est plus nulle. Toutefois, méme dans ces cas, il peut étre courant de faire appel
au caractére réciproque du rayonnement pour réduire la variance et ainsi les temps
de calcul associés par une reformulation intégrale. 11 suffit d’imaginer une surface
trés grande S, émettant vers une surface S, trés petite devant S, et de considérer
la puissance absorbée par S,. Lancer des photons de S, en espérant qu’ils soient
absorbés par S, peut étre trés cofiteux en temps de calcul. En effet, un grand nombre
de photons émis n’atteindront jamais la petite surface. Au contraire, il semble plus
judicieux d’utiliser la réciprocité des chemins : la grande majorité des photons "émis"
par S, seront "absorbés" par la grande surface. On aura par ce biais, en quelque
sorte, sélectionné préférentiellement les chemins optiques dignes d’intérét par une
reformulation intégrale, réduisant ainsi la variance de ’estimation de cette puissance.

Dans ce manuscrit, nous faisons le choix de privilégier le développement de
méthodes de Monte-Carlo a partir des formulations intégrales et statistiques, qui
offrent & nos yeux, les plus grandes libertés d’amélioration. Toutefois, ne pouvant
pas nous passer d’images physiques pour accréditer nos propositions, ce ne sera qu’a
posteriori que nous ferons appel a cette vision analogue. Celle-ci ne conditionnera
pas, & proprement parler, le développement des méthodes, mais offrira les images
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nécessaires a une bonne analyse des phénoménes en présence et un retour intéressant
sur nos propositions méthodologiques.

3.3.3 Prise en compte des frontiéres du milieu

Considérons a nouveau le cas d’étude introduit a la Sec. 3.3.1 auquel est rajoutée
en r,, une paroi noire. Les photons peuvent donc désormais étre émis par le milieu
mais aussi par la paroi (voir Fig. 3.4). La luminance L, (z, uo) est donc la somme de
la luminance d’équilibre émise par la paroi atténuée exponentiellement sur le chemin
[, o] et d'un terme source d’émission du milieu atténué lui aussi exponentiellement
et intégré entre x,, et xg :

To
Ly (20, u0) =Ly () exp (—/ kam(x’)dx’)

+ / w 0 koup(2) L9(z) exp (— / " kw,(a:’)dx') o

FIGURE 3.4 — Milieu fini, monodimensionnel et purement absorbant. Une paroi noire est placée
en x,,. La luminance au point xy dans la direction u est égale a la somme d’un terme d’émission
a la paroi et d’'un terme source d’émission du milieu. Chacun d’entre-eux faisant intervenir une
atténuation exponentielle.

L’Eq. 3.54 peut alors étre reformulée :

o o
L, (xq,up) :/ dx ko p(x) exp (—/ k:am(x')da:'>

—00

X [H (20 — ) L (2w) + H (x — 24) Ly (2))

(3.55)

ot H (a) est la fonction de Heaviside, valant 0 si a < 0 et 1 si a > 0. Cette reformu-
lation revient donc a considérer la paroi comme un milieu semi-transparent infini,
purement absorbant, de température uniforme 7" = T'(x,,). Une telle expression est
souvent rencontrée en transfert radiatif et présente I’avantage d’étre plus facilement
manipulable (statistiquement et algorithmiquement) que I’'Eq. 3.54. Elle requiert
cependant une information sans réel sens : le champ de coefficient d’absorption doit
étre défini sur | — oo; ] et a fortiori derriére la paroi. Dans la pratique, on définit
généralement le coefficient d’absorption comme égal & k, ,(z}) pour = < z,,, mais en
théorie tout champ strictement positif peut étre accepté.

De la méme facon que précédemment, l'atténuation exponentielle peut étre
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exprimée comme une fonction densité de probabilité. Il vient alors :

L, (x,up) = /xo px(z)de [H(x— ) L (x) + H (20 — 2) Ly ()] (3.56)

—00

qui & son tour peut étre exprimée sous la forme d’une espérance
Ly(wo, ug) = E [H (X — 24) L1(X) + H (20 — X) Li ()| = E[W(X)]  (3.57)

En définissant X* comme une variable aléatoire valant X si X > z,, et valant z,,
autrement, on obtient

Ly (o, up) = E [LE (X*)] = E[W (X*)] (3.58)

Il est alors possible d’estimer L, (z, uo) par un algorithme de Monte-Carlo. Celui-
ci consistera a opérer un nombre important V. de réalisations (indicées i), chacune
composée des deux étapes suivantes :

— ALGORITHME

1. On échantillonne une position d’émission x; & partir de la fonction densité
de probabilité px ().

2. Si la position échantillonnée est dans le milieu participant : x; € [x,,, 2]
alors I'échantillon de la variable aléatoire W (X) est w; = Ly?(z). Au
contraire si x; est au-dela de la frontiére : z; < x,,, I’échantillon est défini
comme w; = Ly(zy,).

Les images physiques correspondantes sont celles de photons suivis depuis xy dans
la direction —uy, jusqu’a ce qu’ils soient absorbés entre zy et —oo par le milieu ou par
la paroi considérée alors comme un milieu infini purement absorbant et isotherme.

3.3.4 Echantillonnage préférentiel et approche par variance
nulle

3.3.4.1 Echantillonnage préférentiel

Il est fréquent, notamment dans des applications de type combustion, de considérer
en premiére approximation que les parois ont une température fixée & 0K. En
d’autres termes, cela consiste a admettre que les parois absorbent mais n’émettent
pas de rayonnement : L;?(x,) = 0. Il peut alors étre intéressant, dans une optique
de réduction de variance, d’échantillonner les positions d’absorption dans le seul
intervalle |z, zo] et non sur | — 0o, x¢]. Cette approche d’échantillonnage préférentiel
consiste alors & définir sur |x,,, 2o] une nouvelle densité de probabilité associée aux
positions d’émission py(x). L’Eq. 3.56 est alors reformulée comme :

= o [550] -8 88u50] s
(3.59)
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Les fonctions de Heaviside ont pu étre supprimées (avec un changement du domaine
d’intégration), puisque I’émission de la paroi est nulle. En faisant intervenir la densité
de probabilité py(z) on modifie artificiellement la statistique de notre probléme.
Ce biais est alors compensé par une modification de la variable aléatoire poids qui
: i _ px(X)
devient W(X) = ]%L;Q(X).
Jusqu’ici aucune expression n’a été proposée concernant cette nouvelle densité
de probabilité. Ce choix est en effet totalement arbitraire. Une proposition assez
simple consiste a normaliser la densité de probabilité originelle px (z) sur le segment

T, o] :
exp (— f;j ka,n(x’)da:’>
e (= [ b))

Cet échantillonnage préférentiel n’induit aucun changement quant a la structure
algorithmique : un grand nombre NV,,. de positions d’émission x; seront échantillonnées

selon px(z) (qui ne correspond alors plus & la loi de Beer-Lambert). Une fois cette
px (xi)
px (%)
de L,(xo,up) par 'algorithme de Monte-Carlo sera alors donnée par la moyenne
arithmétique des N,,. échantillons w;.

px(z) (3.60)

position d’émission connue, le poids w;(z;) = L;(x;) sera calculé. L’estimation

3.3.4.2 Approche par variance nulle

Il est également possible d’appuyer le choix de px(z) avec une approche par
variance nulle. Cela consiste a exprimer la fonction densité de probabilité px g(x)
idéale qui validerait L, (zo,uo) = W@(X ) quelle que soit la valeur prise par X. La
variable aléatoire Wy(X) = %Lg‘?(){ ) aurait alors une variance nulle. Dans le

cas considéré (température de paroi nulle), cette densité de probabilité idéale serait

donnée par :
px(z) Ly (z) px(z) Ly (z)

5 - S 3.61
pX,(Z)(l’) Ln(l'o, U()) :Du()) Dy (x,)qu ([E’)dl’l ( )

Il est évident que nous ne sommes pas capables de calculer cette fonction idéale,
puisqu’elle dépend de L, (g, up) qui est justement 'observable que nous souhaitons
estimer. Cependant, s’il est possible q’étabh? un modele appro'ché y(x) de px (z) Ly (z)
suffisamment fidéle au modéle physique d’intérét, et dont 'intégrale entre z,, et xq
est analytiquement calculable, la fonction densité de probabilité

y(z)

=7 (3.62)

px(z)

sera proche de pxg(z). Ainsi, bien que non nulle, la variance de W (X) aura été
sensiblement réduite ?, ce qui se traduira en pratique par une diminution du nombre
de réalisations nécessaires pour parvenir a une méme erreur relative. Toute la difficulté

4. 1l peut arriver que le choix de y(z) soit a l'origine d’une augmentation de variance, traduisant
ainsi une mauvaise représentation de la physique d’intérét.
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de 'approche par variance nulle réside donc dans I’établissement du modéle utilisé
pour approcher au mieux py g(x). Une approche par variance nulle sera réalisée au
Chap. 5 pour orienter les choix arbitraires de plusieurs densités de probabilités et
probabilités discrétes.

3.4 FEtude de la luminance dans un milieu absorbant
et diffusant

[’étude d’un milieu purement absorbant a donc permis d’aborder les méthodes
de Monte-Carlo réciproques et analogues ainsi que les approches d’échantillonnage
préférentiel et par variance nulle. Complexifions désormais ce cas d’étude en rajoutant
des phénoménes de diffusions multiples qui vont engendrer une récursivité dans le
formalisme statistique et les algorithmes de Monte-Carlo correspondants. L’équation
stationnaire du transfert radiatif, relative a de telles considérations, est rappelée
ci-dessous :

WV L, (x,0) = —ky(x) L, (x, 1) + ko, (x) L (x) + kd,n/ d(x,uju’) L, (x,u’)du’
4m

(3.63)
ol ¢(x, ulu’) est la fonction de phase et ky(x) = kopn(X) + ka,(x) est le coefficient
d’extinction au point X.

3.4.1 Luminance dans un milieu absorbant, diffusant, infini

Concentrons-nous tout d’abord sur un milieu tridimensionnel, infini, absorbant,
émettant et diffusant le rayonnement. La luminance au point xy dans la direction ug
est égale a la somme d’une infinité de composantes C}, atténuées exponentiellement
le long de leur chemin de diffusion entre leur position d’émission et le point sonde
Xp -

C} : laluminance associée aux photons émis en x; dans la direction ugy et atteignant
directement la position xy sans avoir subi d’événement de diffusion (voir
Fig. 3.5a).

C5 : la luminance associée aux photons émis en tout point x5 de I'espace dans une
direction u; qui atteignent le point x, dans la direction uy en ayant subi une
unique diffusion en x; (voir Fig. 3.5b).

C5 . la luminance associée aux photons émis en tout point x5 de I'espace dans une
direction u, qui atteignent le point xy dans la direction uy en ayant subi deux
événements de diffusion en x5 et x; (voir Fig. 3.5¢).

Ci>4 : les luminances associées aux photons émis en x; dans une direction u;_;
i> j j
atteignant le point xqy dans la direction uy en ayant subi 7 — 1 événements de
diffusion.
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Uo Uo us Uo
e X0 .7 Xo XZ,& L7 Xo

FIGURE 3.5 — Luminance en milieu diffusant. La luminance au point x¢ dans la direction ug
peut étre pergue comme la somme d’une infinité de composantes. La premiére d’entre-elles (A) est
associée aux photons émis d’un point x; appartenant a la demi droite définie par xg et —uy dans
la direction ugp, sans avoir subi d’événement de diffusion. La seconde composante (B) concerne les
photons émis en x5 dans le domaine spatial d’intérét et atteignant le point x¢ dans la direction ug
suite & un unique événement de diffusion. La troisiéme composante est associée aux photons ayant
subi deux événements de diffusion avant d’atteindre le point x¢ dans la direction ug (C) etc.

Considérer la luminance L, (xg, up) comme la somme d’une infinité de contribu-
tions, permet alors d’écrire la formulation intégrale suivante :

) l
L, (x9,u9) = {/ dl; exp (—/ ky(xo — l’luo)dl'1> km(xl)qu(xl)}
0 0

( 00 A
/ dll exXp (—/ k’n<X0 — lllllo)dlll) kd,n<xl) ¢(X17 110|111)d111
0

x/o dl exp(/o )

/Oood exp(—/ollkn(xo—l’luo )k X1/¢X1,uo!u1)du1
-/ )
-/ ‘)

)

]{Zn<X1 — lzul dl/ ka,n (Xg)

(3.64)

3

™

&
@
»
o

+ X/ (X 1 — lyuy)dly ) kg (X2 / B(x2, urug)duy
0

>< dl3 exp
0

o0

kﬂ( X9 — 13112 kan X3 L q(Xg)

)

{ -}

ol Xj1; = X; — lj1u; et ou chaque terme entre accolades correspond a une
contribution particuliére (le premier est relatif a la contribution Cf, le second a
la contribution Cj, etc.). Cette expression met en relief les avantages en termes
d’intuitif et de formalisme qu’offre la réciprocité des chemins. Les images associées a
ce cas d’étude sont celles de photons émis depuis xy dans la direction —u, subissant
0, 1, 2, etc. diffusions avant d’étre absorbés de fagon exponentielle le long de leur
chemin optique.
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Il est alors possible de factoriser I'Eq. 3.64 :

) l
L, (x9,u9) = / dly ky(x1) exp (—/ kp(xo — l'lug)dl’l)
0 0

[ Kap(x1)
Leq
k’ (Xl) ( )
( 00 la
/ dly ky,(x2) exp (—/ ky(x1 — ’zul)dllz)
% k 0 0
X ka
dn - /¢X1,u0\u1)du1 %Lﬁq( 2)
n\52
X
kdn(XQ)
4+ Xg, Up|ug)duy X - - -
\ { kn(x2) 4ﬂ—¢( 2 1| 2) 2

(3.65)

ce qui améne d’autres images, celles-ci récursives : la luminance L, (X, uo) est la
somme des luminances associées aux photons émis directement (sans expérimenter
de diffusion) vers x, dans la direction ug et des photons ayant subi au moins une
diffusion, mais parvenant en x, dans la direction ug ; cette seconde composante est
elle-méme la somme des luminances associées aux photons émis directement (sans
expérimenter de diffusion) vers x; dans la direction u; et des photons ayant subi au
moins une diffusion mais parvenant en x; dans la direction uy ; etc. L’Eq. 3.65 peut
ainsi étre formalisée sous une forme récursive :

o0 L
Ln(Xo, uo) —/ dll kn(X1> exp (—/ kn(XO — l/luo)dl’1>
0 0

w X) o

X
k X
- dm . /¢x1,u0]u1) (X1, uy)duy

ou le terme récursif L, (x;,u;) pour j > 1 est donné par :

oo li+1
Liosu) = [ de e (< [ G - Gawds )

Kan(Xj41)

—Leq X, 3.67
]{7 (X]Jrl) ( ]+1) ( )
kd n(X]Jrl

+
kn (X]+1

/ ¢ X]+1?u]’uj+1)L (X415 Wj1)duggg

L’atténuation exponentielle, dépendant désormais du coefficient d’extinc-
tion k,, garde son caractére statistique et pourra étre exprimée comme
une fonction densité de probabilité de libres parcours : pg. (1) =
kn(Xj4+1) exp (— folj“ kn(xj—l;-Hu])dl;H). Dans cette expression intégrale, de
nouveaux termes ayant une valeur statistique sont également apparus : les albédos
d’absorption wq ,(X;) = kay(x;)/k,(x;) et de diffusion wg,(x;) = k4, (x;)/kn(x;). 1ls
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représentent respectivement les probabilités qu’a un photon qui collisionne en x;
d’étre absorbé ou émis : P,(x;) (selon qu’on regarde le probléme de fagon directe ou
réciproque) et d’étre diffusé : 1 — P,(x;). Ces considérations nous permettent alors
d’exprimer statistiquement I’'Eq. 3.66 comme :

Pa(x1) Ly (x1)

(1= Pax1) / 61, olur) Ly (1, wy )y
(3.68)

Ln(Xo, uo) = / Pry (ll)dll X
0

ou le terme récursif L, (x;,u;) est donné par

Ly (x5, u;) :/ Py (L1)dlip
0
Pa(XjJrl)Lf;q(XjH)

(1 = Pa(xj41)) [ A(Xjpr, wilwjpn) Ly (%41, Wjp1)duggy
47

(3.69)

L’Eq. 3.68 ne constitue qu’une expression de I'espérance de la luminance d’équi-
libre au point d’émission du photon. En effet, la récursivité due aux événements de
diffusion ne joue un roéle que sur la longueur du chemin optique et sur les propriétés
rencontrées le long de ce chemin (coefficient d’absorption, de diffusion, température,
etc.). On peut alors écrire :

Ly(x0,u9) = E [L1(X*)] = E[W(X*)] (3.70)

avec X* la variable aléatoire associée aux positions d’émission. Celle-ci peut étre
exprimée de la facon suivante® :

0 Jj—1
X* =Y AX; [ -4, (3.71)
J=1 q=1

ol A, est une variable aléatoire valant 1 avec une probabilité P,(x,) et 0 avec
une probabilité 1 — P,(x,). Ce formalisme récursif ainsi que les images physiques
associées seront intensivement utilisés dans les prochains chapitres de ce document.

Il est alors possible de proposer un algorithme de Monte-Carlo constitué de N,,.
réalisations indépendantes, chacune composée des étapes suivantes :

5. Le formalisme utilisé pour exprimer la variable aléatoire de position d’émission dans I'Eq. 3.71,
a été choisi afin de mettre en avant I'idée de chemin de multi-diffusion. La somme infinie Z;’;l
permet de rendre compte de ’ensemble des collisions probables. L’introduction de la variable

aléatoire A;, associée & un événement d’émission/absorption (valant 1 avec une probabilité P, (x,)),
j—1

o=1(1 — Ag) que seule une position (celle d’¢mission) soit

permet de s’assurer, grace au terme []
retenue pour la définition de X*.
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— ALGORITHME

1. L’indice de collision j est initialisé : j = 0.

2. On échantillonne un libre parcours l;;; selon la fonction densité de
probabilité pg, ., (Ij+1), ce qui permet de calculer la position de collision
Xj+1 = X5 — lj—l—luj‘

3. On procéde a un test de Bernoulli pour déterminer le type de collision :
une émission ou une diffusion. Pour cela on tire uniformément un nombre
aléatoire 7.
3a. Sirji1 < Pa(xj11), la collision est une émission. On calcule alors la

luminance d’équilibre au point x; qui correspond a 1’échantillon w;
de cette réalisation. La récursivité est alors stoppée.

3b. Si rj11 > Pu(xj41), la collision est une diffusion. Une nouvelle
direction de propagation u;; est alors échantillonnée a partir de
la fonction de phase ¢(x;+1,u;j/u;41); l'indice de la collision est
incrémenté : j = j 4+ 1 et 'algorithme boucle a I’étape 2.

Dans la suite du manuscrit, du fait de la lourdeur engendrée par ce type de
récursivité, nous présenterons les algorithmes sous forme de logigrammes. Une
transposition directe de cet algorithme est donnée a la Fig. 3.6.

Echantillonnage de /;, et calcul de X

!

Echantillonnage uniforme de 7, j=j+1

(Absorption) (Diffusion)
Oui Non

wi = Ly (Xj41) Echantillonnage de u

L

FIGURE 3.6 — Algorithme de Monte-Carlo estimant L(xg,up) dans un milieu infini absorbant,
diffusant et émettant. Un libre parcours [; est d’abord échantillonné, conduisant & une position de
collision x;. Cette collision pouvant étre soit une émission soit une diffusion, un test de Bernoulli est
effectué : un nombre aléatoire r; est échantillonné. Si r; < P,(x1), il y a émission en x1, le poids de
Monte-Carlo est alors wi = Lf]q(xl). Si Ty > Pu(x1), la collision est une absorption, une direction
u; et un nouveau libre parcours Iy sont alors échantillonnés, menant ainsi & un nouveau point de
collision x5 ou un test de Bernoulli sera effectué pour déterminer le type de collision. L’algorithme
continuera ainsi, jusqu’a ce qu'une absorption soit identifiée.
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Les images physiques correspondantes sont encore celles de photons suivis depuis
la position x( dans la direction opposée a ug, jusqu’a ce qu’ils soient absorbés en x*.
Mais le chemin optique est désormais un chemin de multi-diffusion. Au premier point
de collision x3, il y a une probabilité P,(x;) que les photons soient absorbés. Dans
ce cas X* = x;. Autrement, ils diffusent dans une direction u avec une probabilité
(1 — P,(z1)). Les photons sont alors suivis jusqu’a la prochaine collision en x5 qui
peut, & son tour, étre soit une nouvelle diffusion, soit une absorption et ainsi de suite
jusqu’a ce qu’un point d’absorption soit identifié. La luminance d’équilibre en ce
point est alors considérée.

Une autre maniére d’aborder ce probléme consiste a le définir dans ’espace des
chemins [Dauchet, 2012]. Cet espace est défini comme l’ensemble des chemins de
multi-diffusion possibles passant en x, dans la direction uy. Les images statistiques
correspondantes consistent alors a considérer un chemin optique appartenant a cet
espace et a suivre les photons le long de ce chemin, de la méme facon qu’ils le seraient
dans le cas d'un milieu purement absorbant/émettant.

3.4.2 Traitement déterministe des tests de Bernoulli ou mé-
thode dite d’Energy partitioning

Comme présenté précédemment, toutes les contributions a la variable aléatoire
W(X*) sont uniquement liées aux événements d’émission : W(X*) = Ly(X*).
Imaginons désormais que le milieu considéré soit fortement diffusant et peu ab-
sorbant /émissif : 'essentiel du temps de calcul sera alors consacré a traiter les
événements de diffusion qui n’ont aucun autre role que de permettre un échantillon-
nage de l’espace des chemins. A de trés rares moments, des émissions seront prises
en compte, mettant ainsi fin & la réalisation.

Une maniére de répondre a ce probléme est d’employer une méthode qui consiste
a oter le caractére probabiliste des albédos d’émission kg—; et de diffusion If—n" en
les traitant de fagon déterministe. Ainsi, & chaque collision, une contribution d’ab-
sorption/émission sera prise en compte. Cette approche, initialement développée
pour calculer 'émittance apparente de cavités isothermes [Shamsundar et al., 1973],
est connue sous différentes dénominations : "Energy partitioning" [Modest, 2003b],
" Absorption suppression" [Walters et Buckius, 1992 ou encore "Pathlength method"
[Farmer et Howell, 1998|. L’utilisation de cette technique consiste donc a reformuler

I'Eq. 3.68 en :

0 ]{;;"’7<—(X1))L;q(xl)
x
b / penfdh /qu7 (Xll) (3.72)
0 k(1)
+ k(1) i é(x1, upluy) Ly (x1, uy )duy

ka,'q(xl) e kd,n(xl)
ke (x1) Ky (x1)
d’intérét L, (xo, ug) est alors définie comme 'espérance d’une variable aléatoire un

sont utilisés de maniére déterministe. La luminance

ol les grandeurs
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peu plus complexe :

1

0 k ( j

Leq kay(Xq) (
" (X))

L,,(Xo,u()) =K k
77 q

(3.73)

7j=1 q:l

Les images physiques associées a ce traitement déterministe des albédos sont
alors sensiblement modifiées. Plutdt que de suivre des photons depuis xy dans la
direction ug jusqu’a ce qu’ils soient absorbés en un point x;, ils sont ici absorbés de
facon progressive le long de leur chemin optique.

L’Eq. 3.73 pose cependant dans notre cas d’étude (milieu infini) un probléme
majeur lorsqu’il s’agit de la traduire algorithmiquement : la récursion est infinie, le
calcul ne s’arréte donc jamais (voir Fig. 3.7). En partant du constat que plus I'indice

Jj=0;w=0;&=1

Echantillonnage de /;,; et calcul de X

!

_ g kag(Xjs) PR
£ =&t tom j=Ej+l

!

kan(Xjs1)
Wisl =W + é:j % I(x /:]I) LLq(XjH)

!

Echantillonnage de u;,,

FIGURE 3.7 — Algorithme de Monte-Carlo avec traitement déterministe pur des albédos. Un libre

parcours d’extinction /1 est échantillonné & partir de xo dans la direction ug, menant ainsi & un point

de collision x;. En ce point de collision, une contribution d’émission ,Z*é:l))Leq (x;) est prise en

compte. Puis une nouvelle direction u; et un nouveau libre parcours Iy sont échantillonnés, menant a

un nouveau point de collision x5 pour lequel une contribution d’émission ,‘; ’zixz)) Li(x )kg””(gl)) est

a nouveau ajoutée au poids de Monte-Carlo w;. L’algorithme poursuit ainsi cette boucle indéfiniment.
11 est alors nécessaire de définir un critére d’arrét pour y mettre fin (voir Fig. 3.8).

de collision j est grand, plus le terme ; = Hf] } k]j" est faible, deux alternatives

sont envisageables pour répondre a cette infinité de boucles :
e lorsque &; devient suffisamment proche de zéro, on stoppe la réalisation, tron-
quant ainsi la somme infinie. Un léger biais est alors créé, faisant ainsi perdre
a ’algorithme de Monte-Carlo son caractére de méthode de référence.

e lorsque &; passe en dessous d’un seuil ¢ défini arbitrairement entre 0 et 1, on
rétablit le caractere probabiliste des albédos : on bascule alors a l'algorithme
présenté a la Sec. 3.4.1. L’algorithme résultant d’un tel choix, privilégié dans
la suite du manuscrit, est décrit par la Fig. 3.8.
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j=0;w=0;&=1

j=j+1 Echantillonnage de /};; et calcul de x; j=j+1

(Branche probabiliste)

(Branche déterministe)

Oui Non

i1 =& kk/;é:ﬁ])) Echantillonnage uniforme de r;,, i =€
l (Absorption) (Diffusion)
Kan(Xj1) Oui Non

Wisl = Wi+ &S LY (Xj41)

!

Echantillonnage de wi = w;j + &L (Xj41)

. !

Echantillonnage de u;

L

Wil = W;

F1GURE 3.8 — Algorithme de Monte-Carlo avec traitement déterministe puis stochastique des
albédos. Tant que le critére d’extinction &; = Hf] 1 k,j]”(ix‘i est supérieur au seuil arbitraire (,
I’algorithme est identique & celui présenté a la Fig. 3.7. Une fois ce seuil atteint, ’algorithme
bascule sur une branche dans laquelle les albédos de diffusion et d’absorption sont traités de fagon
statistique (similaire a l’algorithme présenté a la Fig. 3.6) pour mettre fin & la réalisation.
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3.4.3 Calcul de sensibilités paramétriques

Les méthodes de Monte-Carlo offrent également I'avantage de pouvoir estimer
des sensibilités paramétriques ® en paralléle du calcul de I'observable radiative, sans
augmenter de maniére sensible le temps de calcul. En effet, du fait de la linéarité de
I’expression intégrale considérée, la structure algorithmique correspondante ne sera
pas altérée lorsqu’il s’agira d’estimer une sensibilité paramétrique de cette méme
grandeur. Pour illustrer cette possibilité offerte par les méthodes de Monte-Carlo,
repartons de 'Eq. 3.68 et exprimons la sensibilité paramétrique 0y L, (%0, up) de
la luminance L,(xo,ug), selon un paramétre w ayant une influence sur la seule
fonction de phase (le paramétre d’asymétrie par exemple). Exprimer cette sensibilité
paramétrique revient alors a dériver L, (x¢,ug) par rapport & w :

8wLn(X07 110) :/ dll Py (ll)
0

Palx1) x 0 (3.74)
+(1 = Pa(x1)) / dul{ 3w¢<xlauOlul>Ln<xl,ul>}

dr +¢(x1, ug|u1) 0 Ly (x1, )

Pour garder la méme structure statistique et algorithmique que celle de I'estimation
de la luminance L,(x¢,up), I'Eq. 3.74 peut étre reformulée en :

( Pa(Xl) x 0

+(1 = Pa(x1)) /47r duyp(xy, ug|uy) (3.75)
O [In (¢(x1, uowr))] Ly (%1, u1)
+05 Ly (x1,u1) )

8wLn(X07 110) = / dll pEI (ll) X <
0

Cette équation comporte désormais deux termes récursifs : L,(x;,u;) et
Ow Ly (x;,1;). Le premier est le méme que pour I'estimation de la luminance L, (xo, uo)
(voir Eq. 3.69) et le second est donné par :

awLn(va uj) = / dlj+1 p£j+1 (lj-‘rl)
0
[ Pa(xj41) X 0 )

+<1 _Pa(XjJ,-l))/ de+1gb(Xj+17uj|uj+1) (376)

47
O [In (d(Xj11, wjluji1))] Ly (X541, 0541)

+0m Ly (Xj41, 0541)

/

6. Dans [De La Torre et al., 2014], les auteurs distinguent plusieurs familles de sensibilités
paramétriques : 1/ celles o seul le poids de Monte-Carlo dépend du paramétre d’intérét 2/
celles ou le paramétre n’intervient que dans les probabilités de la formulation intégrale 3/ celles ou
le domaine d’intégration est dépendant du paramétre par rapport auquel est calculée la sensibilité
4/ une combinaison des trois cas précédents. Dans le cadre de ces travaux de thése, seul le second
cas - illustré dans la présente section - sera abordé.
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Toutefois, ces deux termes, ayant une méme structure d’un point de vue statistique,
peuvent étre pris en compte simultanément. Il est ainsi possible d’exprimer la
sensibilité de la luminance L, (xo, up) au paramétre c comme une unique espérance :

0o Jj—1 Jj—1
O Ly(x0,m0) = E [L(X)] Y | A J](1 - 4,) O I (X, Upp1|Up))]
j=1 q=1 m=1

= E[Wo(X")] -
3.77

olt A, est une variable aléatoire valant 1 avec une probabilité P,(x,) et 0 avec
une probabilité 1 — P,(x,) et ot X* est définie de la méme facon que pour 'es-
timation de L, (xq, up) (voir Eq. 3.71). Le détail de ces calculs est donné en Annexe A.

Il est alors possible d’estimer cette sensibilité paramétrique de la luminance
L, (x0,up) conjointement & 'estimation de cette luminance. La description d’une
réalisation de l'algorithme de Monte-Carlo correspondant est donnée a la Fig. 3.9.

J=0590=0
Echantillonnage de /;,; et calcul de X
Echantillonnage uniforme de r;,, j=j+1
(Absorption) l (Diffusion)
Oui Non
wi = Ly (Xj41) Echantillonnage de
Wari = qj X Ly (Xj41) qj+1 =qj+ 0 llﬂ(¢(xj+|,llj|llj+|))J

FIGURE 3.9 — Algorithme de Monte-Carlo estimant de fagon simultanée une luminance L(xg, up)
dans un milieu participant infini et sa sensibilité & un parameétre w de la fonction de phase. La
structure algorithmique est identique a celle de la Fig. 3.3 ; seul un facteur incrémental g; est rajouté
pour calculer I’expression du poids de Monte-Carlo w;.

L’estimation de L, (xq, ug) pour N,,. réalisations de Monte-Carlo est alors donnée
par L,(xq,ug) = ZN”ILC w; /Npme et Uestimation de sa sensibilité au paramétre w par
3 NmC
O Ly(xj,05) = > .0 We i /N
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3.4.4 Luminance dans un milieu purement absorbant, diffu-
sant et entouré de parois réfléchissantes
Reprenons le cas présenté a la Sec. 3.4.1 : un milieu absorbant, émettant et

diffusant et considérons le désormais comme fini et entouré par des parois partielle-
ment réfléchissantes (voir Fig. 3.10). A partir de 'Eq. 3.65, il est possible de faire

Xw,a — lauy

FIGURE 3.10 — Milieu absorbant, émettant et diffusant, clos par des parois partiellement réflé-
chissantes. Les images physiques associées a l'estimation de la luminance L, (%o, ug) sont celles de
photons suivis depuis x¢ dans la direction —ug jusqu’a leur point d’émission a la paroi B (voir
Xy,5) ou dans le milieu V (voir x5). Le long de leur chemin optique, ces photons sont susceptibles
de subir des événements de diffusion multiple (voir X3, X2, X3) ou de réflexion (voir x4).

apparaitre une prise en compte des parois comme proposée a la Sec. 3.3.3. La seule
différence concerne les conditions aux frontiéres : dans la Sec. 3.3.3 les parois étaient
considérées comme noires, désormais elles sont partiellement réfléchissantes. Dans
des considérations réciproques, seule une proportion £(x,,) des photons est absorbée
par la paroi, autrement ces photons sont réfléchis et continuent leur chemin dans une
nouvelle direction selon une distribution directionnelle de réflexion 9(xy, 1, ug|uy).
On se raméne donc aux parois, & une expression trés proche de celle rencontrée lors
de multi-diffusions . La luminance au point x¢ dans la direction ug est alors donnée
par la formulation intégrale récursive suivante :

0o Iy
L”Z(X07 110) = / dll k:77<X1) exp <—/ kn(XO — lin)dlll)
0 0
( €(Xw71)Lf]q<Xw71) )
H(x1 &V
g V) +(1 - 5(Xw,1))/ (X1, Uolur) Ly (X1, ur)duy (3.78)
2w .

X kan(x1)
Fon(x1)

kdn(xl)
iy 7 L d
\ + k’n(X1) 47r¢(X17110|111) 77<X17u1) uy )

Ly (x1)
+/H (X1 € V)

ou le point x,, ;11 correspond & la premiére intersection entre la frontiére et la demi-
droite définie par le point x; et la direction —u;. Le terme récursif L, (x;, u;), présent
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a deux reprises dans ’'Eq. 3.78, est donné par :

) lj+1
Ly (x5, ;) :/o dlji1 ky(xj41) exp (—/0 ke (3 —l}+1uj)dl'1)

€(Xw,j+1) Ly (Xuw,j41) )
H (X1 ¢ V)
! (1 = e(Xwjt1) | V(Xwjr1, Wil 1) Ly (Xw g1, W1 )dwjg

27
X kon(x: .
kn((x J+11)> an (Xj+1)
+H(xi1 €V ichs
(1 €V) Kan(Xj11)

? (X1, Wyl 1) Ly (X1, Wy )dug
\ n(Xj—H) s

/
(3.79)

Il est alors possible de remplacer les termes d’extinction, d’émissivité, de ré-
flectivité et albédos de diffusion et d’absorption par leur notation sous forme de
probabilité. Il vient alors la formulation statistique :

Ly (x5, 1) —/ Pry (i)dlia
0

fPe(Xw,jH)Lf}q(Xw’jH)

H(xj1 ¢ V)
a F(1 = Pe(Xwjt1)) | (X1, i) Ly (X 1, Wip1)ditj
27

’Pa(XjH)Lf}q(XjH)

+H (xj41 € V)
™ +(1 _Pa(Xj+1))/ G(Xj415 W Wy 1) Ly (X1, g1 ) A
4

\

(3.80)

pour laquelle I'observable ot L, (X, uy) est un cas particulier (validant j = 0) et

ol Pe(Xy,1) = €(Xy,1) correspond a la probabilité que le photon soit émis par la paroi.

A nouveau, cette expression de la luminance correspond a l'espérance de la
luminance d’équilibre au point d’émission X* :

Ly(x0. ) = E [L(X")] = E[W(X")] (3.81)

Toutefois, la variable aléatoire X* intégre désormais 1’'idée de réflexion aux parois.
Elle peut étre exprimée comme :

X'=> [H (X; €EV)AX; +H(X; ¢ V) Eij,j} (1-A,—E,) (3.82)

1

[e.o]

<.
I

Jj=1 q

ol A; est une variable aléatoire valant 1 avec une probabilité P,(x;), 0 sinon, et E
une variable aléatoire valant 1 avec une probabilité P.(x,, ;), 0 sinon. Une réalisation
indépendante de la traduction algorithmique de I'Eq. 3.82 est donnée a la Fig. 3.11.

Ce cas d’étude constitue le cas le plus général rencontré dans ce manuscrit (absorp-
tion, réflexion, diffusion, émission). Les trois configurations décrites précédemment
dans ce chapitre ne sont que des cas particuliers du cas d’étude présent :
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j=j+1 j=j+1

Echantillonnage de /;, et calcul de X,

(Collision dans le milieu) l (Collision a la paroi)
= e =
Echantillonnage uniforme de r;,; Echantillonnage uniforme de r;,;
(Absorption) (Diffusion) (Absorption) (Réflexion)
Oui Non Oui Non

wi = Ly (Xj41) Echantillonnage de u;, wi = Ly (Xj41) Echantillonnage de uj,

X X

FIGURE 3.11 — Algorithme estimant L, (%o, uo) dans un milieu absorbant, émettant et diffusant, clos
par des parois partiellement réfléchissantes. Une position de collision x; est tout d’abord déterminée
par I'échantillonnage d’un libre parcours /; selon la loi de Beer-Lambert. Le point x; peut étre dans
le milieu participant ou non. S’il appartient au milieu participant, un test de Bernoulli est effectué
pour déterminer le type de collision. Si c’est une absorption, le poids de Monte-Carlo est calculé
et la réalisation s’arréte. Dans le cas d’une diffusion, une nouvelle direction u; est échantillonnée
selon la fonction de phase ¢(x1,up|uy) et 'algorithme boucle a I’étape d’échantillonnage des libres
parcours. Dans le cas ot le point x; n’appartient pas au milieu participant, un test de Bernoulli est
effectué pour déterminer si la collision & la paroi en x,,; est une absorption ou une réflexion. S’il
s’agit d’une absorption, la réalisation s’arréte et le poids de Monte-Carlo est calculé. S’il s’agit d’une
réflexion, une direction u; est échantillonnée selon le modeéle probabiliste de réflexion 1) (x,,1, uo|us)
et l’algorithme boucle & I’étape d’échantillonnage des libres parcours. Ces boucles se poursuivent
jusqu’a ce qu’une absorption par le milieu ou & la frontiére se produise.
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e La suppression des termes de parois meéne au cas d’étude de la Sec. 3.4.1.

e Lorsque le coefficient de diffusion est nul et I’émissivité a la paroi est de 1 cela
correspond au cas d’étude de la Sec. 3.3.3.

e La suppression des termes de parois et un coefficient de diffusion nul ménent
au cas d’étude de la Sec. 3.3.1.

3.5 Etude d’une grandeur intégrée de la luminance

Jusqu’alors, tous les cas d’étude consistaient a évaluer la luminance en un point en
échantillonnant des positions d’émission et en moyennant les luminances d’équilibre
en ces points. Les représentations des différents phénomeénes faisaient apparaitre
de fagon directe des grandeurs probabilisées (atténuation exponentielle, albédos
d’absorption / de diffusion ou encore émissivité / réflectivité). Cette derniére section
a pour but de présenter ’approche statistique relative & une intégration de cette
luminance. En guise d’illustration, reprenons la configuration de la Sec. 3.4.4 et
étudions le bilan radiatif d’un sous-volume homogéne et isotherme ¢} du milieu V.
Celui-ci s’exprime comme :

O(5V) /nmax dvy/ dxo/ dug kq(x0) (L (x0) — Ly(x0, 1)) (3.83)

TImin

Formulées ainsi, on note que les intégrations sur la plage spectrale [Mmin, Pmax),
le volume d’intérét V' et I’ensemble des directions 47 ne constituent que de simples
sommes déterministes, ne nous permettant pas, en I’état, d’approcher ce probléme
de facon purement statistique. Pour répondre a cette limite, il est possible de
considérer les variables 1y, xo et ug comme aléatoires en leur associant & chacune
une densité de probabilité : respectivement pg(n), px,(Xo) et pu,(ug). Ces densités
de probabilité peuvent désormais étre introduites dans I’expression intégrale. Pour
rétablir le caractére intégral de ®(6V), la grandeur kq(xo) (L& (x0) — Ly (X0, up)) est
alors divisée par ces trois probabilités :

B(5V) = /A prr(n)dy /5 Pxy(x0)dxg /4 pu, (Wo)dug [ka(ngiEsifcxziq;p?((}:;)um

ka(xo) (LE%(x0) — Ly(%0, ug))
p

1 (1)Px, (X0)Pu, (10)
(3.84)

Le probléme, a l'origine exprimé de fagon déterministe, a ainsi pu étre reformulé
dans des considérations purement statistiques. Ne reste alors plus qu’a exprimer la
luminance L, (%o, ug). Si l'on reprend la configuration de la Sec. 3.4.4, il est possible
d’écrire a partir des équations 3.81 et 3.84

kq(x0) (L;q(xo) —FE [Lf]q(X*)D
pu(1)Px,(X0)PuU, (10)

®(5V) =E = E[W(X")] (3.85)
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ou la variable aléatoire X* est définie par I'Eq. 3.82. Du fait de la linéarité de
I'expression de W(X*) et du caractére projectif de I'espérance (cf. encadré de la
Sec. 3.1.2), 'Eq. 3.85 peut étre reformulée comme :

ka(x0) (Lf]q(xo) — L;q(X*))
P (1)Px,(X0)pu, (10)

(V) =E (3.86)

L’algorithme de Monte-Carlo correspondant a cette expression est donné a la
Fig. 3.12.

j=j+1 j=j+1
[ '

Echantillonnage de [}, et calcul de X,

(Collision dans le milieu) (Collision a la paroi)

Oui

Non

Echantillonnage uniforme de r;,;

Echantillonnage uniforme de 7}

(Absorption) (Diffusion) (Absorption) i (Réflexion)
Oui Non Oui Non

Echantillonnage de u;,

wi = Ly (X j41)

X

wi = Ly (Xj41)

Echantillonnage de u;y;

FIGURE 3.12 — Algorithme estimant le bilan radiatif d’un sous-volume homogéne et isotherme §V
du milieu V. Cet algorithme est trés proche de celui présenté a la Fig. 3.81 & deux différences prés :
1/ une étape d’échantillonnage des nombres d’onde, des positions et des directions initiales est
effectuée en début de réalisation ; 2/ I'expression des poids est modifiée en accord avec la nouvelle
observable d’intérét : ®(4V).

Les images physiques réciproques associées a cet algorithme sont celles de photons
de nombres d’onde 7 € [Nmin, Pmax], SUiVis depuis une position xq appartenant a §V,
dans une direction uy appartenant a la sphére des directions (47), susceptibles de
subir des diffusions et réflexions multiples avant d’étre absorbés en un point du milieu
ou par la paroi.

Résumé du chapitre

Ce chapitre a eu pour but de présenter ’approche statistique et intégrale associée
a ’étude du rayonnement dans les milieux participants ainsi que les méthodes de
Monte Carlo qui en découlent directement. Aprés de brefs rappels statistiques et



3.5. Etude d’une grandeur intégrée de la luminance 89

méthodologiques, I’étude d’un probléme radiatif, progressivement complexifié, a
permis d’aborder les différentes approches, techniques et formalismes qui seront
employés dans la suite de ce manuscrit. La prise en compte des frontieres, des
phénomeénes de diffusion (et donc de la récursivité), les approches d’échantillonnage
préférentiel, de variance nulle, ainsi que les techniques d’energy-partitioning ont ainsi
pu étre présentées.
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Introduction

Les éléments essentiels de la physique du rayonnement ainsi que des Méthodes de
Monte-Carlo appliquées & ce champ d’application ayant été présentés; ce chapitre a
pour but d’aborder les premiers travaux de cette thése : la gestion des hétérogénéités
des propriétés optiques du milieu participant. Ces travaux constituent la suite
logique d'une dynamique collective initiée depuis plusieurs années au sein de I'équipe
STARWest |Terrée, 2011, Piaud, 2010, Eymet, 2011a).

Les méthodes de Monte-Carlo en milieu semi-transparent sont aujourd’hui
bien maitrisées [Farmer et Howell, 1998, Siegel et al., 2011, Modest, 2013]. C’est en
particulier le cas lorsque les propriétés optiques du milieu (coefficients d’absorption,
de diffusion, etc.) sont homogenes. Mais au-dela de cas académiques simples, dés
qu’il s’agit d’étudier ou de simuler du transfert radiatif en configurations réelles
dans des milieux participants, en particulier dans les gaz, la prise en compte et la
gestion des hétérogénéités apparaissent comme primordiales. Ces taches deviennent
cependant rapidement délicates et exigeantes lorsqu’il s’agit d’employer les méthodes
de Monte-Carlo comme outil de simulation, tout en souhaitant garder le caractére
exact qu’elles offrent.

Si I'on se concentre sur les domaines d’application pour lesquels le transfert
radiatif en milieu gazeux occupe une place importante, les hétérogénéités sont
omniprésentes. En effet, que ce soit dans les systémes de combustion, dans les
atmospheéres terrestre ou exoplanétaires, on rencontre généralement de fortes hété-
rogénéités de température, de concentrations d’espéces ou de pression, menant a
d’importantes variations des propriétés optiques du milieu observé. Une prise en
compte rigoureuse de ces disparités spatiales est alors nécessaire pour mener a bien
I’évaluation des observables d’intérét. Cependant les difficultés qu’elles impliquent
nécessitent généralement de recourir a des hypothéses simplificatrices ou a des
méthodes entrainant des erreurs non maitrisées.

Dans une volonté de préserver le caractére exact dont bénéficient les méthodes de
Monte-Carlo et I’analyse statistique associée, un des principaux objets de cette thése
a été de proposer une méthode prenant en compte la complexité de ces hétérogénéités,
sans faire appel a une quelconque approximation. La solution retenue : les algorithmes
a collisions nulles fera ’objet de ce chapitre. Cette méthode, jusqu’alors absente
de la littérature du rayonnement thermique, mais trés employée dans d’autres
disciplines de la physique du transport (neutronique et physique des plasmas) y sera
décrite et adaptée a des problématiques radiatives. Tout au long de ce chapitre,
la dimension spectrale sera ignorée. Les problémes seront donc ramenés a des cas
monochromatiques ('intégration spectrale fera I'objet du chapitre Chap. 5).

Dans un premier temps, les difficultés relatives a la gestion des hétérogénéités par
les méthodes de Monte-Carlo, ainsi que les techniques couramment utilisées pour y
répondre seront présentées.

Un bref état de I’art de la littérature relative aux algorithmes a collisions nulles sera
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ensuite dressé. Puis, ces méthodes seront introduites et élargies a I’étude du transfert
radiatif. Une extension du domaine de validité de ces méthodes sera également
proposée.

L’approche retenue, reposant sur I'introduction d’un coefficient virtuel de collision
nulle &, ,, sera ensuite éprouvée face a un cas d’étude plus complexe : I’estimation
d’un bilan radiatif dans un milieu tridimensionnel, absorbant, émettant et diffusant,
entouré par des parois réfléchissantes. Ces simulations donneront lieu a une étude
paramétrique permettant d’évaluer les influences du coefficient de collision nulle, des
choix méthodologiques et de différentes propriétés optiques sur le comportement de
I’algorithme de Monte-Carlo retenu.

Dans la quatriéme section, nous montrerons comment le caractére de solution de
référence des algorithmes a collisions nulles peut étre mis a profit dans la validation
d’un code de calcul radiatif en géométrie complexe (la configuration retenue sera
celle d'une chambre de combustion).

La rédaction de ce chapitre s’appuie sur les deux publications |Galtier et al., 2013],
|[Eymet, 2011b] (données en Annexe D et Annexe E) qui ont fait suite aux travaux
présentés dans le présent manuscrit.

4.1 Problémes liés a I’hétérogénéité des propriétés
optiques du milieu participant

4.1.1 Incapacité d’échantillonner analytiquement des libres
parcours

Pour illustrer les difficultés rencontrées lorsque les propriétés optiques du milieu
ne sont pas uniformes, reprenons la configuration de la Sec. 3.3.1 : le calcul de
la luminance L, (x¢,uy) dans un milieu infini purement absorbant/émettant. Ce
cas d’étude est suffisant pour aborder le probléme relatif aux hétérogénéités. Le
passage a un cas diffusif ou & une géométrie fermée n’entrainera aucune difficulté
supplémentaire - si ce n’est de formalisme. Dans ces considérations, ’expression
statistique de la luminance L, (%o, 1) est donnée par :

L, (%o, 116) = /O T e L)l (A1)

ol pr(l) = kg yp(x) exp <— fol Kan(xo — l’uo)dl’) est la densité de probabilité des libres
parcours d’absorption et ol x = xg — lug correspond & la position d’émission.

La traduction de cette formulation en un algorithme de Monte-Carlo consiste
a échantillonner un grand nombre de libres parcours [ conduisant & une position
d’émission x = xy — [uy et & moyenner les luminances d’équilibre en ces points
d’émission. Cette moyenne d’échantillon constituera alors un estimateur non biaisé de
I'observable d’'intérét L, (xo, ug). Toutefois, dans le Chap. 3, nous avons délibérément
omis de présenter et de détailler I’échantillonnage de ces libres parcours, qui peut
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s’avérer impossible a réaliser de maniére analytique. En pratique, pour réaliser
I'échantillonnage d’un libre parcours [; (¢f. Sec. 3.2.3.1) selon une fonction densité de
probabilité p, (1) définie et normée sur [0, 0o, on génére uniformément un nombre
aléatoire r; entre 0 et 1 et on résout I’équation

l;
n-:/ pe()dl!
0

l; v
B / Fan (%0 — lluO) exXp <_ / Koy (xg — l”lIo)dl//> dl’
0 0

pour remonter & la valeur échantillonnée [; du libre parcours. En d’autres termes,
il faut donc étre capable d’'inverser analytiquement la fonction de répartition de la
variable aléatoire £ pour échantillonner les libres parcours.

(4.2)

Lorsque la fonction de répartition fol kan(x) exp (— fol/ kan(xo — l"uo)dl"> dl’ peut
étre exprimée de facon analytique et en particulier lorsque le champ de k,, est
uniforme, I’échantillonnage de libres parcours ne pose aucun probléme. Pour un
champ de coefficient d’absorption uniforme, la résolution de I'Eq. 4.2 :

l;
ri:/ kayexp (—kq,l') dl’
0

(4.3)
=1- exXp (_ka,nli)
conduit a ’échantillon /; suivant :
In(1 — r
= =) (4.4)
kan

Toutefois pour des configurations réelles, il est trés rare que les propriétés optiques
du milieu d’intérét soient telles qu’il soit possible d’inverser la cumulée de p.(1)
(I’épaisseur optique n’étant pas intégrable de fagon analytique). L’échantillonnage des
libres parcours, pourtant nécessaire pour les simulations par Monte-Carlo, devient
dans ce cas une tache délicate.

4.1.2 Alternatives couramment proposées

Pour répondre a cette limite, deux principales approches sont couramment em-
ployées dans la communauté du rayonnement thermique : la discrétisation des
propriétés optiques du milieu et I'inversion numérique des épaisseurs optiques.

Discrétisation du milieu La plus commune d’entre-elles consiste a discrétiser
spatialement le volume d’intérét et a considérer les propriétés du milieu comme
uniformes a l'intérieur de chaque maille (voir Fig. 4.1). De ce fait, il devient possible
d’échantillonner de fagon analytique les libres parcours d’extinction, puisque les
propriétés optiques sont constantes par morceaux le long du chemin optique.
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. — Profil de k), analytique
. — Profil de k,, maillé

llnl/x'o

FIGURE 4.1 — Pour permettre un échantillonnage aisé des libres parcours, il est courant de discrétiser
spatialement le milieu et d’approximer les champs de propriétés optiques comme uniformes a
I'intérieur de chaque maille.

Une telle méthode posséde cependant quelques limites. En effet, en discrétisant
les propriétés optiques du milieu, le modéle physique est modifié. Les résultats de
simulation dépendent alors du choix de maillage et les erreurs numériques causées
par ce choix ne sont pas maitrisées (un exemple volontairement pathologique est
présenté a la Fig. 4.2). Méme si les compétences développées par les spécialistes
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FIGURE 4.2 — Erreurs causées par la discrétisation des propriétés du milieu en fonction du nombre
de mailles dans le cadre du calcul de la luminance L, (z = 7,u™) émise par un milieu participant
monodimensionnel, non diffusant, défini sur [0, 7]. Les profils analytiques de coefficient d’absorption
kan(v) et de luminance d’équilibre L;?(x) sont donnés par la Fig. (A). Ces profils sont alors
approximés par une discrétisation en N mailles de méme dimension, dans lesquelles les propriétés
sont moyennées et supposées uniformes. La Fig. (B) illustre alors erreur relative (en %) commise
lors du calcul de L, (7) en fonction du nombre de mailles.

de ces approches maillées rendent généralement les erreurs causées par ce type
de discrétisation faibles voire négligeables, ces derniéres ne sont, en pratique, pas
quantifiables, et font ainsi perdre aux méthodes de Monte-Carlo leur caractére de
solution de référence.

La seconde contrainte associée a ce type de résolution est d’ordre purement
pratique : il est nécessaire a chaque nouveau cas d’étude, a chaque modification de
géométrie ou de champs de propriétés de repenser la discrétisation du milieu et de
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produire un nouveau maillage. Cette étape nécessaire est généralement complexe et
lourde a réaliser, en particulier lorsqu’il s’agit de valider la pertinence du maillage.

Inversion de [D’épaisseur optique Il est également possible, plutdét que
d’échantillonner des libres parcours, d’échantillonner des épaisseurs optiques
7:i(l;) = fol kon(xo — l'ug)dl’, et d’inverser ces épaisseurs optiques pour remonter
a un libre parcours [; et donc a une position d’émission [Farmer et Howell, 1998,
De Guilhem De Lataillade et al., 2002b, Eymet et al., 2005, Eymet et al., 2009,
De La Torre et al., 2014]. Dans ce cas 1a, I'Eq. 4.2 peut étre reformulée en :

r; = / exp (—7)dr (4.5)
0

Quel que soit le champ du coefficient d’absorption, il est toujours possible d’échan-
tillonner I'épaisseur optique qui est donnée par :

Ti(l;) = —In(1 —ry) (4.6)

Toute la difficulté réside alors dans le fait d’inverser I’épaisseur optique pour remonter
a une position d’émission. Si le champ des propriétés optiques est trop complexe,
il demeure toujours possible de le discrétiser (avec les limites que cela implique)
ou d’utiliser des techniques numériques d’inversion (essai-erreur, dichotomie, etc.).
Ces derniéres, bien que souvent plus précises que les approches maillées, présentent
le désavantage d’étre généralement trés gourmandes en temps de calcul. Mais ici
également, aussi faible que soit ’erreur numérique associée a ces techniques, le
caractére exact des méthodes de Monte-Carlo est perdu, puisqu’il est trés difficile
d’estimer les biais causés par ces méthodes numériques.

4.1.3 Non-linéarité dans I’expression statistique de I’équation
du transfert radiatif

Les difficultés liées aux hétérogénéités des propriétés optiques du milieu d’intérét
ne se limitent toutefois pas a I’échantillonnage des positions de collision. Si ’on
approche de facon purement statistique ce probléme, il serait toujours possible
d’insérer une nouvelle fonction densité de probabilité p,(l) qui elle, permettrait
un échantillonnage aisé des libres parcours. On aurait alors comme formulation
statistique :

L (k0. 10) — /O—i-oo saDdl kqn(x) exp <_ .f;)ﬁl{(:;;n(xo — l’lm)dl') qu(x)
(4.7)
r Kqn(x) exp < fo an (X0 — U'ug)dl’ ) L9xs — )

pc(l)

ol X = Xg — lug. Toutefois, pour des champs de propriétés optiques complexes, il
n’est toujours pas possible d’exprimer analytiquement ’épaisseur optique f(f Ean(x0—
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I'ng)dl’ (le probléme a été déplacé de la densité de probabilité au poids de Monte-
Carlo). Puisque cette épaisseur optique est elle-méme une grandeur intégrée, il serait
cependant théoriquement possible de 'estimer de facon statistique en insérant a
nouveau une fonction densité de probabilité arbitraire pe/ (1) :

(1) = /O l e () {ka’”(x" — l/u")] dl' = E {kw(xﬁ — l/“(])} (4.8)

per(l') per(l)

Mais en pratique ce n’est pas envisageable : il serait alors nécessaire d’estimer
I’épaisseur optique par une simulation de Monte-Carlo compléte pour chacune des
Ny réalisations de I'algorithme permettant d’estimer L, (xo, up). Si I'on imagine que
chaque algorithme (le premier estimant ’épaisseur optique et le second estimant la
luminance) soit constitué de 10° réalisations indépendantes, il serait alors nécessaire
de réaliser 1012 opérations, ce qui représenterait un temps de calcul prohibitif. S’il n’est
pas possible de traiter statistiquement de facon simultanée ces deux termes intégraux :
la luminance et I’épaisseur optique, c’est & cause de la fonction exponentielle qui
introduit une non-linéarité dans I'expression statistique de la luminance L, (xg, uy) :

1) = B [P o (i [ p )|

=E[fnvc (EW ()]

ot fnr(a) = kay(x)Ly?(x)exp(a)/Pc(l) est une fonction non-linéaire et
W(l') = kopn(xo — U'ag)/pe(I'). Il n'est alors pas possible d’exprimer I'Eq. 4.9
comme une seule espérance d’une variable aléatoire et donc de proposer un unique
algorithme de Monte-Carlo pour traiter ce probléme en milieu hétérogéne (cf. encadré
de la Sec. 3.1.2). D’un point de vue purement statistique, la difficulté rencontrée
lorsque les champs de propriétés optiques ne sont pas intégrables analytiquement
réside donc bien dans cette non-linéarité engendrée par la fonction exponentielle.

Dans sa thése, J. Dauchet propose de répondre & une non-linéarité de ce type par
un développement en séries entiéres [Dauchet, 2012]. Une telle reformulation permet
ainsi de ne développer qu’un unique algorithme récursif pour traiter une expression
non-linéaire (dans son cas d’étude : la productivité globale d’un photobioréacteur)
tout en conservant le caractére exact des méthodes de Monte-Carlo. Dans notre cas,
nous allons utiliser une autre méthode connue sous le nom d’algorithmes a collisions
nulles. Cette technique, qui présente de grandes similitudes avec les développements
en séries entiéres [Longo, 2002|, fera ’objet des prochaines sections.

4.2 Les algorithmes a collisions nulles

4.2.1 Historique des algorithmes a collisions nulles

Les algorithmes de Monte-Carlo a collisions nulles sont apparus au début des
années soixante dans deux champs disciplinaires : la physique des Plasmas et la
Neutronique. Il est intéressant de constater que cette méthode a vu le jour de maniére
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totalement indépendante dans chacune de ces deux communautés, menant ainsi a
deux ensembles distincts de travaux qui ont semblé s’ignorer jusqu’a aujourd’hui (a
I'exception de la publication [Boeuf et Marode, 1982] faisant un lien entre ces deux
communautés). Aussi, cette sous-section a pour objectif de présenter succinctement
cette littérature plutot complexe de par sa duplicité et de par la variété des termes
employés pour décrire une méme technique.

Les algorithmes a collisions nulles ont été développés a la fin des années
soixante dans le domaine de la physique des plasmas. Trés utilisés dans ce champ
d’application, ils permettent notamment de tenir compte des sections efficaces
d’interaction dépendant de la vitesse des particules. On les rencontre dans cette
communauté sous les dénominations : Null-Collisions, Fictitious-Collisions, Pseudo-
Collistons, Null-Fvents ou encore Fictitious-Fvents. H.R. Skullerud est le premier
a aborder dans [Skullerud, 1968| un Algorithme & Collisions Nulles, sans encore le
dénommer ainsi, dans le but de pouvoir tirer statistiquement des "temps libres"
entre deux collisions ion/molécule produites dans un gaz soumis & un champ
électrique. De nombreux travaux vont alors s’ensuivre |Lin et Bardsley, 1977,
Lin et Bardsley, 1978, Boeuf et Marode, 1982, Heifetz et al., 1982, Andreucci, 1985,
Brennan, 1991, Longo, 2002, Longo et Diomede, 2004| visant pour la plupart a simu-
ler les interactions entre particules chargées et molécules neutres sous I'influence d’un
champ électrique. Les travaux de Skullerud ont également mené la communauté étu-
diant la dynamique des gaz raréfiés a s’intéresser aux Algorithmes a Collisions Nulles
[Koura, 1986, Khisamutdinov et Sidorenko, 1995, Rjasanow et Wagner, 1998|.

E. Woodcock a été, de son coté, a l'origine des algorithmes a collisions nulles
dans le domaine de la neutronique [Woodcock et al., 1965]. Cette technique, étendue
d’un point de vue théorique par Coleman [Coleman, 1968|, sera alors intensivement
utilisée dans ce champ applicatif. Parmi les principaux travaux, on peut citer
[MacMillan, 1967, Spanier, 1970, Androsenko et al., 1991, Martin et Brown, 2001,
Brown et Martin, 2003]. La place qu’occupera cette méthode dans cette com-
munauté sera telle qu’elle sera implémentée nativement dans plusieurs codes
de simulation de transport particulaire tels que SERPENT [Leppénen, 2007b,
Leppénen, 2007a, Leppénen, 2010 ou encore MORET [Miss et al., 2007,
Forestier et al., 2008]. Ces travaux conduiront des spécialistes d’autres domaines
applicatifs tels que ceux de la synthése d’image [Szirmay-Kalos et Toth, 2010,
Szirmay-Kalos et al., 2011|, de la radiothérapie [Wang et al., 1997 et de la tomo-
graphie [Kawrakow et Fippel, 2000, Rehfeld et Stute, 2008, Kawrakow et al., 2008,
Rehfeld et al., 2009, Badal et Badano, 2009, Toth et Magdics, 2010] & s’en inspirer.
On rencontre les algorithmes & collisions nulles dans la littérature associée a ces
champs d’étude sous différentes dénominations : Woodcock-Tracking, Delta-Tracking,
Hole-Tracking, Woodcock-Scattering, Delta-Scattering, Pseudo-Scattering ou encore
Fictitious-Scattering.

Toutefois, bien que trés usités dans de nombreux domaines d’application de la
physique du transport corpusculaire, les algorithmes a collisions nulles semblent,
a notre connaissance, absents de la littérature propre a 1’étude du rayonnement
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thermique. Aussi, ces travaux de thése proposent, en partie, d’étendre des algorithmes
a collisions nulles & ce champ applicatif.

4.2.2 Principe des algorithmes a collisions nulles

Le principe des algorithmes a collisions nulles repose sur I'addition arbitraire d’un
champ positif de coefficient de collision nulle £, ,, dans le champ d’extinction réel :

~

ky = Koy + kay + kny (4.10)

Ce champ fictif de collisions nulles doit étre défini de fagon a rendre le champ du
nouveau coefficient d’extinction k, suffisamment simple pour permettre un échantillon-
nage aisé des libres parcours selon la fonction densité probabilité de Beer-Lambert :

pr(l) = ky(xo — lug)exp (— /O l e (%0 — l’uo)dl’> (4.11)

Le champ du coefficient de collision nulle %, ,, peut par exemple étre défini de sorte
a rendre celui de ]%n uniforme (voir Fig. 4.3). En pratique, c’est le nouveau champ
de coefficient d’extinction /%,, qui est défini arbitrairement, le champ de £, ,, n’étant
jamais explicité mais seulement défini comme £, , = ffn — kap-

k

ky

NS
:

X

FIGURE 4.3 — Ajout d’un champ de coefficient de collision nulle &, ,, au champ d’extinction réel
ky = kqy + kg5 de sorte a rendre le champ résultant k,, uniforme.

Toutefois, pour ne pas modifier la physique du transport, ce nouveau type de
collisions fictives ne doit avoir aucun effet sur le transfert radiatif dans le milieu
participant d’intérét. Si on souhaite associer une image physique a ces collisions
nulles, la seule solution consiste alors a les assimiler & des événements de diffusion
vers l’avant, dont la fonction de phase est un Dirac (§). Aprés une collision nulle, le
photon initialement dans la direction u, continue son chemin dans la méme direction
ug. Leur introduction dans I’équation locale du transfert radiatif

WYL, (x,u) = — [kam(x) + kdm(x)] Ly(3%, 1) + kg (%) LE7()

(4.12)
+kd7n(x)/4 p(ulu’)L,(x, u’)du’
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modifie cette derniére en :
WV Ly (56, 0) = = [ () + Fian (%) + K (%) Ly (%, 0) + i (}) L (x)

+ kapn(x) /4ﬂp(U|U’)Ln(X, u)du’ + k(%) /47T S(u—u')L,(x, 120111;’)

Les termes sources et puits de collision nulle se compensent alors exactement :
k(%) [, 0(u—u')L,(x,u')du’ = ky,(x)L,(x,u), prouvant ainsi, de maniére for-
melle, que cet ajout de collisions fictives ne joue aucun role quant a la physique
du transport de photons (cela reste vrai pour du rayonnement instationnaire). Ce
ne sera qu'une fois ’équation du transfert radiatif exprimée sous sa formulation
intégrale, que cette insertion de termes collisionnels fictifs prendra tout son sens
et présentera sa plus-value. Ce passage a une expression intégrale fera 'objet des
prochains paragraphes.

4.2.3 Approche statistique des algorithmes & collisions nulles

En guise d’illustration, reprenons le cas d’étude présenté a la Sec. 3.3.1 : 'estima-
tion de la luminance L, (%o, up) dans un milieu infini purement absorbant /émettant.
La prise en compte de parois ou d’événements de diffusion n’apporte pas de difficulté
particuliére, comme cela va étre montré par la suite. Dans ces conditions, la luminance
L, (x0,u9) s’exprime sous forme intégrale comme :

—+00 !
Ln(X07 110) = / dl ka,n<XO — luO>LZq(X0 — lll()) exXp (—/ ka,'r](XO — l'uo)dl’>
0 0
(4.14)

Ajoutons désormais arbitrairement un second type de collision & ce milieu : les
collisions nulles, caractérisées par leur coefficient k,, ,. Puisque ces nouvelles collisions
ne correspondent qu’a des événements de diffusion vers ’avant, ce cas d’étude équivaut
donc & celui d’'un milieu absorbant /émettant/diffusant, tel que celui présenté a la
Sec. 3.4.1, & une subtilité prés : les événements de diffusion sont caractérisés par une
fonction de phase particuliére de type distribution de Dirac (aucun changement de
direction n’a lieu aprés une collision nulle). II est alors possible, & partir de I'Eq. 3.66,
d’exprimer la formulation intégrale de ce cas d’étude comme :

o) i
L, (%0, 1) :/ dly ky,(x1) exp (—/ kp(xo — l’luo)dl’1>
0 0

Kan (x1)

]%n (x1)

i k;n,n (x1)
ky (x1)

avec Xj41 = X; — [;11u;. Cette équation est bien solution de I'Eq. 4.13 pour un milieu
infini non-diffusant. Bien que cet ajout d’événements virtuels ne modifie aucunement
la physique du transport de photons, nous sommes passés de la simple expression

L (x1) (4.15)

/ 5(110 — ul)Ln(Xl, ul)dul
4r
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intégrale 4.14 & une équation de Fredholm qu’il est possible de percevoir comme une
formulation récursive et dont le terme récursif est donné par :

oo . liv1
Ly (xj,u;) :/0 dljs1 ky(Xj41) exp (—/0 ky(x; — l}+1uj)dl§+1>

ka X e
an(Xj+1) Le(x;41) (4.16)
kn(Xj41)
x knn(Xj11)
NILLU A A /5(uj—uj+1)L,7(Xj+1,uj+1)duj+1
kn(Xj41) Ja

Comme la fonction de phase associée aux collisions nulles est un Dirac, il est donc
possible d’intégrer analytiquement le terme récursif de diffusion vers ’avant. Il vient
alors :

) R i+1
Ly, (x;, ;) I/O dljs1 ky(Xj41) exp (—/0 kin (% — 13+1uj)dl;‘+1)

ko n(x; .

Man(XjH) (4.17)
kn(%j41)

—i—kfl’n(XjH)L

(Xj41, ;)
Ro(gn)

dont I'observable d’intérét L, (xp,ug) n’est qu'un cas particulier validant j = 0.

Dans des considérations purement statistiques, il est possible d’exprimer 'Eq. 4.17
comme :

* Pa(xj41) L3 (%541)
Lofiow) = [l e, () " (1.15)
Y + (1 = Pal(xj41)) Ly(xj41,15)
ot P, (Lit1) = ky(xj51) exp <— folj“ k() — l;Huj)dl;H) est la fonction densité
de probabilité associée aux libres parcours d’extinction (prenant désormais en compte
les absorptions/émissions et les collisions nulles), ott Py (Xj1+1) = ko (Xj41)/ky(Xj41)
correspond & la probabilité qu'un photon soit émis en un point x4 et 1 —P,(x;41) =
Knn(Xj+1)/ky(xj11) a la probabilité quun photon collisionnant en x;; subisse un
événement de type collision nulle. A I'instar de I’'Eq. 3.70, la luminance d’intérét
peut étre exprimée comme l'espérance de la luminance d’équilibre aux positions
d’émissions X* :
L,(x0,u9) = E [Lf]q(X*)] =E [W(X")] (4.19)

avec i1
0 J—

X =Y A4X [Ja- 4y (4.20)
j=1 q=1

ot A, est une variable aléatoire valant 1 avec une probabilité P,(x,) et 0 avec une
probabilité 1 — P, (x,).
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Il est alors possible de développer a partir de I’'Eq. 4.19 un algorithme de Monte-
Carlo consistant a effectuer un grand nombre N,,. de réalisations indépendantes
(indexées i), chacune composée des étapes suivantes.

— ALGORITHME

1. On initialise I'indice de collision : j =0

2. On échantillonne un libre parcours l;;; selon la fonction densité de
probabilité pg,, , (1j41)

3. On calcule les coordonnées du point de collision : X1 = x; — [;11u;

4. On détermine si la collision est une absorption ou une collision nulle par
un test de Bernoulli. Pour cela, on tire aléatoirement et de fagon uniforme
un nombre 7,4 dans [0, 1]

4a. Sirji1 < Pu(Xj+1), on considere que la collision est une absorption.
Le poids de la réalisation est calculé : w; = Ly?(x;41) et I'algorithme
s’arréte ici, on peut passer a une nouvelle réalisation.

4b. Si 741 > Pu(X;41), on considére que l'on est face a une collision
nulle. Puisque les collisions nulles correspondent & des événements
de diffusion vers l'avant on va boucler a I'étape 2 avec j = 5 + 1
et ainsi échantillonner un nouveau libre parcours & partir du point
X;+1 dans la méme direction u;;; = u;. Cette récursion va alors se
poursuivre jusqu’a ce qu'un événement d’absorption soit rencontré.

Les images physiques associées sont identiques a celles relatives a un milieu
absorbant /émettant /diffusant : les photons sont suivis depuis le point sonde x, dans
la direction —uy. A chaque position de collision, ces photons ont une probabilité d’étre
absorbés ou de diffuser vers 'avant. Ces images sont intuitivement satisfaisantes,
puisqu’en faisant artificiellement passer le coefficient d’extinction de k,,, & /%n > kan,
les libres parcours d’extinction sont statistiquement sous-estimés. Cette réduction
est alors compensée par les événements de diffusion vers 'avant que constituent les
collisions nulles.

On percoit alors 'avantage qu’apporte cet ajout arbitraire de collisions nulles :
elles peuvent étre choisies de sorte a rendre 1’échantillonnage des libres parcours
selon pg, (I;) analytiquement possible. La non-linéarité associée a I'exponentielle de
la loi de Beer-Lambert et les difficultés liées a ’estimation de 1’épaisseur optique
ont donc disparu au profit d’une formulation récursive. Les algorithmes & collisions
nulles ne constituent alors qu’une alternative possible a I’échantillonnage des libres
parcours d’absorption (ou d’extinction si la diffusion avait été prise en compte),
comme en atteste 'Eq. 4.19.

Ainsi, dés lors qu'un champ de k est défini et majore le champ réel du coefficient
d’extinction, les variations des propriétés du milieu ne posent plus de probléme de
traitement numérique. On s’affranchit ainsi de techniques d’inversion complexes et
d’une discrétisation spatiale des propriétés qui auraient conduit & des erreurs non
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maitrisées. L’estimation d’'une observable par cette approche a alors une valeur de
solution de référence, dans le sens ou la méthode elle-méme n’entraine aucun biais
numérique. Le fait qu’aucun maillage ne soit requis par la méthode elle-méme ne
signifie toutefois pas que les champs de propriétés doivent étre décrits de fagon
analytique. Tout champ de propriétés peut étre rigoureusement accepté en entrée de
I’algorithme :

e Pour des cas académiques ou résultant de modéles théoriques, il est possible
de décrire les propriétés optiques du milieu par des champs analytiques. Dans
ce cas, l'estimation de I'observable d’intérét sera non biaisée et strictement
conforme au modéle de propriétés considéré. Ce type de champs sera privilégié
dans les travaux présentés dans le présent manuscrit pour faciliter la mise en
ceuvre numérique et les études paramétriques.

e En pratique, les champs de propriétés (température, pression et concentrations)
sont généralement issus de simulations basées sur des approches de type élé-
ments/volumes discrets ou de mesures expérimentales. Ces derniers, décrits de
facon discréte, sont communément fournis avec un schéma d’interpolation fidéle
a la physique en présence. Ici aussi, leur utilisation en entrée des algorithmes
a collisions nulles conduira & une estimation non biaisée et non approchée de
I'observable d’intérét, sans nécessiter la production d’un maillage supplémen-
taire. De plus, contrairement aux méthodes de Monte-Carlo maillées, tous les
schémas d’interpolation pourront étre acceptés et traités de fagon rigoureuse.
Seule la validité des champs maillés de propriétés et du modeéle d’interpolation
utilisés en entrée de 'algorithme pourront avoir une incidence sur la qualité
des estimations.

4.2.4 Vers des coefficients de collision nulle négatifs

Dans la formulation statistique présentée précédemment, la détermination du
type de collision (absorption ou collision nulle) se fait par l'introduction d’une
probabilité d’absorption P,(x;) = kan(X;)/ky(x;). Cette probabilité n’a de sens
que si elle est comprise entre 0 et 1 et donc si le champ de l%,, majore en tout
point le champ du coefficient d’extinction réel k, (ici identique a celui du coefficient
d’absorption k,, puisque la diffusion n’est pas prise en compte). En d’autres termes,
P, n’a de sens que si le coefficient de collision nulle &, , est positif en tout point.
L’algorithme présenté précédemment est donc valable, si et seulement si, cette
condition est respectée. Dans le cas contraire, l'algorithme - tel qu’il est présenté a
la Sec. 4.2.3 - produira bien une estimation de 1'observable désirée, mais celle-ci sera
biaisée.

Or, dans beaucoup de cas pratiques, il est tres difficile de déterminer a 1’avance
la valeur maximale que peut prendre localement le coefficient d’extinction. En effet,
il est fréquent que les propriétés du milieu soient calculées au cours de la simulation.
Il est également courant que les champs de propriétés optiques soient discrétisés
(découlant de maillages obtenus lors de calculs de CFD) et fournis avec un schéma
d’interpolation donné. Cette interpolation est susceptible de décrire des champs
dépassant localement les valeurs discrétes d’origine. Il est ainsi vraiment délicat
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de définir avec certitude un champ de /%n qui majore strictement le champ réel de
coefficient d’absorption (ou d’extinction). Cette condition nécessaire représente ainsi
une importante contrainte lors de 'implémentation d’algorithme & collisions nulles.

Cette limite peut cependant étre surmontée en observant que le choix des pro-
babilités d’absorption n’est pas contraint. Dans la littérature, seule ’expression
Po(X;) = kan(x;)/kn(x;) est rencontrée du fait de sa nature intuitive, relative aux
images cinétiques des collisions nulles (diffusion vers I'avant). Cependant, rien n’em-
péche de définir de fagon arbitraire une nouvelle probabilité d’absorption 75a(xj), qui,
elle, sera toujours comprise entre 0 et 1, quelle que soit la valeur de 12:77 ou de ky, .
L’Eq. 4.18 est alors reformulée en :

~ Pa j e
o0 7Da(><y‘+1)75 (X]H)an(XjH)
I A N dl. ~ L. a(Xj-i-l)
W(X]’ u]) ] Jj+1 p£j+1( J+1) - 1 — P (X ‘+1)
P (xa)) e
+ (1 Pa(Xy+1)> 1 75a(xj+1)Ln(Xj+h u;)

(4.21)
La luminance d’intérét correspond alors a l’espérance d’une nouvelle variable
aléatoire :

L,(xp,u9) =E =E [W]

q=1

(4.22)
ol flq est une variable aléatoire associée a la g-iéme collision valant 1 avec une
probabilité P,(X,) et 0 sinon. Ici encore, le choix de la probabilité P,(X,) demeure
totalement arbitraire. Nous proposons le choix suivant :

Pu(x;) = Kan(X;) _ Kan(x;) (4.23)

Fan(%5) + 1Ky (%5) = Kan (x| Kan(3) + [Rnin (35

qui présente I'avantage d’étre égal a la probabilité originelle Py (x;) = kqp(x;),/ky(x;)
lorsque le coefficient /%n(xj) majore le coefficient d’absorption (pour un coefficient
positif de collision nulle ). Lorsque des coefficients de collision nulle négatifs seront
rencontrés, la structure statistique restera identique, seule I'expression de la variable
aléatoire W sera altérée. On garde ainsi la structure et le formalisme initiaux des
algorithmes & collisions nulles tout en se prémunissant d’éventuelles erreurs dues a
une mauvaise définition d’un champ majorant. Cette introduction d’une nouvelle
probabilité arbitraire P, n’entraine alors qu’une révision mineure des algorithmes a
collisions nulles standards. Mais désormais, tout champ de 12:7, peut étre, en théorie,
accepteé.

Toutefois, une attention particuliere doit étre portée aux positions x; pour
lesquelles le coefficient de collision nulle k,,(x;) est négatif a cause du terme

By = % dans I'Eq. 4.22. En effet, 'algorithme de Monte-Carlo consiste
(X,

a produire plusieurs échantillons w; de la variable aléatoire W (cf. Eq. 4.22).
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Lorsqu’aucune collision nulle de coefficient négatif n’est rencontrée, le terme f,
vaut 1, I’échantillon w; est alors égal & L(x,,) ou x,, correspond & la position
d’émission. Si pendant la réalisation, au moins une collision nulle de coefficient
négatif a lieu, la valeur absolue du terme f3, sera strictement supérieure a 1 et
son signe alternera a chaque fois qu’une collision en x validant h,,,(x) < 0 sera
rencontrée. Dans la mesure ol les termes de 3, sont inclus dans un produit, ils
peuvent étre a l'origine d'une forte augmentation de variance de I'estimation affichée
par l'algorithme de Monte-Carlo (& cause de I'alternance de signe et de la diver-
gence qu’impliquerait le produit de nombres dont la valeur absolue est supérieure a 1).

On devine alors que le choix du champ de /%n ne sera pas anodin :

e il doit étre suffisamment simple pour permettre un échantillonnage rapide des
libres parcours.

e il doit étre le plus proche possible de celui du coefficient d’absorption. En effet,
plus il sera élevé et plus il y aura de collisions nulles, sans réel intérét pour la
simulation elle-méme, mais sources d'une augmentation du temps de calcul.

e il doit, autant que possible, majorer le champ du coefficient d’absorption pour
éviter une variance importante de ’estimation de Monte-Carlo.

La proposition faite dans ce paragraphe est donc a la fois importante, puisqu’elle
autorise désormais une définition imparfaite du champ majorant lz:77 sans entrainer
aucun biais, mais aussi limitée puisque, si les régions dans lesquelles &, ,, < 0 sont
trop représentées, une augmentation conséquente de l’erreur relative est engendrée.

4.3 Mise en application et étude paramétrique

Pour étudier I'influence qu’a le choix du champ de coefficient d’extinction arbitraire
/2:,7 sur le comportement de 1'algorithme de Monte-Carlo, une étude paramétrique est
ici proposée pour une configuration académique. Cette influence sera ainsi analysée
et discutée pour une configuration relativement complexe (absorption, émission,
diffusion et parois réfléchissantes), pour différentes épaisseurs optiques d’absorption
et de diffusion et pour différentes variantes algorithmiques (traitement statistique ou
déterministe du type de collisions).

4.3.1 Description du cas d’étude

4.3.1.1 Géométrie et champs de propriétés considérés

Considérons, dans le cadre de cette étude, un cube de coté 2 x D partiellement
réfléchissant, d’émissivité € et de température 7" uniformes, dont le centre correspond
a lorigine du repére cartésien (voir Fig. 4.4). Considérons également qu’a l'intérieur
de ce cube est présent un milieu hétérogéne émettant, absorbant et diffusant le
rayonnement (selon une fonction de phase de type Henyey-Greenstein de paramétre
d’asymétrie uniforme g).

Les champs hétérogénes des propriétés du milieu (coefficients d’absorption kg ,(x),
de diffusion kg, (x), et luminance d’équilibre L;?(x)) sont définis de fagon analytique
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FIGURE 4.4 — La géomeétrie considérée correspond a un cube de c6té 2 x D partiellement réfléchissant
(d’émissivité ¢ et de température T uniformes) dont le centre correspond a lorigine du repére
cartésien. A l'intérieur de ce cube est présent un milieu hétérogéne émettant, absorbant et diffusant
le rayonnement (selon une fonction de phase de type Henyey-Greenstein).

afin d’approcher la géométrie d'une flamme axisymétrique dans une chambre de
combustion cubique (voir Fig. 4.5). Chacun d’entre-eux est défini en fonction d’une
3 3 max max €q,max 3 3

valeur maximale, respectivement k77, kg™ et Lp?™@*, qui permettront par la suite
de réaliser une analyse paramétrique adimensionnalisée. Mises a part ces valeurs

maximales, les expressions de ces champs sont identiques. Elles sont données ci-aprés

pour X = [x,y, 2] :
max (D — [y? + 22
kam(X) — ka,n ( 2D ) 1 — W (424)

max (D — Y2+ 22
() = Ky ( 2D ) L=\ o

e eq,max D—x /yz + 22
an(X) = an’ (W) 1-— W (426)

et sont illustrées a la Fig. 4.5. Leur valeur maximale est donc atteinte au point
Xmax = |—D, 0,0].

(4.25)

Pour faciliter ’analyse, le champ de l;:n(x) sera défini comme uniforme, as-
surant également un échantillonnage aisé des libres parcours. Comme les coeffi-
cients d’absorption et de diffusion prennent tous deux leur valeur maximale en
x = [=D,0,0], le coefficient d’extinction maximal est atteint en ce point et donné
par k'@ = ko¥(x) + kgn*(x). La grandeur adimensionnelle

1 (4.27)

max

n

p:

nous renseigne alors sur la présence ou non de zones dans lesquelles le coefficient de
collision nulle &, , serait négatif. Si p > 1, le champ de &, est positif en tout point de
'enceinte (K, > 0). Dans le cas contraire : p < 1, le coefficient de collision nulle sera
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FIGURE 4.5 — Représentation adimensionnalisée des champs de coefficient d’absorption, de diffusion
et de luminance d’équilibre pour différentes altitudes (z = 0, z = £0.25D, z = £0.5D, z = £0.75D
et z = +D). Chacun d’entre eux est défini par la méme expression : A(x) = A™*(D —z)/(2D)(1 —

(y2 + 22)/(2D?)) ou les valeurs génériques A(x) et A™?* peuvent représenter respectivement

kan(x) et kg* s kan(x) et kg's* ou encore Lpf(x) et Lytmex,
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négatif, au moins localement. La zone la plus critique étant celle proche du point
[—D,0,0].

4.3.1.2 Estimation d’un bilan radiatif monochromatique

Dans le cadre de cette étude, on souhaite étudier le bilan radiatif monochromatique
Srn(Xo), c’est-a-dire la différence entre les puissances radiatives absorbée et émise
localement en xg. Il s’exprime, en régime stationnaire et sous 'hypothése d’équilibre
thermodynamique local, comme :

o) = [ o 0) [0 0) = L5 s
i (4.28)

= K (%0) [ /4 L0, g ) — 4wa;1(><0)}

Compte tenu des champs de propriétés retenus, le bilan radiatif monochromatique
est proportionnel a Lp?™* et les seuls parametres adimensionnels restants sont
p, les épaisseurs optiques d’absorption kg'p*D et de diffusion k7D, le parametre
d’asymeétrie g et 'émissivité €. Outre l'intégrale directionnelle sur 47, toute la difficulté
de cette estimation réside dans le calcul de la luminance L, (xg, ug) qui va désormais
devoir tenir compte des événements de diffusion ainsi que de ceux d’émission et de
réflexion aux parois. Sans ajout de collisions nulles, il est possible d’exprimer cette
luminance a partir de I’'Eq. 4.28 sous une forme récursive :

o li+
Ly(xj,u5) = /O dljy1 ky(Xj41) exp (—/0 k(x5 — l}+1uj)dl’1>
( E(Xw,j+1)Lf,q(Xw,j+1)
+(1 - 5(Xw,j+1))/ P (X1, Wi [W541) Ly (K i1, W1 )dWjg
27
x Kan(Xj11)
k .
+7’[ (X]‘+1 € V) n(X]-'H)
kd»’](XJJrl)
_.I_—
\ kn(xj—H) An

H (%1 € V)

Ly (Xj41)

(X1, Wylwy 1) Ly (X1, w1 )dugg

Ve
(4.29)

L’Eq. 4.28 peut alors étre reformulée de fagon statistique, avec 'insertion d’une
fonction densité de probabilité des directions d’émission py,(ug) arbitraire, en :

Sr,n(XO)ka,n(XO) |:/4 Pu, (uO)Ln(X07 uo)duo — 47TL767q(X0) (430)

7y
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ou le terme récursif L, (x;,u;) est donné par :

LU(Xj>uj) = / Py (lj+1)dlj+1
0

( Pe(Xuw,j+1) Ly (X j+1) )
M g V) +(1 = Pe(xw,j+1)) /27r (X g1, W50 1) Ly (Ko i1, Wjin )dut
. Pa (1) Lt (%j41)
\ i V) F=Paljin)) | S0 010540 Ly (541, W11 )d0 0

(4.31)
avec Pe(Xy) = €(Xy) et Py(x) = ko yy(x)/ky(x). Le bilan radiatif correspond alors &
I'espérance de la variable aléatoire W (X*) décrite ci-dessous :

Syn(x0) =E [k‘a,n(Xo) (@

pu,(uo) 4“?’(%))} =E[W(X")] (4.32)

ou la variable aléatoire X* correspond a la position d’émission définie (comme a la
Sec. 3.4.4) par :

<.
|

o] 1

X =3 [H (X; EVVAX; +H(X; ¢ V) Eij,j} (1-A, —E)  (4.33)

1

Jj=1 q

avec A; une variable aléatoire valant 1 avec une probabilité P,(x;), 0 sinon, et £
une variable aléatoire valant 1 avec une probabilité P.(x,,;), 0 sinon.

L’algorithme de Monte-Carlo réciproque correspondant consiste donc a échan-
tillonner la variable aléatoire W (X*) un grand nombre de fois. Chacune de ces
réalisations indépendantes consiste & échantillonner une direction ug selon py,(uy)
et un libre parcours [; depuis la position d’intérét xq, dans la direction —ug, selon
pr, (l1). Si x; n’appartient pas au milieu V, la collision a alors lieu a la frontiére en
X1, il y a une probabilité P.(x, 1) que le photon soit absorbé en ce point, mettant
fin & la réalisation (dans ce cas, I’échantillon de la variable aléatoire W (X*) est donné
par w; = kg ,(Xo) [Lflq(xwvl)/on (ug) — 47TL§;‘1(XO)D ; sinon le photon est réfléchi, une
direction u; et un nouveau libre parcours /; sont échantillonnés respectivement selon
(X1, Uo|uy) et pe,(l2), la réalisation se poursuit alors jusqu’a ce quune position
d’absorption soit identifiée. La collision suite a I’échantillonnage du libre parcours ly
peut également avoir lieu dans le milieu V en x;. Dans ce cas, il y a une probabilité
P.(x1) que le photon soit absorbé en ce point, mettant fin a la réalisation (le poids
de Monte-Carlo est alors donné par w; = ka,(x0) [L&4(x1)/pu, (wo) — 4L (x0)]) ;
sinon, le photon est diffusé, une direction u; et un nouveau libre parcours [l sont
alors échantillonnés respectivement selon ¢(x,, 1, uo|uy) et pe,(l2), la réalisation se
poursuit alors jusqu’a ce qu'une position d’absorption soit identifiée. Les images

1. x4 j4+1 est définie comme le premier point d’intersection entre la frontiére B et la demi droite
définie par le point x; et la direction —u;.
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physiques associées a cet algorithme sont illustrées a la Fig. 4.6.
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FIGURE 4.6 — Bilan radiatif en x( sans ajout de collisions nulles. L’algorithme de Monte-Carlo
consiste & suivre des photons depuis xo dans ’ensemble des directions ug, jusqu’a ce qu’une position
d’émission par le milieu (voir x5) ou par la paroi soit identifiée (voir x,,5). Le long du chemin
optique d’intérét, les photons peuvent étre diffusés (voir x1, X2 ou x3) ou réfléchis a la paroi (voir
X4).

4.3.2 Traitement statistique du type de collision

4.3.2.1 Champ k majorant le champ du coefficient d’extinction

Toutefois, cet algorithme présuppose que les libres parcours peuvent étre échan-
tillonnés. Si tel n’est pas le cas, si les champs de k,,, et de k4, sont trop complexes
pour permettre un calcul analytique de I’épaisseur optique, il peut étre intéressant
d’ajouter un troisieme type de collision : les collisions nulles. La variable aléatoire
L1, associée aux libres parcours, sera alors définie selon la densité de probabilité

. it
ﬁLjJrl (lj+1) = kn(xj — lj+1uk) exp (—/ kn(xj — l;+IUj)dl;+1) (434)
0

ou ky = kqy + kay + kny. Les conditions aux frontieres ne seront pas modifiées mais
une nouvelle probabilité de collision nulle P, fera son apparition. Trois types de
collisions pourront alors étre rencontrés dans le milieu :

e des émissions (ou des absorptions, selon que 'on se place dans une description
directe ou réciproque), de probabilité P, = ko, /ky,

e des diffusions, de probabilité Py = ky,,/ l;:n,
e des collisions nulles, de probabilité P, =k, ,/ 12:7,,

Si 'on fait comme hypothése, dans un premier temps, que le champ de 12;7, majore
le champ du coefficient d’extinction maximal k> = kg'* + kg™, les valeurs de P,
Py et P, sont comprises entre 0 et 1 et leur somme vaut bien 1 pour tout point

x. L’ajout de collisions nulles dans I’Eq. 4.30 n’entraine pas de changement visible,
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seule I'expression récursive de la luminance L,(x;, u;) est modifiée :

L,(xj,u;) = /Oooﬁﬁj+l<lj+1)dlj+1
( Pe (Xw,g+1)L q(Xw,JH) )
+(1 = Pe(Xwj11)) /27r (X1, W0 1) Ly (X 41, W1 )t
X Pa(xj1) Ly (Xj41)

H(xj01 ¢ V)

+H (xj41 € V) +Pa(x11) ¢(Xj+1>uj|uj+1)Ln(Xj+1,Uj+1)d11j+1

\ Pu(Xj41)L (Xj+1auj+1 = u) )
(4.35)
L’expression de ce bilan radiatif comme l’espérance d’une variable aléatoire
W(X*) demeure identique a celle que I'on avait avant ’ajout de collisions nulles (voir
Eq. 4.32). Méme si I'expression de la variable aléatoire X*, associée aux positions
d’émission, reste inchangée, X* est désormais définie par p,(l) et tient alors compte
d’éventuelles collisions nulles. Cette formulation intégrale méne alors a 'algorithme
présenté a la Fig. 4.7.
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!
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FIGURE 4.7 — Algorithme & collisions nulles usuel permettant d’estimer S, ,(xg) par un algorithme
a collisions nulles usuel.
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4.3.2.2 Validation de l’algorithme a collisions nulles pour différentes
épaisseurs optiques

Dans l'optique de valider ’algorithme présenté a la Fig. 4.7, ce dernier a été
comparé a un algorithme standard de Monte-Carlo bien maitrisé, formulé en épaisseur
optique et dans lequel I'inversion des épaisseurs optiques est réalisée en ajustant de
fagon trés précise le champ du coefficient d’extinction, le long d’une ligne de visée,
par une décomposition en splines cubiques (inversible analytiquement). Pour cette
validation, le bilan radiatif monochromatique a été calculé par les deux algorithmes
en deux points du milieu participant d’intérét : le centre du cube x¢ = [0, 0, 0] et le
point ot les épaisseurs optiques sont maximales xo = [—D, 0, 0] (voir Fig. 4.4)2. Le
champ de ];’n est défini de fagon uniforme comme égal & k> + kg™ (p=1). Ainsi,
excepté en x = [—D,0,0] o il est nul, le champ du coefficient de collision nulle est
toujours strictement positif. En premiére approximation, on considére également
les parois comme noires (¢ = 1) de température T,, = 0K et le parameétre d’asymé-
trie de la fonction de phase d’Henyey-Greenstein égal a 0 (fonction de phase isotrope).

Les tables 4.1 et 4.2 rassemblent les résultats obtenus respectivement pour
xo = [0,0,0] et xog = [—D, 0,0] par les deux algorithmes et pour différentes épaisseurs
optiques maximales d’absorption k;7*D et de diffusion ky;*D. Pour chacun de ces
deux algorithmes, I’estimation du bilan radiatif ainsi que son écart-type adimensionna-
lisés sont donnés. Ceux-ci sont respectivement définis par S, (xo)/[47k, y(%0) L5 (X0)]
et o/[4mka,n(X0) L5 (X0)]. De plus, pour I'algorithme & collisions nulles, les temps de
calcul pour 10° réalisations indépendantes (noté t) et pour obtenir un écart-type
relatif de 1% (noté ty5) sont également fournis®. La simulation a été effectuée avec
un processeur "Intel Core i5 - 2.4GHz" sans parallélisation.

Les estimations du bilan radiatif par ces deux algorithmes concordent parfaitement.
Les erreurs relatives indiquent également un bon niveau de convergence de 1’algorithme
a collisions nulles quelles que soient les épaisseurs optiques considérées (1’erreur
relative e = ¢/5,,, obtenue aprés 10° réalisations est inférieure a 0.2% dans tous
les cas). Enfin, les temps de calcul relevés pour 'algorithme a collisions nulles sont
du méme ordre de grandeurs que ceux que 1’on rencontrerait avec un algorithme
standard de Monte-Carlo dans lequel les propriétés du milieu seraient uniformes.
L’ajout de collisions nulles, sans aucun effet sur la précision du calcul, semble donc
n’avoir eu qu'un effet modéré sur ces temps de calcul.

4.3.2.3 Prise en compte de coefficients de collision nulle négatifs

~ Jusqu’a présent, 'algorithme proposé ne permettait que de définir un coefficient
k, supérieur en tous points au coefficient d’extinction réel k. Il est possible, comme

2. Le choix d’estimer le bilan radiatif en xg = [—D, 0, 0] est motivé par le fait que lorsque l'on
étendra I'algorithme & collisions nulles aux valeurs négatives de k,, ,, ce sera en ce point que le k,,
sera le plus faible.

3. Du fait de la lourdeur de I'approche numérique d’inversion utilisée dans la méthode de
validation, les temps de calcul relatifs & cet algorithme (n’apportant pas de réel élément de
comparaison) ne sont pas affichés.
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Epaiss. optiques

Algo. a collisions nulles (105 réalisations)

Algo. de validation

Jemax 1y Jmax 1y STJI(XO) g tio S7'=77 (XO) g

an dn 471']{7(1_7]()(0)[/78,(1 (X0> 47Tka‘n(X0)L;q(X0) 1% 47Tka n(Xo)L;q(Xo) 47Tka n (Xo)Lf]q(Xg)

0.1 0.1 -0.483813 8.52E-05 243  T7.54E-04 -0.483717 2.34E-05

0.1 1 -0.482031 8.97E-05 792  2.74E-03 -0.481921 2.91E-05

0.1 -0.477997 9.90E-05 24.25  1.04E-02 -0.477883 4.04E-05

0.1 10 -0.463027 1.27E-04 122.69 9.23E-02 -0.463068 7.69E-05
1 0.1 -0.366086 2.09E-04 2.94  9.58E-03 -0.365971 2.18E-04
1 1 -0.356169 2.13E-04 743  2.66E-02 -0.356353 2.51E-04
1 3 -0.335850 2.20E-04 19.2  8.24E-02 -0.335928 3.16E-04
1 10 -0.277205 2.28E-04 76.39 5.17E-01 -0.27683 4.84E-04
3 0.1 -0.218989 2.21E-04 3.48  3.54E-02 -0.218942 5.62E-04
3 1 -0.209261 2.18E-04 6.4 6.95E-02 -0.209529 6.01E-04
3 3 -0.190256 2.10E-04 13.63  1.66E-01 -0.190141 6.84E-04
3 10 -0.144073 1.84E-04 41.38  6.75E-01 -0.143501 8.85E-04
10 0.1 -0.071271 1.19E-04 3.49  9.73E-02 -0.07137 1.28E-03
10 1 -0.068662 1.15E-04 4.66  1.31E-01 -0.068854 1.31E-03
10 3 -0.063501 1.07E-04 7.29  2.07E-01 -0.063369 1.36E-03
10 10 -0.050674 8.49E-05 16.23  4.56E-01 -0.050674 1.47E-03

TABLE 4.1 — Estimations, écarts-types et temps de calcul obtenus par ’algorithme & collisions
nulles pour 10° réalisations en x = [0, 0, 0] pour plusieurs valeurs d’épaisseurs optiques d’absorption
et de diffusion. Les résultats sont comparés a ceux obtenus a partir d’un algorithme de Monte-Carlo
faisant office de méthode de référence.

Epaiss. optiques

Algo. a collisions nulles (108 réalisations)

Algo. de validation

Jmax ) Jmax 1) STJ](XO)' 4 i o S’V‘J](XO)' o i
. dn 47Tka n (Xo)L;}q (Xo) 4‘ﬂ'ka n (XU)L;}(I (Xo) 1% 47Tka n (Xo)L;}q (Xo) 4‘ﬂ'ka n (XU)L;}(I (Xo)

0.1 0.1 -0.977296 1.27E-04 2.24  3.78E-04 -0.977336 2.64E-05
0.1 1 -0.97683 1.29E-04 6.18 1.08E-03 -0.976679 2.86E-05
0.1 3 -0.975682 1.33E-04 15.3  2.84E-03 -0.975767 3.30E-05
0.1 10 -0.974828 1.37E-04 449  8.87E-03 -0.974733 4.47E-05
1 0.1 -0.822495 3.24E-04 2.38  3.69E-03 -0.822111 2.40E-04

1 1 -0.822446 3.26E-04 5.13  8.06E-03 -0.821846 2.47E-04

1 3 -0.823933 3.29E-04 10.75  1.71E-02 -0.823994 2.60E-04

1 10 -0.83941 3.27E-04 26.32  3.99E-02 -0.839533 2.73E-04

3 0.1 -0.658358 4.07E-04 2.22  8.48E-03 -0.657242 5.54E-04
3 1 -0.66479 4.09E-04 3.73  1.41E-02 -0.664704 5.45E-04
3 3 -0.67959 4.12E-04 6.67  2.45E-02 -0.679703 5.27E-04
3 10 -0.72422 4.10E-04 14.49 4.64E-02 -0.722886 4.73E-04
10 0.1 -0.544282 4.62E-04 1.98 1.43E-02 -0.5438 8.46E-04
10 1 -0.551703 4.63E-04 247  1.74E-02 -0.551153 8.29E-04
10 3 -0.567704 4.65E-04 3.54  2.38E-02 -0.567366 7.90E-04
10 10 -0.61077 4.65E-04 6.76  3.92E-02 -0.609865 7.00E-04

TABLE 4.2 — Estimations, écarts-types et temps de calcul obtenus par ’algorithme & collisions nulles
pour 108 réalisations en x = [—D, 0, 0] pour plusieurs valeurs d’épaisseurs optiques d’absorption et
de diffusion. Les résultats sont comparés a ceux obtenus a partir d’un algorithme de Monte-Carlo
faisant office de méthode de référence.
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proposé a la Sec. 4.2.4 de définir de nouvelles probabilités pour s’affranchir de cette
contrainte. Dans la continuité de la probabilité d’émission/absorption proposée a
la Sec. 4.2.4 pour un cas purement absorbant/émettant, nous proposons ici les
probabilités suivantes pour tenir compte de la diffusion :

-y ka o1 . .
o P(x) = kan(x) + kd:(g)jt e (%) comme probabilité d’émission/absorp-
tion,
° ~d(x) = Fidn (%) comme probabilité de diffusion,
Fan(%) + Kay(x) + [Fny(x)]
o P,(x) = oy () comme probabilité de collision nulle.

Kan(%) + kan(x) + [kny(x)]
Ainsi quel que soit le champ de k (majorant ou non), ces probabilités sont bien
comprises entre 0 et 1 et leur somme vaut 1.

Ce changement de probabilités modifie sensiblement 1’expression récursive de la

luminance L, (x;,u;) présente dans le bilan radiatif S, ,(xo). Leur introduction dans
I’Eq. 4.35 conduit alors & :

Ln(Xj»uj)Z/ Pryor (L) dlj
0

Pe(Xw J+1)L (X J+1)
H(xj41 V)
s +(1 = Pe(Xw,jt1)) /2 V(X i1, Wy W1) Ly (X j1, W1 )41
- ka .
Pulosin) 22
X Ky (Xj11) Pa(Xj41)
D ) kq W(XJ ) ) aa ) ) )
+H (xj41 € V) +73d(xg+1) = ¢(Xg+17ug|ug+1)Ln(X;+1, uj)duj
(XJ+1)7) (X]+1)
5 . n(XJ 1) . R
+77n(X]+1) Ln(xﬁ-la Ui = u])
( 1) n (xﬁ-l)

(4.36)
L’expression du bilan radiatif S, ,(x) sous forme d’espérance est alors substan-
tiellement modifiée. Il vient :

> kan(X;)
(x g A, Leq + A, I [ (x
777 0 — ) sJ kn(X])Pa(Xj) n < .7)]

Srn(Xo0) k k
! X H(1 Aoy — Ag) | Arg + Ad,qﬂ + AMM
=1 kn(xq)Pd<Xq> kn(xq)Pn(Xq)

|
=

(4.37

ol les variables aléatoires :

e A.; vaut 1 si une émission a lieu en x,, ;, 0 sinon.

A, ; vaut 1 si une absorption a lieu en x;, 0 sinon.

A, j vaut 1 si une réflexion a lieu en x,, ;, 0 sinon.

Ag; vaut 1 si une diffusion a lieu en x;, 0 sinon.
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e A, ; vaut 1 si une collision nulle a lieu en x;, 0 sinon.

L’algorithme de Monte-Carlo correspondant est donné a la Fig. 4.8

J=0,6=1

)

Echantillonnage de ug

)

Echantillonnage de /.. j=Ej+1

(collision dans le milieu) (collision a la paroi)
Oui Non

Echantillonnage de rjy échanti]lonnage de rjyy
(absorption) (collision nulle) (absorption) i (reflexion)
T <P ris1 > Pa+Pa i
2 Définition de la collision On
(diffusion) | P, < rj.q < Pa + Pa
kay(Xji1) kan(Xji1) Ky (Xj1)
g = £ g = £ | gy = g | g =g Eu=§
T kP | k0 Pai) (| kg Patgen | e
Echamillonnage deujy Wi =u; Echamillonnage deujy
l 1 5 1
Wi = kay(X0) [£701 L 11/ pu, (o) — 4L (%0)| Wi = Kag(%0) [£501 Ly (X j11)/ puy (o) = 4L (x0) |

FIGURE 4.8 — Extension de 'algorithme de la Fig. 4.7, permettant d’estimer S, ,(xo), aux coeflicients
négatifs de collision nulle. Trois nouvelles probabilités d’absorption P,, de diffusion Py et de collisions
nulles P,, ont ét¢ introduites. Les poids de Monte-Carlo w; résultant de ce changement sont modifiés
en conséquence.

4.3.2.4 Comportement numérique en fonction des valeurs du coefficient
de collision nulle

Il devient ainsi possible de réaliser en toute généralité une étude de 'effet du
/2:,7 sur le comportement de I'algorithme de Monte-Carlo. Pour mener a bien cette
analyse, plusieurs calculs du bilan radiatif monochromatique ont été effectués, a
partir de l'algorithme de la Fig. 4.8, pour plusieurs valeurs de p = ffn [k allant
de p = 0.5 (ou k, ne majore que localement le coefficient d’extinction réel k,) a
p =75 (ou /%T, majore en tout point et trés largement k). Les Fig. 4.9, Fig. 4.10 et
Fig. 4.11 décrivent respectivement les évolutions de l'erreur relative, du temps de
calcul pour 10° réalisations et du temps de calcul pour obtenir une erreur relative de

1% en fonction de p, pour différentes épaisseurs optiques et deux points d’intéréts :
xg = [0,0,0] et xo = [-D,0,0].

Pour p > 1, I'écart-type de 'estimation du bilan radiatif monochromatique est
indépendant du coefficient de collision nulle (voir Fig. 4.9). En effet, les algorithmes
a collisions nulles ne constituent qu’un artefact statistique et numérique permettant
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FIGURE 4.9 — Ecart-type adimensionnalisé en fonction de p, kg D et k:g"?,"D pour le calcul de

Srn(x0) en xo = [0,0,0] et xg = [—D,0,0] par 'algorithme de la Fig. 4.8.
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FIGURE 4.10 — Temps de calcul adimensionnalisé en fonction de p, k7> D et ké‘jf‘]XD pour le calcul
de S, ,(x0) en xo = [0,0,0] et xg = [-D, 0, 0] par 'algorithme de la Fig. 4.8.
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FIGURE 4.11 — Temps de calcul pour une erreur relative de 1% adimensionnalisé¢ en fonction de p,
kgD et ki'n* D pour le calcul de S, ,)(x0) en xo = [0,0,0] et xo = [~ D, 0, 0] par I'algorithme de
la Fig. 4.8.
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un échantillonnage plus aisé des libres parcours d’extinction. L’ajout de collisions
nulles a seulement une incidence sur le temps de calcul : plus il y aura de collisions
nulles (sans effet sur la convergence du calcul) plus le temps de calcul sera long (voir
Fig. 4.10 et Fig. 4.11).

Au contraire, plus la valeur de p est petite devant 1 , plus I’écart-type associé a
I’estimation du bilan radiatif est important et croit de facon rapide, voir Fig. 4.8.
Ce comportement était en effet attendu. L’introduction de nouvelles probabilités
permettant de prendre en compte des occurrences négatives de k,,, engendre dans
I’expression des poids de Monte-Carlo I'apparition d’'un produit correctif. La valeur
de ce dernier croit et est susceptible de changer de signe & chaque fois qu'une
collision a lieu dans une région ot les coefficients de collision nulle sont négatifs (cf.
Sec. 4.2.4). Si un grand nombre d’événements de diffusion ou de collisions nulles
se produisent le long du chemin optique dans une région ou &, < 0, les poids de
Monte-Carlo peuvent alors avoir des valeurs absolues trés importantes et d’une trés
grande variance, expliquant ainsi ’accroissement conséquent de 1’écart-type associé a
I'estimation de S, ,(x¢). Cet effet est naturellement plus prononcé lorsque le point
sonde x appartient a la zone ou k,, < 0 (voir Fig. 4.9b) que lorsque les chemins
optiques partent d'une zone ot k,,,, > 0 (voir Fig. 4.9a).

Toutefois, cette augmentation brutale de 1’écart-type doit étre relativisée : la
proposition de la Sec. 4.2.4 permettant d’autoriser des occurrences de £, , > 0 est
faite pour éviter un biais des résultats de simulations dans le cas ou le champ de /2:77
choisi ne majorerait pas parfaitement le champ du coefficient d’absorption réel (elle
n’entraine aucune modification si ]%n (x) > ky,(x)). Ainsi, on remarque que si le choix
du champ de l%n est suffisamment bien pensé (p > 0.9), 'augmentation d’écart-type
due aux coefficients négatifs de collisions nulles reste mesurée (elle est multipliée par
4 dans le cas le plus défavorable).

Enfin, ces trois jeux de graphiques nous permettent de constater que les temps
de calcul décroissent avec la valeur de p pour un nombre donné N,,. de réalisations
indépendantes, (voir Fig. 4.10). Cela vient simplement du fait que plus faible est la
valeur de p, moins il y a d’événements de diffusion et de collisions nulles. En effet, plus
p est faible, plus la valeur de k Vest aussi, les libres parcours échantillonnés selon p. (1)
sont alors beaucoup plus longs, favorisant une absorption rapide aux parois. Toutefois,
excepté pour le cas particulier d’'un milieu trés mince, cette décroissance des temps
de calcul ne compense pas I'augmentation de I'erreur relative due aux coefficients
négatifs de collision nulle (voir Fig. 4.11). Pour une erreur relative désirée, le temps
de calcul est donc a la fois conditionné par l'effet de p sur la variance (voir Fig. 4.11
pour p < 1) et sur la quantité de collisions nulles qui augmente mécaniquement, mais
dans une moindre mesure, ce temps de calcul (voir Fig. 4.11 pour p > 1). A la vue de
I’évolution des temps de calcul nécessaires a 1'obtention d’une erreur relative d’1%, il
semble préférable, en cas de doute, de définir un champ de i majorant largement
celui du coefficient d’extinction que de risquer une explosion de variance causée
par un trop grand nombre de collisions nulles caractérisées par des coefficients négatifs.
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4.3.2.5 Influence de I’émissivité et du paramétre d’asymétrie de la fonc-
tion de phase

Plusieurs simulations ont également été réalisées pour des parameétres d’asy-
métrie de la fonction de phase différents de 0 et des émissivités de paroi inférieures a 1.

Le paramétre d’asymétrie n’a que trés peu d’effet sur le comportement numérique
de l'algorithme a collisions nulles. Inévitablement, I'estimation de S, ,,(xo) est sensible
a ces changements (puisque le modéle physique est modifié), mais les effets sur les
erreurs relatives et les temps de calcul semblent négligeables.

La réflexion multiple aux parois a, quant & elle, des conséquences sur le compor-
tement de l'algorithme. Elle agit de la méme maniére que la diffusion : elle a une
tendance a accroitre la longueur des chemins parcourus par les photons avant d’étre
absorbés. Ainsi, un plus grand nombre de collisions ont lieu, augmentant alors les
temps de calcul. Dans les zones ot les coefficients de collision nulle sont négatifs,
la réflexion multiple a tendance, au méme titre que la diffusion (c¢f. Fig. 4.11) mais
dans une moindre mesure, & augmenter davantage 1’écart-type estimé.

4.3.3 Traitement déterministe des événements d’émission -
approche par "Energy-partitioning"

Jusqu’a présent, a chaque fois qu’un point de collision était identifié, un test
statistique, de type roulette russe, avait lieu pour savoir s’il s’agissait d'une émission
(par le milieu ou par la paroi), d’'une réflexion, d’'une diffusion ou d’une collision nulle.
S’il s’agissait d’une émission, la réalisation serait stoppée et un poids w; serait calculé.
Il pourrait cependant étre intéressant de traiter de fagon déterministe ces événements
d’émission. Ainsi, aprés une émission/absorption les photons continueraient leur
chemin, mais une information locale relative & I’émission serait prise compte. Les
poids de Monte-Carlo w; seraient alors définis comme une somme de contributions
d’émission rencontrées le long d’un chemin optique. Une telle approche, présentée
a la Sec. 3.4.2, est connue sous le nom d’energy-partitioning ou de pathlength-
method. L’application de ce traitement déterministe & I'estimation du bilan radiatif
monochromatique S,.,,(Xo) et ses conséquences sur le comportement numérique des
algorithmes a collisions sont discutés dans cette section.



4.3. Mise en application et étude paramétrique 121

4.3.3.1 Présentation de I’algorithme de type "energy partinioning"

Traiter de facon déterministe les émissions équivaut a reformuler 'Eq. 4.36 en :

Ly (x5,a;) / Pryor (L) dlj
0

£(Xu J+1)L (X j11)
H (X‘ 1 ¢ V)
" +(1 - 5(Xw,.7+1))/ V(Xw g1, Wi [W1) Ly (X, j+1, W1 )dU
27
ka,n(xj+1) eq
y i (XjJrl) 7]( J+1)
Kan(Xj1
+H (Xj+1 S V) +Pd<xj+1) ¢ Xjt+1, u]|u7+1)L (XJ+15 u7+1)du]+1
(X]+1) d(X]+1
5 , Ko (Xj1) , R
+Pn(Xj11) Ly(Xj41, 0501 = uy)
ko (%j11) n(XJ—H

(4.38)
ou les émissivités e(x,,1) et I'albédo d’absorption k,,(x1)/ l%n(xl) sont désormais
traités de fagon déterministe. Les probabilités P,(x;) et P,(x;) ont volontairement
été conservées, car d’un point de vue algorithmique il est tres difficile de suivre deux
chemins optiques simultanément (problémes de branchage : a chaque collision deux
nouveaux chemins optiques seraient créés, chacun menant & deux autres chemins,
etc.). Il demeure plus simple de réaliser un test de Bernoulli pour déterminer si la
collision méne a une diffusion du photon (selon la fonction de phase ¢(x;4+1, ujjuji1))
ou a une collision nulle (diffusion vers I’avant). Cependant, les expressions de ces
deux probabilités doivent étre modifiées pour que leur somme soit bien normée. Dans
I'optique d’autoriser des occurrences de coefficients de collision nulle négatifs, nous
proposons ici les expressions

S kan(X;)

PaCS) = B 30) + o (5] (4.39)
et

ﬁn(xj) _ |knm(xj)| (440)

Kan(X;) =+ [kn.q(%))]
Le bilan radiatif S, ,(x) correspond alors a ’espérance de la variable aléatoire
W définie comme :
= e ka ﬂ(Xj> e
W= H(X; ¢ V)e(Xyy) L' (Xyy) + H(X; €V) Wan(Xj)

77 .
j=1 n\xj

i —¢ kan(Xo) Fng(Xg)
<1l (A’“’q(l o))+ Ao 5 pay) T %(Xq)ﬁn(Xq))

ou la variable aléatoire A, ; vaut 1 si une réflexion a lieu en x,, j, 0 sinon; ot Ag;
vaut 1 si une diffusion a lieu en x;, 0 sinon et ot A, ; vaut 1 si une collision nulle a
lieu en x;, 0 sinon.

(4.41)
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Toutefois, implémenter un algorithme de Monte-Carlo qui consiste a échantillon-
ner W pose un sérieux probléme dés lors que les parois ne sont pas noires : les
chemins que parcourent les photons sont infinis. En effet, a chaque collision, une
contribution d’émission est calculée, puis le chemin optique est poursuivi. En aucun
cas, un événement n’est capable de stopper la progression de ce chemin. En des
termes plus algorithmiques, on voit apparaitre une boucle, sans condition d’arrét.

Plutot que de stopper arbitrairement ces chemins, on propose alors de définir
un test dans l'algorithme qui, une fois validé, fera permuter cet algorithme (dans
lequel les émissions sont traitées de fagon déterministe) vers son homologue dans
lequel le type de collision est déterminé par un test de Bernoulli (¢f. Sec. 4.3.2).
Ainsi, ces chemins infinis pourront étre stoppés sans aucun biais (ce qui n’aurait pas
été le cas si 'on avait tronqué arbitrairement ces chemins). Le critére faisant passer
d’une variante algorithmique a ’autre est totalement libre. Nous proposons ici de
considérer la grandeur

T ka n(Xq) o (%)
i = Ar,q 1—c¢ Xw,q Ad,qA’—~ An,qA—~ 4.42
‘ ql_Il ( ( eal) ¢ kin(%q)Pa(xq) ! kn(xq)Pn<Xq)> 2

présente dans ’expression de W. Cette grandeur, que nous qualifierons de critére
d’extinction, caractérise la fraction de photons transmise aprés j collisions. Au début
de la réalisation, quand aucune collision n’a encore eu lieu, elle est égale a 1, puis
elle ne cesse de décroitre au fur et & mesure que des collisions sont rencontrées,
rendant ainsi les contributions a W de plus en plus faibles. Pour définir le test a
partir duquel les émissions seront traitées de fagon statistique, on définit également
un seuil ¢ compris entre 0 et 1. Tant que &§; > ¢ les émissions sont traitées de fagon
déterministe, puis lorsque &; passe en dessous du seuil ¢ on passe a un traitement par
tests de Bernoulli pour déterminer le type de collision, permettant ainsi de mettre un
terme a la réalisation. Plus la valeur de ( sera faible, plus la branche ot les émissions
sont prises en compte de facon déterministe sera privilégiée. Au contraire, en fixant
¢ = 1, lalgorithme correspond strictement & celui présenté a la Sec. 4.3.2 : toutes
les collisions seront traitées statistiquement par un test de Bernoulli. L’algorithme
correspondant a cette approche est présenté en intégralité par la Fig. 4.12.

4.3.3.2 Influence de ( sur le comportement numérique de 1’algorithme
a collisions nulles

Aussi, il est intéressant d’étudier I'influence que joue ce seuil ¢ sur le comporte-
ment de 'algorithme de Monte-Carlo. Des bilans radiatifs monochromatiques .S, ,,(xo)
aux points xg = [0,0,0] et xo = [—D,0,0] ont alors été estimés par 1’algorithme
présenté a la Fig. 4.12, pour différentes valeurs de (, de p et pour différentes

épaisseurs optiques maximales k,7*D et kg'*D. La valeur du champ d’extinction

arbitraire l%77 est définie comme égale a k™ (p = 1, les coefficients de collision nulle
sont positifs en tout point).

Les Tab. 4.3 et 4.4 rassemblent les résultats de simulations obtenus aux deux
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points sondes xo = [0, 0,0] et xg = [—D, 0, 0] pour des parois noires et pour un seuil
¢ fix¢ 4 0.1 (le basculement de la branche déterministe a celle stochastique a lieu
lorsque 'extinction le long du chemin optique dépasse 90%). Ces résultats peuvent
étre comparés a ceux des Tab. 4.1 et 4.2 obtenus avec 1’algorithme présenté a la
Fig. 4.8 dans lequel les collisions sont traitées uniquement par roulette russe (cet
algorithme est strictement équivalent a celui de la Fig. 4.12 dans lequel le seuil ¢
serait fixé a 1).

Epaiss. optiques Algo. a collisions nulles (10° réalisations, ¢ = 0.1) Comp.
max max SN?(XO) o t10(¢=0.1)
Fam D iy D Arkan(x0) Lyl (x0)  4mkq(x0) Ly (x0) t b t1%(C=1)
0.1 0.1 -0.483586 0.000044 2.31  0.00019 0.253
0.1 1 -0.481950 0.000024 7.77  0.00019 0.072
0.1 3 -0.477917 0.000023 23.72  0.00054 0.055
0.1 10 -0.463036 0.000035 122.94 0.00707 0.081
1 0.1 -0.366263 0.000142 3.38  0.00510 0.552
1 1 -0.356208 0.000123 10.10  0.01200 0.475
1 3 -0.335460 0.000117 27.58 0.03373 0.422
1 10 -0.277008 0.000127 127.77  0.26892 0.541
3 0.1 -0.219155 0.000153 5.51  0.02701 0.785
3 1 -0.209308 0.000144 12.76  0.06017 0.903
3 3 -0.190219 0.000132 29.96  0.14535 0.927
3 10 -0.143645 0.000112 105.20 0.64103 0.993
10 0.1 -0.071424 0.000081 8.66  0.11055 1.185
10 1 -0.068768 0.000077 13.11  0.16317 1.310
10 -0.063507 0.000070 22.45 0.27110 1.393
10 10 -0.050786 0.000054 52.92  0.59544 1.366

TABLE 4.3 — Résultats et temps de calcul obtenus lors de I'estimation de S,., en xo = [0,0,0] par
I’algorithme & collisions nulles de la Fig. 4.12. Le seuil de permutation algorithmique est fixé a
¢ = 0.1. La derniére colonne indique le rapport entre le temps de calcul nécessaire & 1’obtention
d’une erreur relative de 1% pour ¢ = 0.1 et le temps nécessaire a I'obtention d’une erreur relative
de 1% pour ¢ = 1.

On constate que les résultats obtenus avec ce nouvel algorithme ou ¢ = 0.1
concordent parfaitement, aux intervalles de confiance prés, avec ceux obtenus avec
I'algorithme ot les collisions sont traitées uniquement par roulette russe (¢ = 1).
La proposition faite dans cette section est ainsi validée. La derniére colonne de ces
deux tables indique le rapport entre le temps de calcul nécessaire a I’'obtention d’une
erreur relative de 1% pour ¢ = 0.1 et le temps nécessaire a I'obtention d’une erreur
relative de 1% pour ¢ = 1. Si ce rapport est inférieur a 1, le traitement déterministe
des émissions est plus efficient qu’un traitement par roulette russe. Au contraire s’il
est supérieur a 1, 'algorithme introduit a la Fig. 4.8 est le plus performant. On
remarque alors que pour des épaisseurs optiques d’absorption minces, le traitement
déterministe des émissions accélére sensiblement les temps de calcul (jusqu’a 12 fois
plus rapides). Pour des épaisseurs optiques d’absorption importantes, il a tendance a
augmenter ces mémes temps de calcul (d'un facteur 3 dans le cas le plus défavorable).
Il est possible d’interpréter cette différence de comportement algorithmique par
le fait qu’en traitant de fagon déterministe les collisions, de I'information relative
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Epaiss. optiques Algo. a collisions nulles (10° réalisations, ¢ = 0.1) Comp.
max max ST/’](XO) g t19,(¢=0.1)
Fag' D iy D 4rkan(x0) Lo’ (x0)  4mkqp(x0) Ly’ (x0) t b1 t19%((=1)
0.1 0.1 -0.977195 0.000081 2.24  0.00016 0.413
0.1 1 -0.976700 0.000041 6.19 0.00011 0.103
0.1 3 -0.975783 0.000035 15.17 0.00020 0.074
0.1 10 -0.974777 0.000042 46.19 0.00088 0.103
1 0.1 -0.821998 0.000285 3.31 0.00398 1.138
1 1 -0.821967 0.000237 8.34  0.00692 0.897
1 3 -0.823956 0.000215 17.71  0.01202 0.717
1 10 -0.839442 0.000220 46.75 0.03208 0.831
3 0.1 -0.657423 0.000388 4.23 0.01471 1.782
3 1 -0.664806 0.000365 9.43 0.02851 2.101
3 3 -0.679347 0.000345 16.61 0.04289 1.801
3 10 -0.723130 0.000327 34.46 0.07053 1.574
10 0.1 -0.544147 0.000480 3.72  0.02660 1.922
10 1 -0.551601 0.000452 7.88 0.05288 3.089
10 3 -0.568200 0.000438 10.89  0.06467 2.791
10 10 -0.611147 0.000411 19.32 0.08731 2.305
TABLE 4.4 — Résultats et temps de calcul obtenus lors de l'estimation de S, , en xo = [-D, 0, 0]

par l'algorithme & collisions nulles de la Fig. 4.12. Le seuil de permutation algorithmique est fixé a
¢ = 0.1. La derniére colonne indique le rapport entre le temps de calcul nécessaire & ’obtention
d’une erreur relative de 1% pour ¢ = 0.1 et le temps nécessaire a I'obtention d’une erreur relative
de 1% pour ¢ = 1.

a I’émission du milieu est capitalisée tout le long du chemin optique, jusqu’a ce
que la permutation algorithmique ait lieu. Ainsi, I’émission de I’ensemble du milieu
d’intérét est mieux prise en compte que si les émissions étaient traitées par roulette
russe. En effet, dans le cas ou les épaisseurs optiques d’absorption sont faibles,
il était nécessaire, sans traitement déterministe, de parcourir un chemin optique
important avant de rencontrer une émission et de réaliser un grand nombre de
réalisations pour pouvoir étre suffisamment représentatif de I’émission de la totalité
du volume d’intérét. Cela explique, pour ce type de milieu, I'accélération des temps
de calcul engendrée par ce nouvel algorithme. Au contraire, lorsque 1’épaisseur
optique d’absorption est importante, la grande majorité des photons parvenant en xq
a été émise dans la zone proche de ce point. Un traitement par roulette russe de ces
événements d’émission est alors pertinent ; le traitement déterministe n’aura pour
seule conséquence une augmentation de la longueur des chemins parcourus avant
que la réalisation soit stoppée, entrainant ainsi une augmentation des temps de calcul.

Dans les Tab. 4.3 et 4.4, une seule valeur du seuil ( a été testée : ( = 0.1. Mais,
diminuer la valeur ce seuil & 1072 ou méme 10~° n’entraine qu'un changement
minime des temps de calcul. En effet, une fois que les chemins optiques ont atteint
une paroi noire, le critére d’extinction £ passe a 0 (quelle que soit la valeur de ()
et l'algorithme permute vers la branche ou les événements d’émission sont traités
par roulette russe, mettant ainsi fin au chemin optique. La Fig. 4.13a illustre la
dépendance du temps de calcul pour une erreur relative donnée au seuil ¢, pour
une émissivité de paroi de 1 et pour le point sonde xq = [—D, 0, 0]. Des simulations
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FIGURE 4.13 — Temps de calcul nécessaire a I’obtention d’une erreur relative de 1% en fonction du
seuil €. Les temps affichés sont relatifs a I’estimation de S, ,(X¢) en x¢ = [—D, 0, 0] par I’algorithme
de la Fig. 4.12 pour deux émissivités de parois : ¢ = 1 et ¢ = 0 et pour différentes épaisseurs
optiques d’absorption et de diffusion.
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ont également été réalisées pour des parois parfaitement réfléchissantes (e = 0).
Les conclusions sont identiques aux précédentes, mais la sensibilité au choix du
seuil ¢ est plus importante (voir Fig. 4.13b). En effet, puisque les parois, désormais
réfléchissantes, ne permettent plus de stopper les réalisations, les chemins parcourus
avant que l’algorithme ne permute sont considérablement plus longs. Cela se traduit
alors par une augmentation des temps de calcul lorsque ¢ décroit.

Les résultats obtenus mettent donc en valeur le fait que traiter les émissions de
facon déterministe, conduit & :

e une diminution de la variance de I'estimation (au moins dans le cas de faibles
épaisseurs optiques d’absorption) : de I'information relative & 1’émission du mi-
lieu est accumulée tout le long du chemin optique, jusqu’a ce que la permutation
algorithmique ait lieu.

e une augmentation des temps de calcul pour une réalisation donnée : plus la
valeur de ( sera faible et plus la permutation algorithmique aura lieu tard. Les
chemins considérés lors d’une seule réalisation indépendante seront alors plus
longs, puisqu’aucune absorption ne permet de stopper la récursivité. Seul le
basculement vers un traitement stochastique des collisions ou une paroi noire
le permettront.

Les performances de la proposition algorithmique faite ici, quantifiées par les temps
de calcul & 1%, sont donc dépendantes de ces deux phénomeénes. Comme en atteste la
Fig. 4.13, il est alors possible de déterminer une valeur optimale du seuil ¢, qui permet
d’avoir le meilleur compromis entre diminution de la variance et augmentation du
temps moyen par réalisation. Selon le type du milieu, sa valeur se situe entre 0.1 et 1.
L’ajustement de la valeur de (, en fonction du cas d’étude d’intérét, constitue alors
un important levier d’optimisation (permettant, dans des cas particuliers, d’accélérer
les calculs d’un ou plusieurs ordres de grandeur).

4.3.3.3 Influence des collisions nulles sur ’algorithme de type "energy
partitioning"

Le nouvel algorithme introduit dans cette section (voir Fig. 4.12) permet également
de traiter des occurrences négatives de coefficients de collision nulle. La Fig. 4.14
illustre la dépendance du temps de calcul nécessaire a ’obtention d’une erreur relative
de 1% au paramétre p = l%n/k;?ax pour ¢ = 1 (Fig. 4.14a) et ( = 0.1 (Fig. 4.14b).
Nous nous concentrons ici, uniquement sur le point d’intérét, xo = [—D, 0, 0], identifié
comme le point le plus pathologique (puisque situé dans la zone ot les coefficients de
collision nulle sont les plus faibles). Les parois sont également considérées comme
noires et la fonction de phase comme isotrope. Les conclusions semblent identiques a
celles formulées a la Sec. 4.3.2.4. Toutefois,

e pour p < 1 (i.e. quand le coefficient l%n ne majore que localement le coeffi-
cient d’extinction réel), des difficultés de convergence plus importantes sont
rencontrées pour des épaisseurs optiques d’absorption faibles et de diffusion
importantes.

e pour p > 1 (i.e. le champ de ]%n est majorant en tout point), 'augmentation
du nombre de collisions nulles (p croissant) entraine une diminution du temps
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FIGURE 4.14 — Temps de calcul nécessaire a 1’obtention d’une erreur relative de 1% en fonction de
la grandeur adimensionnelle p = IAcn [k, Les temps affichés sont relatifs a 'estimation de S, ,(x0)
en xg = [—D, 0,0] par Palgorithme de la Fig. 4.12 pour deux seuils de basculement algorithmique :
¢ =1et ( =0.1 et pour différentes épaisseurs optiques d’absorption et de diffusion.
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de calcul a 1%. En effet, plus le /2:77 est important plus les libres parcours
échantillonnés seront petits. Ainsi, le nombre répété de calculs des contributions
d’émissions meéne a une intégration quasi-déterministe le long du chemin optique
qui réduit sensiblement la variance (en particulier lorsque les épaisseurs optiques
sont minces).

4.3.4 Enseignements sur les choix du %n et du type d’algo-
rithme

Cette étude paramétrique souligne I'importance qu’a le choix du champ de l%n. On
rejoint les conclusions émises a la Sec. 4.2.4 : le champ de l;’n doit étre choisi de sorte
a étre le plus proche du champ réel de coefficient d’extinction (pour éviter un trop
grand nombre de collisions nulles) tout en permettant un échantillonnage aisé des
libres parcours. Dans cette étude nous avons fait le choix de définir l%n(x) comme une
fonction uniforme, mais il est imaginable de le définir comme une fonction uniforme
ou méme continue par morceaux. Il serait ainsi possible d’approcher plus précisément
le champ d’extinction tout en garantissant un échantillonnage des libres parcours
analytiquement possible, au prix d’un coiit de calcul éventuellement plus important.

De plus, cette analyse a permis de mesurer I’augmentation de variance associée a
un champ de 12:77 non-majorant. Il semble donc évident que des cas de ce type doivent
étre évités autant que possible. Toutefois, le fait d’avoir ouvert la possibilité aux
coeflicients négatifs de collision nulle n’est pas pour autant injustifié. Assurer la
majoration du champ d’extinction peut constituer une tache trés complexe comme
nous allons le voir dans le Chap. 5. Avec la proposition faite dans ce chapitre,
nous pouvons désormais implémenter des algorithmes dont I’estimation ne sera
aucunement biaisée si une occurrence du type £, , < 0 devait avoir lieu. Les quelques
simulations, présentées dans cette étude paramétrique, indiquent que si le champ de
]%n majore en la plupart des points le coefficient d’extinction, mais pas strictement
(p 2 0.9), 'augmentation du temps de calcul pour une précision donnée demeure
mesurée.

Enfin, considérer les événements d’émission de fagon déterministe (energy-
partitioning) parait étre I’approche la plus efficace pour les milieux optiquement
minces (qui représentent, pour des chambres de combustion de petite taille, une
grande majorité des cas rencontrés). Dans la suite de ce manuscrit, cette technique
sera systématiquement employée. La variété des épaisseurs optiques sera alors prise en
compte en jouant sur le parameétre ( pour optimiser le comportement de 1’algorithme
en fonction du cas d’étude.

4.4 Validation d’un solveur radiatif par les algo-
rithmes a collisions nulles

Dans de nombreux domaines d’application (combustion, atmosphérique, etc.),
les modéles radiatifs sont généralement couplés a d’autres modéles de transfert
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thermique, de mécanique des fluides ou encore de cinétique chimique. Dans ces
contextes, ou la complexité due aux couplages est importante, il est souvent
nécessaire de faire un compromis entre la précision attendue et les temps de
calcul. Aussi, il est important d’évaluer la validité des méthodes numériques
et des modeéles résultant de ces compromis. Dans le cadre particulier du trans-
fert radiatif, les méthodes de Monte-Carlo occupent une place de solution de
référence, dans la mesure ou les résultats sont fournis avec un intervalle de
confiance. Trés adaptées a la simulation du rayonnement en géométries complexes
|Zhang et al., 2009, Zhang, 2011, De La Torre et al., 2014, Dauchet, 2012], elles
sont aujourd’hui fréquemment utilisées pour valider des outils de simulation ou des
modéles radiatifs approchés.

Toutefois, bien que considérées comme des méthodes de référence, leur prise
en compte des hétérogénéités des propriétés des milieux peut conduire a certaines
approximations (ez : discrétisation du milieu, voir Sec. 4.1.2). Les algorithmes a
collisions nulles peuvent alors constituer une alternative intéressante aux méthodes
usuelles de Monte-Carlo. En effet, ils tirent directement profit des avantages de ces
derniéres (incertitude numérique maitrisée en permanence, gestion des géométries
complexes, etc.), sans nécessiter une discrétisation du milieu ou d’autres techniques
approchées. Ainsi, les estimations des observables d’intérét sont non-biaisées et
peuvent étre réellement considérées comme résultats de référence.

4.4.1 Description du cas d’étude et de I’exercice de validation

Dans larticle [Eymet et al., 2013] (donné en Annexe E), les auteurs proposent
d’utiliser ’algorithme & collisions nulles, introduit a la Fig. 4.12, pour valider le
code PRISSMA [Poitou et al., 2012|, congu pour des applications de combustion.
Ce module de transfert radiatif, basé sur des méthodes aux ordonnées discrétes
[Joseph et al., 2005], est intégré au code de calcul AVBP, développé pour la simula-
tion d’écoulements réactifs instationnaires sur des maillages hybrides |Cerfacs, 2014].

Dans le cadre de cet exercice de validation, un grand nombre de bilans radiatifs
intégrés spectralement, sur tout le domaine infrarouge, sont calculés par les deux
algorithmes (algorithme a collisions nulles et PRISSMA) en divers points d’une
chambre de combustion dont la configuration retenue correspond & celle proposée
par Knikker et al. [Knikker et al., 2000, Nottin et al., 2000, Knikker et al., 2002].
Les dimensions de la chambre, illustrée a la Fig. 4.15, sont de 300 x 50 x 80mm
(respectivement le long des axes x, y et z). Un accroche-flamme triangulaire est
positionné sur les cotés latéraux a une hauteur de 25mm. Un mélange d’air et de
propane est injecté par le coté gauche et une flamme triangulaire se développe
dans le conduit rectangulaire le long de l'axe z. Les températures de parois sont
fixées a 300K, excepté pour la paroi de droite ot la température est fixée a 1900K.
La réflectivité des parois en céramique est fixée & ¢ = 0.91, celle des parois en
quartz a € = 0.4. L’émissivité de 'accroche-flamme est fixée & € = 0.4, une valeur
caractéristique d’un acier oxydé a 1000K. L’entrée, la sortie et ’atmosphére sont
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Fenétres en quartz

Entrée Air/Propane

y

‘Js

Accroche flamme Briques en céramique

F1GURE 4.15 — Configuration de chambre de combustion retenue et proposée par Knikker et al.
dans [Knikker et al., 2000, Nottin et al., 2000, Knikker et al., 2002].

supposées se comporter comme des parois noires.

L’objectif de 'étude décrite dans [Eymet et al., 2013| est alors de valider le code

de transfert radiatif PRISSMA, dans lequel :

e la méthode de résolution de ’équation du transfert radiatif est une approche

aux ordonnées discrétes (DOM),

I'intégration spatiale s’appuie sur un maillage spécifique, plus grossier que le
maillage LES* utilisé par le code AVBP. La stratégie de couplage avec AVBP
est décrite plus en détail dans [Poitou et al., 2012],

I'intégration angulaire s’appuie sur le schéma de quadrature S/ (seules 24
directions sont considérées),

I'intégration spectrale est effectuée en utilisant un modeéle "full-spectrum"
(FSK) décrit par seulement 15 points de quadrature,

les discrétisations spatiales, angulaires et l'intégration spatiale utilisées sont
volontairement définies aux limites basses de leur domaine de validité afin de
répondre aux exigences du code AVBP en termes de temps de calcul. Aussi,
dans la pratique, le module PRISSMA doit étre validé par un code de calcul
radiatif a chaque fois qu’une nouvelle configuration de chambre de combustion
est prise en considération.

par un algorithme a collisions nulles, dont :

e la structure algorithmique est strictement identique a celle présentée a la

Fig. 4.12. Seule une étape préliminaire d’échantillonnage spectral est ajoutée,
permettant d’intégrer le bilan radiatif sur tout le domaine infrarouge. Le champ
du coefficient de collision nulle k,,, est défini de sorte a rendre le champ
d’extinction résultant /2:,7 = kqy + ki, uniforme et majorant en tout point le
champ du coefficient d’extinction réel (k,, > 0),

e le modéle d’intégration spectrale retenu repose sur une discrétisation par

bande étroite et sur un modeéle en k-distributions®. Ce choix représente la

4. LES : Large Eddy Simulation (simulation des grandes échelles).
5. Les données spectrales ont été produites en utilisant ’approche SNB-ck (statistical narrow-
band correlated k) [Soufiani et Taine, 1997, Liu et al., 2000, Liu et al., 2001, Joseph et al., 2009]
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seule approximation faite pour cet algorithme de Monte-Carlo & collisions
nulles. Idéalement, pour conserver son caractére de solution de référence, cet
algorithme devrait utiliser une approche de type raie-par-raie (dont seules
quelques tentatives sont rapportées dans la littérature [Wang et Modest, 2007b,
Fomin, 2006]). Ainsi, I'intégration spectrale devrait s’appuyer sur des spectres
haute-résolution produits (pour chaque jeu de concentrations, de température et
de pression) & partir de bases de données spectroscopiques hautes-températures
(exz : Hitemp ou CDSD). Cependant du fait de la difficulté et de la lourdeur
engendrées par une telle approche, les k-distributions associées & une hypotheése
de corrélation font encore fréquemment office de solutions de référence. Une
proposition alternative a ces modéles, ne requérant aucune approximation et
n’étant source d’aucun biais, sera proposée au Chap. 5,

les résultats sont obtenus sans aucune approximation relative a l'intégration
directionnelle et spatiale (I’algorithme proposé ne nécessite la création d’aucun
maillage),

pour étre en accord strict avec PRISSMA, les champs de propriétés (tem-
pérature et concentrations) utilisés en entrée de l'algorithme a collisions
nulles sont ceux produits par la simulation LES du code AVBP [Poitou, 2009,
Poitou et al., 2011]. Ces champs de propriétés discrétisés (4.7 millions de tétra-
édres) sont décrits par la Fig. 4.16. Les schémas d’interpolations utilisés sont
également identiques & ceux utilisés par PRISSMA.

Temperature XCO2
400 800 1%00 16‘00 20|00 ‘ O.PS 0.05 0.08 0.1
LLLILEEEEp e irprernnn [RERERRNE) I\HHH_; i
292,11 23097 0 0.10947

| e
- P—

XH20 XCO
I 0.|04 008 0.12 0.16 ‘ O.l01 0.02
IH\HHIII\I\HW L O !
0 0.18425 0 0.0243

FIGURE 4.16 — Champs de température et de fractions molaires (COs, H2O et CO) obtenus par le
code de simulation aux grandes échelles AVBP pour la configuration de chambre de combustion
considérée. Ces champs de propriétés sont utilisés en entrée de ’algorithme a collisions nulles. -
Résultats obtenus par D. Poitou.

en séparant les différentes espéces (CO2 et HoO) grace a une hypothése de décorrélation spectrale.
367 bandes étroites de 25cm ™! de largeur, sont utilisées pour calculer les bilans radiatifs et les jeux
de k-distributions sont construits en accord avec une quadrature de Gauss-Legendre d’ordre 7. De
plus amples détails concernant ’approche utilisée sont donnés dans article [Eymet et al., 2013]
fourni en Annexe E
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4.4.2 Reésultats obtenus

Les résultats obtenus, suite a cet exercice de validation, sont illustrés a la Fig. 4.17
ou apparaissent les bilans radiatifs calculés par les deux codes en un grand nombre
de points, le long de 'axe x (y=0, z=0, x € [0;0.3] m) et le long de 'axe y (x=0.08,
y € [-0.025;0.025 m), z=0). Les résultats obtenus par 1’algorithme & collisions nulles

500 T

PRISSMA - axe X ---revr
ACN - axe X +—+—i
PRISSMA - axe Y ---------
ACN - axe Y —+——

-500

-1000

Bilan radiatif (kW/m?)

-1500
b

-2000 1 1 1 1

Tmax Ymax

FIGURE 4.17 — Bilans radiatifs calculés par le code PRISSMA et lalgorithme a collisions nulles
(fournis avec les intervalles de confiance correspondant) en différents points de la chambre de
combustion, le long des axes z (y=0, z=0, x € [0;0.3] m) et y (x=0.08, y € [-0.025;0.025 m), z=0).
Résultats obtenus par D. Poitou (pour PRISSMA) et par V. Eymet (pour Ualgorithme & collisions
nulles).

(fournis avec une barre d’erreur) semblent en bon accord avec ceux obtenus par
PRISSMA. Les résultats ne différent que de quelques pourcents dans les régions ot
les termes sources sont importants et ces disparités sont légérement plus marquées
sur les cotés de la chambre de combustion. Ces différences s’expliquent en partie par
la discrétisation angulaire utilisée par PRISSMA, mais semblent n’avoir que trés peu
d’incidence sur la simulation globale de la combustion dans cette enceinte. Dans la
mesure oul I'on considére que le modéle spectral (SNB-ck) utilisé par I’algorithme a
collisions nulles est fiable, les résultats produits par cet algorithme peuvent donc étre
considérés comme référence. Grace a ces derniers, les spécialistes de la combustion
peuvent alors affiner leur modéle radiatif en conséquence, dans la limite des exigences
de temps de calcul fixées. On mesure alors l'intérét majeur qu’offrent les solutions de
référence tels que les algorithmes & collisions nulles.

Dans des considérations plus techniques, cet exercice de validation a également
permis de mesurer 'impact non négligeable qu’ont les procédures numériques de
localisation et d’interpolation. En effet, a chaque nouvelle collision, il est nécessaire
de connaitre les valeurs locales de pression, de température et de concentrations des
différentes espéces, en s’appuyant sur les champs maillés produits par AVBP (fournis
avec un schéma d’interpolation). Cette étape, consiste alors a identifier la maille,
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parmi les 4.74 millions de tétraédres, dans laquelle a lieu la collision et de réaliser
une interpolation - ici barycentrique - pour chaque propriété afin d’en estimer sa
valeur locale. La répétition conséquente de ces étapes de localisation® peut alors
représenter 1’essentiel du temps de calcul, d’autant plus si la géométrie est comme ici
tridimensionnelle. A titre d’ordre de grandeur, sans optimisation de ces procédures de
localisation /interpolation, plus de 4 heures étaient nécessaires pour le calcul d'un seul
bilan radiatif avec une erreur relative de 1%. Pour pallier ce probléme, I’algorithme
a collisions nulles a été implémenté dans ’environnement de développement EDStaR
[De La Torre et al., 2014, Starwest, 2014a], permettant de réaliser des simulations
de Monte-Carlo en géométries complexes. Outre la bibliotheque MCM3D qui permet
entre-autres de paralléliser les calculs de Monte-Carlo, cet environnement de dévelop-
pement inclut les bibliotheques de PBRT [Pharr et Humphreys, 2010] : un code de
synthése d’image comportant une multitude de procédures d’accélération graphique.
Ainsi, grace a ces procédures accélérant grandement ’étape d’identification de la
maille d’intérét, les temps de calcul ont été réduits de plusieurs heures a quelques
dizaines de secondes (40 secondes environ) pour l'estimation d'un bilan radiatif ayant
une erreur relative de 1%.

Résumé du chapitre

Lorsque les propriétés radiatives d’un milieu participant sont non-uniformes
(telles que I’épaisseur optique d’etinction ne peut pas étre évaluée analytiquement
le long d’une ligne de visée), il est généralement nécessaire de recourir a certaines
approximations (discrétisation des propriétés du milieu ou méthodes numériques
de quadrature/inversion) pour résoudre 1’équation du transfert radiatif en milieu
participant. Dans un souhait de conserver le caractére de référence des méthodes de
Monte-Carlo, nous avons, dans ce chapitre, adapté a des problématiques radiatives
une technique employée depuis plusieurs décennies dans d’autres domaines de la
physique du transport : les algorithmes a collisions nulles. Leur principe consiste a
ajouter aux événements d’absorption et de diffusion un troisiéme type de collision sans
effet sur le transfert du radiatif (ces collisions, dites nulles, peuvent étre assimilées
a des événements de diffusion vers I'avant). Puisque sans effet sur la physique du
transport, elles peuvent étre choisies arbitrairement de sorte a rendre le coefficient
d’extinction résultant de ces trois types de collisions uniforme et ainsi permettre une
résolution de I’équation du transfert radiatif rigoureuse, quels que soient les champs
de propriétés utilisés en entrée. D’un point de vue purement statistique, ces collisions
permettent, par 'introduction d’une récursivité, de passer outre la non-linéarité du
terme exponentiel d’extinction présent dans I’équation du transfert radiatif. Ces
algorithmes a collisions nulles ont alors été mis en ccuvre dans 1’étude d’un bilan
radiatif au sein d’un milieu tridimensionnel, absorbant, émettant et diffusant, entouré
par des parois réfléchissantes. Ces travaux ont donné lieu a une étude paramétrique
permettant d’évaluer, entre-autres, I'influence non-négligeable du choix arbitraire
du coefficient de collision nulle sur le taux de convergence de 'algorithme. Enfin,

6. Plusieurs dizaines de collisions pour chaque réalisation de l’algorithme de Monte-Carlo
(quelques millions).
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puisque ne faisant appel & aucune approximation, cette méthode a été utilisée pour
valider un code de calcul radiatif approché dans une géométrie réaliste de chambre
de combustion.
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Introduction

Dans le chapitre précédent, les algorithmes a collisions nulles ont été introduits
pour traiter la dépendance spatiale des propriétés du milieu. Il devient désormais
possible, par ’ajout de collisions fictives, de se passer d’une discrétisation préalable
des champs de propriétés, tout en assurant le caractére de calcul de référence des
méthodes de Monte-Carlo. Ces algorithmes n’ont été, jusqu’alors, présentés que pour
traiter des grandeurs radiatives monochromatiques.

Toutefois, quels que soient les domaines applicatifs, ce sont généralement des
grandeurs intégrées sur une plage de nombres d’onde qui intéressent les spécialistes.
Or, cette intégration constitue usuellement I'étape la plus limitante et la plus
délicate a mettre en ceuvre, & cause de la complexité qu’impliquent les dépen-
dances spectrales des différentes propriétés optiques. Il faut en effet, pour résoudre
I’équation du transfert radiatif, étre capable de représenter ou de modéliser ces
dépendances pour chacun des termes la composant (coefficients d’absorption, de
diffusion, luminance d’équilibre, fonction de phase, etc.). Cette forte complexité est
en particulier rencontrée lorsque l'on tente de décrire le coefficient d’absorption, qui,
en plus d’avoir une dépendance spatiale (ou plutot une dépendance aux conditions
locales de température, de pression et de composition chimique), dépend de fagon
particuliérement prononcée du nombre d’onde (voir Chap. 2).

Aussi, 'objet de ce chapitre va étre de proposer une approche permettant de
traiter statistiquement, lors d’un calcul de grandeur intégrée spectralement, le
coefficient d’absorption et ses dépendances spatiales et spectrales. Notre motivation
est, ici encore, de reformuler le probléme lié & cette forte complexité sous un aspect
purement statistique et d’étudier les avantages que pourrait offrir une telle approche.
Nous allons alors voir comment les algorithmes a collisions nulles permettent de
repenser de facon statistique, directement au sein de I’équation du transfert radiatif,
I’expression du coefficient d’absorption. Cela conduira alors au développement
d’algorithmes de Monte-Carlo évaluant de fagcon non biaisée une observable intégrée
spectralement sans nécessiter une production préalable de spectres d’absorption
ou de modeles spectraux simplifiés. Les propriétés optiques seront reconstruites
statistiquement au cours du calcul par un échantillonnage des transitions moléculaires,
directement réalisé depuis les bases de données spectroscopiques. Ces algorithmes ne
feront appel & aucune des approximations couramment utilisées et conserveront ainsi
leur statut de solutions de référence.

Ce chapitre est divisé en trois parties. Dans un premier temps, un bref état de
I’art relatif a la représentation spectrale des coefficients d’absorption sera présenté.
Puis, nous montrerons comment il est possible de repenser de facon statistique I'idée
méme de coefficient d’absorption. Nous mettrons également en évidence, le probléme
de non-linéarité qu’entraine cette reformulation du coefficient d’absorption, au sein
de I’équation du transfert radiatif.

La seconde section, essentiellement formelle, aura pour objet de montrer comment
les algorithmes a collisions nulles permettent une nouvelle fois de passer outre ce
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caractere non-linéaire. Un algorithme a collisions nulles, basé sur un échantillonnage
des transitions depuis des bases de données spectroscopiques, sera alors proposé et
une discussion des perspectives qu’entrainent cette nouvelle approche sera effectuée.

Enfin, dans la troisiéme partie, nous mettrons en pratique cette approche sur
six cas d’étude couvrant différentes problématiques de combustion. Une partie
importante de cette section sera consacrée aux choix de nombreux parameétres libres
requis par ’approche proposée, n’ayant aucune incidence sur le caractére exact de
la méthode, mais conditionnant de facon importante le taux de convergence de
I’algorithme de Monte-Carlo.

Nous nous concentrerons pendant tout ce chapitre sur ’étude d’un milieu non-
diffusant. En effet, 'ajout d’événements de diffusion n’apporterait pas d’intérét
particulier a I’approche proposée ici, ni de difficultés supplémentaires (voir Chap. 4).

5.1 Intégration spectrale d’observables radiatives
en milieu gazeux

5.1.1 Représentations usuelles du coefficient d’absorption

Lorsqu’il s’agit d’aborder des problématiques de rayonnement thermique en milieu
gazeux (analyse expérimentale, simulation, inversion, etc.), les ingénieurs et physi-
ciens s’appuient directement ou indirectement sur des bases de données spectrosco-
piques [Jacquinet-Husson et al., 2011, Rothman et al., 2010, Rothman et al., 2013,
Tashkun et Perevalov, 2011|. Ces bases de données, produites par une communauté
trés active de spectroscopistes, rassemblent, pour de nombreuses espéces moléculaires
et pour un nombre considérable de transitions, plusieurs paramétres (voir Sec. 2.3.3)
permettant de décrire les phénomeénes d’absorption et d’émission d’un gaz. Toutefois,
méme pour les gaz les plus simples & des températures faibles, le nombre de transitions
moléculaires a prendre en compte est extrémement important (les paramétres de plus
de 600 millions de transitions moléculaires sont représentés pour la seule molécule
de CO4 dans la base de données CDSD-4000 |Tashkun et Perevalov, 2011]). Traiter
cette quantité conséquente d’information représente alors une tache particuliérement
fastidieuse.

En effet, le coefficient d’absorption que 1’on cherche a représenter a partir de
ces bases, dépend a la fois de la température, de la pression, du mélange gazeux
et du nombre d’onde. Pour produire un unique spectre d’absorption (c’est-a-dire
pour une température, une pression et un mélange fixés), il est nécessaire de sommer
de fagon déterministe, en chaque nombre d’onde, I’ensemble des contributions
d’absorption de chaque transition. La variation spectrale du coefficient d’absorption
étant trés prononcée, ce calcul doit étre réalisé sur des pas spectraux tres petits.
On considére généralement, qu’a pression atmosphérique, la résolution d’un spectre
d’absorption doit étre de 0.01em ™! pour décrire correctement ces variations. Cela
signifie que la production d’un spectre d’absorption couvrant tout le domaine
infrarouge nécessite entre 10° et 107 calculs de coefficients d’absorption (chacun
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consistant & sommer plusieurs milliers, voire plusieurs millions de participations de
raies). De tels spectres sont qualifiés de spectres haute-résolution. Dans le but de
rendre cette somme plus aisée, le modeéle spectroscopique est souvent simplifié afin
d’avoir & sommer en chaque nombre d’onde une quantité plus faible de transitions
(ex : prise en compte uniquement des transitions ayant une intensité supérieure
a un seuil donné, troncature des ailes de raie, etc.). Cependant, méme avec ces
allégements, la production de spectres haute-résolution demeure trés cotiteuse et
nécessite d’étre reproduire a chaque changement de modéle de raie, d’hypothése
spectrale, ou encore & chaque nouvelle version de base de données spectroscopique.

Une fois ces spectres d’absorption haute-résolution produits, deux pratiques
sont couramment rencontrées pour prendre en compte leur information spectrale
dans le calcul d’une observable radiative. La premiére consiste a simplifier ces
spectres par des modéles approchés. Un grand nombre de modéles spectraux ont
été développés au cours des derniéres décennies, devenant de plus en plus précis et
de plus en plus performants. Néanmoins, le passage d'un spectre haute-résolution a
un spectre simplifié se traduit nécessairement par une perte d’information qui n’est
pas acceptable lorsqu’il s’agit de proposer des solutions de référence. La seconde
pratique consiste a extraire, directement lors du calcul d’une observable radiative,
les coefficients d’absorption contenus dans ces spectres; on parle alors d’approche
raie-par-raie. Ces approches, beaucoup plus lourdes en termes de mise en ceuvre
que les modéles spectraux simplifiés, sont aujourd’hui considérées comme solutions
de référence. Toutefois, lors du calcul radiatif, il est nécessaire, pour obtenir la
valeur du coefficient d’absorption en un point donné, de recourir & une interpolation
selon un jeu de pressions, de températures, de concentrations moléculaires et de
nombres d’onde. Cette étape peut, si la résolution du jeu de spectres (relative aux
conditions thermodynamiques ou aux nombres d’onde) est trop faible, conduire a un
léger biais de ’estimation de la grandeur d’intérét. Une autre solution consisterait a
calculer rigoureusement, au fil du calcul, le coefficient d’absorption & partir des bases
de données spectroscopiques. Les incertitudes dues aux procédures d’interpolation
disparaitraient alors. En pratique, cette solution n’est jamais adoptée car les temps de
calcul deviennent trés vite excessifs. On préfére généralement, dans des motivations
de calcul de référence, 'utilisation de spectres haute-résolution qui offrent ’avantage
supplémentaire de pouvoir étre réutilisés d’une simulation a l'autre.

La quantité conséquente d’information contenue dans ces bases de données a
toujours motivé la communauté de la spectroscopie moléculaire a proposer des
représentations statistiques. Les exemples les plus significatifs correspondent au
développement de modéles statistiques qui permettent I'évaluation de transmissivités
moyennées par bande spectrale, a partir de pondérations des intensités ou des largeurs
de raies. Cependant, en pratique cette relation directe entre statistiques de raies
et transmissivités moyennes s’est perdue rapidement. L’idée d’utiliser des modéles
statistiques est restée, notamment avec les travaux de Malkmus ([Malkmus, 1967]),
mais ces modeéles se sont de plus en plus appuyés sur les spectres d’absorption
haute-résolution et non sur les parameétres de transition eux-mémes. Plus tard, le
développement des k-distributions |[Lacis et Oinas, 1991, Taine et Soufiani, 1999| a
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poursuivi cette méme logique : les approches restent statistiques mais elles sont
désormais uniquement basées sur des spectres haute-résolution, calculés de fagon
déterministe.

Nous soutenons ici que I'on peut attendre d’importants bénéfices, tant numé-
riques qu’en termes d’analyse, si 'on supprime cette étape déterministe de pro-
duction de spectres haute-résolution. Une part de ces bénéfices est illustrée dans
[Feldick et Modest, 2011, Ren et Modest, 2013], ou il est montré que la complexité
liée a I'intégration spectrale par échantillonnage des nombres d’onde est mieux traitée
en s’appuyant sur les parameétres de transitions plutdét qu’en restant au niveau des
spectres d’absorptions [Modest, 1992].

5.1.2 Reformulation statistique du coefficient d’absorption

En négligeant les effets de "line-mixing" (voir Sec. 2.3.3.1), le coefficient d’ab-
sorption k,,(x) pour un nombre d’onde 7, au point x s’exprime comme la somme
des contributions A m ., (x) de 'ensemble des transitions énergétiques ¢ de toutes les
espéces moléculaires m en présence :

Nim
kan(x) = Z
m=1

ot N,, est le nombre d’espéces moléculaires et V,(m) est le nombre de transitions

pour une espece m donnée. Puisque cette expression ne constitue qu'une double

somme, il est possible de I'exprimer comme une espérance par l'introduction de

probabilités arbitraires associées a chaque espéce moléculaire P, (x) = Py, ,(x) et &
o _ ) . ) . C

chaque transition P,(x) = Py,,.,(x) d'une espéce moléculaire donnée :

N,

(m)
> Baman(x) (5.1)
=1

(2

o) = 3P0 3 P e | g | et ] (s
an(X) = (X (X) | =———| =E | ———— .

! — — P (x)Pu(x) Par(x)Pr(x)

Les indices m des espéces moléculaires ainsi que les indices ¢ des transitions consti-
tuent alors des variables aléatoires discrétes, respectivement notées M et Z, définies

par les probabilités P,, et P,.

L’essentiel de la proposition faite dans ce chapitre réside dans cette simple refor-
mulation statistique. Une conséquence directe de cette reformulation est qu’il devient
possible, en pratique, d’estimer le coefficient d’absorption k,,(x) pour un nombre
d’onde donné ou méme de reconstruire un spectre (voir Fig. 5.1) de fagon totalement
stochastique par un algorithme de Monte-Carlo. Cet algorithme consisterait a réaliser
un grand nombre N,,. de fois et de maniére indépendante les étapes suivantes :
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0.35 Raiel—par—rauieI
Monte Carlo +——+——
0.3 F -

0.25 J

! 0.2 F E

0.15 J

kan(m

0.1 | .

o W |
0 et 1 X 1

1746 1747 1748 1749 1750 1751 1752 1753
n(em™1)

F1cURE 5.1 — Spectres d’absorption calculés avec une approche raie-par-raie et par un algorithme
de Monte-Carlo (valeurs données avec leurs intervalles de confiance obtenus avec 1000 réalisations
indépendantes). Le mélange considéré est composé de COy et de HoO (de fractions molaires
respectives xco, = 2.87TE — 4 et xpg,0 = 2.25F — 2) a une température de 294K et une pression de
latm. Les bases de données spectroscopiques CDSD1000 et HITEMP ont été utilisées pour réaliser
ce calcul.

— ALGORITHME N

1. Echantillonner une molécule m; parmi ’ensemble des N, molécules selon
les probabilités discrétes P, (x) associées a chacune des molécules

2. Echantillonner une transition 2; parmi ’ensemble des N,(m;) transitions
de la molécule m; selon les probabilités discrétes P, (x) associées a chacune
des transitions de la molécule m;

3. Calculer le poids de Monte-Carlo : w; = hgm; 1.5(X)/Pm, (x)P,; (X) en ac-

cord avec le modéle de raie considéré, directement & partir des parameétres
de transitions contenus dans la base spectroscopique d’intérét.

L’estimation du coefficient d’absorption par cet algorithme est alors donnée
par la moyenne arithmétique des N,,. poids w;. Il est également possible d’estimer
I’écart-type associé a cette estimation. En d’autres termes, il n’est pas nécessaire
de prendre en compte I'ensemble des transitions pour estimer k,,(x), mais d’en
échantillonner un nombre suffisant pour lesquelles on calcule au fil de la simulation
les contributions hg m, ,.,.n(X) & partir des bases de données spectroscopiques retenues.
La convergence de I’algorithme sera alors entiérement conditionnée par le choix
des P, (x) et des P,(x) (qui devront étre attribuées a chaque espéce et a chaque
transition avant ou pendant le calcul).

Les éléments de physique statistique nous permettent de considérer que ’ensemble
des molécules et I’ensemble des transitions énergétiques sont représentés en x avec des
probabilités de présence plus ou moins importantes. Les images physiques associées a
cet exercice de reformulation résident alors simplement dans le fait de sélectionner de
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fagon aléatoire plusieurs molécules ayant des états énergétiques donnés pour estimer
le coefficient d’absorption global k, ,,.

5.1.3 Non-linéarité du terme d’extinction

Si l'on s’arrétait a ce stade, l'intérét de considérer statistiquement les coefficients
d’absorption demeurerait limité. Notre souhait est d’introduire directement dans
I’équation du transfert radiatif une description statistique des coefficients d’absorption
pour permettre une intégration spectrale ne requérant ni approximation (liée & une
éventuelle interpolation), ni calcul préalable de spectres d’absorption haute-résolution.

Pour mettre en évidence les difficultés qu’entraine cette introduction, considérons
la luminance L(xg,up), intégrée spectralement entre 7y, et Nmax dans un milieu
infini, non-diffusant et homogéne (le coefficient d’absorption est uniforme). Dans ces
conditions, cette luminance peut étre exprimée comme :

Tmax +o00
L(x0, up) = / dn / dl Ky, exp ( - /{:aml> L(x0 — [uy) (5.3)
TImin 0

Reformuler cette équation comme une expression statistique ne pose pas de probléme
majeur des lors que 1'on considére les nombres d’onde comme une variable aléatoire
a laquelle on associe une densité de probabilité arbitraire py(n). Il vient alors :

Tmax +00 LeQ(X i lu )
L(x0, 1) :/ pH(U)dU/ pe(l)dl ————— - -
- 0 (1)

[0 tw) o

pu(n)

ol pr(l) = kqyexp(—Kqyl) est la densité de probabilité des libres parcours L.

La transposition de cette expression en un algorithme de Monte-Carlo est donc
aisée. Chacune de ses réalisations indépendantes consiste a échantillonner un nombre
d’onde 7; selon pg(n) et un libre parcours [; selon p,(1); le poids de Monte-Carlo
de la réalisation indépendante i est alors donné par w; = Ly(xo — liug)/pu(m:)-
Toutefois, en I'état, 'Eq. 5.3 et son algorithme correspondant, imposent que la
valeur de k, , soit connue pour tout nombre d’onde 1. La mise en ceuvre pratique
de cet algorithme nécessiterait de fagon classique la production rigoureuse d’un
spectre d’absorption défini & haute-résolution pour les conditions de température,
de pression et de composition chimique du cas d’étude. Celui-ci devrait alors étre
interpolé spectralement pour obtenir la valeur du coefficient d’absorption pour
un nombre d’onde 7; donné. Si les propriétés du milieu n’étaient pas uniformes,
il serait nécessaire de produire un nombre suffisant de spectres pour couvrir ces
hétérogénéités de température, de pression et de composition moléculaire. Pour
remonter a la valeur de £, ,(x) pour un point et un nombre d’onde donnés, il serait
alors nécessaire d’interpoler ce jeu de spectres a la fois spectralement mais également
spatialement (ou selon la pression, la température et les fractions molaires d’espéces).
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Mais nous soutenons ici, qu’il est possible de se passer de cette production
rigoureuse de spectres haute-résolution par un traitement statistique de ’expression
des coefficients d’absorption. Il est possible de remplacer dans I’'Eq. 5.3 les coefficients
d’absorption k,, par leur expression statistique donnée a I’'Eq. 5.2. Il vient alors :

TImax 400 Nm NZ m) L B lu
L(x0, up) =/ dn/ dl Zp Z P, haman - (73 0)
Thmin 0

Nz(m (5.5)
X exp Z P Z Py R n
m/=1 =1

Pour passer a une expression de la luminance L(xg, ug) sous forme d’espérance,
il est nécessaire d’introduire deux densités de probabilité arbitraires : py(n) associée
aux nombres d’onde et p. (1) associée aux libres parcours. On obtient alors

Mmax N No(m) ammL (xo — luy)

TImin

N,(m)

X exp ZP ZP am,;;nl

(5.6)
qui, sous forme d’espérance, donne
hamz,m L% (%0 — Lug) ( |:ha./\/l’ 7 H£:|)}
L =E | ——= —E | = 5.7
(o, o) { o (H)pe (L) PP, P PPy (5:7)

Nous nous retrouvons alors exactement dans la méme configuration que lorsque
nous souhaitions traiter les hétérogénéités des propriétés radiatives du milieu (voir
Sec. 4.1.3) : Uextinction exponentielle introduit une non-linéarité dans l’expression
statistique de la luminance. Cette non-linéarité ne nous permet donc pas de proposer
directement un unique algorithme de Monte-Carlo pour estimer L(xg, uy). Il serait
en effet nécessaire d’effectuer une simulation compléte pour estimer 1'épaisseur
optique E [(ho a7, 1) / (Pm/Pyr)] & chacune des N, réalisations indépendantes de
'algorithme estimant L(xg, ug) (ce qui se traduirait par des temps de calcul excessifs).

Toutefois, le chapitre précédent a mis en évidence que les algorithmes & colli-
sions nulles permettent, par la définition d’un champ d’extinction arbitraire /%n, de
contourner la non-linéarité causée par cette fonction exponentielle. En effet, dans ce
type d’algorithme, le terme d’extinction ne dépend plus du coefficient d’absorption
mais simplement de ]Afn qui, lui, est totalement arbitraire. Nous proposons donc de
recourir, & nouveau, aux algorithmes a collisions nulles pour décomposer, directement
dans ’équation du transfert radiatif, le coefficient d’absorption comme une somme
statistique des participations g m,, de chaque transition. Cela ouvre la voie a des
algorithmes de Monte-Carlo permettant de traiter les dépendances spatiales et spec-
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trales des coefficients d’absorption sans avoir & recourir ni & un maillage volumique
ni & des spectres d’absorption haute-résolution.

5.2 Algorithmes a collisions nulles avec échantillon-
nage des transitions moléculaires

5.2.1 Représentation statistique du coefficient d’absorption
dans I’équation du transfert radiatif

Dans le cas d'un milieu infini, hétérogéne et non-diffusant, I'introduction d’un
coefficient de collision nulle k,, ,(x) dans le champ d’extinction (désormais défini

comme ky(X) = ko y(X) + kny(x)) conduit & la formulation intégrale de la luminance
L(x9,ug) suivante :

Tmax “+oo . ll .
L(xg,up) :/ dn/ dly ky(x1) exp (—/ k(%o — l’luo)dl'l)
Mmin 0 0

() (1) 58)
X [mL;q(xl) + an(Xl’ uo)]

avec X;41 = X; — lj11ug (sans diffusion, la direction ug reste inchangée) et ou le
terme récursif L, (x;,up) est défini par :

+00 R Li+1
Ly(x;,10) :/0 dljs1 ky(xj41) exp (_/0 k(% = l;+1u0)dl;+1>
(5.9)

k ; k ;
x [ML?(X}'H) I MLH(&H’ uO)]
kn(%j41) n(Xj41)

On note alors que grace a l'introduction des collisions nulles, les coefficients
d’absorption ne sont désormais présents que dans les expressions de 1’albédo
d’absorption kq,(x;)/ky(x;) et de I'albédo de collision nulle ki, ,(x;)/k,(x;) (par
Pintermédiaire du coefficient de collision nulle k,,(x;) = &y (x;) — ka,y(x;) qui nest
jamais explicitement calculé). Le probléme de non-linéarité qu’entrainait le terme

d’extinction a ainsi été surmonté.

Il devient alors possible de décomposer les coefficients d’absorption en somme de
participations de chaque transition :

Fan(®) =Y haman(x) (5.10)

De la méme fagon, il est possible de décomposer le coefficient arbitraire de collision
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nulle en une somme de participations de chaque transition a ce coefficient :

Koy (X) = Z P (X) (5.11)

Nm Nl(m)
=1 =1

m

ol Ay n(X) est la participation de la transition ¢ de la molécule m au coefficient de
collision nulle &, ,(x). On peut également définir un coefficient

iLm,zm(X) = ha,m,zm(x) + hnman (X) (5-12>

qui correspondrait au coefficient d’extinction associé & une transition ¢ particuliére
et qui validerait donc k,(x) = Zg’il Zszgm) Rmam(x). La décomposition de ces
propriétés radiatives est illustrée par la Fig. 5.2. Les choix de hy, oy (X) €t iy ,q(X)
sont totalement libres, a la seule condition qu’ils valident respectivement les Eq. 5.11

et 5.12.

kﬂ
127] = ]’:177,1 + ]’%71,2’: ------------ ., - '(') """
nn2 X

ha,l],Z(X)

hn,q,l (X)

>

7.1

> X
X0

FIGURE 5.2 — Décomposition du champ de k,(x) en une somme de }Alm,z,n(x) définis pour chaque
transition moléculaire ¢ de chaque espéce m. Le coeflicient fLm’W (x) est lui-méme divisé en une
composante d’absorption g m,.n(x) (calculable directement & partir de bases de données spectro-
scopiques) et d’une contribution au coefficient de collision nulle %y, p, , »(x) arbitraire. Cette figure
illustre le cas fictif, d’'un gaz monomoléculaire ne comportant que deux transitions (numérotées 1 et
2) pour un nombre d’onde 7 donné.

— NOTE : Reformulation de I’équation locale du transfert radiatif
Si 'on se rameéne a 'écriture différentielle de I’équation du transfert radiatif, la
décomposition des coefficients d’absorption et de collision nulle en une somme de
participations de chaque transition moléculaire consiste a transformer 1’Eq. 4.13
rappelée ci-dessous pour un cas non-diffusant :

~

WYV L, (%, 1) = —Fky(x) Ly (X, 0) 4k, (%) LX)+ (X) ) d(u—u')L,(x,u’)du’
" (5.13)
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en

WV L, (3, 1) = —Fy () Ly (x, )
Nm Nz(m

DI [ aiman () LX) + g (%) [ (0 = 0) Ly (x, )’

4

(5.14)

m=1 1=1

Dans cette expression, le terme d’extinction —Fk,(x)L,(x, u) ne dépend plus
de k,, mais du champ arbitraire d’extinction /%n. C’est cette propriété qui,
une fois I’équation du transfert radiatif exprimée sous sa forme intégrale,
permet de rendre le terme exponentiel d’extinction analytiquement calculable,
et permettra de traiter la non-linéarité exposée a la Sec. 5.1.3.

Cette décomposition des coefficients d’absorption et de collision nulle conduit
donc, avec I'introduction de probabilités arbitraires P,,(x) et P,(x) (respectivement
associées a chaque espéce moléculaire m et & chaque transition 2), a I'expression
suivante :

Nmax —+o00 Nm N’b(m)
L(x0,up) = / dn / e, (h)dl > Pr(x1) > Pulxy)
0 m=1 1=1

TImin

(5.15)

[A ) Ly (x1) + = (1) Ly (x1, U—o)]
e (%1) P (1) P(x1) Koy (%1) P (%1) Po(x1)

ot pr, (1) = k(%) exp ( fo a(Xjo1 — l;uo)dl;> est la densité de probabilité des

libres parcours £; et ot le terme récursif L, (x;,uy) est donné par :

Ni(m)

—+o0
Ly (%, ) :/ ey (lsa)dlj ZP Xj41) Y Puxj11)
0 m=1 1=1
hamz ] hnmz j
X _ tidd) 77)(X]+1> Lf]q(X]_H) + _ LD 777(X]+1> Ln (X]+1, uo)]
Koy (X41) Prn (%41) Po(X41) Ky (%j01) P (X41) Po(Xj41)

(5.16)

On retrouve alors une expression tres proche de celle des algorithmes a collisions
nulles usuels. En posant

Ty (%) = by (%) P () P (%), (5.17)

les termes ha,m,zm(x)/[l%n(x)Pm(x)Pz(x)} et hn,mm(x)/[I%U(X)Pm(x)ﬂ(x)] corres-
pondent alors respectivement a 1’équivalent d’albédos d’absorption et de collision
nulle, mais ici associés a la seule transition 2 de l'espéce m. Dans la mesure ou
SN P (%) Zfiim) P,(x) = 1, cette expression valide bien la condition imposée par
les Eq. 5.11 et 5.12. Ce choix fait pour ’expression de ﬁn(x) présente un avantage
supplémentaire : seuls le champ de /%n et les différentes probabilités devront étre



148 Chapitre 5. Intégration spectrale par échantillonnage des transitions

définies au préalable de facon arbitraire, évitant ainsi de devoir proposer pour chaque
transition, pour chaque nombre d’onde et chaque position une valeur de h,, ,(x)
validant ’'Eq. 5.11.

De la méme maniére qu’au Chap. 4, il est possible d’exprimer sous forme statistique
ces albédos en introduisant dans I’Eq. 5.15

h
e une probabilité d’absorption P,,(X) = Pam.y(X) = = am.n(X) =
o (%) P (%) P (x)
ha,m,l,77<x)
hm,l,n(x)

e une probabilité de collision nulle P, ,(x) = 1 — P, ,(x)
e ainsi qu’une densité de probabilité des nombres d’onde py(n) arbitraire.

Il vient alors :

Nmax 1 400 N, N,(m)
L = d o, (1h)dl ' !
o) = [ gl [ b0 3o Pae) SR 5
X [77@71(X1)Lf7q(xl) + (1 =P, (x1)) Ly (%1, uo)}
ot le terme récursif L, (x;,uy) est donné par :
400 N Nl(m)
L) = [ el 3 Puin) 3 Pilxiin) 510
m=1 1=1 ’

X [Paa(®j41) Ly (%541) + (1 = Pau(Xj41)) Ly (X541, 10) ]

Toutefois, la définition de la probabilité P,,(x) impose que hgm,(X) < lAlmM(x)
pour qu’elle soit bien comprise entre 0 et 1. Il est donc nécessaire que pour toute
transition moléculaire le coefficient h,, ,,,(x) soit positif pour tout nombre d’onde
1 et en toute position x. Nous retrouvons ainsi les mémes conclusions que pour
les algorithmes a collisions nulles usuels (voir Sec. 4.2.4). Nous reviendrons sur cet
élément limitant dans la Sec. 5.2.3 et proposerons a l'instar de la Sec. 4.2.4 une
alternative permettant d’autoriser localement des occurrences négatives de Ry, ;.-

La formulation intégrale récursive de I’Eq. 5.18 nous permet alors d’exprimer la
luminance L(xg, ug) comme une simple espérance :

(5.20)

L(xo,u0) = E [ﬂ}

pu(n)

ou la variable aléatoire X* correspond aux positions d’émission et peut étre définie
comme :

+o0 i—1
X' =Y "XA [ -4y (5.21)
j=1 q=1

avec A; = Ajn.,(x;) la variable aléatoire associée aux événements d’absorption.
Tout comme pour les algorithmes a collisions nulles usuels, elle vaut 1 avec une
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probabilité P, ,(x;), 0 sinon, mais elle dépend désormais, en plus de la position X;
des indices d’espéces moléculaires M et des indices de transitions Z.

On constate alors I'intérét qu’offre cette reformulation. Celle-ci ne dépend plus du
coefficient d’absorption, mais seulement des participations hg m ., de chaque transition
présentes dans les probabilités d’absorption et du champ arbitraire ];‘77. L’information,
habituellement portée par le coefficient d’absorption dans les approches statistiques
usuelles, est maintenant reconstruite de facon stochastique par une combinaison de
transitions moléculaires. Les algorithmes a collisions nulles permettent de réaliser
cette tache grace aux propriétés suivantes :

e l'unique fonction exponentielle de I'équation du transfert radiatif, présente dans
Iexpression de pg, (I;) ne dépend plus que du coefficient d’extinction k, qui est
choisi arbitrairement ;

® kq,, apparait uniquement et de fagon linéaire dans les probabilités d’absorption
et de collision nulle ;

e grace a cette linéarité, k,, peut étre remplacé par une expression sta-
tistique de transitions (comme proposé dans [Feldick et Modest, 2011,
Ren et Modest, 2013]);

e la non-linéarité de l'exponentielle est reconstruite par la récursion associée
aux événements de diffusion vers I'avant que constituent les collisions nulles
[Longo, 2002, Galtier et al., 2013].

Puisqu’exprimée sous la forme d’une simple espérance, la luminance L(xg, up)
peut alors étre estimée sans biais par un simple algorithme de Monte-Carlo, composé
de N, réalisations indépendantes (indicées i et schématisées a la Fig. 5.3), chacune
composée des étapes suivantes :

— ALGORITHME

1. L’indice de collision est initialisé : j = 0;

2. On échantillonne un nombre d’onde 7; entre 7y, et Nmax selon la densité
de probabilité arbitraire py(n);

3. On échantillonne un libre parcours d’extinction /; ;11 entre 0 et +oo
selon la densité de probabilité arbitraire ps(l) et on calcule la position de
collision : Xij+1 = X5 — l,-7j+1um- )

4. On échantillonne une espéce moléculaire m; ; parmi I'ensemble des espéces

N, selon les probabilités discrétes Py, (x; j4+1) associées a chacune des
molécules ;

5. On échantillonne une transition moléculaire #; ;411 parmi I’ensemble des
transitions N,(m; j11) de I'espéce m; .1, selon les probabilités discrétes
Pu(ij41) ;

6. On effectue un test de Bernoulli pour déterminer le type de collision.
Pour cela on échantillonne uniformément un nombre 7; ;41 entre 0 et 1.
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6a. Si 711 < Pau(Xijt1), il s’agit d’'une absorption et la récursion
s’arréte. Le poids de Monte-Carlo de la réalisation indépendante ¢
est alors donné par : w; = Leg, (Xj41)/pE(1:)-

6b. Si 741 > Pu.(Xij+1), il s’agit d'une collision nulle, I’algorithme
boucle alors a I’étape 3, avec un indice de collision incrémenté

J=J+ 1L
j=0;x=x¢
Echantillonnage de 7
Echantillonnage de [j,1 [« j=j+1 —
Xjr1 = Xj — Lj+1Ug
Echantillonnage de m jol
Echantillonnage de 1),
Echantillonnage de rjsy
(absorption) l (collision nulle)
eq g . .
Sy, = L&) | Oui Pt < Payy (85:1) Non
pu(n)

FIGURE 5.3 — Algorithme a collisions nulles avec échantillonnage des transitions permettant d’estimer
la luminance L(xg,up) dans un milieu infini non-diffusant. Outre ’ajout d’un échantillonnage des
nombres d’onde 7 permettant d’intégrer spectralement la luminance d’intérét, cet algorithme est
trés proche d’un algorithme & collisions nulles usuel. Seules deux étapes d’échantillonnage de I’espéce
moléculaire m et de la transition 2 sont rajoutées.

Cet algorithme est alors trés similaire aux algorithmes usuels de diffusion multiple
(voir Fig. 3.6), a la seule différence qu’une espéce moléculaire et qu’une transition
sont échantillonnées a chaque collision. Toutefois, la proposition de reformulation
statistique faite dans ce chapitre méne a de nouvelles images physiques. Ces derniéres
consistent & suivre depuis xy dans la direction —ug des photons de nombres d’onde
1 compris entre Nyin €t Nmax, jusqu’a ce qu’ils collisionnent en x; avec une molécule
donnée, d’espéce m et d’état énergétique correspondant a la transition ¢. Il y a une
probabilité P, , que cette collision soit une absorption, auquel cas le suivi s’arréte.
La collision peut également étre une collision nulle (avec une probabilité 1 — P, ,),
auquel cas, les photons poursuivent leur chemin dans la direction —uy jusqu’a un
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second point de collision x5 ot il peut y avoir absorption ou collision nulle. Le suivi
est alors stoppé lorsqu’une absorption est rencontrée.

5.2.2 Perspectives numériques et analytiques offertes par
cette approche

Avec cette approche, toute observable radiative peut ainsi étre vue comme
I’espérance d’une variable aléatoire, définie uniquement & partir de propriétés des
transitions moléculaires. La complexité du transfert radiatif en milieu hétérogéne
ainsi que celle liée aux transitions moléculaires ont ainsi pu étre réduites a un simple
probléme d’estimation d’espérance, grace a l'introduction de ces collisions nulles.

Comme cela va étre illustré par la suite, la proposition faite ici a des consé-
quences numériques immédiates. Il n’est plus nécessaire, pour réaliser un calcul de
référence de produire rigoureusement des spectres de haute-résolution, suffisamment
nombreux pour couvrir les hétérogénéités du milieu. A fortiori, ces jeux de spectres
ne doivent pas étre recalculés & chaque changement de configuration d’étude ou
d’hypothése relative au modeéle spectral (profil de raie, troncature, bases de données
spectroscopiques utilisées, etc.).

De plus, les étapes d’interpolations spatiales et spectrales, permettant d’obtenir la
valeur locale d’un coefficient d’absorption a partir d’un jeu de spectres précalculés, ne
sont plus nécessaires. Les estimations ne sont alors plus susceptibles d’étre affectées
par d’éventuels biais dus a ces procédures d’interpolations. A chaque collision,
une transition est échantillonnée et sa contribution hq ,,,(x) est calculée pour les
conditions exactes de température, de pression et de fractions molaires au point x.

Il devient ainsi imaginable, sans avoir & chaque fois & produire un jeu de spectres a
haute-résolution spectrale, de comparer des valeurs d’observables radiatives obtenues
avec différentes bases de données spectroscopiques ou avec différentes hypothéses
spectrales (ex : profil de Voigt ou de Lorentz, sélection des raies les plus intenses,
troncature d’ailes de raie, etc.). La prise en compte de nouvelles versions de bases de
données spectroscopiques devient elle aussi directe.

Outre ces avantages numériques, la proposition faite ici offre des perspec-
tives intéressantes en termes d’analyse. En effet, elle peut servir de point de dé-
part pour des études plus théoriques. Il devient en particulier possible de calcu-
ler, par un algorithme de Monte-Carlo, la sensibilité d’une observable radiative,
comme proposé dans |[De Guilhem De Lataillade et al., 2002a, Roger et al., 2005,
Dauchet et al., 2013, De La Torre et al., 2014], mais cette fois par rapport a un
parameétre du coefficient d’absorption. Par exemple I’'Eq. 5.18 peut étre dérivée par
rapport & un parameétre w du coefficient hq ,,,(x). La sensibilité paramétrique qui
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en résulte (dont la démonstration est fournie en Annexe B) est donnée par :

[ L) X '
pH(H) ; (Aj 1:[1(1 — Aq))
O L(x0,19) = E ! 1 i (5.22)
X [aw In(Pa(X;)) + Y Oz In(l — Pa,l(xn))]

Le pouvoir d’analyse qu’offre cette nouvelle approche pourrait ouvrir des
perspectives intéressantes dans différents domaines. Pour des applications de
type atmosphérique ou astrophysique [Lewis et al., 1999, Eymet et al., 2009,
Lebonnois et al., 2010], il serait possible de calculer la sensibilité d’une gran-
deur radiative a des variables d’état thermodynamiques (ez : & la pression du sol
pour une prise en compte des effets orographiques), ou a la concentration d’une
espéce moléculaire (ex : le calcul de la sensibilité du flux radiatif émis par la Terre
et son atmospheére vers ’espace aux concentrations de divers gaz a effets de serres
tels que le CO9, I'Hy0 ou le CHy). Ces apports pourraient également trouver une
résonance en spectroscopie moléculaire. Il devient en effet possible de calculer la
sensibilité de n’importe quelle grandeur radiative a un paramétre du modeéle de
raie. Nous pensons par exemple a 1’élargissement des raies dii aux autres espéces
du gaz considéré. Dans les bases de données spectroscopiques, seules les largeurs
de raies dues a ’espéce elle-méme et & un mélange caractéristique de l’air terrestre
sont fournies. Il serait ainsi possible d’évaluer le degré de confiance que 1’'on peut
accorder a ces parameétres dés que les mélanges gazeux considérés s’éloignent de la
composition de l'air terrestre (chambres de combustion aéronautiques, atmosphéres
de planétes ou d’exoplanétes, etc.).

5.2.3 Gestion des coefficients négatifs de collision nulle

Comme souligné dans la Sec. 5.2.1, le choix fait pour la probabilité d’absorption

P (X) _ ha,m,z,n(x) _ ha,m,z,n(x) _ ha,m,z,n(x) (523>
7 kﬂ (X>Pm (X)PZ(X) hm,z,n (X) ha,m,z,n (X) + hn,m,z,n (X)

impose que 0 < figm,n(x) < ﬁm,w(x) pour que la probabilité P,, soit bien
comprise entre 0 et 1. En d’autres termes, le coefficient de collision nulle
Bovamam(X) = Pnan(X) — Raman(X) de la transition 2 de I'espéce moléculaire m
doit étre positif. Les constats sont donc identiques & ceux rencontrés a la Sec. 4.2.4,
mais cette fois a I’échelle d’une transition moléculaire.

Il est alors possible, de la méme fagon qu’a la Sec. 4.2.4, d’introduire une nouvelle
probabilité P, ,(x) permettant de pouvoir gérer d’éventuelles occurrences négatives
du coefficient de collision nulle h,, ., , ,(x). Nous proposons ’expression :

ha,m,l,n (X)
a,m,,m (X) _I_ |hn,m,z,n (X)|

Paal) = - (5.24)
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L’expression de la luminance L(xg,ug) de 'Eq. 5.20 est alors modifiée en :

Leq X* hamz
L(XO,uo):E ZA H ~ 4, Lamaal®) ]
j=1 q=1 hmﬂﬂ?(qupaﬂ(xq)
h

_E Leq X* Z A H 4) aman(Xq) F | Pnman (%) (5.25)
a,m,,mn (Xq> + hn m,e,m (Xq)

~E _W(X*)}

Ce choix de probabilité présente 'avantage de n’entrainer aucune modification
algorithmique si hy, (%) > 0, et modifie le poids de Monte-Carlo en conséquence
Si hypman(x) < 0.

Ici encore, les coefficients négatifs de collision nulle hy, ., (%) se traduiront
par une augmentation de la variance de la variable aléatoire W (X*). En effet a

chaque collision nulle pour laquelle Ay, ,,,(x) < 0, la valeur absolue du produit

[FL(1— A,) emtnC)Hnm.en o)
q,: . .q ha,m,l,’ﬂ(Xq)+}%n,m,z,n(‘Xq) . E
était positif en tout point. Si un nombre important de collisions nulles caracté-

risées par des coefficients négatifs se produit au sein d’'une méme réalisation de
Monte-Carlo, alors la valeur de 1’échantillon de la variable W (X*) sera suscep-
tible d’étre trés importante, augmentant alors la variance de I'estimation de L(xg, ug).

croitra, alors qu’elle resterait fixée & 1 si gy 0.5 (X)

Dans le Chap. 4, il était préférable que le champ arbitraire de l;:n(x) majore,
quel que soit x, celui du coefficient réel d’extinction. Il suffisait alors d’augmenter
localement la valeur de I%n(x) pour éviter des occurrences négatives du coeflicient
de collision nulle. Avec la proposition faite ici, ﬁm,lm(x) doit désormais majorer
autant que possible hg . ,(Xx) pour tout nombre d’onde 7, tout point x, toute espéce
moléculaire m et toute transition 2. Il est donc beaucoup plus complexe, en pratique,
d’assurer strictement I'inéquation Ay, ,,,(x) > 0; d’autant plus que ltbmm(x) est
défini comme égal & k, (x)P,, (x)P,(x) dont chacun de ses trois termes résulte d’un
choix arbitraire. Les choix du champ de k,(x) et des deux probabilités (P,,(x) et
P,(x)) pourront donc avoir une incidence sur le respect ou non de la condition
Ppman(x) > 0 pour tout 7, x, m et ¢ et ainsi avoir de sérieuses conséquences sur la

convergence du calcul. Une proposition concernant ces trois termes arbitraires sera
faite a la Sec. 5.3.3.

5.2.4 Proposition d’améliorations algorithmiques

Nous proposons, pour la suite de ce chapitre, de réviser I'algorithme introduit a
la Fig. 5.3, a travers trois modifications présentées ci-dessous.

e Autoriser d’éventuelles occurrences négatives du coefficient de collision nulle
Ppman(x) par Uintroduction de la probabilité P, ,(x) proposée a la Sec. 5.2.3.

e Prendre en compte d’éventuelles parois noires (voir Sec. 3.3.3 et 3.4.4) par
I'introduction d’un test permettant de savoir si la collision a lieu dans le milieu
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V en x; (le test H (x; € V) doit alors étre validé) ou a la paroi en x,,; * (si le
test H (x; ¢ V) est validé).

e Implémenter une procédure d’energy-partitioning (voir Sec. 3.4.2 et 4.3.3)
dans laquelle le type de collisions est géré de facon déterministe dans un
premier temps pour augmenter les taux de convergence. Un seuil arbi-
traire ¢ est également défini pour qu'une fois le terme d’extinction & =
Hé;} P (Xq) /P 0. (%) inférieur a ¢, Palgorithme bascule vers une branche
ol le type de collision est traité par des tests de Bernoulli, ceci dans le but de
mettre fin a la récursivité. Si ¢ = 1, I’ensemble des collisions seront traitées
par un test de Bernoulli et si ( = 0 celles-ci seront traitées de facon détermi-
niste. Dans ce cas, seule une collision & une paroi noire pourra mettre fin a la
récursivité.

Ces trois modifications étant présentées en détail dans les Chap. 3 et 4, nous ne

reviendrons pas ici sur le formalisme mathématique qu’elles impliquent. Toutefois,
I’algorithme résultant de cette révision est rigoureusement schématisé a la Fig. 5.4.

5.3 Mise en pratique dans un benchmark et choix
des paramétres libres

Dans la section précédente, nous avons donc proposé une approche originale qui
permet une description statistique des coefficients d’absorption directement au sein
de I’équation du transfert radiatif. D’un point de vue encore formel, cette proposition
semble offrir des perspectives numériques et analytiques intéressantes. Il est donc
désormais nécessaire de voir comment cette approche se traduit en pratique, une fois
implémentée.

Toutefois, dans un premier temps, il est nécessaire de définir un nombre important
de grandeurs arbitraires. Certaines d’entre-elles ont déja été définies au cours des
paragraphes précédents :

e La densité de probabilité des libres parcours a été définie comme p, (1) =
kn X; exp( fo (X1 — l}uo)dl;> (telle qu’elle est définie pour les algo-
rithmes a collisions nulles standards).

e La probabilité d’absorption a elle aussi été définie, dans le but d’autoriser
d’éventuelles occurrences négatives du coefficient de collision nulle Ay, ,, ., (X)

5 ha,m.an(X)
,P x) = a,m,1,m
) 00+ (5]
o Le coefficient d’extinction }Azm,@,n(x) arbitraire pour une transition donnée a

également été posé comme égal &, (x)P,, (x)P,(x).

Nous ne reviendrons pas ici sur ces trois propositions arbitraires. Néanmoins, plusieurs
parameétres libres restent encore a étre définis, c’est le cas :

1. Le point x,, ; correspond & la premiére intersection entre la paroi B et la demi-droite définie
par le point x;_; et la direction —uy.
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du champ d’extinction arbitraire k,(x);

de la densité de probabilité des nombres d’onde py(n);

de la probabilité P,,(x) associée a chaque espéce moléculaire ;

de la probabilité P,(x) associée a chaque transition ¢ pour une espéce moléculaire
m donnée ;

du seuil ¢ a partir duquel I’algorithme dans lequel les collisions sont traitées
par energy-partitioning permute & une branche ou elles sont traitées par un
test de Bernouilli.

Ces choix ne sont pas anodins dans la mesure ot ils vont conditionner le comporte-
ment et le taux de convergence de 'algorithme présenté a la Fig. 5.4. Il s’agira en parti-
culier de s’assurer, autant que possible, que le coefficient Ay, , »(X) = kp(X) P (X) P, (x)
soit supérieur & hg,,n(x), pour tout nombre d’onde, toute espéce moléculaire, toute
transition et toute position, afin d’éviter une définition de coefficients négatifs de
collision nulle Ay, ,,,(x) qui, comme nous I’avons vu au Chap. 4, sont susceptibles
d’induire une importante augmentation de la variance.

Pour attester de la faisabilité de ’approche proposée et pour définir ces choix
de parameétres libres, nous nous sommes appuyés sur un benchmark proposé par F.
André et R. Vaillon dans l'article [André et Vaillon, 2010|. Un important travail a
été fait pour parvenir a des choix de paramétres assurant une bonne convergence
dans chacun des cas d’intérét (voir Sec. 5.3.3). Cette démarche, relevant plus de
I’essai-erreur, que d’une réelle optimisation basée sur la physique du transfert radiatif
et de la spectroscopie moléculaire, s’est appuyée sur une approche par variance nulle
dont les résultats seront présentés a la Sec. 5.3.2.

Nous pensons que les propositions faites ici permettent de traiter de fagon siire
des cas d’études proches de ceux rassemblés dans le benchmark d’intérét, mais
qu’elles ne constituent certainement pas des choix optimaux. Notre motivation n’était
pas d’arriver & des paramétres arbitraires idéalement choisis ou a un algorithme
particuliérement performant, mais de montrer la faisabilité pratique de ’approche
faisant ’objet de ce chapitre. Les résultats obtenus sont présentés a la Sec. 5.3.4.

5.3.1 Présentation des six configurations d’étude

Le benchmark considéré ici, tiré de [André et Vaillon, 2010], est composé de six
configurations d’étude couvrant une grande variété de problématiques rencontrées
en combustion (de la chambre de combustion a la signature infrarouge de panaches
chauds).

Ces six cas d’étude consistent a estimer la luminance L(x,ug) émise par une
colonne finie de milieu gazeux non-diffusant définie de 0 & x¢ 2. Seules les dimensions de
la colonne de gaz et les champs de propriétés (température, compositions moléculaires)

2. Cela consiste d’un point de vue algorithmique & considérer une paroi noire absorbante de
température T=0K en x = 0.
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les distinguent. Leurs propriétés respectives sont schématisées a la Fig. 5.5. Dans
chacun de ces six cas, la pression considérée est définie comme égale a la pression
atmosphérique.

Les deux premiers cas, respectivement notés C1 et C2 sont tirés de l'article
[Soufiani et al., 1985]. La colonne de gaz est composée d’une zone chaude et d’une
zone froide, chacune homogeéne et isotherme, de dimensions et de températures
respectives 10cm / T = 1500K et 1m / 500K. Dans le cas C1, le mélange de gaz est
composé de CO, & 50% dans la zone chaude et & 5% dans la zone froide. Pour le
cas C2, ces fractions molaires sont conservées, mais I’espéce participante est de la
vapeur d’eau.

Les cas C3, C4 et C5 sont quant a eux inspirés de l'article [Liu et al., 2001].
La dimension de la colonne est de 8m, le profil de température est linéaire par
morceaux : croissant de 400K a 2400K entre Om et 1.5m puis décroissant de 2400 K
a 800K de 1.5m a 8m. Le cas C3 est composé d'un mélange de 20% de CO; et de
10% de H,O. Dans le cas C4, seul le CO, est pris en compte (avec une fraction
molaire de 20%) et dans le cas C5, seule la vapeur d’eau est représentée (avec une
fraction molaire de 10%).

Enfin, le cas C6, tiré de la publication [Riviére et al., 1992], est constitué¢ d’une
zone chaude de 40cm dont la température et les fractions molaires d’HyO sont uni-
formes par morceaux (voir Fig. 5.5) ainsi que d’une zone froide de 200m séparant le
point d’observation et la zone chaude. Ce dernier cas d’étude constitue généralement
une configuration trés difficile & prendre en compte (ces difficultés sont en particulier
rencontrées lors d’utilisation de modeéles spectraux simplifiés de types k-corrélés).

Le fait que les hétérogénéités de ces six cas d’étude soient suffisamment simples
pour que 'on puisse calculer analytiquement les épaisseurs optiques, ne limite en
rien ’étude de faisabilité présentée ici. Il ne s’agit pas d’utiliser les algorithmes a
collisions nulles pour tester leur comportement vis-a-vis des hétérogénéités (cela a
été fait au Chap. 4), mais pour étudier ce qu’implique d’un point de vue numérique
I’échantillonnage des transitions moléculaires.

5.3.2 Approche par variance nulle afin d’orienter le choix des
probabilités

Comme précisé en introduction de cette section, plusieurs grandeurs arbitraires
doivent encore étre déterminées. C’est en particulier le cas de trois probabilités : la
densité de probabilité des nombres d’onde py(n), la probabilité P,,(x) associée a
chaque espéce moléculaire et la probabilité P,(x) associée a chaque transition ¢ pour
une espéce moléculaire m donnée.

Pour orienter ces choix, nous avons recouru & une approche par variance nulle
(voir Sec. 3.3.4.2), en partant de 'Eq. 5.18 dans laquelle nous avons libéré les choix
de toutes les probabilités et densités de probabilité (a savoir pg (1), pr,(l;), Pm(x;),
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(F) Cas d’étude C6

représentées.

FIGURE 5.5 — Benchmark proposé dans Particle [André et Vaillon, 2010]. Les dimensions, ainsi
que les pressions, températures et fractions molaires des différentes espéces participantes y sont
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P.(x;) et P,,(x;)), dans le but de déterminer leur expression respective (indicée )
assurant une variance nulle du poids de Monte-Carlo. Les résultats obtenus par cette
approche (décrite a I’Annexe C) sont présentés ci-apres :

Nombres d’onde. La densité de probabilité des nombres d’onde assurant une
variance nulle du poids de Monte-Carlo est donnée par le rapport entre la luminance
monochromatique au point xy dans la direction ug et la luminance au méme point,
dans la méme direction mais intégrée spectralement entre 7y, €t Nmax :

Ly(xo,w0) _ Ly(x0,10)
L<X07 uO) fi::x Ln (X07 uo)dﬁ

pro(n) = (5.26)

Nous rechercherons donc a approcher au mieux L, (X, uy) par un modele simplifié
de luminance, analytiquement intégrable entre 7y, et Nmax pour pouvoir assurer
une inversion de la fonction de répartition et donc un échantillonnage des nombres

d’onde.

Libres parcours. La densité de probabilité des libres parcours assurant une va-
riance nulle est donnée par :

i 7 e
xp (= Ji (i1 = B1a0)dly ) [ (65D L7 065) + o (%5 Ly (351, 10

LW(X07 uO)

pcj,@(lj) =

(5.27)
On remarque alors que la densité de probabilité

l; .
Pr,; (1) = kn(x;) exp <—/ (X1 — l}uo)dlj) (5.28)
0

que l'on a choisi de conserver, correspond a la densité de probabilité idéale p,, o(1;)
pour le cas particulier d'un milieu & I'équilibre thermodynamique (Ly?(x;) =
L, (x0,19)). En d’autres termes, la variance associée a la variable aléatoire des
libres parcours, sera faible si le milieu est proche d’un équilibre thermodynamique et
plus importante s’il en est éloigné.

Espéces moléculaires. La probabilité associée a chaque espéce moléculaire m
garantissant une variance nulle du poids de Monte-Carlo est donnée par le rapport
entre la participation hg ., ,(x) de 'ensemble des raies de 'espéce m et le coefficient
d’absorption :

N,(m Ny(m
Pt = S emaas) S bl (s
m o (%)) SN S e (%)) '

Il faudra donc chercher a modéliser, en fonction de la position x et de la position 7,
la fraction du coefficient d’absorption k, ,(x) due a la molécule m.
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Transitions moléculaires. La probabilité associée a chaque transition 2 d’une
espéce m assurant une variance nulle est donnée par le rapport entre la participation
de cette transition au coefficient d’absorption et la participation de 1’ensemble des
raies de 'espéce m & ce méme coefficient d’absorption :

ha,m,z,r] (Xj)

N,(m
ZZ::E ) h(z,m,z,n (X]>

Pour un gaz mono-moléculaire, nous chercherons donc & modéliser le rapport entre
la participation d’une raie et le coefficient d’absorption global pour tout point x du
milieu et tout nombre d’onde 7. Cette étape constitue certainement I’élément le plus
délicat du choix des paramétres libres.

Po(x;) = (5.30)

Type de collision. Enfin, la probabilité d’absorption assurant une variance nulle
du poids de Monte-Carlo est donnée par :

Kam (%) Ly (%)
Kan (Xj)L;q<Xj) + En (Xj)Ln (Xj+1 ,Ug)

Pano(x;) = (5.31)

S’il était possible d’utiliser ces probabilités idéales, une seule réalisation de 1’algo-
rithme de Monte-Carlo serait nécessaire pour estimer L(xp, uy) avec une variance
nulle, quelle que soit la valeur du champ de l%n(x). Celui ci n’aurait alors qu’une
incidence sur le temps de calcul en conditionnant uniquement 'indice j de la collision
a laquelle a lieu une absorption. Si 'on souhaitait minimiser ce temps de calcul,
c’est-a-~dire faire en sorte que I’absorption ait lieu toujours a la premiére collision, il
faudrait alors que la probabilité P,,y(x;) soit égale & 1, ce qui reviendrait a fixer
iﬁn (x) = kqp(x) pour tout x.

Ces conclusions nous réconfortent également quant au choix fait pour le coefficient
e . - N o A

d’extinction h,(x;) = P (x;)P.(x;)k,(X;) associé a une transition particuliére. En

effet, si I’on considére les probabilités optimales assurant une variance nulle, cette

égalité équivaut a ﬁn(xj) = h“k—(;{(’;’)l%n(x]) Et si I'on suppose que 'on parvienne
a,n\*g

a éviter toute collision nulle (si ky(x;) = kq,(x;)), nous arrivons alors a I'égalité

~

h(X5) = hamn(%5)-

Cette approche par variance nulle a été réalisée ici pour un milieu gazeux infini
et non-diffusant. Toutefois la méme approche peut étre effectuée pour un milieu
fini et/ou diffusant. Il est juste important de remarquer, pour les sections suivantes,
que I'ajout d’une frontiére n’entraine aucune modification des probabilités idéales
relatives aux indices d’espéce moléculaire P, 9(x;), de transition P, p(x;) et au type
de collision P, ,¢(x;), dans la mesure oil ces trois probabilités n’interviennent que
dans le cas ot la collision a lieu dans le milieu participant.
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5.3.3 Choix des paramétres libres

Cette section a pour objectif d’introduire les choix faits pour les derniers
parameétres libres : le champ de /2:77 (x), la densité de probabilité des nombres d’onde
pr(n), la probabilité P,,(x) associée a chaque espéce moléculaire, la probabilité
P,(x) associée a chaque transition 2 pour une espéce moléculaire m donnée, ainsi que
le critére ¢ a partir duquel I'algorithme permute d’un traitement déterministe des
collisions (energy-partitioning) a un traitement stochastique par test de Bernoulli.
Ces différents termes arbitraires n’ont une incidence que sur les taux de convergence
de la méthode proposée et n’influent en rien sur le caractére de solution de référence
de l'algorithme présenté a la Fig. 5.4.

Les propositions faites ici résultent d’un travail d’optimisation qui a consisté
a affiner petit a petit les modéles choisis par une approche de type essai-erreur,
jusqu’a atteindre un taux de convergence satisfaisant pour chacun des 6 cas d’étude
proposés dans [André et Vaillon, 2010]. Les choix proposés ne sont certainement pas
optimaux et nous pensons qu’un important travail les concernant sera nécessaire
dans la continuité de ces travaux. L’objectif de cette section n’est donc pas de faire
des propositions conduisant a un algorithme plus rapide ou plus performant qu'un
autre, mais de prouver la faisabilité pratique, dans des temps de calcul acceptables,
de 'approche présentée dans ce chapitre.

La principale difficulté concerne trés probablement la définition des champs de
k,(x) ainsi que des probabilités P,,(x) et P,(x). En effet, comme mis en évidence
a la Sec. 5.2.3, il est souhaitable de définir ces trois paramétres libres de sorte a
garantir I'inégalité

b (%) o (%) Pu(%) > P (%) (5.32)

pour éviter d’éventuels problémes d’augmentation brutale de la variance (tels
que ceux présentés au Chap. 4) qui seraient causés par des coefficients hy, ., (%)
négatifs. Ces choix sont donc trés critiques en termes de convergence. Trois leviers
d’optimisation : k,(x), Pm(x) et P,(x) sont alors offerts pour que I'Eq. 5.32 soit
vérifiée pour tout nombre d’onde, toute espéce moléculaire, toute transition et en
tout point (i.e. pour toute température, pression et composition chimique).

Nous avons alors choisi de procéder de la fagon suivante :

e nous définissons le champ lz:n(x) comme le produit d’un facteur a constant
et d'un champ arbitraire k,(x) majorant idéalement pour tout 7 et tout x le
champ du coefficient d’absorption kg, (x) :

ky(x) = ak,(x) (5.33)

e nous nous concentrons sur le choix des probabilités arbitraires P,,(x) et P,(x);

e nous ajustons la constante a de sorte a vérifier dans la quasi-totalité des cas
I’'Eq. 5.32. La valeur du parameétre « sera donc conditionnée par la qualité du
choix des probabilités P,,(x) et P,(x). Si celles-ci respectaient les conclusions
de I'approche par variance nulle alors un facteur o« = 1 serait suffisant, mais si



162 Chapitre 5. Intégration spectrale par échantillonnage des transitions

ces probabilités sont sous-estimées localement (pour un nombre d’onde et une
transition donnés), la valeur de v devra étre augmentée en conséquence.

Choix du champ de /%n (x). En s’appuyant sur les conclusions de 'approche par
variance nulle (voir Sec. 5.3.2), le champ de k,(x) = ak,(x) doit étre le plus proche
possible du champ de coefficient d’aborption k, ,(x). La constante « ne jouant un
role que de facteur correctif permettant d’assurer la condition de 'Eq. 5.32 quelle
que soit la qualité des probabilité P,,(x) et P,(x), nous nous concentrons donc ici
sur le champ de k,(x).

Dans un premier temps nous avons défini le champ de l;n(x) comme uniforme et
indépendant des nombres d’onde. Le paramétre o a été augmenté progressivement
dans chacun des six cas d’étude, jusqu’a ce qu’aucun coefficient négatif de collision
nulle A, ,,,(X) ne soit rencontré pendant le calcul de luminance L(xg, ug) intégrée
entre Nmin = 10cm ™! et Nmax = 15000cm 1. Les temps de calcul, assurant une erreur
relative de 1%, obtenus suite a ce premier modéle de /2:,7 (x), sont compris entre 1mn
pour le cas C1 a 5h30 pour le cas C6°.

Pour comprendre pourquoi ces temps sont si importants et différents, il est
nécessaire d’analyser la dépendance spatiale et spectrale du coefficient d’absorption
(voir Fig. 5.6, ou trois spectres d’absorption produits pour 3 points du cas d’étude
C3 sont représentés). En définissant k,(x) comme une constante majorant en tout

100 = 1 T I T I 1 I -

0.01

0.0001

ky (em™1)

1e-06

1e-08

' k
1e-10 1 n L 1 1 ! 1 !
0 2000 4000 6000 8000 10000 12000 14000

n (em™)

FIGURE 5.6 — Spectres d’absorption produits pour les conditions thermodynamiques et la composi-
tion chimique rencontrées en 3 points (x=0m, x=1.5m et x=8m) du cas d’étude C3. Le coeflicient
d’extinction l%,,(x) défini comme une constante majorant le coefficient d’absorption maximal est
également représenté.

3. Les calculs ont été réalisés sur un seul coeur d’un processeur Intel Core i7 de 2.8GHz. Les
temps de calcul excluent les étapes de preprocessing et de chargement des données.
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point et pour tout nombre d’onde le coefficient d’absorption k,,(x), on constate
qu’excepté pour les nombres d’onde ou le coefficient d’absorption est trés important,
l;:n(x) majore trés largement (jusqu’a un facteur 10') le coefficient d’absorption.
Cela se traduit algorithmiquement par une proportion de collisions nulles trés
conséquente. Puisque ces collisions nulles n’ont que peu d’effet sur la convergence de
I’algorithme, et ne permettent pas de mettre fin a la récursivité d’une réalisation
(voir Fig. 5.4), cela explique les temps de calcul importants, d’autant plus si les
dimensions caractéristiques sont grandes.

On mesure alors les importantes marges d’amélioration qui peuvent étre réalisées
en détaillant de fagon plus rigoureuse le champ de ]NCn (x). Nous avons alors fait appel
a des spectres d’absorption haute-résolution. Le point important ici, est que ces
spectres n’ont pas besoin d’étre en cohérence avec les données spectroscopiques ou
avec les hypothéses spectrales faites pour la simulation d’intérét. Ces spectres doivent
simplement permettre de vérifier I’'Eq. 5.32 tout en minimisant autant que possible la
quantité de collisions nulles rencontrées. Idéalement, ils doivent étre choisis de sorte
a majorer légérement les champs de coefficients d’absorption réels pour tout nombre
d’onde. Si tel n’est pas le cas, une augmentation du facteur a permettra de corriger
cette mauvaise estimation. Il est important de rappeler que, dans la mesure ot le
champ de l%n est arbitraire, les choix faits ici n’influent en rien sur le caractére exact
de la méthode de Monte-Carlo, il n’a pour seul but que d’accélérer les temps de calcul.

Dans l'objectif d’approcher au mieux la dépendance spatiale et spectrale du coef-
ficient d’absorption, nous avons divisé les milieux d’étude en plusieurs sous-domaines
(de 2 & 5 sous-domaines selon le cas d’étude) pour tenir compte de ’hétérogénéité des
propriétés du milieu. A chaque sous-domaine a été affecté un spectre d’absorption
approximativement représentatif des conditions thermodynamiques et chimiques
rencontrées. Nous avons ici utilisé des spectres produits dans d’autres contextes &
partir des bases de données spectroscopiques CDSD-1000 pour le CO et Hitemp pour
I’'H,0. Les raies les plus intenses (dont l'intensité était supérieure a 102 molec.cm)
de CDSD-4000 et de HITEMP 2010 ont également été rajoutées a ces spectres pour
que 'Eq. 5.32 soit vérifiée dans les plages spectrales les plus critiques. Ces mémes
spectres ont été conservés pendant toute la durée de ces travaux, quelles que soient les
bases de données spectroscopiques ou les hypothéses spectrales retenues (troncature
d’ailes de raies, profils de raie, etc.) pour le calcul de L(xg,ug). Ce nouveau choix
de champ de ]Afn a alors conduit a une accélération des temps de calcul de 60 a
20000 fois selon le cas d’étude par rapport & un champ de 1%77 uniforme. En effet, en
perfectionnant ce choix, une quantité trés importante de collisions nulles ont pu étre
ainsi évitées. Les résultats obtenus grace a cette proposition sont décrits a la Sec. 5.3.4.

Toutefois, n’importe quel champ de l%n(x) validant autant que possible I'Eq. 5.32
peut étre accepté sans altérer le caractére de référence de la méthode, seul le taux de
convergence de l'algorithme en sera modifié. Il est par exemple possible d’imaginer
des solutions intermédiaires. Il pourrait notamment étre possible de créer une banque
de données de spectres approchés, de faible résolution spectrale, majorant les spectres
réels d’absorption pour une large plage de conditions thermodynamiques. Les temps
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de calcul seraient alors certainement plus importants que ceux obtenus avec le choix
présenté précédemment, mais le travail de définition des champs de k, en serait
grandement simplifié.

Choix de la probabilité des transitions. Les résultats de ’approche par va-
riance nulle énoncent que la probabilité idéale associée a chaque transition est définie
comme le rapport entre la participation d’absorption hg ., (x) de la transition ¢ et
la somme des participations de toutes les transitions d’une molécule m donnée. Si
I’on considére un gaz mono-moléculaire, cette probabilité idéale est définie comme le
rapport entre hy ., ,(X) et le coefficient d’absorption. Bien entendu, cette proposition
ne peut étre retenue dans ’approche proposée ici, puisqu’il serait nécessaire d’évaluer
le coefficient d’absorption & chaque collision (et donc de sommer, & chaque collision,
les contributions de I’ensemble considérable de transitions, de fagon déterministe).

Ce choix de probabilités est probablement le plus critique et le plus complexe a
mettre en ceuvre. En effet, il n’est pas imaginable de produire & chaque réalisation (et
encore moins & chaque collision) un jeu complet de probabilités associées & chacune
des transitions représentées dans la base de données spectroscopique d’intérét. Les
temps de calcul que cela impliquerait seraient trop importants. Or, toujours en
se basant sur I’approche par variance nulle, il faudrait idéalement que ces jeux de
probabilités soient définis en tout point du milieu et pour tout nombre d’onde. Cela
n’est concrétement pas imaginable, méme en négligeant les variations dues aux
hétérogénéités des propriétés du milieu (température, pression et concentrations),
cela signifierait créer autant de spectres de P, qu’il y a de transitions dans les bases
de données spectroscopiques.

Notre premiére proposition de P, a alors consisté a imaginer un modéle trés
simplifié dans lequel les profils de toutes les raies f(n) sont identiques, et ou ces
derniéres sont centrées en un méme nombre d’onde 7y. En appliquant les résultats
de 'approche par variance nulle pour ce modéle simplifié, on arrive a la proposition
suivante :

_ _ haman(x) _ Sima(x)f (1) _ Sima(X)
Pu(x) = Prnn(x) = N, (m) — —=N.(m) T N.(m)
Dot hamwn(x) D u5 Smp(x)f(0) 2L S (%)

(5.34)
Les profils de raies étant identiques, cette probabilité est alors définie comme le ratio
entre I'intensité S,,, de la raie 2 divisée par la somme des intensités de ’ensemble
des raies de la molécule m. L’avantage de cette proposition réside dans le fait que
les intensités de raies ne dépendent pas du nombre d’onde d’intérét. En milieu
homogene, ce cas d’étude est donc tout & fait envisageable d’un point de vue
numeérique. En effet, puisque P,(x) ne dépend plus du nombre d’onde, seul un jeu
de probabilités (pour toutes les transitions de I'espéce m) est a précalculer. Pour
un milieu hétérogéne, on peut imaginer le discrétiser suffisamment pour couvrir de
facon approximative les hétérogénéités des propriétés et produire autant de jeux de
P,(x) qu'il y a de mailles. Cette proposition a donné des résultats et des temps de
calcul acceptables dans le cas particulier o les domaines spectraux d’intégration




5.3. Mise en pratique dans un benchmark et choix des paramétres libres 165

étaient faibles (de la taille d'une bande étroite) et qu'une troncature des ailes de
raie était mise en place. En effet, grace a la troncature, seules les raies les plus
proches de l'intervalle d’intégration sont prises en compte par l'algorithme qui
les échantillonne alors uniquement selon leurs intensités respectives. Toutefois,
dés que l'on supprime cette troncature ot que 'on élargit le domaine d’intégra-
tion, les temps de calcul deviennent rapidement excessifs. Avec cette proposition,
une raie trés intense mais trés éloignée du nombre d’onde d’étude n a une plus
grande probabilité d’étre échantillonnée qu’une raie plus faible mais centrée en 7,
méme si son coefficient hgpm, ,,(X) en 7 est de loin supérieur a celui de la premiére raie.

Il est alors évident, qu’a cause de son indépendance spectrale, cette premiére
proposition pose de sérieuses limitations. Toutefois, comme nous venons de le dire, il
est difficilement imaginable de produire des jeux de P,(x) couvrant les variations spec-
trales du coefficient d’absorption. La seule solution, pour prendre en compte 'effet di
a I’éloignement spectral des raies du nombre d’onde d’étude, consiste alors a proposer
une probabilité permettant d’étre calculée analytiquement au cours du calcul sans
avoir & produire un jeu complet de P,(x) pour toutes les transitions a chaque collision.

Nous avons alors retenu la proposition suivante pour prendre en compte cette
dimension spectrale dans I’échantillonnage des transitions :

e Nous définissons [Map min, Ndb.max] comme l'intervalle englobant I’ensemble des
nombres d’onde de centre de raie contenus dans la base de données spectro-
scopique d’intérét. Puis, nous segmentons cet intervalle en bandes réguliéres
(indicées B) de largeur 8, = 0.3cm ™! et de bornes [Nmin g Mmax,5) ;

e Nous décomposons la probabilité P, associée a chaque transition en un produit
de deux probabilités : P, = Pz x P, 3

e Dans un souhait de représenter également les variations spatiales des propriétés
radiatives, nous conservons les sous-domaines utilisés pour la définition du
champ de l%n(x). Une valeur moyenne de température est alors affectée a chacun
de ces sous-domaines.

e La premiére probabilité Ps = Pgs,(x) est associée a chaque bande spectrale 3.
Elle a pour objectif de rendre compte de I’'éloignement d’une raie 2 par rapport
au nombre d’onde d’intérét n. Nous la définissons comme :

atan (%) — atan <—”mi“’§;ﬂ)_")
o= . (5.35)
atan <M> — atan (M)

ol g est un parameétre libre (fixé ici & 49 = lem™! pour les sous-domaines
de température T' < 500K ; & yg = 0.5em ™! pour T € [500K, 1000K]; & vg =
0.25cm ™" pour T' € [1000K, 1500K] et & v = 0.1em ™! pour T' > 1500K). Avec
une telle définition, échantillonner une bande d’indice g revient a échantillonner
un nombre d’onde 75 selon un profil lorentzien de demi-largeur a mi-hauteur v,
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centré sur le nombre d’onde d’intérét n et de retenir la bande g dans laquelle
est inclus ng. .

e La probabilité P, s = P, 3.m(X) est associée aux transitions ¢ centrées dans une
bande  donnée. Elle permet de rendre compte de leur intensité par rapport a
celles des autres transitions centrées dans la méme bande (. Elle est définie

comme : S ( )
X
,PZ75 — N mm,l
Zz’bz(l 7 S (%)

ol Sp.(x) est intensité de la raie ¢ centrée dans § & la température du
sous-domaine auquel appartient x et ou N,(m, 3) correspond au nombre de
raies de ’espéce m centrées dans la bande . La probabilité P, 3 peut ainsi
étre calculée en preprocessing pour chacune des températures moyennes des
sous-domaines d’étude, pour chaque intervalle spectral 3 et pour chacune des
transitions 2 centrées en 3. Les temps de calcul, associés a la production d’un
jeu complet de probabilités P, 3 pour une température donnée, varient entre
1 seconde (pour la base de données spectroscopique HITRAN) et 5mn (pour
la base de données CDSD 4000). Bien que ces temps soient importants, les
jeux de probabilités calculés (pour une base de données et une température)
peuvent étre stockés pour étre réutilisés lors d’autres simulations.

(5.36)

Ces choix de probabilités conduisent alors & privilégier les raies les plus intenses,
centrées prés du nombre d’onde d’intérét. La procédure d’échantillonnage (illustrée a
la Fig. 5.7) est alors composée de deux étapes :

e l’échantillonnage analytique d’une bande [ selon un profil de Lorentz centré en
n et de demi-largeur a mi-hauteur . La probabilité analytique associée a la
bande échantillonnée est calculée (de fagon quasi-instantanée) au cours de la
simulation.

e l'échantillonnage d’une transition parmi les N,(m, ) transitions centrées dans
(. Les probabilités associées a chacune de ces transitions ne dépendant que de
la température et de la base de données spectroscopique, elles peuvent donc
étre précalculées et stockées.

Il n’est donc nullement nécessaire, avec la proposition faite ici, de recalculer a chaque
réalisation de 'algorithme de Monte-Carlo ou a chaque collision un jeu complet de
probabilités associées & 'ensemble des transitions moléculaires.

Choix de la probabilité des espéces moléculaires. Nous n’avons pas, au cours
de ces travaux, cherché a optimiser la probabilité associée aux espéces moléculaires
(seul le cas C3 comporte un mélange) et avons alors proposé une probabilité uniforme :

Pp =1/Np, (5.37)

ou N,, est le nombre d’espéces moléculaires considérées.

4. Si les ailes de raie sont tronquées & une distance 07 one, alors [Mdb mins 7db,max| €St remplacé
par [77 - 5nt7‘onc7 n + 677t7“0nc]-
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Etape 1 Etape 2

p o 5

FIGURE 5.7 — Procédure d’échantillonnage des transitions moléculaires. Etape 1 : une bande §
de largeur 07 est déterminée en échantillonnant un nombre d’onde selon un profil de Lorentz, de
largeur g centrée en 7. Etape 2 : Une raie 1 est échantillonnée parmi les N,(/3) raies centrées dans
[ selon leurs intensités respectives.

Le choix de cette probabilité semble beaucoup moins critique que celui de P,.
Toutefois, il est assez simplement possible d’imaginer une amélioration de cette
probabilité d’espéces moléculaires. L’approche par variance nulle définit la probabilité
P, idéale comme le rapport entre le coefficient d’absorption di & 'espéce m et le
coefficient d’absorption global (da & toutes les molécules). Ici encore, il est souhaitable
que la probabilité P, dépende de la position x (pour tenir compte des hétérogénéités
de composition moléculaire) et du nombre d’onde. On peut donc imaginer un précalcul
basé sur des modéles approchés par bandes (ex : k-distributions ou modéle de
Malkmus) et sur une discrétisation spatiale (telle que celle proposée pour la définition
du champ /%n(x))

Impacts des choix de P, et P,, sur le facteur correctif a. Comme introduit
en début de section, les expressions des probabilités P,, et P, conditionnent la valeur
du facteur multiplicatif «. Avec les choix faits précédemment, il a été nécessaire
d’ajuster la valeur de o & 50 pour éviter de rencontrer un nombre trop important de
coefficients h,, ., négatifs, susceptibles de provoquer une augmentation importante
de la variance de l'estimation. Malgré la valeur trés importante de ce facteur
multiplicatif, nous rencontrons encore des coefficients de collision nulle négatifs, mais
ceux-ci n’ont pas d’impact sensible sur le taux de convergence de 1’algorithme.

Fixer le facteur o a 50 équivaut a définir un champ de coefficient d’extinction
environ 50 fois plus important que celui du coefficient d’absorption. Aussi, cela se
traduit d’'un point de vue numérique par une quantité trés importante de collisions
nulles sans réel intérét pour le calcul. Cela met donc bien en évidence I'importance
du choix des probabilités P, et P, qui constituent indéniablement les paramétres
libres pour lesquels on peut attendre les améliorations futures les plus significatives.
Tout perfectionnement de ces deux probabilités entrainera de facto une réduction de
la valeur du facteur correctif o et ainsi des temps de calcul.

L’amélioration du choix de ces parameétres libres constitue alors un enjeu im-
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portant et une perspective motivante pour la suite de ces travaux. Nous sommes
convaincus qu’elle ne pourra se produire de fagon sensible que grace a une meilleure
compréhension et une meilleure modélisation de la physique relative a la spectroscopie
moléculaire, qui permettraient d’approcher au mieux les probabilités optimales cal-
culées lors de I’approche par variance nulle. Nous voyons également dans les modéles
statistiques de bandes (de type modéle Malkmus) des pistes trés intéressantes pour
parvenir a ces améliorations.

Choix de la densité de probabilité des nombres d’onde. La densité
de probabilité des nombres d’onde py(n) ne joue un role que sur les temps
de calcul. Plus elle sera proche de la probabilité assurant une variance nulle :
pup(n) = Ly(Xo,u0)/L(Xg,up), plus les temps de calcul pour une erreur relative
donnée seront faibles.

Dans un premier temps, nous avons défini py(n) comme uniforme :

pu(n) = S (5.38)

Thmax — TJmin

Cette premiére proposition, la plus simple qui soit, a conduit & des temps de calcul
plutot satisfaisants quel que soit le cas d’étude considéré. Cependant, nous avons
tenté d’améliorer cette procédure d’échantillonnage des nombres d’onde en proposant
un modeéle approché, inspiré des résultats de ’approche par variance nulle. Il semblait
toutefois difficile de définir, pour tout nombre d’onde, un modéle approché de
Ln(xo, ug) qui puisse étre intégré analytiquement entre 7y, €t Nmax pour permettre
un échantillonnage des libres parcours. Nous nous sommes donc orientés vers une
description par bandes étroites. Nous proposons alors un échantillonnage des nombres
d’onde composé de deux étapes :

e Une bande étroite i, de 25cm™! de largeur est échantillonnée parmi les N,
bandes étroites comprises entre iy €t Nmax, selon la probabilité

Ly (i) + 57 oy Ly (0)
2ZNb Ly (b)

ot L' est une luminance intégrée sur la bande ¢, précalculée a partir d’'un
modéle approché de Malkmus, associe a une approximation de Curtis-Godson
|Goody et al., 1989]. Un offset : N Mo Ly(b) a été rajouté dans cette pro-
babilité (normahsee en Consequence) pour compenser les sous-estimations de
certaines bandes par le modéle approché.

P, = (5.39)

e Un nombre d’onde 7 est échantillonné de fagon uniforme sur la bande étroite
1y d’intérét.
La densité de probabilité des nombres d’onde py(n) que nous proposons ici est alors
donnée par :

Ly (iv) + 5 Sopty L' (0) y 1
2 ZNb Lm( ) nb,max - nb7min

pu(n) = (5.40)
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Ol Mp.min €t b max Teprésentent les bornes de la bande étroite #,. Cette nouvelle pro-
position a conduit & accélérer de 2 a 5 fois les temps de calcul pour une méme erreur
relative par rapport a une densité de probabilité uniforme. Cependant, elle reste d'un
intérét limité, dans la mesure ou seules les bandes étroites sont pondérées et non
les nombres d’onde. Il pourrait alors étre peut-étre intéressant d’utiliser I’approche
proposée par A. Feldick et M. Modest dans [Feldick et Modest, 2011] qui consiste
a échantillonner les nombres d’ondes directement & partir des transitions moléculaires.

Choix du seuil ¢. Nous avons fixé la valeur de permutation algorithmique a
¢ = 0.5. C’est cette valeur qui a donné les meilleurs résultats en termes de temps
de calcul pour une erreur relative donnée. Ce choix est en accord avec 1’étude
paramétrique réalisée dans le Chap. 4. Toutefois, dans ce méme chapitre, on peut
noter que la valeur optimale de {( dépend fortement de I’épaisseur optique. Aussi,
si I'on s’éloigne des six cas d’étude présents dans ce benchmark, il pourrait étre
opportun de repenser le choix de cette valeur. On pourrait également imaginer un
algorithme qui adapterait automatiquement la valeur de  a partir d’'une estimation
grossiére de 1’épaisseur optique.

5.3.4 Reésultats obtenus pour les cas d’étude considérés

L’algorithme présenté a la Fig. 5.4 a été appliqué aux six cas d’étude rassemblés
dans le benchmark proposé dans [André et Vaillon, 2010] avec les choix de para-
métres libres présentés précédemment. Sauf indication contraire, les calculs ont été
réalisés en considérant des profils de raie lorentziens et en utilisant une troncature
des ailes de raie a une distance de 25c¢m ™! de leur nombre d’onde central.

Les Fig. 5.8, 5.9 et 5.10 ont pour but d’illustrer le type de résultats que I'on peut
attendre de 'approche présentée dans ce chapitre. Il devient ainsi possible de modifier
les hypotheéses spectrales (troncature de raies, profil des raies, etc.) ou les données
spectroscopiques a partir desquelles est décrit le coefficient d’absorption (bases de
données, intensité en dessous de laquelle on néglige les raies, etc.) et de constater
les effets de ces modifications sur une observable radiative sans avoir & produire de
nouveaux spectres de haute-résolution en cohérence avec ces modifications.

Ces figures illustrent, pour le cas C2, les luminances L,(xo,uy) moyennes
pour plusieurs bandes étroites de 25cm ™! (définies de 1175 & 1925¢m ™) estimées
par l'algorithme introduit a la Fig. 5.4 avec 10* réalisations indépendantes. Les
intervalles de confiance sont également fournis pour chaque estimation. A titre de
validation, un calcul raie-par-raie basé sur des spectres haute-résolution (produits
a partir de HITEMP 2010) est également représenté en trait plein sur chacun des
trois graphiques. Quelles que soient les hypothéses ou données spectroscopiques
considérées, chacune des simulations, dont les résultats sont illustrés par ces trois
graphiques, a utilisé strictement le méme algorithme et le méme jeu de paramétres
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libres (en particulier de k,, de P, et de py(n)).

La figure Fig. 5.8 rassemble les résultats de simulations lancées a partir de
différentes bases de données : Hitemp 2010, Hitemp, Hitran 2008. La figure Fig. 5.9
illustre le fait qu’il est possible de mesurer 'effet des seuils minimums d’intensité
(en dessous desquels les raies sont négligées) sans avoir a produire de nouveaux
spectres. Elle représente les luminances moyennées par bandes étroites calculées avec
différentes valeurs de seuils minimums d’intensité & 1500K : Omolec.cm (toutes les
raies sont sélectionnées), 3.10~2"molec.cm, 10~2*molec.cm et 10~?'molec.cm. Enfin,
la Fig. 5.10 souligne le fait qu’il est également possible d’évaluer simplement I'impact
qu’ont les parameétres de raies, en 'occurrence la distance a laquelle sont tronquées
les ailes de raie (par rapport a leur nombre d’onde central), sur les luminances
moyennées par bandes. Les résultats relatifs a plusieurs distances de troncature :
oocm ™! (pas de troncature), 25cm™1, 5em™! et 0.5cm ™! y sont représentés.

4k " Calcul déterministe - Hite;np 2010 ———

Monte Carlo - Hitemp 2010 ——+—
Monte Carlo - Hitemp

3.5 | Monte Carlo - Hitran 2008 +—o—

2.5 F @ e

1.5

Luminance moyenne (W/m?/sr/em™1)

0.5

0 1 1 1 1 1 1

1200 1300 1400 1500 1600 1700 1800 1900
n (em™1)

FIGURE 5.8 — Luminances L, (xo, up) moyennées par bandes étroites pour le cas C2. Ce calcul a
été réalisé grace a 'algorithme de la Fig. 5.4 pour différentes bases de données spectroscopiques :
HITEMP 2010, HITEMP et HITRAN 2008. Les résultats sont fournis avec leurs intervalles de
confiance. Chaque point a été obtenu avec 10* réalisations indépendantes. Un calcul déterministe,
réalisé grace a des spectres d’absorption produits a partir de la base de données HITEMP 2010, est
également représenté en trait plein.

Les luminances L, (xg, up) moyennes représentées dans ces trois graphiques ont
été estimées dans des temps de calcul assurant une erreur relative de 1% compris
entre 0.1s et 2.4s (avec un processeur Intel Core i7 - 2.8G H z sans parallélisation). La
taille de la base de données, le nombre de transitions sélectionnées ou encore le niveau
de troncature des raies n’ont que trés peu d’influence sur ces temps de calcul (les
différences de temps de calcul sont principalement dues a la bande étroite considérée).
Ces temps de calcul affichés ne prennent pas en compte les temps de preprocessing
ou de chargement des données en mémoire qui peuvent durer de quelques secondes a
plusieurs minutes pour les bases de données les plus importantes. Cependant, une



5.3. Mise en pratique dans un benchmark et choix des paramétres libres 171

4k Calcul déterministe - seuil & 3.10~27molec.cm ——— J
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FIGURE 5.9 — Luminances L, (x¢, up) moyennées par bandes étroites pour le cas C2. Ce calcul a
été réalisé grace a algorithme de la Fig. 5.4 pour différents seuils minimums d’intensité (en dessous
desquels, les raies sont négligées) : Omolec.cm (toutes les raies sont sélectionnées), 3.10~*"molec.cm,
10~22molec.cm et 1072 molec.cm. Les résultats sont fournis avec leurs intervalles de confiance.
Chaque point a été obtenu avec 10* réalisations indépendantes. Un calcul déterministe, réalisé
grace & des spectres d’absorption produits & partir de la base de données HITEMP 2010 et un seuil
minimum d’intensité de 3.10~2"molec.cm & 1500K, est également représenté en trait plein.
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FIGURE 5.10 — Luminances L, (%o, 1) moyennées par bandes étroites pour le cas C2. Ce calcul
a été réalisé grace a l'algorithme de la Fig. 5.4 pour différentes distances de troncature de raie :
ocoem ™! (pas de troncature), 25cm ™!, 5em ™! et 0.5cm~!. Les résultats sont fournis avec leurs
intervalles de confiance. Chaque point a été obtenu avec 10* réalisations indépendantes. Un calcul

déterministe, réalisé grace a des spectres d’absorption produits & partir de la base de données
HITEMP 2010 et une troncature de raie 4 25cm ™", est également représenté en trait plein.
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fois que le preprocessing et le chargement des données en mémoire sont effectués, il
est possible de lancer autant de simulations différentes que désirées (pour tester diffé-
rentes hypothéses spectrales ou encore pour évaluer différentes observables radiatives).

La Tab. 5.1, rassemble les luminances L(xg, uy) intégrées spectralement entre
10cm ™! et 15000cm ™! calculées & partir de I'algorithme introduit a la Fig. 5.4 et
avec les choix des parameétres libres énoncés dans la Sec. 5.3.3. Ces calculs ont été
réalisés avec 10° réalisations indépendantes, pour chacun des 6 cas d’étude et pour
différentes bases de données spectroscopiques. Ces résultats sont fournis avec leur
écart-type o assimilable & un intervalle de confiance, et avec le temps de calcul
t1% requis pour obtenir une erreur relative de 1% (ces temps de calcul excluent ici
aussi les étapes de preprocessing et de chargement des données spectroscopiques
en mémoire). Les luminances L(xg,uy) peuvent étre comparées a celles obtenues
a partir d’'un calcul déterministe (notées Ly, (Xg,up)) basé sur une production de
spectres de haute-résolution (voir Sec. 5.1.1) utilisant les mémes modéles spectraux
et données d’entrée que pour l'algorithme & collisions nulles et aux résultats
obtenus avec une approche raie-par-raie par F. André et R. Vaillon dans l'article
[André et Vaillon, 2010] (notés L, (X, up)).

Monte-Carlo (108 realisations) | Haute résol. | [André et Vaillon, 2010]
Cas Bases de données L(x0,up) o tiy | Lpr(x0,u0) Lgv(x0,10)
d’étude spectroscopiques (W/m?/sr) | (W/m?/st) | (s) | (W/m2/st) (W/m?/sr)
c1 CDSD-1000 3125.61 4.42 0.97 3126.06 3105
CDSD-4000 3146.25 4.53 1.10 3150.32
2 HITEMP 3315.11 8.15 1.38 3311.88 4161
HITEMP 2010 4545.05 9.83 1.11 4558.68
C3 CDSD-1000 & HITEMP | 39223.87 51.56 1.75 39202.5 39331
C4 CDSD-1000 12325.99 16.16 1.26 12320.1 11956
C5 HITEMP 38240.31 49.58 1.27 38215.0 39144
6 HITEMP 885.93 3.93 9.86 886.55 -
HITEMP 2010 1066.92 4.30 7.39 1069.81 -

TABLE 5.1 — Luminances intégrées de 10cm™! a 15000cm ™! pour les six cas d’étude présentés
a la Sec. 5.3.1 et pour différentes bases de données spectroscopiques (CDSD-1000 et CDSD-4000
pour le COy; HITEMP et HITEMP 2010 pour I’'H50). Ces luminances L(xg, ug) ont été estimées
a partir de I'algorithme introduit a la Fig. 5.4 et sont fournies avec leur écart-type o et le temps
de calcul nécessaire a 'obtention d’une erreur relative de 1%. Les luminances L(xg, uy) peuvent
étre comparées a celles obtenues & partir d’un calcul déterministe (notées Lyp,(Xo,ug)) basé sur une
production de spectres de haute-résolution utilisant les mémes hypothéses et données d’entrée que
pour l'algorithme & collisions nulles et aux résultats obtenus avec une approche raie-par-raie par F.
André et R. Vaillon dans larticle [André et Vaillon, 2010] (notés L, ., (%0, uo)). Les temps de calcul
excluent les étapes de preprocessing et de chargement des données spectroscopiques en mémoire.

Les résultats de 'algorithme proposé dans ce chapitre concordent parfaitement
avec les luminances Ly, (xg,ug) calculées de fagon déterministe (pour les mémes
données spectroscopiques et un méme modeéle de raie). Les différences constatées
avec les résultats de [André et Vaillon, 2010] sont inférieures aux effets mesurés lors
du changement de bases de données, soulignant probablement une disparité dans
les données spectroscopiques utilisées. Les temps de calcul requis par I'algorithme
de Monte-Carlo pour assurer une erreur relative de 1% sont raisonnables dans le
positionnement qui est le notre. Ils sont compris entre 1s et 8s selon le cas d’étude
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(sur un seul coeur d’un processeur Intel Core i7 - 2.8GHz). On constate alors que
les temps de calcul relatifs a une intégration de la luminance sur une bande étroite
de 25cm ™! ou sur tout le domaine infrarouge sont du méme ordre de grandeur, ce
qui est directement dii au caractére statistique de ’approche proposée. Enfin on
notera, que grace a la nature de la méthode utilisée (algorithme a collisions nulles),
les champs de température continus des cas C3, C4 et C5 ont pu étre pris en compte
sans recourir & la moindre discrétisation volumique des propriétés du milieu (ce qui
n’est pas le cas pour le calcul déterministe ou encore dans [André et Vaillon, 2010]).

5.3.5 Coeflicients h,, ,,,, négatifs et événements rares

Au cours des travaux menés pour proposer des choix satisfaisants de l%n(x), P (x)
et P,(x) et pour prouver la faisabilité de I'approche faisant 'objet de ce chapitre, la
principale difficulté a été d’éviter de rencontrer des plages spectrales et spatiales
dans lesquelles les coefficients de collision nulle Ay, ,,,(x) étaient négatif. Cependant,
méme avec les choix proposés a la Sec. 5.3.3 et un facteur correctif « fixé a 50, nous
n’avons pas pu assurer en toute généralité hy, ,,,(x) > 0. Nous avons simplement
réussi a réduire la quantité de ces événements a un nombre suffisamment faible
pour qu’ils ne posent plus de probléme d’augmentation brutale de variance telle que
rencontrée dans le Chap. 4. En effet, assurer la condition Ay, ,,,(x) > 0 équivaut a
garantir que le champ arbitraire de k,(x) soit plus grand que hg . (X) /[P (X)P,(x)]
pour tout nombre d’onde 7, en tout point x, pour toute espéce moléculaire m et
pour toute transition 2. Il est donc trés difficile d’assurer de fagon exhaustive le
caractére majorant du champ de ifn-

Pour un champ de l%n(x) fixé, majorant largement le champ du coefficient d’ab-
sorption, le non-respect de la condition Ay, ;,,,(x) > 0 est alors dit & une mauvaise
définition des probabilités P,,(x) et P,(x) qui sont localement (pour un nombre
d’onde, une position et un nombre d’onde donnés) sous-estimées de fagon importante.
Or, puisque cinq des six cas d’étude constituant le benchmark sont composés de gaz
mono-moléculaires, ces coefficients négatifs de collision nulle sont causés par un choix
imparfait de P,. Avec les choix faits pour cette probabilité, décomposée comme le
produit de Pg et de P, 5 (voir Sec. 5.3.3), nous rencontrons deux principaux types
de cas pathologiques (illustrés a la Fig. 5.11) :

e Ceux dus a une sous-estimation de P, g. On les rencontre lorsque la bande
spectrale (8 échantillonnée est celle a laquelle appartient le nombre d’onde
n d’intéret et dans laquelle est centrée une raie trés intense (en vert sur la
Fig. 5.11a). Si, une raie de plus faible intensité (en rouge sur la Fig. 5.11a) est
centrée a une proximité directe du nombre d’onde 7, sa contribution A m (%)
en 7 peut étre trés importante, mais sa probabilité P, g est trés sous-estimée a
cause de la raie trés intense présente également dans [3.

e Ceux dus a une sous-estimation de P, a cause de Ps. Ces événements sont
rencontrés lorsque la bande § échantillonnée est trés distante du nombre d’onde
n d’intérét et donc a une probabilité Pz tres faible, mais qu’au sein de cette
bande est présente une raie trés intense (en rouge sur la Fig. 5.11b) avec une
largeur de raie importante. Il est possible que dans cette configuration, ce soit
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cette raie qui constitue l'essentiel du coefficient d’absorption k, ,(x) global en
n, rendant alors la probabilité P, largement sous-estimée a cause de la tres
faible valeur de Ps associée a 3.

FIGURE 5.11 — Principaux cas dans lesquels la condition Ay, 1,5 (%) > 0 n’est pas respectée a
cause d’une sous-estimation de la probabilité P, g (voir Fig. (A)) ou d’une sous-estimation de la
probabilité Pg (voir Fig. (B)).

Si ces coefficients négatifs de collision nulle Ay, ,, ont un impact important
sur le taux de convergence de l’algorithme, c’est qu’ils entrainent, & cause du
caractére récursif de ’algorithme, une augmentation importante de la valeur absolue
du poids de Monte-Carlo. Cette augmentation est d’autant plus grande qu’il y a,
au cours d’une méme réalisation indépendante, plusieurs collisions caractérisées
par Ay ma., < 0 (voir Sec. 5.2.3). Les réalisations, pour lesquelles un nombre trés
important de coefficients négatifs de collision nulle est rencontré, se comportent alors
statistiquement comme des événements rares (voir Sec. 3.2.3.2) : ces réalisations
ont de tres faibles probabilités d’occurrence, mais des poids de Monte-Carlo trés
importants, conduisant a une augmentation importante de I’écart-type de I’estimation
de la grandeur d’intérét. Bien que problématiques, ces événements particuliers
doivent étre échantillonnés pour que la statistique du probléme soit bien prise en
compte par 'algorithme de Monte-Carlo. Dans le cas contraire, les résultats produits
par ce type d’algorithme peuvent étre biaisés.

De tels événements rares sont couramment rencontrés lorsque l'on explore
de nouvelles approches statistiques, s’éloignant des pratiques habituelles. 11 y a
toujours un risque que la statistique soit telle que des événements rares ne soient
pas échantillonnés (ici une succession de collisions caractérisées par hy ., < 0)
et induisent une mauvaise évaluation de l’écart-type associé a l’estimation de la
grandeur d’intérét. Typiquement, un intervalle de confiance peut indiquer que les
résultats sont précis & 1%, alors qu’a cause d’événements rares qui n’ont pas été
échantillonnés, I'estimation d’une observable radiative est différente a plus de 10%
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de la valeur de la solution exacte.

Au cours des travaux présentés dans ce chapitre, nous avons rencontré de telles
évaluations erronées. Pour nous assurer de la validité statistique des résultats, la
premiére étape a été de les comparer a ceux obtenus par un calcul déterministe. Puis,
nous avons augmenté le nombre de réalisations pour chacune des six simulations afin
d’augmenter le nombre d’éventuels événements rares. Nous pouvons alors vérifier,
que malgré cette augmentation du nombre d’échantillons, les calculs convergent
bien et I'écart-type associé aux estimations évolue bien comme l'inverse de la racine
carré du nombre de réalisations. Pour accroitre notre confiance dans les écarts-types
estimés, nous avons systématiquement calculé la variance de la variance de ces
estimations (voir Sec. 3.2.3.2) et avons vérifié que cette derniére était toujours
inférieure a 0.1 (comme conseillé dans [X-5 Monte Carlo Team, 2008|). Dans le cas
présent, la variance de la variance est toujours inférieure a 0.005, quel que soit
le cas d’é¢tude du Benchmark. Enfin, pour éviter que les coefficients négatifs de
collision nulle n’entrainent une erreur relative trop importante, nous avons augmenté
la valeur du champ de /;:n(x) pour la maille a laquelle appartient x et pour un
petit intervalle spectral de lem™!, lorsque la condition hy, ., ,(x) > 0 n’est pas
respectée. Cela permet ainsi d’éviter que, dans la suite de la réalisation ou méme
de la simulation, cet événement particulier, source de variance, ne se reproduise.
Dans la mesure ot ’'on ne modifie pas le poids associé a la collision pour laquelle
Byamam(X) < 0, cette procédure n’entraine aucun biais (puisque le champ de k,(x)
est entiérement arbitraire) et permet de contrdler d’éventuelles augmentations
importantes de variance. En poussant ce raisonnement un peu plus loin, on peut
imaginer des spectres de 12:77 qui s’enrichiraient au cours des simulations pour réduire
petit & petit le nombre de coefficients Ay, ., (x) négatifs rencontrés lors d’un calcul.

Aussi, grace a ce processus de validation, nous sommes confiants quant a la préci-
sion et au caractére non-biaisé de I’approche introduite dans ce chapitre pour des confi-
gurations typiques de celles proposées dans le benchmark de [André et Vaillon, 2010]
(en termes de compositions chimiques, de propriétés thermodynamiques et de tailles
caractéristiques). Mais pour d’autres champs applicatifs, nous suggérons que la
variance de la variance soit systématiquement calculée et que des simulations dé-
terministes soient associées aux premiers exercices d’exploration. Nous pensons en
particulier aux applications atmosphériques et astrophysiques dans lesquelles les
distances d’intérét sont beaucoup plus importantes et pour lesquelles les faibles
pressions induisent des profils de raies trés étroits (qui pourraient étre susceptibles de
complexifier la procédure d’échantillonnage des transitions ou des nombres d’onde).
Mais pour des applications usuelles de combustion, la statistique semble étre bien
maitrisée avec les propositions faites ici, et il n’y a pas de surprise que 10° échan-
tillons soient suffisants pour évaluer avec une précision d’1% une grandeur radiative
qui implique des millions de transitions. En effet, un grand nombre de transitions
moléculaires sont prises en compte pour le calcul d’un seul poids de Monte-Carlo,
et les probabilités associées a chacune de ces transitions ont été choisies de sorte a
ce que les transitions non-échantillonnées aient une contribution similaire & celles
échantillonnées.
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Résumé du chapitre

Une conséquence directe de l'introduction de collisions nulles dans 1’équation du
transfert radiatif est que les coefficients d’absorption n’apparaissent plus dans le
terme d’extinction exponentielle, mais seulement de fagon linéaire dans les albédos.
A travers ce chapitre, nous avons montré comment, grace a cette propriété, il est
possible de décrire de fagon statistique les coefficients d’absorption a partir des
transitions moléculaires, directement au sein de I’équation du transfert radiatif. Le
calcul d’'une grandeur radiative est alors ramené & une simple estimation d’espérance.
Cela conduit alors au développement d’algorithmes de Monte-Carlo de référence,
permettant d’estimer une observable radiative directement a partir de bases de
données spectroscopiques, sans passer par une coiiteuse production de spectres
d’absorption. La mise en pratique de cette approche requiert cependant de définir
un grand nombre de parameétres arbitraires ayant des conséquences importantes sur
la qualité de convergence de ces algorithmes. Nous nous sommes alors appuyé sur
un benchmark de six cas d’étude caractéristiques de configurations de combustion
pour proposer un choix concernant ces parameétres libres. Ces propositions sont
probablement loin d’étre optimales, mais elles permettent d’assurer de bons taux de
convergence quel que soit le cas d’étude : quelques secondes sont nécessaires pour
estimer, sans approximation de modéle ou numérique, avec une précision de 1%, une
luminance intégrée sur tout le domaine infrarouge. Les perspectives qu’offre une telle
méthode sont nombreuses du fait qu’elle ne nécessite plus de production rigoureuse
de spectres d’absorption haute-résolution. D’un point de vue numérique, il n’est
plus nécessaire a chaque changement d’hypothése spectrale ou de base de données
spectroscopique de produire & nouveau un jeu complet de spectres. Cette méthode a
également des conséquences en termes d’analyse, il devient notamment possible de
calculer de fagon exacte la sensibilité d’une grandeur radiative intégrée spectralement
a un parameétre du modeéle de raie, aux variables d’état thermodynamiques ou encore
aux fractions molaires d’espéces présentes dans le milieu gazeux d’étude.



CHAPITRE 6 -

Conclusions et perspectives

Au cours de ces trois années de thése, nous avons tenté de répondre a deux
difficultés majeures inhérentes a 1’étude et a la simulation du transfert radiatif dans
les milieux gazeux : la non-uniformité et la dépendance spectrale des propriétés
radiatives. Quels que soient les champs applicatifs (combustion, atmosphérique,
astrophysique, etc.), la prise en compte et le traitement de la variation spatiale
et spectrale des propriétés radiatives, en particulier du coefficient d’absorption,
représentent des enjeux importants lors de 1’étude du transfert radiatif dans les
milieux gazeux.

Face a la forte complexité qu’implique cette double dépendance, il a semblé
pertinent, plutot que de se concentrer sur des modéles approchés ou sur des approches
basées sur une description quasi-déterministe des propriétés radiatives, de repenser
ce probléme sous un nouvel angle, celui-ci purement statistique. Le souhait était
alors de tirer parti des bénéfices qu’offrent ces approches statistiques et les outils
de simulation stochastiques qui en découlent (approches exactes, estimations non
biaisées, faible dépendance a la complexité du cas d’étude, pouvoir d’analyse,
etc). Nous nous sommes alors engagés dans un travail trés exploratoire, bien que
constituant le prolongement logique d’une dynamique collective, impulsée depuis
plusieurs années par le groupe STARWest.

Dans des considérations purement statistiques, il est apparu que 1’élément de
blocage majeur ne résidait pas dans la description de la dépendance spatiale et
spectrale des propriétés radiatives, mais dans le terme d’extinction du rayonne-
ment présent dans l'expression intégrale de I’équation du transfert radiatif. Cette
extinction exponentielle introduit, en effet, une non-linéarité dans la formulation
statistique du probléme radiatif qui ne permet autre chose que de recourir a des
modéles ou méthodes approchées pour calculer de fagon déterministe cette extinction.

Nous nous sommes alors penchés sur une technique employée intensivement,
depuis plus de 50 ans, dans plusieurs domaines de la physique du transport corpus-
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culaire : les algorithmes & collisions nulles. A notre connaissance, aucune mention de
cette approche n’avait alors été faite dans la communauté du rayonnement thermique.
D’un point de vue cinétique, cette technique consiste & ajouter aux événements
d’absorption et de diffusion, un troisiéme type de collision : les collisions nulles. Ces
derniéres, assimilables a des événements de diffusion vers 'avant n’ont aucun effet
sur le transport de photons.

Puisque sans effet sur la physique du rayonnement, ces collisions nulles peuvent
étre définies librement, de sorte & rendre le champ du nouveau coefficient d’extinction
(résultant de ces trois types de collisions) uniforme ou suffisamment simple pour
que le terme d’extinction soit pris en compte de fagcon analytique. Une conséquence
directe de cette reformulation est que les coefficients d’absorption et de diffusion
apparaissent désormais uniquement de facon linéaire dans 1’équation du trans-
fert radiatif. Nous avons alors montré comment il est possible de les prendre en
compte de fagon exacte (sans avoir a discrétiser au préalable le milieu) et qu’il
est surtout possible de repenser de facon statistique ’expression méme du coeffi-
cient d’absorption a partir des transitions moléculaires (la production de spectres
d’absorption n’est alors plus nécessaire). Cette introduction arbitraire de collisions
nulles raméne alors tout calcul d’observables radiatives & un simple probléme d’es-
timation d’espérance, qui peut étre traité sans biais par des méthodes de Monte-Carlo.

Grace aux algorithmes a collisions nulles, il n’est donc plus nécessaire ni de
discrétiser les propriétés d’un milieu participant, ni de faire appel a des spectres
d’absorption haute-résolution pour estimer de fagon exacte une observable radia-
tive. Ces travaux, essentiellement formels, nous ont alors amenés a proposer des
méthodes de simulation du transfert radiatif, ne requérant aucun modéle approché
sous-jacent et estimant directement une observable radiative, pour les conditions
locales exactes de pression, de température et de fractions molaires, a partir d’un
échantillonnage des transitions moléculaires réalisé directement depuis les bases de
données spectroscopiques. Comme schématisé a la Fig. 6.1, un grand nombre des
étapes intermédiaires, communément réalisées lors de 1’étude du rayonnement en
milieu gazeux, est ainsi supprimé. Il n’est en particulier plus nécessaire, pour tenir
compte de la forte variation des propriétés radiatives du milieu gazeux, de recourir a
des méthodes de discrétisation (production de spectres haute-résolution, maillage
volumique du milieu participant), & des modéles approchés (modéles spectraux
simplifiés) ou encore & des procédures d’interpolation généralement employées pour
évaluer localement le coefficient d’absorption, qui sont potentiellement sources
d’erreurs.

La proposition faite dans ce manuscrit conduit donc au développement de
méthodes de référence de modélisation et de simulation du transfert radiatif en
milieu gazeux. On entend par "méthodes de référence", le fait que seule la qualité
des données utilisées en entrée d’algorithme (qui ne relévent pas directement de
notre compétence : bases de données spectroscopiques, champs de température, de
pression et de fractions molaires) ainsi que les hypothéses radiatives considérées
(profils de raie, prise en compte de la diffusion, etc.) sont susceptibles d’altérer la
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validité du résultat. La méthode elle-méme est rigoureusement exacte, puisque ne
faisant appel a plus aucune approximation.

Ces propositions méthodologiques et algorithmiques ont par la suite été mises
en pratique pour évaluer la faisabilité de telles approches. Dans un premier temps,
seule la gestion de la non-uniformité des propriétés radiatives du milieu a été étudiée
pour un cas d’étude relativement complexe : estimation d’un bilan radiatif au sein
d’un milieu participant absorbant/émettant /diffusant présent au sein d’une cavité
partiellement réfléchissante. Les résultats obtenus sont satisfaisants, proches en
termes de temps de calcul de ceux de méthodes de Monte-Carlo traditionnelles et
plus précis, dans la mesure ol aucune approximation n’a été faite concernant la
description des propriétés du milieu. Ces travaux ont mis en évidence I'importance
du choix arbitraire du champ de coefficient de collision nulle sur le comportement
algorithmique : celui-ci doit étre défini de sorte a rendre le champ du coefficient
d’extinction résultant suffisamment simple pour permettre un calcul analytique
du terme d’extinction, étre proche du coefficient réel d’extinction et majorant de
préférence ce dernier. Lorsque cette derniére condition n’est pas respectée, une
augmentation importante de la variance associée a ’estimation est susceptible d’étre
rencontrée. Cette méthode a également été mise en pratique dans le cadre de la
validation d’'un code de transfert radiatif estimant des bilans radiatifs dans une
configuration réaliste de chambre de combustion.

Les algorithmes a collisions nulles nous ont ensuite permis de décomposer de fagon
statistique les coefficients d’absorption dans ’équation du transfert radiatif pour
permettre une intégration spectrale qui s’appuie uniquement sur un échantillonnage
des bases de données spectroscopiques et non sur des spectres d’absorption. Cette
reformulation nécessite la définition d’'un grand nombre de paramétres arbitraires.
Ces choix, en particulier ceux du champ de coefficient de collision nulle et des
probabilités associées & chacune des transitions, ne sont pas anodins dans la mesure
ou ils conditionnent fortement le taux de convergence et le comportement de
I’algorithme de Monte-Carlo. Nous nous sommes alors appuyés sur un benchmark
composé de six cas d’étude (monodimensionnels et non-diffusant) caractéristiques de
configurations rencontrées dans des problématiques de combustion. Ce benchmark
nous a permis, par une démarche relevant de ’essai-erreur associée a une approche
par variance nulle, de proposer des choix de paramétres libres menant a des taux de
convergence acceptables pour chacun des cas du benchmark. Bien que les choix de
parameétres libres soient grandement perfectibles, les résultats obtenus pour chacune
de ces six configurations semblent encourageants et prouvent la faisabilité pratique
de 'approche proposée. Quelques secondes sont nécessaires pour estimer avec une
précision de 1% et sans la moindre approximation, une luminance intégrée sur tout
le domaine infrarouge.

Toutefois, tout au long de ce processus de validation, nous avons rencontré
des comportements statistiques de type "événements rares" qui sont susceptibles,
s’ils ne sont pas échantillonnés ou remaniés, d’altérer la validité statistique de
I’estimation. Ces événements rares étant directement liés aux choix des paramétres
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libres, nous sommes convaincus qu’un travail conséquent s’ouvre pour définir
de meilleures propositions. Comme souvent dans les approches statistiques, une
optimisation significative des probabilités arbitraires n’est possible que grace a une
meilleure compréhension et une meilleure modélisation des phénomeénes physiques
d’intérét. Aussi, nous pensons que pour le cas présent, un choix pertinent de
parameétres libres devra nécessairement s’appuyer sur les concepts et modéles
issus de la spectroscopie moléculaire. Outre le gain en termes de comportement
statistique, de meilleurs choix de paramétres libres se traduiront par une diminu-
tion du nombre de collisions nulles et donc par une meilleure efficience de I’algorithme.

Toutefois, avec les choix de paramétres libres proposés, ces événements patho-
logiques semblent maitrisés pour les cas d’étude considérés. Le travail d’analyse
statistique que nous avons réalisé nous permet d’avoir confiance dans les résultats
affichés et nous pensons que la proposition faite dans ce manuscrit peut étre appliquée
de facon assurée pour des configurations de combustion proches de celles réunies dans
le benchmark étudié. Une attention particuliére devra cependant étre portée si 'on
s’éloigne, en termes de compositions chimiques et de conditions thermodynamiques,
de ces configurations particuliéres.

Les travaux présentés dans ce manuscrit offrent des perspectives numériques et
pratiques directes. La premiére d’entre-elles concerne la validation d’outils de simula-
tion radiative et de modéles spectraux approchés. En effet, nous disposons désormais
d’un outil permettant de calculer une observable radiative, dans des temps de calcul
corrects dans un cadre de validation, sans recourir a une quelconque approximation
et & une étape tres cotiteuse de production de spectres haute-résolution. L’approche
proposée présente également une grande flexibilité quant aux choix des modéles
radiatifs : tout type de champ de propriétés (analytique, maillé, etc.) peut étre traité
de facon rigoureuse. De plus, la quantité de transitions contenues dans les bases de
données spectroscopiques et les hypothéses spectrales retenues (troncature de raies,
sélection de raies par intensité) n’ont qu'une influence mineure sur la précision et les
temps de calcul. En outre, cette méthode reposant désormais sur une formulation
entierement statistique, il devient possible d’augmenter la complexité du cas d’étude
(intégration volumique, temporelle, ajout de phénoménes de diffusion, géométrie
réelle, etc.) sans qu'un effet sensible sur les taux de convergence algorithmiques ne
se ressente.

Au-dela de ces intéréts numériques, la méthode présentée ici ouvre des pers-
pectives séduisantes en termes d’analyse. Le fait que le calcul d’une observable
radiative intégrée ne soit plus basé sur des spectres d’absorption nous permet de
tester les effets qu’ont sur cette grandeur les choix d’un modéle de raie, d’une
hypothése radiative ou spectrale, d'une base de données spectroscopique ou encore
d’un maillage particuliers, sans avoir a reproduire & chaque changement de modéle
un jeu complet de spectres haute-résolution. Il devient méme envisageable de calculer
de facon exacte, en parallele de la grandeur radiative, sa sensibilité paramétrique a
une variable d’état thermodynamique, & un paramétre du modeéle de raie ou encore
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a la fraction molaire d’une espéce.

A plus court terme, et de facon plus concréte, nous voyons trois principaux
travaux se dessiner. Le premier serait, a l'instar de la Sec. 4.3, d’appliquer I’algorithme
de Monte-Carlo avec échantillonnage des transitions (présenté au Chap. 5) a un
cas d’étude offrant une plus grande complexité (géométrie fermée tridimensionnelle
et partiellement réfléchissante, milieu diffusant, calcul d’un bilan radiatif) pour
s’assurer que le renforcement de la complexité du probléme étudié n’entraine pas de
changement du comportement statistique et numérique de ’algorithme.

Le second travail, vers lequel nous nous orientons, sera d’étendre les cas d’étude
traités dans ce manuscrit, essentiellement liés & des problématiques de combustion, a
des configurations de type atmosphérique. En effet, deux principales particularités,
qui n’ont pas été rencontrées durant ces travaux de thése, pourraient avoir un
effet important sur le comportement de l'algorithme. La premiére concerne les
dimensions caractéristiques d’une atmosphére qui sont susceptibles d’augmenter
I’effet des collisions nulles sur les temps de calcul. En effet, les épaisseurs optiques
calculées a partir du champ d’extinction lgrn(x) peuvent étre beaucoup plus im-
portantes que celles rencontrées dans des contextes de combustion. La seconde
particularité concerne la variation de pression. Dans ce manuscrit, ’ensemble des
configurations étudiées sont a pression atmosphérique, toutefois une diminution
de la pression engendre une réduction des largeurs de raies qui pourrait se tra-
duire par des procédures d’échantillonnage de raies plus complexes & mettre en ceuvre.

Enfin, les derniers travaux envisagés, probablement les plus délicats, seront de
repenser totalement les choix de parameétres libres proposés dans ce manuscrit, en par-
ticulier ceux concernant le champ du coefficient d’extinction l;;n(x) et des probabilités
associées a chaque transition moléculaire. Les propositions faites ici n’avaient pour
unique but que de prouver la faisabilité pratique de ’approche avancée. Cependant,
nous sommes persuadés qu’'un travail plus théorique que celui retranscrit dans le
présent document, fondé sur les concepts et modéles de spectroscopie moléculaire,
est nécessaire pour assurer une meilleure maitrise du comportement statistique de la
méthode et pour proposer des outils de référence plus efficients.
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ANNEXE A .

Sensibilité a un parameétre de la
fonction de phase

Dans la Sec. 3.4.3, il est proposé de calculer la sensibilité de la luminance
Pa(Xl)LZq(X1>

(1 - Pu(x)) / 631, woltr) Ly (31, wy )y
(A1)

a un paramétre wo, uniquement présent dans I’expression de la fonction de phase
¢(x;,uj]u;). Calculer la sensibilité de la luminance L, (%, ug) au parameétre w revient
a dériver cette derniére par rapport a w :

LU(X[)auO) :/ dly pe,(1h)
0

awL'r](X(b uO) :/ dll Py (l1>
0
Pa(xl) x 0

H-Pua) [

47

(A.2)

aw(b(xlu uo‘u1>L7]<X17 ul)
dul
+¢(X1a u0|u1)awLn(Xla ul)

Nous souhaitons ici garder la méme structure statistique et algorithmique que
celle de ’'Eq. A.1 pour permettre un calcul simultané de la luminance L, (x¢,uo) et
sa sensibilité paramétrique 0 L, (X, ug). Nous cherchons donc a écrire 0 L, (%0, uo)
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sous la forme :

awLn(X()’uO) I/ dly pz:l(h)
0

/

Pa<xl)ww,l )

1-P, d , dls pe, (1
(1 - Pulx1)) / w16 (1, ugluy) / 2 pea(le)

([ Palx)wzy . \ (A.3)
X 9 +(1 _Pa(XQ))/ du2¢(x2,u1|u2)/ dls pr,(ls)
47 0
X Pa(Xg)ww’:;
1-7P, dusd(xs, dly pe,(l
% 4 (1 = Pulxs)) / 3 (35, ) / el

\ \ x {..} )

ou :
® Wy correspond au poids de Monte Carlo si une absorption a lieu & la premiere

collision

® w9 correspond au poids de Monte Carlo si une absorption a lieu & la seconde
collision (la premiére étant un événement de diffusion)

® w3 correspond au poids de Monte Carlo si une absorption a lieu a la troisiéme
collision (les deux premiéres étant des événements de diffusion)

Tout 'exercice consistera donc & exprimer ces différents poids de Monte Carlo et

a proposer, a partir de ces poids, une expression de variable aléatoire W, validant
awLn(X(), 110) =E [Ww]

Pour garder la méme structure que celle de I'Eq. A.3, 'Eq. A.2 peut étre reformulée
en :

Oz Ly (%0, ug) :/ dly pe,(lh)
0

pa<X1) x 0
X Oz [In (&(x1, wo|u1))] Ly (x1, )
1-"P, d ,
+ () /47r (o, tol) +05 Ly(x1, 01)
(A.4)
On remarque alors que le poids de Monte Carlo w; est donné par :
W1 = 0 (A5)

et que l'expression de 0L, (X0, up) fait désormais appel a deux termes récursifs
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L, (x;,u;) et OxL,(x;,1;), respectivement donnés par :

Ly (x5, 0;) Z/O dljt1 pry., (1)

8 {+<1

et

O Ln (X5, 0;

P (Xj+1)L;q(Xj+1)

(A.6)
— Pa(XjJrl)) ¢(Xj+17 u; |uj+1)Ln(Xj+1a uj+1)duj+1

4

) :/ dljv1 pey (L)
0

(

Pa(xj-‘rl) x 0
+(1 - Pa(xj+1))/ 1 O(Xj1, W01 )

4

Oz [In ((xj11, W w41))] Li(X51, ujm]

\ +0% Ly (%41, Wjt1)

I1 est alors possible de développer I'Eq. A.4 :

O Ly (X0, 1) :/ dly pe, (I1)
0

\

( Pa(Xl) x 0 )
1= Pux) |

\

i dll1¢(X1,uo\u1)/Ooo dly pr,(l2)
Pa(x2) [0 In (600, w0l ) L(x2)] )
(1 - Pa(x)) / s (s, s u1z)

Oz [In (¢(x1, ug|uy))]
+05 [In (p(xa, U1|u2m] Flea, 2)

+ 8wL77(X2a u2) ) )

X

pour exprimer le poids wg o :

We 2 = Oy [In ((x1, uouy))] Ly (x2)

(A7)

(A.9)
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En poursuivant le développement de 'Eq. A.8 :

&an(Xo,llo) = / dly pcl(ll)
0
( Pa(Xl) x 0 )

+(1—7>a<x1))/ du1<b(xl,u0|u1)/ooodl2 pes(1a)

A

[ Pa(x2) [8w [In (¢p(x1, up|uy))] Lf]q(XQ)} \
+(1—73a(X2))/ dugqﬁ(xg,ul]ug)/o dls pr,(13) (A.10)

O [In (¢ (x1, ug|uy))]
+0x [In (¢(x2, u1|uz))]
+(1 - Pa(x?))) / dU3¢(X3, u2|u3) /0 dl4 p£4(l4)

47
\ \ \ X {} V.

;

X Pa (Xg)

] L(x3)

on voit apparaitre un schéma récursif dans I'expression des poids w ;, qui s’expriment
alors comme :

We,j = Loeyq(xj) Z O [In (¢(Xm, W1 [1))] (A.11)

Il est enfin possible d’exprimer en toute généralité la variable aléatoire W,
validant 0y L, (X0, up) = E [W] :

W (X7) = Lif(X7) ) (Aj 1:[(1 - Aq)> (i O [In (¢(X,, Uq—1|Uq))]) (A.12)

J=1 q=1

ot A, est une variable aléatoire valant 1 avec une probabilité P,(x,) et 0 avec une
probabilité 1 — P,(x,) et ot X* est définie de la méme fagon que pour 'estimation
de L, (x0,19) (voir Eq. 3.71).



ANNEXE B .

Sensibilité a un parameétre du
coefficient hq p 4.1(x)

Dans la Sec. 5.2.1, il est proposé de calculer la sensibilité de la luminance

Tlmax 1 +oo Nim N (m1)
L(xg,u9) = d o, (1h)dl Py (x P, (x
( 0 0) /%nin pH(TI)pH(n) 77/0 pﬁ(l) 1 mlzﬂ ( 1) ; ( 1) (B-l)

X [Py (1) L4 (x1) + (1 — Py (x1)) L (%1, 10)

a un parameétre w du coefficient d’absorption hg ,,,(x) associé a la transition ¢
(ex : paramétre du profil de raie ou concentration de 'espéce m). Ce coefficient
hamn(x) n'est présent, de facon implicite, que dans 'expression de la probabilité
Poi(X1) = haman(X)/hm,n(x). Calculer la sensibilité de la luminance L(xg, ug) au
paramétre w revient a dériver cette derniére par rapport a w :

TImax 1 +oo Nm, No(m1)
9 L(xo, 1) :/ pu(n) dn/ P, (L)dl > Py (x1) Y Puylxa)
Tmin br (77) 0 mi=1 =1

{ Pa,zl (Xl) x 0+ awpa,u (XI)L;q(Xl)

(1 = Py (%1)) 0 Ly (X1, 00) + O (1 — Py, (%1)) Ly (x1, ug)}
(B.2)

Nous souhaitons ici garder la méme structure statistique et algorithmique que
celle de 'Eq. B.1 pour permettre un calcul simultané de la luminance L(xg,ug) et sa
sensibilité paramétrique 0y L(xg, ug). Nous cherchons donc & écrire 9, L(xq, ug) sous
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la forme :
Tmax “+o0o Nm N, (ml)
O L(x0,u0) = / pH(ﬁ)dﬁ/ e, (L)dl > Pry(x1) Y Puy(xa)
TImin 0 mi1=1 11=1
( Pa,zl (Xl)wa )
N, Nz(mQ)

( Pa,lz (X2>ww,2

>< 1= Pae) [

mo=1

Deo(ls)dly Y Prg(xz) Y Piglxa)

Nm

(1 P (x1)) / Thn)ds S Paxa) Y Palx)

19=1

N,(ms3)

ma=1 13—=1
X Pas (X3)ww,3 (
too N, No(ma)
% & (1= Py (x3)) / Pl Y P S Pulxa)
mga=1 14=4
| { x {..} ) )
(B.3)

ou :
® w,; correspond au poids de Monte Carlo si une absorption a lieu a la premiére

collision

® w9 correspond au poids de Monte Carlo si une absorption a lieu & la seconde
collision (la premiére étant une collision nulle)

® w3 correspond au poids de Monte Carlo si une absorption a lieu a la troisiéme
collision (les deux premiéres étant des collisions nulles)

Tout l'exercice consistera donc a exprimer ces différents poids de Monte Carlo et
a proposer, a partir de ces poids, une expression de variable aléatoire W, validant
awL(Xo, uo) =E [Ww]

Pour garder la méme structure que celle de I’'Eq. B.3, 'Eq. B.2 peut étre reformulée
en :

Tmax +oo Nm N, (m1)
O L (%0, 5) = / " bty /0 pedh Y Plx) S Pulx)
L;q(Xl)
i (x1) {aw (P ()] 22 }
1 [ 0n (1= Payy (x0))] Lo, o)
+(1_Pa’”(X1>)pH(77) 0, L (1, 10) ]
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On remarque alors que le poids de Monte Carlo w; est donné par :

Ly(x1)

We,1 = O [ln(pa,u (Xl))] pH(U)

(B.5)

et que l'expression de 0,L(xg,ug) fait désormais appel a deux termes récursifs
L, (x;,u9) et 0L, (x;, 1), respectivement donnés par :

Np, No(mjy1)

“+oo
Ly (%, o) :/ ey ()dlis Y P (501) D Puypa(Xg41) (B.6)
0 .

mjy1=1 tj+1=1

X [ Payer (Xj1) L (%j51) 4 (1 = Pagyy (Xj51)) Ly (%51, 1o)

et
+o00 N, Nz ’I’)’L]+1
@wLﬂ(Xj7u0) :/ ﬁ£j+1(lj+1)dlj+1 Z mjq1 XJ—H Z ,sz+1 XJ—H
0 mjy1=1 1j+1=1
,PanH(Xj—f—l) [aw [ln(Pa7lj+1(Xj+1)):| Lf;q(xj—&-l)}
6w [ln(l _Paz- (X‘_}_l))} L (X‘+1 Ll())
H(1 = Puu (% 41 \ Xy n\Xj+1,
( i+ (X]+1)) +awLn(Xj+17 U.o)
(B.7)
Il est alors possible de développer I'Eq. B.4 :
TImax +00 Nm Nl(ml)
O-Lxa) = [ puldn [ pei(t)dl 3] Pulx) Y Pylx)
Thnin 0 mi=1 =1
[ Ponix) {6 M0(Par (1)) Leq(Xl)} |
a,n X o [11) a,n X
A ' pu(n)
+00 N,(m2)
+(1 - 7Da721 (Xl))/ pEQ l2 dZZ Z ng X2 Z Pzz X2
0 mo=1 19=1
X ( O In(1 — Py, (x1))] | LE9(x2) )
7)&,12 (X2> - N
+0 [I0(Pa 1, (X2))] pu(n)
X | O [In(1 — Py, (x1))] L )
Xo, U
1= Pasn(x) o +0 [In(1 = Pa, ()] [ 77
H
\ \ +8wLn(X2,uO) ) )
(B.8)
pour exprimer le poids wg o
Ow In(1 — Py, Lea
Wy — [In( ()] | Ly (x2) (B.9)
+ O IN(Poy (x2))] | pE(n)
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En poursuivant le développement de I'Eq. B.8 :

Nm Nl(ml)

L) = [ pulndn [ pe )t Y Pau) Y- P
( Lfﬂ(xl) )
Pon(x1) {aw (P, ()] 22 ]
+00 N N, (m2)
(L= Panr (x21)) / bl S Poy(x) S P (2)
( O [In(1 — Py, (x1))] Lf;q(XQ) )
Pa,w(XQ) {"‘&z [ln(Pa,w(XZ))] } pH(n) ]
Too N No(m3)
x (1= Pay(x2)) / pes(ls)dls S Poy(xs) S Poy () >
( O (1 = Py ) gy )
" Pans () | 4 0 (1 = Py (x2))] I}’M
+0 [ln(Pa,m (x3))]
X
too N, Ny (ma)
(1L = Pasy(x3)) / Pl Y P S Pulxa)
L L < J) )
(B.10)

on voit apparaitre un schéma récursif dans I’expression des poids w, ;, qui s’expriment
alors comme :

= L;;q(x‘j) n X S n(l — X
wwy] - pH(n) a‘ﬂ [1 (Pa,lj( j))} qz;aw [1 (1 Pa,zq( Q))} (Bll)

Il est enfin possible d’exprimer en toute généralité la variable aléatoire W,
validant 0, L(xg,ug) = E [W] :

eq (X * +00 j—1
Wz (X) :[;;{((H)) Z (Aj (1- Aq))
=1 q=1j_1 (B.12)
X [8w 111(730”1]- (X])) + Z aw 111(1 - Pa,zn(Xn>>]

oit A, est une variable aléatoire valant 1 avec une probabilité P,,, (x,) et 0 avec une
probabilité 1 — Py, (x4) et ot X* est définie de la méme fagon que pour I'estimation
de L(xg,up) (voir Eq. 5.21).



ANNEXE C .

Approche par variance nulle pour les
choix de parameétres libres

Nous avons recouru dans la Sec. 5.3.2 & une approche par variance nulle afin
d’orienter le choix des différentes densités de probabilités et probabilités discrétes
introduites dans notre reformulation de I’équation du transfert radiatif :

e la densité de probabilité associée aux nombres d’ondes : pg(n)

e la densité de probabilité associée aux libres parcours : pg, (I;) = pe, (15,7, X;j-1, )
e les probabilités associées a chaque espéce moléculaire : P, (x;) = Pp(m, 1, %5, )
e les probabilités associées & chaque raie : P,(x;) = P,(1, m,1,X;,J)

e la probabilité d’absorption : P, ,(x;) = Pa.(, m, 0, X, 7).

Les détails de cette approche font I'objet de la présente annexe.

Nous nous concentrons ici sur I'estimation de la luminance L(xg,up) intégrée
spectralement entre Ny, €t Nmax dans un milieu infini non-diffusant (I'ajout de parois
ou d’événements de diffusion n’entraine pas de difficulté supplémentaire, si ce n’est
un alourdissement du formalisme mathématique) :

Tmax
L(Xo, UO) = / Ln(X07 Ll())d?] (Cl)

Tlmin

ou L;(xg, up) représente la luminance monochromatique :

400 l
Ln(X07 U.O) = /Ov ka,n<X0 — luO>qu(X0 — luo) exp (—/O l{?am(l/)dl/> dl (C2)

En partant des reformulations intégrales prenant en compte l’ajout de collisions
nulles et la décomposition du coefficient d’absorption en somme de participations
de transitions (voir Eq. 5.18 et 5.19), il est possible d’introduire des densités de
probabilité et probabilités discrétes (termes en rouge) de sorte a ce que chacune
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d’entre-elles puisse étre définie arbitrairement. Il vient :

Thmax L (XO 'Ll())
L(xg,u —/ = C.3
( 0 0) - pH<77> pr) n ( )
ou :
+00 Nm No(m)
Ly (x5, o) :/ ey (Le)dlion Y Pr(Xje1) > Pulxjs1)
0 m=1 1=1
oy (% — (9 (x; — ug)dl
W(XJ—H) exXp fo n(XJ up)
X
Py (L)
Paman(Xjr1) Lot (Xj41)
Pa,Z(XjJrl) ~
v E(%41) P (X541) Pa(X41) Py (X541)

0 (X41) P (X41) Po(X11) — Pau(Xj41)

Paman(Xj11) Ly(Xj11, 1)
+ (1 = Pau(xj11)) [(1 -7 ( ) 1 ]
(C.4)

La luminance L(xg,ug) peut alors étre exprimée comme une simple espérance :
L(x9,u9) = E[W] ou la variable aléatoire W est donnée par :

1 +o0o ]%H( eXp < fO k:H -1 — l’uo)dl’> th’I’H(X]’)L;q(Xj)
pu(H) =~ ]%H(Xj)pﬁj(ﬁj)PM( 1) Pz(X;)Paz(X;)

l%H(Xq)exp( fo kH(Xq,l—z'uo)dz'>

xﬁ(l—Aq) £4(£q)

¢=1 Paniz,m(Xq) 1
X [1—= ——
\ ( 2 (Xq)PM(Xq)"PZ(Xq)> 1= Pur(X,)
(C.5)

W:

avec A; = A;(Z, M, H,X;), une variable aléatoire valant 1 avec une probabilité
Pas(x;), 0 sinon.

L’approche par variance nulle présentée ici consiste a définir des probabilités
pro(M), P, 0(l), Pmo(X5), Puo(x;) et Pa,o(x;) (indicées () telles que la variable
aléatoire W ait une variance nulle et donc soit caractérisée par une distribution de
type Dirac centrée en L(xg,up). En des termes plus algorithmiques, cela équivaut a
dire qu’un seul échantillon (ou poids de Monte Carlo) w; est suffisant pour estimer avec
une erreur relative nulle la luminance L(xg, ug). Nous allons, dans les paragraphes
suivants, passer en revue chacune de ces cing probabilités.
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Définition de pqu)(n)

La premiére probabilité d’intérét est celle associée aux nombres d’ondes : pg(n).
Son introduction dans 'Eq. C.1 permet de reformuler 'expression de L(xg, ug) comme
une espérance :

Tmax
Lxa,ua) = [ pun)Wydn = [V, (C.6)
TImin

ou la variable aléatoire W, est donnée par

LW(XU’ 110)

Wn = pu(n)

(C.7)

L’approche a variance nulle consiste ici & exprimer la densité de probabilité de
nombres d’ondes, notée py (n), telle que la variable aléatoire W, validant L(xq, ug) =
E [W,] soit égale & L(xo, up). En résolvant 1'équation W, = L(x¢, up), nous obtenons
alors :

LTI(X()v uO)

L. (%, 1o) (C.8)

prp(n) =

Toutefois cette probabilité idéale ne peut pas étre utilisée en ’état dans 1’algorithme
de Monte Carlo. Elle nécessite en effet la connaissance de L, (xo, ug) et de L(xq, up)
qui est justement la grandeur que nous souhaitons estimer. Cependant, I'information
qu’apporte cette approche par variance nulle est digne d’intérét : nous avons pu
exprimer la densité de probabilité qu’il faudra chercher & approcher au mieux. Aussi,
le travail d’optimisation consistera a proposer un modeéle spectral de la luminance
L, (x0,u9) permettant de définir une densité de probabilité py(n) manipulable (c’est
a dire intégrable et inversible analytiquement). Plus ce modéle sera précis, plus la
convergence de l’algorithme sera importante.

Définition de p,, 4(l;)

Comme introduit dans le Chap. 4, I'ajout de collisions nulles a notre cas d’étude,
permet de reformuler récursivement ’expression de la luminance monochromatique

[/,7(XQ7 110) .
+00 . lj .
L77<Xj_1, uo) :/ dljkn<Xj) exp (/ kn(xj—l — l,ll()>dl/>
0 0

(C.9)
Ka(%;) °q(y . . Kau(%;) U
X [/;’n(xj) Ln( J)+ (1 l%n(Xj) > Ln( Jo 0)]

ot les termes x; = x;_1 — ljuy correspondent aux positions de collision. A partir de

cette expression de la luminance monochromatique, il est possible d’introduire une

densité de probabilité p..(l;) de sorte a exprimer cette grandeur comme une simple
J

espérance :

“+oo
Ln(xj—b 110) = / ﬁﬁj (l])I/Vljdlj =K [mj] (C].O)
0
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ou la variable aléatoire 1/, est donnée par :

l;‘n X] exp ( fO Xj,1 — l’uo)dl'>
Wi, =
pﬁj (l])

) pea oy (4 RaanC9)) S x.u0]
[/%n(xj) n<])+<1 I%n(xj)> 1%, )

(C.11)

La densité de probabilité p, g(l;) assurant une variance nulle de la variable aléatoire
W), est alors donné par :

ke (x;) exp (— folj e (X1 — l’uo)dl'>
Ly(%j-1,10)

Fan(%)) 1 eq s  kay(x;) . u
X [WLTJ ( J) + <1 kﬂ(}(j) ) Ln( v 0)]

Priolly) =
(C.12)

On peut ainsi remarquer que la densité de probabilité de libres parcours p, (I;) =
k(%) exp ( fo a(Xj-1 — U'uag)dl! ) introduite dans le Chap. 4 assure une variance

nulle de W;; dans le cas particulier d’'un milieu a I'équilibre thermodynamique : (i.e.
lorsque L, (x) = L;?(x)). D’autres modéles permettant d’approcher cette probabilité
peuvent également étre imaginés.

Définition de Pmy)(xj)

Concentrons nous désormais sur le terme récursif

Kan (X)) 1 e Ka(X;)
Cj = ——-LJ(x 1 — =] Ly(xj,u9 C.13
) O < () ) ) 49

présent dans 1’équation de la luminance (voir Eq. C.11). Il est possible, comme
proposé dans le Chap. 5, de décomposer le coefficient d’absorption k, ,(x;) comme
une somme des participations &, ,(x;) de chaque espéce moléculaire m présente
dans le mélange gazeux considéré. En introduisant une probabilité arbitraire P,,(x;)
associée a chacune de ces espéces, le terme C; de I'Eq. C.11 peut étre exprimé comme
une simple espérance :

Ci=Y  Pulx)) Wy, =E[W,,)] (C.14)
ou la variable aléatoire W, est donnée par :

Kamn(Xj) . Ka,m.n(X;)
Wy = ————L7(x; 1 — ———— | Ly(xj,u9 C.15
) Pola) 7 O ( kn<xj>m<xj>> Fwo) - (G15)
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Rechercher la probabilité P, (x;) assurant une variance nulle de W, revient a
résoudre ’équation C; = W,,, qui, développée, donne :

kﬁ’”—(xj)Lf;q(Xj) + (1 - kan—w) Ly(x;, 1)

Jen (%) k(%) (C.16)
_ ka,m,n(xj) qu(xj) I (1 _ ka,mw(xj) ) Ln(xj7u0)
k(%) P o(x;) Fon (%) P 0 (%)
Il vient alors :
kam (X)

Po(x,) = ~amnXj) C.17
7@( J) ka,n(xj) ( )

Pour un nombre d’onde et une position donnés, la probabilité idéale (i.e. assurant une
variance nulle de W,,,) de chaque espéce moléculaire correspond donc au rapport entre
la participation de cette espéce au coefficient d’absorption divisée par le coefficient
d’absorption du mélange. Dans le cas d’un gaz monomoléculaire on retrouve bien

Pm,@(xj) =1.

Définition de 7317@(Xj)

De la méme fagon il est possible de décomposer dans le terme

Ka,mn(X;) e Ka,mn(X;)
Dj = %an X l—- —— L”] Xj, o C.18
B Pali) ( kn<xj>7>m<xj>> porml (G

(présent dans 'Eq. C.15) la participation d'une espéce donnée k, ,, ,(X) en une somme
de participations hg ,,n(x) de chaque transition ¢. En introduisant une probabilité
P.(x;) associée a chaque transition, la grandeur D; peut étre exprimée comme une

simple espérance :
No(m)

D;= Y Pux;)W,=E[W)] (C.19)

ou la variable aléatoire W, est donnée par :

W, = — Naman(%) Lo(x;) + (1 __ Naman(X)) )Ln(xj,uo) (C.20)
Koy (%) Prn (%) Pa (%) Koy (%) Prn () Pu (%)

Rechercher la probabilité P, y(x,) assurant une variance nulle de W, revient a résoudre
I'équation D; = W, qui développée donne :




198 Annexe C. Approche par variance nulle pour les choix de paramétres libres

Il vient alors :

ha m, ]
Puo(x;) = = 2(%) (C.22)

Famn (%)

Ici encore, la probabilité idéale qu’il faudrait associer & chaque transition est donnée
par le rapport entre la participation de cette transition divisée par la participation de
toutes les transitions de I’espéce considérée. A la vue des fortes variations spectrales
et spatiales du coefficient d’absorption, on devine qu’approcher cette probabilité en
toute généralité (pour tous nombre d’onde, pression et température) constituera une
tache difficile.

Définition de 73@,27@(Xj)

Enfin, la grandeur :

g = Momen(%) Lo9(x;) + (1— _ Ntaman() >Ln(xj,u0) (C.23)
Fon (%) P (%) Pa(%5) Fon (%) P (%) Pa(%5)

peut étre elle aussi exprimée comme une simple espérance en introduisant une
probabilité arbitraire d’absorption P, ,(x;) :

& = Paax)Wa + (1= Pualx;) ) Wa (C.24)
ou les variables aléatoires :
ha m,e j
Wa = = man(%;) Ly?(x;) (C.25)
kﬁ(xj)Pm(Xj)PZ(Xj)Pa,z(Xj)
et
1 h (x;)
Wpy=——7—"—|1-—= LA L,(x;,up) (C.26)
1 — Paa(x;) ( kn(xj)Pm(xjm(xj)> T
Recourir & une approche par variance nulle pour ce test de Bernoulli particulier
revient a résoudre le systéme :
& =W,
C.27
Il vient :
L A
gv”](X])L;q(Xj)
Pan(x;) = . (%) p (C.28)
Pan5) o)+ (1 - —f’”("j)) L3¢50
kn(x;) ki (x5)

qui constitue la probabilité optimale d’absorption. On retrouve également cette
expression pour les algorithmes a collisions nulles standards (dans lesquels le coefficient
d’absorption n’a pas été décomposé en somme de transitions, i.e. a partir de I'Eq. C.9).
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En résumé

Les probabilités assurant une variance nulle de la variable aléatoire W donnée a
I’'Eq. C.5 sont donc les suivantes :

po(n) = 127(207111100))
Foy (%) exp folj by (-1 = ')l
e, 0(l5) (Ln(Xj—l up) )
Fanl) g fanCS) ) 1, (x;,u
" [ ]%T]<Xj L77 ( J) ! (1 AH(XJ') ) Ln( 3 0)]
Prmo(x;) = k;:zz)(:;)
ka,n(xj)Le
S nq(Xj)
Pa,z,ﬂ(xj) = L ( ) kn(xj) k ( )
Aa’n—Xngq X; 1 — fL’”—Xj LT? X;, Up
kn(x;) o) ( (%) ) ( |

En développant ces probabilités idéales dans 'Eq. C.5, il vient :

Jj—1

L(x0,uy) L, (x4-1,10)
W =—"2""/ A L x u 1— A2z 7Y/
L (Xo,uo Z j—1 0) q_lTl( q) Ln(quuo)
L(x9,u =y ) (x4-1,19) —
0, Ug) ~1,Up
=" A, (x;_1,u T 1—A
L (XOauo Z j—1 0)];[ Ln(Xq)au() ]qZI( q)
L(x0, up) ik (C.29)
=——"—=% AL (x0,u 1-A
fa - oo>g< :
L(xo, o ZA H
q=1
:L(Xo,uO)

La variable aléatoire W étant égale a L(xq,up), 'approche par variance nulle est
bien validée.






ANNEXE D .

ARTICLE : Integral formulation of
null-collision Monte Carlo algorithms

|Galtier et al., 2013]

Article publié dans Journal of Quantitative Spectro-
scopy and Radiative Transfer, 2013, Issue 125, pp 57-68.
DOI : 10.1016/j.jqsrt.2013.04.001. !

Auteurs : GALTIER M.%, BLaNco S.>¢, CarioT C.4, CousTET C.¢, DAUCHET
J./, EL HAFI M.%, EYMET V.9, FOURNIER R.>¢, GAUTRAIS J.", KHUONG A.",
PiauDp B.¢, TERREE G.¢

a. Université de Toulouse, Mines Albi, UMR 5302 - Centre de Recherche d’Albi en génie
des Procédés des Solides Divisés, de I’Energie et de I’Environnement (RAPSODEE),
Campus Jarlard, F-81013, Albi CT cedex 09, France

b. Université de Toulouse; UPS, INPT; LAPLACE (Laboratoire Plasma et Conversion
d’Energie) ; 118 route de Narbonne, F-31062 Toulouse cedex 9, France

c. CNRS; LAPLACE; F-31062 Toulouse, France

d. Processes, Materials and Solar Energy Laboratory (PROMES), CNRS, 7 rue du Four
Solaire, Font-Romeu-Odeillo, F-66120, France

e. HPC-SA, 3 chemin du Pigeonnier de la Cépiére, Bdtiment C, F-31100, Toulouse,
France

f. Clermont Université, ENSCCF, Institut Pascal - UMR 6602, BP 10448, F-63000
Clermont-Ferrand, France

g. Université Bordeaux 1, UMR 5804 - Laboratoire d’Astrophysique de Bordeaux (LAB),
2 rue de I’Observatoire BP 89, F-33271, Floirac Cedez, France

h. Centre de Recherches sur la Cognition Animale, CNRS UMR5169, Université de
Toulouse, France

1. http://www.sciencedirect.com/science/article/pii/S0022407313001350

201


http://www.sciencedirect.com/science/article/pii/S0022407313001350

202 Annexe D. Article |Galtier et al., 2013]

D.1 Abstract

At the kinetic level, the meaning of null-collisions is straightforward : they corres-
pond to pure-forward scattering events. We here discuss their technical significance in
integral terms. We first consider a most standard null-collision Monte Carlo algorithm
and show how it can be rigorously justified starting from a Fredholm equivalent to
the radiative transfer equation. Doing so, we also prove that null-collision algorithms
can be slightly modified so that they deal with unexpected occurrences of negative
values of the null-collision coefficient (when the upper bound of the heterogeneous
extinction coefficient is nonstrict). We then describe technically, in full details, the
resulting algorithm, when applied to the evaluation of the local net-power density
within a bounded, heterogeneous, multiple scattering and emitting/absorbing me-
dium. The corresponding integral formulation is then explored theoretically in order
to distinguish the statistical significance of introducing null-collisions from that of
the integral-structure underlying modification.

Keywords : Monte Carlo; Null-Collision ; Heterogeneous Media ; Integral formu-
lation

D.2 Introduction

The introduction of null-collisions in the process of modelling photon transport
consists in transforming the standard radiative transfer equation

% +cw.Vf=—(ky,+ks)ef +S + / ksef p(w|w")dw’ (D.1)
4m

into

of

e +cw Vf=—(k,+ks+kycf+S+

(D.2)
/ kscf’pg(w|w')dw'+/ kncf'd(w — w')dw’
4m 4m

where

e f = f(x,w,t) is the distribution function at location x, propagation direc-
tion w and time t. The distribution function is used here, instead of the
specific intensity I = hvcf, in order to help readers from other particle trans-
port communities such as neutron transport, plasma physics and rarefied
gas dynamics, that have made an intensive use of null-collision approaches
[Skullerud, 1968, Woodcock et al., 1965, Lin et Bardsley, 1978] (see Sec. D.6.1
for a brief description of the rather complex structure of the corresponding
literature).

e c is the speed of light, k,(x,t) the absorption coefficient, ks(x,t) the scattering
coefficient, ps(w|w’) = ps(w|w’, x) the single scattering phase function, that
is to say the probability density that the scattering direction is w for a photon



D.2. Introduction 203

initially in the direction w’. The notation f’ in the scattering source integral
stands for f' = f(x,w’,1).

e S = S(x,w,t) is any source term. We will define s = s(x,w,t) such that
S = kqcs, and therefore s = f¢(x, t) in the particular case of thermal emission
under the assumption of local thermodynamic equilibrium, where f¢4(x,t) is
the distribution function at equilibrium at local temperature (related to the
Planck specific intensity B according to B = hvcf€).

e £k, is the null-collision coefficient and ¢ is the Dirac distribution.

Additional collisions are introduced via the term —Fk,cf but these collisions are
cancelled out, as they are scattering events in the pure forward direction (the
phase function is §(w — w’) in the scattering source integral), and leave the f field
unchanged, which is a direct consequence of the property [, kncf'd(w — w')dw’ =
kncf. To the best of our knowledge, outside the above mentioned transport physics
literature, the only reported practical use of null-collision approaches for radiative
transfer applications are in the fields of computer graphics and medical imaging
[Rehfeld et Stute, 2008] [Badal et Badano, 2009].

Such applications are related to Monte Carlo simulations in which the heteroge-
neity of the absorption and scattering coefficients does not allow the implementation
of simple free path sampling algorithms. When defining the location of the next
collision event, the common practice is indeed to first sample an extinction optical
thickness 7 according to the probability density function pp(7) = exp(—7), and
then derive the corresponding path length A by inverting the function relating 7 to

A) = fOA k(x +ow,w,t + 2)do, where k = k, + ks. However, if k, and k, are
complex functions of space, this inversion is difficult to perform analytically. Most
usually, k, is then approximated with discretization approaches, but this implies a
rigorous control of the corresponding approximation level. Introducing null-collisions
is a way to avoid such approximations.

A null-collision k,, field can indeed be introduced so that the modified extinction
optical thickness k= ko + ks + Ky (corresponding to absorption plus true scattering
plus null-collision) allows tractable 7()\) inversions (e.g. k uniform). Practically,

o is arbitrarily chosen as an upper bound of the true extinction field £ (k > k)
and k, is then defined as k,, = =k—k (note that the choice is made on k, not
on k,, so that k has the expected inversion properties) ;

e a collision location is sampled by first sampling 7 according to pr and inverting
A7 led
= [ k(x+ow, w,t+ 2)do;

e a random number r is sampled uniformly on the unit interval and the collision

is considered as an absorption event if 0 < r < %, as a real scattering event if

kathsthkn _

L %, or as a pure forward scattering event if % <r< =

1 (fortune wheel).

This technique is well suited to the recent Monte Carlo developments toward flexible
validation tools for accuracy control of fast radiation solvers (interacting with che-
mistry and fluid mechanics). In such contexts, field representation is bound to the
specificity of each solver in an intricate manner and null-collision algorithms make it
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possible to design transversal meshless? Monte Carlo codes that are immediately
applicable whatever the retained solver numerics [Eymet et al., 2013].

The present technical note addresses the question of using integral formulation
techniques for refining Monte Carlo algorithms involving null-collisions. For didactic
reasons, we first consider the academic question of evaluating the distribution function
(at a given point in a given direction) in an heterogeneous emitting/absorbing
infinite medium using a backward algorithm (Sec. D.3). The corresponding integral
formulation is constructed step by step as a translation of the above described
null-collision algorithm. This formulation is then modified so that the constraint
k> k is relieved : negative values of the null-collision coefficient are accepted. This
is practically very significant because k must be chosen to match k as closely as
possible (otherwise too many useless collisions are sampled), which is a delicate task
when the constraint k& > k is strict. This first technical proposition is synthesised in
Sec. D.4, with the complete description of a Monte Carlo algorithm evaluating the
local net-power density within a bounded, heterogeneous, multiple scattering and
emitting/absorbing medium. A second technical proposition is made in Sec. D.5 : an
integral formulation is constructed that helps clarify the significance of introducing
null-collisions, in particular as far as convergence is concerned. This formulation
indicates that the problem of sampling free paths in heterogeneous fields could be
bypassed without introducing any null-collision concept, but sign alternations would
appear that would be sources of statistical variance. It is then shown that the benefit
of introducing null-collisions is to break this sign alternation. We therefore suggest
to preserve the idea of introducing a k field, but without imposing that free paths be
sampled according to k, or that the type of collision (absorption, true scattering or
forward continuation) be sampled according to the respective proportions of k,, ks
and k, = k— k, — ks. A wider class of Monte Carlo algorithms is therefore identified
that could be explored for convergence enhancement.

D.3 Theoretical justification and extension to nega-
tive values of the null-collision coefficient

In the particular case of stationary radiation ® in a non-scattering infinite medium,
the distribution function at location x in the direction w takes the following integral
form (solution of Eq. D.1) :

+o0 A
f(x,w) = / kaxsxexp (—/ kwda) d\ (D.3)
0 0

2. "meshless" is here used to indicate that the Monte Carlo algorithm requires no volume
discretization. Therefore, if the input fields of temperature and extinction coefficients are analytical
(as in benchmarking exercises) no mesh is used at all. However, if the input fields are provided
using a volume discretization and an interpolation procedure, the grid is rigorously respected. The
idea is that the input fields can take any form and that the Monte Carlo algorithm introduces no
mesh by itself.

3. Transient radiation would induce no specific theoretical difficulty, but it would make the
integral formulation much heavier. The extinction coefficients would indeed be functions of time
and time would itself depend on path-length.
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Throughout this note, in all non-recursive integral formulations, the notations £, ,,

~

ks, knas ko, So and f9 are used to represent k,(x — aw), ks(x — aw), k,(x — aw),
l%(x — aw), s(x — aw,w) and f®(x — aw) respectively, where « is any propagation-
distance along the line of sight. Standard backward Monte Carlo algorithms start
from Eq. D.3 and introduce the random variable A corresponding to the distribution

of absorption free paths A in the —w direction, of probability density pa(A) =
ko zexp (— fo)\ ka’gda>, to get

“+oo
f(x,w) = /0 pa(A)dA sy (D.4)

f(x,w) is then interpreted as the expectation of s(x — Aw,w) which leads to the
Monte Carlo algorithm of Fig. D.1. Even if one decides to make use of a null-collision

In =0;
foreach i in 1: N do fx,w) = f0+°° paA(N)dA w
Beer sampling of );
W = Sy; with
Iy = fn +w; W=
end PA(A) = ko nexp (— I daka,a)
fn = fn/N;

FIGURE D.1 — The reciprocal algorithm. fy is a Monte Carlo estimate of f(x,w) justified by
Eq. D.4. The integral formulation displayed on the right side of the algorithm box is a strict formal
translation of the algorithm description.

technique, it does not appear explicitly in such a presentation : it is only implicit in
the way the Beer sampling of A is performed.

Alternatively, all the details of using null-collisions can be put forward as in the
complete algorithm of the left part of Fig. D.2. A strict formal translation of this
algorithm is displayed on the right part of the figure, where the Heaviside notation
H(test) is used to represent 1 if test is true and 0 otherwise. This integral formulation
can be derived from the following Fredholm equation, a well-known translation
of the radiative transfer equation (here of Eq. D.2 at stationary state, including
null-collisions interpreted as forward scattering events) :

o= [ ean (= [l sl ) o

{kaﬁ,\s,\ + ko [ 0w — ') f(x— )\w,w')dw’] d\

A
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INn=0;

foreach ¢ in 1: N do
1=0;w=0;%x0=x;
abs = false;

while abs = false do

Beer sampling of A;;

Uniform sampling of 7;;

Xjp1 = Xj = Ajw;

. ) ka(xj11)

if r; < E(lel) then
w = 5(Xjp1,w);
In=fn+uw;
abs = true;

end

J=J+L

end

fv = fn/N;

+oo 1
f(xw) :/0 p/\u()‘U)d)‘U/O pR()(TU)dro

{7—[<7'0 < k}:((;l)))w1 +'H<7'0 > %) /0+°° Pa, (A1)dM /olpRl (r1)dry
{ (7'1 < %((::)))w2 +'H<7'1 > k}:((;:))) /0+°° P, (A2)dAg /olpRQ (r2)dry

with
Xo = X} Xjy1 = Xj — \jw
R SV
pA, (Aj) = k(x5 — Mjw)exp (— Jo k(x5 — ajw)d0j>

Pr,(rj) = 155 =1
w; = s(xj,w)

FIGURE D.2 — The standard null-collision algorithm. fy is a Monte Carlo estimate of f(x,w). The
integral formulation displayed on the right side of the algorithm box is a strict formal translation of
the algorithm description. The Monte Carlo weight is w; when the j-th collision is the first true
collision (the preceding collisions are null-collisions). The whole algorithm could also be presented
as in Fig. D.1 with A= X+ A1 + ...+ Aj_1, x — Aw = x5 and sy = s(x;,w), and the appropriate
change of the coefficient k used in pa ().



D.3. Theoretical justification and extension to negative values of the null-collision
coefficient 207

We now give all the details of this derivation, justifying meanwhile the corresponding
null-collision Monte-Carlo algorithm of Fig. D.2 and we then extend it in order to
allow negative values of the null-collision coefficient.

The first step is solving the Dirac integration and using the recursive notations
Xo = x and Xj11 = Xj — A\jw to get

+oo AjoL
f(x5,w) :/0 erp <_/0 k(x; — ajw)daj) X

(D.6)
|:ka(xj+1)8(xj+1a W) + kn(X501) f (Xj41, w)} dA;
Then, the probability density of the j*" free path is introduced :
. A
ij()\j) = k(x; — \jw)exp (—/ k(x; — ij)daj) (D.7)
0
as well as non-zero probabilities P;, to give
Feo ko (x; 1
f(xj,w) = / pa; (Aj)dA; | Pia (M S(Xj+17w)>+
0 k(xj.1) Pj+1
( ) (D.8)
k(X 1
1— P A X; ,w)
( J+1)(k<xj+1) 1—Pj+1f( J+1 )
and a simple recursive expansion gives
+oo
f(X, (.U) = / pAo(AO)d)\O |:P1UJ1 + (1 - P1)11:| (Dg)
0
with oo
I; = / Pa; (Aj)dA; {Pj+1wg‘+1 +(1- Pj+1)fj+1} (D.10)
0
and

— Mis X, W 0 K (Xm) 1
w; = ]%(Xj) Pj ( D )H (%(Xm) 1_pm> (D'll)

Eq. D.10 and Eq. D.11 lead to the equation of Fig. D.2 in a straightforward manner

as soon as the choice P; = % is made. This is obviously only possible if &, > 0,
Xj

i.e. ku(x;) < k(xj), which insures P; < 1 and 1 — P; > 0. The usual restriction
to positive null-collisions is therefore very much meaningful. However, the fact
that k& must be a strict upper bound of the extinction coefficient k£ in standard
null-collision algorithms is often a severe limitation of the technique. k has to be
chosen as a compromise between approaching k closely enough to avoid numerous
expensive iterative null-collisions, and preserving enough simplicity to allow fast free
paths sampling procedures. From this point of view, the constraint that k must be
strictly greater than k at all locations is a severe constraint. This is particularly true
when the optical properties cannot be pre-computed across the field and are only

m=1
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evaluated at each collision location, once it is sampled. This is a typical requirement
of meshless algorithms. In such cases, there is no fundamental problem associated to
the construction of a nonstrict upper-bound of &, for instance by only pre-computing
k on a rough grid across the field, but it is very difficult to impose that this upper
bound is strict considering that absorption and scattering coefficients are commonly
non-monotonous functions of pressure, temperature and concentrations.

This difficulty can however be bypassed as soon as one observes that the choice
of P; in Eq. D.9 - D.11 is not constrained : P; = % is systematically used in the
literature only because of its intuitive nature, in reljation to the kinetic pictures of
null-collisions. An alternative knowledgeable choice is :

Fa(%5)
ka(x3) + [k (x5) — ka(x;)]

P =

J

(D.12)

The immediate benefit is that we get rid of the constraint &, > 0 (i.e. k= ko + Ky,
is an upper bound of k,) : negative values of the null-collision coefficient are now
admatted. Furthermore, this choice is consistent with the results presented above
since using P; of Eq. D.12 leads to :

e the very same algorithm in cases when k is a strict upper bound of k,

e a legible extension of the algorithm otherwise, which bypasses the difficulties
encountered when k, > k.

The resulting algorithm is fully described in Fig. D.3 and its extension to multiple

fn =0 oo L

foreach i in 1: N do _ .

G =0 w=0; % =X : fx,w) = /0 PAU()\O)d/\o/O PR, (T0)dro

abs = false; 1

while abs = false do {H(ro < Pl)wl +7—l<r0 > P1) / A, (A1) d)\l/ PR, (r1)dry
Beer sampling of A;; 0

. . 1
Uniform sampling of {7'[<7“1 < PZ)'U)Q +7'l<7“1 > P2) / Paz(A2) d)\z/ PR, (r2)dra
0

7‘]';
Xj4+1 = Xj — /\jw;
if r; < Pj41 then
w = w]+17
jN = fN + w; with
abs = true; X0 =X ; XJ+1—XJ7)\w
end pA; (A;) = k(x5 — A\jw)exp (— fo (xj — ojw )d@)
1= —+ 1; pRj( ) 1
end P _ ka(xj)
end 7 ka (x.l)+|ic xJ) ko (x;)|
_ - _ ka(xy) kn(Xm)
fv = In/N; w; = i 50,0 I, ( () 1 1Pm>

F1GURE D.3 — The generalized null-collision algorithm in which there is no more constraint on
the k field. fy is a Monte Carlo estimate of f(x,w) justified by Eq. D.9. The integral formulation
displayed on the right side of the algorithm box is a strict formal translation of the algorithm

ka(xj) ka (xJ) =1 and kp (Xm) — 1

description. Note that when k,, is always positive, P; = o) hog) o) T Pm

the algorithm becomes identical to that of Fig. D.2.

scattering in confined geometries is provided in the following section. One of its
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important features is that the Monte Carlo weight of Eq. D.11 can take negative
values : % is negative each time k,, is negative. So the proposed algorithm deals
rigorously with the occurrence of unexpected negative values of the null-collision
coefficient, but this is achieved at the price of increasing the weight-variance, therefore
lowering the convergence rate. This is quantitatively examined in the following section.

D.4 Practical implementation

The algorithm described in this section evaluates the stationary net-power density
A(x) at a location x within the volume, i.e. the balance between the radiative power
absorbed and the radiative power emitted locally, per unit volume :

A(x) = /4 hvek,(x) [f(x,w) — s(x,w)] dw (D.13)

We restrict ourselves to thermal emission under the assumption of local thermodyna-
mic equilibrium. Therefore s(x,w) = f°/(x) and

A(x) = /4 hvek,(x) [f(x,w) — f(x)] dw (D.14)

If the volume were still non-scattering and infinite as in Sec. D.3, A(x) could be
evaluated using an algorithm very similar to that of Eq. D.9, Eq. D.10 and Eq. D.11
(see also Fig. D.3). The only change would be that w would be first sampled according
to an isotropic probability density function pg(w) = ﬁ, and the Monte Carlo weight
w; would be modified by multiplying it by 4whvck,(x) and replacing f°I(x;) by
feUx;) — fe(x). Eq. D.9, Eq. D.10 and Eq. D.11 would then become

460 = [ patido [, Ouli P (1= A1 (D.15)

+oo
i = / pa; (Aj)dA; {Pj-irle—i-l + (1 - Pj+1)fj+1] (D.16)
0

_ FaG) 1 eq ) peayy TT [ Fnlm) 1
g = Aok () 5 (1900 = ) TT (25— ) 07
Introducing multiple scattering can be performed by adding a branch to the collision
test, and sampling a new direction when true scattering occurs. When dealing with
opaque boundaries a test is added to check if a boundary is intersected before the
next collision, in which case a new binary sampling procedure is implemented to
either resume the algorithm, with a new sampled reflection direction, or stop the
algorithm and compute the Monte Carlo weight using the value of the equilibrium
distribution function at the surface impact. Altogether, the resulting algorithm is
a quite standard backward Monte Carlo algorithm corresponding to the following
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recursive formulation :

Afx) = /4 () /0 T a (o)A

( )
Pgw,
H(x, €B { ’ }—l—
( 1 ) + (1 — PE,I) fQﬂ— pR(w0|w1,X1)dw1[1 (D18>
PA,1U)1
H(Xl € V) + PS,l f4ﬂps(w0]w1,xl)dw1[1
L +PN71 f4ﬂ5(w0—w1,xl)dw1[1 )
+o0
;= / Pa; (A)dA; %
0
( )
Ppjriwj
H(xj+1 € B { R }—f—
(2 € B) + (1= Pgj1) [, Pr(Wj|wj41, Xj01)dwjpa [
Py ji1wjp
H(xjr1 € V) + Psjnt [ ps(wjlwjpr, Xjen)dwjpalj
\ + Prji1 [1r 0(wj — wjtr, Xji1)dwjpa i
(D.19)
= drhvck,(
X ,wm e e ka Xj e €
M Jp 1) (fe10) = 17900 + 353 208 (o) — o) |
E.j k(xj) P
1
1 — e(Xm, Win— ks(Xm kp(Xm
(Vm 2) 1( P 1> + ,H(fymzll)A(—) + H(’mef)) ( )
me—1 — 4L Em k?(Xm)PS k(xm)PN,j
(D.20)

where V is the volume of the considered system and B its boundary (Fig. D.4). The
locations x;11 and directions w; are defined in the same way as in Sec. D.3 with
the only difference that xj;1 = yj+1 when x; — Awj; is outside V, where yj;4 is the
intersection with the boundary of the straight ray starting at x; in the direction —wj
(see Fig. D.4). When x; belongs to B, (x;,w;—1) is the local value of the emissivity
in the direction wj_1, and pr(wj_1|w;,X;) is the probability density of the reflection
direction w;_ for an incidence along wj. In the absence of any specific convergence
difficulty, the branching probability Pg ; (the probability that the algorithm stops
at the surface impact x;) can be taken as Pg; = e(x;,w;_1). In the expression of
the weight, v; = 1 if the algorithm stops at the boundary, v, = 2 if the optical
path sampling is continued backward after surface reflection, 7; = 3 in case of
"absorption" within the volume, v; = 4 in case of true scattering and v; = 5 in case
of null-collision. The true originalities are the definition of the branching probabilities
P4, Ps; and Py, when x; belongs to V (probabilities that the j-th collision is
an absorption, a true-scattering event, or a null-collision respectively), as well as
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FIGURE D.4 — yj;1 is the intersection with the boundary of the straight ray starting at xj in
the direction —wj. xj41 equals x; — Ajwj if this location belongs to V. Otherwise xj11 = yj41. If
Xj4+1 € V the collision is either a null-collision and w;4+1 = w; (see j = 0 in the figure), or a true
scattering and wjyq is sampled according to the single scattering phase function (see j = 1 and
j =2 in the figure), or an "absorption" and the algorithm stops (the exchange weight is computed,
see j = 4 in the figure). If x;11 € B the interaction with the boundary is either a reflection and
wj+1 is sampled according to the directional reflectivity (see j = 3 in the figure), or an "absorption"
and the algorithm stops (the exchange weight is computed).

the Monte Carlo weight expressions. As argued in Sec. D.3, we suggest the use of
ka(X; ks(x; kn (x;
Paj = rogrtg e i = moartog e 24 PN = marm i
Except for that, the algorithmic structure strictly corresponds to the application
of Skullerud and Woodcock’s strategies. Note however that although we essentially
play with probability choices, our proposition is nothing like an importance sampling
strategy. As detailed at the end of Sec. D.3, we do not propose to modify the
branching probabilities and change the Monte-Carlo weight accordingly ; we rather
extend the applicability range of standard null-collision algorithms by preserving
exactly the definitions of P, ;, Pg; and Py in the usual range, and generalizing

their definitions in order to handle rigorously the occurrences of k< k,.

We now present a parametric study in order to evaluate the numerical behaviour
of the above presented algorithm. Monochromatic radiative budget densities are
evaluated at two locations within a simple academic configuration. The algorithmic
implementation is validated against a well mastered Monte Carlo algorithm, and the
code is then used to analyse how the convergence levels and the computation times
depend on the retained k field. The considered system is a cube, of side 2L, with 0K
diffuse-reflecting faces of uniform emissivity €, that are perpendicular to the x, y and
z axis of a Cartesian coordinate system originating at the center of the cube (see
Fig. D.5). The enclosed medium is heterogeneous both in temperature and optical
properties. The k,, ks and f°¢ fields are

L—x [y? + 22
k:a(x,y,z) - ka,ma:c ( 2L ) (1 - W) 5 (D21)




212 Annexe D. Article |Galtier et al., 2013]

F1cURE D.5 — Considered system : a cube of side 2L, whose center is the Cartesian coordinate
system origin.

L—x Y2+ 22
ks(l‘7y, Z) = ks(x,y,z) = ks,maa: ( 9], ) (1 - W) (D22)

L—z Y2+ 22
eq — feq Y
f (l’,y72’) max < 27, ) (1 22 ) (D23)

figuring an axisymmetric flame along the x axis (maximum temperature and maxi-
mum extinction along the axis, and a linear decay as function of the distance to the
axis, down to zero at the corners). The Henyey-Greenstein single-scattering phase
function is used with a uniform value of the asymmetry parameter g throughout the
field. For simplicity, k is chosen uniform. As k, and k, take their maximum values at
the same location, k.. = kg maz —l—]{is ‘mag 15 the maximum value of the total extinction

and

coefficient and the ratio p = —— tells us whether negative values of the null-collision
coefficient will occur (p < 1)m0r not. Because of the shape of the retained field of
equilibrium dlstrlbutlon function, monochromatic radiative budgets are simply pro-
portional to f¢4 —and the remaining numerically-meaningful free-parameters are (in
nondimensional form) : p, kg mazL, KsmazL, g and €. The analysis will be performed
using g = 0 (isotropic scattering) and € = 1 (black boundaries). The influence of g,
g, as far as numerical behaviour is concerned, will then be briefly described at the
end of the section.

Tab. D.1 displays the simulated values of A(x) for x = [0,0,0] (the center of

the cube) and x = [—L,0,0] (the location of the maximum values of the k,, k
and f° fields), using 10° independant realizations, for p = 1, meaning that k, = 0
at x = [—L,0,0] and k, > 0 at all other locations (no negative values of the

null-collision coefficient). Also given are the associated standard deviations, o, and
computation times, . The columns labelled A,.; and o,.; correspond to the simulation
results obtained with a standard Monte Carlo algorithm in which the problem of
inverting optical thicknesses is solved by fitting £ = k, + ks using an accurate
spline decomposition. These solutions were only used to validate the implementation



D.4. Practical implementation 213

procedure : considering the values of o and o,.f, A and A,.; are indeed statistically
compatible. The relative uncertainty 4 indicates that the convergence level is good
for all the considered absorption and scattering optical thicknesses (% is below 0.2%
in all cases). The computation times, that were measured without the use of any
parallelization procedure, are typical of standard Monte Carlo simulations.

More open is the question of choosing /2:, in particular the effect of modifying
the Monte Carlo weight in order to deal with negative values of the null-collision
coefficient when k < k at some locations. This question is addressed by reproducing
the same simulations for different values of p, from p = 0.5 (i.e. k is a faulty
overestimate of k, as low as %k at some locations) to p = 5 (on the contrary kis a
large overestimate of k). Fig. D.6 displays the evolution with p of &, Fig. D.7 displays
the computation times, and Fig. D.8 displays the computation times required to
achieved a 1% accuracy. These results are interpreted as follows :

100 :
[ KamarL = 0.15 KyparL = 0.1 ————
Lo KamarL = 015 kool = 3.0 -
o KamaxL = 0.15 Kyl = 10, %
Lo KamarL = 3.0; KypaxL = 0.1 8
\ : : KamaxL = 3.0; Kgparl = 3.0 ——-a——=
0k & KamarL = 3.0: KoL = 10. -0 |
- %o
I o 0 %
S
E \i \X :
0.1 ‘
0.5 1 5
P
(@)
100 ‘
X Lo KamasL = 0.1; KypaeL = 0.1 ———
A e kamarL = 015 Kyl = 3.0 -
Moo el = 015 kel = 10, 5
[ KemaxL = 3.0; KypaeL = 0.1 -2
[ KumaxL = 3.0; KparL = 3.0 —— =
0F W % % KumaeLe = 3.0; kypae = 10, -0
1l
s
b
5
b
1
0.1 ‘
0.5 1 5
P

(®)

FIGURE D.6 — Standard deviation as a function of p, ko maez L, ks mazL at (a) xo = [0,0,0] and (b)
X0 = [_Lv 03 0]
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A ore

Kamarl  Ksmarl | g gt ) | et e
0.1 0.1 20483313 8.52B-05 243 | -0.483717  1.13E-05
0.1 1 0482031  8.97E-05  7.92 | -0.481921  1.40E-05
0.1 3 20477997 9.90E-05  24.25 | -0477883  1.93E-05
0.1 10 -0.463027  1.27E-04  122.69 | -0.463068  3.56E-05
1 0.1 20366086 2.00B-04  2.04 | -0.365971  7.96B-05
1 1 -0.356169  2.13E-04  7.43 | -0.356353  8.93E-05
1 3 -0.33585  2.20E-04  19.2 | -0.335928  1.06E-04
1 10 0277205 2.28E-04  76.39 | -0.27683 1.34E-04
3 0.1 0218080 221B-04 348 | -0.218042  1.23B-04
3 1 0209261  2.18E-04 64 | -0.209520  1.26E-04
3 -0.190256  2.10E-04  13.63 | -0.190141  1.30E-04
3 10 -0.144073  1.84E-04 4138 | -0.143501  1.27E-04
10 0.1 0071271 1.19B-04 349 | -0.07137  9.15B-05
10 1 -0.068662  1.15E-04  4.66 | -0.068854  8.99E-05
10 20063501  1.07E-04  7.29 | -0.063369  8.61E-05
10 10 20.050674  8.49E-05  16.23 | -0.050674  T7.44E-05

(a)

k(l ma?L‘L ks ma$L 4 k A eq z eq t(s) ATef eq O—T‘Ef eq
) ) Tk (X0) frnne  47ka(X0) frtaz Amkq (%0) frnz 4ke (X0) frnz
0.1 0.1 20.977296  1.27E-04 224 | -0.977336  2.58E-05
0.1 1 -0.97683 1.29E-04  6.18 | -0.976679  2.79E-05
0.1 3 -0.975682  1.33E-04 153 | -0.975767  3.22E-05
0.1 10 [0.974828  1.37E-04 449 | -0.974733  4.36E-05

1 0.1 [0.822495  3.24B-04 238 | -0.822111  1.97E-04
1 [0.822446  3.26E-04  5.13 | -0.821846  2.03E-04
1 [0.823933  3.29E-04  10.75 | -0.823094  2.14FE-04
1 10 -0.83041  3.27E-04  26.32 | -0.839533  2.29E-04
3 0.1 C0.658358  4.07E-04 222 | -0.657242  3.64FE-04
3 2066479 4.09E-04  3.73 | -0.664704  3.62E-04
3 2067959  4.12E-04  6.67 | -0.679703  3.58E-04
3 10 [0.72422  410E-04  14.49 | -0.7228%6  3.42E-04
10 0.1 0544282 4.62B-04  1.98 | -0.5438 4.60E-04
10 1 L0.551703  4.63E-04 247 | -0.551153  4.57E-04
10 _0.567704  4.65E-04 354 | -0.567366  4.48E-04
10 10 -0.61077  4.65B-04  6.76 | -0.609865  4.27E-04

(B)

TABLE D.1 — Estimation, standard deviation and computation time obtained for 10% independant
realizations and for p = 1 at two probe locations : xg = [0, 0, 0] (see table (A)) and x¢ = [—L, 0, 0]
(see table (B)) for several values of the optical thicknesses kq magL and ks mqeL. The computation
was done with a processor "Intel Core i5 - 2,4GHz" without any parallelization.
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e Above p = 1, the standard deviation of the estimator is independant of p. This
is expected since no negative values of the null-collision coefficient occur : as
indicated from the start, standard null-collision algorithms can be rigorously
interpreted as only practical ways to sample collision-locations according to Beer
extinction. Adding supplementary null-collisions increases only the computation
time but changes nothing to the resulting sampling statistics.

e Below p = 1, the standard deviation of the estimator increases when increasing
the occurrence of negative values of the null-collision coefficient. Again, this is
expected since the handling of negative values of the null-collision coefficient is

achieved at the price of multiplying the Monte Carlo weight by the correction
4 + k+%‘kn|

term . The module of this weight-correction factor is always greater
than unity and the factor is positive when absorption or true scattering is
retained, negative when null-collision is retained. If many scattering or null-
collision events occur along the optical path, in regions where k,, < 0, before
the algorithm stops because of absorption, then the Monte Carlo weight can
take very high absolute values as it involves the product of a large number
or correction terms greater than unity. The convergence toward the exact
same solution of the radiative transfer equation is insured by the fact that
positive weights are compensated by negative ones, but the convergence rate
is smaller : much more statistical realisations are required to reach the same
accuracy levels when no negative values of the null-collision coefficient occur.
This is illustrated by the fact that for increasing values of the scattering optical
thickness combined with high values of the single-scattering albedo (see ksL = 3
and k,L = 0.1 in Fig. D.6), the standard deviation increases very fast when
decreasing p below unity. This effect is of course much stronger when x is right
at the center of the region where k,, < 0 (see x = [—L,0,0]) than when optical
paths starts from a region where k,, > 0 (see x = [0,0,0]).

e For a given number of statistical realisations, the computation times (see
Fig. D.7) decrease when decreasing the number of null-collisions, and this is
also true when decreasing k,, below zero. This is a direct result of less collisions
occurring, but this does not wholly compensate the degradation in standard
deviation (see Fig. D.8). For a given relative accuracy, the required computation
time is then driven by the impact of p upon the standard deviation, and it
is of course greater as k becomes a larger and larger overestimate of the true
extinction coefficient.

Altogether, the use of negative values of the null-collision coefficient is fully
relevant when the approximated upper-bound k can be astutely designed, since the
convergence will be really reasonable : for k ~ 0.9k, the increase of the computing
effort should not be a concern (see Fig. D.8 (a)) except if domains where k, < 0 are
optically thick with a high single scattering albedo (see Fig. D.8 (b)). Accordingly,
most efforts design of i should focus on avoiding the occurrences of such domains.
Bad approximates of the upper-bound (p << 1) would yield pathological behaviours,
as expected.

4. With the choices we made for P4, Ps and Py, the correction terms in the weight expression
ks ky | E42lka]
EPy |k

of Eq. D.17 verify the property

kq
kPa kP,
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The simulations performed with g # 0 and € < 1 indicate that the shape of the
single scattering phase function has very little influence (the values of A are affected
but the numerical behaviour is unchanged), and that surface reflection acts like
scattering : because of multiple reflections, more null-collision or scattering events
can occur within the domain of negative null-collision coefficients before absorption
and standard deviation increases (although less than when increasing scattering).

D.5 Formal developments

This section is addressed to the reader interested by the formal significance of
null-collision algorithms. The physical meaning of null-collisions at the kinetic level
is quite trivial : they are additional collisions that change nothing to the overall
radiative transfer. But when looking at the corresponding integral formulations,
several observations can be made, that could be useful in the process of enhancing
statistical convergence. A renewed viewpoint can indeed be taken from which
null-collisions are only of secondary importance compared to the associated integral
reformulation. This reformulation alone suppresses the need for an optical-thickness
inversion procedure and meshless algorithms can therefore be designed without
introducing any null-collision. The next paragraph, entitled step 1, illustrates this
point. In step 2 we argue that it may still be useful to introduce a (non-strict)
overestimate k& of the extinction coefficient, but k is not used for sampling collision
locations : it plays a role similar to that of a control variate [Hammersley et al., 1965],
allowing to get rid of sign alternations that would otherwise be sources of convergence
difficulties. In step & we finally show how standard null-collision algorithms can be
fully recovered by choosing to also make use of k for free-path sampling as well as
for the weighting of branching tests. We advise however that this choice does not
entail optimized convergence features.

Step 1 - Our starting point is the observation that the initial radiative transfer
equation of Eq. D.1 at stationary state can be integrated backward along the line of
sight to give the following Fredholm equation :

f(x,w) = f(x — Lw,w) + /OL [Eaxsx — ko f(x — dw, w)] dA (D.24)

This equation is easy to demonstrate but its structure does not highlight the pictures
of transport physics, which is probably the reason why it is seldom mentioned in the
radiative transfer literature. Indeed, by comparison with Eq. D.3, no Beer extinction
appears and it is difficult to interpret physically the integration over space of the
local emission k4 xsy. Of course, the exponentials are well recovered due to the
Fredholm structure of this equation (f appearing within the integral). Fredholm
equations are common in photon transport physics but it is worth mentioning that
they are usually the result of scattering or surface-reflection representations. In the
present context the fact that Beer extinction does not appear explicitly is a strong
advantage : the difficulties associated with the inversion of exponential extinctions
in heterogeneous media are automatically by-passed. Let us consider the particular
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case where f(x — Lw,w) = 0. The same steps can then be followed as in Eq. D.6
and Eq. D.8, starting from Eq. D.24 instead of Eq. D.5, to give :

F(x,w) = /0 o Oo)dAs [lel +(1- Pl)ll} (D.25)

with I
I = / pa; (A)dA; {Pj+1wj+1 +(1 - Pj+1)]j+1] (D.26)
0

where the only changes by comparison with Eq. D.9 and Eq. D.10 are that the j-th
free path is integrated between zero and L; = L — Zin_:lo Aj, the probability density

function pa;();) is now an arbitrary probability density on [0, L;], and the Monte
Carlo weights are

bul0g)s (5 ) 5 —— ﬁ[k()l e BUED
wi = kq(x5)8(x5, w) —————— —ko(Xm .

’ VOTIP A (M) 2 1~ P payy(Ant)

Apart from the free paths being integrated over finite intervals, which we will
comment later, the essential differences with the null-collision algorithm of section 2
are that no k field has yet been introduced and that the successive weights alternate
signs (w; > 0; we <0 ;A...). In step 2 we argue that the first meaning and the main
interest of introducing k is to break this sign alternation.

Step 2 - As detailed in the literature about exponential transforms
[Sarkar et Prasad, 1979, Turner et Larsen, 1997a, Turner et Larsen, 1997b|, it is
shown in Sec. D.6.2 that any arbitrary positive scalar field k can be introduced to
transform Eq. D.24 into

L ~
f(x,w) = f(x — Lw,w)exp (—/0 k,\d)\) +

L A . .
/ exp (— / daka) [ka,m n (/«A _ ka,A> flx— Aw,w)] )\
0 0

Very much like when introducing control variates to modify the convergence features
of Monte Carlo algorithms [Hammersley et al., 1965], we can play with the arbitrary
choice of the k field :

e First, if k> 0 the exponentials insure that improper integrals converge and
L may be extended to infinity to recover the same problem as in Sec. D.3 :
evaluating f(x,w) in the particular case of an infinite medium. Eq. D.28
becomes

(D.28)

00 A
f(x,w) = /0+ exp (—/0 l%gda) [ka,,\sA + (i@\ — ko)) f(x — /\w,w)] d\

(D.29)
which is Eq. D.5 exactly, where the Dirac integration is solved (there is indeed no
more need to highlight the physical picture of a forward scattering equivalent).
Note that we only take the limit . — +oo for didactic reasons and that all
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further reasoning can be reproduced using Eq. D.28 to address the question
of evaluating f(x,w) in bounded domains. For instance, the term f(x —

Lw,w)exp (— fOL ]Af)\d)\> in Eq. D.28 is the one that allows the representation
of surface emission and surface reflection in Sec. D.4.

e Second, as in Sec. D.3, k can be lower than k,. But, as much as possible, k
should still be chosen such that k > k, at most locations. Indeed this ensures
that both k, ys) and (l%)\ — ko) f(x — dw,w’) in Eq. D.29 are positive terms,
with the direct consequence that Monte Carlo weights are strictly positive :
the convergence difficulties due to sign alternation vanish. The technical steps
of Eq. D.6 and Eq. D.8 can again be taken, this time to recover Eq. D.9 and
Eq. D.10 exactly, with the following new expression for w; (which is strictly
positive if k — k, > 0) :

Aj—1 1 1
o=ty (= [ R ) sty 0

7j—1

[(/%<xm> — ka(xm) ) cap (— / " - “’>d"> )

(D.30)
where the py,(A;) probability densities and the P; probabilities are now fully
arbitrary [Hammersley et al., 1965, De La Torre et al., 2014]. Note in particu-
lar that k appears in the weight expression, but that ps, and P; can be chosen

m=1

independently of k.

e Third, choosing k as close to k, as possible is useful, this time not as far as sta-
tistical convergence is concerned, but in terms of computational costs. Let us in-
deed admit that p,; and P; could be ideally chosen according to a zero-variance
strategy [De La Torre et al., 2014, Dauchet, 2012, Assaraf et Caffarel, 1999,
Hoogenboom, 2008|. If we temporary admit that k is strictly greater than
k, at all locations, then zero-variance is obtained with

~

pa;(N) = mewp (— /OAJ k(x5 — Jw)da) X

(D.31)
logsa)sCa )+ (Rn) = Bl £,

and
P — k’a(X]’)S(Xj,w)

J

(D.32)

~

ko (x3)s(¢5,0) + (Rx5) = ka(35)) S (x5, @)
(see Sec. D.6.3). Then only one sample is required to reach the exact solution
and the remaining question is the computation cost of the sampling procedure
itself. This cost is directly related to the average value of the recursion level :
the value of the index j at which the sampling algorithm is exited. This average
recursion level is obviously related to the value of P; : there is ideally no
recursion when P; = 1, which is reached when k is strictly identical to k,.
Altogether, our conclusions match those of all previous publications : k should
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be greater than k, and should be as close to k, as possible. However, we reach
these conclusions without any reference to k as an extinction coefficient to
be used for the sampling of collision locations. So, not only the constraint
k > k, becomes non-strict (as illustrated in the previous sections), but it
is also no more required that the function 7(\) = fo)\ k(x — ow,w,t + 2)do
be analytically invertible : all we need is that 7(\) be easily evaluated as it
appears within the exponentials in the weight expression of Eq. D.30.

Step 3 - To recover the standard null-collision algorithm of Sec. D.3 (before
extension to negative k, values), it suffices to make the following choice for p,; and
P; (that were arbitrary up to now) :

) = ke (= [ s oo (0.3

and

p, — FalXi) (D.34)

k(x;)

This choice is well guided by the physical pictures, but nothing motivates this parti-
cular choice in terms of statistical convergence. We have indeed already mentioned
that the ideally optimized choice (if it was practicable) would be that of Eq. D.31
and Eq. D.32, but for Eq. D.33 and Eq. D.34 to match Eq. D.31 and Eq. D.32,
it is required that f(xj,w) =~ f(xj11,w) =~ s(xj,w) ~ s(xj41,w). This is a fair
approximation only in the limit of thermodynamic equilibrium and this strongly
limits the applicative potential.

Conclusions

Altogether, the null-collision concept was revisited, thinking more specifically of
radiative transfer applications. The corresponding algorithms introduce no specific
convergence difficulty, which is not surprising considering the well known similari-
ties between photon-transport and neutron or electron-transport, the two particle-
transport physics that motivated initially the introduction of null-collisions in Monte
Carlo path-tracking algorithms.

It was also shown, by two different formal means, how null-collision algorithms
provide exact unbiased statistical estimations of the solution of the radiative transfer
equation. In both cases (in Sec. D.3 and Sec. D.5), thanks to its linearity properties,
the radiative transfer equation was replaced by a rigorous integral-equivalent. In the
first case, the radiative transfer equation included null-collisions from the start ; in
the second case, null-collisions were introduced at the integral level.

Beside their meaning in terms of algorithmic validation, these integral formulation
efforts open two new fields of investigation. We first showed how null-collision
algorithms can be slightly transformed in order to deal with the unexpected occurrence
of negative values of the null-collision extinction coefficient. We checked that this
transformation does not introduce pathological convergence difficulties that would
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make it impractical, and our conclusion is that difficulties will only be encountered
when the domain of negative null-collision coefficients is optically thick with a high
single-scattering albedo. Absorption reduces the difficulty because it reduces the
number of times the Monte Carlo weight is multiplied by a negative correction term
of absolute value greater than unity. Pathological behaviours will therefore only be
encountered when k is a poor overestimate of the true extinction coefficient, for
scattering dominated media.

If such difficulties were practically encountered, the question could first be
addressed by adjusting the branching probabilities P4, Ps and Py (we made a
practical proposition for these probabilities, but we did not explore alternative choices).
Further investigations in this direction would then certainly consist in transforming
the integral structure. We suggest furthermore that this question should be enlarged
by considering the meaning of the integral structure highlighted in Sec. D.5. It
seems indeed that the meshless feature of null-collision algorithms has very little
to do with the null-collisions themselves, but rather with an underlying Fredholm
formulation that bypasses the question of dealing with path-integrated extinction-
coefficients appearing within the exponential function. Introducing null-collisions
could then be viewed mainly as a practical way to enhance statistical convergence,
very much like introducing control variates in standard Monte Carlo convergence-
enhancement techniques. Accordingly, we propose that alternative solutions could be
explored starting back from the primary Fredholm formulation. We only opened this
investigation field in the last section, but we are convinced that it is worth a close
attention.

D.6 Appendixes

D.6.1 APPENDIX 1 - Terminology and bibliographic entries

Null-collision algorithms have been developed independently in two branches of
physics : plasma physics and neutron transport. Consequently, according to disciplines
and authors, they are found under different designations : null-collisions, fictitious-
collisions, pseudo-collisions, null-events, Woodcock-tracking, delta-scattering, pseudo-
scattering, etc.

In the field of plasma physics, null-collision algorithms were first formulated
by Skullerud in 1968 [Skullerud, 1968| to sample ion/molecule collision times. This
publication led to further refinements in the same application field, for instance
[Lin et Bardsley, 1978], [Boeuf et Marode, 1982] or [Brennan, 1991|. These advances
have also directly inspired the community studying the dynamics of rarefied gases
|[Koura, 1986].

Meanwhile, this technique was developed for neutron transport applications by
Woodcock and co-workers [Woodcock et al., 1965]. They are legitimately recognized
as the founders of null-collision algorithms in their field. A significant step was then
the formalisation effort reported in [Coleman, 1968], that enlarged the application
potential of Woodcock algorithm. Today, the so-called "Woodcock tracking" is
implemented in many transport simulation codes such as SERPENT [Leppénen, 2010]
or MORET |[Forestier et al., 2008|. These ideas have also significantly impacted the
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communities of image synthesis and tomography research [Rehfeld et Stute, 2008]
[Badal et Badano, 2009] [Toth et Magdics, 2010].

D.6.2 APPENDIX 2 - Exponential transform

In the literature about exponential transforms [Sarkar et Prasad, 1979,
Turner et Larsen, 1997a, Turner et Larsen, 1997b|, a new distribution function
g(x,w) = f(x,w)exp ( fOL I%Uda> is introduced and is reported in transport equations

such as Eq. D.1 to get (here in the particular case of stationary radiation in a
non-scattering medium)

w.Vg(x,w) = [l%(x) — ka(x)]g(x,w) + ko (x)s(x, w)exp </OL /%Uda) (D.35)

The problem is then solved in g instead of f, using Monte Carlo approaches, and
the arbitrary k field is adjusted in order to minimize the variance of the estimator
(essentially using adjoint formulation similar to that of the zero-variance literature).
Here, we build a Fredholm equation starting from Eq. D.35 (as in Step 1) :

L LA
g(x,w) = g(x — Lw,w) —{—/ d\ [k,\ — l{:a7,\]g(x —Aw,w) + kg rsrexp (/ /{Jda)
0 0
(D.36)
Reporting the expression of g(x,w) = f(x,w)exp (fOL l;:ada> in Eq. D.36 leads to
Eq. D.28.

D.6.3 APPENDIX 3 - Zero-variance strategy

In the Monte Carlo literature, zero-variance refers to algorithms such that the
Monte Carlo weight is strictly and systematically equal to the quantity to be estimated
independently of the sampling occurrences. This corresponds to ideal convergence in
the sense that perfect convergence is obtained with a single Monte Carlo sampling
event. The design of such algorithms is always part of pure-theoretical reasoning and
can be quite tedious. Here, starting from Eq. D.29 in the restrictive case of k> k,
(so that, all terms are positive), such an algorithm can be easily designed using only
an ideally optimized importance sampling procedure. Indeed, a random variable A of
probability density function py on [0, +00] can be introduced to give

+o0
floxw) = [ vy (D.37)

with

1

w(A) = ey

exp (_ /0A f%dg) |:k:a,/\8)\ + (l;:,\ — k:a,,\> f(x—Iw,w) (D.38)
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and w(A) is equal to f whatever the sampled value of A as soon as

1 P .
pa(A) = exp (— / kada) [k;a,m + (k;A - km> flx— /\w,w)] (D.39)
f(Xa UJ) 0
This is Eq. D.31 exactly, except for recursive notations.
If we now want that the algorithm branches between pure absorption and null-
collisions (to recover the algorithmic structure of Eq. D.9 and Eq. D.10), it suffices
to introduce an absorption probability P and write

o) = [ T AN (P (V) + (1= Phun (W)} (D.40)

with

we(A) = = ex —//\l;:d Kar5x (D.41)
T, ) P |

and

wy(A) =

exp (— /0)\ l%ado) <]%/\ _ kaM\) Joe e (D.42)

PA(N) 1-P

We keep the previous choice for py (Eq. D.39), and we still want to achieve w,(\) =
wn(N) = f(x,w), then we get

Easx
ka,)\s)\ + <l%)\ - ka,A) f(X - >\w7 (.d)

P = (D.43)
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E.1 Abstract

The Monte-Carlo method is often presented as a reference method for radiative
transfer simulation when dealing with participating, inhomogeneous media. The
reason is that numerical uncertainties are only of a statistical nature and are accurately
evaluated by measuring the standard deviation of the Monte Carlo weight. But
classical Monte-Carlo algorithms first sample optical thicknesses and then determine
absorption or scattering locations by inverting the formal integral definition of
optical thickness as an increasing function of path length. This function is only

1. http://www.sciencedirect.com/science/article/pii/S0022407313002483
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seldom analytically invertible and numerical inversion procedures are required. Most
commonly, a volumic grid is introduced and optical properties within each cell are
replaced by approximate homogeneous or linear fields. Simulation results are then
sensitive to the grid and can no longer be considered as references.We propose a
new algorithmic formulation based on the use of null-collisions that eliminate the
need for numerical inversion : no volumic grid is required. Benchmark configurations
are first considered in order to evaluate the effect of two free parameters : the
amount of null-collisions, and the criterion used to decide at which stage a Russian
Roulette is used to exit the path tracking process. Then the corresponding algorithm
is implemented using a development environment allowing to deal with complex
geome- tries (thanks to computer graphics techniques), leading to a Monte Carlo code
that can be easily used for validation of fast radiative transfer solvers embedded in
combustion simulators. “Easily” means here that the way the Monte Carlo algorithm
deals with both the geometry and the temperature/pressure/concentration fields is
independent of the choices made inside the combustion solver : there is no need for
the design of a new path- tracking procedure adapted to each new CFD grid. The
Monte Carlo simulator is ready for use as soon as combustion specialists provide a
localization /interpolation tool defining what they consider as the continuous input
fields best suiting their numerical assump- tions. The radiation validation tool
introduces no grid in itself

Keywords : Monte Carlo; Null-Collision ; Heterogeneous Media ; Integral formu-
lation ; Combustion

E.2 Introduction

Industrial applications, such as combustion processes, require radiative transfer
modeling, often coupled with other energy transfer mechanisms. Numerical radiative
transfer solvers used in such applications need to reach the best compromise between
numerical accuracy and computation cost. These tools also need validation, and
therefore reference numerical methods have to be used. The Monte-Carlo method
(MCM) is known to be one of these reference methods. Like all other methods,
MCM evaluates numerically the solution of the radiative transfer equation (RTE)
and its “reference” status is only due to the existence of a rigorous measure of its
uncertainty : from its statistical nature, MCM allows the systematic calculation of a
standard deviation associated to each numerical result, and this standard deviation is
translated into a numerical uncertainty thanks to the central limit theorem. However,
designing Monte-Carlo algorithms to be used in complex geometries has long been
a quite challenging task, mainly because of prohibitive computational costs. Using
MCM to produce references and validate the radiative parts of heat-transfer or
combustion solvers was therefore hardly feasible outside academic configurations.
Recent developments, such as the work reported by Zhang at al. [Zhang et al., 2009,
Zhang, 2011], show that this is now practically feasible whatever the complexity
of industrial geometries. We here propose to further develop such tools using a
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meshless Monte-Carlo algorithm based on the null-collision technique introduced in
|Galtier et al., 2013].

Monte-Carlo algorithms dealing with participating media [Farmer et Howell, 1998,
Modest, 2013, De Guilhem De Lataillade et al., 2002b, Eymet et al., 2005,
Eymet et al., 2004, Eymet et al., 2009, De La Torre et al., 2014] are commonly
formulated so that they sample the optical thickness. One major feature of such
algorithms is that a correspondence must be established between any value of the
optical thickness, along any optical path, and the physical position associated to
this optical thickness within the heterogeneous participating medium. As optical
thickness is an increasing function of path-length, this inversion is always possible,
without approximation, using standard numerical inversion techniques, but these
techniques rapidly require prohibitive computation powers. A possibility to speed-up
the inversion procedure is the use of a volumic grid [Siegel et al., 2011] together with
simple enough approximate profiles for optical properties within each cell, allowing
an analytic inversion of position from optical thickness. However, introducing such a
volumic grid involves an unwanted consequence : simulation results depend on the
retained particular grid (as with any deterministic approach), and MCM looses its
“reference” status.

Concerning volume discretization, let us clarify some vocabulary to be used
throughout the text. The question that we address is the production of reference
solutions of the RTE for temperature, pressure and concentration fields provided by
combustion specialists wishing to validate their radiation solvers. These input fields
may have any form. They may be analytic when academic benchmarks are considered,
they may be based on local measurements at structured or unstructured grid points
in experimental contexts, or based on the structured or unstructured outputs of
fluid-mechanics/chemistry codes in pure numerical contexts. In all cases the input
fields will be complete, meaning that temperature, pressure and concentrations are
defined at all locations. In experimental and numerical contexts, this requires that
combustion specialists provide not only the grid point data, but also a meaningful
interpolation model to complete the fields throughout the volume (meaningful with
regard to fluid mechanics and chemistry). Reference RTE solutions will be produced
without discussing this interpolation model, and the corresponding algorithm will be
called a meshless algorithm if it is fully independent of the input-field type, and if it
introduces no discretization procedure in itself.

Recent methodological developments |Galtier et al., 2013, Rehfeld et Stute, 2008,
Badal et Badano, 2009] indicate that it is possible to use so-called null-collision
Monte-Carlo algorithms in the field of radiative transfer simulation. One major
characteristic of null-collision algorithms (NCA) is that they do not require any
volumic grid. They are no longer formulated using optical thicknesses. Path-length
(and thus position) is directly sampled according to a probability density function

of the form py(\) = exp (— fol l%(a)da), that is to say according to a Beer-Lambert

extinction law in which the true extinction coefficient k is replaced by an overestimate

l%, chosen in such a way that sampling p, is mathematically straightforward. In

neutron and plasma physics, where the method was first introduced, the k field

was most commonly chosen uniform (or uniform by parts) and A was sampled as
1

A= Elog(r), with r a uniformly sampled value in the unit interval. Of course,
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sampling A using an overestimate of the true extinction field introduces a bias, but
this bias is compensated by the use of a rejection test : when rejection occurs the
path is continued straightforward as if no collision occurred.

These algorithms can be interpreted (and rigorously justified) using simple
physical pictures. Let us note k, = k — k. This additional extinction coefficient,
k,, can be interpreted as due to null-collisions, i.e. collisions that lead to a pure
forward scattering event. Obviously such additional collisions change nothing to the
radiative transfer problem. However, k, can be chosen in such a way that the new
total extinction coefficient & = k + k, has a simple shape (for instance uniform)
and allows easy path-length sampling procedures. But then, when a collision occurs,
it can either be a true collision, with probability P = %, or a null collision, with
probability 1 — P, and this is how the rejection method is justified : if a null-collision
occurs, the path is continued straightforward as if no collision occurred.

The only reported practical difficulty is the choice of the k field (or of k, as they
are directly related). Indeed k must be greater than £ at all locations, but it must
also be as close to k as possible in order to avoid that too many rejections occur,
which would lead to computationally expensive sequences of path-length sampling
and forward continuations until a true collision occurs. This compromise can be
hard to reach, even in the most standard combustion configurations because of the
flame heterogeneities as well as the non-linear dependence of gaseous absorption
with temperature, pressure and concentrations. But most of this difficulty vanishes
thanks to the theoretical developments of [Galtier et al., 2013] that allow to handle
rigorously the occurrence of negative null-collisions : the authors show indeed that
the best choice is still that & be as close an overestimate of k as possible, but such a
close adjustment can now be achieved without strictly excluding that k < k in some
parts of the field.

We present hereafter an implementation of a slightly modified version of the null-
collision algorithm (that of |Galtier et al., 2013]). It is designed for radiative transfer
simulation in combustion processes. The corresponding code has been developed using
the Mcm3D library, within the EDStaR development environment [Starwest, 2014a,
De La Torre et al., 2014]. Its purpose is to compute the radiative budget density
at a number of selected locations within any given geometric configuration, with a
systematic control of the numerical uncertainty (of course not of the uncertainty
due to the physical model itself, in particular to absorption properties). Sec. E.3
gives all the details of the proposed null-collision algorithm for a both absorbing and
scattering semi-transparent medium, enclosed by opaque reflective surfaces. Sec. E.4
and Sec. E.5 present simulation examples. In Sec. .4, an academic configuration is
considered. The new null-collision algorithm is first validated against the benchmark
simulation results of |Galtier et al., 2013]. Then we analyze its behavior, both in
terms of convergence and computation time, when modifying two free parameters :
the amount of null-collisions, and the criterion used to decide at which stage a Russian
Roulette is used to exit the path tracking process. In Sec. E.5, the same algorithm
is used for simulation of radiation within the true geometry of a well referenced
laboratory combustion-chamber, as an example of the type of validation procedures
that are required when using the PRISSMA code as part of the combustion simulation
code AVBP|Poitou et al., 2012].
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Let us point out a very essential choice made throughout the present text. Null
collision algorithms allow to avoid the design of path-tracking procedures computing
intersections between rays and large meshes. They may therefore be considered in
two distinct practical contexts :

e when there is a need for speeding up Monte Carlo solvers (only the intersections
with the boundary are computed) ;

e when there is a need for flexibility (designing Monte Carlo solvers independently
of the mesh structures, using them in distinct contexts without additional
specific development).

We are here attempting to answer the second need only. Our purpose is to provide
a reference-simulation methodology that combustion specialists may use whatever
the numerical choices made inside their CFD and chemistry solvers. The first need
is undeniably worth some close attention, but this requires that comparisons are
performed against the best up-to-date path-tracking algorithms (that the present
authors do not know with enough details) in order to evaluate clearly the respective
benefits and losses of computing many intersections, versus dealing with repeated
null-collision events.

E.3 Algorithm

The purpose of the proposed algorithm is to compute S, (xo) = |’ g Srw(Xo)dv,
the radiative budget density at any location Xo within the emitting, absorbing
and scattering volume, considering the whole thermal infrared spectral range. The
involved optico-geometric and spectral integration will be considered successively.
The optico-geometric integration is presented in Sec. E.3.1. For didactic reasons
this first presentation excludes the occurrence of negative values of the null-collision
coefficient (l% is always greater than k) and Sec. E.3.2 generalizes the proposition to
any k. These two subsections are sufficient for the monochromatic parametric study
of Sec. E.4. Spectral integration is presented in Sec. E.3.3 and the complete resulting
null-collision algorithm is used in the combustion example of Sec. E.5.

E.3.1 Optico-geometric integration

In [Galtier et al., 2013|, a reverse path-tracking algorithm is proposed for the
evaluation of S, ,(x¢) in which a very standard null-collision approach is used :
branching probabilities are used to select either an absorption, a scattering event,
or a null-collision. In this algorithm, when absorption occurs, the optical path is
interrupted and the Monte Carlo weight is computed using the emission properties
at the collision location. Very similarly, branching probabilities are used when a
boundary is encountered, and either reflection occurs and the optical path is conti-
nued, or absorption occurs and the optical path is interrupted, the Monte Carlo
weight being computed using the local surface emission properties (see the third
section of |Galtier et al., 2013|). As far as surface interaction is concerned, it is well
established that various Monte Carlo strategies can be preferred to the simple absorp-
tion /reflection branching test, a test that is commonly named a Russian Roulette.
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Instead of using this Russian Roulette, the fraction of absorbed photons can be
computed (according to the surface absorptivity), their contribution to the addressed
quantity can be evaluated and stored (as a first contribution to the Monte Carlo
weight), and the remaining fraction can be reflected, continuing the path-following
procedure until an extinction criterion is reached (such a strategy can be found in
the literature under the names of energy-partitioning [Shamsundar et al., 1973]% or
pathlength method |Farmer et Howell, 1998]. When successive reflections have led
to an extinction stronger than this criterion, either the algorithm is stopped (but
then numerical errors are introduced that need to be considered in addition to the
statistical uncertainty), or the Russian Roulette is recovered in order to ensure that
the algorithm ends without any statistical bias. The algorithm presented hereafter
is a strict application of such a strategy to the algorithm of [Galtier et al., 2013],
however it is applied not only to the absorption/reflection branching tests, but also
to the absorption/scattering/null-collision branching tests. Of course, considering
our objective to produce reference simulation results for validation of other radiation
solvers, after the extinction criterion is reached, we retain the choice of recovering
the Russian Roulette, rather than truncating the path-integrals, in order to ensure
that no statistical bias is introduced and that the displayed standard deviations
can be faithfully interpreted as numerical uncertainties. Hereafter, the extinction
criterion is denoted by ( and the remaining fraction after j collisions is denoted by
&; (at the beginning, when no collision has yet occurred, & = 1, when the j + 1™
ka(xj41)
 h(x41)
boundary &;11 = &;(1 — e(xj4+1)) and so on until §; < ().
The resulting algorithm is fully described in the Fig. E.1. The starting point is the
sampling of a direction wg at probe location xq (step A2 of Fig. E.1), the computation
will loop on the "energy partitioning" branch (BI-B16) until the criterion ( is reached.

More precisely, in each loop, a free path length is sampled (B1) according to the

collision takes place in the medium ;1 = (1 ) and when it occurs on the

modified Beer probability density function py(\) = k(x — Aw)exp ( fo/\ k(x — 0w)da>.
The collision location is then computed : either it occurs in the medium (B3) or
on the boundary (B12). If it occurs in the medium, the absorption contribution
is added to the Monte-Carlo weight (B/), then a standard Bernoulli trial is used
to determine if the path-following will continue according to a scattering event
or a null-collision (B5-B7) : a number 7, is uniformly sampled in [0, 1] and is
compared to the scattering probability. In both cases, the new value of the factor
&;+1 and the corresponding new direction wjy; are computed (BS8-B11). If the
collision occurs on the boundary, the absorption contribution is taken into account
for the Monte-Carlo weight calculation (B13), the value of {;;; is actualized (B14)
and a reflection direction is sampled (B15). Once this new direction (caused by
scattering, null-collision or reflection) is known the algorithm loops to step A3. These
loops will continue until the extinction criterion ¢ is reached (€41 < (), in which
case the algorithm switches to the "Russian Roulette" one (C1-C18) introduced in

2. Originally, this concept was introduced to compute the apparent emittance of isothermal-
walled cavities by taking into account, in a deterministic way, the geometric fraction passing through
an aperture at each reflection. Nowadays, the term “energy-partitioning” commonly refers to surface
reflection and attenuation by participating media the way we reported it [Wang et Modest, 2007a].
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FIGURE E.1 — Description of the proposed algorithm. It follows a energy-partitioning strategy
until the extinction term & is less than a fixed criterion ¢ in which case it switches to the algorithm

introduced in [Galtier et al., 2013].
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|Galtier et al., 2013] where the Monte-Carlo weight expression is slightly modified
to consider the extinction associated to the previous "energy-partitioning" branch.

As all Monte-Carlo algorithms, this one has been designed through a formal
integral work. The major steps of such a work are described below for an infinite
medium. Walls are ignored here to lighten the mathematical formalism, but their
introduction would not lead to major difficulties, it would just add a new branching
test to determine if the collision occurs on boundary or in the media.

The addressed quantity is

S, (x0) = /4 ki (x0) [ (X0, wo) — B(xo)] duw (E.1)

where 1(xg,wp) is the incoming specific intensity (at location xg is the direction wy),
and B(xg) is the equilibrium or black-body specific intensity at the temperature
of the medium at xo. The only difficulty lies in I(xg,wp) that we obtain using the
following recursive integral expression :

—+o0 )\j
I(x5,w;) :/0 dXjexp (—/0 k(x5 — ojwj) + ks(x;j — ajwj)daj)

X{ka(XjJrl)B(Xj—s-l)+ks(xj+1)/ Ps(wjlwjpr, X1 ) (Xj41, wjgr)dwjpq
4
(E.2)

with x;11 = x; — \jw; and pg the single scattering phase function. Eq. E.2 is the
formal solution of the stationary radiative transfer equation

w.VI(x,w) = —[ka(x)—l—ks(x)}](x,w)+ka(x)B(X)—|—/ ko (x)1(x, w0 )ps(w|w’, x)dw’

N (E.3)
The introduction of null-collisions in this differential equation consists in adding
—kn ()1 (%, w) + [, _Fn(x)](x,w’)d(w — W’ x)dw’ to the right hand side. The Dirac
distribution ¢ implies [, k(%) (%, w)d(w —w’,x)dw’ = k,(x)I(x,w) which ensures
that the added quantity is null and therefore that the following modified radiative
transfer equation has the exact same solution as Eq. E.3 :

w.VI(x,w) =— [ka(x) + ks(x) + kn(x) ] I (x,w) + ko(x) B(x)

—1—/4 k’s(x)](x,w')pg(w|w',x)dw'+/4 kn(x)I(x,w")0(w — W', x)dw’
i i (E.4)
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The formal solution of this new radiative transfer equation is now

—+o00 )\j .
I(xj, wj) :/0 dAjexp (—/0 k(x; —ijj)d%‘) [ka(xj+1)B(Xj+1)

+/fs(Xj+1)/ ps(wjlwjr, Xj11) L (X1, Wjt1)dwjpa (E.5)
4

+kn(X501) [ 0wy — Wi, Xj00) L (Xj41, wjpa)dw;ja
47

which can be rewritten

I _ [ & ka(Xj41)
(x5, w;) = i k(xj11)exp | — i k(xj — ojwj)doj | d\; | ————=B(Xjt+1)

/{J(Xj+1)
ko (X;

+ M/ ps(wjlwjpr, Xj11) 1 (X1, wjtr)dwip

k‘(Xj_H) 4

ke (X
M/ 0(wj — wjgr, Xjr1) L (X1, wjt1)dwjpa
]{:(Xj+1) A7

(E.6)

This is almost a formal translation of the algorithm described in Fig. E.1 for an infinite
medium (except that in the algorithm of Fig. E.1, S, ,(xg) is directly computed
whereas we here focus on [(xg,wp)). Indeed, it suffices to introduce a scattering
branching probability P; to recover the "Energy-Partitioning" branch :

[.._+OO];. _/\j];._..d.d)\.MB.
(x5, wj) = . (Xjr1)exp ; (xj — ojw;)do; il (Xj41)

k(Xj41
ks (Xj41) /
k ps(wilwit, X541) ! (X541, wjgr)dw;
k(X541) Ps(Xj11)) Jar (wjlwsr, X1 (X1, Wj1)dwja

+Ps(Xj11)

| Fn(X541)
+(1 — Ps(Xﬁl)),;(XHl)g — Py(xj11))

I(Xj41, Wit = wj)dwijta

(E.7)

Algorithmically, P; is interpreted as a test, since it can be expressed as P; =
fol H(Ps; — r)dr where H is the Heaviside function. Concretely, r is numerically
sampled, to determine the branch to follow (the scattering one if r < P or the
null-collision one otherwise). However, since this "Energy-Partitioning" branch
loops endlessly, we also need to recover the recursive integral formulation of
|Galtier et al., 2013] ("Russian Roulette" branch of Fig. E.1) by introducing comple-
mentary absorption/scattering/null-collision branching probabilities (respectively P,
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+oo R )‘j R
(%, w;) —/O k(% 1)exp <—/0 k(x5 — ajwj)daj) ),

- B(xj41
o) Payr) o)

kS(Xj—H)
/%(XjH)Ps(XjH))

kn(Xj+1>
ff(xj+1)(Pn(Xj+1))

/ ps(wjlwjr, Xj11) I (Xj41, wjg1)dwjsa
47

+Po(Xj11) (X541, wjt1 = wj)dwjta

(E.8)
where P,, P, and P, are now algorithmically interpreted as tests (as for P, in
Eq. E.7). The whole Monte-Carlo weight of a realization of this algorithm (still
without boundaries) is then given by

ks(x;) En(x;)
P*ﬁﬁm@a@f”4%@Mma—a@J]

e bin ()
+B(Xjpmes Wimas) || {’H (vm) o) Pxg) 7 (%””) () (1 — Ps(xj))}

j—1

w':j“"” lia(XDB X, Wi
-3 [k(xj) (x5)

m=0

m=0
(E.9)
where the subscript ji ma. is the index of the last collision of the "Energy-partitioning"
branch and jy,q, the index of the last absorption, which ends the algorithm. H(~;. )
equals 1 if the m*™ collision is a scattering event, 0 otherwise. In the same way,
H(Ynm) equals 1 if the m™ collision is a null-collision, 0 otherwise.
The estimation I of I(xq,wp)using N independent realizations is then :

B

and the corresponding standard deviation is then evaluated :

N

o= NL_ %Z [w?—ﬁ} (E.11)

=1

E.3.2 Extension to negative null-collision coefficients

Up to now, for didactic reasons, we described an algorithm only dealing with
positive values of the null-collision coefficient. However, it is possible to extend
its scope to negative ones through slight modifications. According to the proposal
made in [Galtier et al., 2013], negative null-collisions coefficients can be admitted
by introducing new arbitrary probabilities of absorption/scattering/null-collision
occurrences. Concretely, it results in modifying some steps of the preceding algorithm :



E.3. Algorithm 235

e In step B6 of Fig. E.1, we choose to define the new probability P, as P, =
ks(xj4+1)
F 052+ (55 72)

e Similarly, in step (6, the new probabilities are chosen as : P, =

ka(xj11) P ks (xj41)
= and P, =
ka(xj41)+ks(Xj41)+1kn (x541)]° s ka(xj41)+ks (Xj41)+kn (x541)] n
|kn(xj+1)|

Fa(Xj+1) ks (Xj41)+kn (X542) ]
e This leads to a modification of the §;;; expressions. They become ;11 =

& :(“ xﬁ)}) for the absorption branch (C7), &1 = & -1~ Tx x”l) for the scattering
Xj+1)a

one (C9) and &1 = ;- prin - x”;n for the null-collision branch (C11).

These new arbitrary probabilities allow to get rid of the constraint that the i
field is a strict upper bound of k. They lead strictly to the algorithm of Sec. E.3.1
when k& > k, + ks and to a legible extension when k < k, + k.

E.3.3 Spectral integration

Starting from the above described algorithm, spectral integration of the mono-
chromatic radiative budget can be simply performed by adding a procedure in which
frequency is sampled according to any probability density function p,(v) on the
considered spectral interval Z. This is justified by writing

ST',V(XO)
py(v)

which tells us that all what is required is sampling v according to p,, and dividing
by p,(v) the Monte Carlo weight of Eq. E.9. But practically, the procedure is
slightly more difficult because only very few attempts have been made to perform
Monte Carlo integrations starting from the high-resolution absorption line-spectra
of combustion gases over the whole infrared [Wang et Modest, 2007b, Fomin, 2006].
In most cases, "reference” Monte Carlo simulations are still performed using k-
distribution approaches, together with the correlated-k assumption (or the fictitious-
gas correlated-k assumption) for representation of spectral heterogeneities. This is
the approach that we retain here, which imposes that instead of sampling frequency;,
the algorithm starts by sampling a narrow-band index ¢ according to a narrow-band
probability set (Pj 1, Prs...P; y) where N is the number of narrow frequency-bands
Z;, of width Av;, required to cover the whole spectral range : Z = Z;UZ,...Zy. Then
a discrete-k index j is sampled according to a probability set (P 1, Px.i2..-Pk.im),
where M is the number of discrete-k values, within each narrow band, chosen
in accordance with a Gaussian-quadrature of weights (p1, ft2...pta7). The optico-
geometric algorithm of Sec. E.3.1 is unchanged, replacing only the local value of the
monochromatic absorption-coefficient k, by the local value of the j-th discrete-k, kq; ;,
within the ¢-th narrow-band, and using the local scattering properties corresponding
to the i-th narrow band®. This is the direct algorithmic translation of Eq. E.12 being

5,00) = [ S.otxa)dy = [ puiw)iv (E12)

3. Scattering properties are assumed independent of frequency within each band : this is part
of the narrow-band assumption, allowing the re-ordering of absorption-coefficients and the formal
definition of k-distributions in their original sense. Note that multiple-dimension re-ordering, such
as that of [André et Vaillon, 2012], could allow to relieve this constraint.
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approximated as :
N M
X0) ~ Y Y Su(i, )i Av; (E.13)
i=1 j=1

where S,.(7, j) is the monochromatic budget obtained by using the Planck function
value of the i-th band and the j-th value of the discrete absorption coefficients, i.e.
kq,i j. Introducing the two probability sets (P; 1, Pro...Pr v) and (Pk i1, Pk.i2... Pk i)

we get :
l ])Ny
Pr; Py Av, E.14
Z I Z KJ{PMPK@,] } ( )

This indicates that the Monte Carlo weight of Eq. E.9 must be replaced by the
same weight multiplied by p;Av; and divided by Pk ; ; Pr;.

The probability sets may be chosen arbitrarily : for instance identical probabilities
for (P11, Pro...Prn), i.e. Pr; =1/N, and Pg,;; = p;. But they can also be chosen
on the basis of analytic estimations of the radiative budget at the probe location.
The choice will only have consequences in terms of statistical uncertainties and
this question is only worth a detailed attention when it is observed that producing
accurate solutions requires unpractical computation times. In such cases, it may be
useful to consider the work reported in [Dauchet et al., 2013|, concerning the practice
of the zero-variance concept, their studied solar receiver being close to combustion
devices both as far as spectral integration and geometry-complexity requirements are
concerned. As far as we are concerned, in Sec. E.5, we will use a very simple model
assuming that S, (x¢) = 47k, B(x0), which corresponds to the optically thin limit
with OK surfaces. The only role of this model is to helps us choose the probability
sets as :

Avika,
Pri= % (E.15)
Zq:l Avgkaq
and k
Pris = “Jk—ﬂ‘ (E.16)

where k;z = ij\il ftikq ;i is the average value of the absorption coefficient within
the i-th narrowband. Modifying this choice would only impact the convergence rate
but not the final simulation result.

For a better representation of heterogeneities, it is often very efficient (at least for
most combustion applications) to treat separately the various absorbing molecular
species. Instead of using a single k-distribution for the mixture, as in the above pre-
sentation, a separate k-distribution is introduced for each gas and these distributions
are assumed independent [Taine et Soufiani, 1999]. Practically, this implies simply
that a Pg probability set is introduced for each gas and is used to sample an index j
independently for each gas. The absorption coefficient is then the sum of the k,; ;
of each gas, and the Monte Carlo weight is multiplied by the product of all Pk ;.
In the case of two gases, say H,O and C'O, as in Sec. E.5, this can be pictured by
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Eq. E.14 becoming

N M M . 'HQO .002
Si(x0)=> Pri » PO, Y PO Se(t, 5727, )77 pmopticon
r{&0) = I, K,i,jH20 K,i,jCO2 p ‘PHzO PCOZ i
i=1  jH0_q jCO2—1 Li% ki jH1207 K i, jCO2

(E.17)

E.4 Convergence levels and computation times

The algorithm presented in the previous section is now implemented for the
evaluation of monochromatic radiative budgets in the benchmark configuration
of |Galtier et al., 2013|. This implementation is validated against the results of
[Galtier et al., 2013] that were themselves validated against the results of a standard
Monte Carlo solver. Our new code is then used to analyze how the convergence levels
and the computation times depend on k and C.

F1GURE E.2 — Considered system : a cube of side 2L, whose center is the Cartesian coordinate
system origin (figure taken from [Galtier et al., 2013]).

In [Galtier et al., 2013|, the considered system is a cube, of side 2L, with 0K
diffuse-reflecting faces, of uniform emissivity e, that are perpendicular to the =,
y and z axis of a Cartesian coordinate system originating at the center of the
cube (see Fig. E.2). The enclosed medium is heterogeneous both in temperature

and optical properties. The k,, ks and B fields are k,(z,y, 2) = ko max (%) (1 —

V) ka(e9.2) = ke (57) (1= \/52°) and Blay. ) = B (527) (1 -

2 2 . . . . .
\/ %), figuring an axisymmetric flame along the x axis (maximum temperature

and maximum extinction along the axis, and a linear decay as function of the distance
to the axis, down to zero at the corners). The Henyey-Greenstein single-scattering

phase function is used with a uniform value of the asymmetry parameter g throughout
3

ka,maz +k‘s,maz

the field. k is uniform and the parametric study deals with p =

) ka,maxLa

ks mazL, g and €. Here, we reduce the parametric size by sticking to isotropic scattering
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(9 = 0) because, as indicated in |Galtier et al., 2013|, changing ¢ leads to different
radiative-source values but to identical conclusions as far as numerical features are
concerned. However, we add a new parameter : (, that is to say the extinction level
after which a Russian Roulette is used. Independently of the validation objective,
our algorithm will be systematically compared to that of [Galtier et al., 2013] in
order to highlight the effect of continuing the path-following process and adding
the contributions, by opposition with systematically using a Russian Roulette at
collisions and reflection events.

Tab. E.1 and Tab. E.2 display simulation results for z = [0, 0, 0] (the center of
the cube) and z = [—L,0,0] (the location of the maximum values of B, k, and
ks). The simulation results of [Galtier et al., 2013] are reported under the label
¢ = 1. Indeed, for ( = 1 our new algorithm recovers exactly the algorithm of
|Galtier et al., 2013]. The first observation that can be made on these tables is that,
considering the standard deviations, our simulation results are compatible with those
of [Galtier et al., 2013], which validates our algorithmic implementation. The last

Optical thickness ‘ (=01 ‘ (=1 ‘

kamazl  ksmaal m PRy Orel t 203 m F e Orel t hiy
0.1 0.1 -0.483586 0.000044 9.072¢-05  2.31  0.00019 | -0.483668 0.000086 1.771e-04  2.40  0.00075 0.253
0.1 1 -0.481950 0.000024 4.965e-05  7.77  0.00019 | -0.482038 0.000090 1.857e-04  7.74  0.00267 0.072
0.1 3 -0.477917 0.000023 4.788e-05 23.72  0.00054 | -0.477733 0.000099 2.082e-04 22,94  0.00995 0.055
0.1 10 -0.463036 0.000035 7.583e-05 122.94 0.00707 | -0.463086 0.000126 2.729¢e-04  116.60 0.08685 0.081
1 . -0.366263 0.000142 3.884e-04  3.38  0.00510 | -0.366303 0.000209 5.696e-04  2.85  0.00924 0.552
1 1 -0.356208 0.000123 3.447e-04  10.10  0.01200 | -0.356422 0.000213 5.978e-04  7.07  0.02525 0.475
1 3 -0.335460 0.000117 3.497e-04  27.58 0.03373 | -0.335805 0.000220 6.550e-04 18.62  0.07988 0.422
1 -0.277008 0.000127 4.588e-04 127.77 0.26892 | -0.276743 0.000228 8.238e-04 73.24  0.49708 0.541
3 0.1 -0.219155 0.000153 7.000e-04  5.51  0.02701 -0.219186 0.000221 1.007e-03  3.39  0.03438 0.785
3 1 -0.209308 0.000144 6.866e-04  12.76  0.06017 | -0.209426 0.000218 1.040e-03  6.16  0.06663 0.903
3 3 -0.190219 0.000132 6.965e-04  29.96 0.14535 | -0.190411 0.000210 1.105e-03  12.84 0.15674 0.927
3 10 -0.143645 0.000112 7.806e-04 105.20 0.64103 | -0.143690 0.000183 1.275e-03  39.69  0.64528 0.993
10 0.1 -0.071424 0.000081 1.130e-03  8.66  0.11055 | -0.071358 0.000119 1.664e-03  3.37  0.09331 1.185
10 1 -0.068768 0.000077 1.116e-03  13.11  0.16317 | -0.068664 0.000115 1.670e-03  4.46  0.12454 1.310
10 3 -0.063507 0.000070 1.099e-03  22.45 0.27110 | -0.063321 0.000106 1.682e-03  6.88  0.19467 1.393
10 10 -0.050786 0.000054 1.061e-03  52.92  0.59544 | -0.050710 0.000085 1.676e-03  15.53  0.43595 1.366

TABLE E.1 — Estimation, absolute and relative standard deviations, computation time (s) for 105
independent realizations and computation time (s) for a 1% statistical uncertainty as a function of
of ¢, kg mazL and ks ;maz L. The last column compares the ( = 0.1 and ¢ = 1 computation time to
get a 1% standard deviation. This computation was done with an "Intel i5 - 2.4GHz" CPU without
any parallelization, for p = 1, e = 1 and xo = [0, 0,0]. The computation times for a 1% standard

).

column in each table displays the ratio of the time required to reach a one percent
relative accuracy with our algorithm to the time required to reach a one percent
relative accuracy with the algorithm of |Galtier et al., 2013|. A first conclusion is
that our algorithm is faster for small values of the absorption optical-thickness and
is slower otherwise. However, when we are slower it is only of a factor 3 and for very
thick media. Considering that the occurrence of small absorption optical-thicknesses
is quite common in combustion applications, the new algorithm can be retained
systematically for validation purposes. For other simulation objectives where the
computation times are of primary importance, for instance when Monte Carlo solvers
are coupled to fluid-mechanics and chemistry, it may be useful to switch from one
algorithm to the other, by simply changing ( in the code, as function of an a priory
evaluation of the optical-thickness. Simulations performed with reflective surfaces
confirm this first practical conclusion, only with a higher sensitivity to the value
of ¢. In the above tables we used either ( = 1 or ¢ = 0.1, but changing ¢ to 1072

Trel
0.01

deviation are obtained by multiplying t by (
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Optical thickness ‘ ¢=0.1 ‘ ¢=1 ‘ ratio

Komarl Ksmarl | G Goift,  iraGolfh, O ¢ W | TG e O ! he | 4R
01 01 | -0.977195  0.000081 8.310c05 224 000016 | -0.977282  0.000127  1.303c:04 221 0.00038 | 0.413
0.1 1 20.976700  0.000041  4.212¢:05 6.19 0.00011 | -0.976632  0.000130  1.328¢-04 6.04 0.00107 |  0.103
0.1 3 0.975783  0.000035  3.586e-05 1517 0.00020 | -0.976059  0.000132  1.35le-04 14.52 0.00265 | 0.074
0.1 10 20.974777  0.000042  4.354c-05 46.19 0.00088 | -0.974918  0.000137  1.404e-04 43.02 0.00849 |  0.103
I 01 | -0.821998 0000285  3.466e-04 331 000398 | -0.821389  0.000325  3.948¢-04 224 0.00350 | 1.138
1 1 20.821967  0.000237  2.879¢-04 8.34 0.00692 | -0.821963  0.000326  3.970c-04 4.88 0.00771 | 0.897
1 3 0.823956  0.000215  2.606e-04 17.71 0.01202 | -0.823910  0.000329  3.993e-04 1052 0.01678 | 0.717
1 10 0.839442  0.000220  2.620-04 46.75 0.03208 | -0.839106  0.000328  3.903c-04 25.32 0.03859 | 0.831
3 01 | -0.657423 0000388  5.896e-04 423 001471 | -0.657905  0.000408  6.196e-04 2.15 0.00826 | 1.782
3 1 20.664806  0.000365  5.497c-04 9.43 0.02851 | -0.664684  0.000410  6.167c-04 3.57 0.01357 | 2.101
3 3 20.679347  0.000345  5.082¢-04 16.61 0.04289 | -0.679790  0.000412  6.062e-04 6.48 0.02382 | 1.801
3 10 20723130 0.000327  4.524e-04 3446 0.07053 | -0.723957  0.000410  5.668¢-04 13.95 0.04482 | 1.574
10 01 | -0544147 0000450 845204 372 002060 | -0543517 0000462 5.018e04 101 001384 | 1922
10 1 20.551601  0.000452  8.189¢-04 7.88 0.05288 | -0.551251  0.000463  8.405¢-04 242 0.01711 | 3.089
10 3 20.568200  0.000438  7.706e-04 10.89 0.06467 | -0.567614  0.000465  8.193e-04 3.45 0.02317 | 2.791
10 10 20.611147  0.000411  6.723¢-04 19.32 0.08731 | -0.609870  0.000465  7.632-04 6.50 0.03787 |  2.305

TABLE E.2 — Estimation, absolute and relative standard deviations, computation time (s) for 105
independent realizations and computation time (s) for a 1% statistical uncertainty as a function of
of ¢, kg mazL and ks ez L. The last column compares the ¢ = 0.1 and ¢ = 1 computation time to
get a 1% standard deviation. This computation was done with an "Intel i5 - 2.4GHz" CPU without
any parallelization, for p =1, e = 1 and x¢ = [—L,0,0]. The computation times for a 1% standard

deviation are obtained by multiplying t by (gfoei )2.

or even 107° changes very little the computation times. This can be expected, as
encountering the black surfaces always reduces the path-extinction to zero and the
extinction criterion is reached whatever the value of (. Fig. E.3 and Fig. E.4 display
such (-dependencies for perfectly reflective (¢ = 0) and perfectly absorptive surfaces
(e = 1) respectively, indicating that a knowledgeable choice is ( = 0.1 (as we used in
the tables).
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FIGURE E.3 — Time to reach a 1% standard deviation as a function of ¢, k4 mazL, ks mazl at
xo = [—L,0,0], for ¢ = 0 and k = kg maz + ks, maz-

Finally, we have already mentioned that the algorithm deals theoretically with
unexpected occurrences of k, < 0 at some locations. However this is at the price of
correcting the Monte Carlo weight in a way that increases the variance, increasing
therefore the required number of realizations to reach a given accuracy. This is
explored in Fig. E.5 and Fig. E.6 that display the number of realizations required
to reach a one percent relative accuracy, as function of p, that is to say as function
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FIGURE E.4 — Time to reach a 1% standard deviation as a function of ¢, k4 mazL, ks mazl at
xo = [—L,0,0], for ¢ =1 and k = kg maz + ks, maz-

of the amount of negative null-collisions. Simulation results are given for ( = 1 and
¢ = 0.1 in order to evaluate whether the new algorithm encounters more or less
convergence difficulties when k is locally lower than the total extinction coefficient.
We concentrate on the location xg = [—L,0,0] as it was identified as the most

100 T i
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FIGURE E.5 — Time to reach a 1% standard deviation as a function of p, kg mazL, ks mazl at
xo = [—L,0,0] fore =1 and ¢ = 1.

pathological condition : the starting point of all rays is right inside the region where
k < k (the negative null-collision region). Obviously the main trends of our algorithm
are identical to those of |Galtier et al., 2013| only observing that

e we encounter more convergence difficulties when the negative null-collision
region is optically thin in absorption and optically thick in scattering

e when the medium is optically thin both in absorption and scattering, increasing
the number of null-collisions decreases the 1%-accuracy computation-time,
because the repeated computations of the absorption contributions lead to a
quasi-deterministic integration along the path, which reduces significantly the
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100

o

FIGURE E.6 — Time to reach a 1% standard deviation as a function of p, kg maz L, Ksmazl at
xo = [—L,0,0] for e =1 and ¢ = 0.1.

variance (more than it increases the computation-time), just as expected in
standard energy partitioning approaches.

E.5 Production of reference solutions for PRISSM A
validation

The objective of the Monte Carlo algorithm proposed in Sec. E.3 is essentially
to produce reference solutions against which faster radiative transfer solvers can
be validated. We here take the example of validating the PRISSMA solver that is
implemented for representation of infrared radiative sources in AVBP (a parallel CFD
code for reactive unsteady flow simulations on hybrid grids?). We retain a configu-
ration that was studied by Knikker et al. [Knikker et al., 2000, Knikker et al., 2002,
Nottin et al., 2000]. The dimensions of the chamber are the following (see Fig. E.7 for
axis conventions) : 50mm along the Y-axis, 80mm along the Z-axis and 300mm along
the X-axis. A triangular flame hook is located on lateral sides, at a height of 25mm.

ceramic bricks
—  \ >

N
inlet propane/air \ \
. R\s@ |
i — |
\| | /

flame holder: y

z quartz windowsV
laser sheet
X

F1GURE E.7 — Representation of the dihedral combustion chamber.

A air/propane mixture is injected from the left-hand side, and a V-shaped flame

4. http ://www.cerfacs.fr/4-26334-The- AVBP-code.php
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develops in the rectangular tube along the X-axis. Wall temperature is fixed to 300K
everywhere, except for outlet walls that have been set at 1900K, the temperature
of exhaust gases. As far as radiative properties are concerned, all boundaries are
modeled as grey interfaces. The ceramic wall emissivity is set at £=0.91. That of
quartz windows is € = 0.87. The flame holder emissivity is é=0.40, corresponding to
a stainless steel lightly oxidized at 1000 K. The inlet, the outlet and the atmosphere
are assumed to behave as black surfaces.

AVBP was run using a time averaged LES [Poitou, 2009, Poitou et al., 2011], lea~
ding to the fields of temperature and species concentrations displayed in Fig. E.8. The

Temperature XCO2
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FIGURE E.8 — Visualization of the temperature field (K), COs concentration field (molar fraction),
H50O concentration field (molar fraction) and CO concentration field (molar fraction) within the
dihedral combustion chamber.

radiative transfer solver embedded in AVBP, and therefore involved in the production
of these fields, is PRISSMA [Poitou et al., 2012]. It has been specifically designed for
combustion applications. Based on a Discrete Ordinate Method [Joseph et al., 2005],
it is designed to reach a satisfactory compromise between accuracy and computational
costs. The radiative budget is determined in the whole volume using a specific grid,
coarser than the LES one. The associated strategy for the coupling with AVBP
is detailed in [Poitou et al., 2012|. The angular quadrature chosen here is an S4.
The full spectrum model (FSK) is used for spectral integration using 15 quadrature
points [Poitou et al., 2011].

In order to meet the requirements of AVBP in terms of computation requirements,
the spatial and angular discretizations as well as the FSK spectral integration
procedure were tuned at the extreme limits of their validity ranges, and it is therefore
required that PRISSMA is validated against a reference radiative transfer solver each
time a new combustion configuration is considered. This task is here achieved using
the Monte Carlo algorithm of Sec. E.3, implemented within the EDStaR development
environment, using the Mcm3D library [De La Torre et al., 2014, Starwest, 2014a).
This implementation deals with three-dimension geometries using advanced computer-
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graphics tools. The input fields are the output of AVBP. Unlike in the benchmark
simulations of Sec. E.4 where the input fields were analytic, the input fields are now
provided using the LES grid of AVBP (4.74 million tetrahedrons) together with
an interpolation procedure provided by the combustion specialists to reflect the
spatial integration schemes involved in the fluid mechanics and chemistry solvers.
As radiative transfer specialists, we therefore make no choice : we strictly accept
what would be, ideally, the input fields that PRISSMA should reflect, in its coupling
with AVBP, if no computation constraint was taken into account. Ideally, along the
same line, our Monte Carlo simulations should use the best gaseous line-absorption
properties available, i.e. the detailed line profiles provided by spectroscopic databases
such as HITEMP |[Rothman et al., 2010| and CDSD |Tashkun et Perevalov, 2011].
However, at the present stage, only few attempts were reported in which such
line-by-line Monte Carlo strategies were tested and none of them are compatible
with our requirements in terms of three-dimension geometry and heterogeneity. As
described in Sec. E.3.3, our “reference” simulation makes therefore only use of a narrow
band k-distribution strategy. The corresponding spectral data were produced using
the SNB-ck approach of [Soufiani et Taine, 1997, Liu et al., 2000, Liu et al., 2001,
Joseph et al., 2009], separating COy and H,0 thanks a decorrelation assumption
described at the end of Sec. E.3.3. 367 spectral narrowbands are used, each of
width Av=25 cm™?, and the discrete-k sets are constructed in accordance with a
Gauss-Legendre quadrature of order 7.

Altogether, in the validation exercise reported here, the objective was to validate
PRISSMA in which

e spatial integration relies on an adapted grid, coarser than the LES grid of
AVBP, at the limits of the validity of spatial integration criteria (which will
lead to unsmooth simulation results),

e angular discretization is reduced to a S4 quadrature,

e spectral integration is performed using only 15 FSK-quadrature points,
and we validate it against a Monte Carlo solver that

e uses the LES input fields,

e makes no approximation as far as angular integration is concerned,

e and uses a narrow-band discretization together with a k-distribution model for
spectral integration.

The main advantage of null-collisions was that the Monte Carlo solver could be
designed completely independently of the LES grid structure. It can therefore be
immediately used for validation of other configurations in which AVBP is run with
another spatial-discretization strategy, or for validation of radiative solvers embedded
in other combustion solvers (Fig. E.9).

Typical results of this validation exercise are illustrated in Fig. E.10, where
radiative budgets (W/m?) are presented along the X-axis (y=0, z=0, x € [0;0.3] m)
and along the Y-axis (x=0.08, y € [-0.025;0.025 m), z=0). They reflect what would
globally be interpreted as a good agreement in the combustion simulation context.
PRISSMA and Mcm3D do not differ by more than a few percent in the regions
where radiative source terms are high. In the flame edges that are cold regions where
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FIGURE E.9 — Visualization of the radiative budget (W/m?) within the dihedral combustion
chamber.

1800

1600 &
1400
1200
1000

800

Sr (kw/m®)

600

400

200

MCM3D, X-axis
PRISSMA, X-axis -------

MCM3D, Y-axis ---------
PRISSMA, Y-axis

-200 .
0 0.2 0.4 0.6 0.8 1

fraction of x / y

FIGURE E.10 — Radiative budget (kW/m?) along the X-axis (at position y=0, z=0) and along the
Y-axis of the combustion chamber (at position x=0.08m, z=0).
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the radiative source term is small, the results show significant discrepancies. In such
zones the radiative species are more absorbing than emitting, and the accuracy of
the solution is probably more sensitive to the DOM angular discretization. But such
discrepancies have been shown to have little influence on the overall combustion
simulation. In any case, provided that we assume that our narrow band model is
sufficiently accurate, the Monte Carlo solution can be interpreted as the exact solution
(within the statistical error bars) of the radiative transfer equation for the input fields
that combustion specialists define as the complete continuous fields corresponding to
the AVBP output. The question of interpreting the discrepancies between PRISSMA
and Mcm3D is therefore only a question of validating or invalidating the compromises
made in the DOM simulation to meet AVBP’s requirements in terms of computation
times. Combustion specialists are then in the position of refining the PRISSMA grid,
increasing the angular quadrature order, increasing the FSK quadrature order, as
function of the assumed sensitivity of their fluid mechanics/chemistry results to the
radiative-transfer source-field.

Coming back to the validation tool itself, and thinking of the benchmark simula-
tion results of Sec. E.4, it is worth mentioning here that the computation time is
highly dependent on the numerical optimization of the localization/interpolation
procedure. All the null-collision algorithm needs, in order to deal with AVBP fields, is
a function that takes the three geometrical coordinates as input and provides the local
values of temperature, pressure and concentrations. This procedure needs to detect
the tetrahedron to which the location belongs, and then apply an interpolation pro-
cedure compatible with AVBP’s numerical assumptions (here a standard barycentric
3D interpolation [Pharr et Humphreys, 2010]). All CFD simulation environments
provide such functions, at least for post-treatment purposes. But the corresponding
numerics can be extremely slow because post-treatments are not looped into iterative
algorithms. In our Monte Carlo algorithm, we need to call this function at each
collision event. Therefore the computation times are very sensitive to the numerics
of the localization and interpolation procedure. Then the question becomes the
following : as the Monte Carlo code is only used for validation purposes, one may use
post-treatment tools without much concern (relying on parallelization to speed-up
the Monte Carlo simulation), but if validation exercises are to be launched in a quite
systematic manner, then localization /interpolation becomes an issue. Typically, in
the above example, when using a localization/interpolation function extracted from
post-treatment tools, the computation times needed to reach a 1% uncertainty were
as high as four hours on a single processor, whereas the same simulation (using the
same interpolation function) was reduced to 40 seconds using standard acceleration-
grids [Pharr et Humphreys, 2010, Fujimoto et al., 1986] to speed up the localization
among the 4.74 millions tetrahedrons. In summary, dealing with three-dimension
geometry and spectral integration rises the computation times from several seconds,
as in Sec. E.4, to several tens of seconds, but without caring about the quality of the
localization /interpolation procedure, a jump is made up to several hours.

Note finally that CFD simulation environments may provide optimized localiza-
tion/interpolation tools if they address the question of the flow transporting solid or
liquid particles, because for different reasons they have the same need to establish
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the correspondence between the location of a particle and the characteristics of the
flow it encounters.

E.6 Conclusion

Validating the radiative transfer solvers embedded in combustion simulation
codes is an important issue. These solvers need to be very fast, which leads the
developers to play, as finely as possible, with the limits of validity of the retained
numerical techniques. This is particularly true as far as absorption line-spectra
representation and phase-space discretization are concerned. It is therefore essential
that the corresponding numerical parameters be adjusted to each new combustion
configuration, or at least that their effect be controlled each time a new configuration
is addressed. From this point of view, the fact that Monte Carlo solvers deal now
easily with complex geometries is a key element. We essentially benefit of the advances
of the computer graphics community : path-tracking algorithms are now sufficiently
efficient and easy-to-handle to meet our needs. Starting from the geometric CAD
file of a new combustion chamber and sampling optical paths in the corresponding
complex geometry is now ready-for-use. For Monte Carlo codes to be implemented
that could easily deal with all the diversity of combustion codes and the diversity of
combustion configurations, the missing point is therefore only the representation of
the temperature, pressure and concentration fields. In each new context, these fields
are provided under different mathematical forms, with different formats, and it is
nearly required to design a new Monte Carlo code for each new combustion-code
validation exercise.

The algorithm presented in the present article was meant as a contribution to such
today’s researches. The initial idea was to explore a technical solution used in neutron
and electron-transport physics to deal with heterogeneous fields : the introduction of
null-collisions, that change nothing to the transport of particles, but that can be tuned
so that the total extinction coefficient becomes homogeneous (or easy to handle).
This idea was addressed theoretically in [Galtier et al., 2013] and we here explored
its practical meaning in the combustion-simulation context. We reach the conclusion
that null-collision Monte Carlo algorithms are well suited. Combustion specialists
wishing to validate their radiative solver have nothing more to provide than a function
interpolating their grid point simulation results to give the temperature, pressure
and concentrations at any given location. This commonly implies a localization
procedure (typically to determine what tetrahedron the considered location belongs
to) and an interpolation procedure in accordance with the spatial schemes used in
their fluid mechanics and chemistry codes. This last point is essential in order to
make sure that the continuous input fields provided to the Monte Carlo solver are
correct representations of the numerical assumptions made within the combustion
code. Usually, such localization and interpolation routines are available, at least for
the post-treatment of combustion simulation results. They can however be extremely
slow, which can be a source of difficulty if the number of required validation exercises
is high. We saw, in the last section, that the Monte Carlo computation times can rise
from less than a minute to a few hours when switching to a very slow localization
procedure, but these computation times were given without the use of any parallel
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hardware. Few hours may then sound very much acceptable for only a validation
exercise. Otherwise, as we illustrated it, some additional efforts can be made to build
a better optimized localization procedure, considering that it is meant to be used for
each of the very numerous collision locations sampled in the Monte Carlo algorithm.
This simply implies using acceleration grids but will only be required if validation
exercises are frequently repeated.

By comparison with [Galtier et al., 2013|, we upgraded the algorithm in order
to follow the path continuously and only exit after absorption when an extinc-
tion criterion is reached. This upgrade, that involves a quite limited number of
algorithmic changes, is particularly meaningful in the combustion context because
combustion chambers are commonly optically quite thin at most frequencies, and
path-continuation reduces significantly the required computation times, for a given
accuracy, in the optically thin limit. In thicker conditions, our new proposition may
be worse than the initial one, but then the computation-time increase is only limited.
So, when we are faster, the gain can be very significant, and when we are slower,
the loss is limited. We therefore conclude that our new algorithm is worth being
preferred systematically to that of |Galtier et al., 2013], except in contexts where
the computational constraints are high and justify that ( is adapted to the values of
both the scattering and absorption optical thicknesses.

Finally, as in |Galtier et al., 2013], the algorithm is designed to allow the oc-
currence of negative null-collisions. Of course this is at the price of an increased
variance. But pathological behaviors are only encountered when the region of negative
null-collisions is optically thick with a high single scattering albedo. Again, optically
thick scattering is quite rare among combustion configurations and the k field can
therefore be chosen without caring too much about the risk that, because of the
non-linear dependence of absorption coefficients with temperature, k is not a rigorous
upper bound to k at all locations.
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Approche statistique du rayonnement dans les milieux gazeux
hétérogénes : de I’échantillonnage des transitions moléculaires au
calcul de grandeurs radiatives

Résumé : L'étude du transfert radiatif dans les gaz (atmospheéres planétaires, chambres
de combustion, etc.) se heurte & deux principales difficultés : les hétérogénéités et la
dépendance spectrale des propriétés radiatives du milieu d’intérét. Les travaux présentés
dans ce manuscrit proposent, au travers d’une approche statistique du rayonnement, une
solution a ces deux limites qui ne nécessite aucune approximation de modéle physique
ou numérique. Cette approche conduira au développement d’algorithmes de Monte-Carlo
considérés a 'heure actuelle comme méthodes de référence dans la communauté du transfert
radiatif. La difficulté liée aux hétérogénéités du milieu participant sera traitée par une
technique empruntée & d’autres disciplines de la physique du transport : les algorithmes a
collisions nulles. Leur application au rayonnement consiste a ajouter arbitrairement aux
événements d’absorption et de diffusion, un troisiéme type de collision n’ayant aucun effet
sur le transport de photons : les collisions nulles. Ainsi, le coefficient d’extinction résultant
de ces trois types de collision pourra étre assumé comme homogéne. Ensuite, il sera montré
comment cette méme technique léve un second verrou permettant de repenser de fagon
statistique 1'idée de coefficient d’absorption. Cela ouvrira la voie & des algorithmes de
Monte-Carlo qui estiment directement une observable radiative & partir de paramétres de
transitions répertoriés dans des bases de données spectroscopiques sans avoir & précalculer
rigoureusement le coefficient d’absorption.

Mots-clés : Transfert radiatif, Gaz, Méthode de Monte-Carlo, Hétérogénéité, Collision
nulle, Raie d’absorption, Approche statistique, Transition moléculaire.

A statistical approach of radiative transfer in heterogeneous and gaseous
media: from molecular transitions sampling to the computation of
radiative observables

Abstract: Two major challenges are encountered when studying radiative transfer in
gases (e.g. combustion chambers or planetary atmospheres): heterogeneity and spectral
dependence of radiative properties. The work introduced in this manuscript, addresses this
problem through a statistical approach of radiation that requires no model or numerical
approximation. This approach leads to the development of Monte-Carlo methods, currently
considered as reference solutions in the community of radiative transfer. The difficulty
related to heterogeneity is handled by a technique borrowed from other fields of transport
physics: null-collision algorithms. Their application to radiation consists in adding to the
events of absorption and scattering a third arbitrary type of collision that has no effect
on the photon transport. Thus, the extinction coefficient resulting from these three types
of collisions can be assumed to be homogeneous. Then, it is shown how this very same
technique opens the door to rethinking statistically the concept of absorption coefficient.
This leads to Monte-Carlo algorithms that directly estimate radiative observables from
transition parameters indexed in molecular spectroscopic databases, without the need of
rigorously precomputing absorption coefficients.

Keywords: Radiative transfer, Gas, Monte-Carlo method, Heterogeneity, Null-collision,
Absorption line, Statistical approach, Molecular transition.
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