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ABSTRACT

At the kinetic level, the meaning of null-collisions is straightforward: they correspond to
pure-forward scattering events. We here discuss their technical significance in integral
terms. We first consider a most standard null-collision Monte Carlo algorithm and show
how it can be rigorously justified starting from a Fredholm equivalent to the radiative
transfer equation. Doing so, we also prove that null-collision algorithms can be slightly
modified so that they deal with unexpected occurrences of negative values of the null-
collision coefficient (when the upper bound of the heterogeneous extinction coefficient is
nonstrict). We then describe technically, in full details, the resulting algorithm, when
applied to the evaluation of the local net-power density within a bounded, heterogeneous,
multiple scattering and emitting/absorbing medium. The corresponding integral formula-
tion is then explored theoretically in order to distinguish the statistical significance of

introducing null-collisions from that of the integral-structure underlying modification.
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1. Introduction

The introduction of null-collisions in the process of
modelling photon transport consists in transforming the
standard radiative transfer equation

3—{ + cw . Vf = —(kq + ks)cf + S + / kscf p(w|w’) do’ €Y
Jar
into
of
a* + co.Vf = —(kq + ks + kn)cf + S
+ / kSCf’pS(w'm’) dow’ + / kncf 8(w—w") dw’ 2)
4x Jarn

* Corresponding author. Tel.: +33 5 63 49 31 49.
E-mail address: mouna.elhafi@mines-albi.fr (M. El Hafi).

where

® f=f(X,w,t) is the distribution function at location x,

propagation direction @ and time t. The distribution
function is used here, instead of the specific intensity
I=hucf, in order to help readers from other particle
transport communities such as neutron transport, plasma
physics and rarefied gas dynamics, that have made an
intensive use of null-collision approaches [1-3] (see
Appendix A for a brief description of the rather complex
structure of the corresponding literature).

c is the speed of light, k,(X, t) the absorption coefficient,
ks(x,t) the scattering coefficient, ps(w|w’)=ps(w|w’,X)
the single scattering phase function, that is to say
the probability density that the scattering direction
is @ for a photon initially in the direction w’. The



notation f” in the scattering source integral stands for
f=sfx, o',t).

® S=S(X,w,t) is any source term. We will define
s=s(X,, t) such that S = kqcs, and therefore s = f*I(x, t)
in the particular case of thermal emission under the
assumption of local thermodynamic equilibrium,
where f®(x,t) is the distribution function at equili-
brium at local temperature (related to the Planck
specific intensity B according to B = hucf®).

® [, is the null-collision coefficient and § is the Dirac
distribution.

Additional collisions are introduced via the term —k,cf but
these collisions are cancelled out, as they are scattering
events in the pure forward direction (the phase function is
S(w—w’) in the scattering source integral), and leave the f
field unchanged, which is a direct consequence of the
property [, kncf'8(w—w’) dow’ = kycf. To the best of our
knowledge, outside the above mentioned transport physics
literature, the only reported practical use of null-collision
approaches for radiative transfer applications is in the fields
of computer graphics and medical imaging [4,5].

Such applications are related to Monte Carlo simulations
in which the heterogeneity of the absorption and scattering
coefficients does not allow the implementation of simple
free path sampling algorithms. When defining the location of
the next collision event, the common practice is indeed to
first sample an extinction optical thickness = according to the
probability density function py(z) = exp(—7), and then derive
the corresponding path length A by inverting the function
relating = to i: ()= fé k(X + ow,w,t + o/c) do, where
k =kq + ks. However, if k, and ks are complex functions of
space, this inversion is difficult to perform analytically. Most
usually, k, is then approximated with discretization
approaches, but this implies a rigorous control of the
corresponding approximation level. Introducing null-
collisions is a way to avoid such approximations.

A null-collision k, field can indeed be introduced so
that the modified extinction coefficient k = kq + ks -+ kn
(corresponding to absorption plus true scattering plus
null-collision) allows tractable z(1) inversions (e.g. k uni-
form). Practically,

® [ is arbitrarily chosen as an upper bound of the true
extinction field k (k> k) and k, is then defined as
kn = k—k (note that the choice is made on k, not on
ky, so that k has the expected inversion properties);

® 3 collision location is sampled by first sampling 7
according to pr and inverting 7(1) = fé kX + ow, o,
t+o/c)do;

® a random number r is sampled uniformly on the unit
interval and the collision is considered as an absorption
event if 0<r<k, /fc as a real scattering event if
ka/k <1< (kg + ks)/k, or as a pure forward scattering
event if (ks + ks)/fc <r<(kq+ks+ kn)/fc =1 (fortune
wheel).

This technique is well suited to the recent Monte Carlo
developments toward flexible validation tools for accuracy
control of fast radiation solvers (interacting with

chemistry and fluid mechanics). In such contexts, field
representation is bound to the specificity of each solver in
an intricate manner and null-collision algorithms make it
possible to design transversal meshless' Monte Carlo
codes that are immediately applicable whatever the
retained solver numerics be.

The present technical note addresses the question of
using integral formulation techniques for refining Monte
Carlo algorithms involving null-collisions. For didactic rea-
sons, we first consider the academic question of evaluating
the distribution function (at a given point in a given
direction) in an heterogeneous emitting/absorbing infinite
medium using a backward algorithm (Section 2).
The corresponding integral formulation is constructed step
by step as a translation of the above described null-collision
algorithm. This formulation is then modified so that the
constraint k > k is relieved: negative values of the null-
collision coefficient are accepted. This is practically very
significant because k must be chosen to match k as closely
as possible (otherwise too many useless collisions are
sampled), which is a delicate task when the constraint
k > k is strict. This first technical proposition is detailed in
Section 3, with the complete description of a Monte Carlo
algorithm evaluating the local net-power density within a
bounded, heterogeneous, multiple scattering and emitting/
absorbing medium. A second technical proposition is made
in Section 4: an integral formulation is constructed that
helps clarify the significance of introducing null-collisions,
in particular as far as convergence is concerned.
This formulation indicates that the problem of sampling
free paths in heterogeneous fields could be bypassed with-
out introducing any null-collision concept, but sign alterna-
tions would appear that would be the sources of statistical
variance. It is then shown that further benefit of introducing
null-collisions is to break this sign alternation. We therefore
suggest to preserve the idea of introducing a k field, but
without imposing that free paths to be sampled according
to k, or that the type of collision (absorption, true scattering
or forward continuation) be sampled according to the
respective proportions of kg, ks and k, = k—k,—ks. A wider
class of Monte Carlo algorithms is therefore identified that
could be explored for convergence enhancement.

2. Theoretical justification and extension to negative
values of the null-collision coefficient

In the particular case of stationary radiation? in a non-
scattering infinite medium, the distribution function at
location x in the direction w takes the following integral

1 “Meshless” is here used to indicate that the Monte Carlo algorithm
requires no volume discretization. Therefore, if the input fields of
temperature and extinction coefficients are analytical (as in benchmark-
ing exercises) no mesh is used at all. However, if the input fields are
provided using a volume discretization and an interpolation procedure,
the grid is rigorously respected. The idea is that the input fields can take
any form and that the Monte Carlo algorithm introduces no mesh by
itself.

2 Transient radiation would induce no specific theoretical difficulty,
but it would make the integral formulation much heavier. The extinction
coefficients would indeed be functions of time and time would itself
depend on path-length.



form (solution of Eq. (1)):

" +00 A
fX,w)= / kq.s, exp (— / koo do) da 3
0 0

Throughout this note, in all non-recursive integral formu-
lations, the notations Kq g, Ks.«» Kn.a» Ka» S, and f&1 are used to
represent ko(X—aw), kiX—aw), ky(X—aw), k(x—aw),
sX—aw,w) and f*(X—aw) respectively, where « is any
propagation-distance along the line of sight. Standard
backward Monte Carlo algorithms start from Eq. (3) and
introduce the random variable A corresponding to the
distribution of absorption free paths 4 in the —w direction,
of probability density p,(1) = kg exp(— fé kq, do), to get

+o0

fx )= p.() dis; 4)
f(X,w) is then interpreted as the expectation of s(X—Aw, w)
which leads to the Monte Carlo algorithm of Fig. 1. Even if
one decides to make use of a null-collision technique,
it does not appear explicitly in such a presentation: it is
only implicit in the way the Beer sampling of 1 is
performed.

Alternatively, all the details of using null-collisions can
be put forward as in the complete algorithm of the left
part of Fig. 2. A strict formal translation of this algorithm is
displayed on the right part of the figure, where the
Heaviside notation H(test) is used to represent 1 if test is
true and O otherwise. This integral formulation can be
derived from the following Fredholm equation, a well-
known translation of the radiative transfer equation (here
of Eq. (2) at stationary state, including null-collisions
interpreted as forward scattering events):

“+oo A
Fxw) = /O exp(— /0 (ko + Kn) da)

« {kmm +kn, / Sw—a)f X—iw, @) dw/} & 5
4

We now give all the details of this derivation, justifying
meanwhile the corresponding null-collision Monte-Carlo
algorithm of Fig. 2 and we then extend it in order to allow
negative values of the null-collision coefficient.

In=0;
foreach i in 1: N do f(x,w) = 0+°C pA(N)dA w
Beer sampling of \;
w = S\; with

[ - wesn
end pA(A) = kaxexp (7 I d‘jkﬂﬂ)
fn = fn/N;

4’.—’ "”
- TTX = dw
o-TX—ow
A—’
w

Fig. 1. The reciprocal algorithm. f, is a Monte Carlo estimate of f(x,®)
justified by Eq. (4). The integral formulation displayed on the right side of
the algorithm box is a strict formal translation of the algorithm
description.

The first step is solving the Dirac integration and using
the recursive notations Xo=X and X;,1 = X;—4jw to get

+oo 4 a
fxj0)= /0 exp(— A k(Xj—cjw) daj)
X[ka(Xj+1)5(Xjr1, @) + kn(Xj1)f (Xj11, @)] dJ (6)

Then, the probability density of the j™ free path is
introduced:

~ LN
ij(,lj)zk(xj— i) exp(—/o kxj—0jw) doj) @)

as well as non-zero probabilities P;, to give

teo ka(xj+1) 1
X, w) = (4) da; | P; = —5(Xi, 1, @
f > @) pA]( ) ]|: j+1 k(Xj+1) [ (Xj+1,®)
kn(x'+1) 1
+(1-P; ) Xii1, 8
( ]+1) l((Xj+1) 1—Pj+1f( \j+1 ) )]
and a simple recursive expansion gives
+oo
fxo)= Py, (A0) dAg[Pyw1 + (1-PI1] 9
with
+oo
Ij= A ij(ﬂj) dA[Pi 1wt + (1=P)lji4] (10)
and
ka(x3) 1 =1 ky(Xm) 1
W= — —S(Xj, = 11
T k) P * )ml_:ll k(Xm) 1-Pm an

Egs. (10) and (11) lead to the equation of Fig. 2 in a straight-
forward manner as soon as the choice szka(xj)/l}(xj)
is made. This is obviously only possible if k,>0,
Le. kq(Xj) < k(xj), which insures P;j<1 and 1-P;> 0. The
usual restriction to positive null-collision coefficients is
therefore very much meaningful. However, the fact that k
must be a strict upper bound of the extinction coefficient k
in standard null-collision algorithms is often a severe
limitation of the technique. k has to be chosen as a
compromise between approaching k closely enough to
avoid numerous expensive iterative null-collisions and pre-
serving enough simplicity to allow fast free paths sampling
procedures. From this point of view, the constraint that k
must be strictly greater than k at all locations is a severe
constraint. This is particularly true when the optical proper-
ties cannot be pre-computed across the field and are only
evaluated at each collision location, once it is sampled. This
is a typical requirement of meshless algorithms. In such
cases, there is no fundamental problem associated to the
construction of a nonstrict upper-bound of k, for instance by
only pre-computing k on a rough grid across the field, but it
is very difficult to impose that this upper bound is strict
considering that absorption and scattering coefficients are
commonly non-monotonous functions of pressure, tem-
perature and concentrations.

This difficulty can however be bypassed as soon as one
observes that the choice of P; in Eqs. (9)-(11) is not
constrained: Pj = kq(xj)/k(x;) is systematically used in the
literature only because of its intuitive nature, in relation to
the kinetic pictures of null-collisions. An alternative



fn=0;
foreach i in 1: N do Foo 1
J=0; w= 0; x0 =x; flx,w) = pA‘,(/\o)(D\n/ PR, (T0)dro
abs = false; 0 0
while abs = false do ka(x1) ko(x1)y\ [T 1
Beer sampling of A;; {7—[(7'[) < ];'(Xl) )wl + H(TU > k("l) ) /0 pa, (A1)dA /0 PR, (r1)dr1
Uniform sampling of r;; o (x2) oo (2) oo 1
Xj11 = Xj — \jw; {7—[(7'1 < 2 X2 )’1172 +7~l(r1 > 2 X2 ) / A, (A2)dAs / DRy (r2)drs
if r, < ka(x3e1) tpen k(x2) k(x2) 7 Jo Jo
: k(xj41)
w = §(Xjp1,w); }}
fn=fn+w;
abs = true; with
end X0 = X ; Xjp1 = Xj — Ajw
Y R A o
j=i+ pa, () = g = Nw)eap (= ¥ kg — oje0)dor )
end 1
end pR/(rJ) :( 10 ): 1
= 5o w; = s(xj,w
fn = fn/N; ! 7
- o--
__,—" X9 = X1 — \{w
B -
T X1 = X0 — AW
/’}2(; =x
w

Fig. 2. The standard null-collision algorithm. f is a Monte Carlo estimate of f(X, w). The integral formulation displayed on the right side of the algorithm
box is a strict formal translation of the algorithm description. The Monte Carlo weight is w; when the j-th collision is the first true collision (the preceding
collisions are null-collisions). The whole algorithm could also be presented as in Fig. 1 with 2=149 + 41 + -+ + 4.1, X—A@ =X; and s; =s(Xj,»), and the

appropriate change of the coefficient k used in p,(4).

knowledgeable choice is

o ka(X;)
T ka(%) + 1k(X)—ka(X))]

(12)

The immediate benefit is that we get rid of the constraint
kn, >0 (i.e. k=kq + k; is an upper bound of k,): negative
values of the null-collision coefficient are now admitted.
Furthermore, this choice is consistent with the results
presented above since using P; of Eq. (12) leads to

® the very same algorithm in cases when k is a strict
upper bound of k, and

® 3 legible extension of the algorithm otherwise, which
bypasses the difficulties encountered when k, > k.

The resulting algorithm is fully described in Fig. 3 and its
extension to multiple scattering in confined geometries is
provided in the following section. One of its important
features is that the Monte Carlo weight of Eq. (11) can take
negative values: k,/k is negative each time k, is negative.
So the proposed algorithm deals rigorously with the
occurrence of unexpected negative values of the null-
collision coefficient, but this is achieved at the price of
increasing the weight-variance, therefore lowering the
convergence rate. This is quantitatively examined in the
following section.

3. Practical implementation

The algorithm described in this section evaluates the
stationary net-power density A(X) at a location x within
the volume, i.e. the balance between the radiative power
absorbed and the radiative power emitted locally, per unit

volume:

AX)= A hucka(X)[f (X, ®)—S(X, ®)] dw (13)

We restrict ourselves to thermal emission under the
assumption of local thermodynamic equilibrium. There-
fore s(x, ) = f*I(x) and

AX) = / huckq(X)[f (X, @)—f*(X)] dw (14)

4r

If the volume is still non-scattering and infinite as in
Section 2, A(X) could be evaluated using an algorithm very
similar to that of Egs. (9)-(11) (see also Fig. 3). The only
change would be that e is first sampled according to an
isotropic probability density function pg(w)=1/4z, and
the Monte Carlo weight w; would be modified by multi-
plying it by 4zhuck,x) and replacing f“(x;) by
)~ (x). Egs. (9)-(11) would then become

. Y
AX) = A Po(@) do /0 Pa (o) dio[Prwr + (1-PDL]  (15)

+oo

Ij= Pa, (%) APy Wi + (1=Pj1)lj1] (16)
w; = 4rhuck,(X) kf %) % (FIx)—f1x))
k(x;) L
=1 kn(Xm) 1
L 17
m=1 Kk(Xm) 1—Pm> o

Introducing multiple scattering can be performed by add-
ing a branch to the collision test, and sampling a new
direction when true scattering occurs. When dealing with
opaque boundaries a test is added to check if a boundary is
intersected before the next collision, in which case a new
binary sampling procedure is implemented to either



fv=0; oo .
f hiinl:Nd *
or'ejai ();l 1]Un: R g : flx,w) = /U Pag (Ao)dAo ./0 PRy (T0)dro
abs = false; +o00 1
while abs = false do {H(m < P1>u,»1 +H(r0 > Pl) / pa, (A)dA / pr, (r1)dr1
Beer sampling of A;; 70 01
Uniform sampling of {7—[(7”1 < Pg)wg +'H(7‘1 > p2>/ pa,(A2) d/\2/ PR, (r2)drs
753 0 0
Xj+1 = X5 — /\jw;
if Ty < Pj+1 then
W= wji1;
/11\ — fN + w; with
abs = true; O*X;XJ«FleJ*)\U)
end pa, () = k(x; — Ajw)eap (— [V k(x; — ajw)(mj)
J=i+1 pr,(r;) =1
end P — k‘,,(x_,)
end T ka(xg )HR(XJ) Ea (x;)]
~ - P ka(x3) 1 m
In=Ffn/N; Wi = k(xJ) 7y 5(%)w @) [T ( k(:m) fle)

Fig. 3. The generalized null-collision algorithm in which there is no more constraint on the k field. f n is a Monte Carlo estimate of f(X,w) justified by
Eq. (9). The integral formulation displayed on the right side of the algorithm box is a strict formal translation of the algorithm description. Note that when
kn is always positive, P; = kq(Xj)/k(X;), (ka(Xj)/k(X;))(1/Pj) =1 and (kn(Xm)/k(Xm))(1/(1-Pyy)) = 1; the algorithm becomes identical to that of Fig. 2.

resume the algorithm, with a new sampled reflection direc-
tion, or stop the algorithm and compute the Monte Carlo
weight using the value of the equilibrium distribution
function at the surface impact. Altogether, the resulting
algorithm is a quite standard backward Monte Carlo algo-
rithm corresponding to the following recursive formulation:

+o0

AX) = A Palwo) dawg Py, (20) dho
" 5 Pg 1wy
(X1€5) +(1-Pg1) 5, br(@ol@1,X1) dw1];
x Ppiwq

+HX1EV){ +Ps1 [4.Ps(@ol@1,X1) daorly
+Pn 1 [, 8(00—w1,X1) doq];

1s)

~+oco
L= /0 Py () dA

Ej+1Wjt1
H(Xj1 GB){ }

+(1-Pgj11) [5,Pr(@jl0j11, Xj11) doji1]jiq
x Py j1Wia

+HXj1€V){ Psjr1[4.Ds(@jl0j 11, Xj11) dojialji
+PNj1 [4,0(@j =011, Xj11) dojiqli

(19)
= 4rhuckq(X)
[H(y] _ 1)6("”7‘;"””(feq(xj)—f“’(x))
J

ka(X})

+H 3
;= )k (Xj)Pa,

(F9xy)~f eq(X))}

-1 1—e(Xm, ®m—
< I [H(ymzz)%
m=1 —LTEm

+H(7m — 4)M

Ym =5
k(xm)PS,m o i

kn(Xm) :| 20

k(Xm)Pn

where V is the volume of the considered system and B its
boundary (Fig. 4). The locations X;,; and directions w; are

Fig. 4. yj,4 is the intersection with the boundary of the straight ray
starting at X; in the direction -wj. Xj;1 equals Xj—4w; if this location
belongs to V. Otherwise X;.1 = V1. If Xj,1 €V the collision is either a null-
collision and wj.1 =wj (see j=0 in the figure), or a true scattering and
wj,1 is sampled according to the single scattering phase function
(see j=1 and j=2 in the figure), or an “absorption” and the algorithm
stops (the exchange weight is computed, see j=4 in the figure). If X;, ;€8
the interaction with the boundary is either a reflection and wj.q is
sampled according to the directional reflectivity (see j=3 in the figure),
or an “absorption” and the algorithm stops (the exchange weight is
computed).

defined in the same way as in Section 2 with the only
difference that x;,; =y;,1 when X;—w; is outside V, where
¥j.1 is the intersection with the boundary of the straight ray
starting at X; in the direction —w; (see Fig. 4). When X;
belongs to B, &(X;j, wj_1) is the local value of the emissivity in
the direction wj_q, and pr(wj_1lwj,X;) is the probability
density of the reflection direction w;_4 for an incidence along
wj. In the absence of any specific convergence difficulty,
the branching probability Pg; (the probability that the
algorithm stops at the surface impact x;) can be taken as
Pgj = e(Xj,wj_1). In the expression of the weight, y;=1
if the algorithm stops at the boundary, y; =2 if the optical
path sampling is continued backward after surface reflection,



yj=3 in case of “absorption” within the volume, y;=4 in
case of true scattering and y; = 5 in case of null-collision. The
true originalities are the definition of the branching prob-
abilities Py, Ps; and Py; when X; belongs to V (probabilities
that the j-th collision is an absorption, a true-scattering
event, or a null-collision, respectively), as well as the Monte
Carlo weight expressions. As argued in Section 2, we suggest
the use of Paj=ka(Xj)/(ka(Xj) + ks(Xj) + |kn(Xj)]), Psj=
ks(X)/(ka(Xj) + ks(Xj) + [kn(X;)]) and Py = [kn(Xj)|/(ka(Xj)+
ks(X;) + |kn(X;)]). Except for that, the algorithmic structure
strictly corresponds to the application of Skullerud and
Woodcock's strategies. Note however that although we
essentially play with probability choices, our proposition is
nothing like an importance sampling strategy. As detailed at
the end of Section 2, we do not propose to modify the
branching probabilities and change the Monte-Carlo weight
accordingly, we rather extend the applicability range of
standard null-collision algorithms by preserving exactly the
definitions of P,j, Ps; and Py; in the usual range, and
generalizing their definitions in order to handle rigorously
the occurrences of k < ka.

We now present a parametric study in order to evaluate
the numerical behaviour of the above presented algorithm.
Monochromatic radiative budget densities are evaluated at
two locations within a simple academic configuration. The
algorithmic implementation is validated against a well
mastered Monte Carlo algorithm, and the code is then
used to analyse how the convergence levels and the
computation times depend on the retained k field. The
considered system is a cube, of side 2L, with OK diffuse-
reflecting faces of uniform emissivity e, that are perpendi-
cular to the x, y and z axis of a Cartesian coordinate system
originating at the center of the cube (see Fig. 5). The
enclosed medium is heterogeneous both in temperature
and optical properties. The k,, ks and f*9 fields are

L—x 2 4 72
ka(3.2) = ko (57 ) (1— s ) , @1
L—x y2 4 72
ks(x,y,2) = ks,max (T) (1 iy 21_2 ) (22)
L, — g
z L__
7L+ 0 ~ Y L+
7er
%

Fig. 5. Considered system: a cube of side 2L, whose center is the
Cartesian coordinate system origin.

and

e _peq [L—X y? + 22
f"(x,y,Z)—fn?ax(j) (1—\/ o ) 23)

figuring an axisymmetric flame along the x axis (max-
imum temperature and maximum extinction along the
axis, and a linear decay as function of the distance to the
axis, down to zero at the corners). The Henyey-Greenstein
single-scattering phase function is used with a uniform
value of the asymmetry parameter g throughout the field.

For simplicity, k is chosen uniform. As k, and ks take their
maximum values at the same location, kmex = kg max + Ksmax
is the maximum value of the total extinction coefficient

and the ratio p = k /kmax tells us whether negative values of
the null-collision coefficient will occur (p <1) or not.
Because of the shape of the retained field of equilibrium
distribution function, monochromatic radiative budgets
are simply proportional to f;%,, and the remaining numeri-
cally meaningful free-parameters are (in nondimensional
form): p, kgmaxL, ksmaxL, £ and e. The analysis will be
performed using g=0 (isotropic scattering) and e=1
(black boundaries). The influence of g, ¢, as far as numer-
ical behaviour is concerned, will then be briefly described
at the end of the section.

Table 1 displays the simulated values of A(x) for
x=[0,0,0] (the center of the cube) and x=[-L,0,0]
(the location of the maximum values of the kg, ks and f*¢
fields), using 10° independant realizations, for p=1,
meaning that k,=0 at x=[-L,0,0] and k, > 0 at all other
locations (no negative values of the null-collision coeffi-
cient). Also given are the associated standard deviations, o,
and computation times, t. The columns labelled As and
ores correspond to the simulation results obtained with a
standard Monte Carlo algorithm in which the problem of
inverting optical thicknesses is solved by fitting k = kq + ks
using an accurate spline decomposition. These solutions
were only used to validate the implementation procedure:
considering the values of ¢ and g, A and Ay are indeed
statistically compatible. The relative uncertainty ¢/A indi-
cates that the convergence level is good for all the
considered absorption and scattering optical thicknesses
(6/A is below 0.2% in all cases). The computation
times, that were measured without the use of any paralle-
lization procedure, are typical of standard Monte Carlo
simulations. R

More open is the question of choosing k, in particular
the effect of modifying the Monte Carlo weight in order to
deal with negative values of the null-collision coefficient
when k < k at some locations. This question is addressed
by reproducing the same simulations for different values
of p, from p = 0.5 (i.e. k is a faulty overestimate of k, as low
as 1/2k at some locations) to p =5 (on the contrary k is a
large overestimate of k). Fig. 6 displays the evolution with
p of o /A, Fig. 7 displays the computation times, and Fig. 8
displays the computation times required to achieved a 1%
accuracy. These results are interpreted as follows.

® Above p =1, the standard deviation of the estimator is
independant of p. This is expected since no negative



Table 1

Estimation, standard deviation and computation time obtained for 10° independant realizations and for p = 1 at two probe locations: X = [0, 0, 0] (see (a))
and Xo =[-L,0,0] (see (b)) for several values of the optical thicknesses KqmaxL and ksmexL. The computation was done with a processor “Intel Core i5 -
2,4 GHz” without any parallelization.

kamaxL KsmaxL A I t(s) Aref . Oref
Arka(Xo) s 4rka(Xo)f 1o Arkq(Xo)f Arkq(Xo)f
(a)
0.1 0.1 —0.483813 8.52E-05 243 -0.483717 1.13E-05
0.1 1 —0.482031 8.97E-05 7.92 -0.481921 1.40E-05
0.1 3 —0.477997 9.90E-05 24.25 -0.477883 1.93E-05
0.1 10 -0.463027 1.27E-04 122.69 —0.463068 3.56E-05
1 0.1 —0.366086 2.09E-04 2.94 —0.365971 7.96E-05
1 1 -0.356169 2.13E-04 7.43 —0.356353 8.93E-05
1 3 -0.33585 2.20E-04 19.2 —0.335928 1.06E-04
1 10 -0.277205 2.28E-04 76.39 -0.27683 1.34E-04
3 0.1 —0.218989 2.21E-04 3.48 —0.218942 1.23E-04
3 1 —0.209261 2.18E-04 6.4 -0.209529 1.26E-04
3 3 -0.190256 2.10E-04 13.63 -0.190141 1.30E-04
3 10 —-0.144073 1.84E-04 41.38 -0.143501 1.27E-04
10 0.1 -0.071271 1.19E-04 3.49 -0.07137 9.15E-05
10 1 —0.068662 1.15E-04 4.66 —0.068854 8.99E-05
10 3 —0.063501 1.07E-04 7.29 —0.063369 8.61E-05
10 10 -0.050674 8.49E-05 16.23 —0.050674 7.44E-05
(b)
0.1 0.1 -0.977296 1.27E-04 2.24 -0.977336 2.58E-05
0.1 1 -0.97683 1.29E-04 6.18 -0.976679 2.79E-05
0.1 3 -0.975682 1.33E-04 153 -0.975767 3.22E-05
0.1 10 -0.974828 1.37E-04 449 -0.974733 4.36E-05
1 0.1 —0.822495 3.24E-04 2.38 -0.822111 1.97E-04
1 1 -0.822446 3.26E-04 5.13 —0.821846 2.03E-04
1 3 -0.823933 3.29E-04 10.75 -0.823994 2.14E-04
1 10 —0.83941 3.27E-04 26.32 —0.839533 2.29E-04
3 0.1 —0.658358 4.07E-04 2.22 -0.657242 3.64E-04
3 1 -0.66479 4.09E-04 3.73 —0.664704 3.62E-04
3 3 -0.67959 4.12E-04 6.67 —0.679703 3.58E-04
3 10 -0.72422 4.10E-04 14.49 —0.722886 3.42E-04
10 0.1 —0.544282 4.62E-04 1.98 —0.5438 4.60E-04
10 1 -0.551703 4.63E-04 2.47 -0.551153 4.57E-04
10 3 -0.567704 4.65E-04 3.54 -0.567366 4.48E-04
10 10 -0.61077 4.65E-04 6.76 -0.609865 4.27E-04

values of the null-collision coefficient occur: as indi-
cated from the start, standard null-collision algorithms
can be rigorously interpreted as only practical ways to
sample collision-locations according to Beer extinction.
Adding supplementary null-collisions increases only
the computation time but changes nothing to the
resulting sampling statistics.

Below p =1, the standard deviation of the estimator
increases when increasing the occurrence of negative
values of the null-collision coefficient. Again, this is
expected since the handling of negative values of the
null-collision coefficient is achieved at the price of
multiplying the Monte Carlo weight by the correction
term®> =+ (k + 2|ka|)/k. The module of this weight-
correction factor is always greater than unity and the
factor is positive when absorption or true scattering is
retained, negative when null-collision is retained. If
many scattering or null-collision events occur along
the optical path, in regions where k, <0, before the

3 With the choices we made for P,, Ps and Py, the correction terms in

the weight expression of Eq. (17) verify the property ka/IQPA = ks/lzPs =
kn/kPn| = (k + 2[knl)/k.

algorithm stops because of absorption, then the Monte
Carlo weight can take very high absolute values as it
involves the product of a large number or correction
terms greater than unity. The convergence toward the
exact same solution of the radiative transfer equation is
insured by the fact that positive weights are compen-
sated by negative ones, but the convergence rate is
smaller: much more statistical realizations are required
to reach the same accuracy levels when no negative
values of the null-collision coefficient occur. This is
illustrated by the fact that for increasing values of the
scattering optical thickness combined with high values
of the single-scattering albedo (see k;L=3 and k,L=0.1
in Fig. 6), the standard deviation increases very fast
when decreasing p below unity. This effect is of course
much stronger when x is right at the center of the
region where k; <0 (see x=[-L,0,0]) than when
optical paths start from a region where k, >0 (see
x=1[0,0,0]).

For a given number of statistical realizations, the
computation times (see Fig. 7) decrease when decreas-
ing the number of null-collisions, and this is also true
when decreasing k, below zero. This is a direct result of
less collisions occurring, but this does not wholly
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Fig. 6. Standard deviation as a function of p, kgmaxL, ksmaxL at () X =
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compensate the degradation in standard deviation (see
Fig. 8). For a given relative accuracy, the required
computation time is then driven by the impact of p
upon the standard deviation, and it is of course greater
as k becomes a larger and larger overestimate of the
true extinction coefficient.

Altogether, the use of negative values of the null-
collision coefficient is fully relevant when the approxi-
mated upper-bound k can be astutely designed, since the
convergence will be really reasonable: for k=~0.9k, the
increase of the computing effort should not be a concern
(see Fig. 8 (a)) except if domains where k, < 0 are optically
thick with a high single scattering albedo (see Fig. 8 (b)).
Accordingly, most efforts design of k should focus on
avoiding the occurrences of such domains. Bad approx-
imates of the upper-bound (p<1) would yield pathological
behaviours, as expected.

The simulations performed with g#0 and ¢ < 1 indicate
that the shape of the single scattering phase function has
very little influence (the values of A are affected but the
numerical behaviour is unchanged), and that surface reflec-
tion acts like scattering; because of multiple reflections,
more null-collision or scattering events can occur within
the domain of negative null-collision coefficients before
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absorption and standard deviation increase (although less
than when increasing scattering).

4. Formal developments

This section is addressed to the reader interested by the
formal significance of null-collision algorithms. The phy-
sical meaning of null-collisions at the kinetic level is quite
trivial: they are additional collisions that change nothing
to the overall radiative transfer. But when looking at the
corresponding integral formulations, several observations
can be made, that could be useful in the process of
enhancing statistical convergence. A renewed viewpoint
can indeed be taken from which null-collisions are only of
secondary importance compared to the associated integral
reformulation. This reformulation alone suppresses the
need for an optical-thickness inversion procedure and
meshless algorithms can therefore be designed without
introducing any null-collision. The next paragraph,
entitled step 1, illustrates this point. In step 2 we argue
that it may still be useful to introduce a (non-strict)
overestimate k of the extinction coefficient, but k is not
used for sampling collision locations: it plays a role similar
to that of a control variate [7], allowing to get rid of
sign alternations that would otherwise be sources of
convergence difficulties. In step 3 we finally show how
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standard null-collision algorithms can be fully recovered
by choosing to also make use of k for free-path sampling as
well as for the weighting of branching tests. We advise
however that this choice does not entail optimized con-
vergence features.

Step 1: Our starting point is the observation that the
initial radiative transfer equation of Eq. (1) at stationary
state can be integrated backward along the line of sight to
give the following Fredholm equation:

L
fX o) =f(X-Llw, o) + /0 [Ka8:—Kaf (X—dew, )] dA (24)

This equation is easy to demonstrate but its structure does
not highlight the pictures of transport physics, which is
probably the reason why it is seldom mentioned in the
radiative transfer literature. Indeed, by comparison with
Eq. (3), no Beer extinction appears and it is difficult to
interpret physically the integration over space of the local
emission kg ;s;. Of course, the exponentials are well recov-
ered due to the Fredholm structure of this equation
(f appearing within the integral). Fredholm equations are
common in photon transport physics but it is worth
mentioning that they are usually the result of scattering
or surface-reflection representations. In the present con-
text the fact that Beer extinction does not appear explicitly

is a strong advantage: the difficulties associated with the
inversion of exponential extinctions in heterogeneous
media are automatically by-passed. Let us consider the
particular case where f(x—Lw, )= 0. The same steps can
then be followed as in Egs. (6) and (8), starting from Eq.
(24) instead of Eq. (5), to give

Lo
f0cw)= [ pay o) diolPrwn + (1=Pp)1] 25)
with
L
Ij=/0 P, (4) dAi[PjaWjs1 + (1=Pj)lj41] (26)

where the only changes by comparison with Egs. (9) and
(10) are that the j-th free path is integrated between zero
and L; = L-Y'-! 4, the probability density function Pa, (%)
is now an arbitrary probability density on [0,L;], and the
Monte Carlo weights are

1 j-1 K 1
G ol 00 ~PrDr, Gmt)
27)

W = Ka(Xj)s(X;, a))

Apart from the free paths being integrated over finite
intervals, which we will comment later, the essential
differences with the null-collision algorithm of Section 2
are that no k field has yet been introduced and that the
successive weights alternate signs (w; > 0;w, <0;...). In
step 2 we argue that the first meaning and the main interest
of introducing k is to break this sign alternation.

Step 2: As detailed in the literature about exponential
transforms [8-10], it is shown Ain Appendix B that any
arbitrary positive scalar field k can be introduced to
transform Eq. (24) into

L. L .
FX,0) = fX—Lo, ) exp<_ /0 k, cu)+ /0 exp(— /O ’ dakg)

x[kas$: + (ki—ka)f (X=02, )] d2 (28)

Very much like when introducing control variates to
modify the convergence features of Monte Carlo algo-
rithms [7], we can play with the arbitrary choice of the k
field:

® First, if k > 0 the exponentials insure that improper
integrals converge and L may be extended to infinity
to recover the same problem as in Section 2:
evaluating f(X, ) in the particular case of an infinite
medium. Eq. (28) becomes

fx,w)= /0+oo exp(— /(: k, da)

x[kaS: + (k—ka,)f (X—4w, @)] dA (29)

which is Eq. (5) exactly, where the Dirac integration
is solved (there is indeed no more need to highlight
the physical picture of a forward scattering equiva-
lent). Note that we only take the limit L— + o for
didactic reasons and that all further reasoning
can be reproduced using Eq. (28) to address the
question of evaluating f(X,®) in bounded domains.
For instance, the term f(X—Lw,w) exp(— fé k, d2) in
Eq. (28) is the one that allows the representation of



surface emission and surface reflection in Section 3.
Second, as in Section 2, k can be lower than k,. But,
as much as possible, k should still be chosen such
that k > k., at most lgcations. Indeed this ensures
that both k,;s; and (k;—kq,)f (X—lw,®’) in Eq. (29)
are positive terms, with the direct consequence that
Monte Carlo weights are strictly positive: the con-
vergence difficulties due to sign alternation vanish.
The technical steps of Egs. (6) and (8) can again be
taken, this time to recover Egs. (9) and (10) exactly,
with the following new expression for w; (which is
strictly positive if k—kq > 0):

A1 .
w; = ka(X;j) exp (— /0 1k(xj_1—cm)) da)
_1
ijJ (41

j-1 A
X ml_=l1 [(k(xm)—ka(xm))

Am=-1 ~ ‘1 ‘l
xexp (— [ ktma-ow) da) _ quml)}

(30

where the pa, (%) probability densities and the P
probabilities are now fully arbitrary [7,11]. Note in
particular that k appears in the weight expression,
but that Py, and P; can be chosen independent of k.
Third, choosmg k as close to kg as possible is useful,
this time not as far as statistical convergence is
concerned, but in terms of computational costs. Let
us indeed admit that p, and P; could be ideally
chosen according to a zero-variance strategy
[11-14]. If we temporary admit that k is strictly
greater than k, at all locations, then zero-variance is
obtained with

1 .
pa, (%) = f(xj, exp( / k(xJ ow) da)

x[Kka(Xj1)S(Xj11, @) + (k(xj+1)_ka(xj+1 W (X1, )]
31

xS(X;, w)

and
_ ka(Xj)s(X;, @)
ka(%;)s(Xj, @) + (k(Xj)—ka(X{)f (Xj, @)

(32)

(see Appendix C). Then only one sample is required to
reach the exact solution and the remaining question is
the computation cost of the sampling procedure itself.
This cost is directly related to the average value of the
recursion level: the value of the index j at which the
sampling algorithm is exited. This average recursion
level is obviously related to the value of P;: there is
ideally no recursion when Pj=1, which is reached when
k is strictly identical to kg Altogether our conclusions
match those of all previous publications: k should be
greater than k, and should be as close to k, as possible.
However, we reach these conclusions without any
reference to k as an extinction coefficient to be used
for the sampling of collision locations. So, not only the
constraint k > kq becomes non-strict (as illustrated in

the previous sections), but it is also no more required
that the function #(1) = fé k(xX—ow,w,t + ¢/c) do be
analytically invertible: all we need is that #(4) be easily
evaluated as it appears within the exponentials in the
weight expression of Eq. (30).

Step 3: To recover the standard null-collision algorithm
of Section 2 (before extension to negative k, values), it
suffices to make the following choice for Py, and P; (that
were arbitrary up to now):

A A
pa;, (%) = k(Xj11) exp (—/O k(xj—ow) dU) (33)
and
ka(X;)
= —= 34
! k(xj) s

This choice is well guided by the physical pictures, but
nothing motivates this particular choice in terms of statis-
tical convergence. We have indeed already mentioned
that the ideally optimized choice (if it was practicable)
would be that of Egs. (31) and (32), but for Egs. (33) and
(34) to match Egs. (31) and (32), it is required that
F(Xj, 0)~f (Xj 11, ®)~S(Xj, 0)~5(Xj 1, ). This is a fair approx-
imation only in the limit of thermodynamic equilibrium
and this strongly limits the applicative potential.

5. Conclusions

Altogether, the null-collision concept was revisited,
thinking more specifically of radiative transfer applica-
tions. The corresponding algorithms introduce no specific
convergence difficulty, which is not surprising considering
the well known similarities between photon-transport and
neutron or electron-transport, the two particle-transport
physics that motivated initially the introduction of null-
collisions in Monte Carlo path-tracking algorithms.

It was also shown, by two different formal means, how
null-collision algorithms provide exact unbiased statistical
estimations of the solution of the radiative transfer equa-
tion. In both cases (in Sections 2 and 4), thanks to its
linearity properties, the radiative transfer equation was
replaced by a rigorous integral-equivalent. In the first case,
the radiative transfer equation included null-collisions
from the start; in the second case, null-collisions were
introduced at the integral level.

Besides their meaning in terms of algorithmic valida-
tion, these integral formulation efforts open two new
fields of investigation. We first showed how null-
collision algorithms can be slightly transformed in order
to deal with the unexpected occurrence of negative values
of the null-collision extinction coefficient. We checked that
this transformation does not introduce pathological con-
vergence difficulties that would make it impractical, and
our conclusion is that difficulties will only be encountered
when the domain of negative null-collision coefficients
is optically thick with a high single-scattering albedo.
Absorption reduces the difficulty because it reduces the
number of times the Monte Carlo weight is multiplied by a
negative correction term of absolute value greater than



unity. Pathological behaviours will therefore only be
encountered when k is a poor overestimate of the true
extinction coefficient, for scattering dominated media.

If such difficulties were practically encountered, the
question could first be addressed by adjusting the branch-
ing probabilities P4, Ps and Py (we made a practical
proposition for these probabilities, but we did not explore
alternative choices). Further investigations in this direction
would then certainly consist in transforming the integral
structure. We suggest furthermore that this question
should be enlarged by considering the meaning of the
integral structure highlighted in Section 4. It seems indeed
that the meshless feature of null-collision algorithms has
very little to do with the null-collisions themselves, but
rather with an underlying Fredholm formulation that
bypasses the question of dealing with path-integrated
extinction-coefficients appearing within the exponential
function. Introducing null-collisions could then be viewed
mainly as a practical way to enhance statistical conver-
gence, very much like introducing control variates in
standard Monte Carlo convergence-enhancement techni-
ques. Accordingly, we propose that alternative solutions
could be explored starting back from the primary Fred-
holm formulation. We only opened this investigation field
in the last section, but we are convinced that it is worth to
give it a close attention.
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Appendix A. Terminology and bibliographic entries

Null-collision algorithms have been developed inde-
pendently in two branches of physics: plasma physics and
neutron transport. Consequently, according to disciplines
and authors, they are found under different designations:
null-collisions, fictitious-collisions, pseudo-collisions, null-
events, Woodcock-tracking, delta-scattering, pseudo-
scattering, etc.

In the field of plasma physics, null-collision algorithms
were first formulated by Skullerud in 1968 [1] to sample
ion/molecule collision times. This publication led to
further refinements in the same application field, for
instance [3,15] or [16]. These advances have also directly
inspired the community studying the dynamics of rarefied
gases [17].

Meanwhile, this technique was developed for neutron
transport applications by Woodcock et al. [2]. They are
legitimately recognized as the founders of null-collision
algorithms in their field. A significant step was then the

formalisation effort reported in [18], that enlarged the
application potential of Woodcock algorithm. Today, the
so-called “Woodcock tracking” is implemented in many
transport simulation codes such as SERPENT [19] or
MORET [20]. These ideas have also significantly impacted
the communities of image synthesis and tomography
research [4,5,21].

Appendix B. Exponential transform

In the literature about exponential transforms [8-10], a
new distribution function g(X, ) =f(X, w) exp( fé k, do) is
introduced and is reported in transport equations such as
Eq. (1) to get (here in the particular case of stationary
radiation in a non-scattering medium)

~ L ~
0. VE(X, ) = [k(X)—kq(X)]12(X, ®)+Kkq(X)S(X, w) exp ( / ks da)
0
(B.1)

The problem is then solved in g instead of f, using Monte
Carlo approaches, and the arbitrary k field is adjusted in
order to minimize the variance of the estimator (essen-
tially using adjoint formulation similar to that of the zero-
variance literature). Here, we build a Fredholm equation
starting from Eq. (B.1) (as in Step 1):

L ~
2X, w) = gX—Lw,w) + /o dilk;—kq,18(X—w, @)

LA
+kq;S; exp (/ ks do) (B.2)
0

Reporting the expression of g(X,w)=f(X,w) exp(fé k., do)
in Eq. (B.2) leads to Eq. (28).

Appendix C. Zero-variance strategy

In the Monte Carlo literature, zero-variance refers to
algorithms such that the Monte Carlo weight is strictly and
systematically equal to the quantity to be estimated
independently of the sampling occurrences. This corre-
sponds to ideal convergence in the sense that perfect
convergence is obtained with a single Monte Carlo sam-
pling event. The design of such algorithms is always part of
pure-theoretical reasoning and can be quite tedious. Here,
starting from Eq. (29) in the restrictive case of k> kg
(so that, all terms are positive), such an algorithm can be
easily designed using only an ideally optimized impor-
tance sampling procedure. Indeed, a random variable A of
probability density function p, on [0, +o] can be intro-
duced to give

oo

fx,o)= PA(D) daw(R) (C1)
with

w() = ﬁexl) (— /0A f<a dU) [ka,/ls/l-i-(f(z—ka,/l)f()(—ﬂw’ )]
(C.2)



and w(J) is equal to f whatever the sampled value of 1 as
soon as

1 A
IROE X epr (— (/0 ko, do)
X [KaaS: + (ki—Kka)f (X—w, w)] (C3)

This is Eq. (31) exactly, except for recursive notations.

If we now want that the algorithm branches between
pure absorption and null-collisions (to recover the algo-
rithmic structure of Egs. (9) and (10)), it suffices to
introduce an absorption probability P and write

" +00

fmm=A PAG) dAPW(D) + (1-P)wi()} (C4)
with

. 1 Aa ka,,ls,l
Wa(),) = mexp (—/0 ko— dG') T (CS)
and

_ 1 to o\ (Ri—ka)f (=, @)
wn(1) = mexp (—/0 ks da) 1-p (C.6)

We keep the previous choice for p, (Eq. (C.3)), and we still
want to achieve w,(1) = wy(1) =f(X, ), then we get

pP— ka.15
kasS: + (ki—ka)f (X—Io>, @)

(C.7)

References

[1] Skullerud H. The stochastic computer simulation of ion motion in a
gas subjected to a constant electric field. ] Phys D: Appl Phys 1968;1:
1567.

[2] Woodcock E, Murphy T, Hemmings P, Longworth S. Techniques used
in the gem code for Monte Carlo neutronics calculations in reactors
and other systems of complex geometry. 1965: 557.

[3] Lin S, Bardsley ]J. The null-event method in computer simulation.
Comput Phys Commun 1978;15(3-4):161-3.

[4] Rehfeld N, Stute S, Soret M, Apostolakis ], Buvat I. Optimization of
photon tracking in gate. 2008: 4013-5.

[5] Badal A, Badano A. Monte Carlo simulation of x-ray imaging using a
graphics processing unit. 2009: 4081-4.

[7] Hammersley ], Handscomb D. Monte Carlo Methods. Taylor &
Francis; 1975.

[8] Sarkar P, Prasad M. Prediction of statistical error and optimization of
biased Monte Carlo transport calculations [integral equations]. Nucl
Sci Eng 1979;70(3).

[9] Turner S, Larsen E. Automatic variance reduction for three-
dimensional Monte Carlo simulations by the local importance
function transform-1: analysis. Nucl Sci Eng 1997;127(1).

[10] Turner S, Larsen E. Automatic variance reduction for three-
dimensional Monte Carlo simulations by the local importance
function transform-II: numerical results. Nucl Sci Eng 1997;127(1):
36-53.

[11] Delatorre ], Bézian JJ, Blanco S, Caliot C, Cornet ], Dauchet J, et al.
Monte-Carlo advances and concentrated solar applications. Sol
Energy 2013.

[12] Dauchet J, Blanco S, Cornet JF, El Hafi M, Eymet V, Fournier R. The
practice of recent radiative transfer Monte Carlo advances and its
contribution to the field of microorganisms cultivation in photo-
bioreactors. ] Quant Spectrosc Radiat Transfer 2012.

[13] Assaraf R, Caffarel M. Zero-variance principle for Monte Carlo
algorithms. Phys Rev Lett 1999;83(23):4682-5.

[14] Hoogenboom J. Zero-variance Monte Carlo schemes revisited. Nucl
Sci Eng 2008;160(1):1-22.

[15] Boeuf JP, Marode E. A Monte Carlo analysis of an electron swarm in a
nonuniform field: the cathode region of a glow discharge in helium.
] Phys D: Appl Phys 1982;15:2169.

[16] Brennan M. Optimization of Monte Carlo codes using null collision
techniques for experimental simulation at low e/n. IEEE Trans
Plasma Sci 1991;19(2):256-61.

[17] Koura K. Null-collision technique in the direct-simulation Monte
Carlo method. Phys Fluids 1986;29:3509.

[18] Coleman W. Mathematical verification of a certain Monte Carlo
sampling technique and applications of the technique to radiation
transport problems. Technical Report, Oak Ridge National Lab.,
Tennessee; 1968.

[19] Leppdnen J. Performance of woodcock delta-tracking in lattice
physics applications using the SERPENT Monte Carlo reactor physics
burnup calculation code. Ann Nucl Energy 2010;37(5):715-22.

[20] Forestier B, Miss ], Bernard F, Dorval A, Jacquet O, Verboomen B.
Criticality calculations on pebble-bed HTR-proteus configuration as
a validation for the pseudo-scattering tracking method implemen-
ted in the MORET 5 Monte Carlo code. 2008.

[21] Toth B, Magdics M. Monte Carlo radiative transport on the GPU.
2010.



