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Résumé / Abstract

Approche statistique du rayonnement dans les milieux gazeux hétéro-
gènes : de l’échantillonnage des transitions moléculaires au calcul de gran-
deurs radiatives

Résumé : L’étude du transfert radiatif dans les gaz (atmosphères planétaires,
chambres de combustion, etc.) se heurte à deux principales difficultés : les hétéro-
généités et la dépendance spectrale des propriétés radiatives du milieu d’intérêt.
Les travaux présentés dans ce manuscrit proposent, au travers d’une approche
statistique du rayonnement, une solution à ces deux limites qui ne nécessite aucune
approximation de modèle physique ou numérique. Cette approche conduira au
développement d’algorithmes de Monte-Carlo considérés à l’heure actuelle comme
méthodes de référence dans la communauté du transfert radiatif. La difficulté liée
aux hétérogénéités du milieu participant sera traitée par une technique empruntée à
d’autres disciplines de la physique du transport : les algorithmes à collisions nulles.
Leur application au rayonnement consiste à ajouter arbitrairement aux événements
d’absorption et de diffusion, un troisième type de collision n’ayant aucun effet sur le
transport de photons : les collisions nulles. Ainsi, le coefficient d’extinction résultant
de ces trois types de collision pourra être assumé comme homogène. Ensuite, il
sera montré comment cette même technique lève un second verrou permettant
de repenser de façon statistique l’idée de coefficient d’absorption. Cela ouvrira la
voie à des algorithmes de Monte-Carlo qui estiment directement une observable
radiative à partir de paramètres de transitions répertoriés dans des bases de données
spectroscopiques sans avoir à précalculer rigoureusement le coefficient d’absorption.

Mots-clés : Transfert radiatif, Gaz, Méthode de Monte-Carlo, Hétérogénéité,
Collision nulle, Raie d’absorption, Approche statistique, Transition moléculaire.
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A statistical approach of radiative transfer in heterogeneous and gaseous
media: from molecular transitions sampling to the computation of radia-
tive observables

Abstract: Two major challenges are encountered when studying radiative trans-
fer in gases (e.g. combustion chambers or planetary atmospheres): heterogeneity and
spectral dependence of radiative properties. The work introduced in this manuscript,
addresses this problem through a statistical approach of radiation that requires
no model or numerical approximation. This approach leads to the development of
Monte-Carlo methods, currently considered as reference solutions in the community
of radiative transfer. The difficulty related to heterogeneity is handled by a technique
borrowed from other fields of transport physics: null-collision algorithms. Their
application to radiation consists in adding to the events of absorption and scattering
a third arbitrary type of collision that has no effect on the photon transport. Thus,
the extinction coefficient resulting from these three types of collisions can be assumed
to be homogeneous. Then, it is shown how this very same technique opens the
door to rethinking statistically the concept of absorption coefficient. This leads to
Monte-Carlo algorithms that directly estimate radiative observables from transition
parameters indexed in molecular spectroscopic databases, without the need of
rigorously precomputing absorption coefficients.

Keywords: Radiative transfer, Gas, Monte-Carlo method, Heterogeneity, Null-
collision, Absorption line, Statistical approach, Molecular transition.
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2 Chapitre 1. Introduction

1.1 Étude du transfert radiatif dans les milieux ga-
zeux

La découverte en 1802 par W.H. Wollaston [Wollaston, 1802] de bandes sombres
dans le spectre solaire - caractéristiques de l’absorption d’une partie du rayon-
nement provenant du soleil par l’atmosphère terrestre - marque certainement
les prémisses de l’étude du transfert radiatif dans les milieux gazeux. L’étude,
l’analyse et la modélisation des interactions entre rayonnement et gaz vont alors
connaître, essentiellement à partir de la seconde moitié du XIXème siècle, d’im-
portants développements théoriques, expérimentaux et méthodologiques dans des
champs applicatifs variés [Hulst, 1980, Siegel et al., 2011]. Historiquement, c’est
l’étude de l’atmosphère terrestre qui motive les premiers travaux sur ce sujet
[Fraunhofer, 1817, Langley, 1883, Arrhenius, 1896, Rayleigh, 1920]. Avec l’appari-
tion de nouvelles méthodes et de technologies de calcul, l’étude du rayonnement
dans l’atmosphère terrestre prendra une nouvelle dimension avec le développement
de la climatologie, de la météorologie moderne ou encore de la paléoclimatologie
[Kondratyev, 1969, Goody et al., 1989]. C’est essentiellement au sein de la com-
munauté astrophysique que la théorie se développe ensuite, durant la première
moitié du XXème siècle, avec l’étude de la propagation du rayonnement dans les
atmosphères planétaires, dans les étoiles et dans les nuages de gaz interstellaires
[Chandrasekhar, 1960, Chandrasekhar, 1963]. Par la suite, grâce à l’étude de fours
verriers [Gardon, 1958, Robert, 1958], la prise en compte du rayonnement thermique
prendra son essor dans un grand nombre d’applications industrielles où de fortes tem-
pératures sont rencontrées : fours, moteurs à combustion, chambres de combustion,
turboréacteurs, propulsion d’engins spatiaux, centrales solaires thermodynamiques,
etc. [Viskanta et Mengüç, 1987, Siegel et al., 2011, Modest, 2013].

Malgré les importantes avancées réalisées depuis la fin du XIXème siècle et le
développement récent de puissantes technologies de calcul, l’étude du rayonnement
dans les milieux gazeux demeure encore aujourd’hui complexe à prendre en compte.
Les besoins ayant évolué dans chaque domaine d’application, les spécialistes sont à la
recherche de solutions toujours plus précises et de méthodes de calcul toujours plus
efficientes. Parmi les problématiques et enjeux actuels pour lesquels une modélisation
rigoureuse du transfert radiatif est essentielle, nous pouvons citer :
• la simulation climatique et l’élaboration de scénarios. Le contexte ac-

tuel de réchauffement global pousse les climatologues à proposer des modèles
et des scénarios climatiques pour tenter de quantifier les effets de l’activité
humaine sur le climat. Tous les échanges d’énergie entre le système Terre/at-
mosphère et le reste de l’univers s’effectuant sous forme de rayonnement, il est
crucial de modéliser avec précision ces interactions. Toutefois, les simulations
complexes du climat (basées sur des modèles de circulation générale), couplant
dynamique des fluides et transferts thermiques, sont souvent très coûteuses.
Aussi, un compromis entre précision et temps de calcul est en permanence
recherché dans ce champ applicatif.
• les prévisions météorologiques. Les besoins croissants en termes de pré-
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visions météorologiques orientent la communauté spécialisée à produire des
modèles de plus en plus finement résolus (tant spatialement que temporelle-
ment), mais également de plus en plus fiables à long terme. Il est alors nécessaire
de recourir à des modèles de plus en plus détaillés et des méthodes de calcul
de plus en plus précises, tout en respectant les contraintes de temps de calcul
qu’imposent en particulier les prévisions à court terme.
• l’analyse des atmosphères extraterrestres. Le rayonnement des gaz étant

fortement dépendant de leurs propriétés radiatives, les astrophysiciens cherchent,
à partir d’observations spectrales, à identifier les propriétés (champs de tempé-
rature, de pression) et les compositions moléculaires des atmosphères stellaires
ou exoplanétaires. Mais ces calculs, basés en partie sur des approches inverses,
requièrent d’être capable d’estimer avec précision les observables radiatives d’in-
térêt. Ces axes de recherche sont de plus en plus motivés par des problématiques
d’exobiologie ou d’habitabilité exoplanètaire.
• la simulation du vieillissement de composants exposés à de hautes
températures. Dans des contextes industriels, en particulier chez les moto-
ristes, il est nécessaire de pouvoir garantir la durée de vie des composants
soumis à de hautes températures et à d’importantes contraintes thermoméca-
niques. Pour ce faire, de longues périodes d’essais expérimentaux (pouvant durer
plusieurs années) sont généralement réalisées avant la mise en production d’un
nouvel élément. Ces industriels sont ainsi très demandeurs d’outils permettant
de simuler avec précision la thermique des parois (et en particulier le transfert
radiatif) afin d’écourter, en toute confiance, ces coûteuses phases de tests.
• la simulation des phénomènes de combustion. La conjoncture environ-

nementale actuelle encourage également les industriels à produire des systèmes
de plus en plus économes énergétiquement et de plus en plus propres en termes
de rejets. Lors de la conception de chambres de combustion, la prédiction
des concentrations de substances dangereuses ou polluantes (NOx, suies, CO,
etc.) fortement dépendantes de la température et l’efficacité de la combustion
représentent deux enjeux importants. Les simulations numériques couplant
cinétique chimique, dynamique des fluides et transferts thermiques demandent
également, dans ces situations, d’être particulièrement précises.

1.2 Hétérogénéité et dépendance spectrale : les prin-
cipales difficultés

Dans leur ouvrage [Siegel et al., 2011], considéré à l’heure actuelle comme texte
de référence en transfert radiatif, les auteurs introduisent l’étude du rayonnement en
milieu participant par :

"Two major difficulties make the study of radiation transfer in absorbing,
emitting and scattering media quite challenging. The first difficulty is the
spatial variation in radiative properties throughout the medium [...]. A
second difficulty is that spectral effects are often much more pronounced
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in gases [...] than for solid surfaces, and a detailed spectrally dependent
analysis may be required."

Si la dépendance spatiale et spectrale des propriétés radiatives du milieu pose un
problème majeur, quel que soit l’objet d’étude, c’est que pour décrire localement une
observable radiative intégrée spectralement (ex : luminance ou bilan radiatif), il est
nécessaire de connaître, pour tout point du milieu et pour toute longueur d’onde, ces
propriétés radiatives. Or ces dernières, en particulier le coefficient d’absorption, sont
à la fois très dépendantes de la pression, de la température et des concentrations des
espèces moléculaires présentes, mais aussi, et de façon encore plus prononcée, de la
longueur d’onde d’intérêt. Les milieux considérés (flammes, gaz chauds, atmosphères,
etc.) étant de façon générale fortement hétérogènes et les coefficients d’absorption
étant extrêmement variables d’une longueur d’onde à l’autre, il devient vite délicat
de réaliser une description rigoureuse de la grandeur radiative observée.

Face à cette importante complexité, les spécialistes du transfert radiatif déve-
loppent depuis plusieurs décennies des méthodes et modèles approchés, de plus en
plus précis et efficients. Ces derniers ont souvent pour vocation d’être implémentés
et couplés avec d’autres phénomènes (mécanique des fluides, cinétique chimique,
thermique, etc.) dans divers codes de calcul. Ces méthodes et modèles simplifiés sont
usuellement validés par des solutions dites de référence, généralement trop coûteuses
en termes de temps de calcul pour être compétitives en situation opérationnelle.
Les modèles sur lesquels s’appuient ces solutions de référence sont généralement
basés sur des descriptions quasi-déterministes (ex : approche raie-par-raie pour
l’intégration spectrale, ou calcul d’épaisseurs optiques par une discrétisation spatiale
des propriétés radiatives pour gérer les non-uniformités du milieu).

Les travaux présentés dans ce manuscrit proposent de répondre, par une ap-
proche purement statistique, sans modèle quasi-déterministe sous-jacent, aux deux
principales difficultés que représentent la non-uniformité et la dépendance spectrale
des propriétés radiatives des milieux gazeux.

Si une approche purement statistique est proposée, c’est parce que face à une
telle complexité, ce type d’approche et les méthodes stochastiques qui en découlent
(algorithmes de Monte-Carlo) ont, à de nombreuses reprises par le passé, permis
de lever diverses limitations, d’offrir certains avantages et d’ouvrir de nouvelles
perspectives. Parmi quelques récents travaux, nous pouvons citer ceux de J. Dauchet
et d’O. Farges qui ont permis, par une approche statistique, de proposer d’inté-
ressantes solutions originales. Dans [Dauchet, 2012], les approches statistiques ont
permis le développement d’algorithmes de Monte-Carlo simulant les propriétés
électromagnétiques de micro-organismes en géométrie tridimensionnelle ou encore de
quantifier sans aucun biais statistique la production globale d’un photobioréacteur
à partir d’une modélisation mésoscopique du transfert radiatif. Ces approches
statistiques ont également conduit au développement, dans [Farges, 2014], d’un outil
permettant d’optimiser l’agencement d’une centrale solaire thermodynamique par un
calcul non biaisé de sa production énergétique sur toute sa durée de fonctionnement.
Ces quelques résultats, difficilement imaginables auparavant, témoignent de l’intérêt
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réel de reposer un problème sous un angle purement statistique.

De façon plus générale, les approches statistiques et les méthodes de Monte-Carlo
qui en découlent sont reconnues pour offrir plusieurs avantages, dont les principaux
sont mentionnés ci-après.
• Les approches statistiques sont par nature moins sensibles à la complexité qu’une

méthode déterministe. La prise en compte de nouvelles dimensions (passage de
deux à trois dimensions, intégration temporelle, volumique, etc.) n’a qu’un effet
modéré sur le volume de calculs nécessaire à obtenir une précision donnée. De
plus, associées à des codes de synthèse d’images [Pharr et Humphreys, 2010,
Starwest, 2014a], ces méthodes permettent d’effectuer du suivi de trajectoires
dans les géométries les plus compliquées sans voir apparaître de difficulté
majeure.
• Les méthodes de Monte-Carlo constituent des solutions de référence dans la

mesure où les estimations des grandeurs d’intérêt sont non-biaisées et qu’il est
en permanence possible d’estimer (et de réduire autant que nécessaire) l’erreur
numérique associée à ces estimations. Elles sont alors fréquemment utilisées
pour valider des méthodes ou modèles simplifiés.
• Ces approches statistiques offrent également d’importantes perspectives en
termes d’analyse. Il est généralement possible de tirer une analogie directe
entre méthode numérique et modèle physique. Ce parallèle permet, par un
va-et-vient souvent fructueux, d’optimiser les méthodes et/ou de développer
un nouvel intuitif et de nouvelles images physiques conduisant à une meilleure
compréhension du modèle physique. De plus, elles permettent entre-autres,
d’estimer de façon simultanée au cours du même calcul, une grandeur et des
sensibilités de cette grandeur à différents paramètres, sans augmenter de façon
significative les temps de calcul associés.
• L’implémentation et la mise en œuvre de ces méthodes sont généralement aisées.

Les méthodes de Monte-Carlo sont habituellement très simples d’un point de
vue algorithmique. En outre, puisqu’elles reposent sur la répétition d’un grand
nombre de réalisations indépendantes, il est très simple de paralléliser ces
calculs.

Le positionnement de cette thèse est donc le suivant. Il ne s’agit pas de rechercher
une alternative plus rapide ou plus performante que les méthodes et modèles simplifiés
utilisés dans les champs applicatifs introduits à la Sec. 1.1, ni même de proposer des
algorithmes directement implémentables dans des codes de CFD. Il s’agit d’étudier
les apports qu’engendrerait une approche purement statistique du transfert radiatif
en milieu gazeux, vis-à-vis de la forte complexité liée aux dépendances spatiales et
spectrales des propriétés radiatives. L’intérêt est alors de proposer des approches,
un modèle et un formalisme statistique répondant à cette double complexité, de
tester la mise en application de ces approches par le développement de méthodes de
Monte-Carlo et d’éviter tout compromis sur le modèle pour conserver l’ensemble des
avantages communément associés à ces approches, en particulier leur caractère de
solution de référence.
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Néanmoins, bien que les travaux présentés dans ce manuscrit soient essen-
tiellement théoriques et exploratoires, les contextes applicatifs introduits à la
Sec. 1.1 et leurs problématiques associées ont occupé une dimension importante
dans l’orientation et la réalisation de cette thèse. Le choix a été fait, pour illus-
trer, valider, et tester la faisabilité de l’approche proposée de se concentrer sur
des applications de type "chambres de combustion". Toutefois, peu de choses
séparent ces différents domaines applicatifs pour les problématiques auxquelles
tente de répondre cette thèse : la complexité des hétérogénéités et de la dépen-
dance spectrale posent le même type de difficultés quels que soient les champs d’étude.

Le choix de privilégier ces applications de combustion est motivé par plusieurs
raisons. La première est que ces systèmes impliquent de petites dimensions et
des épaisseurs optiques généralement faibles qui sont plus aisées à gérer dans une
démarche exploratoire. Les applications de type combustion présentent également
une seconde caractéristique : les températures élevées. Or, c’est à haute température
que les propriétés radiatives sont les plus dépendantes de la longueur d’onde. La
complexité liée à cette dépendance sera donc accentuée, et nous permettra de valider
la robustesse des propositions faites ici. Enfin, dans les applications de combustion, on
peut se passer de prendre en compte les continuums d’absorption induite par collision,
la nature sub-lorentzienne des profils de raie ou encore les problématiques d’hors-
équilibre thermodynamique local, ce qui n’est généralement pas le cas dans l’étude
des atmosphères. La prise en compte de ces effets, nécessaire dans un grand nombre
d’applications, ne présente pas dans la démarche qui est la nôtre d’intérêt immédiat,
puisqu’ils ne sont pas directement liés aux hétérogénéités ou à la dépendance spectrale
des propriétés radiatives. Toutefois, même si ce manuscrit ne traite, à proprement
parler, d’aucun cas atmosphérique ou astrophysique, les problématiques associées
à ces deux domaines ont constamment conditionné notre réflexion. C’est d’ailleurs
vers ces champs applicatifs que l’on souhaite aujourd’hui se tourner.

1.3 Structure du manuscrit

Les travaux, dont ce manuscrit rend compte, ont été effectués au sein de l’équipe
"Transfert radiatif - Solaire à concentration" du laboratoire RAPSODEE 1 sous la
direction de M. El Hafi et de V. Eymet. Cette thèse s’inscrit, plus généralement dans
une dynamique collective, initiée depuis plusieurs années par le groupe STARWest 2
[Starwest, 2014a] qui réunit des membres, issus de domaines applicatifs variés, autour
de problématiques liées à la physique du transport, à la modélisation statistique de
systèmes complexes et à la production de solutions de référence. Les interactions
avec ces spécialistes d’horizons variés ont été d’un intérêt majeur pour la réalisation
de ces travaux et ont permis de les intégrer dans des considérations beaucoup plus
transversales et riches en sens. Nous espérons que ce manuscrit reflétera les échanges

1. Centre de Recherche d’Albi en génie des Procédés, des Solides Divisés, de l’Énergie et de
l’Environnement - École Nationale Supérieure des Mines d’Albi-Carmaux

2. Groupement transdisciplinaire structuré autour de plusieurs équipes de recherche issues de
différents laboratoires : LAPLACE (Toulouse), RAPSODEE (Mines Albi), PROMES (Odeillo),
CRCA (Toulouse), Institut Pascal (Clermont-Ferrand).
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prolifiques qui ont eu lieu au cours ces trois années. Cette thèse donne suite au stage
de fin d’études de G. Terrée [Terrée, 2011] et aux travaux exploratoires menés par B.
Piaud [Piaud, 2010].

Lors de la rédaction de ce manuscrit, une attention particulière a été porté
à sa dimension didactique. En effet, notre pratique des approches statistiques et
intégrales, se traduit souvent par un formalisme mathématique peu attrayant. Mais
celui-ci offre, comme nous allons le voir, un intérêt certain. Aussi, nous avons essayé
tout au long de ce document de présenter les travaux et l’approche qui est la nôtre,
de la façon la plus progressive et cohérente possible. Ce manuscrit a été rédigé
dans l’optique de servir de base à toute personne qui souhaiterait reprendre et/ou
poursuivre le travail entrepris.

Ce dernier est structuré autour de six chapitres dont le premier constitue la
présente introduction.

Dans le Chap. 2 sont rappelées les bases de la physique du rayonnement en
milieu gazeux. Les différentes interactions rayonnement/gaz y sont présentées et
le rayonnement y est placé dans sa description mésoscopique, permettant ainsi de
formuler les équations locales et intégrales du transfert radiatif. Une importante partie
de ce chapitre est également consacrée à la description du coefficient d’absorption,
qui représente probablement une des principales difficultés (de par ses multiples
dépendances spectrales, thermodynamiques et chimiques) rencontrées lors de la
simulation du transfert radiatif dans les milieux gazeux.

Le Chap. 3 aborde, quant à lui, l’approche intégrale et statistique du rayonnement
dans les gaz et présentera les méthodes de Monte-Carlo qui en découlent. Après
de brefs rappels statistiques, un cas d’étude radiatif simple sera proposé et sera
complexifié progressivement, de sorte à introduire le formalisme ainsi que toutes les
pratiques, techniques et approches qui seront utilisées dans la suite du manuscrit.
L’importance des formulations intégrales et statistiques du transport de photons,
lors du développement de méthodes de Monte-Carlo, y sera également soulignée.
Ce chapitre a pour but de détailler tous ces aspects techniques et formels afin
de rendre la lecture des travaux présentés dans les parties suivantes plus aisée et fluide.

Puis, le Chap. 4 abordera, à proprement parler, les premiers travaux de ces trois
années de thèse relatifs à la gestion des hétérogénéités des propriétés radiatives du
milieu. Les difficultés associées à la gestion de ces hétérogénéités par les méthodes
de Monte-Carlo, ainsi que les techniques couramment utilisées (en particulier la
discrétisation volumique) pour y répondre, seront présentées dans un premier
temps. Puis nous montrerons l’intérêt qu’offre une approche utilisée depuis plusieurs
décennies dans d’autres disciplines ayant trait au transport corpusculaire : les
algorithmes à collisions nulles. Cette technique sera alors introduite et élargie au
champ d’étude du rayonnement thermique. Nous montrerons comment elle permet
de passer outre la non-linéarité qu’induit la représentation statistique du terme
d’extinction par l’ajout d’un troisième type de collisions (arbitraires et sans effet sur
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le transport de photons). Une étude paramétrique étudiant les conséquences des choix
de paramètres libres sera ensuite réalisée dans un cas assez général et nous montrerons
comment le caractère de solution de référence des algorithmes à collisions nulles peut
être mis à profit dans la validation d’un code de calcul radiatif en géométrie complexe.

Ensuite, dans le Chap. 5, nous verrons que ces mêmes algorithmes à collisions
nulles nous permettent de lever un second verrou relatif à l’intégration spectrale.
Il sera alors possible, grâce à cette introduction de collisions fictives, de décrire de
façon purement statistique le coefficient d’absorption au sein même de l’équation
du transfert radiatif. Cela conduira au développement de méthodes de Monte-Carlo
permettant d’estimer une observable radiative sans aucun biais et sans nécessiter
la production rigoureuse et préalable de spectres d’absorption haute-résolution. Le
calcul de grandeurs radiatives reposera alors sur un échantillonnage des transitions
moléculaires dont les paramètres seront extraits au cours du calcul directement
depuis des bases de données spectroscopiques. Cette proposition repose toutefois sur
un grand nombre de paramètres libres (en particulier les probabilités associées aux
raies d’absorption) qui conditionnent le taux de convergence de l’algorithme. Aussi,
nous proposerons des choix pour ces grandeurs arbitraires et étudierons, par une
mise en application dans six cas d’étude caractéristiques de systèmes de combustion,
le comportement algorithmique et les perspectives qu’offre l’approche proposée
associée à ces choix de paramètres libres.

Enfin, le Chap. 6 conclura l’exposé de ces travaux de thèse et exposera les
perspectives et les pistes de travail qu’offrent les propositions faites dans ce manuscrit.
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Introduction

Ce premier chapitre a pour but de présenter les éléments de physique nécessaires à
l’étude du transfert radiatif en milieu gazeux. Il n’a pas pour prétention d’être exhaus-
tif, mais a été pensé de sorte à introduire l’ensemble des concepts et modèles utilisés
dans la suite de ce manuscrit. Le lecteur à l’aise avec ces concepts pourra passer direc-
tement au Chap. 3. Au contraire, le lecteur désireux d’approfondir ses connaissances
relatives à la physique du rayonnement pourra s’orienter vers les ouvrages de référence
[Chandrasekhar, 1960, Goody et Yung, 1996, Siegel et al., 2011, Modest, 2013].

Après un bref rappel de la nature et des représentations du rayonnement thermique,
ce dernier sera introduit dans sa description mésoscopique. La luminance, grandeur
de base et descripteur mésoscopique du transfert radiatif pourra ainsi être abordée.
Enfin, les principales grandeurs intégrées de la luminance seront introduites.

La seconde section, quant à elle, traitera des interactions entre rayonnement
et milieu participant ou semi-transparents. Cela permettra de formuler l’Équation
différentielle du Transfert Radiatif (ETR), cas particulier des équations de transport
(plus connues sous le terme d’équations de Boltzmann). La solution intégrale de
l’équation du transfert radiatif sera enfin abordée, permettant ainsi de présenter les
conditions et phénomènes se produisant aux limites du système d’intérêt.

Enfin, l’ultime section de ce chapitre concernera la dépendance spectrale du
coefficient d’absorption, constituant probablement la principale difficulté de l’étude
du rayonnement dans les gaz. Ce sera l’occasion d’aborder les mécanismes sous-jacents
d’absorption et d’émission, les notions de transitions énergétiques, de raies et de
spectres d’absorption.

Outre les quelques ouvrages cités ci-dessus, la rédaction de ce chapitre est en partie
inspirée des cours dispensés en Master 2 Recherche "Dynamique des Fluides, Énergé-
tique et Transferts" [Fournier et El Hafi, 2010] et à l’École thématique "Rayonnement
thermique en milieu semi-transparent - 2014" [Blanco et al., 2014, André et al., 2014,
Boulet et al., 2014].

2.1 Introduction au transfert radiatif

2.1.1 Nature du rayonnement thermique

Deux représentations coexistent lorsqu’il s’agit de décrire le transfert radiatif :
les approches dites ondulatoire et corpusculaire 1.

L’approche ondulatoire repose sur la théorie électromagnétique développée à la
fin du XIXème siècle par J.K. Maxwell. Le rayonnement est alors considéré comme
une variation des champs électromagnétiques et est représenté comme un ensemble
d’ondes monochromatiques définies pour une fréquence ν, une longueur d’onde λ ou

1. Cette dualité onde-corpuscule a été étendue à l’ensemble de la matière par L. de Broglie en
1924.
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un nombre d’onde η donné. Ces différentes grandeurs sont liées par les relations :

λ =
1

η
=
c

ν
; η =

1

λ
=
ν

c
; ν =

c

λ
= cη

où c est la vitesse du rayonnement dans le milieu considéré
(c = c0 = 299 792 458 m/s dans le vide et c = c0

n
dans les milieux d’indice

de réfraction n). Même si ces trois grandeurs peuvent être utilisées indifféremment,
nous nous efforcerons dans ce manuscrit de privilégier la notion de nombre d’onde,
qui est historiquement la plus usitée en spectroscopie moléculaire 2. Au cours des
découvertes, ces ondes monochromatiques ont été regroupées selon leur fréquence en
plusieurs plages spectrales présentées à la Fig. 2.1.
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Figure 2.1 – Spectre électromagnétique. Les différentes plages spectrales sont schématisées en
fonction du nombre d’onde η, de la longueur d’onde λ et de la fréquence ν. Elles s’étendent des
rayons cosmiques (les plus énergétiques) aux ondes radioélectriques (les moins énergétiques). Le
rayonnement thermique s’étend approximativement sur la plage [102, 105]cm−1 et comprend une
partie des ultraviolets, la totalité du rayonnement visible et le proche et moyen infrarouge.

La seconde approche dite corpusculaire, formalisée par M. Planck et A. Einstein
au début du XXème siècle, est à l’origine des principes de la mécanique quantique. Elle
consiste à associer à toute onde électromagnétique monochromatique un corpuscule :
le photon, de masse nulle et d’énergie E donnée par :

E = hν =
hc

λ
= hcη (2.1)

où h = 6.62606957× 10−34J.s est la constante de Planck .

Les représentations corpusculaires et ondulatoires sont complémentaires. Aucune
d’entre elles ne permet de décrire l’ensemble des phénomènes liés à la physique du
rayonnement. Aussi, selon les objets d’étude et les hypothèses posées, l’une ou l’autre
sera privilégiée (par exemple, l’approche ondulatoire sera la plus appropriée pour
l’étude des phénomènes de diffusion, alors que l’approche corpusculaire permettra

2. Il est fréquent de trouver dans la littérature les nombres d’onde écrits ν.
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d’expliquer l’effet photoélectrique). Nous nous concentrerons ici presque essentielle-
ment sur l’approche corpusculaire du rayonnement qui, nous allons le voir, permettra
une description mésoscopique et statistique du rayonnement, le plaçant dans des
considérations propres à la physique du transport.

Comme illustré dans la Fig. 2.1, le rayonnement électromagnétique s’étend des
rayons cosmiques aux ondes radios. Tout au long de ce manuscrit nous ne nous
concentrerons que sur le rayonnement thermique couvrant le domaine des nombres
d’onde allant approximativement de 102 à 105 cm−1 (une partie des ultraviolets,
l’ensemble du visible et le proche et moyen infrarouge). Le rayonnement thermique
est, au même titre que la conduction/diffusion, un mode de transfert de chaleur. Il
présente cependant deux principales spécificités vis-à-vis de ses homologues :
• de par sa nature électromagnétique, le transfert d’énergie ne nécessite pas de
milieu physique pour avoir lieu : deux surfaces placées dans le vide peuvent
ainsi échanger de l’énergie.
• alors que les échanges thermiques conductifs/diffusifs sont fonction d’un gradient

de température, les échanges par transfert radiatif dépendent d’une différence
de températures élevées à la puissance 4, devenant ainsi prépondérants pour de
fortes températures. Cela souligne en particulier l’importance de la modélisation
du rayonnement dans des applications liées à la combustion.

2.1.2 Descriptions microscopique, mésoscopique et macrosco-
pique

Considérer le rayonnement selon une approche corpusculaire consiste à percevoir
ce transfert d’énergie comme ayant pour vecteur un très grand nombre de quanta : les
photons. Lorsqu’il s’agit d’étudier un si grand nombre de particules, plusieurs descrip-
tions (ou modélisations) sont susceptibles d’être employées : les descriptions microsco-
pique, macroscopique et mésoscopique [Piaud, 2007, Lachowicz, 2011, Dauchet, 2012].
Ces trois descriptions se différencient essentiellement par le choix des grandeurs des-
criptives du modèle. Il s’agit ici bien de descriptions et non d’échelles : passer d’une
description microscopique à une description macroscopique ne signifie pas nécessaire-
ment considérer le système à une échelle plus globale. Ces trois types de descriptions
tirent leur origine de la physique du transport corpusculaire. Aussi, elles seront ici
présentées dans leur acceptation originelle. Leur extension au transfert radiatif sera
ensuite discutée.

Description microscopique La description microscopique consiste à associer
à chaque corpuscule, de façon déterministe, une position et une vitesse, pour un
instant t donné. En considérant un champ de N particules dans une configuration
tridimensionnelle, cela impliquerait donc, au moins 6×N descripteurs (N jeux de
deux vecteurs de dimension 3 : un pour la position et un pour la direction ayant
tous pour seule variable le temps t). Même si cette description semble idéale, la
quantité d’information qu’elle requiert est très difficilement manipulable 3 et surtout

3. Afin de donner un ordre de grandeur, une simple surface de 1m2 portée à 300K peut émettre
jusqu’à 4.1 × 1022 photons en une seconde, soit une quantité de 2.5 × 1023 variables décrivant
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difficilement conceptualisable, d’autant plus si le transport est non-linéaire (si les
particules interagissent entre-elles, ex : cinétique des gaz).

Description mésoscopique Alors que la description microscopique repose sur
une approche discrète du modèle (chaque molécule est considérée en tant que telle),
la description mésoscopique s’appuie sur des concepts de continuité. Le descripteur
du système est désormais une fonction de distribution f(x,v, t) définie sur l’espace
des phases (constitué de l’espace géométrique Dx et de l’espace des vitesses Dv).
Les positions x et les vitesses v deviennent alors, au même titre que le temps t
des variables indépendantes. Cette approche est propre à la physique du transport
corpusculaire et pose les concepts nécessaires à une approche de type statistique
grâce la notion de distribution qui s’interprète comme la somme des densités de
probabilité de présence de chaque particule dans l’espace des phases {Dx,Dv}. Elle
est pertinente dans les cas où un grand nombre d’événements se répète, soit parce
que le nombre de particules considérées est très grand soit parce que les particules
subissent de très nombreuses interactions.

Description macroscopique Enfin, la description macroscopique repose égale-
ment sur l’idée de distribution. Le descripteur F (x, t) est toujours une fonction de
distribution, mais est désormais défini uniquement sur l’espace géométrique Dx. Ce
passage se traduit par une intégration sur le domaine des vitesses du descripteur
mésoscopique et est souvent associé à une hypothèse d’isotropie. Une telle description
se traduit donc par une perte conséquente de l’information relative aux vitesses des
particules et devient ainsi plus difficilement applicable à des problèmes hors-équilibre.
Toutefois, du fait de l’allègement du nombre de variables indépendantes (seulement
x et t), cette description est peut-être la plus aisée à approcher. De surcroît, les
approximations ou hypothèses associées à cette description (ex : l’approximation de
diffusion) font le plus souvent appel à des images physiques courantes et intuitives
(les température, masse volumique ou encore vitesse moyenne d’un fluide sont autant
de grandeurs macroscopiques couramment manipulées). Cela explique notamment
le fait que cette description et ses grandeurs associées sont souvent privilégiées
dans les sciences pour l’ingénieur, du fait de la complexité des phénomènes en
présence (en particulier lorsqu’il s’agit de phénomènes couplés). Plusieurs descripteurs
macroscopiques du transfert radiatif seront présentés à la Sec. 2.1.4.

L’étude du rayonnement reposera essentiellement ici sur des considérations méso-
scopiques. Une telle description présente en effet un double avantage :
• elle permet une description des phénomènes à l’échelle du photon (qui feront
l’objet de la Sec. 2.2.2). En effet, les informations relatives à la position et
à la vitesse des particules à un instant donné sont contenues dans l’idée de
distribution et il sera possible d’attribuer de façon statistique une vitesse et
une position aux différents corpuscules d’intérêt.

le modèle. En imaginant que l’on parvienne idéalement à stocker chacune de ces variables dans
un octet, il faudrait un espace disque de 250 milliards de téraoctets pour simplement contenir
l’information des photons émis par la surface en une seconde.
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• elle offre, par sa nature statistique, la capacité d’analyse des modélisations
macroscopiques pour l’étude et la prise en compte de phénomènes collectifs,
tout en conservant l’information relative aux distributions de vitesses.

Néanmoins, dès que l’occasion se présentera, nous nous appuierons sur les deux
autres descriptions qui permettront d’apporter d’autres images physiques, souvent
plus manipulables ou intuitives.

2.1.3 La luminance : descripteur mésoscopique du transfert
radiatif

La luminance monochromatique 4 Lη(x,u, t) constitue la grandeur de base du
transfert radiatif. D’un point de vue énergétique, il s’agit d’une puissance par unité
de surface perpendiculaire à la direction u considérée, par unité d’angle solide autour
de la direction u (cf. note ci-dessous), et par unité de nombre d’onde (ou de longueur
d’onde, ou de fréquence). Elle s’exprime en Wm−2sr−1cm.

Note : Angle solide
L’angle solide est une généralisation à la troisième dimension de l’angle plan.

Alors que l’angle plan (exprimé en radian) est égal au rapport de la longueur
d’un arc de cercle sur son rayon, l’angle solide Ω est défini comme le rapport
d’une surface partielle de sphère S sur le carré de son rayon R : Ω = S/R2.
Son unité, bien qu’adimensionnelle, est le stéradian noté sr. L’angle solide
associé à une sphère est alors égal à 4π et celui associé à un hémisphère à 2π.
L’angle solide élémentaire dΩ (voir Fig. 2.2) correspond à la différentielle de la
direction u qui le porte et est donné par :

dΩ = du =
dS

R2
=
R2dθ sin θdφ

R2
= dθ sin θdφ (2.2)

x

y

z

dϕ

dθ
rsinθdϕ

rdθ
dS

u

Figure 2.2 – L’angle solide élémentaire est donné par dΩ = dθ sin θdφ

4. Il est fréquent de rencontrer dans la littérature internationale la luminance notée Iη (pour
specific intensity).
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La luminance monochromatique est en fait le descripteur mésoscopique du trans-
fert radiatif. Elle est assimilable à la distribution f(x,v, t) à trois subtilités près :
• On peut généralement considérer que la norme de la vitesse des photons est

localement constante. Il est donc possible de raisonner en directions u ≡ [θ, φ]
plutôt qu’en vitesses v ≡ [vx, vy, vz], passant donc de l’espace des vitesses Dv à
l’espace des directions Du.
• À l’espace des positions Dx et des directions Du se rajoute une dimension
supplémentaire : celle des nombres d’onde Dη, des longueurs d’onde Dλ ou
des fréquences Dν . On a donc, pour une configuration tridimensionnelle, sept
variables (trois pour la position, deux pour la direction, une pour le nombre
d’onde et une pour le temps).
• Plus qu’une distribution de particules qui serait alors, aux vues des deux

considérations précédentes, définie comme fη(x,u, t) 5, la notion de luminance
inclut l’énergie et la vitesse des photons. Elle est définie comme :

Lη(x,u, t) = hcη c fη(x,u, t) (2.3)

Il est important de bien saisir la notion de luminance et donc l’idée de distribution
sur l’espace D = {Dx,Du,Dη}. La distribution fη(x,u, t) est une extension de la
densité à l’espace des phases. Elle correspond à la somme des densités de probabilité
de présence de tous les photons en un point (x,u, η, t) dans l’espace D. Une manière
assez intuitive d’appréhender le passage de distribution à luminance consiste à
considérer un volume dx, un angle solide du et un intervalle spectral dη élémentaires
(en d’autres termes, un sous espace infinitésimal dD de D), voir Fig. 2.3. Le nombre

u

z
y

x

dx du

Figure 2.3 – La distribution de photons en un point (x,u, η, t) de l’espace des phases correspond
à la limite du nombre de photons situés à un instant t en x ∈ dx, ayant une direction u ∈ du et un
nombre d’onde η ∈ dη pour dx, du et dη tendant vers 0.

de photons dNη(x,u, t) à un instant t dans dx, ayant une direction de propagation

5. Par convention le nombre d’onde η (ou longueur d’onde λ ou fréquence ν) est indicé, dans la
mesure où, comme nous allons le voir, aucun opérateur de l’équation du transfert radiatif ne fait
appel au nombre d’onde (sous l’hypothèse de diffusion élastique).
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comprise dans du et un nombre d’onde η compris dans dη est alors donnée par la
relation

dNη(x,u, t) = fη(x,u, t)dxdudη (2.4)

faisant intervenir la distribution fη(x,u, t) (qui s’exprime en m−3sr−1cm). C’est
probablement le caractère discret du nombre de photons qui rend ce passage le plus
délicat et qui ne permet rien d’autre que d’accepter la distribution comme une densité
de probabilité de présence des photons. Multiplier cette distribution par l’énergie et
la vitesse des photons considérés, équivaut à étudier la puissance dPη(x,u, t) associée
aux photons de directions comprises dans du, de nombres d’onde compris dans dη
passant par un élément de surface dS⊥ normal à u :

dPη(x,u, η, t) = fη(x,u, t) hcη c dS⊥dudη

= Lη(x,u, t)dS⊥dudη
(2.5)

et permet ainsi de passer à une expression fonction de la luminance (qui est alors
bien homogène à des Wm−2sr−1cm), voir Fig. 2.4a. En raisonnant en énergie plutôt
qu’en puissance, cela revient à observer une quantité d’énergie monochromatique
dQη(x,u, t) qui traverse pendant un intervalle de temps dt la surface dS⊥ dans la
direction u et donc considérer l’énergie associée aux photons de directions comprises
dans du, de nombres d’onde compris dans dη se propageant dans le volume élémentaire
dS⊥cdt (voir Fig. 2.4b. On a alors :

dQη(x,u, η, t) = fη(x,u, t) hcη dS⊥cdt dudη

= Lη(x,u, t)dS⊥dtdudη
(2.6)

(a)

cdt

(b)

Figure 2.4 – La luminance peut être définie comme soit :
• la limite de la puissance associée aux photons passant par dS⊥ 3 x, de direction u ∈ du et de
nombre d’onde η ∈ dη pour dS⊥, du, dη tendant vers zéro (Fig. (A))
• la limite de l’énergie associée aux photons se propageant dans le volume élémentaire dS⊥cdt , de
direction u ∈ du et de nombre d’onde η ∈ dη pour dS⊥, dt, du, dη tendant vers zéro (Fig. (B)).

Jusqu’à présent, seule la luminance monochromatique Lη(x,u, t) a été présentée,
soulignant le fait que l’espace des nombres d’onde est une dimension à part entière
de l’espace sur lequel est défini le descripteur mésoscopique. Cependant, il est
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souvent intéressant d’étudier la luminance dite totale L(x,u, t) c’est-à-dire intégrée
spectralement sur un intervalle donné [ηmin, ηmax]. La luminance totale s’exprime
alors en Wm−2sr−1 et est donnée par :

L(x,u, t) =

∫ ηmax

ηmin

Lη(x,u, t)dη (2.7)

Dans les applications présentées dans ce manuscrit, l’intervalle spectral d’intégration
[ηmin, ηmax] sera généralement choisi de sorte à couvrir le domaine fréquentiel du
rayonnement thermique.

2.1.4 Grandeurs intégrées de la luminance : passage à une
description macroscopique

La luminance étant désormais décrite dans son acceptation mésoscopique, il est
possible de définir d’autres grandeurs énergétiques, celles-ci macroscopiques. Elles
seront ici uniquement exprimées de façon monochromatique. Mais, tout comme pour
la luminance, quelle que soit la grandeur considérée, le passage de son expression
monochromatique Aη à son expression dite totale A se fera par intégration spectrale
sur l’intervalle d’intérêt [ηmin, ηmax] :

A =

∫ ηmax

ηmin

Aη dη (2.8)

L’irradiance (ou rayonnement incident) est la première grandeur macroscopique,
elle correspond au moment d’ordre 0 de la distribution angulaire des luminances.
En d’autres termes, elle est définie comme l’intégrale sur l’espace des directions Du

(Du = 4π sr pour un milieu participant) de la luminance et s’exprime en Wm−2cm.

Gη(x, t) =

∫

4π

Lη(x,u, t) du (2.9)

Le vecteur densité surfacique de flux correspond quant à lui au moment d’ordre
1 de la distribution angulaire des luminances. C’est une grandeur vectorielle qui
s’exprime également en W.m−2.cm et qui est donnée par :

qR,η(x, t) =

∫

4π

Lη(x,u, t)u du (2.10)

Il est très fréquent de rencontrer ce descripteur en mécanique des fluides et en
thermique. Sa seule connaissance au point x permet de remonter à la densité de flux
ϕη(x, t) relative à n’importe quelle surface contenant x par la relation

ϕη(x, t) = qR,η(x, t).n(x) (2.11)

où n(x) est la normale de la surface considérée en x.

Le vecteur densité surfacique de flux permet également d’exprimer, par sa diver-
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gence, le terme source radiatif (ou bilan radiatif local) :

Sr,η(x, t) = −div(qR,η(x, t)) (2.12)

Aux frontières, l’espace des directions se limite à l’hémisphère sortant (d’angle
solide égal à 2π sr). On parlera alors plutôt d’émittance Mη(x, t) (ou de densité de
flux rayonné) et d’éclairement Hη(x, t) pour des rayons respectivement dirigés vers
l’extérieur et vers la surface :

Mη(x, t) =

∫

u.n>0

Lη(x,u, t)u.n(x) du (2.13)

et
Hη(x, t) =

∫

u.n<0

Lη(x,u, t)u.n(x) du (2.14)

où n(x) est la normale en x à la surface.

Même si nous allons désormais nous concentrer essentiellement sur une approche
mésoscopique, ces grandeurs macroscopiques ainsi que les images associées à la
description microscopique du rayonnement mettent en relief l’intérêt de pouvoir
passer d’une description à l’autre. Le Tab. 2.1 dresse un bref résumé de ces trois
types de modélisation appliqués à l’étude du transfert radiatif.

Description Descripteur(s) Variable(s) Type de descripteur
Microscopique {x,u, η} t déterministe et discret
Mésoscopique Lη x,u, η, t statistique et continu
Macroscopique Gη, qR,η, etc. x, η, t statistique et continu

Table 2.1 – Résumé succinct des propriétés des descriptions microscopique, mésoscopique et
macroscopique appliquées à l’étude du transfert radiatif. Les descripteurs, variables et types de
descripteurs sont décrits pour chacune d’elles.

2.2 Équation du transfert radiatif en milieu partici-
pant

Définir la luminance monochromatique comme une distribution de photons (à une
constante hcηc près) permet de placer plus généralement le transfert radiatif dans une
approche propre à l’étude du transport corpusculaire. Une telle modélisation repose
alors sur un formalisme de type équations cinétiques ou équations de Boltzmann
faisant appel aux concepts relatifs à la physique statistique.

Aussi, l’objet de cette section est de présenter un cas particulier des équations
cinétiques : l’équation du transfert radiatif en milieu participant (ETR) sous sa
forme locale et intégrale. Les différentes interactions entre milieu participant et
rayonnement, nécessaires à l’établissement de l’ETR, seront ainsi abordées.
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2.2.1 Transport de photons sans interaction avec le milieu

L’équation du transfert radiatif est un cas particulier des équations de transport
ou cinétiques. Cette famille d’équations décrivant le transport de corpuscules est
fréquemment qualifiée d’équations de Boltzmann [Cercignani, 1988, Piaud, 2007],
en référence aux travaux de L. Boltzmann (1872) qui ont porté sur d’étude et la
description de la cinétique des gaz raréfiés en hors équilibre.

L’établissement d’une équation de transport requiert cependant de poser certaines
hypothèses :
• Chaque photon doit pouvoir être décrit par une position et une vitesse propres.

Cette hypothèse, plaçant le photon dans une approche semi-classique, impose
que les échelles d’intérêt, auxquelles se produisent les phénomènes de transfert
radiatif, doivent être supérieures à celles de la longueur d’onde du rayonnement
considéré.
• Les positions probables d’interaction (autrement appelés absorbeurs et diffu-

seurs) sont réparties de façon aléatoire, indépendante et continue dans l’espace.
• Les événements d’interaction avec le milieu, ou collisions, sont supposés

quasi-instantanés et quasi-ponctuels devant les échelles d’intérêt.

À ces hypothèses, propres à l’établissement des équations de transport, nous
ajouterons ici d’autres hypothèses relatives uniquement au transfert radiatif :
• Les photons se déplacent en ligne droite et à vitesse constante tant qu’ils

n’interagissent pas avec le milieu. Sous cette hypothèse, l’indice de réfraction
est alors supposé uniforme. La norme du vecteur vitesse est donc constante, ce
qui explique le passage à une description selon les directions.
• Une approximation d’équilibre thermodynamique local (ETL) est admise. Cette

hypothèse consiste à considérer que l’état microscopique du système est en tout
point proche d’un état d’équilibre thermodynamique dont les variables d’état
seraient celles observées localement. Cette hypothèse implique en particulier
que l’émission locale de photons est identique à celle qui serait rencontrée dans
un milieu à l’équilibre thermodynamique soumis aux mêmes conditions que le
point considéré (cf. Sec. 2.2.2.2). Bien qu’adaptée pour les problèmes présentés
dans ce manuscrit, l’hypothèse d’équilibre thermodynamique ne peut être faite
lors de l’étude du rayonnement dans des configurations à très faibles pressions
ou dans des systèmes chimiluminescents.
• Les photons n’interagissent pas entre-eux, ils ne peuvent pas être émis, absorbés
ou diffusés par d’autres photons. La physique du transport photonique est
alors qualifiée de linéaire.

Supposons dans un premier temps, pour établir l’équation du transfert radiatif,
que le rayonnement n’interagit pas avec le milieu (le milieu est alors considéré comme
transparent). Sans absorption ni diffusion, les photons se propagent en ligne droite
(voir Fig. 2.5). L’ensemble des photons de nombre d’onde η situés en x dans la
direction u à l’instant t ou leur équivalent sous forme de luminance, translatent donc
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• •• •• • ••
t t + δt

cu × δt

Figure 2.5 – Sans interaction avec le milieu les photons se propagent en lignes droites. Les photons
situés en x à l’instant t dans la direction u se retrouvent à l’instant t + δt en x + cuδt dans la
direction u.

pendant un court intervalle de temps δt vers la position x + cuδt sans changement
de direction. Avec les hypothèses considérées, le théorème de Liouville énonce que le
volume de l’espace des phases est constant le long des trajectoires du système. On
peut donc écrire :

Lη(x,u, t) = Lη(x + cuδt,u, t+ δt) (2.15)

Il est possible de faire un développement limité au premier ordre autour de x et t
du terme de droite en supposant δt très petit :

Lη(x,u, t) = Lη(x,u, t) + δt

[
∂Lη(x,u, t)

∂t
+ cu.∇Lη(x,u, t)

]
(2.16)

Il vient alors
1

c

∂Lη(x,u, t)

∂t
+ u.∇Lη(x,u, t) = 0 (2.17)

qui n’est rien d’autre qu’une expression de la conservation de la luminance. Le
premier terme 1

c
∂tLη(x,u, t) de l’Eq. 2.17 caractérise la variation temporelle de la

luminance. Le second u.∇Lη(x,u, t), appelé terme de transport pur, caractérise la
variation de la luminance due au déplacement des photons.

Intégré sur l’espace des directions (4π) et sur les nombres d’onde, on obtient une
équation macroscopique de conservation d’énergie :

1

c

∂G(x, t)

∂t
= −div(qR(x, t)) (2.18)

Le transfert radiatif étant généralement beaucoup plus rapide que les autres
phénomènes observés, il est courant de le considérer en régime stationnaire, menant
alors à :

u.∇Lη(x,u, t) = 0 (2.19)

Cette hypothèse de stationnarité du rayonnement sera conservée dans la suite de ce
manuscrit.
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2.2.2 Interactions rayonnement/matière en milieu partici-
pant

Dès lors que l’on suppose le milieu participant ou semi-transparent, il convient
de prendre en compte les différents phénomènes d’interaction qui vont entrer en
jeu dans la description du transport de photons. En effet, le milieu participant sera
susceptible d’émettre, d’absorber et de diffuser des photons (voir Fig. 2.6). Ces trois

Diffusion entrante

×Absorption

Transmission

Diffusion sortante

×Emission

Figure 2.6 – Interactions entre rayonnement et milieu participant. En présence d’un milieu
participant, le rayonnement peut être transmis (pas d’interaction), absorbé, émis ou diffusé par
le milieu. On distingue deux types de diffusion, la diffusion entrante et sortante (selon que le
rayonnement "entre" ou "sort" d’un volume élémentaire de l’espace des phases.)

types d’interaction et leurs grandeurs associées font l’objet de cette sous-section dans
laquelle le rayonnement est supposé stationnaire.

2.2.2.1 Absorption du rayonnement par un milieu participant

De manière spontanée, la matière absorbe du rayonnement (le mécanisme molé-
culaire quantique associé à cette absorption sera présenté plus en détail à la Sec. 2.3).
La variation de luminance, due à ce phénomène, le long d’un élément différentiel dx
est donnée par :

Pa,η(x,u) =
dLη(x,u)

dx

∣∣∣∣
abs

= ka,η(x, t)Lη(x,u) (2.20)

où ka,η(x, t) est appelé coefficient d’absorption.

Le coefficient d’absorption caractérise le milieu et non le rayonnement. Homogène
à l’inverse d’une distance (m−1), il est défini comme l’inverse du libre parcours moyen
d’absorption (c’est-à-dire l’inverse de la distance moyenne que parcourent les photons
avant d’être absorbés) et correspond donc à une fréquence spatiale d’absorption. Plus
il est important, plus le milieu participant sera absorbant. Sa valeur dépend de la
température T (x), de la pression P (x) et des fractions molaires χm(x) des espèces
en présence au point x, à l’instant t et au nombre d’onde η d’intérêt. L’isotropie du
coefficient d’absorption est généralement admise.

Il est courant de décomposer le coefficient d’absorption comme le produit d’une
densité volumique Cm(x) d’absorbeurs (ici des molécules) et d’une section efficace
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d’absorption ση(x) 6 :
ka,η(x) = Cm(x)ση(x). (2.21)

2.2.2.2 Émission de rayonnement thermique par le milieu participant

Tout corps à une température supérieure à 0K émet également de façon spontanée
du rayonnement thermique. Pour présenter ce phénomène, il convient d’introduire la
notion de luminance d’équilibre Leqη (x) 7. Sa définition s’accompagne généralement de
l’idée de corps noir qui constitue un corps idéal absorbant l’intégralité du rayonnement
lui parvenant. A l’équilibre, le corps noir émettra autant d’énergie qu’il en absorbe. Il
peut être imaginé comme une cavité close et isotherme. En tout point de cette enceinte,
la luminance est alors uniforme et isotrope. Cette luminance monochromatique, dite
d’équilibre ou de corps noir, dépend uniquement de la température de la cavité et
du nombre d’onde (voir Fig. 2.7). Son expression est donnée par la loi de Planck :

Leqη (x) = 2hc2η3 1

exp
(

hcη
kBT (x)

)
− 1

(2.22)

où kB = 1.38065× 10−23J.K−1 est la constante de Boltzmann .
La luminance d’équilibre, comme toute luminance, voit sa définition varier selon

qu’elle est exprimée en fréquence, nombre d’onde ou longueur d’onde : Leqη (x) 6=
Leqν=cη(x) 6= Leqλ=1/η(x). Ce n’est qu’une fois intégrée que l’équivalence est vérifiée :

Leqη (x)dη = Leqν=cη(x)dν = Leqλ=1/η(x)dλ (2.23)

Les lois de Planck définies selon les fréquences et longueurs d’onde sont alors respec-
tivement données par :

Leqν (x) =
2hν3

c2

1

exp
(

hν
kBT (x)

)
− 1

(2.24)

et
Leqλ (x) =

2hc2

λ5

1

exp
(

hc
kBλT (x)

)
− 1

(2.25)

Note : Loi de Stefan Boltzmann et loi du déplacement de Wien
Il peut être intéressant d’intégrer et de dériver la loi de Planck, pour notamment
obtenir la luminance d’équilibre totale et la luminance d’équilibre maximale
(et son nombre d’onde associé) pour une température donnée.

6. La section efficace n’a pas de lien avec la taille réelle des absorbeurs, elle représente une
surface virtuelle susceptible d’intercepter le rayonnement.

7. Il est fréquent de trouver dans la littérature d’autres notations de cette luminance d’équilibre :
L0
η(x), Ib,η(x) ou encore Bη(x).
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Figure 2.7 – Luminance d’équilibre définie en nombre d’onde pour différentes températures. La
loi du déplacement de Wien (trait plein noir) est également présentée.

Loi de Stefan-Boltzmann La loi de Stefan-Boltzmann exprime la lumi-
nance totale d’équilibre intégrée sur l’intégralité du spectre ([0,+∞[) :

Leq(x) =

∫ +∞

0

Leqη (x)dη =
1

π
σT (x)4 (2.26)

où σ = 5.670373 × 10−8 est dite la constante de Stefan-Boltzmann. On re-
marque alors que la luminance totale d’équilibre est bien proportionnelle à la
température élevée à la puissance 4.

Loi du déplacement de Wien La loi du déplacement de Wien exprime
le nombre d’onde, la fréquence ou la longueur d’onde pour laquelle, à une
température donnée, la luminance d’équilibre est maximale. Ces nombres
d’onde, longueurs d’onde et fréquences sont alors donnés par les relations
suivantes.

η(Leqη,max(T )) = T × 1.961cm−1 (2.27)

ν(Leqν,max(T )) = T × 5.879× 1010Hz (2.28)

λ(Leqλ,max(T )) =
1

T
× 2898µm (2.29)

La loi du déplacement de Wien est illustrée par la courbe noire de la Fig. 2.7.

Dès qu’il s’agit d’étudier les milieux participants, il est nécessaire d’introduire,
en plus de la luminance d’équilibre, la notion de coefficient d’émission ke,η(x) qui va
permettre d’exprimer la variation de luminance associée à l’émission le long d’un
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élément dx :
Se,η(x,u) =

dLη(x,u)

dx

∣∣∣∣
emiss

= ke,η(x)Leqη (x) (2.30)

Se,η(x,u) est donc égale au produit de la luminance d’équilibre (dépendant de la
seule température au point x) et du coefficient d’émission. Se,η(x,u) correspond alors
à un taux spatial d’émission.

Sous l’hypothèse d’équilibre thermodynamique local, si l’on ne considère que
l’absorption et l’émission, la condition

Se,η(x,u) = Pa,η(x,u)

⇔ ke,η(x)Leqη (x) = ka,η(x)Lη(x,u)
(2.31)

se doit d’être vérifiée. Or, puisqu’à l’équilibre thermique (cf. corps noir), la lumi-
nance est par définition la luminance d’équilibre : Lη(x,u) = Leqη (x), les coefficients
d’émission et d’absorption sont donc deux grandeurs équivalentes. On oubliera donc
la notion de coefficient d’émission au profit de celle de coefficient d’absorption. Cette
équivalence est connue comme la loi du rayonnement de Kirchhoff en hommage à
G.R. Kirchhoff qui l’a formulée en 1859.

2.2.2.3 Diffusion du rayonnement par un milieu participant

Enfin, le dernier type d’interaction entre rayonnement et matière est la diffusion 8

[Kerker, 1969, Sheng, 2006, Boulet et al., 2014]. Celle-ci entraîne un changement de
direction du photon incident. Plusieurs hypothèses seront admises dans ce manuscrit
concernant la diffusion :
• La polarisation du rayonnement n’est pas prise en compte.
• Les diffusions sont supposées élastiques : l’énergie (ou le nombre d’onde) du

photon reste conservée pendant sa diffusion.
• La diffusion est supposée indépendante : les diffuseurs sont suffisamment éloignés
pour considérer que la diffusion provoquée par une particule n’influe pas sur
les diffusions d’autres particules.

Deux éléments caractéristiques du milieu diffusant sont nécessaires pour modéliser
la diffusion du rayonnement : le coefficient de diffusion kd,η(x) et la fonction de
phase φη(u′|u,x).

Le coefficient de diffusion kd,η(x) est l’analogue pour la diffusion du coefficient
d’absorption. Il est défini comme l’inverse du libre parcours de diffusion (distance
moyenne que parcours un photon avant d’être diffusé) et correspond donc à une
fréquence spatiale de diffusion, homogène à des m−1. La somme du coefficient d’ab-
sorption et du coefficient de diffusion kη(x) = ka,η(x) + kd,η(x) est appelé coefficient
d’extinction et est défini comme l’inverse du libre parcours moyen d’extinction (dis-
tance moyenne avant qu’un photon ne soit absorbé ou diffusé). On peut également

8. On parle ici de diffusion, dans le sens de "scattering" et non de "diffusion" en anglais.
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définir à partir de ces deux coefficients des grandeurs adimensionnelles : l’albédo de
diffusion simple ωd,η(x) défini comme :

ωd,η(x) =
kd,η(x)

kη(x)
=

kd,η(x)

ka,η(x) + kd,η(x)
(2.32)

et l’albédo d’absorption ωa,η(x) :

ωa,η(x) = 1− ωd,η(x) =
ka,η(x)

kη(x)
=

ka,η(x)

ka,η(x) + kd,η(x)
(2.33)

Plus l’albédo de diffusion est proche de 1, plus la diffusion sera prédominante devant
l’absorption.

La fonction de phase φη(x,u
′|u) représente quant à elle, la probabilité qu’un

photon de direction incidente u diffuse dans une direction u′. Il est souvent difficile
de caractériser ces fonctions de phase, on peut alors se ramener alors à des modèles
approchés. Au cours de ces travaux de thèse, nous nous limiterons aux milieux
isotropes. Les fonctions de phase considérées ne sont alors dépendantes que de l’angle
de déflexion θ illustré par la Fig. 2.8.

ux

uz

uy

u

u′

φ

θ

Figure 2.8 – La fonction de phase associée à la diffusion d’un photon de direction incidente u
dans la direction u′ est décrite par le seul angle de déflexion θ (la probabilité associée à l’angle φ
est uniforme).

Nous décrivons ici seulement les trois seuls modèles utilisés dans la suite de ce
manuscrit :
• La fonction de phase isotrope (voir Fig. 2.9a) est définie de sorte que la

probabilité associée à toutes les directions u′ quel que soit u soit uniforme :

φη,Isotrope(x,u
′|u) =

1

4π
(2.34)

• La fonction de phase d’Henyey-Greenstein (voir Fig. 2.9b) permet de rendre
compte de diffusions fortement anisotropes. Elle est très utilisée du fait de sa
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simplicité d’utilisation et de sa bonne représentativité pour de larges domaines
d’applications. En effet, elle ne dépend que d’un seul paramètre g(x) appelé
facteur d’asymétrie et s’exprime comme :

φη,Henyey-Greenstein(x,u′|u) =
1

4π

1− g(x)2

(1 + g(x)2 − 2g(x) cos(θ))3/2
(2.35)

• La fonction de phase de Rayleigh (voir Fig. 2.9c) est un modèle approché
fréquemment utilisé dans des configurations où le paramètre de taille des
diffuseurs est très petit (2πa/λ� 1 avec a une dimension caractéristique du
diffuseur et λ la longueur d’onde du rayonnement). Son expression est donnée
par :

φη,Rayleigh(x,u′|u) =
3

16π

(
1 + cos2(θ)

)
(2.36)

π/2

3π/2

π θ = 0

(a) Isotrope

π/2

3π/2

π θ = 0

g = 0.95
g = 0.5
g = 0

g = −0.5
g = −0.95

(b) Henyey-Greenstein

π/2

3π/2

π θ = 0

(c) Rayleigh

Figure 2.9 – Représentation des trois fonctions de phase utilisées dans ce manuscrit : en (A)
la fonction de phase isotrope, en (B) la fonction d’Henyey-Greenstein pour différents paramètres
d’asymétrie g et en (C) la fonction de phase de Rayleigh. Les échelles sont arbitraires.

Lorsque l’on se place en un point de l’espace des phases D et plus précisément
lorsque l’on s’attachera à un angle solide du, on distinguera deux types de diffusion
(strictement équivalentes d’un point de vue physique) les diffusions entrantes et
sortantes (respectivement "in-scattering" et "out-scattering" en anglais).

Diffusion entrante On parle de diffusion entrante lorsqu’un photon de direction
incidente u′ diffuse et voit sa nouvelle direction comprise dans l’angle solide d’intérêt
du. L’augmentation locale de luminance le long d’un élément dx due à ce phénomène
de diffusion entrante est alors donnée par :

Sd+,η(x,u) =
dLη(x,u)

dx

∣∣∣∣
diff. entrante

= kd,η(x)

∫

4π

φη(x,u
′|u)Lη(x,u

′)du′ (2.37)

Diffusion sortante On parle de diffusion sortante lorsqu’un photon, dont la
direction incidente est comprise dans l’angle solide d’intérêt du, diffuse dans une
direction u′ non comprise cette fois dans l’angle solide d’intérêt. La diminution de
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luminance le long d’un élément dx associée à ce phénomène de diffusion entrante est
alors donnée par :

Pd−,η(x,u) =
dLη(x,u)

dx

∣∣∣∣
diff. sortante

= kd,η(x)Lη(x,u) (2.38)

La prise en compte rigoureuse de la diffusion est en pratique complexe et fait appel
à des considérations ondulatoires (résolution des équations de Maxwell). Ne faisant
pas l’objet des travaux présentés dans ce manuscrit, la diffusion sera uniquement
prise en compte en toute généralité dans les méthodes numériques développées.

2.2.3 Formulation locale de l’équation du transfert radiatif

La prise en compte des termes sources et puits relatifs à l’absorption, l’émission et
la diffusion du rayonnement (présentés à la Sec. 2.2.2) dans le modèle de transport de
photons (voir Eq. 2.19) mène donc, au régime stationnaire, à l’équation du transfert
radiatif suivante :

u.∇Lη(x,u) = Pa,η(x,u) + Pd−,η(x,u) + Se,η(x,u) + Sd+,η(x,u) (2.39)

La somme de ces termes sources (terme de gauche) est connue dans la physique
du transport corpusculaire sous le nom de terme collisionnel, chacune des interactions
possibles entre rayonnement et matière étant qualifiée de collision. Une fois ces termes
collisionnels exprimés, on obtient :

u.∇Lη(x,u) =− ka,η(x)Lη(x,u)− kd,η(x)Lη(x,u) + ka,η(x)Leqη (x)

+ kd,η(x)

∫

4π

φ(u|u′)Lη(x,u′)du′
(2.40)

Il est alors possible d’observer les effets de l’approximation d’équilibre thermo-
dynamique local posée à la Sec. 2.2.1. Cette hypothèse a en effet conduit à une
expression du terme collisionnel telle qu’à l’équilibre thermodynamique l’équation
du transfert radiatif soit validée. En effet, par définition, l’équilibre implique que le
terme de transport pur soit nul : u.∇Lη(x,u) = 0. La luminance d’équilibre étant
isotrope, il en résulte :

0 = −ka,η(x)Leqη (x)−kd,η(x)Leqη (x)+ka,η(x)Leqη (x)+kd,η

∫

4π

φ(u|u′)Leqη (x)du′ (2.41)

Cette égalité est bien validée puisque les termes d’absorption/d’émission, ainsi que
les termes de diffusion s’annulent deux à deux.

2.2.4 Formulation intégrale de l’équation du transfert radiatif

Le transport de photon étant linéaire (les photons ne collisionnent pas entre-
eux), il est facilement possible, grâce au principe de superposition, de reformuler
l’équation du transfert radiatif sous une forme intégrale. En effet, pour un jeu de
conditions aux frontières donné, l’équation du transfert radiatif admet une unique
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solution qui peut être exprimée sous forme intégrale. Ces solutions intégrales, leurs
valeurs statistiques, ainsi que les images physiques qui leur sont associées seront
plus longuement abordées au Chap. 3. Puisqu’il existe une infinité de configurations
d’étude et donc de formulations intégrales, cette sous-section n’a pour objet que de
présenter les éléments essentiels au passage de l’équation locale du transfert radiatif
à son analogue intégral : l’atténuation exponentielle et l’émission de la luminance
par un milieu participant. Les différentes conditions aux frontières seront dans un
premier temps rappelées.

2.2.4.1 Conditions aux frontières

On distingue trois types d’interaction rayonnement/frontière : l’émission, l’ab-
sorption et la réflexion du rayonnement par la paroi.

Une paroi absorbant l’intégralité du rayonnement lui parvenant constitue un corps
noir. La luminance émise par une telle paroi est donc une luminance d’équilibre :
elle dépend, pour un nombre d’onde donné, uniquement de la température de la
paroi. Cependant, une telle paroi n’est qu’une représentation idéale, toute paroi réelle
réfléchit au moins partiellement le rayonnement lui parvenant. En un point xw de la
paroi, la fraction réfléchie de rayonnement pour une direction et un nombre d’onde
donnés est appelée réflectivité et est notée ρη(x,u). Cette réflectivité vérifie l’égalité

ρη(x,u) + αη(x,u) = 1 (2.42)

où αη(x,u) est l’absorptivité de la paroi, qui correspond à la fraction de luminance
absorbée par la paroi. Sous l’hypothèse d’équilibre thermodynamique local, cette
absorptivité est égale à la l’émissivité εη(x,u), une grandeur définie comme le ratio
entre la luminance monochromatique émise par la paroi en xw dans la direction u
et la luminance d’équilibre qu’aurait un corps noir à la même température que la
paroi :

εη(x,u) =
Lη(xw,u)

Leqη (T (xw)
= αη(x,u) = 1− ρη(x,u) (2.43)

Concernant le type de réflexion, nous ne considérerons que deux cas extrêmes
dans ce manuscrit : les réflexions dites spéculaire et diffuse :
• Une surface est dite diffuse si αη(x,u) = εη(x,u) = 1− ρη(x,u) ne dépendent
pas de la direction. La distribution bi-directionnelle de réflexion notée ψη(x)
est donc dans ce cas uniforme et égale à 1/2π : la probabilité qu’un photon
incident dans la direction u soit réfléchi dans une direction u′ est identique
quelle que soit u′ compris dans l’hémisphère extérieur de la paroi. Une telle
paroi est qualifiée de Lambertienne, en référence à la loi de Lambert qui énonce
ce principe.
• Le deuxième type de réflexion traitée est la réflexion spéculaire, cette réflexion

répond à la loi de Descartes qui stipule que le rayonnement est réfléchi de façon
symétrique par rapport à la normale de la surface en xw.



2.2. Équation du transfert radiatif en milieu participant 29

2.2.4.2 Atténuation exponentielle et absence de mémoire

L’équation locale du transfert radiatif associée à des conditions aux frontières,
telles que présentées précédemment, admet donc une unique solution exprimable sous
la forme d’une expression intégrale. On parle alors d’équation du transfert radiatif
sous forme intégrale. Le passage le plus délicat de l’équation locale à son équivalente
intégrale réside très certainement dans l’objet de ce paragraphe : l’atténuation du
rayonnement le long d’un chemin optique.

Concentrons-nous d’abord sur la probabilité qu’a un photon de nombre d’onde η
émis en x0 d’être transmis sur une distance l dans un milieu participant homogène et
non diffusant sans avoir été absorbé. Cette probabilité, notée Tη(l), porte le nom de
transmissivité. En ayant posé l’hypothèse de distribution aléatoire des absorbeurs, il
est possible d’écrire cette probabilité comme le produit de la probabilité qu’aurait
un photon d’être transmis sur une distance l1 et de celle d’être transmis sur une
distance l2 telles que l1 + l2 = l :

Tη(l) = Tη(l1)× Tη(l2) (2.44)

En d’autres termes, cela signifie que sous cette hypothèse, la probabilité qu’un
photon a de parcourir une certaine distance sans avoir été absorbé ne dépend pas de
son histoire ou de la distance qu’il a déjà parcourue. Cette propriété, courante en
physique (ex : désintégration nucléaire, décharge électrique d’un condensateur, etc.)
est qualifiée d’absence de mémoire. L’unique expression de la transmissivité validant
l’Eq. 2.44 est alors :

Tη(l) = exp

(
− l
β

)
(2.45)

où β est une valeur strictement positive caractérisant le libre parcours moyen d’ab-
sorption. Or dans la Sec. 2.2.2.1, nous avons défini le coefficient d’absorption comme
l’inverse du libre parcours moyen. Il vient alors :

Tη(l) = exp (−ka,ηl) (2.46)

Cette loi caractérise donc l’extinction ou l’atténuation exponentiellement du rayon-
nement due à l’absorption. Elle est connue sous le nom de loi de Beer-Lambert et
peut être étendue à un milieu hétérogène par :

Tη(xa, xb) = exp

(
−
∫ xb

xa

ka,η(x
′)dx′

)
= exp (−τη(xa, xb)) (2.47)

où Tη(xa, xb) correspond à la probabilité qu’un photon soit transmis entre xa et
xb et où τη(xa, xb) =

∫ xb
xa
ka,ηx

′dx′ est appelée épaisseur optique. Cette grandeur
adimensionnelle donne une information sur le caractère absorbant d’un milieu
le long d’un chemin optique (ici [xa, xb]). Pour τη(xa, xb) � 1 le milieu est dit
mince : l’essentiel du rayonnement sera transmis le long de [xa, xb]. Au contraire
pour τη(xa, xb) > 5, le milieu est qualifié d’épais, une très faible proportion du
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rayonnement sera transmis, l’essentiel étant absorbé.

Si l’on suppose à nouveau que le milieu est homogène, il est possible de poursuivre
ce raisonnement sous un aspect différentiel. Considérons désormais la probabilité
pL(l)dl qu’un photon soit absorbé après avoir parcouru une distance élémentaire dl.
La grandeur pL(l)dl correspond alors à la probabilité qu’un photon parcoure une
distance supérieure à l mais inférieure à l + dl. On peut donc écrire :

pL(l)dl = Tη(l)− Tη(l + dl) (2.48)

Sous un formalisme différentiel, il vient à partir de l’Eq. 2.46 et de l’Eq. 2.48 :

pL(l) = −dTη(l)
dl

= ka,η exp (−ka,ηl) (2.49)

où pL(l) correspond alors à la densité de probabilité des libres parcours d’absorption
l et peut être également définie pour un milieu hétérogène par :

pL(l) = ka,η(xa + l) exp

(
−
∫ l

0

ka,η(xa + l′)dl′
)

(2.50)

où pL(l) est la fonction densité de probabilité des libres parcours l pour des photons
ayant été émis en xa. Cette densité de probabilité est normalisée sur [0,+∞[. En
effet, la probabilité qu’un photon soit absorbé par un milieu absorbant sur un chemin
infini est bien égale à un.

Note : Perte de l’absence de mémoire lors de l’intégration spectrale
L’absence de mémoire et l’atténuation exponentielle associée ne sont valables

que pour des grandeurs monochromatiques. Dès lors que l’on intègre les
grandeurs d’intérêt sur une plage de nombres d’onde, ces comportements
exponentiels ne sont plus respectés. Une façon de s’en convaincre consiste à
considérer la transmissivité globale Tη(l) de deux couches homogènes : l’une
d’épaisseur l1 et de coefficient d’absorption ka,η,1, l’autre de dimension l2 et de
coefficient d’absorption ka,η,2 telles que l = l1 + l2.

Comme nous venons de le voir, il est possible d’écrire de façon monochroma-
tique :

Tη(l) = exp (−ka,η,1l1 − ka,η,2l2)

= exp (−ka,η,1l1)× exp (−ka,η,2l2)

= Tη(l1)× Tη(l2)

(2.51)

Mais dès que l’on souhaite intégrer spectralement cette transmissivité sur ∆η,
il vient :

T (l) =

∫

∆η

Tη(l)dη =

∫

∆η

Tη(l1)× Tη(l2)dη 6= T (l1)× T (l2) (2.52)
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La transmissivité globale T (l) intégrée spectralement est bien différente du
produit des transmissivités intégrées T (l1) et T (l2), l’atténuation exponentielle
n’est plus applicable. L’intégration spectrale crée donc un phénomène de type
mémoire : alors que la distribution aléatoire des absorbeurs assurait une absence
de mémoire, la distribution spectrale des photons contient, elle, de l’information
relative à la distance qu’ils ont déjà parcourue.

Transmission de rayonnement par une colonne de milieu participant Il
devient alors possible d’utiliser ces notions de transmissivité et de densité de pro-
babilité de libre parcours pour exprimer la luminance transmise par une colonne.
On souhaite étudier la luminance en xb dans la direction sortante résultant d’une
émission en xa (où est placée une paroi noire) et atténuée entre xa et xb par un milieu
non-émettant (de température nulle) et non-diffusant. À partir de la définition de la
transmissivité il vient :

L+
η (xb) = Leqη (xa)Tη(xa, xb)

= Leqη (xa) exp

(
−
∫ xb

xa

ka,ηx
′dx′
)

(2.53)

Cette équation s’interprète assez facilement : seule une fraction Tη(xa, xb) de la
luminance Leqη (xa) émise en xa est transmise jusqu’en xb. On constate également que
cette expression intégrale est bien solution de l’équation locale du transfert radiatif
pour la configuration considérée (pas de diffusion ni d’émission du milieu et paroi
noire en xa). De la même manière, il est possible d’exprimer L+

η (xb) en faisant appel
à la distribution des libres parcours :

L+
η (xb) =

∫ +∞

0

pL(l) H (l − (xb − xa))Leqη (xa)dl (2.54)

où la fonction de Heaviside H (l − (xb − xa)) vaut 1 si l > xb − xa et 0 sinon. Ici, les
images associées à cette expression sont légèrement différentes : la luminance L+

η (xb)
est définie comme la fraction des photons (à une constante hcηc près) émis par la
paroi en xa ayant eu un libre parcours supérieur à l et donc ayant bien été transmis
par la colonne.

Émission de rayonnement par une colonne de milieu participant Mainte-
nant, si l’on considère que le milieu émet en plus d’absorber et que la paroi n’émet
plus, il est possible d’exprimer la luminance en xb dans la direction sortante résultant
d’une émission de rayonnement par le milieu défini sur [xa, xb] atténuée exponen-
tiellement jusqu’en xb. Les hypothèses d’équilibre thermodynamique local et de
stationnarité imposent que la fraction de rayonnement absorbée le long d’un chemin
optique est égale à celle émise par ce même milieu. On peut alors définir l’absorptivité
Aη(xa, xb) du milieu, qui représente la probabilité qu’un photon soit absorbé sur une
distance [xa, xb] donnée. Celle-ci correspond à la probabilité complémentaire de la
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transmissivité :
Aη(xa, xb) = 1− Tη(xa, xb) (2.55)

En effet, sur une distance donnée, en l’absence de diffusion, soit le photon est absorbé,
soit il est transmis.

En supposant le milieu isotherme de luminance d’équilibre Leqη , la luminance
L+
η (xb) est alors donnée par

L+
η (xb) = Leqη (1− Tη(xa, xb)) (2.56)

La luminance L+
η (xb) correspond alors la luminance d’équilibre du milieu pondérée

de la fraction émise sur [xa, xb].

En faisant appel à la densité de probabilité des libres parcours, on peut également
écrire pour un milieu anisotherme :

L+
η (xb) =

∫ xb

xa

ka,η(x) exp

(
−
∫ xb

x

ka,η(x
′)dx′

)
Leqη (x) (2.57)

Dans ce cas, deux images physiques sont possibles pour interpréter cette expression
de L+

η (xb) :
• soit on considère que sur chaque intervalle dx du milieu une luminance
ka,η(x)Leqη (x)dx est émise et que seule une fraction exp

(
−
∫ xb
xa
ka,η(x

′)dx′
)

est transmise jusqu’en xb.
• soit que la luminance L+

η (xb) est définie comme l’intégrale sur [xa, xb] des
luminances d’équilibres distribuées selon la densité de probabilité des libres
parcours pL(l).

2.2.4.3 Prise en compte de la diffusion

La prise en compte de la diffusion sera traitée plus en détail au Chap. 3, cependant
nous avons vu que la diffusion contribue de deux manières différentes à l’équation
du transfert radiatif : la diffusion entrante et la diffusion sortante, respectivement à
l’origine d’une augmentation et d’une diminution de la luminance en un point de
l’espace des phases.

La disparition de luminance par diffusion est traitée de la même manière que
l’atténuation du rayonnement par l’absorption. En effet, la loi de Beer-Lambert
et l’absence de mémoire s’appliquent également à la diffusion, mis à part que la
fréquence spatiale de disparition est donnée par le coefficient de diffusion et non par
le coefficient d’absorption. Dans la pratique, on ne distinguera pas les atténuations
par absorption et par diffusion. On raisonnera en termes de coefficients d’extinction.
L’atténuation causée par ces deux phénomènes le long d’un chemin optique curviligne
entre 0 et ς est alors donnée par :

Tη(ς) = exp

(
−
∫ ς

0

ka,η(ς
′) + kd,η(ς

′)dς ′
)

= exp

(
−
∫ ς

0

kη(ς
′)dς ′

)
(2.58)
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L’apparition de rayonnement par diffusion, est quant à elle plus délicate à prendre
en compte, en particulier lorsque les événements de diffusion sont multiples. Elle
implique une récursivité du fait de la présence de la luminance dans l’intégrale
directionnelle du terme source Sd,η(x,u) de l’équation locale du transfert radiatif.
Cette récursivité sera présentée plus amplement à la Sec. 3.4). Cependant, l’apport
par diffusion ne pose pas de problèmes intrinsèques majeurs (outre des problèmes de
formalisme), il sera toujours possible d’alléger cette écriture récursive en raisonnant en
abscisses curvilignes dans une vision de type intégrales de chemins [Dauchet, 2012].

2.3 Nature, dépendances et modèles du coefficient
d’absorption en milieu gazeux

De par sa forte dépendance aux nombres d’onde, aux fractions molaires des es-
pèces en présence et aux propriétés thermodynamiques du milieu, la prise en compte
du coefficient d’absorption représente une des principales difficultés rencontrées lors
de l’étude du rayonnement en milieu gazeux. Les notions d’émission et d’absorption
par un milieu semi-transparent ont déjà été abordés dans le but de les placer dans une
description mésoscopique. Toutefois, nous ne nous sommes pas encore intéressés aux
phénomènes et mécanismes sous-jacents. Ces derniers, qui font appel à des concepts de
mécanique quantique, feront l’objet de cette section (pour plus d’informations, le lec-
teur pourra se référer aux textes [Tien, 1969, Taine et Soufiani, 1999, Heitler, 2010]).
La nature même du coefficient d’absorption et sa représentation sous forme de raies
puis de spectres d’absorption seront ainsi abordées.

2.3.1 Mécanismes d’absorption et d’émission du rayonne-
ment

L’approche corpusculaire du rayonnement a posé au début du XXème siècle
les fondements de la mécanique quantique. Cette dernière émet, entre-autres, le
postulat que les états énergétiques Ei d’une molécule sont discrets (ou quantifiés).
L’énergie d’une molécule est la résultante de plusieurs formes d’énergie. Dans le cas
du rayonnement, seules certaines formes d’énergie importeront, on parlera d’états
énergétiques électroniques, vibrationnels et rotationnels (ici classés du plus au moins
énergétique). Spontanément, ou suite à une interaction avec son environnement, la
molécule peut passer d’un état énergétique élevé Eu à un plus faible El et inversement :
de El à Eu. On qualifie alors ces "sauts" quantifiés de transitions énergétiques. Dans
le cas de l’étude du rayonnement dans les gaz, on distingue trois mécanismes menant
à ces transitions : l’émission spontanée, l’émission stimulée (ou émission induite
ou encore absorption négative) et l’absorption d’un photon par la matière. Ces
trois interactions sont schématisées dans la Fig. 2.10. Il est possible, grâce à la
mécanique quantique, de définir les coefficients d’absorption et d’émission relatifs à
ces interactions en faisant appel à des modèles cinétiques, basés sur des grandeurs
connues sous le nom de coefficients d’Einstein [Modest, 2013, André et al., 2014].
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Figure 2.10 – Mécanismes d’interaction matière-rayonnement : (a) Absorption ; (b) Émission
Spontanée ; (c) Émission Stimulée.

Émission spontanée On parle d’émission spontanée lorsqu’une molécule dans un
état énergétique Eu émet un photon passant ainsi à un état énergétique inférieur El.
Le nombre d’onde η du photon émis est directement conditionné par cette transition
et répond à l’égalité

Eu − El = hηc (2.59)

Absorption A l’opposé de l’émission spontanée : un photon d’énergie hηc peut être
absorbé par une molécule d’énergie El si cette molécule possède un état énergétique
Eu validant l’Eq. 2.59.

Émission stimulée Enfin, le dernier type d’interaction photon/molécule est appelé
émission stimulée. On la rencontre lorsqu’un photon de nombre d’onde "compatible"
aux états énergétiques d’une molécule va la faire passer d’un état énergétique Eu à un
état El inférieur, émettant ainsi deux photons strictement identiques d’énergie hηc.
Alors que l’absorption et l’émission spontanée sont isotropiques, l’émission stimulée
voit ses deux photons émis dans la direction du photon incident (cette propriété est
à l’origine du développement des lasers).

2.3.2 Raie d’absorption isolée

Toute absorption et émission de photons par la matière est donc conditionnée par
les états énergétiques quantifiées de la molécule considérée. Si l’on souhaitait, pour
une espèce m donnée et une transition énergétique ı isolée, tracer la raie d’absorption
associée à cette transition (c’est-à-dire représenter le coefficient d’absorption relatif à
cette transition en fonction du nombre d’onde), il serait cohérent d’imaginer cette
fonction comme un Dirac centré en le nombre d’onde η validant Eu−El = hcη. Mais
en pratique, ce n’est pas le cas. Plusieurs facteurs sont à l’origine d’un élargissement
sur l’échelle des nombres d’onde de ces prétendus "Diracs". Il est alors courant de
décomposer le coefficient d’absorption 9 associé à la transition isolée ı de la molécule
m comme le produit d’une densité volumique d’absorbeurs Cm(x) et d’une section
efficace ση,ı(x) elle-même définie comme le produit d’une intensité de raie Sı(x) et

9. Tout au long de ce manuscrit, nous noterons le coefficient d’absorption associée à une raie ı
isolée ha,η,ı et le coefficient d’absorption global, résultant d’une multitude de transitions, ka,η.
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d’un profil de raie fı(η) ≡ fı,m(η,x) :

ha,η,ı(x) = Cm(x)× Sı(x)× fı(η) (2.60)

où l’intensité de raie correspond à l’intégrale selon η de ση,ı(x) sur [−∞,+∞] et
le profil de raie est une fonction densité de probabilité normalisée sur [−∞,+∞]
caractérisant l’élargissement de la raie.
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Figure 2.11 – Spectre d’absorption d’une raie isolée centrée en η0. La transition est décrite par le
produit de la densité volumique de l’espèce considérée, de son intensité et du profil de raie considéré
dont le paramètre principal est la demi-largeur à mi-hauteur γ.

2.3.2.1 Élargissement des raies

On dénombre quatre principaux phénomènes à l’origine de l’élargissement des
raies : les élargissements collisionnels, naturels, par effet Doppler et effet Stark
[Goody et Yung, 1996, Caliot, 2006, Modest, 2013].

Élargissement collisionnel La principale cause d’élargissement des raies d’ab-
sorption est attribuée aux collisions inter-moléculaires qui causent une légère variation
des états énergétiques des molécules entraînant ainsi une légère variation de l’énergie
(et donc du nombre d’onde) d’émission du photon. Cet élargissement est d’autant
plus prononcé que le nombre de collisions est important et donc croit avec la pression.

Élargissement naturel Une autre cause d’élargissement repose sur le principe
d’indétermination (énoncé par W. Heisenberg en 1927), on parle d’élargissement
naturel. Une des conséquences de ce principe est qu’il n’est pas possible de connaître
sans incertitude à la fois le temps d’occupation naturel d’un état énergétique et l’éner-
gie associée à cet état, influant ainsi sur le nombre d’onde du photon émis. Toutefois,
cet élargissement est généralement négligeable face à l’élargissement collisionnel.

Élargissement par effet Doppler Chaque molécule ayant une vitesse propre, il
convient également de prendre l’effet Doppler en compte. En effet, si une molécule
de vitesse vm (par rapport au référentiel de l’observateur) émet un photon, l’onde
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électromagnétique associée à ce photon va atteindre l’observateur avec un nombre
d’onde supérieur ou inférieur au nombre d’onde théorique η0 associé à la transition
ayant conduit à l’émission. Ce nombre d’onde observé peut être supérieur ou infé-
rieur à η0 selon que la molécule s’éloigne ou se rapproche de l’observateur. Un tel
élargissement dépend de la vitesse des molécules et sera donc d’autant plus prononcé
que la pression du milieu sera faible et que sa température sera élevée.

Élargissement par effet Stark Enfin, le dernier type d’élargissement (mentionné
ici à titre purement indicatif) est causé par l’effet Stark. En présence de forts
champs électriques, il devient largement prédominant face aux trois autres types
d’élargissement. On le rencontre particulièrement dans les gaz ionisés.

2.3.2.2 Profils de raies

Ces différents types d’élargissement se caractérisent par deux principaux profils
de raies symétriques, centrés autour du nombre d’onde η0 validant Eu − El = hη0c.
Ces profils sont normalisés sur ]−∞,+∞[ et traduisent l’élargissement de la raie en
fonction du nombre d’onde η.

Profil de Lorentz L’élargissement collisionnel et l’élargissement naturel se carac-
térisent par un profil de raie de type distribution de Cauchy, couramment appelé
profil de Lorentz. Il s’exprime :

fı,L(η) =
γL
π

1

γ2
L + (η − η0)2

(2.61)

où γL est appelée demi-largeur de raie du profil de Lorentz (voir Fig. 2.11).

Profil de Doppler L’élargissement par effet Doppler se caractérise quant à lui
par un profil de raie de la forme d’une distribution gaussienne. Il s’exprime comme :

fı,D(η) =

√
ln(2)

π

1

γD
exp

(
− ln(2)

(η − η0)2

γ2
D

)
(2.62)

où γD est la demi-largeur de raie du profil de Doppler.

Profil de Voigt Il est cependant difficile de choisir entre le profil de Lorentz et
celui de Doppler lorsque les collisions intermoléculaires et l’effet Doppler sont du
même ordre de magnitude. Il est donc courant d’utiliser un troisième profil, appelé
profil de Voigt, qui est défini comme le produit de convolution du profil de Lorentz
et de celui de Doppler :

fı,V (η − η0) =

∫ +∞

−∞
fı,L(η − (η′ − η0))fı,D(η′ − η0)dη′ (2.63)

Pour des pressions atmosphériques ou supérieures, les profils de Lorentz et de
Voigt sont quasiment identiques (voir Fig. 2.12a). Ce n’est que pour des pressions
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très faibles qu’une différence entre ces deux profils sera constatée et pour lesquelles
le profil de Voigt - plus fidèle à la physique - devra être privilégié (voir Fig. 2.12b).
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Figure 2.12 – Différence entre les profils de Lorentz et de Voigt pour la description d’une raie
isolée. Pour une pression de P = 1atm les deux profils sont quasiment identiques (voir Fig. (a)). Au
contraire pour une pression beaucoup plus faible de P = 10−3atm les deux profils se différencient
très nettement à cause de l’effet Doppler qui devient dominant (voir Fig. (b)). La raie considérée
est une raie de CO2 centrée en η0 = 2041.288360cm−1 à une température de 300K. La fraction
molaire de CO2 est de χCO2

= 0.1.

Correction de profils Il est possible que les profils de Lorentz ou de Voigt
ne soient pas suffisamment satisfaisants, en particulier lorsque les pressions ren-
contrées sont importantes. Des modifications de ces profils [Hartmann et al., 2008,
Eymet et al., 2009, Eymet, 2011b, André et al., 2014] sont alors appliquées.
• La première d’entre-elles concerne les ailes de raie qui sont, lorsque la pression
est importante, surestimées par les profils de raie usuels (de Lorentz ou de
Voigt) [Burch et al., 1969]. Des fonctions correctives sont alors appliquées, me-
nant à un nouveau profil qualifié de sub-Lorentzien [Perrin et Hartmann, 1989,
Tonkov et al., 1996]. Ces surestimations des ailes de raie sont essentiellement
constatées dans des bandes qualifiées de fenêtres spectrales, où les valeurs des
coefficients d’absorption sont très faibles. Alors que leur impact est négligeable
dans la plupart des applications de types sciences de l’ingénieur (combustion
...), il devient sensible dès lors que les épaisseurs optiques du milieu considéré
deviennent importantes, en particulier pour des applications atmosphériques et
astrophysiques [Bézard et al., 1990].
• Les fortes pressions mettent également en défaut les profils de raies usuels pour
une seconde raison. En effet, ces pressions élevées engendrent, sur des temps
caractéristiques très courts, de nouvelles espèces chimiques. Ces nouveaux élé-
ments, ayant des transitions énergétiques propres, vont avoir tendance à élargir
les profils de raies étudiés. On parlera alors d’absorption induite par collisions.
Ce phénomène est en pratique corrigé par l’ajout d’un continuum correctif au
spectre d’absorption [Moskalenko, 1979, Gruszka et Borysow, 1997].
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Cependant la plage de validité de ces deux types de profils correctifs demeure
généralement limitée : seules quelques bandes spectrales pour quelques espèces
chimiques ont aujourd’hui été paramétrées.

2.3.2.3 Comportement des raies d’absorption en fonction des conditions
thermodynamiques

La pression P , la température T ainsi que la fraction molaire χm de l’espèce
considérée vont influer sur le profil fı(η) et l’intensité Sı de la raie et a fortiori sur
sa section efficace σa,ı,η = fı(η)Sı et donc sur son coefficient d’absorption ha,ı,η =
Cmσa,ı,η.

Effet de la fraction molaire. La fraction molaire de l’espèce considérée influe
sur la largeur de raie et donc sur la section efficace de la transition considérée
(voir Fig. 2.13a). Une augmentation de cette fraction molaire peut conduire à un
élargissement où à un rétrécissement de la raie. Le coefficient d’absorption, défini
comme le produit de la section efficace et de la densité volumique de l’espèce considérée
(directement proportionnel à sa fraction molaire), à une tendance à augmenter avec
la fraction molaire (voir Fig. 2.13b).
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Figure 2.13 – Effet de la fraction molaire sur la section efficace et le coefficient d’absorption d’une
raie de CO2 isolée centrée en η0 = 2041.288360cm−1 à une température de 300K et une pression
de 1atm. Le profil de raie considéré est un profil de Voigt.

Effet de la pression. La pression joue quant à elle un rôle à la fois sur la densité
volumique de l’espèce considérée, sur sa largeur et sa composante liée à l’effet Doppler
(si l’on considère un profil de Voigt) et également sur le nombre d’onde de centre
de raie. De façon générale, on constate qu’une augmentation de la pression a pour
conséquence un aplatissement de la raie d’absorption et au contraire que de très faibles
pressions engendrent des raies proches de Diracs (voir Fig. 2.14). En considérant
un profil de Voigt, plus la pression est élevée, plus le coefficient d’absorption aura
tendance à être important.
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Figure 2.14 – Effet de la pression sur la section efficace (donnée avec une échelle logarithmique)
et le coefficient d’absorption d’une raie de CO2 isolée centrée en η0 = 2041.288360cm−1 à une
température de 300K. La fraction molaire de CO2 est de χCO2

= 0.1 et le profil de raie considéré
est un profil de Voigt.

Effet de la température Enfin, la température est l’élément à l’origine du plus
grand nombre de sources de variation du coefficient d’absorption. Plus elle est
importante, plus la densité volumique de l’espèce considérée est faible. La température
influe également de façon complexe et non monotone sur l’intensité et la largeur
de raie selon la transition considérée (voir Fig. 2.15). Il est fréquent de constater
une augmentation substantielle du coefficient d’absorption de certaines raies avec la
température, alors que pour les mêmes conditions, d’autres tendent à disparaître.
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Figure 2.15 – Effet de la température sur la section efficace et le coefficient d’absorption d’une raie
de CO2 isolée centrée en η0 = 2041.288360cm−1. La fraction molaire de CO2 est fixée à χCO2

= 0.1,
la pression à 1atm et le profil de raie considéré est un profil de Voigt.
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2.3.3 Des transitions énergétiques au spectre d’absorption

2.3.3.1 De la raie au spectre

Jusqu’alors, nous nous sommes concentrés sur une raie isolée. Cependant lorsque
l’on étudie un gaz, celui-ci est le plus souvent composé de plusieurs espèces qui doivent
être prises en compte. De surcroît, chaque molécule de chaque espèce occupe un état
énergétique donné. Cela se traduit par un nombre très conséquent de transitions qui,
elles aussi doivent être considérées. Il est alors courant de considérer le coefficient
d’absorption ka,η(x) - pour un nombre d’onde, des conditions thermodynamiques et
un mélange donnés - comme la somme des participations ha,ı,η(x) = Cm(x)σı,η(x) de
toutes les transitions Nı(m) de toutes les espèces Nm du mélange (voir Fig. 2.16) :

ka,η(x) =
Nm∑

m=1

Nı(m)∑

ı=1

ha,ı,η(x) =
Nm∑

m=1

Cm(x)

Nı(m)∑

ı=1

σı,η(x) (2.64)
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Spectre

Figure 2.16 – Le spectre d’absorption est égal à la somme des participations de chaque raie en
chaque nombre d’onde η.

La description du coefficient d’absorption comme la somme des participations
de raies isolée constitue une hypothèse généralement raisonnable lorsqu’il s’agit de
produire des spectres. Cette hypothèse sera d’ailleurs retenue tout au long de ce
manuscrit. Cependant, en la posant, on omet en particulier de prendre en compte
un effet appelé "Line Mixing" [Hartmann et al., 2008]. En effet, des interactions
entres deux transitions d’une même molécule peuvent avoir lieu par un transfert de
population (on parle aussi d’échange d’intensité). C’est par exemple le cas lorsqu’un
photon d’énergie hcη sensé conduire, lors de son absorption par une molécule, à une
transition donnée, mène en fait, à cause d’une légère variation de l’état énergétique
de la molécule (causée par des collisions moléculaires) à une autre transition très
proche de la première.
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2.3.3.2 Bases de données spectroscopiques

Lors de l’étude du rayonnement en milieu participant, il est nécessaire de pouvoir
caractériser en tout point et pour tout nombre d’onde les propriétés optiques du
milieu et en particulier le coefficient d’absorption. On fait alors généralement appel
aux spectres d’absorption, définis pour un mélange (espèces en présence, fractions
molaires respectives) et un jeu de conditions thermodynamiques (pression, tempéra-
ture). Toutefois, mis à part pour quelques configurations académiques homogènes, il
est généralement nécessaire de recourir à un grand nombre de spectres pour couvrir
les hétérogénéités de propriétés du milieu. Une production expérimentale de ces
spectres serait une tâche très lourde et complexe qui devrait être renouvelée à chaque
changement de cas d’étude ou d’hypothèses relatives au calcul du spectre (profil,
élargissements, troncatures, etc.). Aussi, une large communauté de spectroscopistes
s’attache, depuis plusieurs décennies à produire, pour différentes espèces molécu-
laires, des bases de données dites de transitions ou spectroscopiques (les principales
bases de données sont citées dans la Tab. 2.2). Originellement, ces bases de don-
nées spectroscopiques ont été développées pour des applications atmosphériques
[McClatchey et al., 1973] (HITRAN, GEISA, CDSD1000), et ont été étendues pour
la gestion de configurations à hautes températures (CDSD-4000, Hitemp).

BDD + Version Référence Espèces Gamme de T
CDSD-1000 [Tashkun et al., 2003] CO2 . 1000K
CDSD-4000 [Tashkun et Perevalov, 2011] CO2 . 4000K

Geisa 2011 [Jacquinet-Husson et al., 2011] 50 molécules Basses températures
Hitemp [Rothman et al., 2010] CO2, H2O, CO, NO, OH . 1000K

Hitemp 2010 . 3000K

Hitran 2008 [Rothman et al., 2009] 42 molécules Basses températuresHitran 2012 [Rothman et al., 2013] 47 molécules

Table 2.2 – Principales bases données spectroscopiques fournies avec leur référence bibliographique
et les espèces et gammes de températures d’application pour lesquelles elles sont établies.

Ces bases de données spectroscopiques recensent, pour un nombre conséquent
de transitions énergétiques, quelques dizaines de paramètres 10. Chaque jeu de para-
mètres permet alors de produire numériquement des raies d’absorption et ainsi des
spectres [Eymet, 2011b, Eymet, 2013, André et al., 2014]. Outre certains paramètres
quantiques ne rentrant pas directement en jeu dans la production de spectres, ces
bases de données rassemblent pour chaque transition les paramètres suivants :
• m : Indice de la molécule
• iiso : Indice de l’isotope
• ηv0 : Nombre d’onde central de la transition dans le vide (cm−1)
• S : Intensité de raie pour la température de référence (cm−1/(molecule cm−2))
• γair : Coefficient d’élargissement par collisions avec le reste du mélange (consi-

déré comme de l’air) (cm−1atm−1)

10. L’ensemble des bases citées dans la Tab. 2.2 ont adopté le même format de données, il est
donc aisé dans des considérations informatiques de passer indifféremment de l’une à l’autre
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• γself : Coefficient d’élargissement par collisions avec des molécules de l’espèce
considérée (cm−1atm−1)
• Elow : Énergie du niveau bas de la transition (cm−1)
• nair : Exposant de dépendance à la température de γair (−)
• nself : Exposant de dépendance à la température de γself (−) (uniquement

dans CDSD4000)
• δP : Coefficient de décalage induit par la pression (cm−1atm−1).
Toutefois, cette paramétrisation est très délicate. En effet, l’essentiel de ces

paramètres est dépendant de la température, aussi chacune de ces bases de données
est produite pour une température de référence Tref = 296K, mis à part pour
CDSD-1000 où Tref = 1000K. De plus, la définition rigoureuse de la largeur d’une
raie nécessite de connaître les fractions molaires de l’ensemble des espèces en présence
pour quantifier les collisions inter-moléculaires conduisant à cet élargissement.
Ne pouvant être représentatif de l’ensemble des mélanges gazeux, seules deux
contributions à cet élargissement de raie sont fournies dans ces bases de données :
celle due à l’espèce considérée (collisions entre molécules de la même espèce), et celle
due aux collisions avec un mélange ayant la composition de l’air de l’atmosphère
terrestre. Cela signifie donc que, dès lors que l’on s’éloignera de compositions proches
de l’atmosphère terrestre, les spectres produits à partir de ces bases de données
spectroscopiques seront plus ou moins biaisés.

Destinées originellement à l’étude de l’atmosphère terrestre, où les températures
sont relativement faibles, ces bases de données ne recensaient que les paramètres des
raies les plus intenses aux températures caractéristiques de leur objet d’application.
Au cours du temps, avec des besoins croissants en termes de précision et de domaine
d’application, ces bases de données n’ont cessé de s’enrichir, par l’introduction
de raies de moins en moins intenses. Aujourd’hui les bases de données "basses
températures" peuvent compter jusqu’à quelques millions de transitions pour une
molécule unique.

Le besoin de bases de données pour décrire des applications "haute température"
(notamment pour le domaine de la combustion) a également poussé la communauté
de spectroscopistes à produire des bases de données encore plus importantes. En effet,
comme présenté à la Sec. 2.3.2.3, la température "active" un grand nombre de raies qui
étaient jusqu’alors imperceptibles à faible température (voir Fig. 2.17). Ces nouvelles
bases de données (CDSD, Hitemp) répertorient ainsi un nombre considérable de
transitions susceptibles d’être sensibles à haute température (la base de données
CDSD-4000 rassemble pour la seule molécule de CO2 les paramètres de plus de 600
millions de raies pour un volume de données approchant les 80Go).

2.3.3.3 Production de spectres d’absorption haute-résolution

À partir de l’Eq. 2.64 et des paramètres contenus dans les bases de données
spectroscopiques, il est alors possible de calculer le coefficient d’absorption pour un
nombre d’onde, une température, une pression et une fraction molaire donnés (dans
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Figure 2.17 – Spectres d’absorption d’un mélange de gaz (5% de CO2 et 95% de N2) à pression
atmosphérique pour deux températures différentes : T = 300K et T = 2000K. Le spectre à haute
température présente un nombre beaucoup plus élevé de raies significatives.

la limite de validité de la base de données). Celui-ci s’exprime comme :

ka,η(x) =
Nm∑

m=1

Cm(x)

Nı(m)∑

ı=1

Sı(x)fı(η,x) (2.65)

L’intensité de la raie ı est donnée par :

Sı(x) = S(Tref )
Q(Tref )

Q(T (x))

exp

(
−C2Elow

T (x)

)

exp

(
−C2Elow

Tref

)
1− exp

(
−C2η0

T (x)

)

1− exp

(
−C2η0

Tref

) (2.66)

où c2 = 100hc0/kB ≈ 1.4388K.cm et où Q(T ) est la fonction de partition de
l’isotope de l’espèce considérée à la température d’intérêt T . Ces fonctions de
partitions peuvent être obtenues à partir de modèles quantiques analytiques de type
oscillateurs harmoniques [André et al., 2014], ou à partir de tabulations et d’un
schéma d’interpolation. Au cours de ces travaux, nous utiliserons les tabulations
publiées dans [Fischer et al., 2003] (distribuées avec la base de données Hitran) en
utilisant une interpolation Lagrangienne du troisième degré.

Concernant le profil de raie, les deux choix communs sont les profils de Lorentz
ou de Voigt. Dans les deux cas le nombre d’onde de centre de raie est donné par

η0 = ηv0 + δP × P (2.67)
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Pour un nombre d’onde η la valeur du profil de Lorentz est donnée par

fı,L(η,x) =
1

π

γL,η(x)

γL,η(x)2 + (η − η0)2
(2.68)

où γL,η(x) est la demi-largeur à mi-hauteur du profil de Lorentz que l’on obtient à
partir des paramètres contenus dans les bases spectroscopiques par :

γL,η(x) =

(
Tref
T (x)

)nair
[γselfPs + γair(P − Ps)] (2.69)

La valeur du profil de Voigt est, quant à elle, plus difficile à calculer d’un point de
vue numérique car non analytique. En effet, il s’agit d’un produit de convolution d’un
profil de Lorentz et d’un profil de Doppler. Nous avons fait ici le choix de recourir à
l’algorithme d’Humlicek [Humlicek, 1982] qui présente l’avantage de maîtriser l’erreur
numérique commise. Cette routine nécessite en plus de la demi-largeur du profil de
Lorentz, la demi-largeur du profil de Doppler, donnée par :

γD,η(x) =
η0

c0

√
2 ln(2)kBT (x)

M
(2.70)

où M est la masse molaire de l’isotope considéré.

La production de spectres d’absorption à partir de bases de données spectrosco-
piques demeure tout de même une tâche fastidieuse. En effet, pour une résolution
spectrale déterminée, l’ensemble des contributions de chaque transition Sı(x)fη,ı(x)
doit être calculé. En pratique pour des cas à pression atmosphérique, la résolution
communément admise pour décrire correctement la variation spectrale du coefficient
d’absorption est de 10−2cm−1 soit près de dix millions de points pour couvrir entiè-
rement la gamme spectrale du rayonnement thermique (un exemple de spectre haute
résolution est donné à la Fig. 2.18). Pour des pressions plus faibles, il est courant de
descendre à une résolution inférieure à 10−5cm−1. Une telle production de spectres et
l’étude radiative qui s’y appuie sont connues sous le nom d’approche raie par raie (ou
LBL, pour line-by-line) et fait office de solution de référence. Pour alléger ce coûteux
processus, il est alors courant de recourir à plusieurs hypothèses simplificatrices :
• Sélectionner uniquement les raies les plus intenses dans les gammes de tempéra-

tures d’étude. Les seuils minimum d’intensité pour une température donnée sont
généralement de l’ordre de 3.10−27cm/molecule voire de 3.10−29cm/molecule
[Rothman et al., 2013].
• La seconde méthode consiste à considérer que les raies n’apportent une contri-
bution au coefficient d’absorption que pour des nombres d’onde proches de
celui du centre de raie. Ainsi, les ailes de raie au-delà d’une certaine distance
(généralement 25cm−1) sont tronquées : ha,|η−η0|>0 = 0cm−1. Une telle approche
peut alléger considérablement les temps de calcul puisque pour un nombre
d’onde η d’intérêt, seules les raies centrées dans l’intervalle [η− 25, η+ 25] sont
prises en compte. Cette approche, connue sous le nom de troncature de raie,
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Figure 2.18 – Spectres d’absorption définis à haute résolution pour différents intervalles spectraux
(à gauche les échelles sont logarithmiques et à droite linéaires). Le mélange gazeux considéré est
composé de 50% de CO2 et de 50% de N2 à une température de 1500K et une pression de 1atm.
Les calculs ont été réalisés à partir de la base de données CDSD-4000 (628 064 550 transitions)
avec une troncature d’aile de raie à 25cm−1 et en considérant des profils de raie Lorentzien.
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est en partie justifiée par le fait que les profils standards de raie (de Voigt et
Lorentz) sont peu représentatifs au niveau des ailes de raie lointaines.
• Enfin, en plus d’être coûteux à produire, ces spectres présentent le désavantage
d’être complexes à gérer lors de calculs radiatifs du fait de l’importante
variation spectrale du coefficient d’absorption. Aussi, depuis près d’un siècle,
un grand nombre de modèles dégradés de spectres (analytiques, statistiques...)
ont été développés pour répondre à ce défaut. Ne faisant pas l’objet des travaux
présentés dans ce manuscrit, ces modèles approchés ne seront pas détaillés.
De plus amples informations concernant ces modèles peuvent être trou-
vés dans [Goody et Yung, 1996, Taine et Soufiani, 1999, Siegel et al., 2011,
Modest, 2013, André et al., 2014].

Différents codes de calculs sont disponibles pour la production de tels spectres
d’absorption, parmi lesquels on peut citer deux codes exécutables directement
via une interface web "Information-calculating system Spectroscopy of Atmosphe-
ric Gases" [Semiletova, 2005] (http://spectra.iao.ru/) et "Hitran on the Web"
[Rothman et al., 2013] (http://hitran.iao.ru/) ou encore le code Kspectrum
[Eymet, 2011b] (http://meso-star.com/) développé par V. Eymet qui présente
l’avantage de pouvoir maîtriser les erreurs d’interpolation spectrale grâce à un
maillage à pas adaptatif.

Résumé du chapitre

Ce chapitre a eu pour but de rappeler des éléments essentiels de la physique du
transfert radiatif en milieu gazeux qui vont être utilisés dans la suite du manuscrit.
La luminance, grandeur de base du rayonnement a été présentée et placée dans
sa description mésoscopique, permettant d’approcher le transfert radiatif dans des
considérations statistiques propres à la physique du transport corpusculaire. Les
différentes interactions entre rayonnement et gaz ont également été présentées et
l’équation du transfert radiatif, cas particulier des équations de Boltzmann, a été
établie sous ses formulations locale (ou différentielle) et intégrale. Enfin, une partie
a été consacrée aux mécanismes d’absorption et d’émission de rayonnement par la
matière, introduisant ainsi les notions de transitions moléculaires, de coefficients
d’absorption et de spectres d’absorption. Un accent particulier a été mis sur les
différentes dépendances du coefficient d’absorption (à la pression, température,
composition chimique et au nombre d’onde) qui occuperont une place importante
dans les chapitres qui vont suivre.

http://spectra.iao.ru/
http://hitran.iao.ru/
http://meso-star.com/
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Introduction

Pour des configurations et problèmes académiques particuliers, il est possible
de résoudre l’équation du transfert radiatif de façon analytique. De telles résolu-
tions sont le plus souvent associées à des hypothèses simplificatrices concernant
le modèle physique (milieu homogène, milieu optiquement mince ou épais, milieu
froid, non-prise en compte des phénomènes de diffusion, etc.). Toutefois, dès lors
que le modèle physique se complexifie (nombre de phénomènes à prendre en compte,
géométrie 3D, dimension spectrale), il n’est généralement plus possible de résoudre
analytiquement l’équation du transfert radiatif. Il est donc nécessaire de faire appel à
des approches alternatives afin de mener à bien ce calcul. De nombreuses méthodes,
d’une grande diversité (approches différentielles ou intégrales, déterministes ou
stochastiques), ont été développées pour y parvenir, chacune d’entre-elles présentant
ses propres avantages et inconvénients. Parmi les approches les plus usitées figurent
les méthodes aux harmoniques sphériques (ou approximation PN ), les méthodes aux
ordonnées discrètes, les méthodes zonales ou encore les méthodes de lancer de rayons.
Des inventaires relativement complets de ces méthodes, ainsi que quelques études
comparatives sont présentés dans [Siegel et al., 2011, Modest, 2013].

Dans le cadre de cette thèse, le choix s’est porté sur des méthodes stochastiques
de calcul intégral, dites méthodes de Monte-Carlo. Ce choix est motivé par plusieurs
raisons. La première d’entre-elles est que ces méthodes tirent directement profit
de la représentation statistique de la physique du rayonnement. Elles consistent à
reproduire numériquement les modèles du transport de photons. Des allers-retours,
souvent très fructueux en termes d’images et d’analyse, peuvent ainsi être faits entre
les images physiques associées au transfert et les outils numériques. Les méthodes de
Monte-Carlo, très appropriées à l’étude du rayonnement, sont également considérées
à l’heure actuelle comme solution de référence. En effet, s’appuyant uniquement sur
la formulation intégrale du transfert radiatif, elles n’induisent pas de biais lors de
l’estimation d’une observable et permettent en outre d’évaluer rigoureusement et
de réduire autant que nécessaire l’incertitude statistique relative à ce calcul. Les
résultats obtenus sont ainsi toujours fournis avec un intervalle de confiance. Enfin, ces
méthodes sont particulièrement adaptées à la gestion de la complexité (géométries
complexes, fortes variations de propriétés, etc.) et offrent certains avantages en
termes d’analyse (calcul de sensibilités paramétriques) ou même simplement de
technique (parallélisation des calculs aisée).

Ce chapitre d’introduction aux méthodes de Monte-Carlo, appliquées au transfert
radiatif, a pour but de poser l’ensemble des bases théoriques et techniques nécessaires
à une lecture aisée de la suite du manuscrit. Un accent particulier est mis sur les
liens directs existant entre les modèles statistiques du transport de photons et les
outils numériques que constituent les méthodes de Monte-Carlo. En effet, au-delà de
la valeur statistique de la luminance (une distribution sur l’espace des phases), les
représentations que l’on se fait des interactions entre la matière et le rayonnement
sont toutes probabilisées :
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• la loi de Beer-Lambert n’est qu’une expression de la probabilité qu’ont des
photons de parcourir une distance donnée avant d’être absorbés ou diffusés
• les albédos de diffusion simple ou d’absorption correspondent aux probabilités
qu’un photon ayant collisionné en un point x soit respectivement diffusé ou
absorbé
• la réflectivité et l’absorptivité d’une paroi représentent les probabilités qu’un

photon soit réfléchi ou absorbé par la paroi
• les fonctions de phases et distributions angulaires de réflexion correspondent

aux probabilités qu’un photon initialement dans une direction u diffuse ou soit
réfléchi dans une direction u′

• le profil de raie, lui-même, ne constitue que la probabilité d’émission ou d’ab-
sorption relative au nombre d’onde d’un photon pour une transition énergétique
donnée.

La résolution de l’équation du transfert radiatif sous sa forme intégrale consistera
essentiellement à moyenner ou à sommer les grandeurs relatives à ces différents événe-
ments pour estimer numériquement une observable d’intérêt. Puisque stochastiques,
les méthodes de Monte-Carlo seront parfaitement adaptées à de telles considérations,
bénéficiant directement de la dimension statistique de la modélisation du transport
de photons.

Les deux premières sections de ce chapitre, essentiellement théoriques, comporte-
ront de brefs rappels statistiques et introduiront les méthodes de Monte-Carlo de
façon générale.

Plutôt que de poursuivre cette présentation en toute théorie, un cas d’étude
radiatif sera proposé et servira d’illustration pour introduire et appliquer les concepts
liés à l’étude et au calcul stochastique de grandeurs radiatives en milieu participant.
Ce cas d’étude, simple au début sera progressivement complexifié de façon à introduire
les différentes approches, techniques et travaux de reformulation intégrale couramment
utilisés lors de l’étude du rayonnement thermique.

Nous partirons ainsi de l’étude de la luminance dans un milieu monodimensionnel
infini non diffusant (Sec. 3.3). Une paroi noire sera ensuite ajoutée dans le but de
présenter comment ce type de frontière peut être traité de façon statistique. Ces
deux premières configurations permettront d’illustrer les concepts de réciprocité des
chemins, de méthodes de Monte-Carlo analogues, et de réduction de variance.

Dans la Sec. 3.4, en plus d’émettre et d’absorber, le milieu sera considéré comme
diffusant, d’abord infini puis clos par des parois réfléchissantes. La gestion de géomé-
tries tridimensionnelles ainsi que de la diffusion multiple et de la réflexion pourront
être alors abordées. Ce sera également l’occasion de présenter une technique d’opti-
misation connue sous le nom d’energy-partitioning ainsi que d’aborder succinctement
le calcul de sensibilités paramétriques.

Enfin, dans la Sec. 3.5, nous exprimerons et étudierons le bilan radiatif d’un
petit volume de milieu participant, pour un cas très général (absorption, diffusion,
émission du milieu et réflexion aux parois) dans le but de présenter la manière
avec laquelle peuvent être traitées les différentes intégrales angulaire, volumique et
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spectrale de la luminance.

Toutefois, nous ne nous concentrerons ici ni sur les hétérogénéités, ni sur la
dépendance spectrale des propriétés radiatives. Elles feront l’objet des deux prochains
chapitres.

3.1 Rappels statistiques

3.1.1 Variables aléatoires et probabilités

Avant d’aborder, à proprement parler, les méthodes de Monte-Carlo, il convient de
rappeler succinctement les termes et notions statistiques sur lesquels elles s’appuient.

Variables aléatoires Une variable est dite aléatoire ou stochastique s’il n’est pas
possible de déterminer à l’avance sa valeur. Celle-ci ne peut-être déterminée que par
l’expérience. Les variables aléatoires sont définies sur l’ensemble des occurrences
(résultats possibles de l’expérience aléatoire) et peuvent être discrètes (ex : la valeur
obtenue suite à un lancer de dé 1, 2, 3, 4, 5 ou 6) ou continues (ex : la durée exacte de
désintégration d’un noyau radioactif). Une fonction d’une ou de plusieurs variables
aléatoires est elle-même une variable aléatoire.

Tout au long de ce manuscrit, le formalisme suivant sera adopté : les variables
aléatoires seront notées en majuscules et leurs variables muettes associées en mi-
nuscules. Les échantillons de ces variables aléatoires - c’est-à-dire les valeurs que
prennent ces variables aléatoires lors d’une expérience - seront également notés en
minuscules et indicés si plusieurs expériences sont réalisées.

Probabilités, fonctions densité de probabilité Outre par l’expérience, il
est possible de définir une variable aléatoire par une loi de probabilité et son
domaine d’application. Cette loi est un modèle caractérisant de façon probabiliste le
comportement de la variable aléatoire. Ces modèles probabilistes se doivent d’être
positifs et normalisés sur leur ensemble de définition. En d’autres termes, la somme
des probabilités associées à l’ensemble des éventualités doit être égale à un.

Lorsque la variable aléatoire Y est discrète et définie sur un ensemble de Npop

éléments, cette loi de probabilité associe à chaque élément m une probabilité PY (ym).
La normalisation de la somme de ces probabilités peut être formalisée comme :

Npop∑

m=1

PY (ym) = 1 (3.1)

Lorsque la variable aléatoire X définie sur [xmin, xmax] est continue, on qualifie
cette représentation, notée pX(x), de fonction densité de probabilité (ou pdf pour
"probability density function"). La quantité pX(x)dx correspond à la probabilité
qu’un échantillon xi de la variable aléatoire X soit compris dans l’intervalle dx autour
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de x. La normalisation de cette fonction densité de probabilité équivaut à écrire :
∫ xmax

xmin

pX(x)dx = 1 (3.2)

Les variables aléatoires et leur description statistique par les fonctions densité
de probabilité constituent deux éléments essentiels à la description et à l’analyse
statistique de la physique du transport, certaines d’entre-elles ont d’ailleurs été
présentées dans le Chap. 2.

Fonctions de répartition Enfin, le dernier élément descriptif des variables aléa-
toires concerne les fonctions de répartition (ou cdf pour "cumulative distribution
function"). Pour une variable aléatoire continue X décrite par une fonction densité de
probabilité pX(x) définie sur [xmin, xmax], la fonction de répartition rX(x) est définie
comme :

rX(x) =

∫ x

xmin

pX(x′)dx′ (3.3)

Cette fonction, qui est nulle pour x = xmin et égale à 1 pour x = xmax, est monotone
et croissante. Elle correspond à la probabilité qu’une réalisation aléatoire de la
variable aléatoire X soit comprise entre xmin et x.

De la même manière, pour une variable aléatoire discrète Y de probabilités
PY (ym), la fonction de répartition RY (ym) est définie par :

RY (ym) =
m∑

m′=1

PY (y′m) (3.4)

Des exemples de probabilités discrètes, de densités de probabilité et de fonctions
de répartition sont données à la Fig. 3.1.
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(c) Profil de Lorentz

Figure 3.1 – Exemples de probabilités discrètes, de densités de probabilité (pdf) et de fonctions
de répartition (cdf) couramment rencontrées en transfert radiatif. La figure (a) illustre les albédos
d’absorption et de diffusion simple assimilables aux probabilités qu’a un photon d’être soit absorbé,
soit diffusé. La figure (b) présente la densité de probabilité des libres parcours dans un milieu
participant homogène. La figure (c) décrit un profil de raie Lorentzien correspondant à la densité de
probabilité associée aux nombres d’onde d’émission et d’absorption de photons pour une transition
moléculaire donnée.



52 Chapitre 3. Approche statistique et méthodes de Monte-Carlo

3.1.2 Espérance, variance, écart-type et moments d’ordre su-
périeur à deux

Espérance - moyenne de population L’espérance d’une variable aléatoire cor-
respond à la moyenne pondérée par sa densité de probabilité (on parle aussi de
moyenne de population). Elle représente la valeur moyenne que l’on pourrait attendre
d’une expérience aléatoire.

Pour une variable aléatoire discrète Y , son espérance est donnée par :

E [Y ] =

Npop∑

m=1

PY (ym)ym (3.5)

où Npop est la taille de la population, c’est-à-dire le nombre de valeurs discrètes que
peut prendre Y . De la même manière, l’espérance d’une variable aléatoire continue
X est définie par :

E [X] =

∫ b

a

pX(x)xdx (3.6)

Les fonctions de variables aléatoires étant elles-mêmes des variables aléatoires, il
est également possible d’exprimer leur espérance. Pour une fonction f dépendant
d’une seule variable aléatoire X :

E [f(X)] =

∫ b

a

pX(x)f(x)dx (3.7)

Si la fonction f dépend d’un nombre n de variables aléatoires, son espérance est
donnée par :

E [f(X1, ... , Xn)] =

∫ b1

a1

pX1(x1)dx1...

∫ bn

an

pXn(xn)dxn f(x1, ... , xn) (3.8)

Il est également possible d’exprimer l’Eq. 3.8 comme

E [f(X)] =

∫

DX

pX(x)f(x)dx (3.9)

en posant X = [X1, X2, ..., Xn] et DX = [a1, b1]× ...× [an, bn]. pX(x) est alors appelée
fonction densité de probabilité jointe. Si les n variables aléatoires Xi sont indépen-
dantes elle est définie comme le produit de leur densité de probabilité respectives.
Dans le cas contraire, la fonction densité de probabilité jointe est donnée par :

pX(x) = pX1(x1)× pX2|x1(x2)× ...× pXn|(x1,x2,...,xn−1)(xn) (3.10)

où pXj |xj−1
(xj) est une densité de probabilité conditionnelle qui correspond à la

densité de probabilité de la variable aléatoire Xj sachant la valeur xj−1.
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Note : Caractère linéaire et projectif de l’espérance
Considérons la grandeur intégrale A définie par :

A =

∫ b1

a1

pX1(x1)f

(∫ b2

a2

pX2(x2)g(x1, x2)dx2

)
dx1 (3.11)

où f(Z) est une fonction linéaire et g(X1, X2) une fonction quelconque. Du
fait de la linéarité de f il est possible de reformuler l’expression de A en :

A =

∫ b1

a1

∫ b2

a2

pX1(x1)pX2(x2)f (g(x1, x2)dx2) dx1 (3.12)

Ainsi, il est possible d’écrire à partir des Eq. 3.11 et 3.12 :

E
[
f
(
E [g(X1, X2)]

)]
= E

[
f
(
g(X1, X2)

)]
(3.13)

Il a donc été possible d’exprimer la grandeur intégrale A comme une espérance
unique. Cette propriété est assurée par le caractère projectif et linéaire de
l’opérateur espérance.

Toutefois, si la fonction f(Z) n’était pas linéaire, le passage de l’Eq. 3.11
à l’Eq. 3.12 ne serait plus possible. On ne pourrait donc plus, dans ce cas,
exprimer la grandeur A comme une simple espérance, seule l’expression

A = E
[
f
(
E [g(X1, X2)]

)]
(3.14)

serait correcte. Comme nous allons le voir par la suite, ce caractère linéaire
et projectif de l’espérance engendre de sérieuses contraintes lorsqu’il s’agit de
développer des algorithmes de Monte-Carlo pour estimer des observables dont
l’expression est non-linéaire. Les propositions faites aux Chap. 4 et Chap. 5
permettront de passer outre cette difficulté pour le cas particulier d’une fonction
f exponentielle.

Variance et écart-type de population Alors que l’espérance d’une variable
aléatoire correspond à son moment d’ordre 1, une seconde mesure permet de caracté-
riser sa distribution : la variance de population , qui correspond au moment centré
d’ordre 2. La variance de population caractérise la dispersion de la distribution de la
variable considérée par rapport à son espérance. Elle est respectivement définie pour
une variable aléatoire continue X et discrète Y comme

V (X) =

∫ b

a

pX(x)[x− E [X]]2dx

= E
[(
X − E [X]

)2
]

= E
[
X2
]
− (E [X])2

(3.15)
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et

V (Y ) =

Npop∑

m=1

PY (ym) [ym − E [Y ]]2

= E
[(
Y − E [Y ]

)2
]

= E
[
Y 2
]
− (E [Y ])2

(3.16)

Il sera également fréquent de rencontrer la notion d’écart-type de population,
défini comme la racine carrée de la variance et noté σ :

σ(X) =
√
V (X) (3.17)

Moments d’ordre supérieur à 3 Donnés ici à titre essentiellement indicatif,
deux autres moments d’ordres supérieurs à 3, qualifiés paramètres de forme, sont
souvent employés pour acquérir une information supplémentaire sur la distribution
statistique des variables aléatoires.

Le premier d’entre eux, nommé coefficient de dissymétrie, correspond au moment
centré réduit d’ordre trois de la variable aléatoire. Il caractérise l’asymétrie de la
distribution d’intérêt et s’exprime comme :

M3 = E

[(
X − E [X]

σ(X)

)3
]

(3.18)

Le second paramètre de forme est appelé kurtosis. Il correspond au moment
centré réduit d’ordre quatre et caractérise l’aplatissement de la distribution. Il est
donné par :

M4 = E

[(
X − E [X]

σ(X)

)4
]

(3.19)

3.2 Introduction aux méthodes de Monte-Carlo

Développées à la fin des années 1940 par N. Metropolis, S. Ulam et J. Von Neu-
mann [Metropolis et Ulam, 1949], les méthodes de Monte-Carlo permettent d’évaluer
de façon stochastique des grandeurs intégrales. Originellement pensées pour des ap-
plications nucléaires [Metropolis, 1987], elles se sont peu à peu étendues à un grand
nombre d’autres champs disciplinaires, rencontrant une résonance et un engouement
tout particulier dans les domaines relatifs à la physique du transport. Parmi les
nombreux ouvrages consacrés à la description de ces méthodes, nous citerons ici les
deux excellentes monographies [Hammersley et al., 1965] et [Dunn et Shultis, 2012]
qui ont servi de point de départ et ont joué un rôle important quant aux travaux
présentés dans ce manuscrit.
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3.2.1 Les méthodes de Monte-Carlo : un outil stochastique
de calcul intégral

Le principe des méthodes de Monte-Carlo repose sur la loi des grands nombres .
Celle-ci énonce que la moyenne arithmétique d’un nombre important Nmc d’échan-
tillons indépendants xi d’une variable aléatoire X, converge presque sûrement vers
l’espérance de cette variable aléatoire avec un nombre de réalisations Nmc croissant :

lim
Nmc→∞

(
1

Nmc

Nmc∑

i=1

xi

)
= E [X] (3.20)

Pour un nombre Nmc d’échantillons suffisamment grand, la moyenne arithmétique

X =
1

Nmc

Nmc∑

i=1

xi (3.21)

constitue un estimateur non biaisé de l’espérance de X et est qualifiée de moyenne
d’échantillon. Plus le nombre de réalisations Nmc sera important, plus cet estimateur
sera précis.

Or, puisqu’il est toujours possible d’exprimer une formulation intégrale ou une
somme comme une espérance (cf. Eq. 3.5 et Eq. 3.6), les méthodes de Monte-Carlo
permettent d’estimer par un processus stochastique toute grandeur pouvant être
formulée sous un aspect intégral ou sommatoire. Elles consistent alors simplement à
réaliser numériquement un grand nombre Nmc d’échantillons (ou poids de Monte-
Carlo) indépendants xi de la variable aléatoire X pour estimer E [X]. La procédure
d’échantillonnage sera décrite plus en détail à la Sec. 3.2.3.1.

Nous distinguerons toutefois deux types de grandeurs intégrales pouvant être
estimées par les méthodes de Monte-Carlo :
• les observables résultant d’un processus statistique, dont leur description est

probabilisée (valeur moyenne obtenue lors d’un lancer de dé, distance moyenne
à laquelle un lanceur de poids jette son projectile, etc.).
• les observables qui ne sont pas associées à des modèles statistiques, que nous

qualifierons ici de déterministes (intégration temporelle, surfacique, volumique,
etc.).

Observables statistiques Dans le premier cas, les observables constituent, de
par les représentations que l’on en fait, de simples espérances. Elles s’exprimeront
généralement sous la forme :

A =

∫

DX

pX(x)f(x)dx (3.22)

où x est un vecteur aléatoire de densité de probabilité pX(x) défini sur DX et f
une fonction quelconque. En transfert radiatif, les grandeurs mésoscopiques (en



56 Chapitre 3. Approche statistique et méthodes de Monte-Carlo

particulier la luminance) constitueront des observables de ce type. Les algorithmes de
Monte-Carlo correspondants consisteront donc à échantillonner un grand nombre de
fois la variable f(X) et à moyenner arithmétiquement ces valeurs pour obtenir une
estimation non biaisée de A. Ils peuvent donc être perçus comme une reproduction
numérique et stochastique de l’expérience aléatoire d’intérêt. Il sera directement
possible, dans ce cas précis, de tirer une analogie entre le modèle statistique et l’outil
numérique. Deux exemples élémentaires (pour une variable discrète et une variable
continue) sont donnés dans l’encadré ci-dessous.

Exemple : Méthodes de Monte-Carlo pour une observable statistique

Lancer de dé. Attachons-nous à estimer par
un algorithme de Monte-Carlo l’espérance de
la valeur obtenue Y lors d’un lancer de dé. Le
modèle posé admet que la probabilité que le dé
tombe sur n’importe laquelle de ses 6 faces m
est identique : PY (ym) = 1/6 (hypothèse d’équi-
probabilité, voir figure de droite). L’espérance
de la valeur obtenue Y est donnée par :

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Pr
ob

ab
ili

té

Valeur de la face du dé

Probabilité
Fonction de répartition

E [Y ] =
6∑

m=1

PY (ym)ym =
1

6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5 (3.23)

L’algorithme de Monte-Carlo permettant d’estimer cette espérance consiste
alors à réaliser un grand nombre d’échantillons indépendants yi de la variable Y .
En d’autres termes, cela consiste à lancer de façon numérique et indépendante
un grand nombre de fois Nmc le dé et de stocker les valeurs obtenues : les
échantillons de Y ou poids de Monte-Carlo. L’estimation non biaisée Ỹ de
E [Y ] et alors donnée par :

Ỹ =
1

Nmc

Nmc∑

i=1

yi (3.24)

Dans ce cas précis, le développement d’un algorithme de Monte-Carlo n’est
pas pertinent puisque E [Y ] est analytiquement calculable, mais dès que
l’observable d’intérêt sera plus complexe les méthodes de Monte-Carlo
s’avéreront particulièrement adaptées.
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Lanceur de poids. Pour illustrer le cas d’une
variable aléatoire continue, considérons désor-
mais l’espérance de la distance X à laquelle un
lanceur de poids jette son projectile. Supposons
également que ce sportif soit très constant et
qu’un modèle probabiliste de X ait été fait :
la variable X est décrite selon une densité de
probabilité pX(x) (voir figure de droite). L’es-
pérance de X s’exprime alors comme :
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E [X] =

∫ +∞

0

pX(x)xdx (3.25)

Dans ce cas aussi, l’algorithme de Monte-Carlo consistera à échantillonner
un grand nombre de fois la variable X selon la densité de probabilité pX(x).
L’estimation de la distance moyenne à laquelle est jetée le poids sera alors
donnée par :

X̃ =
1

Nmc

Nmc∑

i=1

xi (3.26)

Pour aborder des problèmes de ce type, deux approches sont alors possibles :
l’une basée sur le formalisme intégral et statistique de la grandeur d’intérêt ; l’autre
sur une analogie avec l’expérience aléatoire et les images véhiculées par le modèle
statistique sous-jacent. Ces deux approches, présentées plus en détail à la Sec. 3.3.2,
sont respectivement qualifiées d’approches intégrales et analogues.

Observables intégrales déterministes Les méthodes de Monte-Carlo ne se li-
mitent toutefois pas à estimer des observables ayant une valeur statistique. Elles
peuvent être également utilisées pour estimer des intégrales ou des sommes n’ayant
aucun modèle statistique sous-jacent (le calcul d’une aire par exemple, voir encadré
ci-dessous). Dans le domaine du transfert radiatif, on rencontrera ce type d’obser-
vables dès lors que l’on s’attachera à des grandeurs macroscopiques ou intégrées
spectralement. Pour illustrer ce cas, considérons l’estimation de la grandeur A définie
comme :

A =

∫ bmax

bmin

f(b)db (3.27)

où b est une variable à laquelle aucune image statistique n’est associée. Les méthodes
de Monte-Carlo ne pouvant estimer que des espérances, il est nécessaire de reformuler
l’expression de A pour se ramener à un formalisme du type de celui de l’Eq. 3.6.
Pour ce faire, une fonction densité de probabilité pB(b) (positive et normalisée sur
[bmin, bmax]) doit être introduite de façon totalement arbitraire. L’Eq. 3.27 est alors
reformulée en :

A =

∫ bmax

bmin

pB(b)
f(b)

pB(b)
db = E

[
f(B)

pB(B)

]
(3.28)

On vient ainsi de rendre statistique un problème en apparence déterministe. L’al-
gorithme de Monte-Carlo correspondant consiste alors à réaliser un grand nombre
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Nmc d’échantillons bi de la variable aléatoire B selon pB(b) et à calculer les poids de
Monte-Carlo f(bi)/pB(bi) correspondants. Une estimation de la grandeur A est alors
donnée par :

Ã =
1

Nmc

Nmc∑

i=1

f(bi)

pB(bi)
(3.29)

Exemple : Méthodes de Monte-Carlo pour une observable déterministe

Calcul de l’aire d’un lac. Supposons que
l’on souhaite estimer la surface S d’un lac
(schématisée par la figure de droite), situé dans
un champ rectangulaire de cotés [0, xmax] et
[0, ymax]. Cette surface peut être exprimée par
l’expression intégrale

S =

∫ xmax

0

∫ ymax

0

H ({x, y} ∈ S) dydx

(3.30) 0
x

y

xmax

ymax

S

oùH ({x, y} ∈ S) est une fonction de Heaviside valant 1 si le jeu de coordonnées
{x, y} appartient au lac et valant 0 dans le cas contraire. Pour traiter ce
problème par Monte-Carlo, il convient d’introduire des densités de probabilité
pX(x) et pY (y) arbitraires, de sorte à pouvoir exprimer cette surface comme
l’espérance d’une variable aléatoire :

S =

∫ xmax

0

pX(x)

∫ ymax

0

pY (y)
H ({x, y} ∈ S)

pX(x)pY (y)
dydx = E

[H ({X, Y } ∈ S)

pX(X)pY (Y )

]

(3.31)
L’algorithme de Monte-Carlo correspondant consiste donc pour un grand
nombre de fois Nmc à échantillonner de façon indépendante une abscisse xi et
une ordonnée yi. Si le point [xi, yi] appartient au lac, le poids de Monte-Carlo
est alors défini comme wi = 1/(pX(x)pY (y)), dans le cas contraire wi = 0.
L’estimation de la surface du lac est alors donnée par la moyenne arithmétique
des Nmc poids wi. Le problème en apparence déterministe a ainsi été traité de
façon statistique.

Il est possible de se créer des images statistiques associées à cette reformulation.
En supposant que l’échantillonnage des positions se fasse de façon uniforme
sur la surface du champ (lac compris), le rapport entre le nombre de positions
échantillonnées dans le lac et le nombre total de positions générées constitue
bien une estimation du ratio entre la surface du lac et celle du champ.

Pour une intégrale simple, l’intérêt des méthodes de Monte-Carlo reste assez
limité. Des méthodes numériques de quadrature existent et sont souvent très précises
et rapides pour évaluer une telle expression. Cependant, dès lors que les problèmes
se complexifieront (intégrales multiples, domaines de définition ou géométries
complexes), les méthodes de Monte-Carlo se révéleront particulièrement adaptées.
Une fois l’observable d’intérêt exprimée comme une simple espérance, elle pourra
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être estimée par un unique algorithme de Monte-Carlo, quel que soit le degré de
complexité de sa formulation intégrale. À l’inverse des méthodes numériques, la
difficulté de résolution et les temps de calcul associés seront peu dépendants du
nombre de dimensions de l’espace d’intégration. Seule la variable aléatoire ayant la
plus forte variance conditionnera le niveau de convergence de l’algorithme.

Quel que soit le type d’observable que l’on souhaite estimer par des méthodes de
Monte-Carlo, on mesure alors l’importance d’exprimer le problème sous la forme d’une
espérance de variable aléatoire. Tout au long de ce manuscrit, nous nous efforcerons
donc de formaliser l’observable d’intérêt à partir de sa formulation intégrale sous
une expression statistique de la forme E [W (X)], où W (X) est qualifiée de variable
aléatoire poids. Ce ne sera que dans un second temps, que l’algorithme de Monte-Carlo
correspondant sera présenté. Les formulations intégrales et statistiques occupent
dans notre pratique des méthodes de Monte Carlo une place essentielle. Le poids
de Monte Carlo W (X), dont l’espérance est l’observable que l’on souhaite estimer,
correspond à la variable aléatoire échantillonnée par l’algorithme (chaque échantillon
wi(xi) correspond à la valeur obtenue à la fin d’une réalisation indépendante). De
plus, uniquement à partir des formulations intégrales, il est directement possible de
concevoir l’algorithme de Monte Carlo correspondant. Chaque terme

∫
Dx pX(x)dx

ou
∑Npop

m=1 PY (ym) présents dans l’expression intégrale se traduisent respectivement
de façon numérique par une procédure d’échantillonnage de la variable aléatoire
continue X selon la densité de probabilité pX(x) ou de la variable discrète Y selon
les probabilités PY (ym) et chaque terme récursif se traduit algorithmiquement par
une boucle. Nous verrons par la suite que l’essentiel du travail d’amélioration de ces
méthodes stochastiques réside dans la reformulation de ces expressions intégrales
et statistiques, modifiant en conséquence les modèles statistiques et les structures
algorithmiques associés.

3.2.2 Estimation de l’erreur statistique

En plus de pouvoir estimer une grandeur intégrale, les méthodes de Monte-Carlo
permettent d’évaluer l’incertitude de cette estimation, les plaçant ainsi dans la
famille des solutions de référence. Cette propriété repose sur le théorème central
limite qui énonce que toute somme de variables aléatoires identiquement distribuées
et indépendantes tend vers une variable aléatoire distribuée selon une gaussienne. Ce
théorème implique donc que la distribution de l’estimation d’une grandeur obtenue
par un algorithme de Monte-Carlo, qui est elle-même une variable aléatoire, tend
vers une distribution gaussienne lorsque le nombre de réalisations indépendantes
Nmc augmente. Il est alors possible d’interpréter son écart-type comme une erreur
statistique.

Si l’on souhaite évaluer une grandeur A = E [X] par un algorithme de Monte-Carlo,
l’estimation de A est donnée par la moyenne d’un nombre important d’échantillons
de X :

Ã =
1

Nmc

Nmc∑

i=1

xi (3.32)
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et l’estimation non biaisée de l’écart-type de Ã est donnée par :

s(Ã) =

√√√√ 1

Nmc(Nmc − 1)

Nmc∑

i=1

(
xi − Ã

)2

(3.33)

Des démonstrations de cette expression sont données dans [Hammersley et al., 1965,
Dunn et Shultis, 2012]. Pour des considérations purement numériques, une écriture
alternative de cet écart-type est généralement préférée :

s(Ã) =

√
1

Nmc(Nmc − 1)

(
S2 −

S2
1

Nmc

)
(3.34)

où S1 =
∑Nmc

i=1 xi et S2 =
∑Nmc

i=1 x2
i . Il sera ainsi possible d’incrémenter les va-

leurs de S1 et S2, après chacune des Nmc réalisations. Cela permet de calculer
s(Ã) à l’aide d’une seule série d’échantillons sans la nécessité d’estimer Ã dans
un premier temps (comme le laisserait penser l’Eq. 3.33) ou même de réaliser un
grand nombre d’estimations de A pour connaître l’écart-type associé à ces estimations.

La grandeur s(Ã) porte le nom d’écart-type d’échantillon de l’estimation de
Monte-Carlo. Elle permet de définir, à partir de la loi normale, un intervalle de
confiance [Ã− βs, Ã+ βs] (où β est une valeur positive) autour de l’estimation Ã,
dans lequel il y a une certaine probabilité que la grandeur d’intérêt A soit incluse
(on parle d’indice de confiance). La Tab. 3.1 illustre pour plusieurs valeurs de β 1 les
indices de confiance associés.

Intervalle de confiance Indice de confiance
[Ã− 1s, Ã+ 1s] 68.27%
[Ã− 2s, Ã+ 2s] 95.45%
[Ã− 3s, Ã+ 3s] 99.73%
[Ã− 5s, Ã+ 5s] 99.99994%

Table 3.1 – Intervalles de confiance de la loi normale. Ce tableau doit être lu de la façon
suivante : il y a une probabilité de 68.27% que la grandeur d’intérêt A soit comprise dans l’intervalle
[Ã− 1s, Ã+ 1s].

3.2.3 Les méthodes de Monte-Carlo en pratique

Dans cette dernière sous-section, nous aborderons les aspects techniques inhérents
au développement de méthodes de Monte-Carlo. Les procédures d’échantillonnage,
les méthodes d’évaluation de la précision et de la qualité des résultats ainsi qu’un
inventaire succinct des techniques de réduction de variance seront ainsi abordés.

1. Par convention, les résultats obtenus par des méthodes de Monte-Carlo sont donnés avec un
intervalle de confiance [Ã− 1s, Ã+ 1s] et sont illustrés graphiquement par des barres d’erreurs.
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3.2.3.1 Échantillonnage

Il est aujourd’hui aisé de générer numériquement des nombres pseudo-aléatoires
de façon uniforme 2 [James, 1990, Dunn et Shultis, 2012]. Il est toutefois plus difficile
d’échantillonner de façon stochastique une variable aléatoire dont la densité de
probabilité n’est pas uniforme.

Dans la pratique, pour produire un échantillon xi d’une variable aléatoire continue
X définie sur [xmin, xmax], on échantillonne de façon uniforme un nombre réel ri entre
0 et 1 et on résout l’équation suivante :

ri =

∫ xi

xmin

f(x)dx (3.35)

Cela revient à inverser la fonction de répartition pour obtenir une valeur de xi à
partir de ri (une illustration graphique de cette procédure est donnée Fig. 3.2a.
Cette manipulation est possible grâce au caractère monotone et croissant des
fonctions de répartition. Il est en effet possible de tirer une bijection entre deux
fonctions de répartition : la première, associée à une densité de probabilité uniforme
(échantillonnage de ri) et la seconde, associée à la fonction densité de probabilité
d’intérêt (échantillonnage de xi).

Il est également fréquent de rencontrer, dans les formulations statistiques, des
variables aléatoires discrètes (par exemple pour distinguer une absorption d’une
diffusion). Lorsqu’une telle variable aléatoire, notée Y , n’admet que deux valeurs
possibles ya et yb, de probabilités respectives Pa et Pb validant Pa + Pb = 1, la
procédure d’échantillonnage est qualifiée de test de Bernoulli . Elle consiste à tirer de
façon aléatoire et uniforme un nombre ri entre 0 et 1. Deux cas sont alors possibles :
• soit 0 < ri < Pa, alors l’échantillon de la variable Y généré est ya,i
• soit Pa < ri < Pa + Pb = 1, alors l’échantillon de la variable Y généré est yb,i

Dans le cas où ces variables aléatoires discrètes admettent un nombre Npop > 2 de
valeurs possibles notées ym de probabilités Pm, leur procédure d’échantillonnage est
qualifiée de roulette russe. Le principe est identique au test de Bernoulli : un nombre
aléatoire ri est tiré aléatoirement de façon uniforme entre 0 et 1, y1,i est échantillonné
si ri < P1,i ; autrement l’échantillon yg,i généré doit valider l’équation :

g−1∑

m=1

Pm,i < ri <

g∑

m=1

Pm,i (3.36)

Il est possible de considérer les tests de Bernoulli et roulettes russes comme une
simple extension de l’inversion des fonctions de répartition aux variables aléatoires
discrètes. Leurs probabilités sont alors assimilées à une succession de Diracs centrés
aux valeurs discrètes ym (voir Fig. 3.2b).

2. Tout au long de cette thèse, nous utiliserons comme générateur pseudo-aléatoire ranlxd2 inclus
dans la GNU Scientific Library (http://www.gnu.org/software/gsl/). Ce générateur de haute
qualité est une implémentation de l’algorithme RANLUX de Lüscher [Lüscher, 1994, James, 1994].

http://www.gnu.org/software/gsl/
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Figure 3.2 – Procédure d’échantillonnage d’une variable aléatoire continue X (a) et discrète Y
(b). L’échantillonnage de xi et yi consiste à générer de façon aléatoire et uniforme un nombre ri et
d’inverser la fonction de répartition de la variable aléatoire d’intérêt.

3.2.3.2 Précision et qualité des résultats

Les méthodes de Monte-Carlo sont, par nature, des méthodes non biaisées. Aux
incertitudes de modèle près, dès que l’algorithme est une traduction stochastique
rigoureuse de l’observable d’intérêt, ces méthodes ne nécessitent pas d’approximation
et ne sont à l’origine d’aucune erreur ou biais numérique. Toutefois, puisque les
estimations reposent sur un processus aléatoire, elles sont elles-mêmes des variables
aléatoires. Il convient alors de s’assurer de leur validité et de leur représentativité
statistique. Pour ce faire, plusieurs indicateurs et techniques existent pour évaluer
à quel point une estimation Ã est fidèle et proche de la grandeur d’intérêt A. Ces
mesures statistiques et leur analyse constituent une étape très importante lors du
développement de méthodes de Monte-Carlo.

Erreur relative Le premier indicateur est l’erreur relative (ou écart-type relatif )
notée e(Ã). Elle est définie comme le rapport entre l’écart-type de l’estimation s(Ã)
et l’estimation elle-même :

e(Ã) =
s(Ã)

Ã
(3.37)

Cette mesure, souvent exprimée en pourcentage, permet de quantifier la précision
statistique de l’estimation Ã. Plus faible sera l’erreur relative, plus précise sera
l’estimation de la grandeur d’intérêt. Dans [X-5 Monte Carlo Team, 2008], les
auteurs considèrent qu’un bon résultat est une estimation ayant une erreur relative
inférieure à 5%. De façon plus générale, si l’erreur relative est supérieure à 10%, il
est couramment entendu que l’on ne peut pas réellement accorder de confiance aux
résultats obtenus. Il est alors nécessaire d’augmenter le nombre de réalisations Nmc

indépendantes pour diminuer l’écart-type d’échantillon et ainsi passer en dessous de
ce seuil. L’écart-type d’échantillon s(Ã) étant proportionnel à 1√

N−1
, il est nécessaire

de réaliser 4 fois plus de réalisations pour diviser par deux l’erreur relative.

Une pratique courante permettant d’évaluer la qualité de l’estimation consiste
à relancer l’algorithme de Monte-Carlo avec 100 fois plus d’estimations. L’erreur
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relative doit être 10 fois plus faible et les deux estimations obtenues pour Nmc et
100Nmc réalisations doivent correspondre (aux intervalles de confiance près). Il est
également possible de tracer l’évolution de l’estimation et de l’erreur relative en
fonction du nombre de réalisations. L’estimation doit converger vers une valeur et
l’erreur relative doit être proportionnelle à l’inverse d’une fonction racine carrée. Si
tel n’est pas le cas, cela signifie que le comportement statistique de l’algorithme n’est
pas correctement maîtrisé et que des événements dits rares ont eu lieu.

Les événements rares sont des événements ayant une probabilité d’occurrence
très faible mais une contribution à l’estimation par Monte-Carlo non négligeable. Ces
événements ont une réelle valeur statistique et doivent être échantillonnés pour que
la simulation ne soit pas biaisée (un exemple élémentaire est fourni dans l’encadré
ci-dessous). Cependant, il est souvent très complexe de les identifier et de traiter les
problèmes de convergence qu’ils engendrent, tout en conservant des temps de calcul
acceptables. De tels événements, généralement peu fréquents, ont été rencontrés lors
des travaux présentés dans ce manuscrit. Leur prise en compte sera détaillée dans les
chapitres suivants.

Exemple : Événements rares
Pour illustrer les problèmes de convergence qu’entraînent les événements rares,

prenons l’exemple d’une loterie pour laquelle, sur un million de tickets vendus,
seul un est gagnant avec une valeur d’un million d’euros. Si l’on souhaite
estimer, par des méthodes de Monte-Carlo, l’espérance du gain (qui est de
106/106 = 1e), il est nécessaire d’échantillonner un grand nombre de fois la
variable aléatoire associée au gain d’un ticket. Tant qu’aucun ticket gagnant
n’est échantillonné, l’estimation de Monte-Carlo est de 0e , avec une erreur
relative nulle. Mais si l’on échantillonne 1000 tickets de façon uniforme dont
un ticket gagnant, l’estimation est alors de 1000e et l’erreur relative de 100%.
Dans les deux cas, les résultats obtenus ne sont pas satisfaisants. Il est alors
nécessaire de réaliser un très grand nombre de réalisations pour obtenir une
erreur relative acceptable (environ 109 réalisations pour passer en dessous de
5%).

Temps de calcul pour une erreur relative de 1% Le temps de calcul ou le
nombre de réalisations nécessaires pour obtenir une erreur relative de 1% constituent
des indicateurs permettant de caractériser la performance d’un algorithme particulier.
Ils sont souvent utilisés dans le but de comparer deux variantes algorithmiques
données. En supposant que la statistique du problème est bien prise en compte par
l’algorithme, l’erreur relative est proportionnelle à l’inverse de la racine carrée du
nombre de réalisations. Le nombre de réalisations Nmc,1% nécessaire pour obtenir
une erreur relative de 1% peut alors être estimé par l’expression

Nmc,1% = Nmc

(
e(Ã)

1%

)2

(3.38)
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où e(Ã) est l’erreur relative estimée par un algorithme constitué de Nmc réalisations
indépendantes. De la même façon, le temps de calcul t1% nécessaire pour obtenir une
erreur relative de 1% est donné par :

t1% = t

(
e(Ã)

1%

)2

(3.39)

où t est le temps de calcul d’une simulation ayant conduit à une erreur relative e(Ã).
Bien que le temps de calcul à 1% dépende du processeur avec lequel a été réalisée la
simulation, nous privilégierons cet indicateur par la suite, car il permet de donner un
ordre de grandeur des temps de calcul caractéristiques, obtenus grâce aux méthodes
proposées.

Enfin, il est courant de rencontrer dans la littérature une autre grandeur appelée
facteur de mérite et notée FOM . Elle est définie comme :

FOM =
1

(
e(Ã)

)2

t
(3.40)

où e(Ã) est l’erreur relative et t le temps de calcul nécessaire pour parvenir à cette
erreur relative. Excepté en début de simulation où le bruit statistique est important, le
facteur de mérite doit être à peu près constant quel que soit le nombre de réalisations.
Cette grandeur est également fréquemment utilisée pour comparer deux variantes
algorithmiques : plus elle est importante, plus l’algorithme est performant.

Variance de la variance Enfin, pour des cas où l’on suspecte de mauvais
comportements statistiques des variables aléatoires, il peut être souhaitable de
calculer des moments d’ordre supérieur (kurtosis et facteur de dissymétrie, définis à
la Sec. 3.1.2). Ces grandeurs sont beaucoup plus sensibles 3 à des comportements
pathologiques que l’erreur relative ou autres moments d’ordre 2. Plus ils seront
proches de zéro, plus la distribution de l’estimation sera proche d’une gaussienne, et
donc plus les résultats et leur écart-type seront fiables.

Plutôt que de calculer le kurtosis ou le facteur de dissymétrie, une troisième mesure
statistique est généralement préférée : la variance de la variance [Pederson, 1991,
X-5 Monte Carlo Team, 2008, Cho, 2008, Vegas-Sánchez-Ferrero et al., 2012]. Cette
grandeur relative permet d’obtenir une information sur le niveau de confiance que l’on
peut placer dans la variance d’échantillon de l’estimation obtenue par Monte-Carlo.

3. Même si les moments d’ordres supérieurs à 2 sont plus sensibles aux variations statistiques,
ils ne permettent évidemment pas d’identifier des événements rares qui n’auraient pas été échan-
tillonnées.
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Celle-ci peut être estimée à partir de l’expression

V OV =
S4 − 4

Nmc
S1S3 + 8

N2
mc
S2S

2
1 − 4

N3
mc
S4

1 − 1
Nmc

S2
2(

S2 −
1

N2
mc

S2
1

)2 (3.41)

où S1 =
∑Nmc

i=1 xi, S2 =
∑Nmc

i=1 x2
i , S3 =

∑Nmc
i=1 x3

i et S4 =
∑Nmc

i=1 x4
i . La variance de

la variance est proportionnelle à l’inverse du nombre de réalisations. Puisque plus
sensible que la variance aux événements rares, il peut être intéressant de tracer son
évolution en fonction du nombre de réalisations et de voir si elle est bien linéaire.
Dans [X-5 Monte Carlo Team, 2008], les auteurs considèrent par expérience, que
l’intervalle de confiance d’une estimation peut être admis comme fiable si la variance
de la variance est inférieure à 10%.

3.2.3.3 Techniques de réduction de variance

Comme introduit précédemment, les méthodes de Monte-Carlo permettent
d’associer un intervalle de confiance à toute estimation. Cependant, si l’on sou-
haite réduire cet intervalle de confiance d’un facteur n, il est nécessaire de réa-
liser n2 fois plus de réalisations indépendantes, ce qui peut s’avérer particu-
lièrement lourd. Une autre façon pour réduire la variance associée à l’estima-
tion (et a fortiori le temps de calcul) consiste à repenser le problème statis-
tique d’intérêt. Plusieurs techniques existent pour réduire les écarts-types d’échan-
tillons sans avoir à recourir à un nombre plus important de réalisations indépen-
dantes. Des inventaires relativement complets de ces méthodes sont dressés dans
[Hammersley et al., 1965, De La Torre et al., 2014, Dunn et Shultis, 2012]. Tout au
long de ce manuscrit, nous utiliserons trois principales techniques dites de réduc-
tion de variance : l’échantillonnage préférentiel, l’approche par variance nulle et la
reformulation intégrale.

Échantillonnage préférentiel Dans la section Sec. 3.2.1, il a été montré comment
une observable en apparence déterministe pouvait être repensée de façon statistique :
par l’introduction de densités de probabilité arbitraires. Le choix de ces probabilités,
bien que libre, n’est toutefois pas anodin, il jouera un rôle sur la convergence
numérique de l’algorithme. Pour toute formulation intégrale (ou toute somme), il est
alors possible d’introduire de la même façon une densité de probabilité (ou un jeu de
probabilités discrètes) de façon à modifier la statistique des phénomènes d’intérêt.
Prenons l’exemple d’une grandeur A définie comme :

A =

∫ xmax

xmin

pX(x)f(x)dx = E [f(X)] = E [W (X)] (3.42)

Il est toujours possible d’insérer dans cette expression une nouvelle densité de
probabilité p̃X(x) totalement arbitraire :

A =

∫ xmax

xmin

p̃X(x)

[
pX(x)

p̃X(x)
f(x)

]
dx = E

[
pX(X)

p̃X(X)
f(X)

]
= E

[
W̃ (X)

]
(3.43)
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modifiant ainsi la variable aléatoire échantillonnée par l’algorithme de Monte-Carlo.
Celle-ci, à l’origine définie comme W (X) = f(X) et décrite par pX(x), est désormais
donnée par W̃ (X) = pX(X)

p̃X(X)
f(X) et est associée à la distribution arbitraire p̃X(x). Un

choix adéquat de cette densité de probabilité peut ainsi conduire à une réduction de
la variance de l’estimation

Ã =
1

Nmc

Nmc∑

i=1

pX(xi)

p̃X(xi)
f(xi) (3.44)

obtenue par le nouvel algorithme de Monte-Carlo.

Approche par variance nulle Plutôt que de choisir de façon totalement arbitraire
une nouvelle densité de probabilité, il est possible de recourir à une approche
dite par variance nulle, décrite dans [Assaraf et Caffarel, 1999, Hoogenboom, 2008,
De La Torre et al., 2014, Dauchet et al., 2013]. Cette approche consiste à exprimer
la densité probabilité qui assurerait que toutes les valeurs de la variable aléatoire
échantillonnée par l’algorithme de Monte-Carlo soient identiques et égales à la
grandeur d’intérêt. Dans le cas présenté ci-dessus, la densité de probabilité idéale
serait donnée par :

p̃X,∅(x) =
pX(x)f(x)

A
=

pX(x)f(x)∫ xmax

xmin
pX(x′)f(x′)dx′

(3.45)

Cette expression ne peut cependant pas être utilisée en tant que telle puisqu’elle
dépend de l’observable d’intérêt A que l’on souhaite estimer. Toutefois, s’il est
possible d’établir un modèle approché de pX(x)f(x)

A
suffisamment représentatif de la

physique en présence, la nouvelle densité de probabilité devrait assurer une variance de
l’estimation relativement faible. L’échantillonnage préférentiel et l’approche variance
nulle seront illustrés pour des problématiques radiatives à la Sec. 3.3.4.

Reformulation intégrale Enfin, la reformulation intégrale consiste à repenser
totalement le problème statistique pour parvenir à une réécriture intégrale de l’ob-
servable d’intérêt. Ainsi, le nouvel algorithme de Monte-Carlo estime l’espérance
d’une nouvelle variable aléatoire, qui est susceptible selon les choix de reformulation
d’avoir une variance plus faible. Chaque travail de reformulation doit être pensé
pour l’observable et la configuration d’intérêt (changement de variables, inversion
de l’ordre et des intégrales, modification des espaces d’intégration, etc.). Aussi, il
est difficile d’en faire ici un inventaire exhaustif, mais cette propriété offerte par
les méthodes de Monte-Carlo sera employée à plusieurs reprises dans la suite du
manuscrit.
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3.3 Étude de la luminance dans un milieu purement
absorbant

Le développement de méthodes de Monte-Carlo appliquées à des probléma-
tiques de transfert radiatif date des années 1960 avec les travaux de J.R. Howell
et de M. Perlmutter [Howell et Perlmutter, 1964a, Howell et Perlmutter, 1964b,
Perlmutter et Howell, 1964, Howell, 1969]. Bénéficiant des progrès méthodolo-
giques et informatiques, elles sont aujourd’hui bien maîtrisées dans les appli-
cations ayant trait au rayonnement thermique dans les milieux participants
[Farmer et Howell, 1998, Howell, 1998, Modest, 2003b] où elles occupent le rôle de
méthodes de référence et de validation.

Plutôt que de poursuivre la présentation des méthodes de Monte-Carlo en toute
généralité, nous allons désormais les appliquer à des problématiques radiatives en
présence de milieu participant. Le cas d’étude, simple au début, sera progressivement
complexifié dans le but d’introduire les différentes techniques et approches qui seront
utilisées dans la suite de ce manuscrit.

Pour commencer, plaçons-nous dans le cas particulier d’un milieu semi-transparent
purement absorbant (les phénomènes de diffusion sont négligés). Puisque dans une
telle configuration, le rayonnement ne se propage qu’en ligne droite jusqu’à ce qu’il
soit absorbé, il est possible de ramener ce problème à un cas monodimensionnel.
L’équation du transfert radiatif en régime stationnaire est alors donnée par :

dLη(x, u)

dx
= ka,η(x)

[
Leqη (x, u)− Lη(x, u)

]
(3.46)

3.3.1 Luminance dans un milieu infini, purement absorbant

Considérons dans un premier temps ce milieu absorbant comme infini et étudions
la luminance en un point et dans une direction donnés (voir Fig. 3.3). La luminance
au point x0 dans la direction u0 correspond alors à l’intégrale spatiale sur le chemin
]−∞, x0] d’un terme d’émission ka,η(x)Leqη (x)dx atténué selon la loi de Beer-Lambert
entre x et x0 d’un facteur exp

(
−
∫ x0
x
ka,η(x

′)dx′
)
:

Lη(x0, u0) =

∫ x0

−∞
dx ka,η(x)Leqη (x) exp

(
−
∫ x0

x

ka,η(x
′)dx′

)
(3.47)

Comme introduit à la Sec. 2.2.4.2, il est possible de penser l’extinction exponen-
tielle comme une densité de probabilité et ainsi d’exprimer statistiquement Lη(x0, u0) :

Lη(x0, u0) =

∫ x0

−∞
dx pX(x)Leqη (x) (3.48)

où pX(x) = ka,η(x) exp
(
−
∫ x0
x
ka,η(x

′)dx′
)
est la fonction densité de probabilité

caractéristique de la loi de Beer-Lambert (exprimée ici en position plutôt qu’en libre
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x

x0
• u0

x
•

Figure 3.3 – Milieu infini, monodimensionnel et purement absorbant. La luminance au point x0

dans la direction u0 est égale à l’intégrale spatiale sur le chemin ]−∞, x0] d’un terme d’émission
atténué selon la loi de Beer-Lambert entre les points d’émission x et d’intérêt x0.

parcours).

La luminance Lη(x0, u0) correspond alors à l’espérance de la variable aléatoire
W (X) = Leqη (X) :

Lη(x0, u0) = E (W (X)) = E
(
Leqη (X)

)
(3.49)

où X est la variable aléatoire associée aux positions d’émission. Cette équation
illustre simplement le fait que la luminance en x0 est définie comme la moyenne
pondérée par la loi de Beer-Lambert des luminances d’équilibre de tous les points se
situant sur la demi-droite ]−∞, x0] définie par rapport à u0.

Réaliser un algorithme de Monte-Carlo pour ce problème revient donc à échan-
tillonner la variable aléatoire poids W (X) = Leqη (X) et donc à réaliser un nombre
important Nmc de réalisations indépendantes (indicées i), chacune composée des
étapes suivantes :

Algorithme

1. On échantillonne de façon indépendante une position d’émission xi selon
la fonction densité de probabilité pX(x). Cela consiste à échantillonner
un nombre aléatoire ri entre 0 et 1 de façon uniforme et à résoudre
l’équation ri =

∫ xi
−∞ pX(x)dx. Dans le cas où le coefficient d’absorption

est homogène, la position de collision est donnée par xi = x0 + ln(ri)/ka,η.
2. On calcule la luminance d’équilibre au point xi : wi = Leqη (xi) qui corres-

pond alors à un échantillon de la variable aléatoire poids : W (X).

Une estimation non biaisée L̃η(x0, u0) de la luminance par cet algorithme de
Monte-Carlo est alors donnée par la moyenne arithmétique des échantillons wi de la
variable aléatoire W (X) : L̃η(x0, u0) = 1

Nmc

∑Nmc
i=1 wi. Il est également possible de

calculer l’écart-type d’échantillon s(L̃η(x0, u0)) et d’autres indicateurs statistiques
comme ceux présentés à la Sec. 3.2.3.2.

Nous nous sommes volontairement placés ici dans un formalisme monodimension-
nel pour des motivations de didactique et de légèreté d’écriture. Toutefois, dans la
perspective de traiter des problèmes multidimensionnels, il est possible de généraliser
ce formalisme en faisant intervenir l’idée de libre parcours d’absorption, noté ici l.
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Les positions x et les directions u deviennent ainsi des grandeurs vectorielles. La
formulation intégrale de la luminance s’écrit alors :

Lη(x0,u0) =

∫ +∞

0

dl ka,η(x0 − lu0)Leqη (x0 − lu0) exp

(
−
∫ l

0

ka,η(x0 − l′u0)dl′
)

(3.50)
On utilisera souvent une forme plus compacte en introduisant x1 = x0 − lu0 :

Lη(x0,u0) =

∫ +∞

0

dl ka,η(x1)Leqη (x1) exp

(
−
∫ l

0

ka,η(x0 − l′u0)dl′
)

(3.51)

qu’il est possible de reformuler statistiquement en

Lη(x0,u0) =

∫ +∞

0

pL(l)dl Leqη (x1) (3.52)

La luminance est donc désormais décrite comme l’espérance de la luminance
d’équilibre au point d’émission X1 = x0−Lu0, fonction de la variable aléatoire L dont
la fonction densité de probabilité est pL(l) = ka,η(x1) exp

(
−
∫ l

0
ka,η(x0 − l′u0)dl′

)
:

Lη(x0,u0) = E
[
Leqη (x0 − Lu0)

]
= E

[
Leqη (X1)

]
(3.53)

3.3.2 Approche analogue et réciprocité des chemins

L’algorithme de Monte-Carlo proposé précédemment a été établi à partir d’une
formulation statistique de l’équation intégrale du transfert radiatif. Cependant,
lorsqu’il s’agit de développer des méthodes de Monte-Carlo, il est courant de
rencontrer une autre pratique qui s’appuie presque exclusivement sur des images
tirées de la physique du transport. On parle de méthodes de Monte-Carlo analogues.
Cette approche consiste à réaliser numériquement et stochastiquement les expériences
physiques que subissent les corpuscules d’intérêt à partir de leurs lois de probabilité,
supposées connues. Dans le cas du transfert radiatif, cela signifie que l’on va "lancer"
un grand nombre Nmc de photons [Starwest, 2014b] ou de "paquets de photons"
[Modest, 2013] selon des lois d’émission et suivre leurs interactions avec le milieu et
les frontières.

Pour appliquer une telle approche au cas d’étude de la section précédente, il
convient de s’attarder sur la notion de réciprocité des chemins optiques [Case, 1957]
qui joue un rôle important lorsqu’il s’agit de construire des images physiques associées.
Cette réciprocité des chemins, faisant appel aux notions de micro-réversibilité, est
une condition nécessaire pour garantir le second principe de la thermodynamique.
Cela implique au régime stationnaire, qu’un photon dans la direction u1 en x1 a
la même probabilité d’atteindre le point x2 dans la direction u2 que celle qu’un
photon partant de x2 dans la direction −u2 atteignent le point x1 dans la direction
−u1. En d’autres termes, il est possible de "lancer" des photons depuis le point
sonde d’intérêt (en le considérant mentalement comme point d’émission) jusqu’à
ce qu’ils soient absorbés par le milieu. Ces points d’absorption correspondent alors
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aux points d’émission du modèle direct. Dans le cas d’un milieu infini, purement
absorbant, l’intérêt de la réciprocité des chemins reste limité. Ce ne sera que lorsque
des phénomènes de diffusions ou de réflexions multiples seront pris en compte que
cette notion de réciprocité prendra tout son sens.

Il est donc possible de développer un algorithme de Monte-Carlo en s’appuyant
uniquement sur la physique du rayonnement, sur les images qu’elle véhicule et
sur ce principe de réciprocité. Pour le cas introduit à la Sec. 3.3 dans lequel on
souhaite estimer Lη(x0,u0), cela consiste à émettre un grand nombre de photons
depuis le point x0 dans la direction −u0 et à échantillonner un libre parcours
selon la loi de Beer-Lambert conduisant à une position d’absorption x1, interprétée
comme la position réelle d’émission. L’estimation de la luminance est alors donnée
comme la moyenne d’échantillon de Leqη (x1) pour l’ensemble des photons tirés.
Un tel algorithme correspond parfaitement à l’algorithme présenté à la section
précédente. On trouve dans la littérature internationale ce type d’algorithmes
qualifié de backward ou reverse [Walters et Buckius, 1992, Walters et Buckius, 1994,
Modest, 2003a, Siegel et al., 2011] que nous traduirons ici par Monte-Carlo réci-
proque.

Dans le cas de l’estimation de la luminance pour une configuration multidimen-
sionnelle, il est nécessaire de recourir à la réciprocité des chemins pour la construction
d’images physiques. En effet, si l’on suivait une approche directe, la probabilité
qu’un photon passe par le point x0 dans la direction u0 serait nulle, du fait de
la ponctualité du point et de la direction d’intérêt. Cependant, pour l’étude de
grandeurs intégrées sur l’espace des phases (ex : la puissance radiative absorbée par
un élément de surface sur tout l’hémisphère entrant), une vision réciproque n’est
plus nécessaire puisque la probabilité qu’un photon soit absorbé par cette surface
n’est plus nulle. Toutefois, même dans ces cas, il peut être courant de faire appel
au caractère réciproque du rayonnement pour réduire la variance et ainsi les temps
de calcul associés par une reformulation intégrale. Il suffit d’imaginer une surface
très grande Sg émettant vers une surface Sp très petite devant Sg et de considérer
la puissance absorbée par Sp. Lancer des photons de Sg en espérant qu’ils soient
absorbés par Sp peut être très coûteux en temps de calcul. En effet, un grand nombre
de photons émis n’atteindront jamais la petite surface. Au contraire, il semble plus
judicieux d’utiliser la réciprocité des chemins : la grande majorité des photons "émis"
par Sp seront "absorbés" par la grande surface. On aura par ce biais, en quelque
sorte, sélectionné préférentiellement les chemins optiques dignes d’intérêt par une
reformulation intégrale, réduisant ainsi la variance de l’estimation de cette puissance.

Dans ce manuscrit, nous faisons le choix de privilégier le développement de
méthodes de Monte-Carlo à partir des formulations intégrales et statistiques, qui
offrent à nos yeux, les plus grandes libertés d’amélioration. Toutefois, ne pouvant
pas nous passer d’images physiques pour accréditer nos propositions, ce ne sera qu’a
posteriori que nous ferons appel à cette vision analogue. Celle-ci ne conditionnera
pas, à proprement parler, le développement des méthodes, mais offrira les images
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nécessaires à une bonne analyse des phénomènes en présence et un retour intéressant
sur nos propositions méthodologiques.

3.3.3 Prise en compte des frontières du milieu

Considérons à nouveau le cas d’étude introduit à la Sec. 3.3.1 auquel est rajoutée
en xw une paroi noire. Les photons peuvent donc désormais être émis par le milieu
mais aussi par la paroi (voir Fig. 3.4). La luminance Lη(x0, u0) est donc la somme de
la luminance d’équilibre émise par la paroi atténuée exponentiellement sur le chemin
[xw, x0] et d’un terme source d’émission du milieu atténué lui aussi exponentiellement
et intégré entre xw et x0 :

Lη(x0, u0) =Leqη (xw) exp

(
−
∫ x0

xw

ka,η(x
′)dx′

)

+

∫ x0

xw

dx ka,η(x)Leqη (x) exp

(
−
∫ x0

x

ka,η(x
′)dx′

) (3.54)

x

xw

x0
• u0

+ x
••

Figure 3.4 – Milieu fini, monodimensionnel et purement absorbant. Une paroi noire est placée
en xw. La luminance au point x0 dans la direction u est égale à la somme d’un terme d’émission
à la paroi et d’un terme source d’émission du milieu. Chacun d’entre-eux faisant intervenir une
atténuation exponentielle.

L’Eq. 3.54 peut alors être reformulée :

Lη(x0, u0) =

∫ x0

−∞
dx ka,η(x) exp

(
−
∫ x0

x

ka,η(x
′)dx′

)

×
[
H (xw − x)Leqη (xw) +H (x− xw)Leqη (x)

] (3.55)

où H (a) est la fonction de Heaviside, valant 0 si a < 0 et 1 si a > 0. Cette reformu-
lation revient donc à considérer la paroi comme un milieu semi-transparent infini,
purement absorbant, de température uniforme T = T (xw). Une telle expression est
souvent rencontrée en transfert radiatif et présente l’avantage d’être plus facilement
manipulable (statistiquement et algorithmiquement) que l’Eq. 3.54. Elle requiert
cependant une information sans réel sens : le champ de coefficient d’absorption doit
être défini sur ]−∞;x0] et a fortiori derrière la paroi. Dans la pratique, on définit
généralement le coefficient d’absorption comme égal à ka,η(x+

w) pour x ≤ xw, mais en
théorie tout champ strictement positif peut être accepté.

De la même façon que précédemment, l’atténuation exponentielle peut être
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exprimée comme une fonction densité de probabilité. Il vient alors :

Lη(x0, u0) =

∫ x0

−∞
pX(x)dx

[
H (x− xw)Leqη (x) +H (xw − x)Leqη (xw)

]
(3.56)

qui à son tour peut être exprimée sous la forme d’une espérance

Lη(x0, u0) = E
[
H (X − xw)Leqη (X) +H (xw −X)Leqη (xw)

]
= E [W (X)] (3.57)

En définissant X∗ comme une variable aléatoire valant X si X > xw et valant xw
autrement, on obtient

Lη(x0, u0) = E
[
Leqη (X∗)

]
= E [W (X∗)] (3.58)

Il est alors possible d’estimer Lη(x0, u0) par un algorithme de Monte-Carlo. Celui-
ci consistera à opérer un nombre important Nmc de réalisations (indicées i), chacune
composée des deux étapes suivantes :

Algorithme

1. On échantillonne une position d’émission xi à partir de la fonction densité
de probabilité pX(x).

2. Si la position échantillonnée est dans le milieu participant : xi ∈ [xw, x0]
alors l’échantillon de la variable aléatoire W (X) est wi = Leqη (x). Au
contraire si xi est au-delà de la frontière : xi < xw, l’échantillon est défini
comme wi = Leqη (xw).

Les images physiques correspondantes sont celles de photons suivis depuis x0 dans
la direction −u0, jusqu’à ce qu’ils soient absorbés entre x0 et −∞ par le milieu ou par
la paroi considérée alors comme un milieu infini purement absorbant et isotherme.

3.3.4 Échantillonnage préférentiel et approche par variance
nulle

3.3.4.1 Échantillonnage préférentiel

Il est fréquent, notamment dans des applications de type combustion, de considérer
en première approximation que les parois ont une température fixée à 0K. En
d’autres termes, cela consiste à admettre que les parois absorbent mais n’émettent
pas de rayonnement : Leqη (xw) = 0. Il peut alors être intéressant, dans une optique
de réduction de variance, d’échantillonner les positions d’absorption dans le seul
intervalle ]xw, x0] et non sur ]−∞, x0]. Cette approche d’échantillonnage préférentiel
consiste alors à définir sur ]xw, x0] une nouvelle densité de probabilité associée aux
positions d’émission p̃X(x). L’Eq. 3.56 est alors reformulée comme :

Lη(x0, u0) =

∫ x0

xw

p̃X(x)dx

[
pX(x)

p̃X(x)
Leqη (x)

]
= E

[
pX(X)

p̃X(X)
Leqη (X)

]
= E

[
W̃ (X)

]

(3.59)
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Les fonctions de Heaviside ont pu être supprimées (avec un changement du domaine
d’intégration), puisque l’émission de la paroi est nulle. En faisant intervenir la densité
de probabilité p̃X(x) on modifie artificiellement la statistique de notre problème.
Ce biais est alors compensé par une modification de la variable aléatoire poids qui
devient W̃ (X) = pX(X)

p̃X(X)
Leqη (X).

Jusqu’ici aucune expression n’a été proposée concernant cette nouvelle densité
de probabilité. Ce choix est en effet totalement arbitraire. Une proposition assez
simple consiste à normaliser la densité de probabilité originelle pX(x) sur le segment
]xw, x0] :

p̃X(x) =
exp

(
−
∫ x0
xw
ka,η(x

′)dx′
)

∫ x0
xw

exp
(
−
∫ x0
xw
ka,η(x′)dx′

) (3.60)

Cet échantillonnage préférentiel n’induit aucun changement quant à la structure
algorithmique : un grand nombreNmc de positions d’émission xi seront échantillonnées
selon p̃X(x) (qui ne correspond alors plus à la loi de Beer-Lambert). Une fois cette
position d’émission connue, le poids w̃i(xi) = pX(xi)

p̃X(xi)
Leqη (xi) sera calculé. L’estimation

de Lη(x0, u0) par l’algorithme de Monte-Carlo sera alors donnée par la moyenne
arithmétique des Nmc échantillons w̃i.

3.3.4.2 Approche par variance nulle

Il est également possible d’appuyer le choix de p̃X(x) avec une approche par
variance nulle. Cela consiste à exprimer la fonction densité de probabilité p̃X,∅(x)
idéale qui validerait Lη(x0, u0) = W̃∅(X) quelle que soit la valeur prise par X. La
variable aléatoire W̃∅(X) = pX(X)

p̃X,∅(X)
Leqη (X) aurait alors une variance nulle. Dans le

cas considéré (température de paroi nulle), cette densité de probabilité idéale serait
donnée par :

p̃X,∅(x) =
pX(x)Leqη (x)

Lη(x0, u0)
=

pX(x)Leqη (x)∫ x0
xw
pX(x′)Leqη (x′)dx′

(3.61)

Il est évident que nous ne sommes pas capables de calculer cette fonction idéale,
puisqu’elle dépend de Lη(x0, u0) qui est justement l’observable que nous souhaitons
estimer. Cependant, s’il est possible d’établir un modèle approché y(x) de pX(x)Leqη (x)
suffisamment fidèle au modèle physique d’intérêt, et dont l’intégrale entre xw et x0

est analytiquement calculable, la fonction densité de probabilité

p̃X(x) =
y(x)∫ x0

xw
y(x)dx

(3.62)

sera proche de p̃X,∅(x). Ainsi, bien que non nulle, la variance de W̃ (X) aura été
sensiblement réduite 4, ce qui se traduira en pratique par une diminution du nombre
de réalisations nécessaires pour parvenir à une même erreur relative. Toute la difficulté

4. Il peut arriver que le choix de y(x) soit à l’origine d’une augmentation de variance, traduisant
ainsi une mauvaise représentation de la physique d’intérêt.
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de l’approche par variance nulle réside donc dans l’établissement du modèle utilisé
pour approcher au mieux p̃X,∅(x). Une approche par variance nulle sera réalisée au
Chap. 5 pour orienter les choix arbitraires de plusieurs densités de probabilités et
probabilités discrètes.

3.4 Étude de la luminance dans un milieu absorbant
et diffusant

L’étude d’un milieu purement absorbant a donc permis d’aborder les méthodes
de Monte-Carlo réciproques et analogues ainsi que les approches d’échantillonnage
préférentiel et par variance nulle. Complexifions désormais ce cas d’étude en rajoutant
des phénomènes de diffusions multiples qui vont engendrer une récursivité dans le
formalisme statistique et les algorithmes de Monte-Carlo correspondants. L’équation
stationnaire du transfert radiatif, relative à de telles considérations, est rappelée
ci-dessous :

u.∇Lη(x,u) = −kη(x)Lη(x,u) + ka,η(x)Leqη (x) + kd,η

∫

4π

φ(x,u|u′)Lη(x,u′)du′

(3.63)
où φ(x,u|u′) est la fonction de phase et kη(x) = ka,η(x) + kd,η(x) est le coefficient
d’extinction au point x.

3.4.1 Luminance dans un milieu absorbant, diffusant, infini

Concentrons-nous tout d’abord sur un milieu tridimensionnel, infini, absorbant,
émettant et diffusant le rayonnement. La luminance au point x0 dans la direction u0

est égale à la somme d’une infinité de composantes Cj, atténuées exponentiellement
le long de leur chemin de diffusion entre leur position d’émission et le point sonde
x0 :
C1 : la luminance associée aux photons émis en x1 dans la direction u0 et atteignant

directement la position x0 sans avoir subi d’événement de diffusion (voir
Fig. 3.5a).

C2 : la luminance associée aux photons émis en tout point x2 de l’espace dans une
direction u1 qui atteignent le point x0 dans la direction u0 en ayant subi une
unique diffusion en x1 (voir Fig. 3.5b).

C3 : la luminance associée aux photons émis en tout point x3 de l’espace dans une
direction u2 qui atteignent le point x0 dans la direction u0 en ayant subi deux
événements de diffusion en x2 et x1 (voir Fig. 3.5c).

Cj≥4 : les luminances associées aux photons émis en xj dans une direction uj−1

atteignant le point x0 dans la direction u0 en ayant subi j − 1 événements de
diffusion.
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Figure 3.5 – Luminance en milieu diffusant. La luminance au point x0 dans la direction u0

peut être perçue comme la somme d’une infinité de composantes. La première d’entre-elles (a) est
associée aux photons émis d’un point x1 appartenant à la demi droite définie par x0 et −u0 dans
la direction u0, sans avoir subi d’événement de diffusion. La seconde composante (b) concerne les
photons émis en x2 dans le domaine spatial d’intérêt et atteignant le point x0 dans la direction u0

suite à un unique événement de diffusion. La troisième composante est associée aux photons ayant
subi deux événements de diffusion avant d’atteindre le point x0 dans la direction u0 (c) etc.

Considérer la luminance Lη(x0,u0) comme la somme d’une infinité de contribu-
tions, permet alors d’écrire la formulation intégrale suivante :

Lη(x0,u0) =

{∫ ∞

0

dl1 exp

(
−
∫ l1

0

kη(x0 − l′1u0)dl′1

)
ka,η(x1)Leqη (x1)

}

+





∫ ∞

0

dl1 exp

(
−
∫ l1

0

kη(x0 − l′1u0)dl′1

)
kd,η(x1)

∫

4π

φ(x1,u0|u1)du1

×
∫ ∞

0

dl2 exp

(
−
∫ l2

0

kη(x1 − l′2u1)dl′2

)
ka,η(x2)Leqη (x2)





+





∫ ∞

0

dl1 exp

(
−
∫ l1

0

kη(x0 − l′1u0)dl′1

)
kd,η(x1)

∫

4π

φ(x1,u0|u1)du1

×
∫ ∞

0

dl2 exp

(
−
∫ l2

0

kη(x1 − l′2u1)dl′2

)
kd,η(x2)

∫

4π

φ(x2,u1|u2)du2

×
∫ ∞

0

dl3 exp

(
−
∫ l3

0

kη(x2 − l′3u2)dl′3

)
ka,η(x3)Leqη (x3)





+ {· · · }

(3.64)

où xj+1 = xj − lj+1uj et où chaque terme entre accolades correspond à une
contribution particulière (le premier est relatif à la contribution C1, le second à
la contribution C2, etc.). Cette expression met en relief les avantages en termes
d’intuitif et de formalisme qu’offre la réciprocité des chemins. Les images associées à
ce cas d’étude sont celles de photons émis depuis x0 dans la direction −u0 subissant
0, 1, 2, etc. diffusions avant d’être absorbés de façon exponentielle le long de leur
chemin optique.
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Il est alors possible de factoriser l’Eq. 3.64 :

Lη(x0,u0) =

∫ ∞

0

dl1 kη(x1) exp

(
−
∫ l1

0

kη(x0 − l′1u0)dl′1

)

×





ka,η(x1)

kη(x1)
Leqη (x1)

+
kd,η(x1)

kη(x1)

∫

4π

φ(x1,u0|u1)du1





∫ ∞

0

dl2 kη(x2) exp

(
−
∫ l2

0

kη(x1 − l′2u1)dl′2

)

×





ka,η(x2)

kη(x2)
Leqη (x2)

+
kd,η(x2)

kη(x2)

∫

4π

φ(x2,u1|u2)du2 × · · ·

(3.65)

ce qui amène d’autres images, celles-ci récursives : la luminance Lη(x0,u0) est la
somme des luminances associées aux photons émis directement (sans expérimenter
de diffusion) vers x0 dans la direction u0 et des photons ayant subi au moins une
diffusion, mais parvenant en x0 dans la direction u0 ; cette seconde composante est
elle-même la somme des luminances associées aux photons émis directement (sans
expérimenter de diffusion) vers x1 dans la direction u1 et des photons ayant subi au
moins une diffusion mais parvenant en x1 dans la direction u1 ; etc. L’Eq. 3.65 peut
ainsi être formalisée sous une forme récursive :

Lη(x0,u0) =

∫ ∞

0

dl1 kη(x1) exp

(
−
∫ l1

0

kη(x0 − l′1u0)dl′1

)

×





ka,η(x1)

kη(x1)
Leqη (x1)

+
kd,η(x1)

kη(x1)

∫

4π

φ(x1,u0|u1)Lη(x1,u1)du1





(3.66)

où le terme récursif Lη(xj,uj) pour j ≥ 1 est donné par :

Lη(xj,uj) =

∫ ∞

0

dlj+1 kη(xj+1) exp

(
−
∫ lj+1

0

kη(xj − l′j+1uj)dl
′
j+1

)

×





ka,η(xj+1)

kη(xj+1)
Leqη (xj+1)

+
kd,η(xj+1)

kη(xj+1)

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1





(3.67)

L’atténuation exponentielle, dépendant désormais du coefficient d’extinc-
tion kη, garde son caractère statistique et pourra être exprimée comme
une fonction densité de probabilité de libres parcours : pLj+1

(lj+1) =

kη(xj+1) exp
(
−
∫ lj+1

0
kη(xj − l′j+1uj)dl

′
j+1

)
. Dans cette expression intégrale, de

nouveaux termes ayant une valeur statistique sont également apparus : les albédos
d’absorption ωa,η(xj) = ka,η(xj)/kη(xj) et de diffusion ωd,η(xj) = kd,η(xj)/kη(xj). Ils
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représentent respectivement les probabilités qu’a un photon qui collisionne en xj
d’être absorbé ou émis : Pa(xj) (selon qu’on regarde le problème de façon directe ou
réciproque) et d’être diffusé : 1− Pa(xj). Ces considérations nous permettent alors
d’exprimer statistiquement l’Eq. 3.66 comme :

Lη(x0,u0) =

∫ ∞

0

pL1(l1)dl1 ×





Pa(x1)Leqη (x1)

+(1− Pa(x1))

∫

4π

φ(x1,u0|u1)Lη(x1,u1)du1





(3.68)
où le terme récursif Lη(xj,uj) est donné par

Lη(xj,uj) =

∫ ∞

0

pLj+1
(lj+1)dlj+1

×





Pa(xj+1)Leqη (xj+1)

+(1− Pa(xj+1))

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1





(3.69)

L’Eq. 3.68 ne constitue qu’une expression de l’espérance de la luminance d’équi-
libre au point d’émission du photon. En effet, la récursivité due aux événements de
diffusion ne joue un rôle que sur la longueur du chemin optique et sur les propriétés
rencontrées le long de ce chemin (coefficient d’absorption, de diffusion, température,
etc.). On peut alors écrire :

Lη(x0,u0) = E
[
Leqη (X∗)

]
= E [W (X∗)] (3.70)

avec X∗ la variable aléatoire associée aux positions d’émission. Celle-ci peut être
exprimée de la façon suivante 5 :

X∗ =
∞∑

j=1

AjXj

j−1∏

q=1

(1− Aq) (3.71)

où Aq est une variable aléatoire valant 1 avec une probabilité Pa(xq) et 0 avec
une probabilité 1 − Pa(xq). Ce formalisme récursif ainsi que les images physiques
associées seront intensivement utilisés dans les prochains chapitres de ce document.

Il est alors possible de proposer un algorithme de Monte-Carlo constitué de Nmc

réalisations indépendantes, chacune composée des étapes suivantes :

5. Le formalisme utilisé pour exprimer la variable aléatoire de position d’émission dans l’Eq. 3.71,
a été choisi afin de mettre en avant l’idée de chemin de multi-diffusion. La somme infinie

∑∞
j=1

permet de rendre compte de l’ensemble des collisions probables. L’introduction de la variable
aléatoire Aj , associée à un événement d’émission/absorption (valant 1 avec une probabilité Pa(xq)),
permet de s’assurer, grâce au terme

∏j−1
q=1(1 − Aq) que seule une position (celle d’émission) soit

retenue pour la définition de X∗.
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Algorithme

1. L’indice de collision j est initialisé : j = 0.
2. On échantillonne un libre parcours lj+1 selon la fonction densité de

probabilité pLj+1
(lj+1), ce qui permet de calculer la position de collision

xj+1 = xj − lj+1uj.
3. On procède à un test de Bernoulli pour déterminer le type de collision :

une émission ou une diffusion. Pour cela on tire uniformément un nombre
aléatoire rj+1.
3a. Si rj+1 < Pa(xj+1), la collision est une émission. On calcule alors la

luminance d’équilibre au point x1 qui correspond à l’échantillon wi
de cette réalisation. La récursivité est alors stoppée.

3b. Si rj+1 > Pa(xj+1), la collision est une diffusion. Une nouvelle
direction de propagation uj+1 est alors échantillonnée à partir de
la fonction de phase φ(xj+1,uj|uj+1) ; l’indice de la collision est
incrémenté : j ≡ j + 1 et l’algorithme boucle à l’étape 2.

Dans la suite du manuscrit, du fait de la lourdeur engendrée par ce type de
récursivité, nous présenterons les algorithmes sous forme de logigrammes. Une
transposition directe de cet algorithme est donnée à la Fig. 3.6.

j = 0

Echantillonnage de l j+1 et calcul de x j+1

Echantillonnage uniforme de r j+1

r j+1 < Pa(x j+1)

(Absorption)

Oui
(Diffusion)

Non

wi = Leq
η (x j+1)

×

Echantillonnage de u j+1

j ≡ j + 1

Figure 3.6 – Algorithme de Monte-Carlo estimant L(x0,u0) dans un milieu infini absorbant,
diffusant et émettant. Un libre parcours l1 est d’abord échantillonné, conduisant à une position de
collision x1. Cette collision pouvant être soit une émission soit une diffusion, un test de Bernoulli est
effectué : un nombre aléatoire r1 est échantillonné. Si r1 < Pa(x1), il y a émission en x1, le poids de
Monte-Carlo est alors w1 = Leqη (x1). Si r1 > Pa(x1), la collision est une absorption, une direction
u1 et un nouveau libre parcours l2 sont alors échantillonnés, menant ainsi à un nouveau point de
collision x2 où un test de Bernoulli sera effectué pour déterminer le type de collision. L’algorithme
continuera ainsi, jusqu’à ce qu’une absorption soit identifiée.
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Les images physiques correspondantes sont encore celles de photons suivis depuis
la position x0 dans la direction opposée à u0, jusqu’à ce qu’ils soient absorbés en x∗.
Mais le chemin optique est désormais un chemin de multi-diffusion. Au premier point
de collision x1, il y a une probabilité Pa(x1) que les photons soient absorbés. Dans
ce cas x∗ = x1. Autrement, ils diffusent dans une direction u′1 avec une probabilité
(1− Pa(x1)). Les photons sont alors suivis jusqu’à la prochaine collision en x2 qui
peut, à son tour, être soit une nouvelle diffusion, soit une absorption et ainsi de suite
jusqu’à ce qu’un point d’absorption soit identifié. La luminance d’équilibre en ce
point est alors considérée.

Une autre manière d’aborder ce problème consiste à le définir dans l’espace des
chemins [Dauchet, 2012]. Cet espace est défini comme l’ensemble des chemins de
multi-diffusion possibles passant en x0 dans la direction u0. Les images statistiques
correspondantes consistent alors à considérer un chemin optique appartenant à cet
espace et à suivre les photons le long de ce chemin, de la même façon qu’ils le seraient
dans le cas d’un milieu purement absorbant/émettant.

3.4.2 Traitement déterministe des tests de Bernoulli ou mé-
thode dite d’Energy partitioning

Comme présenté précédemment, toutes les contributions à la variable aléatoire
W (X∗) sont uniquement liées aux événements d’émission : W (X∗) = Leqη (X∗).
Imaginons désormais que le milieu considéré soit fortement diffusant et peu ab-
sorbant/émissif : l’essentiel du temps de calcul sera alors consacré à traiter les
événements de diffusion qui n’ont aucun autre rôle que de permettre un échantillon-
nage de l’espace des chemins. À de très rares moments, des émissions seront prises
en compte, mettant ainsi fin à la réalisation.

Une manière de répondre à ce problème est d’employer une méthode qui consiste
à ôter le caractère probabiliste des albédos d’émission ka,η

kη
et de diffusion kd,η

kη
en

les traitant de façon déterministe. Ainsi, à chaque collision, une contribution d’ab-
sorption/émission sera prise en compte. Cette approche, initialement développée
pour calculer l’émittance apparente de cavités isothermes [Shamsundar et al., 1973],
est connue sous différentes dénominations : "Energy partitioning" [Modest, 2003b],
"Absorption suppression" [Walters et Buckius, 1992] ou encore "Pathlength method"
[Farmer et Howell, 1998]. L’utilisation de cette technique consiste donc à reformuler
l’Eq. 3.68 en :

Lη(x0,u0) =

∫ ∞

0

pL1(l1)dl1 ×





ka,η(x1)

kη(x1)
Leqη (x1)

+
kd,η(x1)

kη(x1)

∫

4π

φ(x1,u0|u1)Lη(x1,u1)du1





(3.72)

où les grandeurs ka,η(x1)

kη(x1)
et kd,η(x1)

kη(x1)
sont utilisés de manière déterministe. La luminance

d’intérêt Lη(x0,u0) est alors définie comme l’espérance d’une variable aléatoire un
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peu plus complexe :

Lη(x0,u0) = E

[ ∞∑

j=1

(
ka,η(Xj)

kη(Xj)
Leqη (Xj)

j−1∏

q=1

kd,η(Xq)

kη(Xq)

)]
(3.73)

Les images physiques associées à ce traitement déterministe des albédos sont
alors sensiblement modifiées. Plutôt que de suivre des photons depuis x0 dans la
direction u0 jusqu’à ce qu’ils soient absorbés en un point xj, ils sont ici absorbés de
façon progressive le long de leur chemin optique.

L’Eq. 3.73 pose cependant dans notre cas d’étude (milieu infini) un problème
majeur lorsqu’il s’agit de la traduire algorithmiquement : la récursion est infinie, le
calcul ne s’arrête donc jamais (voir Fig. 3.7). En partant du constat que plus l’indice

j = 0 ; w0 = 0 ; ξ0 = 1

Echantillonnage de l j+1 et calcul de x j+1

ξ j+1 = ξ j
kd,η(x j+1)
kη(x j+1)

w j+1 = w j + ξ j
ka,η(x j+1)
kη(x j+1) Leq

η (x j+1)

Echantillonnage de u j+1

j ≡ j + 1

Figure 3.7 – Algorithme de Monte-Carlo avec traitement déterministe pur des albédos. Un libre
parcours d’extinction l1 est échantillonné à partir de x0 dans la direction u0, menant ainsi à un point
de collision x1. En ce point de collision, une contribution d’émission ka,η(x1)

kη(x1) L
eq
η (xj) est prise en

compte. Puis une nouvelle direction u1 et un nouveau libre parcours l2 sont échantillonnés, menant à
un nouveau point de collision x2 pour lequel une contribution d’émission ka,η(x2)

kη(x2) L
eq
η (x2)

kd,η(x1)
kη(x1) est

à nouveau ajoutée au poids de Monte-Carlo wi. L’algorithme poursuit ainsi cette boucle indéfiniment.
Il est alors nécessaire de définir un critère d’arrêt pour y mettre fin (voir Fig. 3.8).

de collision j est grand, plus le terme ξj =
∏j−1

q=1
kd,η(xq)

kη(xq)
est faible, deux alternatives

sont envisageables pour répondre à cette infinité de boucles :
• lorsque ξj devient suffisamment proche de zéro, on stoppe la réalisation, tron-

quant ainsi la somme infinie. Un léger biais est alors créé, faisant ainsi perdre
à l’algorithme de Monte-Carlo son caractère de méthode de référence.
• lorsque ξj passe en dessous d’un seuil ζ défini arbitrairement entre 0 et 1, on

rétablit le caractère probabiliste des albédos : on bascule alors à l’algorithme
présenté à la Sec. 3.4.1. L’algorithme résultant d’un tel choix, privilégié dans
la suite du manuscrit, est décrit par la Fig. 3.8.
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j = 0 ; w0 = 0 ; ξ0 = 1

Echantillonnage de l j+1 et calcul de x j+1

ξ j > ζ

(Branche déterministe)

Oui
(Branche probabiliste)

Non

ξ j+1 = ξ j
kd,η(x j+1)
kη(x j+1)

w j+1 = w j + ξ j
ka,η(x j+1)
kη(x j+1) Leq

η (x j+1)

Echantillonnage de u j+1

j ≡ j + 1

Echantillonnage uniforme de r j+1

r j+1 < Pa(x j+1)

(Absorption)

Oui
(Diffusion)

Non

wi = w j + ξ jL
eq
η (x j+1)

×

w j+1 = w j

Echantillonnage de u j+1

ξ j+1 = ξ

j ≡ j + 1

Figure 3.8 – Algorithme de Monte-Carlo avec traitement déterministe puis stochastique des
albédos. Tant que le critère d’extinction ξj =

∏j−1
q=1

kd,η(xq)
kη(xq)

est supérieur au seuil arbitraire ζ,
l’algorithme est identique à celui présenté à la Fig. 3.7. Une fois ce seuil atteint, l’algorithme
bascule sur une branche dans laquelle les albédos de diffusion et d’absorption sont traités de façon
statistique (similaire à l’algorithme présenté à la Fig. 3.6) pour mettre fin à la réalisation.



82 Chapitre 3. Approche statistique et méthodes de Monte-Carlo

3.4.3 Calcul de sensibilités paramétriques

Les méthodes de Monte-Carlo offrent également l’avantage de pouvoir estimer
des sensibilités paramétriques 6 en parallèle du calcul de l’observable radiative, sans
augmenter de manière sensible le temps de calcul. En effet, du fait de la linéarité de
l’expression intégrale considérée, la structure algorithmique correspondante ne sera
pas altérée lorsqu’il s’agira d’estimer une sensibilité paramétrique de cette même
grandeur. Pour illustrer cette possibilité offerte par les méthodes de Monte-Carlo,
repartons de l’Eq. 3.68 et exprimons la sensibilité paramétrique ∂$Lη(x0,u0) de
la luminance Lη(x0,u0), selon un paramètre $ ayant une influence sur la seule
fonction de phase (le paramètre d’asymétrie par exemple). Exprimer cette sensibilité
paramétrique revient alors à dériver Lη(x0,u0) par rapport à $ :

∂$Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)

×





Pa(x1)× 0

+(1− Pa(x1))

∫

4π

du1

{
∂$φ(x1,u0|u1)Lη(x1,u1)

+φ(x1,u0|u1)∂$Lη(x1,u1)

}




(3.74)

Pour garder la même structure statistique et algorithmique que celle de l’estimation
de la luminance Lη(x0,u0), l’Eq. 3.74 peut être reformulée en :

∂$Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)×





Pa(x1)× 0

+(1− Pa(x1))

∫

4π

du1φ(x1,u0|u1)

×
[

∂$ [ln (φ(x1,u0|u1))]Lη(x1,u1)

+∂$Lη(x1,u1)

]





(3.75)

Cette équation comporte désormais deux termes récursifs : Lη(xj,uj) et
∂$Lη(xj,uj). Le premier est le même que pour l’estimation de la luminance Lη(x0,u0)
(voir Eq. 3.69) et le second est donné par :

∂$Lη(xj,uj) =

∫ ∞

0

dlj+1 pLj+1
(lj+1)

×





Pa(xj+1)× 0

+(1− Pa(xj+1))

∫

4π

duj+1φ(xj+1,uj|uj+1)

×
[

∂$ [ln (φ(xj+1,uj|uj+1))]Lη(xj+1,uj+1)

+∂$Lη(xj+1,uj+1)

]





(3.76)

6. Dans [De La Torre et al., 2014], les auteurs distinguent plusieurs familles de sensibilités
paramétriques : 1/ celles où seul le poids de Monte-Carlo dépend du paramètre d’intérêt 2/
celles où le paramètre n’intervient que dans les probabilités de la formulation intégrale 3/ celles où
le domaine d’intégration est dépendant du paramètre par rapport auquel est calculée la sensibilité
4/ une combinaison des trois cas précédents. Dans le cadre de ces travaux de thèse, seul le second
cas - illustré dans la présente section - sera abordé.
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Toutefois, ces deux termes, ayant une même structure d’un point de vue statistique,
peuvent être pris en compte simultanément. Il est ainsi possible d’exprimer la
sensibilité de la luminance Lη(x0,u0) au paramètre $ comme une unique espérance :

∂$Lη(x0,u0) = E
[
Leqη (X∗)

] ∞∑

j=1

(
Aj

j−1∏

q=1

(1− Aq)
)(

j−1∑

m=1

∂$ [ln (φ(Xm,Um−1|Um))]

)

= E [W$(X∗)]
(3.77)

où Aq est une variable aléatoire valant 1 avec une probabilité Pa(xq) et 0 avec
une probabilité 1 − Pa(xq) et où X∗ est définie de la même façon que pour l’es-
timation de Lη(x0,u0) (voir Eq. 3.71). Le détail de ces calculs est donné en Annexe A.

Il est alors possible d’estimer cette sensibilité paramétrique de la luminance
Lη(x0,u0) conjointement à l’estimation de cette luminance. La description d’une
réalisation de l’algorithme de Monte-Carlo correspondant est donnée à la Fig. 3.9.

j = 0 ; q0 = 0

Echantillonnage de l j+1 et calcul de x j+1

Echantillonnage uniforme de r j+1

r j+1 < Pa(x j+1)

(Absorption)

Oui
(Diffusion)

Non

wi = Leq
η (x j+1)

w$,i = q j × Leq
η (x j+1)

×

Echantillonnage de u j+1

q j+1 = q j + ∂$
[
ln(φ(x j+1,u j|u j+1))

]

j ≡ j + 1

Figure 3.9 – Algorithme de Monte-Carlo estimant de façon simultanée une luminance L(x0,u0)
dans un milieu participant infini et sa sensibilité à un paramètre $ de la fonction de phase. La
structure algorithmique est identique à celle de la Fig. 3.3 ; seul un facteur incrémental qj est rajouté
pour calculer l’expression du poids de Monte-Carlo wi.

L’estimation de Lη(x0,u0) pour Nmc réalisations de Monte-Carlo est alors donnée
par L̃η(x0,u0) =

∑Nmc
i=1 wi/Nmc et l’estimation de sa sensibilité au paramètre $ par

∂̃$Lη(xj,uj) =
∑Nmc

i=1 w$,i/Nmc.
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3.4.4 Luminance dans un milieu purement absorbant, diffu-
sant et entouré de parois réfléchissantes

Reprenons le cas présenté à la Sec. 3.4.1 : un milieu absorbant, émettant et
diffusant et considérons le désormais comme fini et entouré par des parois partielle-
ment réfléchissantes (voir Fig. 3.10). À partir de l’Eq. 3.65, il est possible de faire

x0
• x1•

x2
•

x3
•

xw,4
•

x5 •

xw,5•

xw,4 − l4u4•

u0 u1

u2

u3

u4

V
B

Figure 3.10 – Milieu absorbant, émettant et diffusant, clos par des parois partiellement réflé-
chissantes. Les images physiques associées à l’estimation de la luminance Lη(x0,u0) sont celles de
photons suivis depuis x0 dans la direction −u0 jusqu’à leur point d’émission à la paroi B (voir
xw,5) ou dans le milieu V (voir x5). Le long de leur chemin optique, ces photons sont susceptibles
de subir des événements de diffusion multiple (voir x1, x2, x3) ou de réflexion (voir x4).

apparaître une prise en compte des parois comme proposée à la Sec. 3.3.3. La seule
différence concerne les conditions aux frontières : dans la Sec. 3.3.3 les parois étaient
considérées comme noires, désormais elles sont partiellement réfléchissantes. Dans
des considérations réciproques, seule une proportion ε(xw) des photons est absorbée
par la paroi, autrement ces photons sont réfléchis et continuent leur chemin dans une
nouvelle direction selon une distribution directionnelle de réflexion ψ(xw,1,u0|u1).
On se ramène donc aux parois, à une expression très proche de celle rencontrée lors
de multi-diffusions . La luminance au point x0 dans la direction u0 est alors donnée
par la formulation intégrale récursive suivante :

Lη(x0,u0) =

∫ ∞

0

dl1 kη(x1) exp

(
−
∫ l1

0

kη(x0 − l′1u0)dl′1

)

×





H (x1 /∈ V)





ε(xw,1)Leqη (xw,1)

+(1− ε(xw,1))

∫

2π

ψ(xw,1,u0|u1)Lη(xw,1,u1)du1





+H (x1 ∈ V)





ka,η(x1)

kη(x1)
Leqη (x1)

+
kd,η(x1)

kη(x1)

∫

4π

φ(x1,u0|u1)Lη(x1,u1)du1









(3.78)

où le point xw,j+1 correspond à la première intersection entre la frontière et la demi-
droite définie par le point xj et la direction −uj . Le terme récursif Lη(xj,uj), présent
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à deux reprises dans l’Eq. 3.78, est donné par :

Lη(xj,uj) =

∫ ∞

0

dlj+1 kη(xj+1) exp

(
−
∫ lj+1

0

kη(xj − l′j+1uj)dl
′
1

)

×





H (xj+1 /∈ V)





ε(xw,j+1)Leqη (xw,j+1)

+(1− ε(xw,j+1))

∫

2π

ψ(xw,j+1,uj|uj+1)Lη(xw,j+1,uj+1)duj+1





+H (xj+1 ∈ V)





ka,η(xj+1)

kη(xj+1)
Leqη (xj+1)

+
kd,η(xj+1)

kη(xj+1)

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1









(3.79)
Il est alors possible de remplacer les termes d’extinction, d’émissivité, de ré-

flectivité et albédos de diffusion et d’absorption par leur notation sous forme de
probabilité. Il vient alors la formulation statistique :

Lη(xj,uj) =

∫ ∞

0

pLj+1
(lj+1)dlj+1

×





H (xj+1 /∈ V)





Pe(xw,j+1)Leqη (xw,j+1)

+(1− Pe(xw,j+1))

∫

2π

ψ(xw,j+1,uj|uj+1)Lη(xw,j+1,uj+1)duj+1





+H (xj+1 ∈ V)





Pa(xj+1)Leqη (xj+1)

+
(
1− Pa(xj+1)

) ∫

4π

φ(xj+1,uj|uj+1)Lη(x1,uj+1)duj+1









(3.80)
pour laquelle l’observable où Lη(x0,u0) est un cas particulier (validant j = 0) et
où Pe(xw,1) = ε(xw,1) correspond à la probabilité que le photon soit émis par la paroi.

À nouveau, cette expression de la luminance correspond à l’espérance de la
luminance d’équilibre au point d’émission X∗ :

Lη(x0,u0) = E
[
Leqη (X∗)

]
= E [W (X∗)] (3.81)

Toutefois, la variable aléatoire X∗ intègre désormais l’idée de réflexion aux parois.
Elle peut être exprimée comme :

X∗ =
∞∑

j=1

[
H (Xj ∈ V)AjXj +H (Xj /∈ V)EjXw,j

] j−1∏

q=1

(1− Aq − Eq) (3.82)

où Aj est une variable aléatoire valant 1 avec une probabilité Pa(xj), 0 sinon, et Ej
une variable aléatoire valant 1 avec une probabilité Pe(xw,j), 0 sinon. Une réalisation
indépendante de la traduction algorithmique de l’Eq. 3.82 est donnée à la Fig. 3.11.

Ce cas d’étude constitue le cas le plus général rencontré dans ce manuscrit (absorp-
tion, réflexion, diffusion, émission). Les trois configurations décrites précédemment
dans ce chapitre ne sont que des cas particuliers du cas d’étude présent :
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j = 0

Echantillonnage de l j+1 et calcul de x j+1

x j+1 ∈ V
(Collision dans le milieu)

Oui
(Collision à la paroi)

Non

Echantillonnage uniforme de r j+1

r j+1 < Pa(x j+1)

(Absorption)

Oui
(Diffusion)

Non

Echantillonnage uniforme de r j+1

r j+1 < Pe(x j+1)

(Absorption)

Oui
(Réflexion)

Non

wi = Leq
η (x j+1)

×
Echantillonnage de u j+1

j ≡ j + 1

wi = Leq
η (x j+1)

×
Echantillonnage de u j+1

j ≡ j + 1

Figure 3.11 – Algorithme estimant Lη(x0,u0) dans un milieu absorbant, émettant et diffusant, clos
par des parois partiellement réfléchissantes. Une position de collision x1 est tout d’abord déterminée
par l’échantillonnage d’un libre parcours l1 selon la loi de Beer-Lambert. Le point x1 peut être dans
le milieu participant ou non. S’il appartient au milieu participant, un test de Bernoulli est effectué
pour déterminer le type de collision. Si c’est une absorption, le poids de Monte-Carlo est calculé
et la réalisation s’arrête. Dans le cas d’une diffusion, une nouvelle direction u1 est échantillonnée
selon la fonction de phase φ(x1,u0|u1) et l’algorithme boucle à l’étape d’échantillonnage des libres
parcours. Dans le cas où le point x1 n’appartient pas au milieu participant, un test de Bernoulli est
effectué pour déterminer si la collision à la paroi en xw,1 est une absorption ou une réflexion. S’il
s’agit d’une absorption, la réalisation s’arrête et le poids de Monte-Carlo est calculé. S’il s’agit d’une
réflexion, une direction u1 est échantillonnée selon le modèle probabiliste de réflexion ψ(xw,1,u0|u1)
et l’algorithme boucle à l’étape d’échantillonnage des libres parcours. Ces boucles se poursuivent
jusqu’à ce qu’une absorption par le milieu ou à la frontière se produise.
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• La suppression des termes de parois mène au cas d’étude de la Sec. 3.4.1.
• Lorsque le coefficient de diffusion est nul et l’émissivité à la paroi est de 1 cela

correspond au cas d’étude de la Sec. 3.3.3.
• La suppression des termes de parois et un coefficient de diffusion nul mènent

au cas d’étude de la Sec. 3.3.1.

3.5 Étude d’une grandeur intégrée de la luminance

Jusqu’alors, tous les cas d’étude consistaient à évaluer la luminance en un point en
échantillonnant des positions d’émission et en moyennant les luminances d’équilibre
en ces points. Les représentations des différents phénomènes faisaient apparaître
de façon directe des grandeurs probabilisées (atténuation exponentielle, albédos
d’absorption / de diffusion ou encore émissivité / réflectivité). Cette dernière section
a pour but de présenter l’approche statistique relative à une intégration de cette
luminance. En guise d’illustration, reprenons la configuration de la Sec. 3.4.4 et
étudions le bilan radiatif d’un sous-volume homogène et isotherme δV du milieu V .
Celui-ci s’exprime comme :

Φ(δV) =

∫ ηmax

ηmin

dη

∫

δV
dx0

∫

4π

du0 ka(x0)
(
Leqη (x0)− Lη(x0,u0)

)
(3.83)

Formulées ainsi, on note que les intégrations sur la plage spectrale [ηmin, ηmax],
le volume d’intérêt V et l’ensemble des directions 4π ne constituent que de simples
sommes déterministes, ne nous permettant pas, en l’état, d’approcher ce problème
de façon purement statistique. Pour répondre à cette limite, il est possible de
considérer les variables η0, x0 et u0 comme aléatoires en leur associant à chacune
une densité de probabilité : respectivement pH(η), pX0(x0) et pU0(u0). Ces densités
de probabilité peuvent désormais être introduites dans l’expression intégrale. Pour
rétablir le caractère intégral de Φ(δV), la grandeur ka(x0)

(
Leqη (x0)− Lη(x0,u0)

)
est

alors divisée par ces trois probabilités :

Φ(δV) =

∫

∆η

pH(η)dη

∫

δV
pX0(x0)dx0

∫

4π

pU0(u0)du0

[
ka(x0)

(
Leqη (x0)− Lη(x0,u0)

)

pH(η)pX0(x0)pU0(u0)

]

= E

[
ka(x0)

(
Leqη (x0)− Lη(x0,u0)

)

pH(η)pX0(x0)pU0(u0)

]

(3.84)

Le problème, à l’origine exprimé de façon déterministe, a ainsi pu être reformulé
dans des considérations purement statistiques. Ne reste alors plus qu’à exprimer la
luminance Lη(x0,u0). Si l’on reprend la configuration de la Sec. 3.4.4, il est possible
d’écrire à partir des équations 3.81 et 3.84

Φ(δV) = E

[
ka(x0)

(
Leqη (x0)− E

[
Leqη (X∗)

])

pH(η)pX0(x0)pU0(u0)

]
= E [W (X∗)] (3.85)
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où la variable aléatoire X∗ est définie par l’Eq. 3.82. Du fait de la linéarité de
l’expression de W (X∗) et du caractère projectif de l’espérance (cf. encadré de la
Sec. 3.1.2), l’Eq. 3.85 peut être reformulée comme :

Φ(δV) = E

[
ka(x0)

(
Leqη (x0)− Leqη (X∗)

)

pH(η)pX0(x0)pU0(u0)

]
(3.86)

L’algorithme de Monte-Carlo correspondant à cette expression est donné à la
Fig. 3.12.

j = 0

Echantillonnage de η

Echantillonnage de x0

Echantillonnage de u0

Echantillonnage de l j+1 et calcul de x j+1

x j+1 ∈ V
(Collision dans le milieu)

Oui
(Collision à la paroi)

Non

Echantillonnage uniforme de r j+1

r j+1 < Pa(x j+1)

(Absorption)

Oui
(Diffusion)

Non

Echantillonnage uniforme de r j+1

r j+1 < Pe(xw, j+1)

(Absorption)

Oui
(Réflexion)

Non

wi = Leq
η (x j+1)

×
Echantillonnage de u j+1

j ≡ j + 1

wi = Leq
η (xw, j+1)

×
Echantillonnage de u j+1

j ≡ j + 1

Figure 3.12 – Algorithme estimant le bilan radiatif d’un sous-volume homogène et isotherme δV
du milieu V . Cet algorithme est très proche de celui présenté à la Fig. 3.81 à deux différences près :
1/ une étape d’échantillonnage des nombres d’onde, des positions et des directions initiales est
effectuée en début de réalisation ; 2/ l’expression des poids est modifiée en accord avec la nouvelle
observable d’intérêt : Φ(δV).

Les images physiques réciproques associées à cet algorithme sont celles de photons
de nombres d’onde η ∈ [ηmin, ηmax], suivis depuis une position x0 appartenant à δV ,
dans une direction u0 appartenant à la sphère des directions (4π), susceptibles de
subir des diffusions et réflexions multiples avant d’être absorbés en un point du milieu
ou par la paroi.

Résumé du chapitre

Ce chapitre a eu pour but de présenter l’approche statistique et intégrale associée
à l’étude du rayonnement dans les milieux participants ainsi que les méthodes de
Monte Carlo qui en découlent directement. Après de brefs rappels statistiques et
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méthodologiques, l’étude d’un problème radiatif, progressivement complexifié, a
permis d’aborder les différentes approches, techniques et formalismes qui seront
employés dans la suite de ce manuscrit. La prise en compte des frontières, des
phénomènes de diffusion (et donc de la récursivité), les approches d’échantillonnage
préférentiel, de variance nulle, ainsi que les techniques d’energy-partitioning ont ainsi
pu être présentées.
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Introduction

Les éléments essentiels de la physique du rayonnement ainsi que des Méthodes de
Monte-Carlo appliquées à ce champ d’application ayant été présentés ; ce chapitre a
pour but d’aborder les premiers travaux de cette thèse : la gestion des hétérogénéités
des propriétés optiques du milieu participant. Ces travaux constituent la suite
logique d’une dynamique collective initiée depuis plusieurs années au sein de l’équipe
STARWest [Terrée, 2011, Piaud, 2010, Eymet, 2011a].

Les méthodes de Monte-Carlo en milieu semi-transparent sont aujourd’hui
bien maîtrisées [Farmer et Howell, 1998, Siegel et al., 2011, Modest, 2013]. C’est en
particulier le cas lorsque les propriétés optiques du milieu (coefficients d’absorption,
de diffusion, etc.) sont homogènes. Mais au-delà de cas académiques simples, dès
qu’il s’agit d’étudier ou de simuler du transfert radiatif en configurations réelles
dans des milieux participants, en particulier dans les gaz, la prise en compte et la
gestion des hétérogénéités apparaissent comme primordiales. Ces tâches deviennent
cependant rapidement délicates et exigeantes lorsqu’il s’agit d’employer les méthodes
de Monte-Carlo comme outil de simulation, tout en souhaitant garder le caractère
exact qu’elles offrent.

Si l’on se concentre sur les domaines d’application pour lesquels le transfert
radiatif en milieu gazeux occupe une place importante, les hétérogénéités sont
omniprésentes. En effet, que ce soit dans les systèmes de combustion, dans les
atmosphères terrestre ou exoplanétaires, on rencontre généralement de fortes hété-
rogénéités de température, de concentrations d’espèces ou de pression, menant à
d’importantes variations des propriétés optiques du milieu observé. Une prise en
compte rigoureuse de ces disparités spatiales est alors nécessaire pour mener à bien
l’évaluation des observables d’intérêt. Cependant les difficultés qu’elles impliquent
nécessitent généralement de recourir à des hypothèses simplificatrices ou à des
méthodes entraînant des erreurs non maîtrisées.

Dans une volonté de préserver le caractère exact dont bénéficient les méthodes de
Monte-Carlo et l’analyse statistique associée, un des principaux objets de cette thèse
a été de proposer une méthode prenant en compte la complexité de ces hétérogénéités,
sans faire appel à une quelconque approximation. La solution retenue : les algorithmes
à collisions nulles fera l’objet de ce chapitre. Cette méthode, jusqu’alors absente
de la littérature du rayonnement thermique, mais très employée dans d’autres
disciplines de la physique du transport (neutronique et physique des plasmas) y sera
décrite et adaptée à des problématiques radiatives. Tout au long de ce chapitre,
la dimension spectrale sera ignorée. Les problèmes seront donc ramenés à des cas
monochromatiques (l’intégration spectrale fera l’objet du chapitre Chap. 5).

Dans un premier temps, les difficultés relatives à la gestion des hétérogénéités par
les méthodes de Monte-Carlo, ainsi que les techniques couramment utilisées pour y
répondre seront présentées.

Un bref état de l’art de la littérature relative aux algorithmes à collisions nulles sera
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ensuite dressé. Puis, ces méthodes seront introduites et élargies à l’étude du transfert
radiatif. Une extension du domaine de validité de ces méthodes sera également
proposée.

L’approche retenue, reposant sur l’introduction d’un coefficient virtuel de collision
nulle kn,η, sera ensuite éprouvée face à un cas d’étude plus complexe : l’estimation
d’un bilan radiatif dans un milieu tridimensionnel, absorbant, émettant et diffusant,
entouré par des parois réfléchissantes. Ces simulations donneront lieu à une étude
paramétrique permettant d’évaluer les influences du coefficient de collision nulle, des
choix méthodologiques et de différentes propriétés optiques sur le comportement de
l’algorithme de Monte-Carlo retenu.

Dans la quatrième section, nous montrerons comment le caractère de solution de
référence des algorithmes à collisions nulles peut être mis à profit dans la validation
d’un code de calcul radiatif en géométrie complexe (la configuration retenue sera
celle d’une chambre de combustion).

La rédaction de ce chapitre s’appuie sur les deux publications [Galtier et al., 2013],
[Eymet, 2011b] (données en Annexe D et Annexe E) qui ont fait suite aux travaux
présentés dans le présent manuscrit.

4.1 Problèmes liés à l’hétérogénéité des propriétés
optiques du milieu participant

4.1.1 Incapacité d’échantillonner analytiquement des libres
parcours

Pour illustrer les difficultés rencontrées lorsque les propriétés optiques du milieu
ne sont pas uniformes, reprenons la configuration de la Sec. 3.3.1 : le calcul de
la luminance Lη(x0,u0) dans un milieu infini purement absorbant/émettant. Ce
cas d’étude est suffisant pour aborder le problème relatif aux hétérogénéités. Le
passage à un cas diffusif ou à une géométrie fermée n’entraînera aucune difficulté
supplémentaire - si ce n’est de formalisme. Dans ces considérations, l’expression
statistique de la luminance Lη(x0,u0) est donnée par :

Lη(x0,u0) =

∫ ∞

0

pL(l)Leqη (x)dl (4.1)

où pL(l) = ka,η(x) exp
(
−
∫ l

0
ka,η(x0 − l′u0)dl′

)
est la densité de probabilité des libres

parcours d’absorption et où x = x0 − lu0 correspond à la position d’émission.

La traduction de cette formulation en un algorithme de Monte-Carlo consiste
à échantillonner un grand nombre de libres parcours l conduisant à une position
d’émission x = x0 − lu0 et à moyenner les luminances d’équilibre en ces points
d’émission. Cette moyenne d’échantillon constituera alors un estimateur non biaisé de
l’observable d’intérêt Lη(x0,u0). Toutefois, dans le Chap. 3, nous avons délibérément
omis de présenter et de détailler l’échantillonnage de ces libres parcours, qui peut
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s’avérer impossible à réaliser de manière analytique. En pratique, pour réaliser
l’échantillonnage d’un libre parcours li (cf. Sec. 3.2.3.1) selon une fonction densité de
probabilité pL(l) définie et normée sur [0,∞[, on génère uniformément un nombre
aléatoire ri entre 0 et 1 et on résout l’équation

ri =

∫ li

0

pL(l′)dl′

=

∫ li

0

ka,η(x0 − l′u0) exp

(
−
∫ l′

0

ka,η(x0 − l′′u0)dl′′
)
dl′

(4.2)

pour remonter à la valeur échantillonnée li du libre parcours. En d’autres termes,
il faut donc être capable d’inverser analytiquement la fonction de répartition de la
variable aléatoire L pour échantillonner les libres parcours.

Lorsque la fonction de répartition
∫ l

0
ka,η(x) exp

(
−
∫ l′

0
ka,η(x0 − l′′u0)dl′′

)
dl′ peut

être exprimée de façon analytique et en particulier lorsque le champ de ka,η est
uniforme, l’échantillonnage de libres parcours ne pose aucun problème. Pour un
champ de coefficient d’absorption uniforme, la résolution de l’Eq. 4.2 :

ri =

∫ li

0

ka,η exp (−ka,ηl′) dl′

= 1− exp (−ka,ηli)
(4.3)

conduit à l’échantillon li suivant :

li = − ln(1− ri)
ka,η

(4.4)

Toutefois pour des configurations réelles, il est très rare que les propriétés optiques
du milieu d’intérêt soient telles qu’il soit possible d’inverser la cumulée de pL(l)
(l’épaisseur optique n’étant pas intégrable de façon analytique). L’échantillonnage des
libres parcours, pourtant nécessaire pour les simulations par Monte-Carlo, devient
dans ce cas une tâche délicate.

4.1.2 Alternatives couramment proposées

Pour répondre à cette limite, deux principales approches sont couramment em-
ployées dans la communauté du rayonnement thermique : la discrétisation des
propriétés optiques du milieu et l’inversion numérique des épaisseurs optiques.

Discrétisation du milieu La plus commune d’entre-elles consiste à discrétiser
spatialement le volume d’intérêt et à considérer les propriétés du milieu comme
uniformes à l’intérieur de chaque maille (voir Fig. 4.1). De ce fait, il devient possible
d’échantillonner de façon analytique les libres parcours d’extinction, puisque les
propriétés optiques sont constantes par morceaux le long du chemin optique.
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Figure 4.1 – Pour permettre un échantillonnage aisé des libres parcours, il est courant de discrétiser
spatialement le milieu et d’approximer les champs de propriétés optiques comme uniformes à
l’intérieur de chaque maille.

Une telle méthode possède cependant quelques limites. En effet, en discrétisant
les propriétés optiques du milieu, le modèle physique est modifié. Les résultats de
simulation dépendent alors du choix de maillage et les erreurs numériques causées
par ce choix ne sont pas maîtrisées (un exemple volontairement pathologique est
présenté à la Fig. 4.2). Même si les compétences développées par les spécialistes
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Figure 4.2 – Erreurs causées par la discrétisation des propriétés du milieu en fonction du nombre
de mailles dans le cadre du calcul de la luminance Lη(x = π, u+) émise par un milieu participant
monodimensionnel, non diffusant, défini sur [0, π]. Les profils analytiques de coefficient d’absorption
ka,η(x) et de luminance d’équilibre Leqη (x) sont donnés par la Fig. (a). Ces profils sont alors
approximés par une discrétisation en N mailles de même dimension, dans lesquelles les propriétés
sont moyennées et supposées uniformes. La Fig. (b) illustre alors l’erreur relative (en %) commise
lors du calcul de Lη(π) en fonction du nombre de mailles.

de ces approches maillées rendent généralement les erreurs causées par ce type
de discrétisation faibles voire négligeables, ces dernières ne sont, en pratique, pas
quantifiables, et font ainsi perdre aux méthodes de Monte-Carlo leur caractère de
solution de référence.

La seconde contrainte associée à ce type de résolution est d’ordre purement
pratique : il est nécessaire à chaque nouveau cas d’étude, à chaque modification de
géométrie ou de champs de propriétés de repenser la discrétisation du milieu et de
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produire un nouveau maillage. Cette étape nécessaire est généralement complexe et
lourde à réaliser, en particulier lorsqu’il s’agit de valider la pertinence du maillage.

Inversion de l’épaisseur optique Il est également possible, plutôt que
d’échantillonner des libres parcours, d’échantillonner des épaisseurs optiques
τi(li) =

∫ li
0
ka,η(x0 − l′u0)dl

′, et d’inverser ces épaisseurs optiques pour remonter
à un libre parcours li et donc à une position d’émission [Farmer et Howell, 1998,
De Guilhem De Lataillade et al., 2002b, Eymet et al., 2005, Eymet et al., 2009,
De La Torre et al., 2014]. Dans ce cas là, l’Eq. 4.2 peut être reformulée en :

ri =

∫ τi(li)

0

exp (−τ) dτ (4.5)

Quel que soit le champ du coefficient d’absorption, il est toujours possible d’échan-
tillonner l’épaisseur optique qui est donnée par :

τi(li) = − ln (1− ri) (4.6)

Toute la difficulté réside alors dans le fait d’inverser l’épaisseur optique pour remonter
à une position d’émission. Si le champ des propriétés optiques est trop complexe,
il demeure toujours possible de le discrétiser (avec les limites que cela implique)
ou d’utiliser des techniques numériques d’inversion (essai-erreur, dichotomie, etc.).
Ces dernières, bien que souvent plus précises que les approches maillées, présentent
le désavantage d’être généralement très gourmandes en temps de calcul. Mais ici
également, aussi faible que soit l’erreur numérique associée à ces techniques, le
caractère exact des méthodes de Monte-Carlo est perdu, puisqu’il est très difficile
d’estimer les biais causés par ces méthodes numériques.

4.1.3 Non-linéarité dans l’expression statistique de l’équation
du transfert radiatif

Les difficultés liées aux hétérogénéités des propriétés optiques du milieu d’intérêt
ne se limitent toutefois pas à l’échantillonnage des positions de collision. Si l’on
approche de façon purement statistique ce problème, il serait toujours possible
d’insérer une nouvelle fonction densité de probabilité p̃L(l) qui elle, permettrait
un échantillonnage aisé des libres parcours. On aurait alors comme formulation
statistique :

Lη(x0,u0) =

∫ +∞

0

p̃L(l)dl



ka,η(x) exp

(
−
∫ l

0
ka,η(x0 − l′u0)dl′

)

p̃L(l)
Leqη (x)




=E



ka,η(x) exp

(
−
∫ l

0
ka,η(x0 − l′u0)dl′

)

p̃L(l)
Leqη (x0 − lu0)




(4.7)

où x = x0 − lu0. Toutefois, pour des champs de propriétés optiques complexes, il
n’est toujours pas possible d’exprimer analytiquement l’épaisseur optique

∫ l
0
ka,η(x0−
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l′u0)dl
′ (le problème a été déplacé de la densité de probabilité au poids de Monte-

Carlo). Puisque cette épaisseur optique est elle-même une grandeur intégrée, il serait
cependant théoriquement possible de l’estimer de façon statistique en insérant à
nouveau une fonction densité de probabilité arbitraire p̃L′(l′) :

τ(l) =

∫ l

0

p̃L′(l
′)

[
ka,η(x0 − l′u0)

p̃L′(l′)

]
dl′ = E

[
ka,η(x0 − l′u0)

p̃L′(l′)

]
(4.8)

Mais en pratique ce n’est pas envisageable : il serait alors nécessaire d’estimer
l’épaisseur optique par une simulation de Monte-Carlo complète pour chacune des
Nmc réalisations de l’algorithme permettant d’estimer Lη(x0,u0). Si l’on imagine que
chaque algorithme (le premier estimant l’épaisseur optique et le second estimant la
luminance) soit constitué de 106 réalisations indépendantes, il serait alors nécessaire
de réaliser 1012 opérations, ce qui représenterait un temps de calcul prohibitif. S’il n’est
pas possible de traiter statistiquement de façon simultanée ces deux termes intégraux :
la luminance et l’épaisseur optique, c’est à cause de la fonction exponentielle qui
introduit une non-linéarité dans l’expression statistique de la luminance Lη(x0,u0) :

Lη(x0,u0) = E
[
ka,η(x0 − lu0)Leqη (x0 − lu0)

p̃L(l)
exp

(
E
[
ka,η(x0 − l′u0)

p̃L′(l′)

])]

= E [fNL (E [W (l′)])]

(4.9)

où fNL(a) = ka,η(x)Leqη (x) exp(a)/p̃L(l) est une fonction non-linéaire et
W (l′) = ka,η(x0 − l′u0)/p̃L′(l′). Il n’est alors pas possible d’exprimer l’Eq. 4.9
comme une seule espérance d’une variable aléatoire et donc de proposer un unique
algorithme de Monte-Carlo pour traiter ce problème en milieu hétérogène (cf. encadré
de la Sec. 3.1.2). D’un point de vue purement statistique, la difficulté rencontrée
lorsque les champs de propriétés optiques ne sont pas intégrables analytiquement
réside donc bien dans cette non-linéarité engendrée par la fonction exponentielle.

Dans sa thèse, J. Dauchet propose de répondre à une non-linéarité de ce type par
un développement en séries entières [Dauchet, 2012]. Une telle reformulation permet
ainsi de ne développer qu’un unique algorithme récursif pour traiter une expression
non-linéaire (dans son cas d’étude : la productivité globale d’un photobioréacteur)
tout en conservant le caractère exact des méthodes de Monte-Carlo. Dans notre cas,
nous allons utiliser une autre méthode connue sous le nom d’algorithmes à collisions
nulles. Cette technique, qui présente de grandes similitudes avec les développements
en séries entières [Longo, 2002], fera l’objet des prochaines sections.

4.2 Les algorithmes à collisions nulles

4.2.1 Historique des algorithmes à collisions nulles

Les algorithmes de Monte-Carlo à collisions nulles sont apparus au début des
années soixante dans deux champs disciplinaires : la physique des Plasmas et la
Neutronique. Il est intéressant de constater que cette méthode a vu le jour de manière
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totalement indépendante dans chacune de ces deux communautés, menant ainsi à
deux ensembles distincts de travaux qui ont semblé s’ignorer jusqu’à aujourd’hui (à
l’exception de la publication [Boeuf et Marode, 1982] faisant un lien entre ces deux
communautés). Aussi, cette sous-section a pour objectif de présenter succinctement
cette littérature plutôt complexe de par sa duplicité et de par la variété des termes
employés pour décrire une même technique.

Les algorithmes à collisions nulles ont été développés à la fin des années
soixante dans le domaine de la physique des plasmas. Très utilisés dans ce champ
d’application, ils permettent notamment de tenir compte des sections efficaces
d’interaction dépendant de la vitesse des particules. On les rencontre dans cette
communauté sous les dénominations : Null-Collisions, Fictitious-Collisions, Pseudo-
Collisions, Null-Events ou encore Fictitious-Events. H.R. Skullerud est le premier
à aborder dans [Skullerud, 1968] un Algorithme à Collisions Nulles, sans encore le
dénommer ainsi, dans le but de pouvoir tirer statistiquement des "temps libres"
entre deux collisions ion/molécule produites dans un gaz soumis à un champ
électrique. De nombreux travaux vont alors s’ensuivre [Lin et Bardsley, 1977,
Lin et Bardsley, 1978, Boeuf et Marode, 1982, Heifetz et al., 1982, Andreucci, 1985,
Brennan, 1991, Longo, 2002, Longo et Diomede, 2004] visant pour la plupart à simu-
ler les interactions entre particules chargées et molécules neutres sous l’influence d’un
champ électrique. Les travaux de Skullerud ont également mené la communauté étu-
diant la dynamique des gaz raréfiés à s’intéresser aux Algorithmes à Collisions Nulles
[Koura, 1986, Khisamutdinov et Sidorenko, 1995, Rjasanow et Wagner, 1998].

E. Woodcock a été, de son côté, à l’origine des algorithmes à collisions nulles
dans le domaine de la neutronique [Woodcock et al., 1965]. Cette technique, étendue
d’un point de vue théorique par Coleman [Coleman, 1968], sera alors intensivement
utilisée dans ce champ applicatif. Parmi les principaux travaux, on peut citer
[MacMillan, 1967, Spanier, 1970, Androsenko et al., 1991, Martin et Brown, 2001,
Brown et Martin, 2003]. La place qu’occupera cette méthode dans cette com-
munauté sera telle qu’elle sera implémentée nativement dans plusieurs codes
de simulation de transport particulaire tels que SERPENT [Leppänen, 2007b,
Leppänen, 2007a, Leppänen, 2010] ou encore MORET [Miss et al., 2007,
Forestier et al., 2008]. Ces travaux conduiront des spécialistes d’autres domaines
applicatifs tels que ceux de la synthèse d’image [Szirmay-Kalos et Tóth, 2010,
Szirmay-Kalos et al., 2011], de la radiothérapie [Wang et al., 1997] et de la tomo-
graphie [Kawrakow et Fippel, 2000, Rehfeld et Stute, 2008, Kawrakow et al., 2008,
Rehfeld et al., 2009, Badal et Badano, 2009, Tóth et Magdics, 2010] à s’en inspirer.
On rencontre les algorithmes à collisions nulles dans la littérature associée à ces
champs d’étude sous différentes dénominations : Woodcock-Tracking, Delta-Tracking,
Hole-Tracking, Woodcock-Scattering, Delta-Scattering, Pseudo-Scattering ou encore
Fictitious-Scattering.

Toutefois, bien que très usités dans de nombreux domaines d’application de la
physique du transport corpusculaire, les algorithmes à collisions nulles semblent,
à notre connaissance, absents de la littérature propre à l’étude du rayonnement
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thermique. Aussi, ces travaux de thèse proposent, en partie, d’étendre des algorithmes
à collisions nulles à ce champ applicatif.

4.2.2 Principe des algorithmes à collisions nulles

Le principe des algorithmes à collisions nulles repose sur l’addition arbitraire d’un
champ positif de coefficient de collision nulle kn,η dans le champ d’extinction réel :

k̂η = ka,η + kd,η + kn,η (4.10)

Ce champ fictif de collisions nulles doit être défini de façon à rendre le champ du
nouveau coefficient d’extinction k̂η suffisamment simple pour permettre un échantillon-
nage aisé des libres parcours selon la fonction densité probabilité de Beer-Lambert :

p̂L(l) = k̂η(x0 − lu0)exp

(
−
∫ l

0

k̂η(x0 − l′u0)dl′
)

(4.11)

Le champ du coefficient de collision nulle kn,η peut par exemple être défini de sorte
à rendre celui de k̂η uniforme (voir Fig. 4.3). En pratique, c’est le nouveau champ
de coefficient d’extinction k̂η qui est défini arbitrairement, le champ de kn,η n’étant
jamais explicité mais seulement défini comme kn,η = k̂η − ka,η.

x

kη

ka,η

kd,η

kn,η

k̂η

Figure 4.3 – Ajout d’un champ de coefficient de collision nulle kn,η au champ d’extinction réel
kη = ka,η + kd,η de sorte à rendre le champ résultant k̂η uniforme.

Toutefois, pour ne pas modifier la physique du transport, ce nouveau type de
collisions fictives ne doit avoir aucun effet sur le transfert radiatif dans le milieu
participant d’intérêt. Si on souhaite associer une image physique à ces collisions
nulles, la seule solution consiste alors à les assimiler à des événements de diffusion
vers l’avant, dont la fonction de phase est un Dirac (δ). Après une collision nulle, le
photon initialement dans la direction u0 continue son chemin dans la même direction
u0. Leur introduction dans l’équation locale du transfert radiatif

u.∇Lη(x,u) =−
[
ka,η(x) + kd,η(x)

]
Lη(x,u) + ka,η(x)Leqη (x)

+ kd,η(x)

∫

4π

p(u|u′)Lη(x,u′)du′
(4.12)



100 Chapitre 4. Prise en compte de l’hétérogénéité des propriétés radiatives

modifie cette dernière en :

u.∇Lη(x,u) =−
[
ka,η(x) + kd,η(x) + kn,η(x)

]
Lη(x,u) + ka,η(x)Leqη (x)

+ kd,η(x)

∫

4π

p(u|u′)Lη(x,u′)du′ + kn,η(x)

∫

4π

δ(u− u′)Lη(x,u
′)du′

(4.13)

Les termes sources et puits de collision nulle se compensent alors exactement :
kn,η(x)

∫
4π
δ(u − u′)Lη(x,u′)du′ = kn,η(x)Lη(x,u), prouvant ainsi, de manière for-

melle, que cet ajout de collisions fictives ne joue aucun rôle quant à la physique
du transport de photons (cela reste vrai pour du rayonnement instationnaire). Ce
ne sera qu’une fois l’équation du transfert radiatif exprimée sous sa formulation
intégrale, que cette insertion de termes collisionnels fictifs prendra tout son sens
et présentera sa plus-value. Ce passage à une expression intégrale fera l’objet des
prochains paragraphes.

4.2.3 Approche statistique des algorithmes à collisions nulles

En guise d’illustration, reprenons le cas d’étude présenté à la Sec. 3.3.1 : l’estima-
tion de la luminance Lη(x0,u0) dans un milieu infini purement absorbant/émettant.
La prise en compte de parois ou d’événements de diffusion n’apporte pas de difficulté
particulière, comme cela va être montré par la suite. Dans ces conditions, la luminance
Lη(x0,u0) s’exprime sous forme intégrale comme :

Lη(x0,u0) =

∫ +∞

0

dl ka,η(x0 − lu0)Leqη (x0 − lu0) exp

(
−
∫ l

0

ka,η(x0 − l′u0)dl′
)

(4.14)
Ajoutons désormais arbitrairement un second type de collision à ce milieu : les

collisions nulles, caractérisées par leur coefficient kn,η. Puisque ces nouvelles collisions
ne correspondent qu’à des événements de diffusion vers l’avant, ce cas d’étude équivaut
donc à celui d’un milieu absorbant/émettant/diffusant, tel que celui présenté à la
Sec. 3.4.1, à une subtilité près : les événements de diffusion sont caractérisés par une
fonction de phase particulière de type distribution de Dirac (aucun changement de
direction n’a lieu après une collision nulle). Il est alors possible, à partir de l’Eq. 3.66,
d’exprimer la formulation intégrale de ce cas d’étude comme :

Lη(x0,u0) =

∫ ∞

0

dl1 k̂η(x1) exp

(
−
∫ l1

0

k̂η(x0 − l′1u0)dl′1

)

×





ka,η(x1)

k̂η(x1)
Leqη (x1)

+
kn,η(x1)

k̂η(x1)

∫

4π

δ(u0 − u1)Lη(x1,u1)du1





(4.15)

avec xj+1 = xj− lj+1uj . Cette équation est bien solution de l’Eq. 4.13 pour un milieu
infini non-diffusant. Bien que cet ajout d’événements virtuels ne modifie aucunement
la physique du transport de photons, nous sommes passés de la simple expression
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intégrale 4.14 à une équation de Fredholm qu’il est possible de percevoir comme une
formulation récursive et dont le terme récursif est donné par :

Lη(xj,uj) =

∫ ∞

0

dlj+1 k̂η(xj+1) exp

(
−
∫ lj+1

0

k̂η(xj − l′j+1uj)dl
′
j+1

)

×





ka,η(xj+1)

k̂η(xj+1)
Leqη (xj+1)

+
kn,η(xj+1)

k̂η(xj+1)

∫

4π

δ(uj − uj+1)Lη(xj+1,uj+1)duj+1





(4.16)

Comme la fonction de phase associée aux collisions nulles est un Dirac, il est donc
possible d’intégrer analytiquement le terme récursif de diffusion vers l’avant. Il vient
alors :

Lη(xj,uj) =

∫ ∞

0

dlj+1 k̂η(xj+1) exp

(
−
∫ lj+1

0

k̂η(xj − l′j+1uj)dl
′
j+1

)

×





ka,η(xj+1)

k̂η(xj+1)
Leqη (xj+1)

+
kn,η(xj+1)

k̂η(xj+1)
Lη(xj+1,uj)





(4.17)

dont l’observable d’intérêt Lη(x0,u0) n’est qu’un cas particulier validant j = 0.

Dans des considérations purement statistiques, il est possible d’exprimer l’Eq. 4.17
comme :

Lη(xj,uj) =

∫ ∞

0

dlj+1 p̂Lj+1
(lj+1)

{
Pa(xj+1)Leqη (xj+1)

+ (1− Pa(xj+1))Lη(xj+1,uj)

}
(4.18)

où p̂Lj+1
(lj+1) = k̂η(xj+1) exp

(
−
∫ lj+1

0
k̂η(xj − l′j+1uj)dl

′
j+1

)
est la fonction densité

de probabilité associée aux libres parcours d’extinction (prenant désormais en compte
les absorptions/émissions et les collisions nulles), où Pa(xj+1) = ka,η(xj+1)/k̂η(xj+1)
correspond à la probabilité qu’un photon soit émis en un point xj+1 et 1−Pa(xj+1) =

kn,η(xj+1)/k̂η(xj+1) à la probabilité qu’un photon collisionnant en xj+1 subisse un
événement de type collision nulle. À l’instar de l’Eq. 3.70, la luminance d’intérêt
peut être exprimée comme l’espérance de la luminance d’équilibre aux positions
d’émissions X∗ :

Lη(x0,u0) = E
[
Leqη (X∗)

]
= E [W (X∗)] (4.19)

avec

X∗ =
∞∑

j=1

AjXj

j−1∏

q=1

(1− Aq) (4.20)

où Aq est une variable aléatoire valant 1 avec une probabilité Pa(xq) et 0 avec une
probabilité 1− Pa(xq).
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Il est alors possible de développer à partir de l’Eq. 4.19 un algorithme de Monte-
Carlo consistant à effectuer un grand nombre Nmc de réalisations indépendantes
(indexées i), chacune composée des étapes suivantes.

Algorithme

1. On initialise l’indice de collision : j = 0

2. On échantillonne un libre parcours lj+1 selon la fonction densité de
probabilité p̂Lj+1

(lj+1)

3. On calcule les coordonnées du point de collision : xj+1 = xj − lj+1uj

4. On détermine si la collision est une absorption ou une collision nulle par
un test de Bernoulli. Pour cela, on tire aléatoirement et de façon uniforme
un nombre rj+1 dans [0, 1]

4a. Si rj+1 < Pa(xj+1), on considère que la collision est une absorption.
Le poids de la réalisation est calculé : wi = Leqη (xj+1) et l’algorithme
s’arrête ici, on peut passer à une nouvelle réalisation.

4b. Si rj+1 > Pa(xj+1), on considère que l’on est face à une collision
nulle. Puisque les collisions nulles correspondent à des événements
de diffusion vers l’avant on va boucler à l’étape 2 avec j ≡ j + 1
et ainsi échantillonner un nouveau libre parcours à partir du point
xj+1 dans la même direction uj+1 = uj. Cette récursion va alors se
poursuivre jusqu’à ce qu’un événement d’absorption soit rencontré.

Les images physiques associées sont identiques à celles relatives à un milieu
absorbant/émettant/diffusant : les photons sont suivis depuis le point sonde x0 dans
la direction −u0. À chaque position de collision, ces photons ont une probabilité d’être
absorbés ou de diffuser vers l’avant. Ces images sont intuitivement satisfaisantes,
puisqu’en faisant artificiellement passer le coefficient d’extinction de ka,η à k̂η > ka,η,
les libres parcours d’extinction sont statistiquement sous-estimés. Cette réduction
est alors compensée par les événements de diffusion vers l’avant que constituent les
collisions nulles.

On perçoit alors l’avantage qu’apporte cet ajout arbitraire de collisions nulles :
elles peuvent être choisies de sorte à rendre l’échantillonnage des libres parcours
selon p̂Lj(lj) analytiquement possible. La non-linéarité associée à l’exponentielle de
la loi de Beer-Lambert et les difficultés liées à l’estimation de l’épaisseur optique
ont donc disparu au profit d’une formulation récursive. Les algorithmes à collisions
nulles ne constituent alors qu’une alternative possible à l’échantillonnage des libres
parcours d’absorption (ou d’extinction si la diffusion avait été prise en compte),
comme en atteste l’Eq. 4.19.

Ainsi, dès lors qu’un champ de k̂ est défini et majore le champ réel du coefficient
d’extinction, les variations des propriétés du milieu ne posent plus de problème de
traitement numérique. On s’affranchit ainsi de techniques d’inversion complexes et
d’une discrétisation spatiale des propriétés qui auraient conduit à des erreurs non
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maîtrisées. L’estimation d’une observable par cette approche a alors une valeur de
solution de référence, dans le sens où la méthode elle-même n’entraîne aucun biais
numérique. Le fait qu’aucun maillage ne soit requis par la méthode elle-même ne
signifie toutefois pas que les champs de propriétés doivent être décrits de façon
analytique. Tout champ de propriétés peut être rigoureusement accepté en entrée de
l’algorithme :
• Pour des cas académiques ou résultant de modèles théoriques, il est possible

de décrire les propriétés optiques du milieu par des champs analytiques. Dans
ce cas, l’estimation de l’observable d’intérêt sera non biaisée et strictement
conforme au modèle de propriétés considéré. Ce type de champs sera privilégié
dans les travaux présentés dans le présent manuscrit pour faciliter la mise en
œuvre numérique et les études paramétriques.
• En pratique, les champs de propriétés (température, pression et concentrations)
sont généralement issus de simulations basées sur des approches de type élé-
ments/volumes discrets ou de mesures expérimentales. Ces derniers, décrits de
façon discrète, sont communément fournis avec un schéma d’interpolation fidèle
à la physique en présence. Ici aussi, leur utilisation en entrée des algorithmes
à collisions nulles conduira à une estimation non biaisée et non approchée de
l’observable d’intérêt, sans nécessiter la production d’un maillage supplémen-
taire. De plus, contrairement aux méthodes de Monte-Carlo maillées, tous les
schémas d’interpolation pourront être acceptés et traités de façon rigoureuse.
Seule la validité des champs maillés de propriétés et du modèle d’interpolation
utilisés en entrée de l’algorithme pourront avoir une incidence sur la qualité
des estimations.

4.2.4 Vers des coefficients de collision nulle négatifs

Dans la formulation statistique présentée précédemment, la détermination du
type de collision (absorption ou collision nulle) se fait par l’introduction d’une
probabilité d’absorption Pa(xj) = ka,η(xj)/k̂η(xj). Cette probabilité n’a de sens
que si elle est comprise entre 0 et 1 et donc si le champ de k̂η majore en tout
point le champ du coefficient d’extinction réel kη (ici identique à celui du coefficient
d’absorption ka,η puisque la diffusion n’est pas prise en compte). En d’autres termes,
Pa n’a de sens que si le coefficient de collision nulle kn,η est positif en tout point.
L’algorithme présenté précédemment est donc valable, si et seulement si, cette
condition est respectée. Dans le cas contraire, l’algorithme - tel qu’il est présenté à
la Sec. 4.2.3 - produira bien une estimation de l’observable désirée, mais celle-ci sera
biaisée.

Or, dans beaucoup de cas pratiques, il est très difficile de déterminer à l’avance
la valeur maximale que peut prendre localement le coefficient d’extinction. En effet,
il est fréquent que les propriétés du milieu soient calculées au cours de la simulation.
Il est également courant que les champs de propriétés optiques soient discrétisés
(découlant de maillages obtenus lors de calculs de CFD) et fournis avec un schéma
d’interpolation donné. Cette interpolation est susceptible de décrire des champs
dépassant localement les valeurs discrètes d’origine. Il est ainsi vraiment délicat



104 Chapitre 4. Prise en compte de l’hétérogénéité des propriétés radiatives

de définir avec certitude un champ de k̂η qui majore strictement le champ réel de
coefficient d’absorption (ou d’extinction). Cette condition nécessaire représente ainsi
une importante contrainte lors de l’implémentation d’algorithme à collisions nulles.

Cette limite peut cependant être surmontée en observant que le choix des pro-
babilités d’absorption n’est pas contraint. Dans la littérature, seule l’expression
Pa(xj) = ka,η(xj)/k̂η(xj) est rencontrée du fait de sa nature intuitive, relative aux
images cinétiques des collisions nulles (diffusion vers l’avant). Cependant, rien n’em-
pêche de définir de façon arbitraire une nouvelle probabilité d’absorption P̃a(xj), qui,
elle, sera toujours comprise entre 0 et 1, quelle que soit la valeur de k̂η ou de kn,η.
L’Eq. 4.18 est alors reformulée en :

Lη(xj,uj) =

∫ ∞

0

dlj+1 p̂Lj+1
(lj+1)





P̃a(xj+1)
Pa(xj+1)

P̃a(xj+1)
Leqη (xj+1)

+
(

1− P̃a(xj+1)
) 1− Pa(xj+1)

1− P̃a(xj+1)
Lη(xj+1,uj)





(4.21)
La luminance d’intérêt correspond alors à l’espérance d’une nouvelle variable

aléatoire :

Lη(x0,u0) = E

[
+∞∑

m=1

Ãm
Pa(Xm)

P̃a(Xm)
Leqη (xm)

m−1∏

q=1

(
1− Ãq

) 1− Pa(Xq)

1− P̃a(Xq)

]
= E [W ]

(4.22)
où Ãq est une variable aléatoire associée à la q-ième collision valant 1 avec une
probabilité P̃a(Xq) et 0 sinon. Ici encore, le choix de la probabilité P̃a(Xq) demeure
totalement arbitraire. Nous proposons le choix suivant :

P̃a(xj) =
ka,η(xj)

ka,η(xj) + |k̂η(xj)− ka,η(xj)|
=

ka,η(xj)

ka,η(xj) + |kn,η(xj)|
(4.23)

qui présente l’avantage d’être égal à la probabilité originelle Pa(xj) = ka,η(xj)/k̂η(xj)

lorsque le coefficient k̂η(xj) majore le coefficient d’absorption (pour un coefficient
positif de collision nulle ). Lorsque des coefficients de collision nulle négatifs seront
rencontrés, la structure statistique restera identique, seule l’expression de la variable
aléatoire W sera altérée. On garde ainsi la structure et le formalisme initiaux des
algorithmes à collisions nulles tout en se prémunissant d’éventuelles erreurs dues à
une mauvaise définition d’un champ majorant. Cette introduction d’une nouvelle
probabilité arbitraire P̃a n’entraîne alors qu’une révision mineure des algorithmes à
collisions nulles standards. Mais désormais, tout champ de k̂η peut être, en théorie,
accepté.

Toutefois, une attention particulière doit être portée aux positions xj pour
lesquelles le coefficient de collision nulle kn,η(xj) est négatif à cause du terme
βq = 1−Pa(Xq)

1−P̃a(Xq)
dans l’Eq. 4.22. En effet, l’algorithme de Monte-Carlo consiste

à produire plusieurs échantillons wi de la variable aléatoire W (cf. Eq. 4.22).
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Lorsqu’aucune collision nulle de coefficient négatif n’est rencontrée, le terme βq
vaut 1, l’échantillon wi est alors égal à Leq(xm) où xm correspond à la position
d’émission. Si pendant la réalisation, au moins une collision nulle de coefficient
négatif a lieu, la valeur absolue du terme βq sera strictement supérieure à 1 et
son signe alternera à chaque fois qu’une collision en x validant hn,η(x) < 0 sera
rencontrée. Dans la mesure où les termes de βq sont inclus dans un produit, ils
peuvent être à l’origine d’une forte augmentation de variance de l’estimation affichée
par l’algorithme de Monte-Carlo (à cause de l’alternance de signe et de la diver-
gence qu’impliquerait le produit de nombres dont la valeur absolue est supérieure à 1).

On devine alors que le choix du champ de k̂η ne sera pas anodin :
• il doit être suffisamment simple pour permettre un échantillonnage rapide des

libres parcours.
• il doit être le plus proche possible de celui du coefficient d’absorption. En effet,

plus il sera élevé et plus il y aura de collisions nulles, sans réel intérêt pour la
simulation elle-même, mais sources d’une augmentation du temps de calcul.
• il doit, autant que possible, majorer le champ du coefficient d’absorption pour

éviter une variance importante de l’estimation de Monte-Carlo.
La proposition faite dans ce paragraphe est donc à la fois importante, puisqu’elle

autorise désormais une définition imparfaite du champ majorant k̂η sans entraîner
aucun biais, mais aussi limitée puisque, si les régions dans lesquelles kn,η < 0 sont
trop représentées, une augmentation conséquente de l’erreur relative est engendrée.

4.3 Mise en application et étude paramétrique

Pour étudier l’influence qu’a le choix du champ de coefficient d’extinction arbitraire
k̂η sur le comportement de l’algorithme de Monte-Carlo, une étude paramétrique est
ici proposée pour une configuration académique. Cette influence sera ainsi analysée
et discutée pour une configuration relativement complexe (absorption, émission,
diffusion et parois réfléchissantes), pour différentes épaisseurs optiques d’absorption
et de diffusion et pour différentes variantes algorithmiques (traitement statistique ou
déterministe du type de collisions).

4.3.1 Description du cas d’étude

4.3.1.1 Géométrie et champs de propriétés considérés

Considérons, dans le cadre de cette étude, un cube de côté 2×D partiellement
réfléchissant, d’émissivité ε et de température T uniformes, dont le centre correspond
à l’origine du repère cartésien (voir Fig. 4.4). Considérons également qu’à l’intérieur
de ce cube est présent un milieu hétérogène émettant, absorbant et diffusant le
rayonnement (selon une fonction de phase de type Henyey-Greenstein de paramètre
d’asymétrie uniforme g).

Les champs hétérogènes des propriétés du milieu (coefficients d’absorption ka,η(x),
de diffusion kd,η(x), et luminance d’équilibre Leqη (x)) sont définis de façon analytique
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Figure 4.4 – La géométrie considérée correspond à un cube de côté 2×D partiellement réfléchissant
(d’émissivité ε et de température T uniformes) dont le centre correspond à l’origine du repère
cartésien. À l’intérieur de ce cube est présent un milieu hétérogène émettant, absorbant et diffusant
le rayonnement (selon une fonction de phase de type Henyey-Greenstein).

afin d’approcher la géométrie d’une flamme axisymétrique dans une chambre de
combustion cubique (voir Fig. 4.5). Chacun d’entre-eux est défini en fonction d’une
valeur maximale, respectivement kmax

a,η , kmax
d,η et Leq,max

η , qui permettront par la suite
de réaliser une analyse paramétrique adimensionnalisée. Mises à part ces valeurs
maximales, les expressions de ces champs sont identiques. Elles sont données ci-après
pour x = [x, y, z] :

ka,η(x) = kmax
a,η

(
D − x

2D

)(
1−

√
y2 + z2

2D2

)
(4.24)

kd,η(x) = kmax
d,η

(
D − x

2D

)(
1−

√
y2 + z2

2D2

)
(4.25)

Leqη (x) = Leq,max
η

(
D − x

2D

)(
1−

√
y2 + z2

2D2

)
(4.26)

et sont illustrées à la Fig. 4.5. Leur valeur maximale est donc atteinte au point
xmax = [−D, 0, 0].

Pour faciliter l’analyse, le champ de k̂η(x) sera défini comme uniforme, as-
surant également un échantillonnage aisé des libres parcours. Comme les coeffi-
cients d’absorption et de diffusion prennent tous deux leur valeur maximale en
x = [−D, 0, 0], le coefficient d’extinction maximal est atteint en ce point et donné
par kmax

η = kmax
a,η (x) + kmax

d,η (x). La grandeur adimensionnelle

ρ =
k̂η
kmax
η

(4.27)

nous renseigne alors sur la présence ou non de zones dans lesquelles le coefficient de
collision nulle kn,η serait négatif. Si ρ > 1, le champ de k̂η est positif en tout point de
l’enceinte (kn,η > 0). Dans le cas contraire : ρ < 1, le coefficient de collision nulle sera
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Figure 4.5 – Représentation adimensionnalisée des champs de coefficient d’absorption, de diffusion
et de luminance d’équilibre pour différentes altitudes (z = 0, z = ±0.25D, z = ±0.5D, z = ±0.75D
et z = ±D). Chacun d’entre eux est défini par la même expression : A(x) = Amax(D−x)/(2D)(1−√

(y2 + z2)/(2D2)) où les valeurs génériques A(x) et Amax peuvent représenter respectivement
ka,η(x) et kmax

a,η ; kd,η(x) et kmax
d,η ou encore Leqη (x) et Leq,max

η .
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négatif, au moins localement. La zone la plus critique étant celle proche du point
[−D, 0, 0].

4.3.1.2 Estimation d’un bilan radiatif monochromatique

Dans le cadre de cette étude, on souhaite étudier le bilan radiatif monochromatique
Sr,η(x0), c’est-à-dire la différence entre les puissances radiatives absorbée et émise
localement en x0. Il s’exprime, en régime stationnaire et sous l’hypothèse d’équilibre
thermodynamique local, comme :

Sr,η(x0) =

∫

4π

ka,η(x0)
[
Lη(x0,u0)− Leqη (x0)

]
du0

= ka,η(x0)

[∫

4π

Lη(x0,u0)du0 − 4πLeqη (x0)

] (4.28)

Compte tenu des champs de propriétés retenus, le bilan radiatif monochromatique
est proportionnel à Leq,max

η et les seuls paramètres adimensionnels restants sont
ρ, les épaisseurs optiques d’absorption kmax

a,η D et de diffusion kmax
d,η D, le paramètre

d’asymétrie g et l’émissivité ε. Outre l’intégrale directionnelle sur 4π, toute la difficulté
de cette estimation réside dans le calcul de la luminance Lη(x0,u0) qui va désormais
devoir tenir compte des événements de diffusion ainsi que de ceux d’émission et de
réflexion aux parois. Sans ajout de collisions nulles, il est possible d’exprimer cette
luminance à partir de l’Eq. 4.28 sous une forme récursive :

Lη(xj,uj) =

∫ ∞

0

dlj+1 kη(xj+1) exp

(
−
∫ lj+1

0

kη(xj − l′j+1uj)dl
′
1

)

×





H (xj+1 /∈ V)





ε(xw,j+1)Leqη (xw,j+1)

+(1− ε(xw,j+1))

∫

2π

ψ(xw,j+1,uj|uj+1)Lη(xw,j+1,uj+1)duj+1





+H (xj+1 ∈ V)





ka,η(xj+1)

kη(xj+1)
Leqη (xj+1)

+
kd,η(xj+1)

kη(xj+1)

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1









(4.29)
L’Eq. 4.28 peut alors être reformulée de façon statistique, avec l’insertion d’une

fonction densité de probabilité des directions d’émission pU0(u0) arbitraire, en :

Sr,η(x0)ka,η(x0)

[∫

4π

pU0(u0)Lη(x0,u0)du0 − 4πLeqη (x0)

]
(4.30)
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où le terme récursif Lη(xj,uj) est donné par :

Lη(xj,uj) =

∫ ∞

0

pLj+1
(lj+1)dlj+1

×





H (xj+1 /∈ V)





Pe(xw,j+1)Leqη (xw,j+1)

+(1− Pe(xw,j+1))

∫

2π

ψ(xw,j+1,uj|uj+1)Lη(xw,j+1,uj+1)duj+1





+H (xj+1 ∈ V)





Pa(xj+1)Leqη (xj+1)

+(1− Pa(xj+1))

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1









(4.31)
avec Pe(xw) = ε(xw) et Pa(x) = ka,η(x)/kη(x). Le bilan radiatif correspond alors à
l’espérance de la variable aléatoire W (X∗) décrite ci-dessous :

Sr,η(x0) = E
[
ka,η(x0)

(
Leqη (X∗)

pU0(u0)
− 4πLeqη (x0)

)]
= E [W (X∗)] (4.32)

où la variable aléatoire X∗ correspond à la position d’émission définie (comme à la
Sec. 3.4.4) par :

X∗ =
∞∑

j=1

[
H (Xj ∈ V)AjXj +H (Xj /∈ V)EjXw,j

] j−1∏

q=1

(1− Aq − Eq) (4.33)

avec Aj une variable aléatoire valant 1 avec une probabilité Pa(xj), 0 sinon, et Ej
une variable aléatoire valant 1 avec une probabilité Pe(xw,j), 0 sinon.

L’algorithme de Monte-Carlo réciproque correspondant consiste donc à échan-
tillonner la variable aléatoire W (X∗) un grand nombre de fois. Chacune de ces
réalisations indépendantes consiste à échantillonner une direction u0 selon pU0(u0)
et un libre parcours l1 depuis la position d’intérêt x0, dans la direction −u0, selon
pL1(l1). Si x1 n’appartient pas au milieu V , la collision a alors lieu à la frontière en
xw,1

1, il y a une probabilité Pe(xw,1) que le photon soit absorbé en ce point, mettant
fin à la réalisation (dans ce cas, l’échantillon de la variable aléatoire W (X∗) est donné
par wi = ka,η(x0)

[
Leqη (xw,1)/pU0(u0)− 4πLeqη (x0)

]
) ; sinon le photon est réfléchi, une

direction u1 et un nouveau libre parcours l2 sont échantillonnés respectivement selon
ψ(xw,1,u0|u1) et pL2(l2), la réalisation se poursuit alors jusqu’à ce qu’une position
d’absorption soit identifiée. La collision suite à l’échantillonnage du libre parcours l1
peut également avoir lieu dans le milieu V en x1. Dans ce cas, il y a une probabilité
Pa(x1) que le photon soit absorbé en ce point, mettant fin à la réalisation (le poids
de Monte-Carlo est alors donné par wi = ka,η(x0)

[
Leqη (x1)/pU0(u0)− 4πLeqη (x0)

]
) ;

sinon, le photon est diffusé, une direction u1 et un nouveau libre parcours l2 sont
alors échantillonnés respectivement selon φ(xw,1,u0|u1) et pL2(l2), la réalisation se
poursuit alors jusqu’à ce qu’une position d’absorption soit identifiée. Les images

1. xw,j+1 est définie comme le premier point d’intersection entre la frontière B et la demi droite
définie par le point xj et la direction −uj .
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physiques associées à cet algorithme sont illustrées à la Fig. 4.6.

u0

u1

u2

u3

u4

x0 •

x1
•

x2
•

x3 •

x4 = xw,4•

x5
•

xw,5
•

x4 − ls,4u4•

V

B

Figure 4.6 – Bilan radiatif en x0 sans ajout de collisions nulles. L’algorithme de Monte-Carlo
consiste à suivre des photons depuis x0 dans l’ensemble des directions u0, jusqu’à ce qu’une position
d’émission par le milieu (voir x5) ou par la paroi soit identifiée (voir xw,5). Le long du chemin
optique d’intérêt, les photons peuvent être diffusés (voir x1, x2 ou x3) ou réfléchis à la paroi (voir
x4).

4.3.2 Traitement statistique du type de collision

4.3.2.1 Champ k̂ majorant le champ du coefficient d’extinction

Toutefois, cet algorithme présuppose que les libres parcours peuvent être échan-
tillonnés. Si tel n’est pas le cas, si les champs de ka,η et de kd,η sont trop complexes
pour permettre un calcul analytique de l’épaisseur optique, il peut être intéressant
d’ajouter un troisième type de collision : les collisions nulles. La variable aléatoire
Lj+1, associée aux libres parcours, sera alors définie selon la densité de probabilité

p̂Lj+1
(lj+1) = k̂η(xj − lj+1uk) exp

(
−
∫ lj+1

0

k̂η(xj − l′j+1uj)dl
′
j+1

)
(4.34)

où k̂η = ka,η + kd,η + kn,η. Les conditions aux frontières ne seront pas modifiées mais
une nouvelle probabilité de collision nulle Pn fera son apparition. Trois types de
collisions pourront alors être rencontrés dans le milieu :
• des émissions (ou des absorptions, selon que l’on se place dans une description

directe ou réciproque), de probabilité Pa = ka,η/k̂η,

• des diffusions, de probabilité Pd = kd,η/k̂η,

• des collisions nulles, de probabilité Pn = kn,η/k̂η,

Si l’on fait comme hypothèse, dans un premier temps, que le champ de k̂η majore
le champ du coefficient d’extinction maximal kmax

η = kmax
a,η + kmax

d,η , les valeurs de Pa,
Pd et Pn sont comprises entre 0 et 1 et leur somme vaut bien 1 pour tout point
x. L’ajout de collisions nulles dans l’Eq. 4.30 n’entraîne pas de changement visible,
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seule l’expression récursive de la luminance Lη(xj,uj) est modifiée :

Lη(xj,uj) =

∫ ∞

0

p̂Lj+1
(lj+1)dlj+1

×





H (xj+1 /∈ V)





Pe(xw,j+1)Leqη (xw,j+1)

+(1− Pe(xw,j+1))

∫

2π

ψ(xw,j+1,uj|uj+1)Lη(xw,j+1,uj+1)duj+1





+H (xj+1 ∈ V)





Pa(xj+1)Leqη (xj+1)

+Pd(xj+1)

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1

+Pn(xj+1)Lη(xj+1,uj+1 = uj)









(4.35)
L’expression de ce bilan radiatif comme l’espérance d’une variable aléatoire

W (X∗) demeure identique à celle que l’on avait avant l’ajout de collisions nulles (voir
Eq. 4.32). Même si l’expression de la variable aléatoire X∗, associée aux positions
d’émission, reste inchangée, X∗ est désormais définie par p̂L(l) et tient alors compte
d’éventuelles collisions nulles. Cette formulation intégrale mène alors à l’algorithme
présenté à la Fig. 4.7.

j = 0

Échantillonnage de u0

Échantillonnage de l j+1

xj+1 ∈ V
(collision dans le milieu)

Oui
(collision à la paroi)

Non

Échantillonnage de r j+1

Définition de la collision

(absorption)

rj+1 < Pa

Pa < rj+1 < Pa + Pd(diffusion)

(collision nulle)

rj+1 > Pa + Pd

wi = ka,η(x0)
[
Leq
η (x j+1)/pU0 (u0) − 4πLeq

η (x0)
]

×

Échantillonnage de u j+1 u j+1 = u j

Échantillonnage de r j+1

r j+1 < Pe(x j+1)

(absorption)

Oui
(reflexion)

Non

wi = ka,η(x0)
[
Leq
η (xw, j+1)/pU0 (u0) − 4πLeq

η (x0)
]

×

Échantillonnage de u j+1

j ≡ j + 1

Figure 4.7 – Algorithme à collisions nulles usuel permettant d’estimer Sr,η(x0) par un algorithme
à collisions nulles usuel.
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4.3.2.2 Validation de l’algorithme à collisions nulles pour différentes
épaisseurs optiques

Dans l’optique de valider l’algorithme présenté à la Fig. 4.7, ce dernier a été
comparé à un algorithme standard de Monte-Carlo bien maîtrisé, formulé en épaisseur
optique et dans lequel l’inversion des épaisseurs optiques est réalisée en ajustant de
façon très précise le champ du coefficient d’extinction, le long d’une ligne de visée,
par une décomposition en splines cubiques (inversible analytiquement). Pour cette
validation, le bilan radiatif monochromatique a été calculé par les deux algorithmes
en deux points du milieu participant d’intérêt : le centre du cube x0 = [0, 0, 0] et le
point où les épaisseurs optiques sont maximales x0 = [−D, 0, 0] (voir Fig. 4.4) 2. Le
champ de k̂η est défini de façon uniforme comme égal à kmax

a,η + kmax
d,η (ρ = 1). Ainsi,

excepté en x = [−D, 0, 0] où il est nul, le champ du coefficient de collision nulle est
toujours strictement positif. En première approximation, on considère également
les parois comme noires (ε = 1) de température Tw = 0K et le paramètre d’asymé-
trie de la fonction de phase d’Henyey-Greenstein égal à 0 (fonction de phase isotrope).

Les tables 4.1 et 4.2 rassemblent les résultats obtenus respectivement pour
x0 = [0, 0, 0] et x0 = [−D, 0, 0] par les deux algorithmes et pour différentes épaisseurs
optiques maximales d’absorption kmax

a,η D et de diffusion kmax
d,η D. Pour chacun de ces

deux algorithmes, l’estimation du bilan radiatif ainsi que son écart-type adimensionna-
lisés sont donnés. Ceux-ci sont respectivement définis par Sr,η(x0)/[4πka,η(x0)Leqη (x0)]
et σ/[4πka,η(x0)Leqη (x0)]. De plus, pour l’algorithme à collisions nulles, les temps de
calcul pour 106 réalisations indépendantes (noté t) et pour obtenir un écart-type
relatif de 1% (noté t1%) sont également fournis 3. La simulation a été effectuée avec
un processeur "Intel Core i5 - 2.4GHz" sans parallélisation.

Les estimations du bilan radiatif par ces deux algorithmes concordent parfaitement.
Les erreurs relatives indiquent également un bon niveau de convergence de l’algorithme
à collisions nulles quelles que soient les épaisseurs optiques considérées (l’erreur
relative e = σ/Sr,η obtenue après 106 réalisations est inférieure à 0.2% dans tous
les cas). Enfin, les temps de calcul relevés pour l’algorithme à collisions nulles sont
du même ordre de grandeurs que ceux que l’on rencontrerait avec un algorithme
standard de Monte-Carlo dans lequel les propriétés du milieu seraient uniformes.
L’ajout de collisions nulles, sans aucun effet sur la précision du calcul, semble donc
n’avoir eu qu’un effet modéré sur ces temps de calcul.

4.3.2.3 Prise en compte de coefficients de collision nulle négatifs

Jusqu’à présent, l’algorithme proposé ne permettait que de définir un coefficient
k̂η supérieur en tous points au coefficient d’extinction réel kη. Il est possible, comme

2. Le choix d’estimer le bilan radiatif en x0 = [−D, 0, 0] est motivé par le fait que lorsque l’on
étendra l’algorithme à collisions nulles aux valeurs négatives de kn,η, ce sera en ce point que le kn,η
sera le plus faible.

3. Du fait de la lourdeur de l’approche numérique d’inversion utilisée dans la méthode de
validation, les temps de calcul relatifs à cet algorithme (n’apportant pas de réel élément de
comparaison) ne sont pas affichés.
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Epaiss. optiques Algo. à collisions nulles (106 réalisations) Algo. de validation

kmax
a,η D kmax

d,η D
Sr,η(x0)

4πka,η(x0)Leqη (x0)

σ

4πka,η(x0)Leqη (x0)
t t1%

Sr,η(x0)

4πka,η(x0)Leqη (x0)

σ

4πka,η(x0)Leqη (x0)
0.1 0.1 -0.483813 8.52E-05 2.43 7.54E-04 -0.483717 2.34E-05
0.1 1 -0.482031 8.97E-05 7.92 2.74E-03 -0.481921 2.91E-05
0.1 3 -0.477997 9.90E-05 24.25 1.04E-02 -0.477883 4.04E-05
0.1 10 -0.463027 1.27E-04 122.69 9.23E-02 -0.463068 7.69E-05
1 0.1 -0.366086 2.09E-04 2.94 9.58E-03 -0.365971 2.18E-04
1 1 -0.356169 2.13E-04 7.43 2.66E-02 -0.356353 2.51E-04
1 3 -0.335850 2.20E-04 19.2 8.24E-02 -0.335928 3.16E-04
1 10 -0.277205 2.28E-04 76.39 5.17E-01 -0.27683 4.84E-04
3 0.1 -0.218989 2.21E-04 3.48 3.54E-02 -0.218942 5.62E-04
3 1 -0.209261 2.18E-04 6.4 6.95E-02 -0.209529 6.01E-04
3 3 -0.190256 2.10E-04 13.63 1.66E-01 -0.190141 6.84E-04
3 10 -0.144073 1.84E-04 41.38 6.75E-01 -0.143501 8.85E-04
10 0.1 -0.071271 1.19E-04 3.49 9.73E-02 -0.07137 1.28E-03
10 1 -0.068662 1.15E-04 4.66 1.31E-01 -0.068854 1.31E-03
10 3 -0.063501 1.07E-04 7.29 2.07E-01 -0.063369 1.36E-03
10 10 -0.050674 8.49E-05 16.23 4.56E-01 -0.050674 1.47E-03

Table 4.1 – Estimations, écarts-types et temps de calcul obtenus par l’algorithme à collisions
nulles pour 106 réalisations en x = [0, 0, 0] pour plusieurs valeurs d’épaisseurs optiques d’absorption
et de diffusion. Les résultats sont comparés à ceux obtenus à partir d’un algorithme de Monte-Carlo
faisant office de méthode de référence.

Epaiss. optiques Algo. à collisions nulles (106 réalisations) Algo. de validation

kmax
a,η D kmax

d,η D
Sr,η(x0)

4πka,η(x0)Leqη (x0)

σ

4πka,η(x0)Leqη (x0)
t t1%

Sr,η(x0)

4πka,η(x0)Leqη (x0)

σ

4πka,η(x0)Leqη (x0)
0.1 0.1 -0.977296 1.27E-04 2.24 3.78E-04 -0.977336 2.64E-05
0.1 1 -0.97683 1.29E-04 6.18 1.08E-03 -0.976679 2.86E-05
0.1 3 -0.975682 1.33E-04 15.3 2.84E-03 -0.975767 3.30E-05
0.1 10 -0.974828 1.37E-04 44.9 8.87E-03 -0.974733 4.47E-05
1 0.1 -0.822495 3.24E-04 2.38 3.69E-03 -0.822111 2.40E-04
1 1 -0.822446 3.26E-04 5.13 8.06E-03 -0.821846 2.47E-04
1 3 -0.823933 3.29E-04 10.75 1.71E-02 -0.823994 2.60E-04
1 10 -0.83941 3.27E-04 26.32 3.99E-02 -0.839533 2.73E-04
3 0.1 -0.658358 4.07E-04 2.22 8.48E-03 -0.657242 5.54E-04
3 1 -0.66479 4.09E-04 3.73 1.41E-02 -0.664704 5.45E-04
3 3 -0.67959 4.12E-04 6.67 2.45E-02 -0.679703 5.27E-04
3 10 -0.72422 4.10E-04 14.49 4.64E-02 -0.722886 4.73E-04
10 0.1 -0.544282 4.62E-04 1.98 1.43E-02 -0.5438 8.46E-04
10 1 -0.551703 4.63E-04 2.47 1.74E-02 -0.551153 8.29E-04
10 3 -0.567704 4.65E-04 3.54 2.38E-02 -0.567366 7.90E-04
10 10 -0.61077 4.65E-04 6.76 3.92E-02 -0.609865 7.00E-04

Table 4.2 – Estimations, écarts-types et temps de calcul obtenus par l’algorithme à collisions nulles
pour 106 réalisations en x = [−D, 0, 0] pour plusieurs valeurs d’épaisseurs optiques d’absorption et
de diffusion. Les résultats sont comparés à ceux obtenus à partir d’un algorithme de Monte-Carlo
faisant office de méthode de référence.
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proposé à la Sec. 4.2.4 de définir de nouvelles probabilités pour s’affranchir de cette
contrainte. Dans la continuité de la probabilité d’émission/absorption proposée à
la Sec. 4.2.4 pour un cas purement absorbant/émettant, nous proposons ici les
probabilités suivantes pour tenir compte de la diffusion :

• P̃a(x) =
ka,η(x)

ka,η(x) + kd,η(x) + |kn,η(x)| comme probabilité d’émission/absorp-

tion,

• P̃d(x) =
kd,η(x)

ka,η(x) + kd,η(x) + |kn,η(x)| comme probabilité de diffusion,

• P̃n(x) =
|kn,η(x)|

ka,η(x) + kd,η(x) + |kn,η(x)| comme probabilité de collision nulle.

Ainsi quel que soit le champ de k̂ (majorant ou non), ces probabilités sont bien
comprises entre 0 et 1 et leur somme vaut 1.

Ce changement de probabilités modifie sensiblement l’expression récursive de la
luminance Lη(xj,uj) présente dans le bilan radiatif Sr,η(x0). Leur introduction dans
l’Eq. 4.35 conduit alors à :

Lη(xj,uj) =

∫ ∞

0

p̂Lj+1
(lj+1)dlj+1

×





H (xj+1 /∈ V)





Pe(xw,j+1)Leqη (xw,j+1)

+(1− Pe(xw,j+1))

∫

2π

ψ(xw,j+1,uj|uj+1)Lη(xw,j+1,uj+1)duj+1





+H (xj+1 ∈ V)





P̃a(xj+1)
ka,η(xj+1)

k̂η(xj+1)P̃a(xj+1)
Leqη (xj+1)

+P̃d(xj+1)
kd,η(xj+1)

k̂η(xj+1)P̃d(xj+1)

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1

+P̃n(xj+1)
kn,η(xj+1)

k̂η(xj+1)P̃n(xj+1)
Lη(xj+1,uj+1 = uj)









(4.36)
L’expression du bilan radiatif Sr,η(x0) sous forme d’espérance est alors substan-

tiellement modifiée. Il vient :

Sr,η(x0) = E




ka,η(x0)
∞∑

j=1

[
Ae,jL

eq
η (xw,j) + Aa,j

ka,η(xj)

k̂η(xj)P̃a(xj)
Leqη (xj)

]

×
j−1∏

q=1

(1− Ae,q − Aa,q)
(
Ar,q + Ad,q

kd,η(xq)

k̂η(xq)P̃d(xq)
+ An,q

kn,η(xq)

k̂η(xq)P̃n(xq)

)

− 4πka,η(x0)Leqη (x0)




(4.37)
où les variables aléatoires :
• Ae,j vaut 1 si une émission a lieu en xw,j, 0 sinon.
• Aa,j vaut 1 si une absorption a lieu en xj, 0 sinon.
• Ar,j vaut 1 si une réflexion a lieu en xw,j, 0 sinon.
• Ad,j vaut 1 si une diffusion a lieu en xj, 0 sinon.
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• An,j vaut 1 si une collision nulle a lieu en xj, 0 sinon.

L’algorithme de Monte-Carlo correspondant est donné à la Fig. 4.8

j = 0, ξ0 = 1

Échantillonnage de u0

Échantillonnage de l j+1

x j+1 ∈ V
(collision dans le milieu)

Oui
(collision à la paroi)

Non

Échantillonnage de r j+1

Définition de la collision

(absorption)

rj+1 < P̃a

P̃a < rj+1 < P̃a + P̃d(diffusion)

(collision nulle)

rj+1 > P̃a + P̃d

ξ j+1 = ξ j
ka,η(x j+1)

k̂η(x j+1)P̃a(x j+1)

wi = ka,η(x0)
[
ξ j+1Leq

η (x j+1)/pU0 (u0) − 4πLeq
η (x0)

]

×

ξ j+1 = ξ j
kd,η(x j+1)

k̂η(x j+1)P̃d(x j+1)

Échantillonnage de u j+1

ξ j+1 = ξ j
kn,η(x j+1)

k̂η(x j+1)P̃n(x j+1)

u j+1 = u j

Échantillonnage de r j+1

r j+1 < Pe(x j+1)

(absorption)

Oui
(reflexion)

Non

ξ j+1 = ξ j

wi = ka,η(x0)
[
ξ j+1Leq

η (xw, j+1)/pU0 (u0) − 4πLeq
η (x0)

]

×

ξ j+1 = ξ j

Échantillonnage de u j+1

j ≡ j + 1

Figure 4.8 – Extension de l’algorithme de la Fig. 4.7, permettant d’estimer Sr,η(x0), aux coefficients
négatifs de collision nulle. Trois nouvelles probabilités d’absorption P̃a, de diffusion P̃d et de collisions
nulles P̃n ont été introduites. Les poids de Monte-Carlo wi résultant de ce changement sont modifiés
en conséquence.

4.3.2.4 Comportement numérique en fonction des valeurs du coefficient
de collision nulle

Il devient ainsi possible de réaliser en toute généralité une étude de l’effet du
k̂η sur le comportement de l’algorithme de Monte-Carlo. Pour mener à bien cette
analyse, plusieurs calculs du bilan radiatif monochromatique ont été effectués, à
partir de l’algorithme de la Fig. 4.8, pour plusieurs valeurs de ρ = k̂η/k

max
η allant

de ρ = 0.5 (où k̂η ne majore que localement le coefficient d’extinction réel kη) à
ρ = 5 (où k̂η majore en tout point et très largement kη). Les Fig. 4.9, Fig. 4.10 et
Fig. 4.11 décrivent respectivement les évolutions de l’erreur relative, du temps de
calcul pour 106 réalisations et du temps de calcul pour obtenir une erreur relative de
1% en fonction de ρ, pour différentes épaisseurs optiques et deux points d’intérêts :
x0 = [0, 0, 0] et x0 = [−D, 0, 0].

Pour ρ > 1, l’écart-type de l’estimation du bilan radiatif monochromatique est
indépendant du coefficient de collision nulle (voir Fig. 4.9). En effet, les algorithmes
à collisions nulles ne constituent qu’un artefact statistique et numérique permettant
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Figure 4.9 – Écart-type adimensionnalisé en fonction de ρ, kmax
a,η D et kmax

d,η D pour le calcul de
Sr,η(x0) en x0 = [0, 0, 0] et x0 = [−D, 0, 0] par l’algorithme de la Fig. 4.8.
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Figure 4.10 – Temps de calcul adimensionnalisé en fonction de ρ, kmax
a,η D et kmax

d,η D pour le calcul
de Sr,η(x0) en x0 = [0, 0, 0] et x0 = [−D, 0, 0] par l’algorithme de la Fig. 4.8.
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Figure 4.11 – Temps de calcul pour une erreur relative de 1% adimensionnalisé en fonction de ρ,
kmax
a,η D et kmax

d,η D pour le calcul de Sr,η(x0) en x0 = [0, 0, 0] et x0 = [−D, 0, 0] par l’algorithme de
la Fig. 4.8.
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un échantillonnage plus aisé des libres parcours d’extinction. L’ajout de collisions
nulles a seulement une incidence sur le temps de calcul : plus il y aura de collisions
nulles (sans effet sur la convergence du calcul) plus le temps de calcul sera long (voir
Fig. 4.10 et Fig. 4.11).

Au contraire, plus la valeur de ρ est petite devant 1 , plus l’écart-type associé à
l’estimation du bilan radiatif est important et croît de façon rapide, voir Fig. 4.8.
Ce comportement était en effet attendu. L’introduction de nouvelles probabilités
permettant de prendre en compte des occurrences négatives de kn,η engendre dans
l’expression des poids de Monte-Carlo l’apparition d’un produit correctif. La valeur
de ce dernier croît et est susceptible de changer de signe à chaque fois qu’une
collision a lieu dans une région où les coefficients de collision nulle sont négatifs (cf.
Sec. 4.2.4). Si un grand nombre d’événements de diffusion ou de collisions nulles
se produisent le long du chemin optique dans une région où kn < 0, les poids de
Monte-Carlo peuvent alors avoir des valeurs absolues très importantes et d’une très
grande variance, expliquant ainsi l’accroissement conséquent de l’écart-type associé à
l’estimation de Sr,η(x0). Cet effet est naturellement plus prononcé lorsque le point
sonde x0 appartient à la zone où kn,η < 0 (voir Fig. 4.9b) que lorsque les chemins
optiques partent d’une zone où kn,η > 0 (voir Fig. 4.9a).

Toutefois, cette augmentation brutale de l’écart-type doit être relativisée : la
proposition de la Sec. 4.2.4 permettant d’autoriser des occurrences de kn,η > 0 est
faite pour éviter un biais des résultats de simulations dans le cas où le champ de k̂η
choisi ne majorerait pas parfaitement le champ du coefficient d’absorption réel (elle
n’entraîne aucune modification si k̂η(x) > kη(x)). Ainsi, on remarque que si le choix
du champ de k̂η est suffisamment bien pensé (ρ > 0.9), l’augmentation d’écart-type
due aux coefficients négatifs de collisions nulles reste mesurée (elle est multipliée par
4 dans le cas le plus défavorable).

Enfin, ces trois jeux de graphiques nous permettent de constater que les temps
de calcul décroissent avec la valeur de ρ pour un nombre donné Nmc de réalisations
indépendantes, (voir Fig. 4.10). Cela vient simplement du fait que plus faible est la
valeur de ρ, moins il y a d’événements de diffusion et de collisions nulles. En effet, plus
ρ est faible, plus la valeur de k̂ l’est aussi, les libres parcours échantillonnés selon p̂L(l)
sont alors beaucoup plus longs, favorisant une absorption rapide aux parois. Toutefois,
excepté pour le cas particulier d’un milieu très mince, cette décroissance des temps
de calcul ne compense pas l’augmentation de l’erreur relative due aux coefficients
négatifs de collision nulle (voir Fig. 4.11). Pour une erreur relative désirée, le temps
de calcul est donc à la fois conditionné par l’effet de ρ sur la variance (voir Fig. 4.11
pour ρ < 1) et sur la quantité de collisions nulles qui augmente mécaniquement, mais
dans une moindre mesure, ce temps de calcul (voir Fig. 4.11 pour ρ > 1). À la vue de
l’évolution des temps de calcul nécessaires à l’obtention d’une erreur relative d’1%, il
semble préférable, en cas de doute, de définir un champ de k̂ majorant largement
celui du coefficient d’extinction que de risquer une explosion de variance causée
par un trop grand nombre de collisions nulles caractérisées par des coefficients négatifs.
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4.3.2.5 Influence de l’émissivité et du paramètre d’asymétrie de la fonc-
tion de phase

Plusieurs simulations ont également été réalisées pour des paramètres d’asy-
métrie de la fonction de phase différents de 0 et des émissivités de paroi inférieures à 1.

Le paramètre d’asymétrie n’a que très peu d’effet sur le comportement numérique
de l’algorithme à collisions nulles. Inévitablement, l’estimation de Sr,η(x0) est sensible
à ces changements (puisque le modèle physique est modifié), mais les effets sur les
erreurs relatives et les temps de calcul semblent négligeables.

La réflexion multiple aux parois a, quant à elle, des conséquences sur le compor-
tement de l’algorithme. Elle agit de la même manière que la diffusion : elle a une
tendance à accroître la longueur des chemins parcourus par les photons avant d’être
absorbés. Ainsi, un plus grand nombre de collisions ont lieu, augmentant alors les
temps de calcul. Dans les zones où les coefficients de collision nulle sont négatifs,
la réflexion multiple a tendance, au même titre que la diffusion (cf. Fig. 4.11) mais
dans une moindre mesure, à augmenter davantage l’écart-type estimé.

4.3.3 Traitement déterministe des événements d’émission -
approche par "Energy-partitioning"

Jusqu’à présent, à chaque fois qu’un point de collision était identifié, un test
statistique, de type roulette russe, avait lieu pour savoir s’il s’agissait d’une émission
(par le milieu ou par la paroi), d’une réflexion, d’une diffusion ou d’une collision nulle.
S’il s’agissait d’une émission, la réalisation serait stoppée et un poids wi serait calculé.
Il pourrait cependant être intéressant de traiter de façon déterministe ces événements
d’émission. Ainsi, après une émission/absorption les photons continueraient leur
chemin, mais une information locale relative à l’émission serait prise compte. Les
poids de Monte-Carlo wi seraient alors définis comme une somme de contributions
d’émission rencontrées le long d’un chemin optique. Une telle approche, présentée
à la Sec. 3.4.2, est connue sous le nom d’energy-partitioning ou de pathlength-
method. L’application de ce traitement déterministe à l’estimation du bilan radiatif
monochromatique Sr,η(x0) et ses conséquences sur le comportement numérique des
algorithmes à collisions sont discutés dans cette section.
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4.3.3.1 Présentation de l’algorithme de type "energy partinioning"

Traiter de façon déterministe les émissions équivaut à reformuler l’Eq. 4.36 en :

Lη(xj,uj) =

∫ ∞

0

p̂Lj+1
(lj+1)dlj+1

×





H (xj+1 /∈ V)





ε(xw,j+1)Leqη (xw,j+1)

+(1− ε(xw,j+1))

∫

2π

ψ(xw,j+1,uj|uj+1)Lη(xw,j+1,uj+1)duj+1





+H (xj+1 ∈ V)





ka,η(xj+1)

k̂η(xj+1)
Leqη (xj+1)

+P̃d(xj+1)
kd,η(xj+1)

k̂η(xj+1)P̃d(xj+1)

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1

+P̃n(xj+1)
kn,η(xj+1)

k̂η(xj+1)P̃n(xj+1)
Lη(xj+1,uj+1 = uj)









(4.38)
où les émissivités ε(xw,1) et l’albédo d’absorption ka,η(x1)/k̂η(x1) sont désormais
traités de façon déterministe. Les probabilités P̃d(xj) et P̃n(xj) ont volontairement
été conservées, car d’un point de vue algorithmique il est très difficile de suivre deux
chemins optiques simultanément (problèmes de branchage : à chaque collision deux
nouveaux chemins optiques seraient créés, chacun menant à deux autres chemins,
etc.). Il demeure plus simple de réaliser un test de Bernoulli pour déterminer si la
collision mène à une diffusion du photon (selon la fonction de phase φ(xj+1,uj|uj+1))
ou à une collision nulle (diffusion vers l’avant). Cependant, les expressions de ces
deux probabilités doivent être modifiées pour que leur somme soit bien normée. Dans
l’optique d’autoriser des occurrences de coefficients de collision nulle négatifs, nous
proposons ici les expressions

P̃d(xj) =
kd,η(xj)

kd,η(xj) + |kn,η(xj)|
(4.39)

et
P̃n(xj) =

|kn,η(xj)|
kd,η(xj) + |kn,η(xj)|

(4.40)

Le bilan radiatif Sr,η(x0) correspond alors à l’espérance de la variable aléatoire
W définie comme :

W =
∞∑

j=1

[
H (Xj /∈ V) ε(Xw,j)L

eq
η (Xw,j) +H (Xj ∈ V)

ka,η(Xj)

k̂η(Xj)
Leqη (Xj)

]

×
j−1∏

q=1

(
Ar,q(1− ε(Xw,q)) + Ad,q

kd,η(Xq)

k̂η(Xq)P̃d(Xq)
+ An,q

kn,η(Xq)

k̂η(Xq)P̃n(Xq)

) (4.41)

où la variable aléatoire Ar,j vaut 1 si une réflexion a lieu en xw,j, 0 sinon ; où Ad,j
vaut 1 si une diffusion a lieu en xj, 0 sinon et où An,j vaut 1 si une collision nulle a
lieu en xj, 0 sinon.
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Toutefois, implémenter un algorithme de Monte-Carlo qui consiste à échantillon-
ner W pose un sérieux problème dès lors que les parois ne sont pas noires : les
chemins que parcourent les photons sont infinis. En effet, à chaque collision, une
contribution d’émission est calculée, puis le chemin optique est poursuivi. En aucun
cas, un événement n’est capable de stopper la progression de ce chemin. En des
termes plus algorithmiques, on voit apparaître une boucle, sans condition d’arrêt.

Plutôt que de stopper arbitrairement ces chemins, on propose alors de définir
un test dans l’algorithme qui, une fois validé, fera permuter cet algorithme (dans
lequel les émissions sont traitées de façon déterministe) vers son homologue dans
lequel le type de collision est déterminé par un test de Bernoulli (cf. Sec. 4.3.2).
Ainsi, ces chemins infinis pourront être stoppés sans aucun biais (ce qui n’aurait pas
été le cas si l’on avait tronqué arbitrairement ces chemins). Le critère faisant passer
d’une variante algorithmique à l’autre est totalement libre. Nous proposons ici de
considérer la grandeur

ξj =

j−1∏

q=1

(
Ar,q(1− ε(xw,q)) + Ad,q

kd,η(xq)

k̂η(xq)P̃d(xq)
+ An,q

kn,η(xq)

k̂η(xq)P̃n(xq)

)
(4.42)

présente dans l’expression de W . Cette grandeur, que nous qualifierons de critère
d’extinction, caractérise la fraction de photons transmise après j collisions. Au début
de la réalisation, quand aucune collision n’a encore eu lieu, elle est égale à 1, puis
elle ne cesse de décroître au fur et à mesure que des collisions sont rencontrées,
rendant ainsi les contributions à W de plus en plus faibles. Pour définir le test à
partir duquel les émissions seront traitées de façon statistique, on définit également
un seuil ζ compris entre 0 et 1. Tant que ξj > ζ les émissions sont traitées de façon
déterministe, puis lorsque ξj passe en dessous du seuil ζ on passe à un traitement par
tests de Bernoulli pour déterminer le type de collision, permettant ainsi de mettre un
terme à la réalisation. Plus la valeur de ζ sera faible, plus la branche où les émissions
sont prises en compte de façon déterministe sera privilégiée. Au contraire, en fixant
ζ = 1, l’algorithme correspond strictement à celui présenté à la Sec. 4.3.2 : toutes
les collisions seront traitées statistiquement par un test de Bernoulli. L’algorithme
correspondant à cette approche est présenté en intégralité par la Fig. 4.12.

4.3.3.2 Influence de ζ sur le comportement numérique de l’algorithme
à collisions nulles

Aussi, il est intéressant d’étudier l’influence que joue ce seuil ζ sur le comporte-
ment de l’algorithme de Monte-Carlo. Des bilans radiatifs monochromatiques Sr,η(x0)
aux points x0 = [0, 0, 0] et x0 = [−D, 0, 0] ont alors été estimés par l’algorithme
présenté à la Fig. 4.12, pour différentes valeurs de ζ, de ρ et pour différentes
épaisseurs optiques maximales kmax

a,η D et kmax
d,η D. La valeur du champ d’extinction

arbitraire k̂η est définie comme égale à kmax
η (ρ = 1, les coefficients de collision nulle

sont positifs en tout point).

Les Tab. 4.3 et 4.4 rassemblent les résultats de simulations obtenus aux deux
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points sondes x0 = [0, 0, 0] et x0 = [−D, 0, 0] pour des parois noires et pour un seuil
ζ fixé à 0.1 (le basculement de la branche déterministe à celle stochastique a lieu
lorsque l’extinction le long du chemin optique dépasse 90%). Ces résultats peuvent
être comparés à ceux des Tab. 4.1 et 4.2 obtenus avec l’algorithme présenté à la
Fig. 4.8 dans lequel les collisions sont traitées uniquement par roulette russe (cet
algorithme est strictement équivalent à celui de la Fig. 4.12 dans lequel le seuil ζ
serait fixé à 1).

Epaiss. optiques Algo. à collisions nulles (106 réalisations, ζ = 0.1) Comp.

kmax
a,η D kmax

d,η D
Sr,η(x0)

4πka,η(x0)Leqη (x0)

σ

4πka,η(x0)Leqη (x0)
t t1%

t1%(ζ=0.1)
t1%(ζ=1)

0.1 0.1 -0.483586 0.000044 2.31 0.00019 0.253
0.1 1 -0.481950 0.000024 7.77 0.00019 0.072
0.1 3 -0.477917 0.000023 23.72 0.00054 0.055
0.1 10 -0.463036 0.000035 122.94 0.00707 0.081
1 0.1 -0.366263 0.000142 3.38 0.00510 0.552
1 1 -0.356208 0.000123 10.10 0.01200 0.475
1 3 -0.335460 0.000117 27.58 0.03373 0.422
1 10 -0.277008 0.000127 127.77 0.26892 0.541
3 0.1 -0.219155 0.000153 5.51 0.02701 0.785
3 1 -0.209308 0.000144 12.76 0.06017 0.903
3 3 -0.190219 0.000132 29.96 0.14535 0.927
3 10 -0.143645 0.000112 105.20 0.64103 0.993
10 0.1 -0.071424 0.000081 8.66 0.11055 1.185
10 1 -0.068768 0.000077 13.11 0.16317 1.310
10 3 -0.063507 0.000070 22.45 0.27110 1.393
10 10 -0.050786 0.000054 52.92 0.59544 1.366

Table 4.3 – Résultats et temps de calcul obtenus lors de l’estimation de Sr,η en x0 = [0, 0, 0] par
l’algorithme à collisions nulles de la Fig. 4.12. Le seuil de permutation algorithmique est fixé à
ζ = 0.1. La dernière colonne indique le rapport entre le temps de calcul nécessaire à l’obtention
d’une erreur relative de 1% pour ζ = 0.1 et le temps nécessaire à l’obtention d’une erreur relative
de 1% pour ζ = 1.

On constate que les résultats obtenus avec ce nouvel algorithme où ζ = 0.1
concordent parfaitement, aux intervalles de confiance près, avec ceux obtenus avec
l’algorithme où les collisions sont traitées uniquement par roulette russe (ζ = 1).
La proposition faite dans cette section est ainsi validée. La dernière colonne de ces
deux tables indique le rapport entre le temps de calcul nécessaire à l’obtention d’une
erreur relative de 1% pour ζ = 0.1 et le temps nécessaire à l’obtention d’une erreur
relative de 1% pour ζ = 1. Si ce rapport est inférieur à 1, le traitement déterministe
des émissions est plus efficient qu’un traitement par roulette russe. Au contraire s’il
est supérieur à 1, l’algorithme introduit à la Fig. 4.8 est le plus performant. On
remarque alors que pour des épaisseurs optiques d’absorption minces, le traitement
déterministe des émissions accélère sensiblement les temps de calcul (jusqu’à 12 fois
plus rapides). Pour des épaisseurs optiques d’absorption importantes, il a tendance à
augmenter ces mêmes temps de calcul (d’un facteur 3 dans le cas le plus défavorable).
Il est possible d’interpréter cette différence de comportement algorithmique par
le fait qu’en traitant de façon déterministe les collisions, de l’information relative
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Epaiss. optiques Algo. à collisions nulles (106 réalisations, ζ = 0.1) Comp.

kmax
a,η D kmax

d,η D
Sr,η(x0)

4πka,η(x0)Leqη (x0)

σ

4πka,η(x0)Leqη (x0)
t t1%

t1%(ζ=0.1)
t1%(ζ=1)

0.1 0.1 -0.977195 0.000081 2.24 0.00016 0.413
0.1 1 -0.976700 0.000041 6.19 0.00011 0.103
0.1 3 -0.975783 0.000035 15.17 0.00020 0.074
0.1 10 -0.974777 0.000042 46.19 0.00088 0.103
1 0.1 -0.821998 0.000285 3.31 0.00398 1.138
1 1 -0.821967 0.000237 8.34 0.00692 0.897
1 3 -0.823956 0.000215 17.71 0.01202 0.717
1 10 -0.839442 0.000220 46.75 0.03208 0.831
3 0.1 -0.657423 0.000388 4.23 0.01471 1.782
3 1 -0.664806 0.000365 9.43 0.02851 2.101
3 3 -0.679347 0.000345 16.61 0.04289 1.801
3 10 -0.723130 0.000327 34.46 0.07053 1.574
10 0.1 -0.544147 0.0004§0 3.72 0.02660 1.922
10 1 -0.551601 0.000452 7.88 0.05288 3.089
10 3 -0.568200 0.000438 10.89 0.06467 2.791
10 10 -0.611147 0.000411 19.32 0.08731 2.305

Table 4.4 – Résultats et temps de calcul obtenus lors de l’estimation de Sr,η en x0 = [−D, 0, 0]
par l’algorithme à collisions nulles de la Fig. 4.12. Le seuil de permutation algorithmique est fixé à
ζ = 0.1. La dernière colonne indique le rapport entre le temps de calcul nécessaire à l’obtention
d’une erreur relative de 1% pour ζ = 0.1 et le temps nécessaire à l’obtention d’une erreur relative
de 1% pour ζ = 1.

à l’émission du milieu est capitalisée tout le long du chemin optique, jusqu’à ce
que la permutation algorithmique ait lieu. Ainsi, l’émission de l’ensemble du milieu
d’intérêt est mieux prise en compte que si les émissions étaient traitées par roulette
russe. En effet, dans le cas où les épaisseurs optiques d’absorption sont faibles,
il était nécessaire, sans traitement déterministe, de parcourir un chemin optique
important avant de rencontrer une émission et de réaliser un grand nombre de
réalisations pour pouvoir être suffisamment représentatif de l’émission de la totalité
du volume d’intérêt. Cela explique, pour ce type de milieu, l’accélération des temps
de calcul engendrée par ce nouvel algorithme. Au contraire, lorsque l’épaisseur
optique d’absorption est importante, la grande majorité des photons parvenant en x0

a été émise dans la zone proche de ce point. Un traitement par roulette russe de ces
événements d’émission est alors pertinent ; le traitement déterministe n’aura pour
seule conséquence une augmentation de la longueur des chemins parcourus avant
que la réalisation soit stoppée, entraînant ainsi une augmentation des temps de calcul.

Dans les Tab. 4.3 et 4.4, une seule valeur du seuil ζ a été testée : ζ = 0.1. Mais,
diminuer la valeur ce seuil à 10−2 ou même 10−5 n’entraîne qu’un changement
minime des temps de calcul. En effet, une fois que les chemins optiques ont atteint
une paroi noire, le critère d’extinction ξ passe à 0 (quelle que soit la valeur de ζ)
et l’algorithme permute vers la branche où les événements d’émission sont traités
par roulette russe, mettant ainsi fin au chemin optique. La Fig. 4.13a illustre la
dépendance du temps de calcul pour une erreur relative donnée au seuil ζ, pour
une émissivité de paroi de 1 et pour le point sonde x0 = [−D, 0, 0]. Des simulations
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Figure 4.13 – Temps de calcul nécessaire à l’obtention d’une erreur relative de 1% en fonction du
seuil ζ. Les temps affichés sont relatifs à l’estimation de Sr,η(x0) en x0 = [−D, 0, 0] par l’algorithme
de la Fig. 4.12 pour deux émissivités de parois : ε = 1 et ε = 0 et pour différentes épaisseurs
optiques d’absorption et de diffusion.
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ont également été réalisées pour des parois parfaitement réfléchissantes (ε = 0).
Les conclusions sont identiques aux précédentes, mais la sensibilité au choix du
seuil ζ est plus importante (voir Fig. 4.13b). En effet, puisque les parois, désormais
réfléchissantes, ne permettent plus de stopper les réalisations, les chemins parcourus
avant que l’algorithme ne permute sont considérablement plus longs. Cela se traduit
alors par une augmentation des temps de calcul lorsque ζ décroit.

Les résultats obtenus mettent donc en valeur le fait que traiter les émissions de
façon déterministe, conduit à :
• une diminution de la variance de l’estimation (au moins dans le cas de faibles

épaisseurs optiques d’absorption) : de l’information relative à l’émission du mi-
lieu est accumulée tout le long du chemin optique, jusqu’à ce que la permutation
algorithmique ait lieu.
• une augmentation des temps de calcul pour une réalisation donnée : plus la

valeur de ζ sera faible et plus la permutation algorithmique aura lieu tard. Les
chemins considérés lors d’une seule réalisation indépendante seront alors plus
longs, puisqu’aucune absorption ne permet de stopper la récursivité. Seul le
basculement vers un traitement stochastique des collisions ou une paroi noire
le permettront.

Les performances de la proposition algorithmique faite ici, quantifiées par les temps
de calcul à 1%, sont donc dépendantes de ces deux phénomènes. Comme en atteste la
Fig. 4.13, il est alors possible de déterminer une valeur optimale du seuil ζ, qui permet
d’avoir le meilleur compromis entre diminution de la variance et augmentation du
temps moyen par réalisation. Selon le type du milieu, sa valeur se situe entre 0.1 et 1.
L’ajustement de la valeur de ζ, en fonction du cas d’étude d’intérêt, constitue alors
un important levier d’optimisation (permettant, dans des cas particuliers, d’accélérer
les calculs d’un ou plusieurs ordres de grandeur).

4.3.3.3 Influence des collisions nulles sur l’algorithme de type "energy
partitioning"

Le nouvel algorithme introduit dans cette section (voir Fig. 4.12) permet également
de traiter des occurrences négatives de coefficients de collision nulle. La Fig. 4.14
illustre la dépendance du temps de calcul nécessaire à l’obtention d’une erreur relative
de 1% au paramètre ρ = k̂η/k

max
η pour ζ = 1 (Fig. 4.14a) et ζ = 0.1 (Fig. 4.14b).

Nous nous concentrons ici, uniquement sur le point d’intérêt, x0 = [−D, 0, 0], identifié
comme le point le plus pathologique (puisque situé dans la zone où les coefficients de
collision nulle sont les plus faibles). Les parois sont également considérées comme
noires et la fonction de phase comme isotrope. Les conclusions semblent identiques à
celles formulées à la Sec. 4.3.2.4. Toutefois,
• pour ρ < 1 (i.e. quand le coefficient k̂η ne majore que localement le coeffi-
cient d’extinction réel), des difficultés de convergence plus importantes sont
rencontrées pour des épaisseurs optiques d’absorption faibles et de diffusion
importantes.
• pour ρ > 1 (i.e. le champ de k̂η est majorant en tout point), l’augmentation

du nombre de collisions nulles (ρ croissant) entraîne une diminution du temps
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Figure 4.14 – Temps de calcul nécessaire à l’obtention d’une erreur relative de 1% en fonction de
la grandeur adimensionnelle ρ = k̂η/k

max
η . Les temps affichés sont relatifs à l’estimation de Sr,η(x0)

en x0 = [−D, 0, 0] par l’algorithme de la Fig. 4.12 pour deux seuils de basculement algorithmique :
ζ = 1 et ζ = 0.1 et pour différentes épaisseurs optiques d’absorption et de diffusion.
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de calcul à 1%. En effet, plus le k̂η est important plus les libres parcours
échantillonnés seront petits. Ainsi, le nombre répété de calculs des contributions
d’émissions mène à une intégration quasi-déterministe le long du chemin optique
qui réduit sensiblement la variance (en particulier lorsque les épaisseurs optiques
sont minces).

4.3.4 Enseignements sur les choix du k̂η et du type d’algo-
rithme

Cette étude paramétrique souligne l’importance qu’a le choix du champ de k̂η. On
rejoint les conclusions émises à la Sec. 4.2.4 : le champ de k̂η doit être choisi de sorte
à être le plus proche du champ réel de coefficient d’extinction (pour éviter un trop
grand nombre de collisions nulles) tout en permettant un échantillonnage aisé des
libres parcours. Dans cette étude nous avons fait le choix de définir k̂η(x) comme une
fonction uniforme, mais il est imaginable de le définir comme une fonction uniforme
ou même continue par morceaux. Il serait ainsi possible d’approcher plus précisément
le champ d’extinction tout en garantissant un échantillonnage des libres parcours
analytiquement possible, au prix d’un coût de calcul éventuellement plus important.

De plus, cette analyse a permis de mesurer l’augmentation de variance associée à
un champ de k̂η non-majorant. Il semble donc évident que des cas de ce type doivent
être évités autant que possible. Toutefois, le fait d’avoir ouvert la possibilité aux
coefficients négatifs de collision nulle n’est pas pour autant injustifié. Assurer la
majoration du champ d’extinction peut constituer une tâche très complexe comme
nous allons le voir dans le Chap. 5. Avec la proposition faite dans ce chapitre,
nous pouvons désormais implémenter des algorithmes dont l’estimation ne sera
aucunement biaisée si une occurrence du type kn,η < 0 devait avoir lieu. Les quelques
simulations, présentées dans cette étude paramétrique, indiquent que si le champ de
k̂η majore en la plupart des points le coefficient d’extinction, mais pas strictement
(ρ & 0.9), l’augmentation du temps de calcul pour une précision donnée demeure
mesurée.

Enfin, considérer les événements d’émission de façon déterministe (energy-
partitioning) parait être l’approche la plus efficace pour les milieux optiquement
minces (qui représentent, pour des chambres de combustion de petite taille, une
grande majorité des cas rencontrés). Dans la suite de ce manuscrit, cette technique
sera systématiquement employée. La variété des épaisseurs optiques sera alors prise en
compte en jouant sur le paramètre ζ pour optimiser le comportement de l’algorithme
en fonction du cas d’étude.

4.4 Validation d’un solveur radiatif par les algo-
rithmes à collisions nulles

Dans de nombreux domaines d’application (combustion, atmosphérique, etc.),
les modèles radiatifs sont généralement couplés à d’autres modèles de transfert
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thermique, de mécanique des fluides ou encore de cinétique chimique. Dans ces
contextes, où la complexité due aux couplages est importante, il est souvent
nécessaire de faire un compromis entre la précision attendue et les temps de
calcul. Aussi, il est important d’évaluer la validité des méthodes numériques
et des modèles résultant de ces compromis. Dans le cadre particulier du trans-
fert radiatif, les méthodes de Monte-Carlo occupent une place de solution de
référence, dans la mesure où les résultats sont fournis avec un intervalle de
confiance. Très adaptées à la simulation du rayonnement en géométries complexes
[Zhang et al., 2009, Zhang, 2011, De La Torre et al., 2014, Dauchet, 2012], elles
sont aujourd’hui fréquemment utilisées pour valider des outils de simulation ou des
modèles radiatifs approchés.

Toutefois, bien que considérées comme des méthodes de référence, leur prise
en compte des hétérogénéités des propriétés des milieux peut conduire à certaines
approximations (ex : discrétisation du milieu, voir Sec. 4.1.2). Les algorithmes à
collisions nulles peuvent alors constituer une alternative intéressante aux méthodes
usuelles de Monte-Carlo. En effet, ils tirent directement profit des avantages de ces
dernières (incertitude numérique maîtrisée en permanence, gestion des géométries
complexes, etc.), sans nécessiter une discrétisation du milieu ou d’autres techniques
approchées. Ainsi, les estimations des observables d’intérêt sont non-biaisées et
peuvent être réellement considérées comme résultats de référence.

4.4.1 Description du cas d’étude et de l’exercice de validation

Dans l’article [Eymet et al., 2013] (donné en Annexe E), les auteurs proposent
d’utiliser l’algorithme à collisions nulles, introduit à la Fig. 4.12, pour valider le
code PRISSMA [Poitou et al., 2012], conçu pour des applications de combustion.
Ce module de transfert radiatif, basé sur des méthodes aux ordonnées discrètes
[Joseph et al., 2005], est intégré au code de calcul AVBP, développé pour la simula-
tion d’écoulements réactifs instationnaires sur des maillages hybrides [Cerfacs, 2014].

Dans le cadre de cet exercice de validation, un grand nombre de bilans radiatifs
intégrés spectralement, sur tout le domaine infrarouge, sont calculés par les deux
algorithmes (algorithme à collisions nulles et PRISSMA) en divers points d’une
chambre de combustion dont la configuration retenue correspond à celle proposée
par Knikker et al. [Knikker et al., 2000, Nottin et al., 2000, Knikker et al., 2002].
Les dimensions de la chambre, illustrée à la Fig. 4.15, sont de 300 × 50 × 80mm
(respectivement le long des axes x, y et z). Un accroche-flamme triangulaire est
positionné sur les côtés latéraux à une hauteur de 25mm. Un mélange d’air et de
propane est injecté par le coté gauche et une flamme triangulaire se développe
dans le conduit rectangulaire le long de l’axe x. Les températures de parois sont
fixées à 300K, excepté pour la paroi de droite où la température est fixée à 1900K.
La réflectivité des parois en céramique est fixée à ε = 0.91, celle des parois en
quartz à ε = 0.4. L’émissivité de l’accroche-flamme est fixée à ε = 0.4, une valeur
caractéristique d’un acier oxydé à 1000K. L’entrée, la sortie et l’atmosphère sont
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Figure 4.15 – Configuration de chambre de combustion retenue et proposée par Knikker et al.
dans [Knikker et al., 2000, Nottin et al., 2000, Knikker et al., 2002].

supposées se comporter comme des parois noires.

L’objectif de l’étude décrite dans [Eymet et al., 2013] est alors de valider le code
de transfert radiatif PRISSMA, dans lequel :
• la méthode de résolution de l’équation du transfert radiatif est une approche

aux ordonnées discrètes (DOM),
• l’intégration spatiale s’appuie sur un maillage spécifique, plus grossier que le

maillage LES 4 utilisé par le code AVBP. La stratégie de couplage avec AVBP
est décrite plus en détail dans [Poitou et al., 2012],
• l’intégration angulaire s’appuie sur le schéma de quadrature S4 (seules 24

directions sont considérées),
• l’intégration spectrale est effectuée en utilisant un modèle "full-spectrum"
(FSK) décrit par seulement 15 points de quadrature,
• les discrétisations spatiales, angulaires et l’intégration spatiale utilisées sont
volontairement définies aux limites basses de leur domaine de validité afin de
répondre aux exigences du code AVBP en termes de temps de calcul. Aussi,
dans la pratique, le module PRISSMA doit être validé par un code de calcul
radiatif à chaque fois qu’une nouvelle configuration de chambre de combustion
est prise en considération.

par un algorithme à collisions nulles, dont :
• la structure algorithmique est strictement identique à celle présentée à la

Fig. 4.12. Seule une étape préliminaire d’échantillonnage spectral est ajoutée,
permettant d’intégrer le bilan radiatif sur tout le domaine infrarouge. Le champ
du coefficient de collision nulle kn,η est défini de sorte à rendre le champ
d’extinction résultant k̂η = ka,η + kn,η uniforme et majorant en tout point le
champ du coefficient d’extinction réel (kn,η > 0),
• le modèle d’intégration spectrale retenu repose sur une discrétisation par
bande étroite et sur un modèle en k-distributions 5. Ce choix représente la

4. LES : Large Eddy Simulation (simulation des grandes échelles).
5. Les données spectrales ont été produites en utilisant l’approche SNB-ck (statistical narrow-

band correlated k) [Soufiani et Taine, 1997, Liu et al., 2000, Liu et al., 2001, Joseph et al., 2009]
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seule approximation faite pour cet algorithme de Monte-Carlo à collisions
nulles. Idéalement, pour conserver son caractère de solution de référence, cet
algorithme devrait utiliser une approche de type raie-par-raie (dont seules
quelques tentatives sont rapportées dans la littérature [Wang et Modest, 2007b,
Fomin, 2006]). Ainsi, l’intégration spectrale devrait s’appuyer sur des spectres
haute-résolution produits (pour chaque jeu de concentrations, de température et
de pression) à partir de bases de données spectroscopiques hautes-températures
(ex : Hitemp ou CDSD). Cependant du fait de la difficulté et de la lourdeur
engendrées par une telle approche, les k-distributions associées à une hypothèse
de corrélation font encore fréquemment office de solutions de référence. Une
proposition alternative à ces modèles, ne requérant aucune approximation et
n’étant source d’aucun biais, sera proposée au Chap. 5,
• les résultats sont obtenus sans aucune approximation relative à l’intégration

directionnelle et spatiale (l’algorithme proposé ne nécessite la création d’aucun
maillage),
• pour être en accord strict avec PRISSMA, les champs de propriétés (tem-
pérature et concentrations) utilisés en entrée de l’algorithme à collisions
nulles sont ceux produits par la simulation LES du code AVBP [Poitou, 2009,
Poitou et al., 2011]. Ces champs de propriétés discrétisés (4.7 millions de tétra-
èdres) sont décrits par la Fig. 4.16. Les schémas d’interpolations utilisés sont
également identiques à ceux utilisés par PRISSMA.

Figure 4.16 – Champs de température et de fractions molaires (CO2, H2O et CO) obtenus par le
code de simulation aux grandes échelles AVBP pour la configuration de chambre de combustion
considérée. Ces champs de propriétés sont utilisés en entrée de l’algorithme à collisions nulles. -
Résultats obtenus par D. Poitou.

en séparant les différentes espèces (CO2 et H2O) grâce à une hypothèse de décorrélation spectrale.
367 bandes étroites de 25cm−1 de largeur, sont utilisées pour calculer les bilans radiatifs et les jeux
de k-distributions sont construits en accord avec une quadrature de Gauss-Legendre d’ordre 7. De
plus amples détails concernant l’approche utilisée sont donnés dans l’article [Eymet et al., 2013]
fourni en Annexe E
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4.4.2 Résultats obtenus

Les résultats obtenus, suite à cet exercice de validation, sont illustrés à la Fig. 4.17
où apparaissent les bilans radiatifs calculés par les deux codes en un grand nombre
de points, le long de l’axe x (y=0, z=0, x ∈ [0 ;0.3] m) et le long de l’axe y (x=0.08,
y ∈ [-0.025 ;0.025 m), z=0). Les résultats obtenus par l’algorithme à collisions nulles
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Figure 4.17 – Bilans radiatifs calculés par le code PRISSMA et l’algorithme à collisions nulles
(fournis avec les intervalles de confiance correspondant) en différents points de la chambre de
combustion, le long des axes x (y=0, z=0, x ∈ [0 ;0.3] m) et y (x=0.08, y ∈ [-0.025 ;0.025 m), z=0).
Résultats obtenus par D. Poitou (pour PRISSMA) et par V. Eymet (pour l’algorithme à collisions
nulles).

(fournis avec une barre d’erreur) semblent en bon accord avec ceux obtenus par
PRISSMA. Les résultats ne diffèrent que de quelques pourcents dans les régions où
les termes sources sont importants et ces disparités sont légèrement plus marquées
sur les côtés de la chambre de combustion. Ces différences s’expliquent en partie par
la discrétisation angulaire utilisée par PRISSMA, mais semblent n’avoir que très peu
d’incidence sur la simulation globale de la combustion dans cette enceinte. Dans la
mesure où l’on considère que le modèle spectral (SNB-ck) utilisé par l’algorithme à
collisions nulles est fiable, les résultats produits par cet algorithme peuvent donc être
considérés comme référence. Grâce à ces derniers, les spécialistes de la combustion
peuvent alors affiner leur modèle radiatif en conséquence, dans la limite des exigences
de temps de calcul fixées. On mesure alors l’intérêt majeur qu’offrent les solutions de
référence tels que les algorithmes à collisions nulles.

Dans des considérations plus techniques, cet exercice de validation a également
permis de mesurer l’impact non négligeable qu’ont les procédures numériques de
localisation et d’interpolation. En effet, à chaque nouvelle collision, il est nécessaire
de connaître les valeurs locales de pression, de température et de concentrations des
différentes espèces, en s’appuyant sur les champs maillés produits par AVBP (fournis
avec un schéma d’interpolation). Cette étape, consiste alors à identifier la maille,
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parmi les 4.74 millions de tétraèdres, dans laquelle a lieu la collision et de réaliser
une interpolation - ici barycentrique - pour chaque propriété afin d’en estimer sa
valeur locale. La répétition conséquente de ces étapes de localisation 6 peut alors
représenter l’essentiel du temps de calcul, d’autant plus si la géométrie est comme ici
tridimensionnelle. À titre d’ordre de grandeur, sans optimisation de ces procédures de
localisation/interpolation, plus de 4 heures étaient nécessaires pour le calcul d’un seul
bilan radiatif avec une erreur relative de 1%. Pour pallier ce problème, l’algorithme
à collisions nulles a été implémenté dans l’environnement de développement EDStaR
[De La Torre et al., 2014, Starwest, 2014a], permettant de réaliser des simulations
de Monte-Carlo en géométries complexes. Outre la bibliothèque MCM3D qui permet
entre-autres de paralléliser les calculs de Monte-Carlo, cet environnement de dévelop-
pement inclut les bibliothèques de PBRT [Pharr et Humphreys, 2010] : un code de
synthèse d’image comportant une multitude de procédures d’accélération graphique.
Ainsi, grâce à ces procédures accélérant grandement l’étape d’identification de la
maille d’intérêt, les temps de calcul ont été réduits de plusieurs heures à quelques
dizaines de secondes (40 secondes environ) pour l’estimation d’un bilan radiatif ayant
une erreur relative de 1%.

Résumé du chapitre

Lorsque les propriétés radiatives d’un milieu participant sont non-uniformes
(telles que l’épaisseur optique d’etinction ne peut pas être évaluée analytiquement
le long d’une ligne de visée), il est généralement nécessaire de recourir à certaines
approximations (discrétisation des propriétés du milieu ou méthodes numériques
de quadrature/inversion) pour résoudre l’équation du transfert radiatif en milieu
participant. Dans un souhait de conserver le caractère de référence des méthodes de
Monte-Carlo, nous avons, dans ce chapitre, adapté à des problématiques radiatives
une technique employée depuis plusieurs décennies dans d’autres domaines de la
physique du transport : les algorithmes à collisions nulles. Leur principe consiste à
ajouter aux évènements d’absorption et de diffusion un troisième type de collision sans
effet sur le transfert du radiatif (ces collisions, dites nulles, peuvent être assimilées
à des événements de diffusion vers l’avant). Puisque sans effet sur la physique du
transport, elles peuvent être choisies arbitrairement de sorte à rendre le coefficient
d’extinction résultant de ces trois types de collisions uniforme et ainsi permettre une
résolution de l’équation du transfert radiatif rigoureuse, quels que soient les champs
de propriétés utilisés en entrée. D’un point de vue purement statistique, ces collisions
permettent, par l’introduction d’une récursivité, de passer outre la non-linéarité du
terme exponentiel d’extinction présent dans l’équation du transfert radiatif. Ces
algorithmes à collisions nulles ont alors été mis en œuvre dans l’étude d’un bilan
radiatif au sein d’un milieu tridimensionnel, absorbant, émettant et diffusant, entouré
par des parois réfléchissantes. Ces travaux ont donné lieu à une étude paramétrique
permettant d’évaluer, entre-autres, l’influence non-négligeable du choix arbitraire
du coefficient de collision nulle sur le taux de convergence de l’algorithme. Enfin,

6. Plusieurs dizaines de collisions pour chaque réalisation de l’algorithme de Monte-Carlo
(quelques millions).
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puisque ne faisant appel à aucune approximation, cette méthode a été utilisée pour
valider un code de calcul radiatif approché dans une géométrie réaliste de chambre
de combustion.
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Introduction

Dans le chapitre précédent, les algorithmes à collisions nulles ont été introduits
pour traiter la dépendance spatiale des propriétés du milieu. Il devient désormais
possible, par l’ajout de collisions fictives, de se passer d’une discrétisation préalable
des champs de propriétés, tout en assurant le caractère de calcul de référence des
méthodes de Monte-Carlo. Ces algorithmes n’ont été, jusqu’alors, présentés que pour
traiter des grandeurs radiatives monochromatiques.

Toutefois, quels que soient les domaines applicatifs, ce sont généralement des
grandeurs intégrées sur une plage de nombres d’onde qui intéressent les spécialistes.
Or, cette intégration constitue usuellement l’étape la plus limitante et la plus
délicate à mettre en œuvre, à cause de la complexité qu’impliquent les dépen-
dances spectrales des différentes propriétés optiques. Il faut en effet, pour résoudre
l’équation du transfert radiatif, être capable de représenter ou de modéliser ces
dépendances pour chacun des termes la composant (coefficients d’absorption, de
diffusion, luminance d’équilibre, fonction de phase, etc.). Cette forte complexité est
en particulier rencontrée lorsque l’on tente de décrire le coefficient d’absorption, qui,
en plus d’avoir une dépendance spatiale (ou plutôt une dépendance aux conditions
locales de température, de pression et de composition chimique), dépend de façon
particulièrement prononcée du nombre d’onde (voir Chap. 2).

Aussi, l’objet de ce chapitre va être de proposer une approche permettant de
traiter statistiquement, lors d’un calcul de grandeur intégrée spectralement, le
coefficient d’absorption et ses dépendances spatiales et spectrales. Notre motivation
est, ici encore, de reformuler le problème lié à cette forte complexité sous un aspect
purement statistique et d’étudier les avantages que pourrait offrir une telle approche.
Nous allons alors voir comment les algorithmes à collisions nulles permettent de
repenser de façon statistique, directement au sein de l’équation du transfert radiatif,
l’expression du coefficient d’absorption. Cela conduira alors au développement
d’algorithmes de Monte-Carlo évaluant de façon non biaisée une observable intégrée
spectralement sans nécessiter une production préalable de spectres d’absorption
ou de modèles spectraux simplifiés. Les propriétés optiques seront reconstruites
statistiquement au cours du calcul par un échantillonnage des transitions moléculaires,
directement réalisé depuis les bases de données spectroscopiques. Ces algorithmes ne
feront appel à aucune des approximations couramment utilisées et conserveront ainsi
leur statut de solutions de référence.

Ce chapitre est divisé en trois parties. Dans un premier temps, un bref état de
l’art relatif à la représentation spectrale des coefficients d’absorption sera présenté.
Puis, nous montrerons comment il est possible de repenser de façon statistique l’idée
même de coefficient d’absorption. Nous mettrons également en évidence, le problème
de non-linéarité qu’entraîne cette reformulation du coefficient d’absorption, au sein
de l’équation du transfert radiatif.

La seconde section, essentiellement formelle, aura pour objet de montrer comment
les algorithmes à collisions nulles permettent une nouvelle fois de passer outre ce
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caractère non-linéaire. Un algorithme à collisions nulles, basé sur un échantillonnage
des transitions depuis des bases de données spectroscopiques, sera alors proposé et
une discussion des perspectives qu’entraînent cette nouvelle approche sera effectuée.

Enfin, dans la troisième partie, nous mettrons en pratique cette approche sur
six cas d’étude couvrant différentes problématiques de combustion. Une partie
importante de cette section sera consacrée aux choix de nombreux paramètres libres
requis par l’approche proposée, n’ayant aucune incidence sur le caractère exact de
la méthode, mais conditionnant de façon importante le taux de convergence de
l’algorithme de Monte-Carlo.

Nous nous concentrerons pendant tout ce chapitre sur l’étude d’un milieu non-
diffusant. En effet, l’ajout d’événements de diffusion n’apporterait pas d’intérêt
particulier à l’approche proposée ici, ni de difficultés supplémentaires (voir Chap. 4).

5.1 Intégration spectrale d’observables radiatives
en milieu gazeux

5.1.1 Représentations usuelles du coefficient d’absorption

Lorsqu’il s’agit d’aborder des problématiques de rayonnement thermique en milieu
gazeux (analyse expérimentale, simulation, inversion, etc.), les ingénieurs et physi-
ciens s’appuient directement ou indirectement sur des bases de données spectrosco-
piques [Jacquinet-Husson et al., 2011, Rothman et al., 2010, Rothman et al., 2013,
Tashkun et Perevalov, 2011]. Ces bases de données, produites par une communauté
très active de spectroscopistes, rassemblent, pour de nombreuses espèces moléculaires
et pour un nombre considérable de transitions, plusieurs paramètres (voir Sec. 2.3.3)
permettant de décrire les phénomènes d’absorption et d’émission d’un gaz. Toutefois,
même pour les gaz les plus simples à des températures faibles, le nombre de transitions
moléculaires à prendre en compte est extrêmement important (les paramètres de plus
de 600 millions de transitions moléculaires sont représentés pour la seule molécule
de CO2 dans la base de données CDSD-4000 [Tashkun et Perevalov, 2011]). Traiter
cette quantité conséquente d’information représente alors une tâche particulièrement
fastidieuse.

En effet, le coefficient d’absorption que l’on cherche à représenter à partir de
ces bases, dépend à la fois de la température, de la pression, du mélange gazeux
et du nombre d’onde. Pour produire un unique spectre d’absorption (c’est-à-dire
pour une température, une pression et un mélange fixés), il est nécessaire de sommer
de façon déterministe, en chaque nombre d’onde, l’ensemble des contributions
d’absorption de chaque transition. La variation spectrale du coefficient d’absorption
étant très prononcée, ce calcul doit être réalisé sur des pas spectraux très petits.
On considère généralement, qu’à pression atmosphérique, la résolution d’un spectre
d’absorption doit être de 0.01cm−1 pour décrire correctement ces variations. Cela
signifie que la production d’un spectre d’absorption couvrant tout le domaine
infrarouge nécessite entre 106 et 107 calculs de coefficients d’absorption (chacun
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consistant à sommer plusieurs milliers, voire plusieurs millions de participations de
raies). De tels spectres sont qualifiés de spectres haute-résolution. Dans le but de
rendre cette somme plus aisée, le modèle spectroscopique est souvent simplifié afin
d’avoir à sommer en chaque nombre d’onde une quantité plus faible de transitions
(ex : prise en compte uniquement des transitions ayant une intensité supérieure
à un seuil donné, troncature des ailes de raie, etc.). Cependant, même avec ces
allègements, la production de spectres haute-résolution demeure très coûteuse et
nécessite d’être reproduire à chaque changement de modèle de raie, d’hypothèse
spectrale, ou encore à chaque nouvelle version de base de données spectroscopique.

Une fois ces spectres d’absorption haute-résolution produits, deux pratiques
sont couramment rencontrées pour prendre en compte leur information spectrale
dans le calcul d’une observable radiative. La première consiste à simplifier ces
spectres par des modèles approchés. Un grand nombre de modèles spectraux ont
été développés au cours des dernières décennies, devenant de plus en plus précis et
de plus en plus performants. Néanmoins, le passage d’un spectre haute-résolution à
un spectre simplifié se traduit nécessairement par une perte d’information qui n’est
pas acceptable lorsqu’il s’agit de proposer des solutions de référence. La seconde
pratique consiste à extraire, directement lors du calcul d’une observable radiative,
les coefficients d’absorption contenus dans ces spectres ; on parle alors d’approche
raie-par-raie. Ces approches, beaucoup plus lourdes en termes de mise en œuvre
que les modèles spectraux simplifiés, sont aujourd’hui considérées comme solutions
de référence. Toutefois, lors du calcul radiatif, il est nécessaire, pour obtenir la
valeur du coefficient d’absorption en un point donné, de recourir à une interpolation
selon un jeu de pressions, de températures, de concentrations moléculaires et de
nombres d’onde. Cette étape peut, si la résolution du jeu de spectres (relative aux
conditions thermodynamiques ou aux nombres d’onde) est trop faible, conduire à un
léger biais de l’estimation de la grandeur d’intérêt. Une autre solution consisterait à
calculer rigoureusement, au fil du calcul, le coefficient d’absorption à partir des bases
de données spectroscopiques. Les incertitudes dues aux procédures d’interpolation
disparaîtraient alors. En pratique, cette solution n’est jamais adoptée car les temps de
calcul deviennent très vite excessifs. On préfère généralement, dans des motivations
de calcul de référence, l’utilisation de spectres haute-résolution qui offrent l’avantage
supplémentaire de pouvoir être réutilisés d’une simulation à l’autre.

La quantité conséquente d’information contenue dans ces bases de données a
toujours motivé la communauté de la spectroscopie moléculaire à proposer des
représentations statistiques. Les exemples les plus significatifs correspondent au
développement de modèles statistiques qui permettent l’évaluation de transmissivités
moyennées par bande spectrale, à partir de pondérations des intensités ou des largeurs
de raies. Cependant, en pratique cette relation directe entre statistiques de raies
et transmissivités moyennes s’est perdue rapidement. L’idée d’utiliser des modèles
statistiques est restée, notamment avec les travaux de Malkmus ([Malkmus, 1967]),
mais ces modèles se sont de plus en plus appuyés sur les spectres d’absorption
haute-résolution et non sur les paramètres de transition eux-mêmes. Plus tard, le
développement des k-distributions [Lacis et Oinas, 1991, Taine et Soufiani, 1999] a
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poursuivi cette même logique : les approches restent statistiques mais elles sont
désormais uniquement basées sur des spectres haute-résolution, calculés de façon
déterministe.

Nous soutenons ici que l’on peut attendre d’importants bénéfices, tant numé-
riques qu’en termes d’analyse, si l’on supprime cette étape déterministe de pro-
duction de spectres haute-résolution. Une part de ces bénéfices est illustrée dans
[Feldick et Modest, 2011, Ren et Modest, 2013], où il est montré que la complexité
liée à l’intégration spectrale par échantillonnage des nombres d’onde est mieux traitée
en s’appuyant sur les paramètres de transitions plutôt qu’en restant au niveau des
spectres d’absorptions [Modest, 1992].

5.1.2 Reformulation statistique du coefficient d’absorption

En négligeant les effets de "line-mixing" (voir Sec. 2.3.3.1), le coefficient d’ab-
sorption ka,η(x) pour un nombre d’onde η, au point x s’exprime comme la somme
des contributions ha,m,ı,η(x) de l’ensemble des transitions énergétiques ı de toutes les
espèces moléculaires m en présence :

ka,η(x) =
Nm∑

m=1

Nı(m)∑

ı=1

ha,m,ı,η(x) (5.1)

où Nm est le nombre d’espèces moléculaires et Nı(m) est le nombre de transitions
pour une espèce m donnée. Puisque cette expression ne constitue qu’une double
somme, il est possible de l’exprimer comme une espérance par l’introduction de
probabilités arbitraires associées à chaque espèce moléculaire Pm(x) ≡ Pm,η(x) et à
chaque transition Pı(x) ≡ Pm,ı,η(x) d’une espèce moléculaire donnée :

ka,η(x) =
Nm∑

m=1

Pm(x)

Nı(m)∑

ı=1

Pı(x)

[
ha,m,ı,η(x)

Pm(x)Pı(x)

]
= E

[
ha,M,I,η(x)

PM(x)PI(x)

]
(5.2)

Les indices m des espèces moléculaires ainsi que les indices ı des transitions consti-
tuent alors des variables aléatoires discrètes, respectivement notéesM et I, définies
par les probabilités Pm et Pı.

L’essentiel de la proposition faite dans ce chapitre réside dans cette simple refor-
mulation statistique. Une conséquence directe de cette reformulation est qu’il devient
possible, en pratique, d’estimer le coefficient d’absorption ka,η(x) pour un nombre
d’onde donné ou même de reconstruire un spectre (voir Fig. 5.1) de façon totalement
stochastique par un algorithme de Monte-Carlo. Cet algorithme consisterait à réaliser
un grand nombre Nmc de fois et de manière indépendante les étapes suivantes :
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Figure 5.1 – Spectres d’absorption calculés avec une approche raie-par-raie et par un algorithme
de Monte-Carlo (valeurs données avec leurs intervalles de confiance obtenus avec 1000 réalisations
indépendantes). Le mélange considéré est composé de CO2 et de H2O (de fractions molaires
respectives χCO2

= 2.87E − 4 et χH2O = 2.25E − 2) à une température de 294K et une pression de
1atm. Les bases de données spectroscopiques CDSD1000 et HITEMP ont été utilisées pour réaliser
ce calcul.

Algorithme

1. Échantillonner une molécule mi parmi l’ensemble des Nm molécules selon
les probabilités discrètes Pm(x) associées à chacune des molécules

2. Échantillonner une transition ıi parmi l’ensemble des Nı(mi) transitions
de la moléculemi selon les probabilités discrètes Pı(x) associées à chacune
des transitions de la molécule mi

3. Calculer le poids de Monte-Carlo : wi = ha,mi,ıi,η(x)/Pmi(x)Pıi(x) en ac-
cord avec le modèle de raie considéré, directement à partir des paramètres
de transitions contenus dans la base spectroscopique d’intérêt.

L’estimation du coefficient d’absorption par cet algorithme est alors donnée
par la moyenne arithmétique des Nmc poids wi. Il est également possible d’estimer
l’écart-type associé à cette estimation. En d’autres termes, il n’est pas nécessaire
de prendre en compte l’ensemble des transitions pour estimer ka,η(x), mais d’en
échantillonner un nombre suffisant pour lesquelles on calcule au fil de la simulation
les contributions ha,mi,ıi,η(x) à partir des bases de données spectroscopiques retenues.
La convergence de l’algorithme sera alors entièrement conditionnée par le choix
des Pm(x) et des Pı(x) (qui devront être attribuées à chaque espèce et à chaque
transition avant ou pendant le calcul).

Les éléments de physique statistique nous permettent de considérer que l’ensemble
des molécules et l’ensemble des transitions énergétiques sont représentés en x avec des
probabilités de présence plus ou moins importantes. Les images physiques associées à
cet exercice de reformulation résident alors simplement dans le fait de sélectionner de
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façon aléatoire plusieurs molécules ayant des états énergétiques donnés pour estimer
le coefficient d’absorption global ka,η.

5.1.3 Non-linéarité du terme d’extinction

Si l’on s’arrêtait à ce stade, l’intérêt de considérer statistiquement les coefficients
d’absorption demeurerait limité. Notre souhait est d’introduire directement dans
l’équation du transfert radiatif une description statistique des coefficients d’absorption
pour permettre une intégration spectrale ne requérant ni approximation (liée à une
éventuelle interpolation), ni calcul préalable de spectres d’absorption haute-résolution.

Pour mettre en évidence les difficultés qu’entraîne cette introduction, considérons
la luminance L(x0,u0), intégrée spectralement entre ηmin et ηmax dans un milieu
infini, non-diffusant et homogène (le coefficient d’absorption est uniforme). Dans ces
conditions, cette luminance peut être exprimée comme :

L(x0,u0) =

∫ ηmax

ηmin

dη

∫ +∞

0

dl ka,η exp
(
− ka,ηl

)
Leqη (x0 − lu0) (5.3)

Reformuler cette équation comme une expression statistique ne pose pas de problème
majeur dès lors que l’on considère les nombres d’onde comme une variable aléatoire
à laquelle on associe une densité de probabilité arbitraire pH(η). Il vient alors :

L(x0,u0) =

∫ ηmax

ηmin

pH(η)dη

∫ +∞

0

pL(l)dl
Leqη (x0 − lu0)

pH(η)

= E
[
Leqη (x0 − lu0)

pH(η)

] (5.4)

où pL(l) = ka,η exp(−ka,ηl) est la densité de probabilité des libres parcours L.

La transposition de cette expression en un algorithme de Monte-Carlo est donc
aisée. Chacune de ses réalisations indépendantes consiste à échantillonner un nombre
d’onde ηi selon pH(η) et un libre parcours li selon pL(l) ; le poids de Monte-Carlo
de la réalisation indépendante i est alors donné par wi = Leqηi (x0 − liu0)/pH(ηi).
Toutefois, en l’état, l’Eq. 5.3 et son algorithme correspondant, imposent que la
valeur de ka,η soit connue pour tout nombre d’onde η. La mise en œuvre pratique
de cet algorithme nécessiterait de façon classique la production rigoureuse d’un
spectre d’absorption défini à haute-résolution pour les conditions de température,
de pression et de composition chimique du cas d’étude. Celui-ci devrait alors être
interpolé spectralement pour obtenir la valeur du coefficient d’absorption pour
un nombre d’onde ηi donné. Si les propriétés du milieu n’étaient pas uniformes,
il serait nécessaire de produire un nombre suffisant de spectres pour couvrir ces
hétérogénéités de température, de pression et de composition moléculaire. Pour
remonter à la valeur de ka,η(x) pour un point et un nombre d’onde donnés, il serait
alors nécessaire d’interpoler ce jeu de spectres à la fois spectralement mais également
spatialement (ou selon la pression, la température et les fractions molaires d’espèces).
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Mais nous soutenons ici, qu’il est possible de se passer de cette production
rigoureuse de spectres haute-résolution par un traitement statistique de l’expression
des coefficients d’absorption. Il est possible de remplacer dans l’Eq. 5.3 les coefficients
d’absorption ka,η par leur expression statistique donnée à l’Eq. 5.2. Il vient alors :

L(x0,u0) =

∫ ηmax

ηmin

dη

∫ +∞

0

dl

Nm∑

m=1

Pm
Nı(m)∑

ı=1

Pı
ha,m,ı,ηL

eq
η (x0 − lu0)

PmPı

× exp


−

Nm∑

m′=1

Pm′
Nı(m)∑

ı′=1

Pı′
ha,m′,ı′,ηl

Pm′Pı′




(5.5)

Pour passer à une expression de la luminance L(x0,u0) sous forme d’espérance,
il est nécessaire d’introduire deux densités de probabilité arbitraires : pH(η) associée
aux nombres d’onde et p̃L(l) associée aux libres parcours. On obtient alors

L(x0,u0) =

∫ ηmax

ηmin

pH(η)dη

∫ +∞

0

p̃L(l)dl
Nm∑

m=1

Pm
Nı(m)∑

ı=1

Pı
ha,m,ı,ηL

eq
η (x0 − lu0)

pH(η)p̃L(l)PmPı

× exp


−

Nm∑

m′=1

Pm′
Nı(m)∑

ı=1

Pı′
ha,m′,ı′,ηl

Pm′Pı′




(5.6)

qui, sous forme d’espérance, donne

L(x0,u0) = E
[
ha,M,I,HL

eq
H (x0 − Lu0)

pH(H)p̃L(L)PmPı
exp

(
−E

[
ha,M′,I′,HL
Pm′Pı′

])]
(5.7)

Nous nous retrouvons alors exactement dans la même configuration que lorsque
nous souhaitions traiter les hétérogénéités des propriétés radiatives du milieu (voir
Sec. 4.1.3) : l’extinction exponentielle introduit une non-linéarité dans l’expression
statistique de la luminance. Cette non-linéarité ne nous permet donc pas de proposer
directement un unique algorithme de Monte-Carlo pour estimer L(x0,u0). Il serait
en effet nécessaire d’effectuer une simulation complète pour estimer l’épaisseur
optique E [(ha,M′,I′,H l) / (Pm′Pı′)] à chacune des Nmc réalisations indépendantes de
l’algorithme estimant L(x0,u0) (ce qui se traduirait par des temps de calcul excessifs).

Toutefois, le chapitre précédent a mis en évidence que les algorithmes à colli-
sions nulles permettent, par la définition d’un champ d’extinction arbitraire k̂η, de
contourner la non-linéarité causée par cette fonction exponentielle. En effet, dans ce
type d’algorithme, le terme d’extinction ne dépend plus du coefficient d’absorption
mais simplement de k̂η qui, lui, est totalement arbitraire. Nous proposons donc de
recourir, à nouveau, aux algorithmes à collisions nulles pour décomposer, directement
dans l’équation du transfert radiatif, le coefficient d’absorption comme une somme
statistique des participations ha,m,ı,η de chaque transition. Cela ouvre la voie à des
algorithmes de Monte-Carlo permettant de traiter les dépendances spatiales et spec-
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trales des coefficients d’absorption sans avoir à recourir ni à un maillage volumique
ni à des spectres d’absorption haute-résolution.

5.2 Algorithmes à collisions nulles avec échantillon-
nage des transitions moléculaires

5.2.1 Représentation statistique du coefficient d’absorption
dans l’équation du transfert radiatif

Dans le cas d’un milieu infini, hétérogène et non-diffusant, l’introduction d’un
coefficient de collision nulle kn,η(x) dans le champ d’extinction (désormais défini
comme k̂η(x) = ka,η(x) + kn,η(x)) conduit à la formulation intégrale de la luminance
L(x0,u0) suivante :

L(x0,u0) =

∫ ηmax

ηmin

dη

∫ +∞

0

dl1 k̂η(x1) exp

(
−
∫ l1

0

k̂η(x0 − l′1u0)dl′1

)

×
[
ka,η(x1)

k̂η(x1)
Leqη (x1) +

kn,η(x1)

k̂η(x1)
Lη(x1,u0)

] (5.8)

avec xj+1 = xj − lj+1u0 (sans diffusion, la direction u0 reste inchangée) et où le
terme récursif Lη(xj,u0) est défini par :

Lη(xj,u0) =

∫ +∞

0

dlj+1 k̂η(xj+1) exp

(
−
∫ lj+1

0

k̂η(xj − l′j+1u0)dl′j+1

)

×
[
ka,η(xj+1)

k̂η(xj+1)
Leqη (xj+1) +

kn,η(xj+1)

k̂η(xj+1)
Lη(xj+1,u0)

] (5.9)

On note alors que grâce à l’introduction des collisions nulles, les coefficients
d’absorption ne sont désormais présents que dans les expressions de l’albédo
d’absorption ka,η(xj)/k̂η(xj) et de l’albédo de collision nulle kn,η(xj)/k̂η(xj) (par
l’intermédiaire du coefficient de collision nulle kn,η(xj) = k̂η(xj)− ka,η(xj) qui n’est
jamais explicitement calculé). Le problème de non-linéarité qu’entraînait le terme
d’extinction a ainsi été surmonté.

Il devient alors possible de décomposer les coefficients d’absorption en somme de
participations de chaque transition :

ka,η(x) =
Nm∑

m=1

Nı(m)∑

ı=1

ha,m,ı,η(x) (5.10)

De la même façon, il est possible de décomposer le coefficient arbitraire de collision
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nulle en une somme de participations de chaque transition à ce coefficient :

kn,η(x) =
Nm∑

m=1

Nı(m)∑

ı=1

hn,m,ı,η(x) (5.11)

où hn,m,ı,η(x) est la participation de la transition ı de la molécule m au coefficient de
collision nulle kn,η(x). On peut également définir un coefficient

ĥm,ı,η(x) = ha,m,ı,η(x) + hn,m,ı,η(x) (5.12)

qui correspondrait au coefficient d’extinction associé à une transition ı particulière
et qui validerait donc k̂η(x) =

∑Nm
m=1

∑Nı(m)
ı=1 ĥm,ı,η(x). La décomposition de ces

propriétés radiatives est illustrée par la Fig. 5.2. Les choix de hn,m,ı,η(x) et ĥm,ı,η(x)
sont totalement libres, à la seule condition qu’ils valident respectivement les Eq. 5.11
et 5.12.

ĥη,1

k̂η = ĥη,1 + ĥη,2

x
x0

kη

ha,η,1(x)

hn,η,1(x)

ha,η,2(x)

hn,η,2(x)

Figure 5.2 – Décomposition du champ de k̂η(x) en une somme de ĥm,ı,η(x) définis pour chaque
transition moléculaire ı de chaque espèce m. Le coefficient ĥm,ı,η(x) est lui-même divisé en une
composante d’absorption ha,m,ı,η(x) (calculable directement à partir de bases de données spectro-
scopiques) et d’une contribution au coefficient de collision nulle hn,m,ı,η(x) arbitraire. Cette figure
illustre le cas fictif, d’un gaz monomoléculaire ne comportant que deux transitions (numérotées 1 et
2) pour un nombre d’onde η donné.

Note : Reformulation de l’équation locale du transfert radiatif
Si l’on se ramène à l’écriture différentielle de l’équation du transfert radiatif, la
décomposition des coefficients d’absorption et de collision nulle en une somme de
participations de chaque transition moléculaire consiste à transformer l’Eq. 4.13
rappelée ci-dessous pour un cas non-diffusant :

u.∇Lη(x,u) = −k̂η(x)Lη(x,u)+ka,η(x)Leqη (x)+kn,η(x)

∫

4π

δ(u−u′)Lη(x,u′)du′

(5.13)
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en

u.∇Lη(x,u) = −k̂η(x)Lη(x,u)

+
Nm∑

m=1

Nı(m)∑

ı=1

[
ha,m,ı,η(x)Leqη (x) + hn,m,ı,η(x)

∫

4π

δ(u− u′)Lη(x,u
′)du′

] (5.14)

Dans cette expression, le terme d’extinction −k̂η(x)Lη(x,u) ne dépend plus
de ka,η mais du champ arbitraire d’extinction k̂η. C’est cette propriété qui,
une fois l’équation du transfert radiatif exprimée sous sa forme intégrale,
permet de rendre le terme exponentiel d’extinction analytiquement calculable,
et permettra de traiter la non-linéarité exposée à la Sec. 5.1.3.

Cette décomposition des coefficients d’absorption et de collision nulle conduit
donc, avec l’introduction de probabilités arbitraires Pm(x) et Pı(x) (respectivement
associées à chaque espèce moléculaire m et à chaque transition ı), à l’expression
suivante :

L(x0,u0) =

∫ ηmax

ηmin

dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m=1

Pm(x1)

Nı(m)∑

ı=1

Pı(x1)

×
[

ha,m,ı,η(x1)

k̂η(x1)Pm(x1)Pı(x1)
Leqη (x1) +

hn,m,ı,η(x1)

k̂η(x1)Pm(x1)Pı(x1)
Lη(x1,u0)

] (5.15)

où p̂Lj(lj) = k̂η(xj) exp
(
−
∫ lj

0
k̂η(xj−1 − l′ju0)dl′j

)
est la densité de probabilité des

libres parcours Lj et où le terme récursif Lη(xj,u0) est donné par :

Lη(xj,u0) =

∫ +∞

0

p̂Lj+1
(lj+1)dlj+1

Nm∑

m=1

Pm(xj+1)

Nı(m)∑

ı=1

Pı(xj+1)

×
[

ha,m,ı,η(xj+1)

k̂η(xj+1)Pm(xj+1)Pı(xj+1)
Leqη (xj+1) +

hn,m,ı,η(xj+1)

k̂η(xj+1)Pm(xj+1)Pı(xj+1)
Lη(xj+1,u0)

]

(5.16)

On retrouve alors une expression très proche de celle des algorithmes à collisions
nulles usuels. En posant

ĥη(x) = k̂η(xj)Pm(xj)Pı(xj), (5.17)

les termes ha,m,ı,η(x)/
[
k̂η(x)Pm(x)Pı(x)

]
et hn,m,ı,η(x)/

[
k̂η(x)Pm(x)Pı(x)

]
corres-

pondent alors respectivement à l’équivalent d’albédos d’absorption et de collision
nulle, mais ici associés à la seule transition ı de l’espèce m. Dans la mesure où∑Nm

m=1Pm(x)
∑Nı(m)

ı=1 Pı(x) = 1, cette expression valide bien la condition imposée par
les Eq. 5.11 et 5.12. Ce choix fait pour l’expression de ĥη(x) présente un avantage
supplémentaire : seuls le champ de k̂η et les différentes probabilités devront être
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définies au préalable de façon arbitraire, évitant ainsi de devoir proposer pour chaque
transition, pour chaque nombre d’onde et chaque position une valeur de hn,η(x)
validant l’Eq. 5.11.

De la même manière qu’au Chap. 4, il est possible d’exprimer sous forme statistique
ces albédos en introduisant dans l’Eq. 5.15

• une probabilité d’absorption Pa,ı(x) ≡ Pa,m,ı,η(x) =
ha,m,ı,η(x)

k̂η(x)Pm(x)Pı(x)
=

ha,m,ı,η(x)

ĥm,ı,η(x)

• une probabilité de collision nulle Pn,ı(x) = 1− Pa,ı(x)

• ainsi qu’une densité de probabilité des nombres d’onde pH(η) arbitraire.
Il vient alors :

L(x0,u0) =

∫ ηmax

ηmin

pH(η)
1

pH(η)
dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m=1

Pm(x1)

Nı(m)∑

ı=1

Pı(x1)

×
[
Pa,ı(x1)Leqη (x1) + (1− Pa,ı(x1))Lη(x1,u0)

]
(5.18)

où le terme récursif Lη(xj,u0) est donné par :

Lη(xj,u0) =

∫ +∞

0

p̂Lj+1
(lj+1)dlj+1

Nm∑

m=1

Pm(xj+1)

Nı(m)∑

ı=1

Pı(xj+1)

×
[
Pa,ı(xj+1)Leqη (xj+1) + (1− Pa,ı(xj+1))Lη(xj+1,u0)

]
(5.19)

Toutefois, la définition de la probabilité Pa,ı(x) impose que ha,m,ı,η(x) < ĥm,ı,η(x)
pour qu’elle soit bien comprise entre 0 et 1. Il est donc nécessaire que pour toute
transition moléculaire le coefficient hn,m,ı,η(x) soit positif pour tout nombre d’onde
η et en toute position x. Nous retrouvons ainsi les mêmes conclusions que pour
les algorithmes à collisions nulles usuels (voir Sec. 4.2.4). Nous reviendrons sur cet
élément limitant dans la Sec. 5.2.3 et proposerons à l’instar de la Sec. 4.2.4 une
alternative permettant d’autoriser localement des occurrences négatives de hn,m,ı,η.

La formulation intégrale récursive de l’Eq. 5.18 nous permet alors d’exprimer la
luminance L(x0,u0) comme une simple espérance :

L(x0,u0) = E
[
Leq(X∗)

pH(η)

]
(5.20)

où la variable aléatoire X∗ correspond aux positions d’émission et peut être définie
comme :

X∗ =
+∞∑

j=1

XjAj

i−1∏

q=1

(1− Aq) (5.21)

avec Aj ≡ Aj,m,ı,η(xj) la variable aléatoire associée aux événements d’absorption.
Tout comme pour les algorithmes à collisions nulles usuels, elle vaut 1 avec une



5.2. Algorithmes à collisions nulles avec échantillonnage des transitions 149

probabilité Pa,ı(xj), 0 sinon, mais elle dépend désormais, en plus de la position Xj

des indices d’espèces moléculairesM et des indices de transitions I.

On constate alors l’intérêt qu’offre cette reformulation. Celle-ci ne dépend plus du
coefficient d’absorption, mais seulement des participations ha,m,ı,η de chaque transition
présentes dans les probabilités d’absorption et du champ arbitraire k̂η. L’information,
habituellement portée par le coefficient d’absorption dans les approches statistiques
usuelles, est maintenant reconstruite de façon stochastique par une combinaison de
transitions moléculaires. Les algorithmes à collisions nulles permettent de réaliser
cette tâche grâce aux propriétés suivantes :
• l’unique fonction exponentielle de l’équation du transfert radiatif, présente dans

l’expression de p̂Lj (lj) ne dépend plus que du coefficient d’extinction k̂η qui est
choisi arbitrairement ;
• ka,η, apparaît uniquement et de façon linéaire dans les probabilités d’absorption

et de collision nulle ;
• grâce à cette linéarité, ka,η peut être remplacé par une expression sta-
tistique de transitions (comme proposé dans [Feldick et Modest, 2011,
Ren et Modest, 2013]) ;
• la non-linéarité de l’exponentielle est reconstruite par la récursion associée
aux événements de diffusion vers l’avant que constituent les collisions nulles
[Longo, 2002, Galtier et al., 2013].

Puisqu’exprimée sous la forme d’une simple espérance, la luminance L(x0,u0)
peut alors être estimée sans biais par un simple algorithme de Monte-Carlo, composé
de Nmc réalisations indépendantes (indicées i et schématisées à la Fig. 5.3), chacune
composée des étapes suivantes :

Algorithme

1. L’indice de collision est initialisé : j = 0 ;
2. On échantillonne un nombre d’onde ηi entre ηmin et ηmax selon la densité

de probabilité arbitraire pH(η) ;
3. On échantillonne un libre parcours d’extinction li,j+1 entre 0 et +∞

selon la densité de probabilité arbitraire p̂L(l) et on calcule la position de
collision : xi,j+1 = xi,j − li,j+1ui,j ;

4. On échantillonne une espèce moléculairemi,j parmi l’ensemble des espèces
Nm, selon les probabilités discrètes Pm(xi,j+1) associées à chacune des
molécules ;

5. On échantillonne une transition moléculaire ıi,j+1 parmi l’ensemble des
transitions Nı(mi,j+1) de l’espèce mi,j+1, selon les probabilités discrètes
Pı(xi,j+1) ;

6. On effectue un test de Bernoulli pour déterminer le type de collision.
Pour cela on échantillonne uniformément un nombre ri,j+1 entre 0 et 1.
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6a. Si ri,j+1 < Pa,ı(xi,j+1), il s’agit d’une absorption et la récursion
s’arrête. Le poids de Monte-Carlo de la réalisation indépendante i
est alors donné par : wi = Leqη(xj+1)/pH(ηi).

6b. Si ri,j+1 > Pa,ı(xi,j+1), il s’agit d’une collision nulle, l’algorithme
boucle alors à l’étape 3, avec un indice de collision incrémenté
j ≡ j + 1.

j = 0 ; x = x0

Échantillonnage de η

Échantillonnage de l j+1

x j+1 = x j − l j+1u0

Échantillonnage de m j+1

Échantillonnage de ı j+1

Échantillonnage de r j+1

r j+1 < Pa,ı j+1 (x j+1)

(absorption)

Oui
(collision nulle)

Non
wi =

Leq
η (x j+1)
pH(η)×

j ≡ j + 1

Figure 5.3 – Algorithme à collisions nulles avec échantillonnage des transitions permettant d’estimer
la luminance L(x0,u0) dans un milieu infini non-diffusant. Outre l’ajout d’un échantillonnage des
nombres d’onde η permettant d’intégrer spectralement la luminance d’intérêt, cet algorithme est
très proche d’un algorithme à collisions nulles usuel. Seules deux étapes d’échantillonnage de l’espèce
moléculaire m et de la transition ı sont rajoutées.

Cet algorithme est alors très similaire aux algorithmes usuels de diffusion multiple
(voir Fig. 3.6), à la seule différence qu’une espèce moléculaire et qu’une transition
sont échantillonnées à chaque collision. Toutefois, la proposition de reformulation
statistique faite dans ce chapitre mène à de nouvelles images physiques. Ces dernières
consistent à suivre depuis x0 dans la direction −u0 des photons de nombres d’onde
η compris entre ηmin et ηmax, jusqu’à ce qu’ils collisionnent en x1 avec une molécule
donnée, d’espèce m et d’état énergétique correspondant à la transition ı. Il y a une
probabilité Pa,ı que cette collision soit une absorption, auquel cas le suivi s’arrête.
La collision peut également être une collision nulle (avec une probabilité 1− Pa,ı),
auquel cas, les photons poursuivent leur chemin dans la direction −u0 jusqu’à un
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second point de collision x2 où il peut y avoir absorption ou collision nulle. Le suivi
est alors stoppé lorsqu’une absorption est rencontrée.

5.2.2 Perspectives numériques et analytiques offertes par
cette approche

Avec cette approche, toute observable radiative peut ainsi être vue comme
l’espérance d’une variable aléatoire, définie uniquement à partir de propriétés des
transitions moléculaires. La complexité du transfert radiatif en milieu hétérogène
ainsi que celle liée aux transitions moléculaires ont ainsi pu être réduites à un simple
problème d’estimation d’espérance, grâce à l’introduction de ces collisions nulles.

Comme cela va être illustré par la suite, la proposition faite ici a des consé-
quences numériques immédiates. Il n’est plus nécessaire, pour réaliser un calcul de
référence de produire rigoureusement des spectres de haute-résolution, suffisamment
nombreux pour couvrir les hétérogénéités du milieu. A fortiori, ces jeux de spectres
ne doivent pas être recalculés à chaque changement de configuration d’étude ou
d’hypothèse relative au modèle spectral (profil de raie, troncature, bases de données
spectroscopiques utilisées, etc.).

De plus, les étapes d’interpolations spatiales et spectrales, permettant d’obtenir la
valeur locale d’un coefficient d’absorption à partir d’un jeu de spectres précalculés, ne
sont plus nécessaires. Les estimations ne sont alors plus susceptibles d’être affectées
par d’éventuels biais dus à ces procédures d’interpolations. À chaque collision,
une transition est échantillonnée et sa contribution ha,m,ı,η(x) est calculée pour les
conditions exactes de température, de pression et de fractions molaires au point x.

Il devient ainsi imaginable, sans avoir à chaque fois à produire un jeu de spectres à
haute-résolution spectrale, de comparer des valeurs d’observables radiatives obtenues
avec différentes bases de données spectroscopiques ou avec différentes hypothèses
spectrales (ex : profil de Voigt ou de Lorentz, sélection des raies les plus intenses,
troncature d’ailes de raie, etc.). La prise en compte de nouvelles versions de bases de
données spectroscopiques devient elle aussi directe.

Outre ces avantages numériques, la proposition faite ici offre des perspec-
tives intéressantes en termes d’analyse. En effet, elle peut servir de point de dé-
part pour des études plus théoriques. Il devient en particulier possible de calcu-
ler, par un algorithme de Monte-Carlo, la sensibilité d’une observable radiative,
comme proposé dans [De Guilhem De Lataillade et al., 2002a, Roger et al., 2005,
Dauchet et al., 2013, De La Torre et al., 2014], mais cette fois par rapport à un
paramètre du coefficient d’absorption. Par exemple l’Eq. 5.18 peut être dérivée par
rapport à un paramètre $ du coefficient ha,m,ı,η(x). La sensibilité paramétrique qui
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en résulte (dont la démonstration est fournie en Annexe B) est donnée par :

∂$L(x0,u0) = E




Leqη (X∗)

pH(H)

+∞∑

j=1

(
Aj

j−1∏

q=1

(1− Aq)
)

×
[
∂$ ln(Pa,ı(Xj)) +

j−1∑

n=1

∂$ ln(1− Pa,ı(Xn))

]




(5.22)

Le pouvoir d’analyse qu’offre cette nouvelle approche pourrait ouvrir des
perspectives intéressantes dans différents domaines. Pour des applications de
type atmosphérique ou astrophysique [Lewis et al., 1999, Eymet et al., 2009,
Lebonnois et al., 2010], il serait possible de calculer la sensibilité d’une gran-
deur radiative à des variables d’état thermodynamiques (ex : à la pression du sol
pour une prise en compte des effets orographiques), ou à la concentration d’une
espèce moléculaire (ex : le calcul de la sensibilité du flux radiatif émis par la Terre
et son atmosphère vers l’espace aux concentrations de divers gaz à effets de serres
tels que le CO2, l’H2O ou le CH4). Ces apports pourraient également trouver une
résonance en spectroscopie moléculaire. Il devient en effet possible de calculer la
sensibilité de n’importe quelle grandeur radiative à un paramètre du modèle de
raie. Nous pensons par exemple à l’élargissement des raies dû aux autres espèces
du gaz considéré. Dans les bases de données spectroscopiques, seules les largeurs
de raies dues à l’espèce elle-même et à un mélange caractéristique de l’air terrestre
sont fournies. Il serait ainsi possible d’évaluer le degré de confiance que l’on peut
accorder à ces paramètres dès que les mélanges gazeux considérés s’éloignent de la
composition de l’air terrestre (chambres de combustion aéronautiques, atmosphères
de planètes ou d’exoplanètes, etc.).

5.2.3 Gestion des coefficients négatifs de collision nulle

Comme souligné dans la Sec. 5.2.1, le choix fait pour la probabilité d’absorption

Pa,ı(x) =
ha,m,ı,η(x)

k̂η(x)Pm(x)Pı(x)
=
ha,m,ı,η(x)

ĥm,ı,η(x)
=

ha,m,ı,η(x)

ha,m,ı,η(x) + hn,m,ı,η(x)
(5.23)

impose que 0 < ha,m,ı,η(x) < ĥm,ı,η(x) pour que la probabilité Pa,ı soit bien
comprise entre 0 et 1. En d’autres termes, le coefficient de collision nulle
hn,m,ı,η(x) = ĥm,ı,η(x) − ha,m,ı,η(x) de la transition ı de l’espèce moléculaire m
doit être positif. Les constats sont donc identiques à ceux rencontrés à la Sec. 4.2.4,
mais cette fois à l’échelle d’une transition moléculaire.

Il est alors possible, de la même façon qu’à la Sec. 4.2.4, d’introduire une nouvelle
probabilité P̃a,ı(x) permettant de pouvoir gérer d’éventuelles occurrences négatives
du coefficient de collision nulle hn,m,ı,η(x). Nous proposons l’expression :

P̃a,ı(x) =
ha,m,ı,η(x)

ha,m,ı,η(x) + |hn,m,ı,η(x)| (5.24)
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L’expression de la luminance L(x0,u0) de l’Eq. 5.20 est alors modifiée en :

L(x0,u0) = E

[
Leq(X∗)

pH(η)

∞∑

j=1

Aj

j−1∏

q=1

(1− Aq)
ha,m,ı,η(xq)

ĥm,ı,η(xq)P̃a,ı(xq)

]

= E

[
Leq(X∗)

pH(η)

∞∑

j=1

Aj

j−1∏

q=1

(1− Aq)
ha,m,ı,η(xq) + |hn,m,ı,η(xq)|
ha,m,ı,η(xq) + hn,m,ı,η(xq)

]

= E
[
W̃ (X∗)

]

(5.25)

Ce choix de probabilité présente l’avantage de n’entraîner aucune modification
algorithmique si hn,m,ı,η(x) > 0, et modifie le poids de Monte-Carlo en conséquence
si hn,m,ı,η(x) < 0.

Ici encore, les coefficients négatifs de collision nulle hn,m,ı,η(x) se traduiront
par une augmentation de la variance de la variable aléatoire W̃ (X∗). En effet à
chaque collision nulle pour laquelle hn,m,ı,η(x) < 0, la valeur absolue du produit∏j−1

q=1(1−Aq)ha,m,ı,η(xq)+|hn,m,ı,η(xq)|
ha,m,ı,η(xq)+hn,m,ı,η(xq)

croîtra, alors qu’elle resterait fixée à 1 si hn,m,ı,η(x)

était positif en tout point. Si un nombre important de collisions nulles caracté-
risées par des coefficients négatifs se produit au sein d’une même réalisation de
Monte-Carlo, alors la valeur de l’échantillon de la variable W̃ (X∗) sera suscep-
tible d’être très importante, augmentant alors la variance de l’estimation de L(x0,u0).

Dans le Chap. 4, il était préférable que le champ arbitraire de k̂η(x) majore,
quel que soit x, celui du coefficient réel d’extinction. Il suffisait alors d’augmenter
localement la valeur de k̂η(x) pour éviter des occurrences négatives du coefficient
de collision nulle. Avec la proposition faite ici, ĥm,ı,η(x) doit désormais majorer
autant que possible ha,m,ı,η(x) pour tout nombre d’onde η, tout point x, toute espèce
moléculaire m et toute transition ı. Il est donc beaucoup plus complexe, en pratique,
d’assurer strictement l’inéquation hn,m,ı,η(x) > 0 ; d’autant plus que ĥm,ı,η(x) est
défini comme égal à k̂η(x)Pm(x)Pı(x) dont chacun de ses trois termes résulte d’un
choix arbitraire. Les choix du champ de k̂η(x) et des deux probabilités (Pm(x) et
Pı(x)) pourront donc avoir une incidence sur le respect ou non de la condition
hn,m,ı,η(x) > 0 pour tout η, x, m et ı et ainsi avoir de sérieuses conséquences sur la
convergence du calcul. Une proposition concernant ces trois termes arbitraires sera
faite à la Sec. 5.3.3.

5.2.4 Proposition d’améliorations algorithmiques

Nous proposons, pour la suite de ce chapitre, de réviser l’algorithme introduit à
la Fig. 5.3, à travers trois modifications présentées ci-dessous.

• Autoriser d’éventuelles occurrences négatives du coefficient de collision nulle
hn,m,ı,η(x) par l’introduction de la probabilité P̃a,ı(x) proposée à la Sec. 5.2.3.
• Prendre en compte d’éventuelles parois noires (voir Sec. 3.3.3 et 3.4.4) par

l’introduction d’un test permettant de savoir si la collision a lieu dans le milieu
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V en xj (le test H (xj ∈ V) doit alors être validé) ou à la paroi en xw,j
1 (si le

test H (xj /∈ V) est validé).
• Implémenter une procédure d’energy-partitioning (voir Sec. 3.4.2 et 4.3.3)
dans laquelle le type de collisions est géré de façon déterministe dans un
premier temps pour augmenter les taux de convergence. Un seuil arbi-
traire ζ est également défini pour qu’une fois le terme d’extinction ξj =∏j−1

q=1 hn,m,ı,η(xq)/ĥm,ı,η(xq) inférieur à ζ, l’algorithme bascule vers une branche
où le type de collision est traité par des tests de Bernoulli, ceci dans le but de
mettre fin à la récursivité. Si ζ = 1, l’ensemble des collisions seront traitées
par un test de Bernoulli et si ζ = 0 celles-ci seront traitées de façon détermi-
niste. Dans ce cas, seule une collision à une paroi noire pourra mettre fin à la
récursivité.

Ces trois modifications étant présentées en détail dans les Chap. 3 et 4, nous ne
reviendrons pas ici sur le formalisme mathématique qu’elles impliquent. Toutefois,
l’algorithme résultant de cette révision est rigoureusement schématisé à la Fig. 5.4.

5.3 Mise en pratique dans un benchmark et choix
des paramètres libres

Dans la section précédente, nous avons donc proposé une approche originale qui
permet une description statistique des coefficients d’absorption directement au sein
de l’équation du transfert radiatif. D’un point de vue encore formel, cette proposition
semble offrir des perspectives numériques et analytiques intéressantes. Il est donc
désormais nécessaire de voir comment cette approche se traduit en pratique, une fois
implémentée.

Toutefois, dans un premier temps, il est nécessaire de définir un nombre important
de grandeurs arbitraires. Certaines d’entre-elles ont déjà été définies au cours des
paragraphes précédents :
• La densité de probabilité des libres parcours a été définie comme p̂Lj(lj) =

k̂η(xj) exp
(
−
∫ lj

0
k̂η(xj−1 − l′ju0)dl′j

)
(telle qu’elle est définie pour les algo-

rithmes à collisions nulles standards).
• La probabilité d’absorption a elle aussi été définie, dans le but d’autoriser

d’éventuelles occurrences négatives du coefficient de collision nulle hn,m,ı,η(x) :

P̃a,ı(x) =
ha,m,ı,η(x)

ha,m,ı,η(x) + |hn,m,ı,η(x)|
• Le coefficient d’extinction ĥm,ı,η(x) arbitraire pour une transition donnée a

également été posé comme égal k̂η(x)Pm(x)Pı(x).

Nous ne reviendrons pas ici sur ces trois propositions arbitraires. Néanmoins, plusieurs
paramètres libres restent encore à être définis, c’est le cas :

1. Le point xw,j correspond à la première intersection entre la paroi B et la demi-droite définie
par le point xj−1 et la direction −u0.



5.3. Mise en pratique dans un benchmark et choix des paramètres libres 155

j=
0

;
x
=

x 0
;ξ

0
=

1
;w

j
=

0

É
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É
ch

an
til

lo
nn

ag
e

de
r j
+

1

r j
+

1
<
P̃ a

,ı
j+

1
(x

j+
1)

(A
bs

or
pt

io
n)

O
ui

(C
ol

lis
io

n
nu

lle
)

N
on

w
i
=

w
j
+
ξ

j
h a
,m

j+
1,
ı j
+

1,
η
(x

j+
1)
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• du champ d’extinction arbitraire k̂η(x) ;
• de la densité de probabilité des nombres d’onde pH(η) ;
• de la probabilité Pm(x) associée à chaque espèce moléculaire ;
• de la probabilité Pı(x) associée à chaque transition ı pour une espèce moléculaire
m donnée ;
• du seuil ζ à partir duquel l’algorithme dans lequel les collisions sont traitées
par energy-partitioning permute à une branche où elles sont traitées par un
test de Bernouilli.

Ces choix ne sont pas anodins dans la mesure où ils vont conditionner le comporte-
ment et le taux de convergence de l’algorithme présenté à la Fig. 5.4. Il s’agira en parti-
culier de s’assurer, autant que possible, que le coefficient ĥm,ı,η(x) = k̂η(x)Pm(x)Pı(x)
soit supérieur à ha,m,ı,η(x), pour tout nombre d’onde, toute espèce moléculaire, toute
transition et toute position, afin d’éviter une définition de coefficients négatifs de
collision nulle hn,m,ı,η(x) qui, comme nous l’avons vu au Chap. 4, sont susceptibles
d’induire une importante augmentation de la variance.

Pour attester de la faisabilité de l’approche proposée et pour définir ces choix
de paramètres libres, nous nous sommes appuyés sur un benchmark proposé par F.
André et R. Vaillon dans l’article [André et Vaillon, 2010]. Un important travail a
été fait pour parvenir à des choix de paramètres assurant une bonne convergence
dans chacun des cas d’intérêt (voir Sec. 5.3.3). Cette démarche, relevant plus de
l’essai-erreur, que d’une réelle optimisation basée sur la physique du transfert radiatif
et de la spectroscopie moléculaire, s’est appuyée sur une approche par variance nulle
dont les résultats seront présentés à la Sec. 5.3.2.

Nous pensons que les propositions faites ici permettent de traiter de façon sûre
des cas d’études proches de ceux rassemblés dans le benchmark d’intérêt, mais
qu’elles ne constituent certainement pas des choix optimaux. Notre motivation n’était
pas d’arriver à des paramètres arbitraires idéalement choisis ou à un algorithme
particulièrement performant, mais de montrer la faisabilité pratique de l’approche
faisant l’objet de ce chapitre. Les résultats obtenus sont présentés à la Sec. 5.3.4.

5.3.1 Présentation des six configurations d’étude

Le benchmark considéré ici, tiré de [André et Vaillon, 2010], est composé de six
configurations d’étude couvrant une grande variété de problématiques rencontrées
en combustion (de la chambre de combustion à la signature infrarouge de panaches
chauds).

Ces six cas d’étude consistent à estimer la luminance L(x0,u0) émise par une
colonne finie de milieu gazeux non-diffusant définie de 0 à x0

2. Seules les dimensions de
la colonne de gaz et les champs de propriétés (température, compositions moléculaires)

2. Cela consiste d’un point de vue algorithmique à considérer une paroi noire absorbante de
température T=0K en x = 0.
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les distinguent. Leurs propriétés respectives sont schématisées à la Fig. 5.5. Dans
chacun de ces six cas, la pression considérée est définie comme égale à la pression
atmosphérique.

Les deux premiers cas, respectivement notés C1 et C2 sont tirés de l’article
[Soufiani et al., 1985]. La colonne de gaz est composée d’une zone chaude et d’une
zone froide, chacune homogène et isotherme, de dimensions et de températures
respectives 10cm / T = 1500K et 1m / 500K. Dans le cas C1, le mélange de gaz est
composé de CO2 à 50% dans la zone chaude et à 5% dans la zone froide. Pour le
cas C2, ces fractions molaires sont conservées, mais l’espèce participante est de la
vapeur d’eau.

Les cas C3, C4 et C5 sont quant à eux inspirés de l’article [Liu et al., 2001].
La dimension de la colonne est de 8m, le profil de température est linéaire par
morceaux : croissant de 400K à 2400K entre 0m et 1.5m puis décroissant de 2400K
à 800K de 1.5m à 8m. Le cas C3 est composé d’un mélange de 20% de CO2 et de
10% de H2O. Dans le cas C4, seul le CO2 est pris en compte (avec une fraction
molaire de 20%) et dans le cas C5, seule la vapeur d’eau est représentée (avec une
fraction molaire de 10%).

Enfin, le cas C6, tiré de la publication [Rivière et al., 1992], est constitué d’une
zone chaude de 40cm dont la température et les fractions molaires d’H2O sont uni-
formes par morceaux (voir Fig. 5.5) ainsi que d’une zone froide de 200m séparant le
point d’observation et la zone chaude. Ce dernier cas d’étude constitue généralement
une configuration très difficile à prendre en compte (ces difficultés sont en particulier
rencontrées lors d’utilisation de modèles spectraux simplifiés de types k-corrélés).

Le fait que les hétérogénéités de ces six cas d’étude soient suffisamment simples
pour que l’on puisse calculer analytiquement les épaisseurs optiques, ne limite en
rien l’étude de faisabilité présentée ici. Il ne s’agit pas d’utiliser les algorithmes à
collisions nulles pour tester leur comportement vis-à-vis des hétérogénéités (cela a
été fait au Chap. 4), mais pour étudier ce qu’implique d’un point de vue numérique
l’échantillonnage des transitions moléculaires.

5.3.2 Approche par variance nulle afin d’orienter le choix des
probabilités

Comme précisé en introduction de cette section, plusieurs grandeurs arbitraires
doivent encore être déterminées. C’est en particulier le cas de trois probabilités : la
densité de probabilité des nombres d’onde pH(η), la probabilité Pm(x) associée à
chaque espèce moléculaire et la probabilité Pı(x) associée à chaque transition ı pour
une espèce moléculaire m donnée.

Pour orienter ces choix, nous avons recouru à une approche par variance nulle
(voir Sec. 3.3.4.2), en partant de l’Eq. 5.18 dans laquelle nous avons libéré les choix
de toutes les probabilités et densités de probabilité (à savoir pH(η), p̂Lj(lj), Pm(xj),
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Figure 5.5 – Benchmark proposé dans l’article [André et Vaillon, 2010]. Les dimensions, ainsi
que les pressions, températures et fractions molaires des différentes espèces participantes y sont
représentées.
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Pı(xj) et Pa,ı(xj)), dans le but de déterminer leur expression respective (indicée ∅)
assurant une variance nulle du poids de Monte-Carlo. Les résultats obtenus par cette
approche (décrite à l’Annexe C) sont présentés ci-après :

Nombres d’onde. La densité de probabilité des nombres d’onde assurant une
variance nulle du poids de Monte-Carlo est donnée par le rapport entre la luminance
monochromatique au point x0 dans la direction u0 et la luminance au même point,
dans la même direction mais intégrée spectralement entre ηmin et ηmax :

pH,∅(η) =
Lη(x0,u0)

L(x0,u0)
=

Lη(x0,u0)∫ ηmax

ηmin
Lη(x0,u0)dη

(5.26)

Nous rechercherons donc à approcher au mieux Lη(x0,u0) par un modèle simplifié
de luminance, analytiquement intégrable entre ηmin et ηmax pour pouvoir assurer
une inversion de la fonction de répartition et donc un échantillonnage des nombres
d’onde.

Libres parcours. La densité de probabilité des libres parcours assurant une va-
riance nulle est donnée par :

pLj ,∅(lj) =
exp

(
−
∫ lj

0
k̂η(xj−1 − l′ju0)dlj

) [
ka,η(xj)L

eq
η (xj) + kn,η(xj)Lη(xj+1,u0)

]

Lη(x0,u0)
(5.27)

On remarque alors que la densité de probabilité

p̂Lj(lj) = k̂η(xj) exp

(
−
∫ lj

0

k̂η(xj−1 − l′ju0)dlj

)
(5.28)

que l’on a choisi de conserver, correspond à la densité de probabilité idéale pLj ,∅(lj)
pour le cas particulier d’un milieu à l’équilibre thermodynamique (Leqη (xj) =
Lη(x0,u0)). En d’autres termes, la variance associée à la variable aléatoire des
libres parcours, sera faible si le milieu est proche d’un équilibre thermodynamique et
plus importante s’il en est éloigné.

Espèces moléculaires. La probabilité associée à chaque espèce moléculaire m
garantissant une variance nulle du poids de Monte-Carlo est donnée par le rapport
entre la participation ha,m,ı,η(x) de l’ensemble des raies de l’espèce m et le coefficient
d’absorption :

Pm,∅(xj) =

∑Nı(m)
ı=1 ha,m,ı,η(xj)

ka,η(xj)
=

∑Nı(m)
ı=1 ha,m,ı,η(xj)∑Nm

m=1

∑Nı(m)
ı=1 ha,m,ı,η(xj)

(5.29)

Il faudra donc chercher à modéliser, en fonction de la position x et de la position η,
la fraction du coefficient d’absorption ka,η(x) due à la molécule m.



160 Chapitre 5. Intégration spectrale par échantillonnage des transitions

Transitions moléculaires. La probabilité associée à chaque transition ı d’une
espèce m assurant une variance nulle est donnée par le rapport entre la participation
de cette transition au coefficient d’absorption et la participation de l’ensemble des
raies de l’espèce m à ce même coefficient d’absorption :

Pı,∅(xj) =
ha,m,ı,η(xj)∑Nı(m)

ı=1 ha,m,ı,η(xj)
(5.30)

Pour un gaz mono-moléculaire, nous chercherons donc à modéliser le rapport entre
la participation d’une raie et le coefficient d’absorption global pour tout point x du
milieu et tout nombre d’onde η. Cette étape constitue certainement l’élément le plus
délicat du choix des paramètres libres.

Type de collision. Enfin, la probabilité d’absorption assurant une variance nulle
du poids de Monte-Carlo est donnée par :

Pa,ı,∅(xj) =
ka,η(xj)L

eq
η (xj)

ka,η(xj)L
eq
η (xj) + kn,η(xj)Lη(xj+1,u0)

(5.31)

S’il était possible d’utiliser ces probabilités idéales, une seule réalisation de l’algo-
rithme de Monte-Carlo serait nécessaire pour estimer L(x0,u0) avec une variance
nulle, quelle que soit la valeur du champ de k̂η(x). Celui ci n’aurait alors qu’une
incidence sur le temps de calcul en conditionnant uniquement l’indice j de la collision
à laquelle a lieu une absorption. Si l’on souhaitait minimiser ce temps de calcul,
c’est-à-dire faire en sorte que l’absorption ait lieu toujours à la première collision, il
faudrait alors que la probabilité Pa,ı,∅(xj) soit égale à 1, ce qui reviendrait à fixer
k̂η(x) = ka,η(x) pour tout x.

Ces conclusions nous réconfortent également quant au choix fait pour le coefficient
d’extinction ĥη(xj) = Pm(xj)Pı(xj)k̂η(xj) associé à une transition particulière. En
effet, si l’on considère les probabilités optimales assurant une variance nulle, cette
égalité équivaut à ĥη(xj) =

ha,m,ı,η(xj)

ka,η(xj)
k̂η(xj). Et si l’on suppose que l’on parvienne

à éviter toute collision nulle (si k̂η(xj) = ka,η(xj)), nous arrivons alors à l’égalité
ĥη(xj) = ha,m,ı,η(xj).

Cette approche par variance nulle a été réalisée ici pour un milieu gazeux infini
et non-diffusant. Toutefois la même approche peut être effectuée pour un milieu
fini et/ou diffusant. Il est juste important de remarquer, pour les sections suivantes,
que l’ajout d’une frontière n’entraîne aucune modification des probabilités idéales
relatives aux indices d’espèce moléculaire Pm,∅(xj), de transition Pı,∅(xj) et au type
de collision Pa,ı,∅(xj), dans la mesure où ces trois probabilités n’interviennent que
dans le cas où la collision a lieu dans le milieu participant.
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5.3.3 Choix des paramètres libres

Cette section a pour objectif d’introduire les choix faits pour les derniers
paramètres libres : le champ de k̂η(x), la densité de probabilité des nombres d’onde
pH(η), la probabilité Pm(x) associée à chaque espèce moléculaire, la probabilité
Pı(x) associée à chaque transition ı pour une espèce moléculaire m donnée, ainsi que
le critère ζ à partir duquel l’algorithme permute d’un traitement déterministe des
collisions (energy-partitioning) à un traitement stochastique par test de Bernoulli.
Ces différents termes arbitraires n’ont une incidence que sur les taux de convergence
de la méthode proposée et n’influent en rien sur le caractère de solution de référence
de l’algorithme présenté à la Fig. 5.4.

Les propositions faites ici résultent d’un travail d’optimisation qui a consisté
à affiner petit à petit les modèles choisis par une approche de type essai-erreur,
jusqu’à atteindre un taux de convergence satisfaisant pour chacun des 6 cas d’étude
proposés dans [André et Vaillon, 2010]. Les choix proposés ne sont certainement pas
optimaux et nous pensons qu’un important travail les concernant sera nécessaire
dans la continuité de ces travaux. L’objectif de cette section n’est donc pas de faire
des propositions conduisant à un algorithme plus rapide ou plus performant qu’un
autre, mais de prouver la faisabilité pratique, dans des temps de calcul acceptables,
de l’approche présentée dans ce chapitre.

La principale difficulté concerne très probablement la définition des champs de
k̂η(x) ainsi que des probabilités Pm(x) et Pı(x). En effet, comme mis en évidence
à la Sec. 5.2.3, il est souhaitable de définir ces trois paramètres libres de sorte à
garantir l’inégalité

k̂η(x)Pm(x)Pı(x) > ha,m,ı,η(x) (5.32)

pour éviter d’éventuels problèmes d’augmentation brutale de la variance (tels
que ceux présentés au Chap. 4) qui seraient causés par des coefficients hn,m,ı,η(x)
négatifs. Ces choix sont donc très critiques en termes de convergence. Trois leviers
d’optimisation : k̂η(x), Pm(x) et Pı(x) sont alors offerts pour que l’Eq. 5.32 soit
vérifiée pour tout nombre d’onde, toute espèce moléculaire, toute transition et en
tout point (i.e. pour toute température, pression et composition chimique).

Nous avons alors choisi de procéder de la façon suivante :
• nous définissons le champ k̂η(x) comme le produit d’un facteur α constant
et d’un champ arbitraire k̃η(x) majorant idéalement pour tout η et tout x le
champ du coefficient d’absorption ka,η(x) :

k̂η(x) = αk̃η(x) (5.33)

• nous nous concentrons sur le choix des probabilités arbitraires Pm(x) et Pı(x) ;
• nous ajustons la constante α de sorte à vérifier dans la quasi-totalité des cas

l’Eq. 5.32. La valeur du paramètre α sera donc conditionnée par la qualité du
choix des probabilités Pm(x) et Pı(x). Si celles-ci respectaient les conclusions
de l’approche par variance nulle alors un facteur α = 1 serait suffisant, mais si
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ces probabilités sont sous-estimées localement (pour un nombre d’onde et une
transition donnés), la valeur de α devra être augmentée en conséquence.

Choix du champ de k̂η(x). En s’appuyant sur les conclusions de l’approche par
variance nulle (voir Sec. 5.3.2), le champ de k̂η(x) = αk̃η(x) doit être le plus proche
possible du champ de coefficient d’aborption ka,η(x). La constante α ne jouant un
rôle que de facteur correctif permettant d’assurer la condition de l’Eq. 5.32 quelle
que soit la qualité des probabilité Pm(x) et Pı(x), nous nous concentrons donc ici
sur le champ de k̃η(x).

Dans un premier temps nous avons défini le champ de k̃η(x) comme uniforme et
indépendant des nombres d’onde. Le paramètre α a été augmenté progressivement
dans chacun des six cas d’étude, jusqu’à ce qu’aucun coefficient négatif de collision
nulle hn,m,ı,η(x) ne soit rencontré pendant le calcul de luminance L(x0,u0) intégrée
entre ηmin = 10cm−1 et ηmax = 15000cm−1. Les temps de calcul, assurant une erreur
relative de 1%, obtenus suite à ce premier modèle de k̂η(x), sont compris entre 1mn
pour le cas C1 à 5h30 pour le cas C6 3.

Pour comprendre pourquoi ces temps sont si importants et différents, il est
nécessaire d’analyser la dépendance spatiale et spectrale du coefficient d’absorption
(voir Fig. 5.6, où trois spectres d’absorption produits pour 3 points du cas d’étude
C3 sont représentés). En définissant k̃η(x) comme une constante majorant en tout

Figure 5.6 – Spectres d’absorption produits pour les conditions thermodynamiques et la composi-
tion chimique rencontrées en 3 points (x=0m, x=1.5m et x=8m) du cas d’étude C3. Le coefficient
d’extinction k̂η(x) défini comme une constante majorant le coefficient d’absorption maximal est
également représenté.

3. Les calculs ont été réalisés sur un seul cœur d’un processeur Intel Core i7 de 2.8GHz. Les
temps de calcul excluent les étapes de preprocessing et de chargement des données.
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point et pour tout nombre d’onde le coefficient d’absorption ka,η(x), on constate
qu’excepté pour les nombres d’onde où le coefficient d’absorption est très important,
k̃η(x) majore très largement (jusqu’à un facteur 1011) le coefficient d’absorption.
Cela se traduit algorithmiquement par une proportion de collisions nulles très
conséquente. Puisque ces collisions nulles n’ont que peu d’effet sur la convergence de
l’algorithme, et ne permettent pas de mettre fin à la récursivité d’une réalisation
(voir Fig. 5.4), cela explique les temps de calcul importants, d’autant plus si les
dimensions caractéristiques sont grandes.

On mesure alors les importantes marges d’amélioration qui peuvent être réalisées
en détaillant de façon plus rigoureuse le champ de k̃η(x). Nous avons alors fait appel
à des spectres d’absorption haute-résolution. Le point important ici, est que ces
spectres n’ont pas besoin d’être en cohérence avec les données spectroscopiques ou
avec les hypothèses spectrales faites pour la simulation d’intérêt. Ces spectres doivent
simplement permettre de vérifier l’Eq. 5.32 tout en minimisant autant que possible la
quantité de collisions nulles rencontrées. Idéalement, ils doivent être choisis de sorte
à majorer légèrement les champs de coefficients d’absorption réels pour tout nombre
d’onde. Si tel n’est pas le cas, une augmentation du facteur α permettra de corriger
cette mauvaise estimation. Il est important de rappeler que, dans la mesure où le
champ de k̂η est arbitraire, les choix faits ici n’influent en rien sur le caractère exact
de la méthode de Monte-Carlo, il n’a pour seul but que d’accélérer les temps de calcul.

Dans l’objectif d’approcher au mieux la dépendance spatiale et spectrale du coef-
ficient d’absorption, nous avons divisé les milieux d’étude en plusieurs sous-domaines
(de 2 à 5 sous-domaines selon le cas d’étude) pour tenir compte de l’hétérogénéité des
propriétés du milieu. À chaque sous-domaine a été affecté un spectre d’absorption
approximativement représentatif des conditions thermodynamiques et chimiques
rencontrées. Nous avons ici utilisé des spectres produits dans d’autres contextes à
partir des bases de données spectroscopiques CDSD-1000 pour le CO2 et Hitemp pour
l’H2O. Les raies les plus intenses (dont l’intensité était supérieure à 10−21molec.cm)
de CDSD-4000 et de HITEMP 2010 ont également été rajoutées à ces spectres pour
que l’Eq. 5.32 soit vérifiée dans les plages spectrales les plus critiques. Ces mêmes
spectres ont été conservés pendant toute la durée de ces travaux, quelles que soient les
bases de données spectroscopiques ou les hypothèses spectrales retenues (troncature
d’ailes de raies, profils de raie, etc.) pour le calcul de L(x0,u0). Ce nouveau choix
de champ de k̂η a alors conduit à une accélération des temps de calcul de 60 à
20 000 fois selon le cas d’étude par rapport à un champ de k̂η uniforme. En effet, en
perfectionnant ce choix, une quantité très importante de collisions nulles ont pu être
ainsi évitées. Les résultats obtenus grâce à cette proposition sont décrits à la Sec. 5.3.4.

Toutefois, n’importe quel champ de k̂η(x) validant autant que possible l’Eq. 5.32
peut être accepté sans altérer le caractère de référence de la méthode, seul le taux de
convergence de l’algorithme en sera modifié. Il est par exemple possible d’imaginer
des solutions intermédiaires. Il pourrait notamment être possible de créer une banque
de données de spectres approchés, de faible résolution spectrale, majorant les spectres
réels d’absorption pour une large plage de conditions thermodynamiques. Les temps
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de calcul seraient alors certainement plus importants que ceux obtenus avec le choix
présenté précédemment, mais le travail de définition des champs de k̂η en serait
grandement simplifié.

Choix de la probabilité des transitions. Les résultats de l’approche par va-
riance nulle énoncent que la probabilité idéale associée à chaque transition est définie
comme le rapport entre la participation d’absorption ha,m,ı,η(x) de la transition ı et
la somme des participations de toutes les transitions d’une molécule m donnée. Si
l’on considère un gaz mono-moléculaire, cette probabilité idéale est définie comme le
rapport entre ha,m,ı,η(x) et le coefficient d’absorption. Bien entendu, cette proposition
ne peut être retenue dans l’approche proposée ici, puisqu’il serait nécessaire d’évaluer
le coefficient d’absorption à chaque collision (et donc de sommer, à chaque collision,
les contributions de l’ensemble considérable de transitions, de façon déterministe).

Ce choix de probabilités est probablement le plus critique et le plus complexe à
mettre en œuvre. En effet, il n’est pas imaginable de produire à chaque réalisation (et
encore moins à chaque collision) un jeu complet de probabilités associées à chacune
des transitions représentées dans la base de données spectroscopique d’intérêt. Les
temps de calcul que cela impliquerait seraient trop importants. Or, toujours en
se basant sur l’approche par variance nulle, il faudrait idéalement que ces jeux de
probabilités soient définis en tout point du milieu et pour tout nombre d’onde. Cela
n’est concrètement pas imaginable, même en négligeant les variations dues aux
hétérogénéités des propriétés du milieu (température, pression et concentrations),
cela signifierait créer autant de spectres de Pı qu’il y a de transitions dans les bases
de données spectroscopiques.

Notre première proposition de Pı a alors consisté à imaginer un modèle très
simplifié dans lequel les profils de toutes les raies f(η) sont identiques, et où ces
dernières sont centrées en un même nombre d’onde η0. En appliquant les résultats
de l’approche par variance nulle pour ce modèle simplifié, on arrive à la proposition
suivante :

Pı(x) ≡ Pm,ı,η(x) =
ha,m,ı,η(x)∑Nı(m)

ı′=1 ha,m,ı′,η(x)
=

Sm,ı(x)f(η)
∑Nı(m)

ı′=1 Sm,ı′(x)f(η)
=

Sm,ı(x)
∑Nı(m)

ı′=1 Sm,ı′(x)
(5.34)

Les profils de raies étant identiques, cette probabilité est alors définie comme le ratio
entre l’intensité Sm,ı de la raie ı divisée par la somme des intensités de l’ensemble
des raies de la molécule m. L’avantage de cette proposition réside dans le fait que
les intensités de raies ne dépendent pas du nombre d’onde d’intérêt. En milieu
homogène, ce cas d’étude est donc tout à fait envisageable d’un point de vue
numérique. En effet, puisque Pı(x) ne dépend plus du nombre d’onde, seul un jeu
de probabilités (pour toutes les transitions de l’espèce m) est à précalculer. Pour
un milieu hétérogène, on peut imaginer le discrétiser suffisamment pour couvrir de
façon approximative les hétérogénéités des propriétés et produire autant de jeux de
Pı(x) qu’il y a de mailles. Cette proposition a donné des résultats et des temps de
calcul acceptables dans le cas particulier où les domaines spectraux d’intégration
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étaient faibles (de la taille d’une bande étroite) et qu’une troncature des ailes de
raie était mise en place. En effet, grâce à la troncature, seules les raies les plus
proches de l’intervalle d’intégration sont prises en compte par l’algorithme qui
les échantillonne alors uniquement selon leurs intensités respectives. Toutefois,
dès que l’on supprime cette troncature où que l’on élargit le domaine d’intégra-
tion, les temps de calcul deviennent rapidement excessifs. Avec cette proposition,
une raie très intense mais très éloignée du nombre d’onde d’étude η a une plus
grande probabilité d’être échantillonnée qu’une raie plus faible mais centrée en η,
même si son coefficient ha,m,ı,η(x) en η est de loin supérieur à celui de la première raie.

Il est alors évident, qu’à cause de son indépendance spectrale, cette première
proposition pose de sérieuses limitations. Toutefois, comme nous venons de le dire, il
est difficilement imaginable de produire des jeux de Pı(x) couvrant les variations spec-
trales du coefficient d’absorption. La seule solution, pour prendre en compte l’effet dû
à l’éloignement spectral des raies du nombre d’onde d’étude, consiste alors à proposer
une probabilité permettant d’être calculée analytiquement au cours du calcul sans
avoir à produire un jeu complet de Pı(x) pour toutes les transitions à chaque collision.

Nous avons alors retenu la proposition suivante pour prendre en compte cette
dimension spectrale dans l’échantillonnage des transitions :
• Nous définissons [ηdb,min, ηdb,max] comme l’intervalle englobant l’ensemble des
nombres d’onde de centre de raie contenus dans la base de données spectro-
scopique d’intérêt. Puis, nous segmentons cet intervalle en bandes régulières
(indicées β) de largeur δη = 0.3cm−1 et de bornes [ηmin,β, ηmax,β] ;
• Nous décomposons la probabilité Pı associée à chaque transition en un produit

de deux probabilités : Pı = Pβ × Pı,β
• Dans un souhait de représenter également les variations spatiales des propriétés
radiatives, nous conservons les sous-domaines utilisés pour la définition du
champ de k̂η(x). Une valeur moyenne de température est alors affectée à chacun
de ces sous-domaines.
• La première probabilité Pβ ≡ Pβ,η(x) est associée à chaque bande spectrale β.

Elle a pour objectif de rendre compte de l’éloignement d’une raie ı par rapport
au nombre d’onde d’intérêt η. Nous la définissons comme :

Pβ =
atan

(
ηmax,β(β)−η

γQ

)
− atan

(
ηmin,β(β)−η

γQ

)

atan
(
ηdb,max−η

γQ

)
− atan

(
ηdb,min−η

γQ

) (5.35)

où γQ est un paramètre libre (fixé ici à γQ = 1cm−1 pour les sous-domaines
de température T < 500K ; à γQ = 0.5cm−1 pour T ∈ [500K, 1000K] ; à γQ =
0.25cm−1 pour T ∈ [1000K, 1500K] et à γQ = 0.1cm−1 pour T > 1500K). Avec
une telle définition, échantillonner une bande d’indice β revient à échantillonner
un nombre d’onde ηβ selon un profil lorentzien de demi-largeur à mi-hauteur γQ,
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centré sur le nombre d’onde d’intérêt η et de retenir la bande β dans laquelle
est inclus ηβ. 4.
• La probabilité Pı,β ≡ Pı,β,m(x) est associée aux transitions ı centrées dans une

bande β donnée. Elle permet de rendre compte de leur intensité par rapport à
celles des autres transitions centrées dans la même bande β. Elle est définie
comme :

Pı,β =
Sm,ı(x)

∑Nı(m,β)
ı′=1 Sm,ı′(x)

(5.36)

où Sm,ı(x) est l’intensité de la raie ı centrée dans β à la température du
sous-domaine auquel appartient x et où Nı(m,β) correspond au nombre de
raies de l’espèce m centrées dans la bande β. La probabilité Pı,β peut ainsi
être calculée en preprocessing pour chacune des températures moyennes des
sous-domaines d’étude, pour chaque intervalle spectral β et pour chacune des
transitions ı centrées en β. Les temps de calcul, associés à la production d’un
jeu complet de probabilités Pı,β pour une température donnée, varient entre
1 seconde (pour la base de données spectroscopique HITRAN) et 5mn (pour
la base de données CDSD 4000). Bien que ces temps soient importants, les
jeux de probabilités calculés (pour une base de données et une température)
peuvent être stockés pour être réutilisés lors d’autres simulations.

Ces choix de probabilités conduisent alors à privilégier les raies les plus intenses,
centrées près du nombre d’onde d’intérêt. La procédure d’échantillonnage (illustrée à
la Fig. 5.7) est alors composée de deux étapes :
• l’échantillonnage analytique d’une bande β selon un profil de Lorentz centré en
η et de demi-largeur à mi-hauteur γQ. La probabilité analytique associée à la
bande échantillonnée est calculée (de façon quasi-instantanée) au cours de la
simulation.
• l’échantillonnage d’une transition parmi les Nı(m,β) transitions centrées dans
β. Les probabilités associées à chacune de ces transitions ne dépendant que de
la température et de la base de données spectroscopique, elles peuvent donc
être précalculées et stockées.

Il n’est donc nullement nécessaire, avec la proposition faite ici, de recalculer à chaque
réalisation de l’algorithme de Monte-Carlo ou à chaque collision un jeu complet de
probabilités associées à l’ensemble des transitions moléculaires.

Choix de la probabilité des espèces moléculaires. Nous n’avons pas, au cours
de ces travaux, cherché à optimiser la probabilité associée aux espèces moléculaires
(seul le cas C3 comporte un mélange) et avons alors proposé une probabilité uniforme :

Pm = 1/Nm (5.37)

où Nm est le nombre d’espèces moléculaires considérées.

4. Si les ailes de raie sont tronquées à une distance δηtronc, alors [ηdb,min, ηdb,max] est remplacé
par [η − δηtronc, η + δηtronc].
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Figure 5.7 – Procédure d’échantillonnage des transitions moléculaires. Étape 1 : une bande β
de largeur δη est déterminée en échantillonnant un nombre d’onde selon un profil de Lorentz, de
largeur γQ centrée en η. Étape 2 : Une raie ı est échantillonnée parmi les Nı(β) raies centrées dans
β selon leurs intensités respectives.

Le choix de cette probabilité semble beaucoup moins critique que celui de Pı.
Toutefois, il est assez simplement possible d’imaginer une amélioration de cette
probabilité d’espèces moléculaires. L’approche par variance nulle définit la probabilité
Pm idéale comme le rapport entre le coefficient d’absorption dû à l’espèce m et le
coefficient d’absorption global (dû à toutes les molécules). Ici encore, il est souhaitable
que la probabilité Pm dépende de la position x (pour tenir compte des hétérogénéités
de composition moléculaire) et du nombre d’onde. On peut donc imaginer un précalcul
basé sur des modèles approchés par bandes (ex : k-distributions ou modèle de
Malkmus) et sur une discrétisation spatiale (telle que celle proposée pour la définition
du champ k̂η(x)).

Impacts des choix de Pı et Pm sur le facteur correctif α. Comme introduit
en début de section, les expressions des probabilités Pm et Pı conditionnent la valeur
du facteur multiplicatif α. Avec les choix faits précédemment, il a été nécessaire
d’ajuster la valeur de α à 50 pour éviter de rencontrer un nombre trop important de
coefficients hn,m,ı,η négatifs, susceptibles de provoquer une augmentation importante
de la variance de l’estimation. Malgré la valeur très importante de ce facteur
multiplicatif, nous rencontrons encore des coefficients de collision nulle négatifs, mais
ceux-ci n’ont pas d’impact sensible sur le taux de convergence de l’algorithme.

Fixer le facteur α à 50 équivaut à définir un champ de coefficient d’extinction
environ 50 fois plus important que celui du coefficient d’absorption. Aussi, cela se
traduit d’un point de vue numérique par une quantité très importante de collisions
nulles sans réel intérêt pour le calcul. Cela met donc bien en évidence l’importance
du choix des probabilités Pı et Pm qui constituent indéniablement les paramètres
libres pour lesquels on peut attendre les améliorations futures les plus significatives.
Tout perfectionnement de ces deux probabilités entraînera de facto une réduction de
la valeur du facteur correctif α et ainsi des temps de calcul.

L’amélioration du choix de ces paramètres libres constitue alors un enjeu im-



168 Chapitre 5. Intégration spectrale par échantillonnage des transitions

portant et une perspective motivante pour la suite de ces travaux. Nous sommes
convaincus qu’elle ne pourra se produire de façon sensible que grâce à une meilleure
compréhension et une meilleure modélisation de la physique relative à la spectroscopie
moléculaire, qui permettraient d’approcher au mieux les probabilités optimales cal-
culées lors de l’approche par variance nulle. Nous voyons également dans les modèles
statistiques de bandes (de type modèle Malkmus) des pistes très intéressantes pour
parvenir à ces améliorations.

Choix de la densité de probabilité des nombres d’onde. La densité
de probabilité des nombres d’onde pH(η) ne joue un rôle que sur les temps
de calcul. Plus elle sera proche de la probabilité assurant une variance nulle :
pH,∅(η) = Lη(x0,u0)/L(x0,u0), plus les temps de calcul pour une erreur relative
donnée seront faibles.

Dans un premier temps, nous avons défini pH(η) comme uniforme :

pH(η) =
1

ηmax − ηmin

(5.38)

Cette première proposition, la plus simple qui soit, a conduit à des temps de calcul
plutôt satisfaisants quel que soit le cas d’étude considéré. Cependant, nous avons
tenté d’améliorer cette procédure d’échantillonnage des nombres d’onde en proposant
un modèle approché, inspiré des résultats de l’approche par variance nulle. Il semblait
toutefois difficile de définir, pour tout nombre d’onde, un modèle approché de
Lη(x0,u0) qui puisse être intégré analytiquement entre ηmin et ηmax pour permettre
un échantillonnage des libres parcours. Nous nous sommes donc orientés vers une
description par bandes étroites. Nous proposons alors un échantillonnage des nombres
d’onde composé de deux étapes :
• Une bande étroite ib de 25cm−1 de largeur est échantillonnée parmi les Nb

bandes étroites comprises entre ηmin et ηmax, selon la probabilité

Pib =
Lmb (ib) + 1

Nb

∑Nb
b=1 L

m
b (b)

2
∑Nb

b=1 L
m
b (b)

(5.39)

où Lmb est une luminance intégrée sur la bande ib précalculée à partir d’un
modèle approché de Malkmus, associé à une approximation de Curtis-Godson
[Goody et al., 1989]. Un offset : 1

Nb

∑Nb
b=1 L

m
b (b) a été rajouté dans cette pro-

babilité (normalisée en conséquence) pour compenser les sous-estimations de
certaines bandes par le modèle approché.
• Un nombre d’onde η est échantillonné de façon uniforme sur la bande étroite
ib d’intérêt.

La densité de probabilité des nombres d’onde pH(η) que nous proposons ici est alors
donnée par :

pH(η) =
Lmb (ib) + 1

Nb

∑Nb
b=1 L

m
b (b)

2
∑Nb

b=1 L
m
b (b)

× 1

ηb,max − ηb,min

(5.40)
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où ηb,min et ηb,max représentent les bornes de la bande étroite ib. Cette nouvelle pro-
position a conduit à accélérer de 2 à 5 fois les temps de calcul pour une même erreur
relative par rapport à une densité de probabilité uniforme. Cependant, elle reste d’un
intérêt limité, dans la mesure où seules les bandes étroites sont pondérées et non
les nombres d’onde. Il pourrait alors être peut-être intéressant d’utiliser l’approche
proposée par A. Feldick et M. Modest dans [Feldick et Modest, 2011] qui consiste
à échantillonner les nombres d’ondes directement à partir des transitions moléculaires.

Choix du seuil ζ. Nous avons fixé la valeur de permutation algorithmique à
ζ = 0.5. C’est cette valeur qui a donné les meilleurs résultats en termes de temps
de calcul pour une erreur relative donnée. Ce choix est en accord avec l’étude
paramétrique réalisée dans le Chap. 4. Toutefois, dans ce même chapitre, on peut
noter que la valeur optimale de ζ dépend fortement de l’épaisseur optique. Aussi,
si l’on s’éloigne des six cas d’étude présents dans ce benchmark, il pourrait être
opportun de repenser le choix de cette valeur. On pourrait également imaginer un
algorithme qui adapterait automatiquement la valeur de ζ à partir d’une estimation
grossière de l’épaisseur optique.

5.3.4 Résultats obtenus pour les cas d’étude considérés

L’algorithme présenté à la Fig. 5.4 a été appliqué aux six cas d’étude rassemblés
dans le benchmark proposé dans [André et Vaillon, 2010] avec les choix de para-
mètres libres présentés précédemment. Sauf indication contraire, les calculs ont été
réalisés en considérant des profils de raie lorentziens et en utilisant une troncature
des ailes de raie à une distance de 25cm−1 de leur nombre d’onde central.

Les Fig. 5.8, 5.9 et 5.10 ont pour but d’illustrer le type de résultats que l’on peut
attendre de l’approche présentée dans ce chapitre. Il devient ainsi possible de modifier
les hypothèses spectrales (troncature de raies, profil des raies, etc.) ou les données
spectroscopiques à partir desquelles est décrit le coefficient d’absorption (bases de
données, intensité en dessous de laquelle on néglige les raies, etc.) et de constater
les effets de ces modifications sur une observable radiative sans avoir à produire de
nouveaux spectres de haute-résolution en cohérence avec ces modifications.

Ces figures illustrent, pour le cas C2, les luminances Lη(x0,u0) moyennes
pour plusieurs bandes étroites de 25cm−1 (définies de 1175 à 1925cm−1) estimées
par l’algorithme introduit à la Fig. 5.4 avec 104 réalisations indépendantes. Les
intervalles de confiance sont également fournis pour chaque estimation. À titre de
validation, un calcul raie-par-raie basé sur des spectres haute-résolution (produits
à partir de HITEMP 2010) est également représenté en trait plein sur chacun des
trois graphiques. Quelles que soient les hypothèses ou données spectroscopiques
considérées, chacune des simulations, dont les résultats sont illustrés par ces trois
graphiques, a utilisé strictement le même algorithme et le même jeu de paramètres
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libres (en particulier de k̂η, de Pı et de pH(η)).

La figure Fig. 5.8 rassemble les résultats de simulations lancées à partir de
différentes bases de données : Hitemp 2010, Hitemp, Hitran 2008. La figure Fig. 5.9
illustre le fait qu’il est possible de mesurer l’effet des seuils minimums d’intensité
(en dessous desquels les raies sont négligées) sans avoir à produire de nouveaux
spectres. Elle représente les luminances moyennées par bandes étroites calculées avec
différentes valeurs de seuils minimums d’intensité à 1500K : 0molec.cm (toutes les
raies sont sélectionnées), 3.10−27molec.cm, 10−22molec.cm et 10−21molec.cm. Enfin,
la Fig. 5.10 souligne le fait qu’il est également possible d’évaluer simplement l’impact
qu’ont les paramètres de raies, en l’occurrence la distance à laquelle sont tronquées
les ailes de raie (par rapport à leur nombre d’onde central), sur les luminances
moyennées par bandes. Les résultats relatifs à plusieurs distances de troncature :
∞cm−1 (pas de troncature), 25cm−1, 5cm−1 et 0.5cm−1 y sont représentés.
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Figure 5.8 – Luminances Lη(x0,u0) moyennées par bandes étroites pour le cas C2. Ce calcul a
été réalisé grâce à l’algorithme de la Fig. 5.4 pour différentes bases de données spectroscopiques :
HITEMP 2010, HITEMP et HITRAN 2008. Les résultats sont fournis avec leurs intervalles de
confiance. Chaque point a été obtenu avec 104 réalisations indépendantes. Un calcul déterministe,
réalisé grâce à des spectres d’absorption produits à partir de la base de données HITEMP 2010, est
également représenté en trait plein.

Les luminances Lη(x0,u0) moyennes représentées dans ces trois graphiques ont
été estimées dans des temps de calcul assurant une erreur relative de 1% compris
entre 0.1s et 2.4s (avec un processeur Intel Core i7 - 2.8GHz sans parallélisation). La
taille de la base de données, le nombre de transitions sélectionnées ou encore le niveau
de troncature des raies n’ont que très peu d’influence sur ces temps de calcul (les
différences de temps de calcul sont principalement dues à la bande étroite considérée).
Ces temps de calcul affichés ne prennent pas en compte les temps de preprocessing
ou de chargement des données en mémoire qui peuvent durer de quelques secondes à
plusieurs minutes pour les bases de données les plus importantes. Cependant, une
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Figure 5.9 – Luminances Lη(x0,u0) moyennées par bandes étroites pour le cas C2. Ce calcul a
été réalisé grâce à l’algorithme de la Fig. 5.4 pour différents seuils minimums d’intensité (en dessous
desquels, les raies sont négligées) : 0molec.cm (toutes les raies sont sélectionnées), 3.10−27molec.cm,
10−22molec.cm et 10−21molec.cm. Les résultats sont fournis avec leurs intervalles de confiance.
Chaque point a été obtenu avec 104 réalisations indépendantes. Un calcul déterministe, réalisé
grâce à des spectres d’absorption produits à partir de la base de données HITEMP 2010 et un seuil
minimum d’intensité de 3.10−27molec.cm à 1500K, est également représenté en trait plein.
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Figure 5.10 – Luminances Lη(x0,u0) moyennées par bandes étroites pour le cas C2. Ce calcul
a été réalisé grâce à l’algorithme de la Fig. 5.4 pour différentes distances de troncature de raie :
∞cm−1 (pas de troncature), 25cm−1, 5cm−1 et 0.5cm−1. Les résultats sont fournis avec leurs
intervalles de confiance. Chaque point a été obtenu avec 104 réalisations indépendantes. Un calcul
déterministe, réalisé grâce à des spectres d’absorption produits à partir de la base de données
HITEMP 2010 et une troncature de raie à 25cm−1, est également représenté en trait plein.
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fois que le preprocessing et le chargement des données en mémoire sont effectués, il
est possible de lancer autant de simulations différentes que désirées (pour tester diffé-
rentes hypothèses spectrales ou encore pour évaluer différentes observables radiatives).

La Tab. 5.1, rassemble les luminances L(x0,u0) intégrées spectralement entre
10cm−1 et 15000cm−1 calculées à partir de l’algorithme introduit à la Fig. 5.4 et
avec les choix des paramètres libres énoncés dans la Sec. 5.3.3. Ces calculs ont été
réalisés avec 106 réalisations indépendantes, pour chacun des 6 cas d’étude et pour
différentes bases de données spectroscopiques. Ces résultats sont fournis avec leur
écart-type σ assimilable à un intervalle de confiance, et avec le temps de calcul
t1% requis pour obtenir une erreur relative de 1% (ces temps de calcul excluent ici
aussi les étapes de preprocessing et de chargement des données spectroscopiques
en mémoire). Les luminances L(x0,u0) peuvent être comparées à celles obtenues
à partir d’un calcul déterministe (notées Lhr(x0,u0)) basé sur une production de
spectres de haute-résolution (voir Sec. 5.1.1) utilisant les mêmes modèles spectraux
et données d’entrée que pour l’algorithme à collisions nulles et aux résultats
obtenus avec une approche raie-par-raie par F. André et R. Vaillon dans l’article
[André et Vaillon, 2010] (notés La,v(x0,u0)).

Monte-Carlo (106 realisations) Haute résol. [André et Vaillon, 2010]
Cas Bases de données L(x0,u0) σ t1% Lhr(x0,u0) La,v(x0,u0)

d’étude spectroscopiques (W/m2/sr) (W/m2/sr) (s) (W/m2/sr) (W/m2/sr)

C1 CDSD-1000 3125.61 4.42 0.97 3126.06 3105CDSD-4000 3146.25 4.53 1.10 3150.32

C2 HITEMP 3315.11 8.15 1.38 3311.88 4161HITEMP 2010 4545.05 9.83 1.11 4558.68
C3 CDSD-1000 & HITEMP 39223.87 51.56 1.75 39202.5 39331
C4 CDSD-1000 12325.99 16.16 1.26 12320.1 11956
C5 HITEMP 38240.31 49.58 1.27 38215.0 39144

C6 HITEMP 885.93 3.93 9.86 886.55 -
HITEMP 2010 1066.92 4.30 7.39 1069.81 -

Table 5.1 – Luminances intégrées de 10cm−1 à 15000cm−1 pour les six cas d’étude présentés
à la Sec. 5.3.1 et pour différentes bases de données spectroscopiques (CDSD-1000 et CDSD-4000
pour le CO2 ; HITEMP et HITEMP 2010 pour l’H2O). Ces luminances L(x0,u0) ont été estimées
à partir de l’algorithme introduit à la Fig. 5.4 et sont fournies avec leur écart-type σ et le temps
de calcul nécessaire à l’obtention d’une erreur relative de 1%. Les luminances L(x0,u0) peuvent
être comparées à celles obtenues à partir d’un calcul déterministe (notées Lhr(x0,u0)) basé sur une
production de spectres de haute-résolution utilisant les mêmes hypothèses et données d’entrée que
pour l’algorithme à collisions nulles et aux résultats obtenus avec une approche raie-par-raie par F.
André et R. Vaillon dans l’article [André et Vaillon, 2010] (notés La,v(x0,u0)). Les temps de calcul
excluent les étapes de preprocessing et de chargement des données spectroscopiques en mémoire.

Les résultats de l’algorithme proposé dans ce chapitre concordent parfaitement
avec les luminances Lhr(x0,u0) calculées de façon déterministe (pour les mêmes
données spectroscopiques et un même modèle de raie). Les différences constatées
avec les résultats de [André et Vaillon, 2010] sont inférieures aux effets mesurés lors
du changement de bases de données, soulignant probablement une disparité dans
les données spectroscopiques utilisées. Les temps de calcul requis par l’algorithme
de Monte-Carlo pour assurer une erreur relative de 1% sont raisonnables dans le
positionnement qui est le nôtre. Ils sont compris entre 1s et 8s selon le cas d’étude
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(sur un seul cœur d’un processeur Intel Core i7 - 2.8GHz). On constate alors que
les temps de calcul relatifs à une intégration de la luminance sur une bande étroite
de 25cm−1 ou sur tout le domaine infrarouge sont du même ordre de grandeur, ce
qui est directement dû au caractère statistique de l’approche proposée. Enfin on
notera, que grâce à la nature de la méthode utilisée (algorithme à collisions nulles),
les champs de température continus des cas C3, C4 et C5 ont pu être pris en compte
sans recourir à la moindre discrétisation volumique des propriétés du milieu (ce qui
n’est pas le cas pour le calcul déterministe ou encore dans [André et Vaillon, 2010]).

5.3.5 Coefficients hn,m,ı,η négatifs et événements rares

Au cours des travaux menés pour proposer des choix satisfaisants de k̂η(x), Pm(x)
et Pı(x) et pour prouver la faisabilité de l’approche faisant l’objet de ce chapitre, la
principale difficulté a été d’éviter de rencontrer des plages spectrales et spatiales
dans lesquelles les coefficients de collision nulle hn,m,ı,η(x) étaient négatif. Cependant,
même avec les choix proposés à la Sec. 5.3.3 et un facteur correctif α fixé à 50, nous
n’avons pas pu assurer en toute généralité hn,m,ı,η(x) > 0. Nous avons simplement
réussi à réduire la quantité de ces événements à un nombre suffisamment faible
pour qu’ils ne posent plus de problème d’augmentation brutale de variance telle que
rencontrée dans le Chap. 4. En effet, assurer la condition hn,m,ı,η(x) > 0 équivaut à
garantir que le champ arbitraire de k̂η(x) soit plus grand que ha,m,ı,η(x)/[Pm(x)Pı(x)]
pour tout nombre d’onde η, en tout point x, pour toute espèce moléculaire m et
pour toute transition ı. Il est donc très difficile d’assurer de façon exhaustive le
caractère majorant du champ de k̂η.

Pour un champ de k̂η(x) fixé, majorant largement le champ du coefficient d’ab-
sorption, le non-respect de la condition hn,m,ı,η(x) > 0 est alors dû à une mauvaise
définition des probabilités Pm(x) et Pı(x) qui sont localement (pour un nombre
d’onde, une position et un nombre d’onde donnés) sous-estimées de façon importante.
Or, puisque cinq des six cas d’étude constituant le benchmark sont composés de gaz
mono-moléculaires, ces coefficients négatifs de collision nulle sont causés par un choix
imparfait de Pı. Avec les choix faits pour cette probabilité, décomposée comme le
produit de Pβ et de Pı,β (voir Sec. 5.3.3), nous rencontrons deux principaux types
de cas pathologiques (illustrés à la Fig. 5.11) :
• Ceux dus à une sous-estimation de Pı,β. On les rencontre lorsque la bande
spectrale β échantillonnée est celle à laquelle appartient le nombre d’onde
η d’intéret et dans laquelle est centrée une raie très intense (en vert sur la
Fig. 5.11a). Si, une raie de plus faible intensité (en rouge sur la Fig. 5.11a) est
centrée à une proximité directe du nombre d’onde η, sa contribution ha,m,ı,η(x)
en η peut être très importante, mais sa probabilité Pı,β est très sous-estimée à
cause de la raie très intense présente également dans β.
• Ceux dus à une sous-estimation de Pı à cause de Pβ. Ces événements sont

rencontrés lorsque la bande β échantillonnée est très distante du nombre d’onde
η d’intérêt et donc a une probabilité Pβ très faible, mais qu’au sein de cette
bande est présente une raie très intense (en rouge sur la Fig. 5.11b) avec une
largeur de raie importante. Il est possible que dans cette configuration, ce soit
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cette raie qui constitue l’essentiel du coefficient d’absorption ka,η(x) global en
η, rendant alors la probabilité Pı largement sous-estimée à cause de la très
faible valeur de Pβ associée à β.

η
η

β

(a)

η

η
β

(b)

Figure 5.11 – Principaux cas dans lesquels la condition hn,m,ı,η(x) > 0 n’est pas respectée à
cause d’une sous-estimation de la probabilité Pı,β (voir Fig. (a)) ou d’une sous-estimation de la
probabilité Pβ (voir Fig. (b)).

Si ces coefficients négatifs de collision nulle hn,m,ı,η ont un impact important
sur le taux de convergence de l’algorithme, c’est qu’ils entraînent, à cause du
caractère récursif de l’algorithme, une augmentation importante de la valeur absolue
du poids de Monte-Carlo. Cette augmentation est d’autant plus grande qu’il y a,
au cours d’une même réalisation indépendante, plusieurs collisions caractérisées
par hn,m,ı,η < 0 (voir Sec. 5.2.3). Les réalisations, pour lesquelles un nombre très
important de coefficients négatifs de collision nulle est rencontré, se comportent alors
statistiquement comme des événements rares (voir Sec. 3.2.3.2) : ces réalisations
ont de très faibles probabilités d’occurrence, mais des poids de Monte-Carlo très
importants, conduisant à une augmentation importante de l’écart-type de l’estimation
de la grandeur d’intérêt. Bien que problématiques, ces événements particuliers
doivent être échantillonnés pour que la statistique du problème soit bien prise en
compte par l’algorithme de Monte-Carlo. Dans le cas contraire, les résultats produits
par ce type d’algorithme peuvent être biaisés.

De tels événements rares sont couramment rencontrés lorsque l’on explore
de nouvelles approches statistiques, s’éloignant des pratiques habituelles. Il y a
toujours un risque que la statistique soit telle que des événements rares ne soient
pas échantillonnés (ici une succession de collisions caractérisées par hn,m,ı,η < 0)
et induisent une mauvaise évaluation de l’écart-type associé à l’estimation de la
grandeur d’intérêt. Typiquement, un intervalle de confiance peut indiquer que les
résultats sont précis à 1%, alors qu’à cause d’événements rares qui n’ont pas été
échantillonnés, l’estimation d’une observable radiative est différente à plus de 10%
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de la valeur de la solution exacte.

Au cours des travaux présentés dans ce chapitre, nous avons rencontré de telles
évaluations erronées. Pour nous assurer de la validité statistique des résultats, la
première étape a été de les comparer à ceux obtenus par un calcul déterministe. Puis,
nous avons augmenté le nombre de réalisations pour chacune des six simulations afin
d’augmenter le nombre d’éventuels événements rares. Nous pouvons alors vérifier,
que malgré cette augmentation du nombre d’échantillons, les calculs convergent
bien et l’écart-type associé aux estimations évolue bien comme l’inverse de la racine
carré du nombre de réalisations. Pour accroître notre confiance dans les écarts-types
estimés, nous avons systématiquement calculé la variance de la variance de ces
estimations (voir Sec. 3.2.3.2) et avons vérifié que cette dernière était toujours
inférieure à 0.1 (comme conseillé dans [X-5 Monte Carlo Team, 2008]). Dans le cas
présent, la variance de la variance est toujours inférieure à 0.005, quel que soit
le cas d’étude du Benchmark. Enfin, pour éviter que les coefficients négatifs de
collision nulle n’entraînent une erreur relative trop importante, nous avons augmenté
la valeur du champ de k̂η(x) pour la maille à laquelle appartient x et pour un
petit intervalle spectral de 1cm−1, lorsque la condition hn,m,ı,η(x) > 0 n’est pas
respectée. Cela permet ainsi d’éviter que, dans la suite de la réalisation ou même
de la simulation, cet événement particulier, source de variance, ne se reproduise.
Dans la mesure où l’on ne modifie pas le poids associé à la collision pour laquelle
hn,m,ı,η(x) < 0, cette procédure n’entraîne aucun biais (puisque le champ de k̂η(x)
est entièrement arbitraire) et permet de contrôler d’éventuelles augmentations
importantes de variance. En poussant ce raisonnement un peu plus loin, on peut
imaginer des spectres de k̂η qui s’enrichiraient au cours des simulations pour réduire
petit à petit le nombre de coefficients hn,m,ı,η(x) négatifs rencontrés lors d’un calcul.

Aussi, grâce à ce processus de validation, nous sommes confiants quant à la préci-
sion et au caractère non-biaisé de l’approche introduite dans ce chapitre pour des confi-
gurations typiques de celles proposées dans le benchmark de [André et Vaillon, 2010]
(en termes de compositions chimiques, de propriétés thermodynamiques et de tailles
caractéristiques). Mais pour d’autres champs applicatifs, nous suggérons que la
variance de la variance soit systématiquement calculée et que des simulations dé-
terministes soient associées aux premiers exercices d’exploration. Nous pensons en
particulier aux applications atmosphériques et astrophysiques dans lesquelles les
distances d’intérêt sont beaucoup plus importantes et pour lesquelles les faibles
pressions induisent des profils de raies très étroits (qui pourraient être susceptibles de
complexifier la procédure d’échantillonnage des transitions ou des nombres d’onde).
Mais pour des applications usuelles de combustion, la statistique semble être bien
maîtrisée avec les propositions faites ici, et il n’y a pas de surprise que 105 échan-
tillons soient suffisants pour évaluer avec une précision d’1% une grandeur radiative
qui implique des millions de transitions. En effet, un grand nombre de transitions
moléculaires sont prises en compte pour le calcul d’un seul poids de Monte-Carlo,
et les probabilités associées à chacune de ces transitions ont été choisies de sorte à
ce que les transitions non-échantillonnées aient une contribution similaire à celles
échantillonnées.
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Résumé du chapitre

Une conséquence directe de l’introduction de collisions nulles dans l’équation du
transfert radiatif est que les coefficients d’absorption n’apparaissent plus dans le
terme d’extinction exponentielle, mais seulement de façon linéaire dans les albédos.
À travers ce chapitre, nous avons montré comment, grâce à cette propriété, il est
possible de décrire de façon statistique les coefficients d’absorption à partir des
transitions moléculaires, directement au sein de l’équation du transfert radiatif. Le
calcul d’une grandeur radiative est alors ramené à une simple estimation d’espérance.
Cela conduit alors au développement d’algorithmes de Monte-Carlo de référence,
permettant d’estimer une observable radiative directement à partir de bases de
données spectroscopiques, sans passer par une coûteuse production de spectres
d’absorption. La mise en pratique de cette approche requiert cependant de définir
un grand nombre de paramètres arbitraires ayant des conséquences importantes sur
la qualité de convergence de ces algorithmes. Nous nous sommes alors appuyé sur
un benchmark de six cas d’étude caractéristiques de configurations de combustion
pour proposer un choix concernant ces paramètres libres. Ces propositions sont
probablement loin d’être optimales, mais elles permettent d’assurer de bons taux de
convergence quel que soit le cas d’étude : quelques secondes sont nécessaires pour
estimer, sans approximation de modèle ou numérique, avec une précision de 1%, une
luminance intégrée sur tout le domaine infrarouge. Les perspectives qu’offre une telle
méthode sont nombreuses du fait qu’elle ne nécessite plus de production rigoureuse
de spectres d’absorption haute-résolution. D’un point de vue numérique, il n’est
plus nécessaire à chaque changement d’hypothèse spectrale ou de base de données
spectroscopique de produire à nouveau un jeu complet de spectres. Cette méthode a
également des conséquences en termes d’analyse, il devient notamment possible de
calculer de façon exacte la sensibilité d’une grandeur radiative intégrée spectralement
à un paramètre du modèle de raie, aux variables d’état thermodynamiques ou encore
aux fractions molaires d’espèces présentes dans le milieu gazeux d’étude.



CHAPITRE 6
Conclusions et perspectives

Au cours de ces trois années de thèse, nous avons tenté de répondre à deux
difficultés majeures inhérentes à l’étude et à la simulation du transfert radiatif dans
les milieux gazeux : la non-uniformité et la dépendance spectrale des propriétés
radiatives. Quels que soient les champs applicatifs (combustion, atmosphérique,
astrophysique, etc.), la prise en compte et le traitement de la variation spatiale
et spectrale des propriétés radiatives, en particulier du coefficient d’absorption,
représentent des enjeux importants lors de l’étude du transfert radiatif dans les
milieux gazeux.

Face à la forte complexité qu’implique cette double dépendance, il a semblé
pertinent, plutôt que de se concentrer sur des modèles approchés ou sur des approches
basées sur une description quasi-déterministe des propriétés radiatives, de repenser
ce problème sous un nouvel angle, celui-ci purement statistique. Le souhait était
alors de tirer parti des bénéfices qu’offrent ces approches statistiques et les outils
de simulation stochastiques qui en découlent (approches exactes, estimations non
biaisées, faible dépendance à la complexité du cas d’étude, pouvoir d’analyse,
etc). Nous nous sommes alors engagés dans un travail très exploratoire, bien que
constituant le prolongement logique d’une dynamique collective, impulsée depuis
plusieurs années par le groupe STARWest.

Dans des considérations purement statistiques, il est apparu que l’élément de
blocage majeur ne résidait pas dans la description de la dépendance spatiale et
spectrale des propriétés radiatives, mais dans le terme d’extinction du rayonne-
ment présent dans l’expression intégrale de l’équation du transfert radiatif. Cette
extinction exponentielle introduit, en effet, une non-linéarité dans la formulation
statistique du problème radiatif qui ne permet autre chose que de recourir à des
modèles ou méthodes approchées pour calculer de façon déterministe cette extinction.

Nous nous sommes alors penchés sur une technique employée intensivement,
depuis plus de 50 ans, dans plusieurs domaines de la physique du transport corpus-
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culaire : les algorithmes à collisions nulles. À notre connaissance, aucune mention de
cette approche n’avait alors été faite dans la communauté du rayonnement thermique.
D’un point de vue cinétique, cette technique consiste à ajouter aux événements
d’absorption et de diffusion, un troisième type de collision : les collisions nulles. Ces
dernières, assimilables à des événements de diffusion vers l’avant n’ont aucun effet
sur le transport de photons.

Puisque sans effet sur la physique du rayonnement, ces collisions nulles peuvent
être définies librement, de sorte à rendre le champ du nouveau coefficient d’extinction
(résultant de ces trois types de collisions) uniforme ou suffisamment simple pour
que le terme d’extinction soit pris en compte de façon analytique. Une conséquence
directe de cette reformulation est que les coefficients d’absorption et de diffusion
apparaissent désormais uniquement de façon linéaire dans l’équation du trans-
fert radiatif. Nous avons alors montré comment il est possible de les prendre en
compte de façon exacte (sans avoir à discrétiser au préalable le milieu) et qu’il
est surtout possible de repenser de façon statistique l’expression même du coeffi-
cient d’absorption à partir des transitions moléculaires (la production de spectres
d’absorption n’est alors plus nécessaire). Cette introduction arbitraire de collisions
nulles ramène alors tout calcul d’observables radiatives à un simple problème d’es-
timation d’espérance, qui peut être traité sans biais par des méthodes de Monte-Carlo.

Grâce aux algorithmes à collisions nulles, il n’est donc plus nécessaire ni de
discrétiser les propriétés d’un milieu participant, ni de faire appel à des spectres
d’absorption haute-résolution pour estimer de façon exacte une observable radia-
tive. Ces travaux, essentiellement formels, nous ont alors amenés à proposer des
méthodes de simulation du transfert radiatif, ne requérant aucun modèle approché
sous-jacent et estimant directement une observable radiative, pour les conditions
locales exactes de pression, de température et de fractions molaires, à partir d’un
échantillonnage des transitions moléculaires réalisé directement depuis les bases de
données spectroscopiques. Comme schématisé à la Fig. 6.1, un grand nombre des
étapes intermédiaires, communément réalisées lors de l’étude du rayonnement en
milieu gazeux, est ainsi supprimé. Il n’est en particulier plus nécessaire, pour tenir
compte de la forte variation des propriétés radiatives du milieu gazeux, de recourir à
des méthodes de discrétisation (production de spectres haute-résolution, maillage
volumique du milieu participant), à des modèles approchés (modèles spectraux
simplifiés) ou encore à des procédures d’interpolation généralement employées pour
évaluer localement le coefficient d’absorption, qui sont potentiellement sources
d’erreurs.

La proposition faite dans ce manuscrit conduit donc au développement de
méthodes de référence de modélisation et de simulation du transfert radiatif en
milieu gazeux. On entend par "méthodes de référence", le fait que seule la qualité
des données utilisées en entrée d’algorithme (qui ne relèvent pas directement de
notre compétence : bases de données spectroscopiques, champs de température, de
pression et de fractions molaires) ainsi que les hypothèses radiatives considérées
(profils de raie, prise en compte de la diffusion, etc.) sont susceptibles d’altérer la
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té
rê
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validité du résultat. La méthode elle-même est rigoureusement exacte, puisque ne
faisant appel à plus aucune approximation.

Ces propositions méthodologiques et algorithmiques ont par la suite été mises
en pratique pour évaluer la faisabilité de telles approches. Dans un premier temps,
seule la gestion de la non-uniformité des propriétés radiatives du milieu a été étudiée
pour un cas d’étude relativement complexe : estimation d’un bilan radiatif au sein
d’un milieu participant absorbant/émettant/diffusant présent au sein d’une cavité
partiellement réfléchissante. Les résultats obtenus sont satisfaisants, proches en
termes de temps de calcul de ceux de méthodes de Monte-Carlo traditionnelles et
plus précis, dans la mesure où aucune approximation n’a été faite concernant la
description des propriétés du milieu. Ces travaux ont mis en évidence l’importance
du choix arbitraire du champ de coefficient de collision nulle sur le comportement
algorithmique : celui-ci doit être défini de sorte à rendre le champ du coefficient
d’extinction résultant suffisamment simple pour permettre un calcul analytique
du terme d’extinction, être proche du coefficient réel d’extinction et majorant de
préférence ce dernier. Lorsque cette dernière condition n’est pas respectée, une
augmentation importante de la variance associée à l’estimation est susceptible d’être
rencontrée. Cette méthode a également été mise en pratique dans le cadre de la
validation d’un code de transfert radiatif estimant des bilans radiatifs dans une
configuration réaliste de chambre de combustion.

Les algorithmes à collisions nulles nous ont ensuite permis de décomposer de façon
statistique les coefficients d’absorption dans l’équation du transfert radiatif pour
permettre une intégration spectrale qui s’appuie uniquement sur un échantillonnage
des bases de données spectroscopiques et non sur des spectres d’absorption. Cette
reformulation nécessite la définition d’un grand nombre de paramètres arbitraires.
Ces choix, en particulier ceux du champ de coefficient de collision nulle et des
probabilités associées à chacune des transitions, ne sont pas anodins dans la mesure
où ils conditionnent fortement le taux de convergence et le comportement de
l’algorithme de Monte-Carlo. Nous nous sommes alors appuyés sur un benchmark
composé de six cas d’étude (monodimensionnels et non-diffusant) caractéristiques de
configurations rencontrées dans des problématiques de combustion. Ce benchmark
nous a permis, par une démarche relevant de l’essai-erreur associée à une approche
par variance nulle, de proposer des choix de paramètres libres menant à des taux de
convergence acceptables pour chacun des cas du benchmark. Bien que les choix de
paramètres libres soient grandement perfectibles, les résultats obtenus pour chacune
de ces six configurations semblent encourageants et prouvent la faisabilité pratique
de l’approche proposée. Quelques secondes sont nécessaires pour estimer avec une
précision de 1% et sans la moindre approximation, une luminance intégrée sur tout
le domaine infrarouge.

Toutefois, tout au long de ce processus de validation, nous avons rencontré
des comportements statistiques de type "événements rares" qui sont susceptibles,
s’ils ne sont pas échantillonnés ou remaniés, d’altérer la validité statistique de
l’estimation. Ces événements rares étant directement liés aux choix des paramètres
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libres, nous sommes convaincus qu’un travail conséquent s’ouvre pour définir
de meilleures propositions. Comme souvent dans les approches statistiques, une
optimisation significative des probabilités arbitraires n’est possible que grâce à une
meilleure compréhension et une meilleure modélisation des phénomènes physiques
d’intérêt. Aussi, nous pensons que pour le cas présent, un choix pertinent de
paramètres libres devra nécessairement s’appuyer sur les concepts et modèles
issus de la spectroscopie moléculaire. Outre le gain en termes de comportement
statistique, de meilleurs choix de paramètres libres se traduiront par une diminu-
tion du nombre de collisions nulles et donc par une meilleure efficience de l’algorithme.

Toutefois, avec les choix de paramètres libres proposés, ces événements patho-
logiques semblent maîtrisés pour les cas d’étude considérés. Le travail d’analyse
statistique que nous avons réalisé nous permet d’avoir confiance dans les résultats
affichés et nous pensons que la proposition faite dans ce manuscrit peut être appliquée
de façon assurée pour des configurations de combustion proches de celles réunies dans
le benchmark étudié. Une attention particulière devra cependant être portée si l’on
s’éloigne, en termes de compositions chimiques et de conditions thermodynamiques,
de ces configurations particulières.

Les travaux présentés dans ce manuscrit offrent des perspectives numériques et
pratiques directes. La première d’entre-elles concerne la validation d’outils de simula-
tion radiative et de modèles spectraux approchés. En effet, nous disposons désormais
d’un outil permettant de calculer une observable radiative, dans des temps de calcul
corrects dans un cadre de validation, sans recourir à une quelconque approximation
et à une étape très coûteuse de production de spectres haute-résolution. L’approche
proposée présente également une grande flexibilité quant aux choix des modèles
radiatifs : tout type de champ de propriétés (analytique, maillé, etc.) peut être traité
de façon rigoureuse. De plus, la quantité de transitions contenues dans les bases de
données spectroscopiques et les hypothèses spectrales retenues (troncature de raies,
sélection de raies par intensité) n’ont qu’une influence mineure sur la précision et les
temps de calcul. En outre, cette méthode reposant désormais sur une formulation
entièrement statistique, il devient possible d’augmenter la complexité du cas d’étude
(intégration volumique, temporelle, ajout de phénomènes de diffusion, géométrie
réelle, etc.) sans qu’un effet sensible sur les taux de convergence algorithmiques ne
se ressente.

Au-delà de ces intérêts numériques, la méthode présentée ici ouvre des pers-
pectives séduisantes en termes d’analyse. Le fait que le calcul d’une observable
radiative intégrée ne soit plus basé sur des spectres d’absorption nous permet de
tester les effets qu’ont sur cette grandeur les choix d’un modèle de raie, d’une
hypothèse radiative ou spectrale, d’une base de données spectroscopique ou encore
d’un maillage particuliers, sans avoir à reproduire à chaque changement de modèle
un jeu complet de spectres haute-résolution. Il devient même envisageable de calculer
de façon exacte, en parallèle de la grandeur radiative, sa sensibilité paramétrique à
une variable d’état thermodynamique, à un paramètre du modèle de raie ou encore
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à la fraction molaire d’une espèce.

À plus court terme, et de façon plus concrète, nous voyons trois principaux
travaux se dessiner. Le premier serait, à l’instar de la Sec. 4.3, d’appliquer l’algorithme
de Monte-Carlo avec échantillonnage des transitions (présenté au Chap. 5) à un
cas d’étude offrant une plus grande complexité (géométrie fermée tridimensionnelle
et partiellement réfléchissante, milieu diffusant, calcul d’un bilan radiatif) pour
s’assurer que le renforcement de la complexité du problème étudié n’entraîne pas de
changement du comportement statistique et numérique de l’algorithme.

Le second travail, vers lequel nous nous orientons, sera d’étendre les cas d’étude
traités dans ce manuscrit, essentiellement liés à des problématiques de combustion, à
des configurations de type atmosphérique. En effet, deux principales particularités,
qui n’ont pas été rencontrées durant ces travaux de thèse, pourraient avoir un
effet important sur le comportement de l’algorithme. La première concerne les
dimensions caractéristiques d’une atmosphère qui sont susceptibles d’augmenter
l’effet des collisions nulles sur les temps de calcul. En effet, les épaisseurs optiques
calculées à partir du champ d’extinction k̂η(x) peuvent être beaucoup plus im-
portantes que celles rencontrées dans des contextes de combustion. La seconde
particularité concerne la variation de pression. Dans ce manuscrit, l’ensemble des
configurations étudiées sont à pression atmosphérique, toutefois une diminution
de la pression engendre une réduction des largeurs de raies qui pourrait se tra-
duire par des procédures d’échantillonnage de raies plus complexes à mettre en œuvre.

Enfin, les derniers travaux envisagés, probablement les plus délicats, seront de
repenser totalement les choix de paramètres libres proposés dans ce manuscrit, en par-
ticulier ceux concernant le champ du coefficient d’extinction k̂η(x) et des probabilités
associées à chaque transition moléculaire. Les propositions faites ici n’avaient pour
unique but que de prouver la faisabilité pratique de l’approche avancée. Cependant,
nous sommes persuadés qu’un travail plus théorique que celui retranscrit dans le
présent document, fondé sur les concepts et modèles de spectroscopie moléculaire,
est nécessaire pour assurer une meilleure maîtrise du comportement statistique de la
méthode et pour proposer des outils de référence plus efficients.



183

Annexes





ANNEXE A
Sensibilité à un paramètre de la

fonction de phase

Dans la Sec. 3.4.3, il est proposé de calculer la sensibilité de la luminance

Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)





Pa(x1)Leqη (x1)

+(1− Pa(x1))

∫

4π

φ(x1,u0|u1)Lη(x1,u1)du1




(A.1)

à un paramètre $, uniquement présent dans l’expression de la fonction de phase
φ(xj,uj|uj). Calculer la sensibilité de la luminance Lη(x0,u0) au paramètre $ revient
à dériver cette dernière par rapport à $ :

∂$Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)

×





Pa(x1)× 0

+(1− Pa(x1))

∫

4π

du1

{
∂$φ(x1,u0|u1)Lη(x1,u1)

+φ(x1,u0|u1)∂$Lη(x1,u1)

}




(A.2)

Nous souhaitons ici garder la même structure statistique et algorithmique que
celle de l’Eq. A.1 pour permettre un calcul simultané de la luminance Lη(x0,u0) et
sa sensibilité paramétrique ∂$Lη(x0,u0). Nous cherchons donc à écrire ∂$Lη(x0,u0)
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sous la forme :

∂$Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)

×





Pa(x1)w$,1

+(1− Pa(x1))

∫

4π

du1φ(x1,u0|u1)

∫ ∞

0

dl2 pL2(l2)

×





Pa(x2)w$,2

+(1− Pa(x2))

∫

4π

du2φ(x2,u1|u2)

∫ ∞

0

dl3 pL3(l3)

×





Pa(x3)w$,3

+(1− Pa(x3))

∫

4π

du3φ(x3,u2|u3)

∫ ∞

0

dl4 pL4(l4)

× {...}













(A.3)

où :
• w$,1 correspond au poids de Monte Carlo si une absorption a lieu à la première

collision
• w$,2 correspond au poids de Monte Carlo si une absorption a lieu à la seconde

collision (la première étant un événement de diffusion)
• w$,3 correspond au poids de Monte Carlo si une absorption a lieu à la troisième

collision (les deux premières étant des événements de diffusion)
• ...

Tout l’exercice consistera donc à exprimer ces différents poids de Monte Carlo et
à proposer, à partir de ces poids, une expression de variable aléatoire W$ validant
∂$Lη(x0,u0) = E [W$].

Pour garder la même structure que celle de l’Eq. A.3, l’Eq. A.2 peut être reformulée
en :

∂$Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)

×





Pa(x1)× 0

+(1− Pa(x1))

∫

4π

du1φ(x1,u0|u1)

[
∂$ [ln (φ(x1,u0|u1))]Lη(x1,u1)

+∂$Lη(x1,u1)

]




(A.4)

On remarque alors que le poids de Monte Carlo w$,1 est donné par :

w$,1 = 0 (A.5)

et que l’expression de ∂$Lη(x0,u0) fait désormais appel à deux termes récursifs
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Lη(xj,uj) et ∂$Lη(xj,uj), respectivement donnés par :

Lη(xj,uj) =

∫ ∞

0

dlj+1 pLj+1
(lj+1)

×





Pa(xj+1)Leqη (xj+1)

+(1− Pa(xj+1))

∫

4π

φ(xj+1,uj|uj+1)Lη(xj+1,uj+1)duj+1





(A.6)

et

∂$Lη(xj,uj) =

∫ ∞

0

dlj+1 pLj+1
(lj+1)

×





Pa(xj+1)× 0

+(1− Pa(xj+1))

∫

4π

duj+1φ(xj+1,uj|uj+1)

×
[

∂$ [ln (φ(xj+1,uj|uj+1))]Lη(xj+1,uj+1)

+∂$Lη(xj+1,uj+1)

]





(A.7)

Il est alors possible de développer l’Eq. A.4 :

∂$Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)

×





Pa(x1)× 0

+(1− Pa(x1))

∫

4π

du1φ(x1,u0|u1)

∫ ∞

0

dl2 pL2(l2)

×





Pa(x2)
[
∂$ [ln (φ(x1,u0|u1))]Leqη (x2)

]

+(1− Pa(x2))

∫

4π

du2φ(x2,u1|u2)

×




[
∂$ [ln (φ(x1,u0|u1))]

+∂$ [ln (φ(x2,u1|u2))]

]
Lη(x2,u2)

+ ∂$Lη(x2,u2)












(A.8)

pour exprimer le poids w$,2 :

w$,2 = ∂$ [ln (φ(x1,u0|u1))]Leqη (x2) (A.9)
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En poursuivant le développement de l’Eq. A.8 :

∂$Lη(x0,u0) =

∫ ∞

0

dl1 pL1(l1)

×





Pa(x1)× 0

+(1− Pa(x1))

∫

4π

du1φ(x1,u0|u1)

∫ ∞

0

dl2 pL2(l2)

×





Pa(x2)
[
∂$ [ln (φ(x1,u0|u1))]Leqη (x2)

]

+(1− Pa(x2))

∫

4π

du2φ(x2,u1|u2)

∫ ∞

0

dl3 pL3(l3)

×





Pa(x3)

[
∂$ [ln (φ(x1,u0|u1))]

+∂$ [ln (φ(x2,u1|u2))]

]
Leqη (x3)

+(1− Pa(x3))

∫

4π

du3φ(x3,u2|u3)

∫ ∞

0

dl4 pL4(l4)

× {...}













(A.10)

on voit apparaître un schéma récursif dans l’expression des poids w$,j, qui s’expriment
alors comme :

w$,j = Leqη (xj)

j−1∑

m=1

∂$ [ln (φ(xm,um−1|um))] (A.11)

Il est enfin possible d’exprimer en toute généralité la variable aléatoire W$

validant ∂$Lη(x0,u0) = E [W$] :

W$(X∗) = Leqη (X∗)
∞∑

j=1

(
Aj

j−1∏

q=1

(1− Aq)
)(

j−1∑

q=1

∂$ [ln (φ(Xq,Uq−1|Uq))]

)
(A.12)

où Aq est une variable aléatoire valant 1 avec une probabilité Pa(xq) et 0 avec une
probabilité 1− Pa(xq) et où X∗ est définie de la même façon que pour l’estimation
de Lη(x0,u0) (voir Eq. 3.71).



ANNEXE B
Sensibilité à un paramètre du

coefficient ha,m,ı,η(x)

Dans la Sec. 5.2.1, il est proposé de calculer la sensibilité de la luminance

L(x0,u0) =

∫ ηmax

ηmin

pH(η)
1

pH(η)
dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m1=1

Pm1(x1)

Nı(m1)∑

ı1=1

Pı1(x1)

×
[
Pa,ı1(x1)Leqη (x1) + (1− Pa,ı1(x1))Lη(x1,u0)

]
(B.1)

à un paramètre $ du coefficient d’absorption ha,m,ı,η(x) associé à la transition ı
(ex : paramètre du profil de raie ou concentration de l’espèce m). Ce coefficient
ha,m,ı,η(x) n’est présent, de façon implicite, que dans l’expression de la probabilité
Pa,ı(x1) = ha,m,ı,η(x)/ĥm,ı,η(x). Calculer la sensibilité de la luminance L(x0,u0) au
paramètre $ revient à dériver cette dernière par rapport à $ :

∂$L(x0,u0) =

∫ ηmax

ηmin

pH(η)
1

pH(η)
dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m1=1

Pm1(x1)

Nı(m1)∑

ı1=1

Pı1(x1)

×
{
Pa,ı1(x1)× 0 + ∂$Pa,ı1(x1)Leqη (x1)

+(1− Pa,ı1(x1))∂$Lη(x1,u0) + ∂$(1− Pa,ı1(x1))Lη(x1,u0)

}

(B.2)

Nous souhaitons ici garder la même structure statistique et algorithmique que
celle de l’Eq. B.1 pour permettre un calcul simultané de la luminance L(x0,u0) et sa
sensibilité paramétrique ∂$L(x0,u0). Nous cherchons donc à écrire ∂$L(x0,u0) sous

189
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la forme :

∂$L(x0,u0) =

∫ ηmax

ηmin

pH(η)dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m1=1

Pm1(x1)

Nı(m1)∑

ı1=1

Pı1(x1)

×





Pa,ı1(x1)w$,1

+(1− Pa,ı1(x1))

∫ +∞

0

p̂L2(l2)dl2

Nm∑

m2=1

Pm2(x2)

Nı(m2)∑

ı2=1

Pı2(x2)

×





Pa,ı2(x2)w$,2

+(1− Pa,ı2(x2))

∫ +∞

0

p̂L3(l3)dl3

Nm∑

m3=1

Pm3(x3)

Nı(m3)∑

ı3=1

Pı3(x3)

×





Pa,ı3(x3)w$,3

+(1− Pa,ı3(x3))

∫ +∞

0

p̂L4(l4)dl4

Nm∑

m4=1

Pm4(x4)

Nı(m4)∑

ı4=4

Pı4(x4)

× {...}













(B.3)

où :
• w$,1 correspond au poids de Monte Carlo si une absorption a lieu à la première

collision
• w$,2 correspond au poids de Monte Carlo si une absorption a lieu à la seconde

collision (la première étant une collision nulle)
• w$,3 correspond au poids de Monte Carlo si une absorption a lieu à la troisième

collision (les deux premières étant des collisions nulles)
• ...

Tout l’exercice consistera donc à exprimer ces différents poids de Monte Carlo et
à proposer, à partir de ces poids, une expression de variable aléatoire W$ validant
∂$L(x0,u0) = E [W$].

Pour garder la même structure que celle de l’Eq. B.3, l’Eq. B.2 peut être reformulée
en :

∂$L(x0,u0) =

∫ ηmax

ηmin

pH(η)dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m1=1

Pm1(x1)

Nı(m1)∑

ı1=1

Pı1(x1)

×





Pa,ı1(x1)

[
∂$ [ln(Pa,ı1(x1))]

Leqη (x1)

pH(η)

]

+(1− Pa,ı1(x1))
1

pH(η)

[
∂$ [ln(1− Pa,ı1(x1))]Lη(x1,u0)

+∂$Lη(x1,u0)

]





(B.4)
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On remarque alors que le poids de Monte Carlo w$,1 est donné par :

w$,1 = ∂$ [ln(Pa,ı1(x1))]
Leqη (x1)

pH(η)
(B.5)

et que l’expression de ∂$L(x0,u0) fait désormais appel à deux termes récursifs
Lη(xj,u0) et ∂$Lη(xj,u0), respectivement donnés par :

Lη(xj,u0) =

∫ +∞

0

p̂Lj+1
(lj+1)dlj+1

Nm∑

mj+1=1

Pmj+1
(xj+1)

Nı(mj+1)∑

ıj+1=1

Pıj+1
(xj+1)

×
[
Pa,ıj+1

(xj+1)Leqη (xj+1) + (1− Pa,ıj+1
(xj+1))Lη(xj+1,u0)

]
(B.6)

et

∂$Lη(xj,u0) =

∫ +∞

0

p̂Lj+1
(lj+1)dlj+1

Nm∑

mj+1=1

Pmj+1
(xj+1)

Nı(mj+1)∑

ıj+1=1

Pıj+1
(xj+1)

×





Pa,ıj+1
(xj+1)

[
∂$
[
ln(Pa,ıj+1

(xj+1))
]
Leqη (xj+1)

]

+(1− Pa,ıj+1
(xj+1))

[
∂$

[
ln(1− Pa,ıj+1

(xj+1))
]
Lη(xj+1,u0)

+∂$Lη(xj+1,u0)

]




(B.7)

Il est alors possible de développer l’Eq. B.4 :

∂$L(x0,u0) =

∫ ηmax

ηmin

pH(η)dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m1=1

Pm1(x1)

Nı(m1)∑

ı1=1

Pı1(x1)

×





Pa,ı1(x1)

[
∂$ [ln(Pa,ı1(x1))]

Leqη (x1)

pH(η)

]

+(1− Pa,ı1(x1))

∫ +∞

0

p̂L2(l2)dl2

Nm∑

m2=1

Pm2(x2)

Nı(m2)∑

ı2=1

Pı2(x2)

×





Pa,ı2(x2)

[{
∂$ [ln(1− Pa,ı1(x1))]

+∂$ [ln(Pa,ı2(x2))]

}
Leqη (x2)

pH(η)

]

+(1− Pa,ı2(x2))
1

pH(η)





{
∂$ [ln(1− Pa,ı1(x1))]

+∂$ [ln(1− Pa,ı2(x2))]

}
Lη(x2,u0)

+∂$Lη(x2,u0)













(B.8)

pour exprimer le poids w$,2 :

w$,2 =

{
∂$ [ln(1− Pa,ı1(x1))]

+ ∂$ [ln(Pa,ı2(x2))]

}
Leqη (x2)

pH(η)
(B.9)
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En poursuivant le développement de l’Eq. B.8 :

∂$L(x0,u0) =

∫ ηmax

ηmin

pH(η)dη

∫ +∞

0

p̂L1(l1)dl1

Nm∑

m1=1

Pm1(x1)

Nı(m1)∑

ı1=1

Pı1(x1)

×





Pa,ı1(x1)

[
∂$ [ln(Pa,ı1(x1))]

Leqη (x1)

pH(η)

]

+(1− Pa,ı1(x1))

∫ +∞

0

p̂L2(l2)dl2

Nm∑

m2=1

Pm2(x2)

Nı(m2)∑

ı2=1

Pı2(x2)

×





Pa,ı2(x2)

[{
∂$ [ln(1− Pa,ı1(x1))]

+∂$ [ln(Pa,ı2(x2))]

}
Leqη (x2)

pH(η)

]

+(1− Pa,ı2(x2))

∫ +∞

0

p̂L3(l3)dl3

Nm∑

m3=1

Pm3(x3)

Nı(m3)∑

ı3=1

Pı3(x3)

×





Pa,ı3(x3)








∂$ [ln(1− Pa,ı1(x1))]

+∂$ [ln(1− Pa,ı2(x2))]

+∂$ [ln(Pa,ı3(x3))]




Leqη (x2)

pH(η)




+(1− Pa,ı3(x3))

∫ +∞

0

p̂L4(l4)dl4

Nm∑

m4=1

Pm4(x4)

Nı(m4)∑

ı4=4

Pı4(x4)

× {...}













(B.10)

on voit apparaître un schéma récursif dans l’expression des poids w$,j, qui s’expriment
alors comme :

w$,j =
Leqη (xj)

pH(η)
∂$
[
ln(Pa,ıj(xj))

] j−1∑

q=1

∂$
[
ln(1− Pa,ıq(xq))

]
(B.11)

Il est enfin possible d’exprimer en toute généralité la variable aléatoire W$

validant ∂$L(x0,u0) = E [W$] :

W$(X∗) =
Leqη (X∗)

pH(H)

+∞∑

j=1

(
Aj

j−1∏

q=1

(1− Aq)
)

×
[
∂$ ln(Pa,ıj(Xj)) +

j−1∑

n=1

∂$ ln(1− Pa,ın(Xn))

] (B.12)

où Aq est une variable aléatoire valant 1 avec une probabilité Pa,ıq(xq) et 0 avec une
probabilité 1−Pa,ıq(xq) et où X∗ est définie de la même façon que pour l’estimation
de L(x0,u0) (voir Eq. 5.21).



ANNEXE C
Approche par variance nulle pour les

choix de paramètres libres

Nous avons recouru dans la Sec. 5.3.2 à une approche par variance nulle afin
d’orienter le choix des différentes densités de probabilités et probabilités discrètes
introduites dans notre reformulation de l’équation du transfert radiatif :
• la densité de probabilité associée aux nombres d’ondes : pH(η)

• la densité de probabilité associée aux libres parcours : pLj (lj) ≡ pLj (lj, η,xj−1, j)

• les probabilités associées à chaque espèce moléculaire : Pm(xj) ≡ Pm(m, η,xj, j)

• les probabilités associées à chaque raie : Pı(xj) ≡ Pı(ı,m, η,xj, j)
• la probabilité d’absorption : Pa,ı(xj) ≡ Pa,ı(ı,m, η,xj, j).

Les détails de cette approche font l’objet de la présente annexe.

Nous nous concentrons ici sur l’estimation de la luminance L(x0,u0) intégrée
spectralement entre ηmin et ηmax dans un milieu infini non-diffusant (l’ajout de parois
ou d’événements de diffusion n’entraine pas de difficulté supplémentaire, si ce n’est
un alourdissement du formalisme mathématique) :

L(x0,u0) =

∫ ηmax

ηmin

Lη(x0,u0)dη (C.1)

où Lη(x0,u0) représente la luminance monochromatique :

Lη(x0,u0) =

∫ +∞

0

ka,η(x0 − lu0)Leqη (x0 − lu0) exp

(
−
∫ l

0

ka,η(l
′)dl′

)
dl (C.2)

En partant des reformulations intégrales prenant en compte l’ajout de collisions
nulles et la décomposition du coefficient d’absorption en somme de participations
de transitions (voir Eq. 5.18 et 5.19), il est possible d’introduire des densités de
probabilité et probabilités discrètes (termes en rouge) de sorte à ce que chacune
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d’entre-elles puisse être définie arbitrairement. Il vient :

L(x0,u0) =

∫ ηmax

ηmin

pH(η)
Lη(x0,u0)

pH(η)
dη (C.3)

où :

Lη(xj,u0) =

∫ +∞

0

pLj+1
(lj+1)dlj+1

Nm∑

m=1

Pm(xj+1)

Nı(m)∑

ı=1

Pı(xj+1)

×
k̂η(xj+1) exp

(
−
∫ lj+1

0
k̂η(xj − l′u0)dl′

)

pLj+1
(lj+1)

×





Pa,ı(xj+1)

[
ha,m,ı,η(xj+1)Leqη (xj+1)

k̂η(xj+1)Pm(xj+1)Pı(xj+1)Pa,ı(xj+1)

]

+ (1− Pa,ı(xj+1))

[(
1− ha,m,ı,η(xj+1)

k̂η(xj+1)Pm(xj+1)Pı(xj+1)

)
Lη(xj+1,u0)

1− Pa,ı(xj+1)

]





(C.4)

La luminance L(x0,u0) peut alors être exprimée comme une simple espérance :
L(x0,u0) = E [W ] où la variable aléatoire W est donnée par :

W =
1

pH(H)

+∞∑

j=1

Aj
k̂H(Xj) exp

(
−
∫ Lj

0
k̂H(Xj−1 − l′u0)dl′

)
ha,M,I,H(Xj)L

eq
η (Xj)

k̂H(Xj)pLj(Lj)PM(Xj)PI(Xj)Pa,I(Xj)

×
j−1∏

q=1

(1− Aq)





k̂H(Xq) exp
(
−
∫ Lq

0
k̂H(Xq−1 − l′u0)dl′

)

pLq(Lq)

×
(

1− ha,M,I,H(xq)

k̂η(Xq)PM(Xq)PI(Xq)

)
1

1− Pa,I(Xq)





(C.5)

avec Aj ≡ Aj(I,M,H,Xj), une variable aléatoire valant 1 avec une probabilité
Pa,ı(xj), 0 sinon.

L’approche par variance nulle présentée ici consiste à définir des probabilités
pH,∅(η), p̂Lj ,∅(lj), Pm,∅(xj), Pı,∅(xj) et Pa,ı,∅(xj) (indicées ∅) telles que la variable
aléatoire W ait une variance nulle et donc soit caractérisée par une distribution de
type Dirac centrée en L(x0,u0). En des termes plus algorithmiques, cela équivaut à
dire qu’un seul échantillon (ou poids de Monte Carlo) wi est suffisant pour estimer avec
une erreur relative nulle la luminance L(x0,u0). Nous allons, dans les paragraphes
suivants, passer en revue chacune de ces cinq probabilités.
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Définition de pH,∅(η)

La première probabilité d’intérêt est celle associée aux nombres d’ondes : pH(η).
Son introduction dans l’Eq. C.1 permet de reformuler l’expression de L(x0,u0) comme
une espérance :

L(x0,u0) =

∫ ηmax

ηmin

pH(η)Wηdη = E [Wη] (C.6)

où la variable aléatoire Wη est donnée par

Wη =
Lη(x0,u0)

pH(η)
(C.7)

L’approche à variance nulle consiste ici à exprimer la densité de probabilité de
nombres d’ondes, notée pH,∅(η), telle que la variable aléatoireWη validant L(x0,u0) =
E [Wη] soit égale à L(x0,u0). En résolvant l’équation Wη = L(x0,u0), nous obtenons
alors :

pH,∅(η) =
Lη(x0,u0)

L(x0,u0)
(C.8)

Toutefois cette probabilité idéale ne peut pas être utilisée en l’état dans l’algorithme
de Monte Carlo. Elle nécessite en effet la connaissance de Lη(x0,u0) et de L(x0,u0)
qui est justement la grandeur que nous souhaitons estimer. Cependant, l’information
qu’apporte cette approche par variance nulle est digne d’intérêt : nous avons pu
exprimer la densité de probabilité qu’il faudra chercher à approcher au mieux. Aussi,
le travail d’optimisation consistera à proposer un modèle spectral de la luminance
Lη(x0,u0) permettant de définir une densité de probabilité pH(η) manipulable (c’est
à dire intégrable et inversible analytiquement). Plus ce modèle sera précis, plus la
convergence de l’algorithme sera importante.

Définition de p̂Lj ,∅(lj)

Comme introduit dans le Chap. 4, l’ajout de collisions nulles à notre cas d’étude,
permet de reformuler récursivement l’expression de la luminance monochromatique
Lη(x0,u0) :

Lη(xj−1,u0) =

∫ +∞

0

dlj k̂η(xj) exp

(∫ lj

0

k̂η(xj−1 − l′u0)dl′
)

×
[
ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0)

] (C.9)

où les termes xj = xj−1 − lju0 correspondent aux positions de collision. À partir de
cette expression de la luminance monochromatique, il est possible d’introduire une
densité de probabilité p̂Lj(lj) de sorte à exprimer cette grandeur comme une simple
espérance :

Lη(xj−1,u0) =

∫ +∞

0

p̂Lj(lj)Wljdlj = E
[
Wlj

]
(C.10)
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où la variable aléatoire Wlj est donnée par :

Wlj =
k̂η(xj) exp

(
−
∫ lj

0
k̂η(xj−1 − l′u0)dl′

)

p̂Lj(lj)

×
[
ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0)

] (C.11)

La densité de probabilité p̂Lj ,∅(lj) assurant une variance nulle de la variable aléatoire
Wlj est alors donné par :

p̂Lj ,∅(lj) =
k̂η(xj) exp

(
−
∫ lj

0
k̂η(xj−1 − l′u0)dl′

)

Lη(xj−1,u0)

×
[
ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0)

] (C.12)

On peut ainsi remarquer que la densité de probabilité de libres parcours p̂Lj(lj) =

k̂η(xj) exp
(
−
∫ lj

0
k̂η(xj−1 − l′u0)dl′

)
introduite dans le Chap. 4 assure une variance

nulle de Wlj dans le cas particulier d’un milieu à l’équilibre thermodynamique : (i.e.
lorsque Lη(x) = Leqη (x)). D’autres modèles permettant d’approcher cette probabilité
peuvent également être imaginés.

Définition de Pm,∅(xj)
Concentrons nous désormais sur le terme récursif

Cj =
ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0) (C.13)

présent dans l’équation de la luminance (voir Eq. C.11). Il est possible, comme
proposé dans le Chap. 5, de décomposer le coefficient d’absorption ka,η(xj) comme
une somme des participations ka,m,η(xj) de chaque espèce moléculaire m présente
dans le mélange gazeux considéré. En introduisant une probabilité arbitraire Pm(xj)
associée à chacune de ces espèces, le terme Cj de l’Eq. C.11 peut être exprimé comme
une simple espérance :

Cj =
Nm∑

i=1

Pm(xj)Wm = E [Wm] (C.14)

où la variable aléatoire Wm est donnée par :

Wm =
ka,m,η(xj)

k̂η(xj)Pm(xj)
Leqη (xj) +

(
1− ka,m,η(xj)

k̂η(xj)Pm(xj)

)
Lη(xj,u0) (C.15)
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Rechercher la probabilité Pm,∅(xj) assurant une variance nulle de Wm revient à
résoudre l’équation Cj = Wm qui, développée, donne :

ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0)

=
ka,m,η(xj)

k̂η(xj)Pm,∅(xj)
Leqη (xj) +

(
1− ka,m,η(xj)

k̂η(xj)Pm,∅(xj)

)
Lη(xj,u0)

(C.16)

Il vient alors :

Pm,∅(xj) =
ka,m,η(xj)

ka,η(xj)
(C.17)

Pour un nombre d’onde et une position donnés, la probabilité idéale (i.e. assurant une
variance nulle deWm) de chaque espèce moléculaire correspond donc au rapport entre
la participation de cette espèce au coefficient d’absorption divisée par le coefficient
d’absorption du mélange. Dans le cas d’un gaz monomoléculaire on retrouve bien
Pm,∅(xj) = 1.

Définition de Pı,∅(xj)
De la même façon il est possible de décomposer dans le terme

Dj =
ka,m,η(xj)

k̂η(xj)Pm(xj)
Leqη (xj) +

(
1− ka,m,η(xj)

k̂η(xj)Pm(xj)

)
Lη(xj,u0) (C.18)

(présent dans l’Eq. C.15) la participation d’une espèce donnée ka,m,η(x) en une somme
de participations ha,m,ı,η(x) de chaque transition ı. En introduisant une probabilité
Pı(xj) associée à chaque transition, la grandeur Dj peut être exprimée comme une
simple espérance :

Dj =

Nı(m)∑

i=1

Pı(xj)Wı = E [Wı] (C.19)

où la variable aléatoire Wı est donnée par :

Wı =
ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı(xj)
Leqη (xj) +

(
1− ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı(xj)

)
Lη(xj,u0) (C.20)

Rechercher la probabilité Pı,∅(xj) assurant une variance nulle deWı revient à résoudre
l’équation Dj = Wı qui développée donne :

ka,m,η(xj)

k̂η(xj)Pm(xj)
Leqη (xj) +

(
1− ka,m,η(xj)

k̂η(xj)Pm(xj)

)
Lη(xj,u0)

=
ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı,∅(xj)
Leqη (xj) +

(
1− ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı,∅(xj)

)
Lη(xj,u0)

(C.21)
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Il vient alors :

Pı,∅(xj) =
ha,m,ı,η(xj)

ka,m,η(xj)
(C.22)

Ici encore, la probabilité idéale qu’il faudrait associer à chaque transition est donnée
par le rapport entre la participation de cette transition divisée par la participation de
toutes les transitions de l’espèce considérée. À la vue des fortes variations spectrales
et spatiales du coefficient d’absorption, on devine qu’approcher cette probabilité en
toute généralité (pour tous nombre d’onde, pression et température) constituera une
tâche difficile.

Définition de Pa,ı,∅(xj)
Enfin, la grandeur :

Ej =
ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı(xj)
Leqη (xj) +

(
1− ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı(xj)

)
Lη(xj,u0) (C.23)

peut être elle aussi exprimée comme une simple espérance en introduisant une
probabilité arbitraire d’absorption Pa,ı(xj) :

Ej = Pa,ı(xj)Wa +
(

1− Pa,ı(xj)
)
Wn (C.24)

où les variables aléatoires :

Wa =
ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı(xj)Pa,ı(xj)
Leqη (xj) (C.25)

et

Wn =
1

1− Pa,ı(xj)

(
1− ha,m,ı,η(xj)

k̂η(xj)Pm(xj)Pı(xj)

)
Lη(xj,u0) (C.26)

Recourir à une approche par variance nulle pour ce test de Bernoulli particulier
revient à résoudre le système : {

Ej =Wa

Ej =Wn

(C.27)

Il vient :

Pa,ı,∅(xj) =

ka,η(xj)

k̂η(xj)
Leqη (xj)

ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0)

(C.28)

qui constitue la probabilité optimale d’absorption. On retrouve également cette
expression pour les algorithmes à collisions nulles standards (dans lesquels le coefficient
d’absorption n’a pas été décomposé en somme de transitions, i.e. à partir de l’Eq. C.9).



199

En résumé

Les probabilités assurant une variance nulle de la variable aléatoire W donnée à
l’Eq. C.5 sont donc les suivantes :

pH,∅(η) =
Lη(x0,u0)

L(x0,u0)

p̂Lj ,∅(lj) =
k̂η(xj) exp

(
−
∫ lj

0
k̂η(xj−1 − l′u0)dl′

)

Lη(xj−1,u0)

×
[
ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0)

]

Pm,∅(xj) =
ka,m,η(xj)

ka,η(xj)

Pı,∅(xj) =
ha,m,ı,η(xj)

ka,m,η(xj)

Pa,ı,∅(xj) =

ka,η(xj)

k̂η(xj)
Leqη (xj)

ka,η(xj)

k̂η(xj)
Leqη (xj) +

(
1− ka,η(xj)

k̂η(xj)

)
Lη(xj,u0)

En développant ces probabilités idéales dans l’Eq. C.5, il vient :

W =
L(x0,u0)

Lη(x0,u0)

+∞∑

j=1

AjLη(xj−1,u0)

j−1∏

q=1

(1− Aq)
Lη(xq−1,u0)

Lη(xq,u0)

=
L(x0,u0)

Lη(x0,u0)

+∞∑

j=1

Aj

[
Lη(xj−1,u0)

j−1∏

q=1

Lη(xq−1,u0)

Lη(xq),u0

]
j−1∏

q=1

(1− Aq)

=
L(x0,u0)

Lη(x0,u0)

+∞∑

j=1

AjLη(x0,u0)

j−1∏

q=1

(1− Aq)

=L(x0,u0)
+∞∑

j=1

Aj

j−1∏

q=1

(1− Aq)

=L(x0,u0)

(C.29)

La variable aléatoire W étant égale à L(x0,u0), l’approche par variance nulle est
bien validée.
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D.1 Abstract

At the kinetic level, the meaning of null-collisions is straightforward : they corres-
pond to pure-forward scattering events. We here discuss their technical significance in
integral terms. We first consider a most standard null-collision Monte Carlo algorithm
and show how it can be rigorously justified starting from a Fredholm equivalent to
the radiative transfer equation. Doing so, we also prove that null-collision algorithms
can be slightly modified so that they deal with unexpected occurrences of negative
values of the null-collision coefficient (when the upper bound of the heterogeneous
extinction coefficient is nonstrict). We then describe technically, in full details, the
resulting algorithm, when applied to the evaluation of the local net-power density
within a bounded, heterogeneous, multiple scattering and emitting/absorbing me-
dium. The corresponding integral formulation is then explored theoretically in order
to distinguish the statistical significance of introducing null-collisions from that of
the integral-structure underlying modification.

Keywords : Monte Carlo ; Null-Collision ; Heterogeneous Media ; Integral formu-
lation

D.2 Introduction

The introduction of null-collisions in the process of modelling photon transport
consists in transforming the standard radiative transfer equation

∂f

∂t
+ cω.∇f = −(ka + ks)cf + S +

∫

4π

kscf
′p(ω|ω′)dω′ (D.1)

into

∂f

∂t
+ cω.∇f =− (ka + ks + kn)cf + S+

∫

4π

kscf
′pS(ω|ω′)dω′ +

∫

4π

kncf
′δ(ω − ω′)dω′

(D.2)

where
• f ≡ f(x,ω, t) is the distribution function at location x, propagation direc-
tion ω and time t. The distribution function is used here, instead of the
specific intensity I = hνcf , in order to help readers from other particle trans-
port communities such as neutron transport, plasma physics and rarefied
gas dynamics, that have made an intensive use of null-collision approaches
[Skullerud, 1968, Woodcock et al., 1965, Lin et Bardsley, 1978] (see Sec. D.6.1
for a brief description of the rather complex structure of the corresponding
literature).
• c is the speed of light, ka(x, t) the absorption coefficient, ks(x, t) the scattering
coefficient, pS(ω|ω′) ≡ pS(ω|ω′,x) the single scattering phase function, that
is to say the probability density that the scattering direction is ω for a photon



D.2. Introduction 203

initially in the direction ω′. The notation f ′ in the scattering source integral
stands for f ′ ≡ f(x,ω′, t).
• S ≡ S(x,ω, t) is any source term. We will define s ≡ s(x,ω, t) such that
S = kacs, and therefore s = f eq(x, t) in the particular case of thermal emission
under the assumption of local thermodynamic equilibrium, where f eq(x, t) is
the distribution function at equilibrium at local temperature (related to the
Planck specific intensity B according to B = hνcf eq).
• kn is the null-collision coefficient and δ is the Dirac distribution.

Additional collisions are introduced via the term −kncf but these collisions are
cancelled out, as they are scattering events in the pure forward direction (the
phase function is δ(ω − ω′) in the scattering source integral), and leave the f field
unchanged, which is a direct consequence of the property

∫
4π
kncf

′δ(ω − ω′)dω′ =
kncf . To the best of our knowledge, outside the above mentioned transport physics
literature, the only reported practical use of null-collision approaches for radiative
transfer applications are in the fields of computer graphics and medical imaging
[Rehfeld et Stute, 2008] [Badal et Badano, 2009].

Such applications are related to Monte Carlo simulations in which the heteroge-
neity of the absorption and scattering coefficients does not allow the implementation
of simple free path sampling algorithms. When defining the location of the next
collision event, the common practice is indeed to first sample an extinction optical
thickness τ according to the probability density function pT (τ) = exp(−τ), and
then derive the corresponding path length λ by inverting the function relating τ to
λ : τ(λ) =

∫ λ
0
k(x + σω,ω, t + σ

c
)dσ, where k = ka + ks. However, if ka and ks are

complex functions of space, this inversion is difficult to perform analytically. Most
usually, ka is then approximated with discretization approaches, but this implies a
rigorous control of the corresponding approximation level. Introducing null-collisions
is a way to avoid such approximations.

A null-collision kn field can indeed be introduced so that the modified extinction
optical thickness k̂ = ka + ks + kn (corresponding to absorption plus true scattering
plus null-collision) allows tractable τ(λ) inversions (e.g. k̂ uniform). Practically,
• k̂ is arbitrarily chosen as an upper bound of the true extinction field k (k̂ > k)
and kn is then defined as kn = k̂ − k (note that the choice is made on k̂, not
on kn, so that k̂ has the expected inversion properties) ;
• a collision location is sampled by first sampling τ̂ according to pT and inverting
τ̂(λ) =

∫ λ
0
k̂(x + σω,ω, t+ σ

c
)dσ ;

• a random number r is sampled uniformly on the unit interval and the collision
is considered as an absorption event if 0 < r < ka

k̂
, as a real scattering event if

ka
k̂
< r < ka+ks

k̂
, or as a pure forward scattering event if ka+ks

k̂
< r < ka+ks+kn

k̂
=

1 (fortune wheel).
This technique is well suited to the recent Monte Carlo developments toward flexible
validation tools for accuracy control of fast radiation solvers (interacting with che-
mistry and fluid mechanics). In such contexts, field representation is bound to the
specificity of each solver in an intricate manner and null-collision algorithms make it



204 Annexe D. Article [Galtier et al., 2013]

possible to design transversal meshless 2 Monte Carlo codes that are immediately
applicable whatever the retained solver numerics [Eymet et al., 2013].

The present technical note addresses the question of using integral formulation
techniques for refining Monte Carlo algorithms involving null-collisions. For didactic
reasons, we first consider the academic question of evaluating the distribution function
(at a given point in a given direction) in an heterogeneous emitting/absorbing
infinite medium using a backward algorithm (Sec. D.3). The corresponding integral
formulation is constructed step by step as a translation of the above described
null-collision algorithm. This formulation is then modified so that the constraint
k̂ > k is relieved : negative values of the null-collision coefficient are accepted. This
is practically very significant because k̂ must be chosen to match k as closely as
possible (otherwise too many useless collisions are sampled), which is a delicate task
when the constraint k̂ > k is strict. This first technical proposition is synthesised in
Sec. D.4, with the complete description of a Monte Carlo algorithm evaluating the
local net-power density within a bounded, heterogeneous, multiple scattering and
emitting/absorbing medium. A second technical proposition is made in Sec. D.5 : an
integral formulation is constructed that helps clarify the significance of introducing
null-collisions, in particular as far as convergence is concerned. This formulation
indicates that the problem of sampling free paths in heterogeneous fields could be
bypassed without introducing any null-collision concept, but sign alternations would
appear that would be sources of statistical variance. It is then shown that the benefit
of introducing null-collisions is to break this sign alternation. We therefore suggest
to preserve the idea of introducing a k̂ field, but without imposing that free paths be
sampled according to k̂, or that the type of collision (absorption, true scattering or
forward continuation) be sampled according to the respective proportions of ka, ks
and kn = k̂− ka − ks. A wider class of Monte Carlo algorithms is therefore identified
that could be explored for convergence enhancement.

D.3 Theoretical justification and extension to nega-
tive values of the null-collision coefficient

In the particular case of stationary radiation 3 in a non-scattering infinite medium,
the distribution function at location x in the direction ω takes the following integral
form (solution of Eq. D.1) :

f(x,ω) =

∫ +∞

0

ka,λsλexp

(
−
∫ λ

0

ka,σdσ

)
dλ (D.3)

2. "meshless" is here used to indicate that the Monte Carlo algorithm requires no volume
discretization. Therefore, if the input fields of temperature and extinction coefficients are analytical
(as in benchmarking exercises) no mesh is used at all. However, if the input fields are provided
using a volume discretization and an interpolation procedure, the grid is rigorously respected. The
idea is that the input fields can take any form and that the Monte Carlo algorithm introduces no
mesh by itself.

3. Transient radiation would induce no specific theoretical difficulty, but it would make the
integral formulation much heavier. The extinction coefficients would indeed be functions of time
and time would itself depend on path-length.
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Throughout this note, in all non-recursive integral formulations, the notations ka,α,
ks,α, kn,α, k̂α, sα and f eqα are used to represent ka(x− αω), ks(x− αω), kn(x− αω),
k̂(x− αω), s(x− αω,ω) and f eq(x− αω) respectively, where α is any propagation-
distance along the line of sight. Standard backward Monte Carlo algorithms start
from Eq. D.3 and introduce the random variable Λ corresponding to the distribution
of absorption free paths λ in the −ω direction, of probability density pΛ(λ) =

ka,λexp
(
−
∫ λ

0
ka,σdσ

)
, to get

f(x,ω) =

∫ +∞

0

pΛ(λ)dλ sλ (D.4)

f(x,ω) is then interpreted as the expectation of s(x − Λω,ω) which leads to the
Monte Carlo algorithm of Fig. D.1. Even if one decides to make use of a null-collision

f̃N = 0;
foreach i in 1 : N do

Beer sampling of λ;
w = sλ;

f̃N = f̃N + w;

end

f̃N = f̃N/N ;

f(x,ω) =
∫ +∞

0
pΛ(λ)dλ w

with
w = sλ

pΛ(λ) = ka,λexp
(
−
∫ λ

0
dσka,σ

)

ω
x
•

x− σω
• x− λω

•

Figure D.1 – The reciprocal algorithm. f̃N is a Monte Carlo estimate of f(x,ω) justified by
Eq. D.4. The integral formulation displayed on the right side of the algorithm box is a strict formal
translation of the algorithm description.

technique, it does not appear explicitly in such a presentation : it is only implicit in
the way the Beer sampling of λ is performed.

Alternatively, all the details of using null-collisions can be put forward as in the
complete algorithm of the left part of Fig. D.2. A strict formal translation of this
algorithm is displayed on the right part of the figure, where the Heaviside notation
H(test) is used to represent 1 if test is true and 0 otherwise. This integral formulation
can be derived from the following Fredholm equation, a well-known translation
of the radiative transfer equation (here of Eq. D.2 at stationary state, including
null-collisions interpreted as forward scattering events) :

f(x,ω) =

∫ +∞

0

exp

(
−
∫ λ

0

(ka,σ + kn,σ)dσ

)
×

[
ka,λsλ + knλ

∫

4π

δ(ω − ω′)f(x− λω,ω′)dω′
]
dλ

(D.5)
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f̃N = 0;
foreach i in 1 : N do

j = 0; w = 0; x0 = x ;
abs = false;
while abs = false do

Beer sampling of λj ;
Uniform sampling of rj ;
xj+1 = xj − λjω;

if rj <
ka(xj+1)

k̂(xj+1)
then

w = s(xj+1,ω);

f̃N = f̃N + w;
abs = true;

end
j = j + 1;

end

end

f̃N = f̃N/N ;

f(x,ω) =

∫ +∞

0

pΛ0
(λ0)dλ0

∫ 1

0

pR0
(r0)dr0

{
H
(
r0 <

ka(x1)

k̂(x1)

)
w1 +H

(
r0 >

ka(x1)

k̂(x1)

)∫ +∞

0

pΛ1
(λ1)dλ1

∫ 1

0

pR1
(r1)dr1

{
H
(
r1 <

ka(x2)

k̂(x2)

)
w2 +H

(
r1 >

ka(x2)

k̂(x2)

)∫ +∞

0

pΛ2
(λ2)dλ2

∫ 1

0

pR2
(r2)dr2

...

}}

with
x0 = x ; xj+1 = xj − λjω

pΛj (λj) = k̂(xj − λjω)exp
(
−
∫ λj

0
k̂(xj − σjω)dσj

)

pRj (rj) =
1

1−0 = 1
wj = s(xj,ω)

ω
x0 = x
•

x1 = x0 − λ0ω
•

x2 = x1 − λ1ω
•

Figure D.2 – The standard null-collision algorithm. f̃N is a Monte Carlo estimate of f(x,ω). The
integral formulation displayed on the right side of the algorithm box is a strict formal translation of
the algorithm description. The Monte Carlo weight is wj when the j-th collision is the first true
collision (the preceding collisions are null-collisions). The whole algorithm could also be presented
as in Fig. D.1 with λ = λ0 + λ1 + ...+ λj−1, x− λω = xj and sλ = s(xj,ω), and the appropriate
change of the coefficient k used in pΛ(λ).
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We now give all the details of this derivation, justifying meanwhile the corresponding
null-collision Monte-Carlo algorithm of Fig. D.2 and we then extend it in order to
allow negative values of the null-collision coefficient.

The first step is solving the Dirac integration and using the recursive notations
x0 ≡ x and xj+1 = xj − λjω to get

f(xj,ω) =

∫ +∞

0

exp

(
−
∫ λj

0

k̂(xj − σjω)dσj

)
×

[
ka(xj+1)s(xj+1,ω) + kn(xj+1)f(xj+1,ω)

]
dλj

(D.6)

Then, the probability density of the jth free path is introduced :

pΛj(λj) = k̂(xj − λjω)exp

(
−
∫ λj

0

k̂(xj − σjω)dσj

)
(D.7)

as well as non-zero probabilities Pj, to give

f(xj,ω) =

∫ +∞

0

pΛj(λj)dλj

[
Pj+1

(
ka(xj+1)

k̂(xj+1)

1

Pj+1

s(xj+1,ω)

)
+

(1− Pj+1)

(
kn(xj+1)

k̂(xj+1)

1

1− Pj+1

f(xj+1,ω)

)] (D.8)

and a simple recursive expansion gives

f(x,ω) =

∫ +∞

0

pΛ0(λ0)dλ0

[
P1w1 + (1− P1)I1

]
(D.9)

with

Ij =

∫ +∞

0

pΛj(λj)dλj

[
Pj+1wj+1 + (1− Pj+1)Ij+1

]
(D.10)

and

wj =
ka(xj)

k̂(xj)

1

Pj
s(xj,ω)

j−1∏

m=1

(
kn(xm)

k̂(xm)

1

1− Pm

)
(D.11)

Eq. D.10 and Eq. D.11 lead to the equation of Fig. D.2 in a straightforward manner
as soon as the choice Pj =

ka(xj)

k̂(xj)
is made. This is obviously only possible if kn > 0,

i.e. ka(xj) < k̂(xj), which insures Pj < 1 and 1 − Pj > 0. The usual restriction
to positive null-collisions is therefore very much meaningful. However, the fact
that k̂ must be a strict upper bound of the extinction coefficient k in standard
null-collision algorithms is often a severe limitation of the technique. k̂ has to be
chosen as a compromise between approaching k closely enough to avoid numerous
expensive iterative null-collisions, and preserving enough simplicity to allow fast free
paths sampling procedures. From this point of view, the constraint that k̂ must be
strictly greater than k at all locations is a severe constraint. This is particularly true
when the optical properties cannot be pre-computed across the field and are only
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evaluated at each collision location, once it is sampled. This is a typical requirement
of meshless algorithms. In such cases, there is no fundamental problem associated to
the construction of a nonstrict upper-bound of k, for instance by only pre-computing
k on a rough grid across the field, but it is very difficult to impose that this upper
bound is strict considering that absorption and scattering coefficients are commonly
non-monotonous functions of pressure, temperature and concentrations.

This difficulty can however be bypassed as soon as one observes that the choice
of Pj in Eq. D.9 - D.11 is not constrained : Pj =

ka(xj)

k̂(xj)
is systematically used in the

literature only because of its intuitive nature, in relation to the kinetic pictures of
null-collisions. An alternative knowledgeable choice is :

Pj =
ka(xj)

ka(xj) + |k̂(xj)− ka(xj)|
(D.12)

The immediate benefit is that we get rid of the constraint kn > 0 (i.e. k̂ = ka + kn
is an upper bound of ka) : negative values of the null-collision coefficient are now
admitted. Furthermore, this choice is consistent with the results presented above
since using Pj of Eq. D.12 leads to :

• the very same algorithm in cases when k̂ is a strict upper bound of ka
• a legible extension of the algorithm otherwise, which bypasses the difficulties

encountered when ka > k̂.
The resulting algorithm is fully described in Fig. D.3 and its extension to multiple

f̃N = 0;
foreach i in 1 : N do

j = 0; w = 0; x0 = x ;
abs = false;
while abs = false do

Beer sampling of λj ;
Uniform sampling of
rj ;
xj+1 = xj − λjω;
if rj < Pj+1 then

w = wj+1;

f̃N = f̃N + w;
abs = true;

end
j = j + 1;

end

end

f̃N = f̃N/N ;

f(x,ω) =

∫ +∞

0

pΛ0
(λ0)dλ0

∫ 1

0

pR0
(r0)dr0

{
H
(
r0 < P1

)
w1 +H

(
r0 > P1

)∫ +∞

0

pΛ1
(λ1)dλ1

∫ 1

0

pR1
(r1)dr1

{
H
(
r1 < P2

)
w2 +H

(
r1 > P2

)∫ +∞

0

pΛ2
(λ2)dλ2

∫ 1

0

pR2
(r2)dr2

...

}}

with
x0 = x ; xj+1 = xj − λjω

pΛj
(λj) = k̂(xj − λjω)exp

(
−
∫ λj

0
k̂(xj − σjω)dσj

)

pRj
(rj) = 1

Pj =
ka(xj)

ka(xj)+|k̂(xj)−ka(xj)|

wj =
ka(xj)

k̂(xj)
1
Pj
s(xj,ω)

∏j−1
m=1

(
kn(xm)

k̂(xm)
1

1−Pm

)

Figure D.3 – The generalized null-collision algorithm in which there is no more constraint on
the k̂ field. f̃N is a Monte Carlo estimate of f(x,ω) justified by Eq. D.9. The integral formulation
displayed on the right side of the algorithm box is a strict formal translation of the algorithm
description. Note that when kn is always positive, Pj =

ka(xj)

k̂(xj)
, ka(xj)

k̂(xj)
1
Pj

= 1 and kn(xm)

k̂(xm)
1

1−Pm = 1 ;
the algorithm becomes identical to that of Fig. D.2.

scattering in confined geometries is provided in the following section. One of its
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important features is that the Monte Carlo weight of Eq. D.11 can take negative
values : kn

k̂
is negative each time kn is negative. So the proposed algorithm deals

rigorously with the occurrence of unexpected negative values of the null-collision
coefficient, but this is achieved at the price of increasing the weight-variance, therefore
lowering the convergence rate. This is quantitatively examined in the following section.

D.4 Practical implementation

The algorithm described in this section evaluates the stationary net-power density
A(x) at a location x within the volume, i.e. the balance between the radiative power
absorbed and the radiative power emitted locally, per unit volume :

A(x) =

∫

4π

hνcka(x) [f(x,ω)− s(x,ω)] dω (D.13)

We restrict ourselves to thermal emission under the assumption of local thermodyna-
mic equilibrium. Therefore s(x,ω) = f eq(x) and

A(x) =

∫

4π

hνcka(x) [f(x,ω)− f eq(x)] dω (D.14)

If the volume were still non-scattering and infinite as in Sec. D.3, A(x) could be
evaluated using an algorithm very similar to that of Eq. D.9, Eq. D.10 and Eq. D.11
(see also Fig. D.3). The only change would be that ω would be first sampled according
to an isotropic probability density function pΩ(ω) = 1

4π
, and the Monte Carlo weight

wj would be modified by multiplying it by 4πhνcka(x) and replacing f eq(xj) by
f eq(xj)− f eq(x). Eq. D.9, Eq. D.10 and Eq. D.11 would then become

A(x) =

∫

4π

pΩ(ω)dω

∫ +∞

0

pΛ0(λ0)dλ0

[
P1w1 + (1− P1)I1

]
(D.15)

Ij =

∫ +∞

0

pΛj(λj)dλj

[
Pj+1wj+1 + (1− Pj+1)Ij+1

]
(D.16)

wj = 4πhνcka(x)
ka(xj)

k̂(xj)

1

Pj
(f eq(xj)− f eq(x))

j−1∏

m=1

(
kn(xm)

k̂(xm)

1

1− Pm

)
(D.17)

Introducing multiple scattering can be performed by adding a branch to the collision
test, and sampling a new direction when true scattering occurs. When dealing with
opaque boundaries a test is added to check if a boundary is intersected before the
next collision, in which case a new binary sampling procedure is implemented to
either resume the algorithm, with a new sampled reflection direction, or stop the
algorithm and compute the Monte Carlo weight using the value of the equilibrium
distribution function at the surface impact. Altogether, the resulting algorithm is
a quite standard backward Monte Carlo algorithm corresponding to the following
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recursive formulation :

A(x) =

∫

4π

pΩ(ω)dω

∫ +∞

0

pΛ0(λ0)dλ0×




H(x1 ∈ B)

{
PE,1w1

+ (1− PE,1)
∫

2π
pR(ω0|ω1,x1)dω1I1

}
+

H(x1 ∈ V)





PA,1w1

+ PS,1
∫

4π
pS(ω0|ω1,x1)dω1I1

+ PN,1
∫

4π
δ(ω0 − ω1,x1)dω1I1









(D.18)

Ij =

∫ +∞

0

pΛj(λj)dλj×




H(xj+1 ∈ B)

{
PE,j+1wj+1

+ (1− PE,j+1)
∫

2π
pR(ωj |ωj+1,xj+1)dωj+1Ij+1

}
+

H(xj+1 ∈ V)





PA,j+1wj+1

+ PS,j+1

∫
4π
pS(ωj |ωj+1,xj+1)dωj+1Ij+1

+ PN,j+1

∫
4π
δ(ωj − ωj+1,xj+1)dωj+1Ij+1








(D.19)

wj = 4πhνcka(x)×[
H(γj=1)

ε(xj,ωm−1)

PE,j
(f eq(xj)− f eq(x)) +H(γj=3)

ka(xj)

k̂(xj)PA,j
(f eq(xj)− f eq(x))

]
×

j−1∏

m=1

[
H(γm=2)

1− ε(xm,ωm−1)

1− PE,m
+H(γm=4)

ks(xm)

k̂(xm)PS,m
+H(γm=5)

kn(xm)

k̂(xm)PN,j

]

(D.20)

where V is the volume of the considered system and B its boundary (Fig. D.4). The
locations xj+1 and directions ωj are defined in the same way as in Sec. D.3 with
the only difference that xj+1 = yj+1 when xj − λωj is outside V, where yj+1 is the
intersection with the boundary of the straight ray starting at xj in the direction −ωj

(see Fig. D.4). When xj belongs to B, ε(xj,ωj−1) is the local value of the emissivity
in the direction ωj−1, and pR(ωj−1|ωj ,xj) is the probability density of the reflection
direction ωj−1 for an incidence along ωj . In the absence of any specific convergence
difficulty, the branching probability PE,j (the probability that the algorithm stops
at the surface impact xj) can be taken as PE,j = ε(xj,ωj−1). In the expression of
the weight, γj = 1 if the algorithm stops at the boundary, γj = 2 if the optical
path sampling is continued backward after surface reflection, γj = 3 in case of
"absorption" within the volume, γj = 4 in case of true scattering and γj = 5 in case
of null-collision. The true originalities are the definition of the branching probabilities
PA,j, PS,j and PN,j when xj belongs to V (probabilities that the j-th collision is
an absorption, a true-scattering event, or a null-collision respectively), as well as
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x0 = x
•

ω0

x1•
ω1 = ω0

x2
•

ω2

x3
•

ω3

x4 = y4
•

ω4

x5 •

y5•

x4 − λ4ω4•V
B

Figure D.4 – yj+1 is the intersection with the boundary of the straight ray starting at xj in
the direction −ωj . xj+1 equals xj − λjωj if this location belongs to V. Otherwise xj+1 = yj+1. If
xj+1 ∈ V the collision is either a null-collision and ωj+1 = ωj (see j = 0 in the figure), or a true
scattering and ωj+1 is sampled according to the single scattering phase function (see j = 1 and
j = 2 in the figure), or an "absorption" and the algorithm stops (the exchange weight is computed,
see j = 4 in the figure). If xj+1 ∈ B the interaction with the boundary is either a reflection and
ωj+1 is sampled according to the directional reflectivity (see j = 3 in the figure), or an "absorption"
and the algorithm stops (the exchange weight is computed).

the Monte Carlo weight expressions. As argued in Sec. D.3, we suggest the use of
PA,j =

ka(xj)

ka(xj)+ks(xj)+|kn(xj)| , PS,j =
ks(xj)

ka(xj)+ks(xj)+|kn(xj)| and PN,j =
|kn(xj)|

ka(xj)+ks(xj)+|kn(xj)| .
Except for that, the algorithmic structure strictly corresponds to the application
of Skullerud and Woodcock’s strategies. Note however that although we essentially
play with probability choices, our proposition is nothing like an importance sampling
strategy. As detailed at the end of Sec. D.3, we do not propose to modify the
branching probabilities and change the Monte-Carlo weight accordingly ; we rather
extend the applicability range of standard null-collision algorithms by preserving
exactly the definitions of PA,j, PS,j and PN,j in the usual range, and generalizing
their definitions in order to handle rigorously the occurrences of k̂ < ka.

We now present a parametric study in order to evaluate the numerical behaviour
of the above presented algorithm. Monochromatic radiative budget densities are
evaluated at two locations within a simple academic configuration. The algorithmic
implementation is validated against a well mastered Monte Carlo algorithm, and the
code is then used to analyse how the convergence levels and the computation times
depend on the retained k̂ field. The considered system is a cube, of side 2L, with 0K
diffuse-reflecting faces of uniform emissivity ε, that are perpendicular to the x, y and
z axis of a Cartesian coordinate system originating at the center of the cube (see
Fig. D.5). The enclosed medium is heterogeneous both in temperature and optical
properties. The ka, ks and f eq fields are

ka(x, y, z) = ka,max

(
L− x

2L

)(
1−

√
y2 + z2

2L2

)
, (D.21)



212 Annexe D. Article [Galtier et al., 2013]

0•

z

−L
+

L
+

x
−L
+

L
+

y

−L
+

L
+

V

B

Figure D.5 – Considered system : a cube of side 2L, whose center is the Cartesian coordinate
system origin.

ks(x, y, z) = ks(x, y, z) = ks,max

(
L− x

2L

)(
1−

√
y2 + z2

2L2

)
(D.22)

and

f eq(x, y, z) = f eqmax

(
L− x

2L

)(
1−

√
y2 + z2

2L2

)
(D.23)

figuring an axisymmetric flame along the x axis (maximum temperature and maxi-
mum extinction along the axis, and a linear decay as function of the distance to the
axis, down to zero at the corners). The Henyey-Greenstein single-scattering phase
function is used with a uniform value of the asymmetry parameter g throughout the
field. For simplicity, k̂ is chosen uniform. As ka and ks take their maximum values at
the same location, kmax = ka,max+ks,max is the maximum value of the total extinction
coefficient and the ratio ρ = k̂

kmax
tells us whether negative values of the null-collision

coefficient will occur (ρ < 1) or not. Because of the shape of the retained field of
equilibrium distribution function, monochromatic radiative budgets are simply pro-
portional to f eqmax and the remaining numerically-meaningful free-parameters are (in
nondimensional form) : ρ, ka,maxL, ks,maxL, g and ε. The analysis will be performed
using g = 0 (isotropic scattering) and ε = 1 (black boundaries). The influence of g,
ε, as far as numerical behaviour is concerned, will then be briefly described at the
end of the section.

Tab. D.1 displays the simulated values of A(x) for x = [0, 0, 0] (the center of
the cube) and x = [−L, 0, 0] (the location of the maximum values of the ka, ks
and f eq fields), using 106 independant realizations, for ρ = 1, meaning that kn = 0
at x = [−L, 0, 0] and kn > 0 at all other locations (no negative values of the
null-collision coefficient). Also given are the associated standard deviations, σ, and
computation times, t. The columns labelled Aref and σref correspond to the simulation
results obtained with a standard Monte Carlo algorithm in which the problem of
inverting optical thicknesses is solved by fitting k = ka + ks using an accurate
spline decomposition. These solutions were only used to validate the implementation



D.4. Practical implementation 213

procedure : considering the values of σ and σref , A and Aref are indeed statistically
compatible. The relative uncertainty σ

A
indicates that the convergence level is good

for all the considered absorption and scattering optical thicknesses ( σ
A
is below 0.2%

in all cases). The computation times, that were measured without the use of any
parallelization procedure, are typical of standard Monte Carlo simulations.

More open is the question of choosing k̂, in particular the effect of modifying
the Monte Carlo weight in order to deal with negative values of the null-collision
coefficient when k̂ < k at some locations. This question is addressed by reproducing
the same simulations for different values of ρ, from ρ = 0.5 (i.e. k̂ is a faulty
overestimate of k, as low as 1

2
k at some locations) to ρ = 5 (on the contrary k̂ is a

large overestimate of k). Fig. D.6 displays the evolution with ρ of σ
A
, Fig. D.7 displays

the computation times, and Fig. D.8 displays the computation times required to
achieved a 1% accuracy. These results are interpreted as follows :
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Figure D.6 – Standard deviation as a function of ρ, ka,maxL, ks,maxL at (a) x0 = [0, 0, 0] and (b)
x0 = [−L, 0, 0]
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ka,maxL ks,maxL
A

4πka(x0)feqmax

σ
4πka(x0)feqmax

t(s) Aref
4πka(x0)feqmax

σref
4πka(x0)feqmax

0.1 0.1 -0.483813 8.52E-05 2.43 -0.483717 1.13E-05
0.1 1 -0.482031 8.97E-05 7.92 -0.481921 1.40E-05
0.1 3 -0.477997 9.90E-05 24.25 -0.477883 1.93E-05
0.1 10 -0.463027 1.27E-04 122.69 -0.463068 3.56E-05
1 0.1 -0.366086 2.09E-04 2.94 -0.365971 7.96E-05
1 1 -0.356169 2.13E-04 7.43 -0.356353 8.93E-05
1 3 -0.33585 2.20E-04 19.2 -0.335928 1.06E-04
1 10 -0.277205 2.28E-04 76.39 -0.27683 1.34E-04
3 0.1 -0.218989 2.21E-04 3.48 -0.218942 1.23E-04
3 1 -0.209261 2.18E-04 6.4 -0.209529 1.26E-04
3 3 -0.190256 2.10E-04 13.63 -0.190141 1.30E-04
3 10 -0.144073 1.84E-04 41.38 -0.143501 1.27E-04
10 0.1 -0.071271 1.19E-04 3.49 -0.07137 9.15E-05
10 1 -0.068662 1.15E-04 4.66 -0.068854 8.99E-05
10 3 -0.063501 1.07E-04 7.29 -0.063369 8.61E-05
10 10 -0.050674 8.49E-05 16.23 -0.050674 7.44E-05

(a)

ka,maxL ks,maxL
A

4πka(x0)feqmax

σ
4πka(x0)feqmax

t(s) Aref
4πka(x0)feqmax

σref
4πka(x0)feqmax

0.1 0.1 -0.977296 1.27E-04 2.24 -0.977336 2.58E-05
0.1 1 -0.97683 1.29E-04 6.18 -0.976679 2.79E-05
0.1 3 -0.975682 1.33E-04 15.3 -0.975767 3.22E-05
0.1 10 -0.974828 1.37E-04 44.9 -0.974733 4.36E-05
1 0.1 -0.822495 3.24E-04 2.38 -0.822111 1.97E-04
1 1 -0.822446 3.26E-04 5.13 -0.821846 2.03E-04
1 3 -0.823933 3.29E-04 10.75 -0.823994 2.14E-04
1 10 -0.83941 3.27E-04 26.32 -0.839533 2.29E-04
3 0.1 -0.658358 4.07E-04 2.22 -0.657242 3.64E-04
3 1 -0.66479 4.09E-04 3.73 -0.664704 3.62E-04
3 3 -0.67959 4.12E-04 6.67 -0.679703 3.58E-04
3 10 -0.72422 4.10E-04 14.49 -0.722886 3.42E-04
10 0.1 -0.544282 4.62E-04 1.98 -0.5438 4.60E-04
10 1 -0.551703 4.63E-04 2.47 -0.551153 4.57E-04
10 3 -0.567704 4.65E-04 3.54 -0.567366 4.48E-04
10 10 -0.61077 4.65E-04 6.76 -0.609865 4.27E-04

(b)

Table D.1 – Estimation, standard deviation and computation time obtained for 106 independant
realizations and for ρ = 1 at two probe locations : x0 = [0, 0, 0] (see table (A)) and x0 = [−L, 0, 0]
(see table (B)) for several values of the optical thicknesses ka,maxL and ks,maxL. The computation
was done with a processor "Intel Core i5 - 2,4GHz" without any parallelization.
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Figure D.7 – Computation time as a function of ρ, ka,maxL, ks,maxL at (a) x0 = [0, 0, 0] and (b)
x0 = [−L, 0, 0]
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Figure D.8 – Computation time in order to reach a 1% standard deviation as a function of ρ,
ka,maxL, ks,maxL at (a) x0 = [0, 0, 0] and (b) x0 = [−L, 0, 0]
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• Above ρ = 1, the standard deviation of the estimator is independant of ρ. This
is expected since no negative values of the null-collision coefficient occur : as
indicated from the start, standard null-collision algorithms can be rigorously
interpreted as only practical ways to sample collision-locations according to Beer
extinction. Adding supplementary null-collisions increases only the computation
time but changes nothing to the resulting sampling statistics.
• Below ρ = 1, the standard deviation of the estimator increases when increasing

the occurrence of negative values of the null-collision coefficient. Again, this is
expected since the handling of negative values of the null-collision coefficient is
achieved at the price of multiplying the Monte Carlo weight by the correction
term 4 +

−
k̂+2|kn|

k̂
. The module of this weight-correction factor is always greater

than unity and the factor is positive when absorption or true scattering is
retained, negative when null-collision is retained. If many scattering or null-
collision events occur along the optical path, in regions where kn < 0, before
the algorithm stops because of absorption, then the Monte Carlo weight can
take very high absolute values as it involves the product of a large number
or correction terms greater than unity. The convergence toward the exact
same solution of the radiative transfer equation is insured by the fact that
positive weights are compensated by negative ones, but the convergence rate
is smaller : much more statistical realisations are required to reach the same
accuracy levels when no negative values of the null-collision coefficient occur.
This is illustrated by the fact that for increasing values of the scattering optical
thickness combined with high values of the single-scattering albedo (see ksL = 3
and kaL = 0.1 in Fig. D.6), the standard deviation increases very fast when
decreasing ρ below unity. This effect is of course much stronger when x is right
at the center of the region where kn < 0 (see x = [−L, 0, 0]) than when optical
paths starts from a region where kn > 0 (see x = [0, 0, 0]).
• For a given number of statistical realisations, the computation times (see
Fig. D.7) decrease when decreasing the number of null-collisions, and this is
also true when decreasing kn below zero. This is a direct result of less collisions
occurring, but this does not wholly compensate the degradation in standard
deviation (see Fig. D.8). For a given relative accuracy, the required computation
time is then driven by the impact of ρ upon the standard deviation, and it
is of course greater as k̂ becomes a larger and larger overestimate of the true
extinction coefficient.

Altogether, the use of negative values of the null-collision coefficient is fully
relevant when the approximated upper-bound k̂ can be astutely designed, since the
convergence will be really reasonable : for k̂ ' 0.9k, the increase of the computing
effort should not be a concern (see Fig. D.8 (a)) except if domains where kn < 0 are
optically thick with a high single scattering albedo (see Fig. D.8 (b)). Accordingly,
most efforts design of k̂ should focus on avoiding the occurrences of such domains.
Bad approximates of the upper-bound (ρ << 1) would yield pathological behaviours,
as expected.

4. With the choices we made for PA, PS and PN , the correction terms in the weight expression
of Eq. D.17 verify the property ka

k̂PA
= ks

k̂PS
=
∣∣∣ kn
k̂PN

∣∣∣ = k̂+2|kn|
k̂
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The simulations performed with g 6= 0 and ε < 1 indicate that the shape of the
single scattering phase function has very little influence (the values of A are affected
but the numerical behaviour is unchanged), and that surface reflection acts like
scattering : because of multiple reflections, more null-collision or scattering events
can occur within the domain of negative null-collision coefficients before absorption
and standard deviation increases (although less than when increasing scattering).

D.5 Formal developments

This section is addressed to the reader interested by the formal significance of
null-collision algorithms. The physical meaning of null-collisions at the kinetic level
is quite trivial : they are additional collisions that change nothing to the overall
radiative transfer. But when looking at the corresponding integral formulations,
several observations can be made, that could be useful in the process of enhancing
statistical convergence. A renewed viewpoint can indeed be taken from which
null-collisions are only of secondary importance compared to the associated integral
reformulation. This reformulation alone suppresses the need for an optical-thickness
inversion procedure and meshless algorithms can therefore be designed without
introducing any null-collision. The next paragraph, entitled step 1, illustrates this
point. In step 2 we argue that it may still be useful to introduce a (non-strict)
overestimate k̂ of the extinction coefficient, but k̂ is not used for sampling collision
locations : it plays a role similar to that of a control variate [Hammersley et al., 1965],
allowing to get rid of sign alternations that would otherwise be sources of convergence
difficulties. In step 3 we finally show how standard null-collision algorithms can be
fully recovered by choosing to also make use of k̂ for free-path sampling as well as
for the weighting of branching tests. We advise however that this choice does not
entail optimized convergence features.

Step 1 - Our starting point is the observation that the initial radiative transfer
equation of Eq. D.1 at stationary state can be integrated backward along the line of
sight to give the following Fredholm equation :

f(x,ω) = f(x− Lω,ω) +

∫ L

0

[ka,λsλ − ka,λf(x− λω,ω)] dλ (D.24)

This equation is easy to demonstrate but its structure does not highlight the pictures
of transport physics, which is probably the reason why it is seldom mentioned in the
radiative transfer literature. Indeed, by comparison with Eq. D.3, no Beer extinction
appears and it is difficult to interpret physically the integration over space of the
local emission ka,λsλ. Of course, the exponentials are well recovered due to the
Fredholm structure of this equation (f appearing within the integral). Fredholm
equations are common in photon transport physics but it is worth mentioning that
they are usually the result of scattering or surface-reflection representations. In the
present context the fact that Beer extinction does not appear explicitly is a strong
advantage : the difficulties associated with the inversion of exponential extinctions
in heterogeneous media are automatically by-passed. Let us consider the particular
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case where f(x − Lω,ω) = 0. The same steps can then be followed as in Eq. D.6
and Eq. D.8, starting from Eq. D.24 instead of Eq. D.5, to give :

f(x,ω) =

∫ L0

0

pΛ0(λ0)dλ0

[
P1w1 + (1− P1)I1

]
(D.25)

with

Ij =

∫ Lj

0

pΛj(λj)dλj

[
Pj+1wj+1 + (1− Pj+1)Ij+1

]
(D.26)

where the only changes by comparison with Eq. D.9 and Eq. D.10 are that the j-th
free path is integrated between zero and Lj = L−∑j−1

m=0 λj, the probability density
function pΛj(λj) is now an arbitrary probability density on [0, Lj], and the Monte
Carlo weights are

wj = ka(xj)s(xj,ω)
1

Pj

1

pΛj−1
(λj−1)

j−1∏

m=1

[
−ka(xm)

1

1− Pm
1

pΛm−1(λm−1)

]
(D.27)

Apart from the free paths being integrated over finite intervals, which we will
comment later, the essential differences with the null-collision algorithm of section 2
are that no k̂ field has yet been introduced and that the successive weights alternate
signs (w1 > 0 ; w2 < 0 ; ...). In step 2 we argue that the first meaning and the main
interest of introducing k̂ is to break this sign alternation.

Step 2 - As detailed in the literature about exponential transforms
[Sarkar et Prasad, 1979, Turner et Larsen, 1997a, Turner et Larsen, 1997b], it is
shown in Sec. D.6.2 that any arbitrary positive scalar field k̂ can be introduced to
transform Eq. D.24 into

f(x,ω) = f(x− Lω,ω)exp

(
−
∫ L

0

k̂λdλ

)
+

∫ L

0

exp

(
−
∫ λ

0

dσk̂σ

)[
ka,λsλ +

(
k̂λ − ka,λ

)
f(x− λω,ω)

]
dλ

(D.28)

Very much like when introducing control variates to modify the convergence features
of Monte Carlo algorithms [Hammersley et al., 1965], we can play with the arbitrary
choice of the k̂ field :
• First, if k̂ > 0 the exponentials insure that improper integrals converge and
L may be extended to infinity to recover the same problem as in Sec. D.3 :
evaluating f(x,ω) in the particular case of an infinite medium. Eq. D.28
becomes

f(x,ω) =

∫ +∞

0

exp

(
−
∫ λ

0

k̂σdσ

)[
ka,λsλ + (k̂λ − ka,λ)f(x− λω,ω)

]
dλ

(D.29)
which is Eq. D.5 exactly, where the Dirac integration is solved (there is indeed no
more need to highlight the physical picture of a forward scattering equivalent).
Note that we only take the limit L → +∞ for didactic reasons and that all
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further reasoning can be reproduced using Eq. D.28 to address the question
of evaluating f(x,ω) in bounded domains. For instance, the term f(x −
Lω,ω)exp

(
−
∫ L

0
k̂λdλ

)
in Eq. D.28 is the one that allows the representation

of surface emission and surface reflection in Sec. D.4.
• Second, as in Sec. D.3, k̂ can be lower than ka. But, as much as possible, k̂

should still be chosen such that k̂ > ka at most locations. Indeed this ensures
that both ka,λsλ and (k̂λ − ka,λ)f(x− λω,ω′) in Eq. D.29 are positive terms,
with the direct consequence that Monte Carlo weights are strictly positive :
the convergence difficulties due to sign alternation vanish. The technical steps
of Eq. D.6 and Eq. D.8 can again be taken, this time to recover Eq. D.9 and
Eq. D.10 exactly, with the following new expression for wj (which is strictly
positive if k̂ − ka > 0) :

wj = ka(xj)exp

(
−
∫ λj−1

0

k̂(xj−1 − σω)dσ

)
s(xj,ω)

1

Pj

1

pΛj−1
(λj−1)

×
j−1∏

m=1

[(
k̂(xm)− ka(xm)

)
exp

(
−
∫ λm−1

0

k̂(xm−1 − σω)dσ

)
1

1− Pm
1

pΛm−1(λm−1)

]

(D.30)
where the pΛj(λj) probability densities and the Pj probabilities are now fully
arbitrary [Hammersley et al., 1965, De La Torre et al., 2014]. Note in particu-
lar that k̂ appears in the weight expression, but that pΛj and Pj can be chosen
independently of k̂.
• Third, choosing k̂ as close to ka as possible is useful, this time not as far as sta-

tistical convergence is concerned, but in terms of computational costs. Let us in-
deed admit that pΛj and Pj could be ideally chosen according to a zero-variance
strategy [De La Torre et al., 2014, Dauchet, 2012, Assaraf et Caffarel, 1999,
Hoogenboom, 2008]. If we temporary admit that k̂ is strictly greater than
ka at all locations, then zero-variance is obtained with

pΛj(λj) =
1

f(xj,ω)
exp

(
−
∫ λj

0

k̂(xj − σω)dσ

)
×

[
ka(xj+1)s(xj+1,ω) +

(
k̂(xj+1)− ka(xj+1)

)
f(xj+1,ω)

] (D.31)

and
Pj =

ka(xj)s(xj,ω)

ka(xj)s(xj,ω) +
(
k̂(xj)− ka(xj)

)
f(xj,ω)

(D.32)

(see Sec. D.6.3). Then only one sample is required to reach the exact solution
and the remaining question is the computation cost of the sampling procedure
itself. This cost is directly related to the average value of the recursion level :
the value of the index j at which the sampling algorithm is exited. This average
recursion level is obviously related to the value of Pj : there is ideally no
recursion when Pj = 1, which is reached when k̂ is strictly identical to ka.
Altogether, our conclusions match those of all previous publications : k̂ should



D.5. Formal developments 221

be greater than ka and should be as close to ka as possible. However, we reach
these conclusions without any reference to k̂ as an extinction coefficient to
be used for the sampling of collision locations. So, not only the constraint
k̂ > ka becomes non-strict (as illustrated in the previous sections), but it
is also no more required that the function τ̂(λ) =

∫ λ
0
k̂(x − σω,ω, t + σ

c
)dσ

be analytically invertible : all we need is that τ̂(λ) be easily evaluated as it
appears within the exponentials in the weight expression of Eq. D.30.

Step 3 - To recover the standard null-collision algorithm of Sec. D.3 (before
extension to negative kn values), it suffices to make the following choice for pΛj and
Pj (that were arbitrary up to now) :

pΛj(λj) = k̂(xj+1)exp

(
−
∫ λj

0

k̂(xj − σω)dσ

)
(D.33)

and
Pj =

ka(xj)

k̂(xj)
(D.34)

This choice is well guided by the physical pictures, but nothing motivates this parti-
cular choice in terms of statistical convergence. We have indeed already mentioned
that the ideally optimized choice (if it was practicable) would be that of Eq. D.31
and Eq. D.32, but for Eq. D.33 and Eq. D.34 to match Eq. D.31 and Eq. D.32,
it is required that f(xj,ω) ≈ f(xj+1,ω) ≈ s(xj,ω) ≈ s(xj+1,ω). This is a fair
approximation only in the limit of thermodynamic equilibrium and this strongly
limits the applicative potential.

Conclusions

Altogether, the null-collision concept was revisited, thinking more specifically of
radiative transfer applications. The corresponding algorithms introduce no specific
convergence difficulty, which is not surprising considering the well known similari-
ties between photon-transport and neutron or electron-transport, the two particle-
transport physics that motivated initially the introduction of null-collisions in Monte
Carlo path-tracking algorithms.

It was also shown, by two different formal means, how null-collision algorithms
provide exact unbiased statistical estimations of the solution of the radiative transfer
equation. In both cases (in Sec. D.3 and Sec. D.5), thanks to its linearity properties,
the radiative transfer equation was replaced by a rigorous integral-equivalent. In the
first case, the radiative transfer equation included null-collisions from the start ; in
the second case, null-collisions were introduced at the integral level.

Beside their meaning in terms of algorithmic validation, these integral formulation
efforts open two new fields of investigation. We first showed how null-collision
algorithms can be slightly transformed in order to deal with the unexpected occurrence
of negative values of the null-collision extinction coefficient. We checked that this
transformation does not introduce pathological convergence difficulties that would
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make it impractical, and our conclusion is that difficulties will only be encountered
when the domain of negative null-collision coefficients is optically thick with a high
single-scattering albedo. Absorption reduces the difficulty because it reduces the
number of times the Monte Carlo weight is multiplied by a negative correction term
of absolute value greater than unity. Pathological behaviours will therefore only be
encountered when k̂ is a poor overestimate of the true extinction coefficient, for
scattering dominated media.

If such difficulties were practically encountered, the question could first be
addressed by adjusting the branching probabilities PA, PS and PN (we made a
practical proposition for these probabilities, but we did not explore alternative choices).
Further investigations in this direction would then certainly consist in transforming
the integral structure. We suggest furthermore that this question should be enlarged
by considering the meaning of the integral structure highlighted in Sec. D.5. It
seems indeed that the meshless feature of null-collision algorithms has very little
to do with the null-collisions themselves, but rather with an underlying Fredholm
formulation that bypasses the question of dealing with path-integrated extinction-
coefficients appearing within the exponential function. Introducing null-collisions
could then be viewed mainly as a practical way to enhance statistical convergence,
very much like introducing control variates in standard Monte Carlo convergence-
enhancement techniques. Accordingly, we propose that alternative solutions could be
explored starting back from the primary Fredholm formulation. We only opened this
investigation field in the last section, but we are convinced that it is worth a close
attention.

D.6 Appendixes

D.6.1 Appendix 1 - Terminology and bibliographic entries

Null-collision algorithms have been developed independently in two branches of
physics : plasma physics and neutron transport. Consequently, according to disciplines
and authors, they are found under different designations : null-collisions, fictitious-
collisions, pseudo-collisions, null-events, Woodcock-tracking, delta-scattering, pseudo-
scattering, etc.

In the field of plasma physics, null-collision algorithms were first formulated
by Skullerud in 1968 [Skullerud, 1968] to sample ion/molecule collision times. This
publication led to further refinements in the same application field, for instance
[Lin et Bardsley, 1978], [Boeuf et Marode, 1982] or [Brennan, 1991]. These advances
have also directly inspired the community studying the dynamics of rarefied gases
[Koura, 1986].

Meanwhile, this technique was developed for neutron transport applications by
Woodcock and co-workers [Woodcock et al., 1965]. They are legitimately recognized
as the founders of null-collision algorithms in their field. A significant step was then
the formalisation effort reported in [Coleman, 1968], that enlarged the application
potential of Woodcock algorithm. Today, the so-called "Woodcock tracking" is
implemented in many transport simulation codes such as SERPENT [Leppänen, 2010]
or MORET [Forestier et al., 2008]. These ideas have also significantly impacted the



D.6. Appendixes 223

communities of image synthesis and tomography research [Rehfeld et Stute, 2008]
[Badal et Badano, 2009] [Tóth et Magdics, 2010].

D.6.2 Appendix 2 - Exponential transform

In the literature about exponential transforms [Sarkar et Prasad, 1979,
Turner et Larsen, 1997a, Turner et Larsen, 1997b], a new distribution function
g(x,ω) = f(x,ω)exp

(∫ L
0
k̂σdσ

)
is introduced and is reported in transport equations

such as Eq. D.1 to get (here in the particular case of stationary radiation in a
non-scattering medium)

ω.∇g(x,ω) =
[
k̂(x)− ka(x)

]
g(x,ω) + ka(x)s(x,ω)exp

(∫ L

0

k̂σdσ

)
(D.35)

The problem is then solved in g instead of f , using Monte Carlo approaches, and
the arbitrary k̂ field is adjusted in order to minimize the variance of the estimator
(essentially using adjoint formulation similar to that of the zero-variance literature).
Here, we build a Fredholm equation starting from Eq. D.35 (as in Step 1) :

g(x,ω) = g(x−Lω,ω) +

∫ L

0

dλ
[
k̂λ − ka,λ

]
g(x− λω,ω) + ka,λsλexp

(∫ L−λ

0

k̂σdσ

)

(D.36)
Reporting the expression of g(x,ω) = f(x,ω)exp

(∫ L
0
k̂σdσ

)
in Eq. D.36 leads to

Eq. D.28.

D.6.3 Appendix 3 - Zero-variance strategy

In the Monte Carlo literature, zero-variance refers to algorithms such that the
Monte Carlo weight is strictly and systematically equal to the quantity to be estimated
independently of the sampling occurrences. This corresponds to ideal convergence in
the sense that perfect convergence is obtained with a single Monte Carlo sampling
event. The design of such algorithms is always part of pure-theoretical reasoning and
can be quite tedious. Here, starting from Eq. D.29 in the restrictive case of k̂ > ka
(so that, all terms are positive), such an algorithm can be easily designed using only
an ideally optimized importance sampling procedure. Indeed, a random variable Λ of
probability density function pΛ on [0,+∞] can be introduced to give

f(x,ω) =

∫ +∞

0

pΛ(λ)dλw(λ) (D.37)

with

w(λ) =
1

pΛ(λ)
exp

(
−
∫ λ

0

k̂σdσ

)[
ka,λsλ +

(
k̂λ − ka,λ

)
f(x− λω,ω)

]
(D.38)
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and w(λ) is equal to f whatever the sampled value of λ as soon as

pΛ(λ) =
1

f(x,ω)
exp

(
−
∫ λ

0

k̂σdσ

)[
ka,λsλ +

(
k̂λ − ka,λ

)
f(x− λω,ω)

]
(D.39)

This is Eq. D.31 exactly, except for recursive notations.
If we now want that the algorithm branches between pure absorption and null-

collisions (to recover the algorithmic structure of Eq. D.9 and Eq. D.10), it suffices
to introduce an absorption probability P and write

f(x,ω) =

∫ +∞

0

pΛ(λ)dλ {Pwa(λ) + (1− P )wn(λ)} (D.40)

with

wa(λ) =
1

pΛ(λ)
exp

(
−
∫ λ

0

k̂σdσ

)
ka,λsλ
P

(D.41)

and

wn(λ) =
1

pΛ(λ)
exp

(
−
∫ λ

0

k̂σdσ

) (k̂λ − ka,λ
)
f(x− λω,ω)

1− P (D.42)

We keep the previous choice for pΛ (Eq. D.39), and we still want to achieve wa(λ) =
wn(λ) = f(x,ω), then we get

P =
ka,λsλ

ka,λsλ +
(
k̂λ − ka,λ

)
f(x− λω,ω)

(D.43)
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E.1 Abstract

The Monte-Carlo method is often presented as a reference method for radiative
transfer simulation when dealing with participating, inhomogeneous media. The
reason is that numerical uncertainties are only of a statistical nature and are accurately
evaluated by measuring the standard deviation of the Monte Carlo weight. But
classical Monte-Carlo algorithms first sample optical thicknesses and then determine
absorption or scattering locations by inverting the formal integral definition of
optical thickness as an increasing function of path length. This function is only

1. http://www.sciencedirect.com/science/article/pii/S0022407313002483
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seldom analytically invertible and numerical inversion procedures are required. Most
commonly, a volumic grid is introduced and optical properties within each cell are
replaced by approximate homogeneous or linear fields. Simulation results are then
sensitive to the grid and can no longer be considered as references.We propose a
new algorithmic formulation based on the use of null-collisions that eliminate the
need for numerical inversion : no volumic grid is required. Benchmark configurations
are first considered in order to evaluate the effect of two free parameters : the
amount of null-collisions, and the criterion used to decide at which stage a Russian
Roulette is used to exit the path tracking process. Then the corresponding algorithm
is implemented using a development environment allowing to deal with complex
geome- tries (thanks to computer graphics techniques), leading to a Monte Carlo code
that can be easily used for validation of fast radiative transfer solvers embedded in
combustion simulators. “Easily” means here that the way the Monte Carlo algorithm
deals with both the geometry and the temperature/pressure/concentration fields is
independent of the choices made inside the combustion solver : there is no need for
the design of a new path- tracking procedure adapted to each new CFD grid. The
Monte Carlo simulator is ready for use as soon as combustion specialists provide a
localization/interpolation tool defining what they consider as the continuous input
fields best suiting their numerical assump- tions. The radiation validation tool
introduces no grid in itself

Keywords : Monte Carlo ; Null-Collision ; Heterogeneous Media ; Integral formu-
lation ; Combustion

E.2 Introduction

Industrial applications, such as combustion processes, require radiative transfer
modeling, often coupled with other energy transfer mechanisms. Numerical radiative
transfer solvers used in such applications need to reach the best compromise between
numerical accuracy and computation cost. These tools also need validation, and
therefore reference numerical methods have to be used. The Monte-Carlo method
(MCM) is known to be one of these reference methods. Like all other methods,
MCM evaluates numerically the solution of the radiative transfer equation (RTE)
and its “reference” status is only due to the existence of a rigorous measure of its
uncertainty : from its statistical nature, MCM allows the systematic calculation of a
standard deviation associated to each numerical result, and this standard deviation is
translated into a numerical uncertainty thanks to the central limit theorem. However,
designing Monte-Carlo algorithms to be used in complex geometries has long been
a quite challenging task, mainly because of prohibitive computational costs. Using
MCM to produce references and validate the radiative parts of heat-transfer or
combustion solvers was therefore hardly feasible outside academic configurations.
Recent developments, such as the work reported by Zhang at al. [Zhang et al., 2009,
Zhang, 2011], show that this is now practically feasible whatever the complexity
of industrial geometries. We here propose to further develop such tools using a
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meshless Monte-Carlo algorithm based on the null-collision technique introduced in
[Galtier et al., 2013].

Monte-Carlo algorithms dealing with participating media [Farmer et Howell, 1998,
Modest, 2013, De Guilhem De Lataillade et al., 2002b, Eymet et al., 2005,
Eymet et al., 2004, Eymet et al., 2009, De La Torre et al., 2014] are commonly
formulated so that they sample the optical thickness. One major feature of such
algorithms is that a correspondence must be established between any value of the
optical thickness, along any optical path, and the physical position associated to
this optical thickness within the heterogeneous participating medium. As optical
thickness is an increasing function of path-length, this inversion is always possible,
without approximation, using standard numerical inversion techniques, but these
techniques rapidly require prohibitive computation powers. A possibility to speed-up
the inversion procedure is the use of a volumic grid [Siegel et al., 2011] together with
simple enough approximate profiles for optical properties within each cell, allowing
an analytic inversion of position from optical thickness. However, introducing such a
volumic grid involves an unwanted consequence : simulation results depend on the
retained particular grid (as with any deterministic approach), and MCM looses its
“reference” status.

Concerning volume discretization, let us clarify some vocabulary to be used
throughout the text. The question that we address is the production of reference
solutions of the RTE for temperature, pressure and concentration fields provided by
combustion specialists wishing to validate their radiation solvers. These input fields
may have any form. They may be analytic when academic benchmarks are considered,
they may be based on local measurements at structured or unstructured grid points
in experimental contexts, or based on the structured or unstructured outputs of
fluid-mechanics/chemistry codes in pure numerical contexts. In all cases the input
fields will be complete, meaning that temperature, pressure and concentrations are
defined at all locations. In experimental and numerical contexts, this requires that
combustion specialists provide not only the grid point data, but also a meaningful
interpolation model to complete the fields throughout the volume (meaningful with
regard to fluid mechanics and chemistry). Reference RTE solutions will be produced
without discussing this interpolation model, and the corresponding algorithm will be
called a meshless algorithm if it is fully independent of the input-field type, and if it
introduces no discretization procedure in itself.

Recent methodological developments [Galtier et al., 2013, Rehfeld et Stute, 2008,
Badal et Badano, 2009] indicate that it is possible to use so-called null-collision
Monte-Carlo algorithms in the field of radiative transfer simulation. One major
characteristic of null-collision algorithms (NCA) is that they do not require any
volumic grid. They are no longer formulated using optical thicknesses. Path-length
(and thus position) is directly sampled according to a probability density function
of the form pΛ(λ) = exp

(
−
∫ l

0
k̂(σ)dσ

)
, that is to say according to a Beer-Lambert

extinction law in which the true extinction coefficient k is replaced by an overestimate
k̂, chosen in such a way that sampling pΛ is mathematically straightforward. In
neutron and plasma physics, where the method was first introduced, the k̂ field
was most commonly chosen uniform (or uniform by parts) and λ was sampled as
λ = 1

k̂
log(r), with r a uniformly sampled value in the unit interval. Of course,
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sampling λ using an overestimate of the true extinction field introduces a bias, but
this bias is compensated by the use of a rejection test : when rejection occurs the
path is continued straightforward as if no collision occurred.

These algorithms can be interpreted (and rigorously justified) using simple
physical pictures. Let us note kn = k̂ − k. This additional extinction coefficient,
kn, can be interpreted as due to null-collisions, i.e. collisions that lead to a pure
forward scattering event. Obviously such additional collisions change nothing to the
radiative transfer problem. However, kn can be chosen in such a way that the new
total extinction coefficient k̂ = k + kn has a simple shape (for instance uniform)
and allows easy path-length sampling procedures. But then, when a collision occurs,
it can either be a true collision, with probability P = k

k̂
, or a null collision, with

probability 1−P , and this is how the rejection method is justified : if a null-collision
occurs, the path is continued straightforward as if no collision occurred.

The only reported practical difficulty is the choice of the k̂ field (or of kn as they
are directly related). Indeed k̂ must be greater than k at all locations, but it must
also be as close to k as possible in order to avoid that too many rejections occur,
which would lead to computationally expensive sequences of path-length sampling
and forward continuations until a true collision occurs. This compromise can be
hard to reach, even in the most standard combustion configurations because of the
flame heterogeneities as well as the non-linear dependence of gaseous absorption
with temperature, pressure and concentrations. But most of this difficulty vanishes
thanks to the theoretical developments of [Galtier et al., 2013] that allow to handle
rigorously the occurrence of negative null-collisions : the authors show indeed that
the best choice is still that k̂ be as close an overestimate of k as possible, but such a
close adjustment can now be achieved without strictly excluding that k̂ < k in some
parts of the field.

We present hereafter an implementation of a slightly modified version of the null-
collision algorithm (that of [Galtier et al., 2013]). It is designed for radiative transfer
simulation in combustion processes. The corresponding code has been developed using
the Mcm3D library, within the EDStaR development environment [Starwest, 2014a,
De La Torre et al., 2014]. Its purpose is to compute the radiative budget density
at a number of selected locations within any given geometric configuration, with a
systematic control of the numerical uncertainty (of course not of the uncertainty
due to the physical model itself, in particular to absorption properties). Sec. E.3
gives all the details of the proposed null-collision algorithm for a both absorbing and
scattering semi-transparent medium, enclosed by opaque reflective surfaces. Sec. E.4
and Sec. E.5 present simulation examples. In Sec. E.4, an academic configuration is
considered. The new null-collision algorithm is first validated against the benchmark
simulation results of [Galtier et al., 2013]. Then we analyze its behavior, both in
terms of convergence and computation time, when modifying two free parameters :
the amount of null-collisions, and the criterion used to decide at which stage a Russian
Roulette is used to exit the path tracking process. In Sec. E.5, the same algorithm
is used for simulation of radiation within the true geometry of a well referenced
laboratory combustion-chamber, as an example of the type of validation procedures
that are required when using the PRISSMA code as part of the combustion simulation
code AVBP[Poitou et al., 2012].
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Let us point out a very essential choice made throughout the present text. Null
collision algorithms allow to avoid the design of path-tracking procedures computing
intersections between rays and large meshes. They may therefore be considered in
two distinct practical contexts :
• when there is a need for speeding up Monte Carlo solvers (only the intersections
with the boundary are computed) ;
• when there is a need for flexibility (designing Monte Carlo solvers independently
of the mesh structures, using them in distinct contexts without additional
specific development).

We are here attempting to answer the second need only. Our purpose is to provide
a reference-simulation methodology that combustion specialists may use whatever
the numerical choices made inside their CFD and chemistry solvers. The first need
is undeniably worth some close attention, but this requires that comparisons are
performed against the best up-to-date path-tracking algorithms (that the present
authors do not know with enough details) in order to evaluate clearly the respective
benefits and losses of computing many intersections, versus dealing with repeated
null-collision events.

E.3 Algorithm

The purpose of the proposed algorithm is to compute Sr(x0) =
∫
IR
Sr,ν(x0)dν,

the radiative budget density at any location x0 within the emitting, absorbing
and scattering volume, considering the whole thermal infrared spectral range. The
involved optico-geometric and spectral integration will be considered successively.
The optico-geometric integration is presented in Sec. E.3.1. For didactic reasons
this first presentation excludes the occurrence of negative values of the null-collision
coefficient (k̂ is always greater than k) and Sec. E.3.2 generalizes the proposition to
any k̂. These two subsections are sufficient for the monochromatic parametric study
of Sec. E.4. Spectral integration is presented in Sec. E.3.3 and the complete resulting
null-collision algorithm is used in the combustion example of Sec. E.5.

E.3.1 Optico-geometric integration

In [Galtier et al., 2013], a reverse path-tracking algorithm is proposed for the
evaluation of Sr,ν(x0) in which a very standard null-collision approach is used :
branching probabilities are used to select either an absorption, a scattering event,
or a null-collision. In this algorithm, when absorption occurs, the optical path is
interrupted and the Monte Carlo weight is computed using the emission properties
at the collision location. Very similarly, branching probabilities are used when a
boundary is encountered, and either reflection occurs and the optical path is conti-
nued, or absorption occurs and the optical path is interrupted, the Monte Carlo
weight being computed using the local surface emission properties (see the third
section of [Galtier et al., 2013]). As far as surface interaction is concerned, it is well
established that various Monte Carlo strategies can be preferred to the simple absorp-
tion/reflection branching test, a test that is commonly named a Russian Roulette.
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Instead of using this Russian Roulette, the fraction of absorbed photons can be
computed (according to the surface absorptivity), their contribution to the addressed
quantity can be evaluated and stored (as a first contribution to the Monte Carlo
weight), and the remaining fraction can be reflected, continuing the path-following
procedure until an extinction criterion is reached (such a strategy can be found in
the literature under the names of energy-partitioning [Shamsundar et al., 1973] 2 or
pathlength method [Farmer et Howell, 1998]. When successive reflections have led
to an extinction stronger than this criterion, either the algorithm is stopped (but
then numerical errors are introduced that need to be considered in addition to the
statistical uncertainty), or the Russian Roulette is recovered in order to ensure that
the algorithm ends without any statistical bias. The algorithm presented hereafter
is a strict application of such a strategy to the algorithm of [Galtier et al., 2013],
however it is applied not only to the absorption/reflection branching tests, but also
to the absorption/scattering/null-collision branching tests. Of course, considering
our objective to produce reference simulation results for validation of other radiation
solvers, after the extinction criterion is reached, we retain the choice of recovering
the Russian Roulette, rather than truncating the path-integrals, in order to ensure
that no statistical bias is introduced and that the displayed standard deviations
can be faithfully interpreted as numerical uncertainties. Hereafter, the extinction
criterion is denoted by ζ and the remaining fraction after j collisions is denoted by
ξj (at the beginning, when no collision has yet occurred, ξ0 = 1, when the j + 1th

collision takes place in the medium ξj+1 = ξj(1− ka(xj+1)

k̂(xj+1)
) and when it occurs on the

boundary ξj+1 = ξj(1− ε(xj+1)) and so on until ξj < ζ).
The resulting algorithm is fully described in the Fig. E.1. The starting point is the

sampling of a direction ω0 at probe location x0 (step A2 of Fig. E.1), the computation
will loop on the "energy partitioning" branch (B1-B16 ) until the criterion ζ is reached.
More precisely, in each loop, a free path length is sampled (B1 ) according to the
modified Beer probability density function pΛ(λ) = k̂(x−λω)exp

(∫ λ
0
k̂(x− σω)dσ

)
.

The collision location is then computed : either it occurs in the medium (B3 ) or
on the boundary (B12 ). If it occurs in the medium, the absorption contribution
is added to the Monte-Carlo weight (B4 ), then a standard Bernoulli trial is used
to determine if the path-following will continue according to a scattering event
or a null-collision (B5-B7 ) : a number rj+1 is uniformly sampled in [0, 1] and is
compared to the scattering probability. In both cases, the new value of the factor
ξj+1 and the corresponding new direction ωj+1 are computed (B8-B11 ). If the
collision occurs on the boundary, the absorption contribution is taken into account
for the Monte-Carlo weight calculation (B13 ), the value of ξj+1 is actualized (B14 )
and a reflection direction is sampled (B15 ). Once this new direction (caused by
scattering, null-collision or reflection) is known the algorithm loops to step A3. These
loops will continue until the extinction criterion ζ is reached (ξj+1 < ζ), in which
case the algorithm switches to the "Russian Roulette" one (C1-C18 ) introduced in

2. Originally, this concept was introduced to compute the apparent emittance of isothermal-
walled cavities by taking into account, in a deterministic way, the geometric fraction passing through
an aperture at each reflection. Nowadays, the term “energy-partitioning” commonly refers to surface
reflection and attenuation by participating media the way we reported it [Wang et Modest, 2007a].
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Figure E.1 – Description of the proposed algorithm. It follows a energy-partitioning strategy
until the extinction term ξ is less than a fixed criterion ζ in which case it switches to the algorithm
introduced in [Galtier et al., 2013].
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[Galtier et al., 2013] where the Monte-Carlo weight expression is slightly modified
to consider the extinction associated to the previous "energy-partitioning" branch.

As all Monte-Carlo algorithms, this one has been designed through a formal
integral work. The major steps of such a work are described below for an infinite
medium. Walls are ignored here to lighten the mathematical formalism, but their
introduction would not lead to major difficulties, it would just add a new branching
test to determine if the collision occurs on boundary or in the media.

The addressed quantity is

Sr,ν(x0) =

∫

4π

ka(x0) [I(x0,ω0)−B(x0)] dω0 (E.1)

where I(x0,ω0) is the incoming specific intensity (at location x0 is the direction ω0),
and B(x0) is the equilibrium or black-body specific intensity at the temperature
of the medium at x0. The only difficulty lies in I(x0,ω0) that we obtain using the
following recursive integral expression :

I(xj,ωj) =

∫ +∞

0

dλjexp

(
−
∫ λj

0

ka(xj − σjωj) + ks(xj − σjωj)dσj

)

×
[
ka(xj+1)B(xj+1) + ks(xj+1)

∫

4π

pS(ωj |ωj+1,xj+1)I(xj+1,ωj+1)dωj+1

]

(E.2)

with xj+1 = xj − λjωj and pS the single scattering phase function. Eq. E.2 is the
formal solution of the stationary radiative transfer equation

ω.∇I(x,ω) = −
[
ka(x)+ks(x)

]
I(x,ω)+ka(x)B(x)+

∫

4π

ks(x)I(x,ω′)pS(ω|ω′,x)dω′

(E.3)
The introduction of null-collisions in this differential equation consists in adding
−kn(x)I(x,ω) +

∫
4π
kn(x)I(x,ω′)δ(ω − ω′,x)dω′ to the right hand side. The Dirac

distribution δ implies
∫

4π
kn(x)I(x,ω′)δ(ω−ω′,x)dω′ = kn(x)I(x,ω) which ensures

that the added quantity is null and therefore that the following modified radiative
transfer equation has the exact same solution as Eq. E.3 :

ω.∇I(x,ω) =−
[
ka(x) + ks(x) + kn(x)

]
I(x,ω) + ka(x)B(x)

+

∫

4π

ks(x)I(x,ω′)pS(ω|ω′,x)dω′ +

∫

4π

kn(x)I(x,ω′)δ(ω − ω′,x)dω′

(E.4)
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The formal solution of this new radiative transfer equation is now

I(xj,ωj) =

∫ +∞

0

dλjexp

(
−
∫ λj

0

k̂(xj − σjωj)dσj

)[
ka(xj+1)B(xj+1)

+ ks(xj+1)

∫

4π

pS(ωj |ωj+1,xj+1)I(xj+1,ωj+1)dωj+1

+ kn(xj+1)

∫

4π

δ(ωj − ωj+1,xj+1)I(xj+1,ωj+1)dωj+1

]
(E.5)

which can be rewritten

I(xj,ωj) =

∫ +∞

0

k̂(xj+1)exp

(
−
∫ λj

0

k̂(xj − σjωj)dσj

)
dλj

[
ka(xj+1)

k̂(xj+1)
B(xj+1)

+
ks(xj+1)

k̂(xj+1)

∫

4π

pS(ωj|ωj+1,xj+1)I(xj+1,ωj+1)dωj+1

+
kn(xj+1)

k̂(xj+1)

∫

4π

δ(ωj − ωj+1,xj+1)I(xj+1,ωj+1)dωj+1

]

(E.6)

This is almost a formal translation of the algorithm described in Fig. E.1 for an infinite
medium (except that in the algorithm of Fig. E.1, Sr,ν(x0) is directly computed
whereas we here focus on I(x0,ω0)). Indeed, it suffices to introduce a scattering
branching probability Ps to recover the "Energy-Partitioning" branch :

I(xj,ωj) =

∫ +∞

0

k̂(xj+1)exp

(
−
∫ λj

0

k̂(xj − σjωj)dσj

)
dλj

[
ka(xj+1)

k̂(xj+1)
B(xj+1)

+Ps(xj+1)
ks(xj+1)

k̂(xj+1)Ps(xj+1))

∫

4π

pS(ωj|ωj+1,xj+1)I(xj+1,ωj+1)dωj+1

+(1− Ps(xj+1))
kn(xj+1)

k̂(xj+1)(1− Ps(xj+1))
I(xj+1,ωj+1 = ωj)dωj+1

]

(E.7)

Algorithmically, Ps is interpreted as a test, since it can be expressed as Ps =∫ 1

0
H(Ps − r)dr where H is the Heaviside function. Concretely, r is numerically

sampled, to determine the branch to follow (the scattering one if r < Ps or the
null-collision one otherwise). However, since this "Energy-Partitioning" branch
loops endlessly, we also need to recover the recursive integral formulation of
[Galtier et al., 2013] ("Russian Roulette" branch of Fig. E.1) by introducing comple-
mentary absorption/scattering/null-collision branching probabilities (respectively Pa,
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Ps and Pn :

I(xj,ωj) =

∫ +∞

0

k̂(xj+1)exp

(
−
∫ λj

0

k̂(xj − σjωj)dσj

)
dλj

×





Pa(xj+1)
ka(xj+1)

k̂(xj+1)Pa(xj+1)
B(xj+1)

+Ps(xj+1)
ks(xj+1)

k̂(xj+1)Ps(xj+1))

∫

4π

pS(ωj|ωj+1,xj+1)I(xj+1,ωj+1)dωj+1

+Pn(xj+1)
kn(xj+1)

k̂(xj+1)(Pn(xj+1))
I(xj+1,ωj+1 = ωj)dωj+1





(E.8)
where Pa, Ps and Pn are now algorithmically interpreted as tests (as for Ps in
Eq. E.7). The whole Monte-Carlo weight of a realization of this algorithm (still
without boundaries) is then given by

wi =

j1,max∑

j=0

[
ka(xj)

k̂(xj)
B(xj,ωj)

j−1∏

m=0

[
H
(
γs,m

) ks(xj)

k̂(xj)Ps(xj)
+H

(
γn,m

) kn(xj)

k̂(xj)(1− Ps(xj))

]]

+B(xjmax ,ωjmax)

j1,max∏

m=0

[
H
(
γs,m

) ks(xj)

k̂(xj)Ps(xj)
+H

(
γn,m

) kn(xj)

k̂(xj)(1− Ps(xj))

]

(E.9)
where the subscript j1,max is the index of the last collision of the "Energy-partitioning"
branch and jmax the index of the last absorption, which ends the algorithm. H(γs,m)
equals 1 if the mth collision is a scattering event, 0 otherwise. In the same way,
H(γn,m) equals 1 if the mth collision is a null-collision, 0 otherwise.

The estimation Ĩ of I(x0,ω0)using N independent realizations is then :

Ĩ =
1

N

N∑

i=1

wi (E.10)

and the corresponding standard deviation is then evaluated :

σ =
1

N − 1

√√√√ 1

N

N∑

i=1

[
w2
i − Ĩ2

]
(E.11)

E.3.2 Extension to negative null-collision coefficients

Up to now, for didactic reasons, we described an algorithm only dealing with
positive values of the null-collision coefficient. However, it is possible to extend
its scope to negative ones through slight modifications. According to the proposal
made in [Galtier et al., 2013], negative null-collisions coefficients can be admitted
by introducing new arbitrary probabilities of absorption/scattering/null-collision
occurrences. Concretely, it results in modifying some steps of the preceding algorithm :
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• In step B6 of Fig. E.1, we choose to define the new probability Ps as Ps =
ks(xj+1)

ks(xj+1)+|kn(xj+1)|
• Similarly, in step C6, the new probabilities are chosen as : Pa =

ka(xj+1)

ka(xj+1)+ks(xj+1)+|kn(xj+1)| , Ps =
ks(xj+1)

ka(xj+1)+ks(xj+1)+|kn(xj+1)| and Pn =
|kn(xj+1)|

ka(xj+1)+ks(xj+1)+|kn(xj+1)| .

• This leads to a modification of the ξj+1 expressions. They become ξj+1 =

ξj
ka(xj+1)

k̂(xj+1)Pa
for the absorption branch (C7 ), ξj+1 = ξj

ks(xj+1)

k̂(xj+1)Ps
for the scattering

one (C9 ) and ξj+1 = ξj
kn(xj+1)

k̂(xj+1)Pn
for the null-collision branch (C11 ).

These new arbitrary probabilities allow to get rid of the constraint that the k̂
field is a strict upper bound of k. They lead strictly to the algorithm of Sec. E.3.1
when k̂ > ka + ks and to a legible extension when k̂ < ka + ks.

E.3.3 Spectral integration

Starting from the above described algorithm, spectral integration of the mono-
chromatic radiative budget can be simply performed by adding a procedure in which
frequency is sampled according to any probability density function pν(ν) on the
considered spectral interval I. This is justified by writing

Sr(x0) =

∫

I
Sr,ν(x0)dν =

∫

I
pν(ν)dν

Sr,ν(x0)

pν(ν)
(E.12)

which tells us that all what is required is sampling ν according to pν , and dividing
by pν(ν) the Monte Carlo weight of Eq. E.9. But practically, the procedure is
slightly more difficult because only very few attempts have been made to perform
Monte Carlo integrations starting from the high-resolution absorption line-spectra
of combustion gases over the whole infrared [Wang et Modest, 2007b, Fomin, 2006].
In most cases, "reference” Monte Carlo simulations are still performed using k-
distribution approaches, together with the correlated-k assumption (or the fictitious-
gas correlated-k assumption) for representation of spectral heterogeneities. This is
the approach that we retain here, which imposes that instead of sampling frequency,
the algorithm starts by sampling a narrow-band index i according to a narrow-band
probability set (PI,1, PI,2...PI,N) where N is the number of narrow frequency-bands
Ii, of width ∆νi, required to cover the whole spectral range : I = I1UI2...IN . Then
a discrete-k index j is sampled according to a probability set (PK,i,1, PK,i,2...PK,i,M),
where M is the number of discrete-k values, within each narrow band, chosen
in accordance with a Gaussian-quadrature of weights (µ1, µ2...µM). The optico-
geometric algorithm of Sec. E.3.1 is unchanged, replacing only the local value of the
monochromatic absorption-coefficient ka by the local value of the j-th discrete-k, ka,i,j ,
within the i-th narrow-band, and using the local scattering properties corresponding
to the i-th narrow band 3. This is the direct algorithmic translation of Eq. E.12 being

3. Scattering properties are assumed independent of frequency within each band : this is part
of the narrow-band assumption, allowing the re-ordering of absorption-coefficients and the formal
definition of k-distributions in their original sense. Note that multiple-dimension re-ordering, such
as that of [André et Vaillon, 2012], could allow to relieve this constraint.
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approximated as :

Sr(x0) '
N∑

i=1

M∑

j=1

Sr(i, j)µj∆νi (E.13)

where Sr(i, j) is the monochromatic budget obtained by using the Planck function
value of the i-th band and the j-th value of the discrete absorption coefficients, i.e.
ka,i,j . Introducing the two probability sets (PI,1, PI,2...PI,N ) and (PK,i,1, PK,i,2...PK,i,M )
we get :

Sr(x0) =
N∑

i=1

PI,i

M∑

j=1

PK,i,j

{
Sr(i, j)µj
PI,iPK,i,j

∆νi

}
(E.14)

This indicates that the Monte Carlo weight of Eq. E.9 must be replaced by the
same weight multiplied by µi∆νi and divided by PK,i,jPI,i.

The probability sets may be chosen arbitrarily : for instance identical probabilities
for (PI,1, PI,2...PI,N), i.e. PI,i = 1/N , and PK,i,j = µj. But they can also be chosen
on the basis of analytic estimations of the radiative budget at the probe location.
The choice will only have consequences in terms of statistical uncertainties and
this question is only worth a detailed attention when it is observed that producing
accurate solutions requires unpractical computation times. In such cases, it may be
useful to consider the work reported in [Dauchet et al., 2013], concerning the practice
of the zero-variance concept, their studied solar receiver being close to combustion
devices both as far as spectral integration and geometry-complexity requirements are
concerned. As far as we are concerned, in Sec. E.5, we will use a very simple model
assuming that Sr(x0) = 4πka,νB(x0), which corresponds to the optically thin limit
with 0K surfaces. The only role of this model is to helps us choose the probability
sets as :

PI,i =
∆νi ¯ka,i∑N
q=1 ∆νq ¯ka,q

(E.15)

and
PK,i,j =

µjka,i,jµi
¯ka,i

(E.16)

where ¯ka,i =
∑M

j=1 µjka,i,j is the average value of the absorption coefficient within
the i-th narrowband. Modifying this choice would only impact the convergence rate
but not the final simulation result.

For a better representation of heterogeneities, it is often very efficient (at least for
most combustion applications) to treat separately the various absorbing molecular
species. Instead of using a single k-distribution for the mixture, as in the above pre-
sentation, a separate k-distribution is introduced for each gas and these distributions
are assumed independent [Taine et Soufiani, 1999]. Practically, this implies simply
that a PK probability set is introduced for each gas and is used to sample an index j
independently for each gas. The absorption coefficient is then the sum of the ka,i,j
of each gas, and the Monte Carlo weight is multiplied by the product of all PK,i,j.
In the case of two gases, say H2O and CO2 as in Sec. E.5, this can be pictured by
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Eq. E.14 becoming

Sr(x0) =
N∑

i=1

PI,i

M∑

jH2O=1

PH2O
K,i,jH2O

M∑

jCO2=1

PCO2

K,i,jCO2

{
Sr(i, j

H2O, jCO2)µjH2OµjCO2

PI,iP
H2O
K,i,jH2O

PCO2

K,i,jCO2

∆νi

}

(E.17)

E.4 Convergence levels and computation times

The algorithm presented in the previous section is now implemented for the
evaluation of monochromatic radiative budgets in the benchmark configuration
of [Galtier et al., 2013]. This implementation is validated against the results of
[Galtier et al., 2013] that were themselves validated against the results of a standard
Monte Carlo solver. Our new code is then used to analyze how the convergence levels
and the computation times depend on k̂ and ζ.
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+
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Figure E.2 – Considered system : a cube of side 2L, whose center is the Cartesian coordinate
system origin (figure taken from [Galtier et al., 2013]).

In [Galtier et al., 2013], the considered system is a cube, of side 2L, with 0K
diffuse-reflecting faces, of uniform emissivity ε, that are perpendicular to the x,
y and z axis of a Cartesian coordinate system originating at the center of the
cube (see Fig. E.2). The enclosed medium is heterogeneous both in temperature
and optical properties. The ka, ks and B fields are ka(x, y, z) = ka,max

(
L−x
2L

) (
1 −

√
y2+z2

2L2

)
, ks(x, y, z) = ks,max

(
L−x
2L

) (
1−

√
y2+z2

2L2

)
and B(x, y, z) = Bmax

(
L−x
2L

) (
1−

√
y2+z2

2L2

)
, figuring an axisymmetric flame along the x axis (maximum temperature

and maximum extinction along the axis, and a linear decay as function of the distance
to the axis, down to zero at the corners). The Henyey-Greenstein single-scattering
phase function is used with a uniform value of the asymmetry parameter g throughout
the field. k̂ is uniform and the parametric study deals with ρ = k̂

ka,max+ks,max
, ka,maxL,

ks,maxL, g and ε. Here, we reduce the parametric size by sticking to isotropic scattering
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(g = 0) because, as indicated in [Galtier et al., 2013], changing g leads to different
radiative-source values but to identical conclusions as far as numerical features are
concerned. However, we add a new parameter : ζ, that is to say the extinction level
after which a Russian Roulette is used. Independently of the validation objective,
our algorithm will be systematically compared to that of [Galtier et al., 2013] in
order to highlight the effect of continuing the path-following process and adding
the contributions, by opposition with systematically using a Russian Roulette at
collisions and reflection events.

Tab. E.1 and Tab. E.2 display simulation results for x = [0, 0, 0] (the center of
the cube) and x = [−L, 0, 0] (the location of the maximum values of B, ka and
ks). The simulation results of [Galtier et al., 2013] are reported under the label
ζ = 1. Indeed, for ζ = 1 our new algorithm recovers exactly the algorithm of
[Galtier et al., 2013]. The first observation that can be made on these tables is that,
considering the standard deviations, our simulation results are compatible with those
of [Galtier et al., 2013], which validates our algorithmic implementation. The last

Optical thickness ζ = 0.1 ζ = 1 ratio
ka,maxL ks,maxL

A
4πka(x0)feqmax

σ
4πka(x0)feqmax

σrel t t1%
A

4πka(x0)feqmax

σ
4πka(x0)feqmax

σrel t t1%
t1%(ζ=0.1)
t1%(ζ=1)

0.1 0.1 -0.483586 0.000044 9.072e-05 2.31 0.00019 -0.483668 0.000086 1.771e-04 2.40 0.00075 0.253
0.1 1 -0.481950 0.000024 4.965e-05 7.77 0.00019 -0.482038 0.000090 1.857e-04 7.74 0.00267 0.072
0.1 3 -0.477917 0.000023 4.788e-05 23.72 0.00054 -0.477733 0.000099 2.082e-04 22.94 0.00995 0.055
0.1 10 -0.463036 0.000035 7.583e-05 122.94 0.00707 -0.463086 0.000126 2.729e-04 116.60 0.08685 0.081
1 0.1 -0.366263 0.000142 3.884e-04 3.38 0.00510 -0.366303 0.000209 5.696e-04 2.85 0.00924 0.552
1 1 -0.356208 0.000123 3.447e-04 10.10 0.01200 -0.356422 0.000213 5.978e-04 7.07 0.02525 0.475
1 3 -0.335460 0.000117 3.497e-04 27.58 0.03373 -0.335805 0.000220 6.550e-04 18.62 0.07988 0.422
1 10 -0.277008 0.000127 4.588e-04 127.77 0.26892 -0.276743 0.000228 8.238e-04 73.24 0.49708 0.541
3 0.1 -0.219155 0.000153 7.000e-04 5.51 0.02701 -0.219186 0.000221 1.007e-03 3.39 0.03438 0.785
3 1 -0.209308 0.000144 6.866e-04 12.76 0.06017 -0.209426 0.000218 1.040e-03 6.16 0.06663 0.903
3 3 -0.190219 0.000132 6.965e-04 29.96 0.14535 -0.190411 0.000210 1.105e-03 12.84 0.15674 0.927
3 10 -0.143645 0.000112 7.806e-04 105.20 0.64103 -0.143690 0.000183 1.275e-03 39.69 0.64528 0.993
10 0.1 -0.071424 0.000081 1.130e-03 8.66 0.11055 -0.071358 0.000119 1.664e-03 3.37 0.09331 1.185
10 1 -0.068768 0.000077 1.116e-03 13.11 0.16317 -0.068664 0.000115 1.670e-03 4.46 0.12454 1.310
10 3 -0.063507 0.000070 1.099e-03 22.45 0.27110 -0.063321 0.000106 1.682e-03 6.88 0.19467 1.393
10 10 -0.050786 0.000054 1.061e-03 52.92 0.59544 -0.050710 0.000085 1.676e-03 15.53 0.43595 1.366

Table E.1 – Estimation, absolute and relative standard deviations, computation time (s) for 106

independent realizations and computation time (s) for a 1% statistical uncertainty as a function of
of ζ, ka,maxL and ks,maxL. The last column compares the ζ = 0.1 and ζ = 1 computation time to
get a 1% standard deviation. This computation was done with an "Intel i5 - 2.4GHz" CPU without
any parallelization, for ρ = 1, ε = 1 and x0 = [0, 0, 0]. The computation times for a 1% standard
deviation are obtained by multiplying t by

(
σrel
0.01

)2.

column in each table displays the ratio of the time required to reach a one percent
relative accuracy with our algorithm to the time required to reach a one percent
relative accuracy with the algorithm of [Galtier et al., 2013]. A first conclusion is
that our algorithm is faster for small values of the absorption optical-thickness and
is slower otherwise. However, when we are slower it is only of a factor 3 and for very
thick media. Considering that the occurrence of small absorption optical-thicknesses
is quite common in combustion applications, the new algorithm can be retained
systematically for validation purposes. For other simulation objectives where the
computation times are of primary importance, for instance when Monte Carlo solvers
are coupled to fluid-mechanics and chemistry, it may be useful to switch from one
algorithm to the other, by simply changing ζ in the code, as function of an a priory
evaluation of the optical-thickness. Simulations performed with reflective surfaces
confirm this first practical conclusion, only with a higher sensitivity to the value
of ζ. In the above tables we used either ζ = 1 or ζ = 0.1, but changing ζ to 10−2
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Optical thickness ζ = 0.1 ζ = 1 ratio
ka,maxL ks,maxL

A
4πka(x0)feqmax

σ
4πka(x0)feqmax

σrel t t1%
A

4πka(x0)feqmax

σ
4πka(x0)feqmax

σrel t t1%
t1%(ζ=0.1)
t1%(ζ=1)

0.1 0.1 -0.977195 0.000081 8.310e-05 2.24 0.00016 -0.977282 0.000127 1.303e-04 2.21 0.00038 0.413
0.1 1 -0.976700 0.000041 4.212e-05 6.19 0.00011 -0.976632 0.000130 1.328e-04 6.04 0.00107 0.103
0.1 3 -0.975783 0.000035 3.586e-05 15.17 0.00020 -0.976059 0.000132 1.351e-04 14.52 0.00265 0.074
0.1 10 -0.974777 0.000042 4.354e-05 46.19 0.00088 -0.974918 0.000137 1.404e-04 43.02 0.00849 0.103
1 0.1 -0.821998 0.000285 3.466e-04 3.31 0.00398 -0.821889 0.000325 3.948e-04 2.24 0.00350 1.138
1 1 -0.821967 0.000237 2.879e-04 8.34 0.00692 -0.821963 0.000326 3.970e-04 4.88 0.00771 0.897
1 3 -0.823956 0.000215 2.606e-04 17.71 0.01202 -0.823910 0.000329 3.993e-04 10.52 0.01678 0.717
1 10 -0.839442 0.000220 2.620e-04 46.75 0.03208 -0.839106 0.000328 3.903e-04 25.32 0.03859 0.831
3 0.1 -0.657423 0.000388 5.896e-04 4.23 0.01471 -0.657905 0.000408 6.196e-04 2.15 0.00826 1.782
3 1 -0.664806 0.000365 5.497e-04 9.43 0.02851 -0.664684 0.000410 6.167e-04 3.57 0.01357 2.101
3 3 -0.679347 0.000345 5.082e-04 16.61 0.04289 -0.679790 0.000412 6.062e-04 6.48 0.02382 1.801
3 10 -0.723130 0.000327 4.524e-04 34.46 0.07053 -0.723957 0.000410 5.668e-04 13.95 0.04482 1.574
10 0.1 -0.544147 0.0004§0 8.452e-04 3.72 0.02660 -0.543517 0.000462 5.018e-04 1.91 0.01384 1.922
10 1 -0.551601 0.000452 8.189e-04 7.88 0.05288 -0.551251 0.000463 8.405e-04 2.42 0.01711 3.089
10 3 -0.568200 0.000438 7.706e-04 10.89 0.06467 -0.567614 0.000465 8.193e-04 3.45 0.02317 2.791
10 10 -0.611147 0.000411 6.723e-04 19.32 0.08731 -0.609870 0.000465 7.632e-04 6.50 0.03787 2.305

Table E.2 – Estimation, absolute and relative standard deviations, computation time (s) for 106

independent realizations and computation time (s) for a 1% statistical uncertainty as a function of
of ζ, ka,maxL and ks,maxL. The last column compares the ζ = 0.1 and ζ = 1 computation time to
get a 1% standard deviation. This computation was done with an "Intel i5 - 2.4GHz" CPU without
any parallelization, for ρ = 1, ε = 1 and x0 = [−L, 0, 0]. The computation times for a 1% standard
deviation are obtained by multiplying t by

(
σrel
0.01

)2.

or even 10−5 changes very little the computation times. This can be expected, as
encountering the black surfaces always reduces the path-extinction to zero and the
extinction criterion is reached whatever the value of ζ. Fig. E.3 and Fig. E.4 display
such ζ-dependencies for perfectly reflective (ε = 0) and perfectly absorptive surfaces
(ε = 1) respectively, indicating that a knowledgeable choice is ζ = 0.1 (as we used in
the tables).
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Figure E.3 – Time to reach a 1% standard deviation as a function of ζ, ka,maxL, ks,maxL at
x0 = [−L, 0, 0], for ε = 0 and k̂ = ka,max + ks,max.

Finally, we have already mentioned that the algorithm deals theoretically with
unexpected occurrences of kn < 0 at some locations. However this is at the price of
correcting the Monte Carlo weight in a way that increases the variance, increasing
therefore the required number of realizations to reach a given accuracy. This is
explored in Fig. E.5 and Fig. E.6 that display the number of realizations required
to reach a one percent relative accuracy, as function of ρ, that is to say as function
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Figure E.4 – Time to reach a 1% standard deviation as a function of ζ, ka,maxL, ks,maxL at
x0 = [−L, 0, 0], for ε = 1 and k̂ = ka,max + ks,max.

of the amount of negative null-collisions. Simulation results are given for ζ = 1 and
ζ = 0.1 in order to evaluate whether the new algorithm encounters more or less
convergence difficulties when k̂ is locally lower than the total extinction coefficient.
We concentrate on the location x0 = [−L, 0, 0] as it was identified as the most
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Figure E.5 – Time to reach a 1% standard deviation as a function of ρ, ka,maxL, ks,maxL at
x0 = [−L, 0, 0] for ε = 1 and ζ = 1.

pathological condition : the starting point of all rays is right inside the region where
k̂ < k (the negative null-collision region). Obviously the main trends of our algorithm
are identical to those of [Galtier et al., 2013] only observing that
• we encounter more convergence difficulties when the negative null-collision

region is optically thin in absorption and optically thick in scattering
• when the medium is optically thin both in absorption and scattering, increasing
the number of null-collisions decreases the 1%-accuracy computation-time,
because the repeated computations of the absorption contributions lead to a
quasi-deterministic integration along the path, which reduces significantly the
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Figure E.6 – Time to reach a 1% standard deviation as a function of ρ, ka,maxL, ks,maxL at
x0 = [−L, 0, 0] for ε = 1 and ζ = 0.1.

variance (more than it increases the computation-time), just as expected in
standard energy partitioning approaches.

E.5 Production of reference solutions for PRISSMA
validation

The objective of the Monte Carlo algorithm proposed in Sec. E.3 is essentially
to produce reference solutions against which faster radiative transfer solvers can
be validated. We here take the example of validating the PRISSMA solver that is
implemented for representation of infrared radiative sources in AVBP (a parallel CFD
code for reactive unsteady flow simulations on hybrid grids 4). We retain a configu-
ration that was studied by Knikker et al. [Knikker et al., 2000, Knikker et al., 2002,
Nottin et al., 2000]. The dimensions of the chamber are the following (see Fig. E.7 for
axis conventions) : 50mm along the Y-axis, 80mm along the Z-axis and 300mm along
the X-axis. A triangular flame hook is located on lateral sides, at a height of 25mm.

Figure E.7 – Representation of the dihedral combustion chamber.

A air/propane mixture is injected from the left-hand side, and a V-shaped flame

4. http ://www.cerfacs.fr/4-26334-The-AVBP-code.php
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develops in the rectangular tube along the X-axis. Wall temperature is fixed to 300K
everywhere, except for outlet walls that have been set at 1900K, the temperature
of exhaust gases. As far as radiative properties are concerned, all boundaries are
modeled as grey interfaces. The ceramic wall emissivity is set at ε=0.91. That of
quartz windows is ε = 0.87. The flame holder emissivity is ε=0.40, corresponding to
a stainless steel lightly oxidized at 1000 K. The inlet, the outlet and the atmosphere
are assumed to behave as black surfaces.

AVBP was run using a time averaged LES [Poitou, 2009, Poitou et al., 2011], lea-
ding to the fields of temperature and species concentrations displayed in Fig. E.8. The

Figure E.8 – Visualization of the temperature field (K), CO2 concentration field (molar fraction),
H2O concentration field (molar fraction) and CO concentration field (molar fraction) within the
dihedral combustion chamber.

radiative transfer solver embedded in AVBP, and therefore involved in the production
of these fields, is PRISSMA [Poitou et al., 2012]. It has been specifically designed for
combustion applications. Based on a Discrete Ordinate Method [Joseph et al., 2005],
it is designed to reach a satisfactory compromise between accuracy and computational
costs. The radiative budget is determined in the whole volume using a specific grid,
coarser than the LES one. The associated strategy for the coupling with AVBP
is detailed in [Poitou et al., 2012]. The angular quadrature chosen here is an S4.
The full spectrum model (FSK) is used for spectral integration using 15 quadrature
points [Poitou et al., 2011].

In order to meet the requirements of AVBP in terms of computation requirements,
the spatial and angular discretizations as well as the FSK spectral integration
procedure were tuned at the extreme limits of their validity ranges, and it is therefore
required that PRISSMA is validated against a reference radiative transfer solver each
time a new combustion configuration is considered. This task is here achieved using
the Monte Carlo algorithm of Sec. E.3, implemented within the EDStaR development
environment, using the Mcm3D library [De La Torre et al., 2014, Starwest, 2014a].
This implementation deals with three-dimension geometries using advanced computer-



E.5. Production of reference solutions for PRISSMA validation 243

graphics tools. The input fields are the output of AVBP. Unlike in the benchmark
simulations of Sec. E.4 where the input fields were analytic, the input fields are now
provided using the LES grid of AVBP (4.74 million tetrahedrons) together with
an interpolation procedure provided by the combustion specialists to reflect the
spatial integration schemes involved in the fluid mechanics and chemistry solvers.
As radiative transfer specialists, we therefore make no choice : we strictly accept
what would be, ideally, the input fields that PRISSMA should reflect, in its coupling
with AVBP, if no computation constraint was taken into account. Ideally, along the
same line, our Monte Carlo simulations should use the best gaseous line-absorption
properties available, i.e. the detailed line profiles provided by spectroscopic databases
such as HITEMP [Rothman et al., 2010] and CDSD [Tashkun et Perevalov, 2011].
However, at the present stage, only few attempts were reported in which such
line-by-line Monte Carlo strategies were tested and none of them are compatible
with our requirements in terms of three-dimension geometry and heterogeneity. As
described in Sec. E.3.3, our “reference” simulation makes therefore only use of a narrow
band k-distribution strategy. The corresponding spectral data were produced using
the SNB-ck approach of [Soufiani et Taine, 1997, Liu et al., 2000, Liu et al., 2001,
Joseph et al., 2009], separating CO2 and H2O thanks a decorrelation assumption
described at the end of Sec. E.3.3. 367 spectral narrowbands are used, each of
width ∆ν=25 cm−1, and the discrete-k sets are constructed in accordance with a
Gauss-Legendre quadrature of order 7.

Altogether, in the validation exercise reported here, the objective was to validate
PRISSMA in which
• spatial integration relies on an adapted grid, coarser than the LES grid of
AVBP, at the limits of the validity of spatial integration criteria (which will
lead to unsmooth simulation results),
• angular discretization is reduced to a S4 quadrature,
• spectral integration is performed using only 15 FSK-quadrature points,

and we validate it against a Monte Carlo solver that
• uses the LES input fields,
• makes no approximation as far as angular integration is concerned,
• and uses a narrow-band discretization together with a k-distribution model for

spectral integration.
The main advantage of null-collisions was that the Monte Carlo solver could be
designed completely independently of the LES grid structure. It can therefore be
immediately used for validation of other configurations in which AVBP is run with
another spatial-discretization strategy, or for validation of radiative solvers embedded
in other combustion solvers (Fig. E.9).

Typical results of this validation exercise are illustrated in Fig. E.10, where
radiative budgets (W/m3) are presented along the X-axis (y=0, z=0, x ∈ [0 ;0.3] m)
and along the Y-axis (x=0.08, y ∈ [-0.025 ;0.025 m), z=0). They reflect what would
globally be interpreted as a good agreement in the combustion simulation context.
PRISSMA and Mcm3D do not differ by more than a few percent in the regions
where radiative source terms are high. In the flame edges that are cold regions where
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Figure E.9 – Visualization of the radiative budget (W/m3) within the dihedral combustion
chamber.
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Figure E.10 – Radiative budget (kW/m3) along the X-axis (at position y=0, z=0) and along the
Y-axis of the combustion chamber (at position x=0.08m, z=0).



E.5. Production of reference solutions for PRISSMA validation 245

the radiative source term is small, the results show significant discrepancies. In such
zones the radiative species are more absorbing than emitting, and the accuracy of
the solution is probably more sensitive to the DOM angular discretization. But such
discrepancies have been shown to have little influence on the overall combustion
simulation. In any case, provided that we assume that our narrow band model is
sufficiently accurate, the Monte Carlo solution can be interpreted as the exact solution
(within the statistical error bars) of the radiative transfer equation for the input fields
that combustion specialists define as the complete continuous fields corresponding to
the AVBP output. The question of interpreting the discrepancies between PRISSMA
and Mcm3D is therefore only a question of validating or invalidating the compromises
made in the DOM simulation to meet AVBP’s requirements in terms of computation
times. Combustion specialists are then in the position of refining the PRISSMA grid,
increasing the angular quadrature order, increasing the FSK quadrature order, as
function of the assumed sensitivity of their fluid mechanics/chemistry results to the
radiative-transfer source-field.

Coming back to the validation tool itself, and thinking of the benchmark simula-
tion results of Sec. E.4, it is worth mentioning here that the computation time is
highly dependent on the numerical optimization of the localization/interpolation
procedure. All the null-collision algorithm needs, in order to deal with AVBP fields, is
a function that takes the three geometrical coordinates as input and provides the local
values of temperature, pressure and concentrations. This procedure needs to detect
the tetrahedron to which the location belongs, and then apply an interpolation pro-
cedure compatible with AVBP’s numerical assumptions (here a standard barycentric
3D interpolation [Pharr et Humphreys, 2010]). All CFD simulation environments
provide such functions, at least for post-treatment purposes. But the corresponding
numerics can be extremely slow because post-treatments are not looped into iterative
algorithms. In our Monte Carlo algorithm, we need to call this function at each
collision event. Therefore the computation times are very sensitive to the numerics
of the localization and interpolation procedure. Then the question becomes the
following : as the Monte Carlo code is only used for validation purposes, one may use
post-treatment tools without much concern (relying on parallelization to speed-up
the Monte Carlo simulation), but if validation exercises are to be launched in a quite
systematic manner, then localization/interpolation becomes an issue. Typically, in
the above example, when using a localization/interpolation function extracted from
post-treatment tools, the computation times needed to reach a 1% uncertainty were
as high as four hours on a single processor, whereas the same simulation (using the
same interpolation function) was reduced to 40 seconds using standard acceleration-
grids [Pharr et Humphreys, 2010, Fujimoto et al., 1986] to speed up the localization
among the 4.74 millions tetrahedrons. In summary, dealing with three-dimension
geometry and spectral integration rises the computation times from several seconds,
as in Sec. E.4, to several tens of seconds, but without caring about the quality of the
localization/interpolation procedure, a jump is made up to several hours.

Note finally that CFD simulation environments may provide optimized localiza-
tion/interpolation tools if they address the question of the flow transporting solid or
liquid particles, because for different reasons they have the same need to establish
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the correspondence between the location of a particle and the characteristics of the
flow it encounters.

E.6 Conclusion

Validating the radiative transfer solvers embedded in combustion simulation
codes is an important issue. These solvers need to be very fast, which leads the
developers to play, as finely as possible, with the limits of validity of the retained
numerical techniques. This is particularly true as far as absorption line-spectra
representation and phase-space discretization are concerned. It is therefore essential
that the corresponding numerical parameters be adjusted to each new combustion
configuration, or at least that their effect be controlled each time a new configuration
is addressed. From this point of view, the fact that Monte Carlo solvers deal now
easily with complex geometries is a key element. We essentially benefit of the advances
of the computer graphics community : path-tracking algorithms are now sufficiently
efficient and easy-to-handle to meet our needs. Starting from the geometric CAD
file of a new combustion chamber and sampling optical paths in the corresponding
complex geometry is now ready-for-use. For Monte Carlo codes to be implemented
that could easily deal with all the diversity of combustion codes and the diversity of
combustion configurations, the missing point is therefore only the representation of
the temperature, pressure and concentration fields. In each new context, these fields
are provided under different mathematical forms, with different formats, and it is
nearly required to design a new Monte Carlo code for each new combustion-code
validation exercise.

The algorithm presented in the present article was meant as a contribution to such
today’s researches. The initial idea was to explore a technical solution used in neutron
and electron-transport physics to deal with heterogeneous fields : the introduction of
null-collisions, that change nothing to the transport of particles, but that can be tuned
so that the total extinction coefficient becomes homogeneous (or easy to handle).
This idea was addressed theoretically in [Galtier et al., 2013] and we here explored
its practical meaning in the combustion-simulation context. We reach the conclusion
that null-collision Monte Carlo algorithms are well suited. Combustion specialists
wishing to validate their radiative solver have nothing more to provide than a function
interpolating their grid point simulation results to give the temperature, pressure
and concentrations at any given location. This commonly implies a localization
procedure (typically to determine what tetrahedron the considered location belongs
to) and an interpolation procedure in accordance with the spatial schemes used in
their fluid mechanics and chemistry codes. This last point is essential in order to
make sure that the continuous input fields provided to the Monte Carlo solver are
correct representations of the numerical assumptions made within the combustion
code. Usually, such localization and interpolation routines are available, at least for
the post-treatment of combustion simulation results. They can however be extremely
slow, which can be a source of difficulty if the number of required validation exercises
is high. We saw, in the last section, that the Monte Carlo computation times can rise
from less than a minute to a few hours when switching to a very slow localization
procedure, but these computation times were given without the use of any parallel
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hardware. Few hours may then sound very much acceptable for only a validation
exercise. Otherwise, as we illustrated it, some additional efforts can be made to build
a better optimized localization procedure, considering that it is meant to be used for
each of the very numerous collision locations sampled in the Monte Carlo algorithm.
This simply implies using acceleration grids but will only be required if validation
exercises are frequently repeated.

By comparison with [Galtier et al., 2013], we upgraded the algorithm in order
to follow the path continuously and only exit after absorption when an extinc-
tion criterion is reached. This upgrade, that involves a quite limited number of
algorithmic changes, is particularly meaningful in the combustion context because
combustion chambers are commonly optically quite thin at most frequencies, and
path-continuation reduces significantly the required computation times, for a given
accuracy, in the optically thin limit. In thicker conditions, our new proposition may
be worse than the initial one, but then the computation-time increase is only limited.
So, when we are faster, the gain can be very significant, and when we are slower,
the loss is limited. We therefore conclude that our new algorithm is worth being
preferred systematically to that of [Galtier et al., 2013], except in contexts where
the computational constraints are high and justify that ζ is adapted to the values of
both the scattering and absorption optical thicknesses.

Finally, as in [Galtier et al., 2013], the algorithm is designed to allow the oc-
currence of negative null-collisions. Of course this is at the price of an increased
variance. But pathological behaviors are only encountered when the region of negative
null-collisions is optically thick with a high single scattering albedo. Again, optically
thick scattering is quite rare among combustion configurations and the k̂ field can
therefore be chosen without caring too much about the risk that, because of the
non-linear dependence of absorption coefficients with temperature, k̂ is not a rigorous
upper bound to k at all locations.
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Approche statistique du rayonnement dans les milieux gazeux
hétérogènes : de l’échantillonnage des transitions moléculaires au
calcul de grandeurs radiatives

Résumé : L’étude du transfert radiatif dans les gaz (atmosphères planétaires, chambres
de combustion, etc.) se heurte à deux principales difficultés : les hétérogénéités et la
dépendance spectrale des propriétés radiatives du milieu d’intérêt. Les travaux présentés
dans ce manuscrit proposent, au travers d’une approche statistique du rayonnement, une
solution à ces deux limites qui ne nécessite aucune approximation de modèle physique
ou numérique. Cette approche conduira au développement d’algorithmes de Monte-Carlo
considérés à l’heure actuelle comme méthodes de référence dans la communauté du transfert
radiatif. La difficulté liée aux hétérogénéités du milieu participant sera traitée par une
technique empruntée à d’autres disciplines de la physique du transport : les algorithmes à
collisions nulles. Leur application au rayonnement consiste à ajouter arbitrairement aux
événements d’absorption et de diffusion, un troisième type de collision n’ayant aucun effet
sur le transport de photons : les collisions nulles. Ainsi, le coefficient d’extinction résultant
de ces trois types de collision pourra être assumé comme homogène. Ensuite, il sera montré
comment cette même technique lève un second verrou permettant de repenser de façon
statistique l’idée de coefficient d’absorption. Cela ouvrira la voie à des algorithmes de
Monte-Carlo qui estiment directement une observable radiative à partir de paramètres de
transitions répertoriés dans des bases de données spectroscopiques sans avoir à précalculer
rigoureusement le coefficient d’absorption.

Mots-clés : Transfert radiatif, Gaz, Méthode de Monte-Carlo, Hétérogénéité, Collision
nulle, Raie d’absorption, Approche statistique, Transition moléculaire.

A statistical approach of radiative transfer in heterogeneous and gaseous
media: from molecular transitions sampling to the computation of
radiative observables

Abstract: Two major challenges are encountered when studying radiative transfer in
gases (e.g. combustion chambers or planetary atmospheres): heterogeneity and spectral
dependence of radiative properties. The work introduced in this manuscript, addresses this
problem through a statistical approach of radiation that requires no model or numerical
approximation. This approach leads to the development of Monte-Carlo methods, currently
considered as reference solutions in the community of radiative transfer. The difficulty
related to heterogeneity is handled by a technique borrowed from other fields of transport
physics: null-collision algorithms. Their application to radiation consists in adding to the
events of absorption and scattering a third arbitrary type of collision that has no effect
on the photon transport. Thus, the extinction coefficient resulting from these three types
of collisions can be assumed to be homogeneous. Then, it is shown how this very same
technique opens the door to rethinking statistically the concept of absorption coefficient.
This leads to Monte-Carlo algorithms that directly estimate radiative observables from
transition parameters indexed in molecular spectroscopic databases, without the need of
rigorously precomputing absorption coefficients.

Keywords: Radiative transfer, Gas, Monte-Carlo method, Heterogeneity, Null-collision,
Absorption line, Statistical approach, Molecular transition.
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