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a b s t r a c t

At the kinetic level, the meaning of null-collisions is straightforward: they correspond to
pure-forward scattering events. We here discuss their technical significance in integral
terms. We first consider a most standard null-collision Monte Carlo algorithm and show
how it can be rigorously justified starting from a Fredholm equivalent to the radiative
transfer equation. Doing so, we also prove that null-collision algorithms can be slightly
modified so that they deal with unexpected occurrences of negative values of the null-
collision coefficient (when the upper bound of the heterogeneous extinction coefficient is
nonstrict). We then describe technically, in full details, the resulting algorithm, when
applied to the evaluation of the local net-power density within a bounded, heterogeneous,
multiple scattering and emitting/absorbing medium. The corresponding integral formula-
tion is then explored theoretically in order to distinguish the statistical significance of
introducing null-collisions from that of the integral-structure underlying modification.

1. Introduction

The introduction of null-collisions in the process of
modelling photon transport consists in transforming the
standard radiative transfer equation
∂f
∂t

þ cω:∇f ¼ −ðka þ ksÞcf þ S þ
Z

4π
kscf ′pðω ω′Þ dω′

!! ð1Þ

into

∂f
∂t

þ cω:∇f ¼ −ðka þ ks þ knÞcf þ S

þ
Z

4π
kscf ′pSðω ω′Þ dω′þ

Z

4π
kncf ′δðω−ω′Þ dω′

!!!! ð2Þ

where

% f≡f ðx;ω; tÞ is the distribution function at location x,
propagation direction ω and time t. The distribution
function is used here, instead of the specific intensity
I¼ hνcf , in order to help readers from other particle
transport communities such as neutron transport, plasma
physics and rarefied gas dynamics, that have made an
intensive use of null-collision approaches [1–3] (see
Appendix A for a brief description of the rather complex
structure of the corresponding literature).

% c is the speed of light, kaðx; tÞ the absorption coefficient,
ksðx; tÞ the scattering coefficient, pSðωjω′Þ≡pSðωjω′; xÞ
the single scattering phase function, that is to say
the probability density that the scattering direction
is ω for a photon initially in the direction ω′. The
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notation f ′ in the scattering source integral stands for
f ′≡f ðx;ω′; tÞ.

% S≡Sðx;ω; tÞ is any source term. We will define
s≡sðx;ω; tÞ such that S ¼ kacs, and therefore s¼ f eqðx; tÞ
in the particular case of thermal emission under the
assumption of local thermodynamic equilibrium,
where f eqðx; tÞ is the distribution function at equili-
brium at local temperature (related to the Planck
specific intensity B according to B¼ hνcf eqÞ.

% kn is the null-collision coefficient and δ is the Dirac
distribution.

Additional collisions are introduced via the term −kncf but
these collisions are cancelled out, as they are scattering
events in the pure forward direction (the phase function is
δðω−ω′Þ in the scattering source integral), and leave the f
field unchanged, which is a direct consequence of the
property

R
4πkncf ′δðω−ω′Þ dω′¼ kncf . To the best of our

knowledge, outside the above mentioned transport physics
literature, the only reported practical use of null-collision
approaches for radiative transfer applications is in the fields
of computer graphics and medical imaging [4,5].

Such applications are related to Monte Carlo simulations
in which the heterogeneity of the absorption and scattering
coefficients does not allow the implementation of simple
free path sampling algorithms. When defining the location of
the next collision event, the common practice is indeed to
first sample an extinction optical thickness τ according to the
probability density function pT ðτÞ ¼ expð−τÞ, and then derive
the corresponding path length λ by inverting the function
relating τ to λ: τðλÞ ¼

R λ
0 kðx þ sω;ω; t þ s=cÞ ds, where

k¼ ka þ ks. However, if ka and ks are complex functions of
space, this inversion is difficult to perform analytically. Most
usually, ka is then approximated with discretization
approaches, but this implies a rigorous control of the
corresponding approximation level. Introducing null-
collisions is a way to avoid such approximations.

A null-collision kn field can indeed be introduced so
that the modified extinction coefficient k̂ ¼ ka þ ks þ kn
(corresponding to absorption plus true scattering plus
null-collision) allows tractable τðλÞ inversions (e.g. k̂ uni-
form). Practically,

% k̂ is arbitrarily chosen as an upper bound of the true
extinction field k (k̂4k) and kn is then defined as
kn ¼ k̂−k (note that the choice is made on k̂, not on
kn, so that k̂ has the expected inversion properties);

% a collision location is sampled by first sampling τ̂
according to pT and inverting τ̂ðλÞ ¼

R λ
0 k̂ðx þ sω;ω;

t þ s=cÞ ds;
% a random number r is sampled uniformly on the unit

interval and the collision is considered as an absorption
event if 0oroka=k̂, as a real scattering event if
ka=k̂oro ðka þ ksÞ=k̂, or as a pure forward scattering
event if ðka þ ksÞ=k̂oroðka þ ks þ knÞ=k̂ ¼ 1 (fortune
wheel).

This technique is well suited to the recent Monte Carlo
developments toward flexible validation tools for accuracy
control of fast radiation solvers (interacting with

chemistry and fluid mechanics). In such contexts, field
representation is bound to the specificity of each solver in
an intricate manner and null-collision algorithms make it
possible to design transversal meshless1 Monte Carlo
codes that are immediately applicable whatever the
retained solver numerics be.

The present technical note addresses the question of
using integral formulation techniques for refining Monte
Carlo algorithms involving null-collisions. For didactic rea-
sons, we first consider the academic question of evaluating
the distribution function (at a given point in a given
direction) in an heterogeneous emitting/absorbing infinite
medium using a backward algorithm (Section 2).
The corresponding integral formulation is constructed step
by step as a translation of the above described null-collision
algorithm. This formulation is then modified so that the
constraint k̂4k is relieved: negative values of the null-
collision coefficient are accepted. This is practically very
significant because k̂ must be chosen to match k as closely
as possible (otherwise too many useless collisions are
sampled), which is a delicate task when the constraint
k̂4k is strict. This first technical proposition is detailed in
Section 3, with the complete description of a Monte Carlo
algorithm evaluating the local net-power density within a
bounded, heterogeneous, multiple scattering and emitting/
absorbing medium. A second technical proposition is made
in Section 4: an integral formulation is constructed that
helps clarify the significance of introducing null-collisions,
in particular as far as convergence is concerned.
This formulation indicates that the problem of sampling
free paths in heterogeneous fields could be bypassed with-
out introducing any null-collision concept, but sign alterna-
tions would appear that would be the sources of statistical
variance. It is then shown that further benefit of introducing
null-collisions is to break this sign alternation. We therefore
suggest to preserve the idea of introducing a k̂ field, but
without imposing that free paths to be sampled according
to k̂, or that the type of collision (absorption, true scattering
or forward continuation) be sampled according to the
respective proportions of ka, ks and kn ¼ k̂−ka−ks. A wider
class of Monte Carlo algorithms is therefore identified that
could be explored for convergence enhancement.

2. Theoretical justification and extension to negative
values of the null-collision coefficient

In the particular case of stationary radiation2 in a non-
scattering infinite medium, the distribution function at
location x in the direction ω takes the following integral

1 “Meshless” is here used to indicate that the Monte Carlo algorithm
requires no volume discretization. Therefore, if the input fields of
temperature and extinction coefficients are analytical (as in benchmark-
ing exercises) no mesh is used at all. However, if the input fields are
provided using a volume discretization and an interpolation procedure,
the grid is rigorously respected. The idea is that the input fields can take
any form and that the Monte Carlo algorithm introduces no mesh by
itself.

2 Transient radiation would induce no specific theoretical difficulty,
but it would make the integral formulation much heavier. The extinction
coefficients would indeed be functions of time and time would itself
depend on path-length.



form (solution of Eq. (1)):

f ðx;ωÞ ¼
Z þ∞

0
ka;λsλ exp −

Z λ

0
ka;s ds

" #
dλ ð3Þ

Throughout this note, in all non-recursive integral formu-
lations, the notations ka;α, ks;α, kn;α, k̂α, sα and f eqα are used to
represent kaðx−αωÞ, ksðx−αωÞ, knðx−αωÞ, k̂ðx−αωÞ,
sðx−αω;ωÞ and f eqðx−αωÞ respectively, where α is any
propagation-distance along the line of sight. Standard
backward Monte Carlo algorithms start from Eq. (3) and
introduce the random variable Λ corresponding to the
distribution of absorption free paths λ in the −ω direction,
of probability density pΛðλÞ ¼ ka;λ expð−

R λ
0 ka;s dsÞ, to get

f ðx;ωÞ ¼
Z þ∞

0
pΛðλÞ dλsλ ð4Þ

f ðx;ωÞ is then interpreted as the expectation of sðx−Λω;ωÞ
which leads to the Monte Carlo algorithm of Fig. 1. Even if
one decides to make use of a null-collision technique,
it does not appear explicitly in such a presentation: it is
only implicit in the way the Beer sampling of λ is
performed.

Alternatively, all the details of using null-collisions can
be put forward as in the complete algorithm of the left
part of Fig. 2. A strict formal translation of this algorithm is
displayed on the right part of the figure, where the
Heaviside notation HðtestÞ is used to represent 1 if test is
true and 0 otherwise. This integral formulation can be
derived from the following Fredholm equation, a well-
known translation of the radiative transfer equation (here
of Eq. (2) at stationary state, including null-collisions
interpreted as forward scattering events):

f ðx;ωÞ ¼
Z þ∞

0
exp −

Z λ

0
ðka;s þ kn;sÞ ds

" #

& ka;λsλ þ kn;λ
Z

4π
δðω−ω′Þf ðx−λω;ω′Þ dω′

$ %
dλ ð5Þ

We now give all the details of this derivation, justifying
meanwhile the corresponding null-collision Monte-Carlo
algorithm of Fig. 2 and we then extend it in order to allow
negative values of the null-collision coefficient.

The first step is solving the Dirac integration and using
the recursive notations x0≡x and xjþ1 ¼ xj−λjω to get

f ðxj;ωÞ ¼
Z þ∞

0
exp −

Z λj

0
k̂ðxj−sjωÞ dsj

" #

&½kaðxjþ1Þsðxjþ1;ωÞ þ knðxjþ1Þf ðxjþ1;ωÞ( dλj ð6Þ

Then, the probability density of the jth free path is
introduced:

pΛj
ðλjÞ ¼ k̂ðxj−λjωÞ exp −

Z λj

0
k̂ðxj−sjωÞ dsj

" #
ð7Þ

as well as non-zero probabilities Pj, to give

f ðxj;ωÞ ¼
Z þ∞

0
pΛj

ðλjÞ dλj Pjþ1
kaðxjþ1Þ

k̂ðxjþ1Þ

1
Pjþ1

sðxjþ1;ωÞ

!"

þð1−Pjþ1Þ
knðxjþ1Þ

k̂ðxjþ1Þ

1
1−Pjþ1

f ðxjþ1;ωÞ

!#
ð8Þ

and a simple recursive expansion gives

f ðx;ωÞ ¼
Z þ∞

0
pΛ0

ðλ0Þ dλ0½P1w1 þ ð1−P1ÞI1( ð9Þ

with

Ij ¼
Z þ∞

0
pΛj

ðλjÞ dλj½Pjþ1wjþ1 þ ð1−Pjþ1ÞIjþ1( ð10Þ

and

wj ¼
kaðxjÞ

k̂ðxjÞ

1
Pj
sðxj;ωÞ ∏

j−1

m ¼ 1

knðxmÞ

k̂ðxmÞ

1
1−Pm

!

ð11Þ

Eqs. (10) and (11) lead to the equation of Fig. 2 in a straight-
forward manner as soon as the choice Pj ¼ kaðxjÞ=k̂ðxjÞ
is made. This is obviously only possible if kn40,
i.e. kaðxjÞo k̂ðxjÞ, which insures Pjo1 and 1−Pj40. The
usual restriction to positive null-collision coefficients is
therefore very much meaningful. However, the fact that k̂
must be a strict upper bound of the extinction coefficient k
in standard null-collision algorithms is often a severe
limitation of the technique. k̂ has to be chosen as a
compromise between approaching k closely enough to
avoid numerous expensive iterative null-collisions and pre-
serving enough simplicity to allow fast free paths sampling
procedures. From this point of view, the constraint that k̂
must be strictly greater than k at all locations is a severe
constraint. This is particularly true when the optical proper-
ties cannot be pre-computed across the field and are only
evaluated at each collision location, once it is sampled. This
is a typical requirement of meshless algorithms. In such
cases, there is no fundamental problem associated to the
construction of a nonstrict upper-bound of k, for instance by
only pre-computing k on a rough grid across the field, but it
is very difficult to impose that this upper bound is strict
considering that absorption and scattering coefficients are
commonly non-monotonous functions of pressure, tem-
perature and concentrations.

This difficulty can however be bypassed as soon as one
observes that the choice of Pj in Eqs. (9)–(11) is not
constrained: Pj ¼ kaðxjÞ=k̂ðxjÞ is systematically used in the
literature only because of its intuitive nature, in relation to
the kinetic pictures of null-collisions. An alternative

Fig. 1. The reciprocal algorithm. ~f N is a Monte Carlo estimate of f ðx;ωÞ
justified by Eq. (4). The integral formulation displayed on the right side of
the algorithm box is a strict formal translation of the algorithm
description.



knowledgeable choice is

Pj ¼
kaðxjÞ

kaðxjÞ þ jk̂ðxjÞ−kaðxjÞj
ð12Þ

The immediate benefit is that we get rid of the constraint
kn40 (i.e. k̂ ¼ ka þ kn is an upper bound of ka): negative
values of the null-collision coefficient are now admitted.
Furthermore, this choice is consistent with the results
presented above since using Pj of Eq. (12) leads to

% the very same algorithm in cases when k̂ is a strict
upper bound of ka and

% a legible extension of the algorithm otherwise, which
bypasses the difficulties encountered when ka4 k̂.

The resulting algorithm is fully described in Fig. 3 and its
extension to multiple scattering in confined geometries is
provided in the following section. One of its important
features is that the Monte Carlo weight of Eq. (11) can take
negative values: kn=k̂ is negative each time kn is negative.
So the proposed algorithm deals rigorously with the
occurrence of unexpected negative values of the null-
collision coefficient, but this is achieved at the price of
increasing the weight-variance, therefore lowering the
convergence rate. This is quantitatively examined in the
following section.

3. Practical implementation

The algorithm described in this section evaluates the
stationary net-power density AðxÞ at a location x within
the volume, i.e. the balance between the radiative power
absorbed and the radiative power emitted locally, per unit

volume:

AðxÞ ¼
Z

4π
hνckaðxÞ½f ðx;ωÞ−sðx;ωÞ( dω ð13Þ

We restrict ourselves to thermal emission under the
assumption of local thermodynamic equilibrium. There-
fore sðx;ωÞ ¼ f eqðxÞ and

AðxÞ ¼
Z

4π
hνckaðxÞ½f ðx;ωÞ−f eqðxÞ( dω ð14Þ

If the volume is still non-scattering and infinite as in
Section 2, AðxÞ could be evaluated using an algorithm very
similar to that of Eqs. (9)–(11) (see also Fig. 3). The only
change would be that ω is first sampled according to an
isotropic probability density function pΩðωÞ ¼ 1=4π, and
the Monte Carlo weight wj would be modified by multi-
plying it by 4πhνckaðxÞ and replacing f eqðxjÞ by
f eqðxjÞ−f

eqðxÞ. Eqs. (9)–(11) would then become

AðxÞ ¼
Z

4π
pΩðωÞ dω

Z þ∞

0
pΛ0

ðλ0Þ dλ0½P1w1 þ ð1−P1ÞI1( ð15Þ

Ij ¼
Z þ∞

0
pΛj

ðλjÞ dλj½Pjþ1wjþ1 þ ð1−Pjþ1ÞIjþ1( ð16Þ

wj ¼ 4πhνckaðxÞ
kaðxjÞ

k̂ðxjÞ

1
Pj
ðf eqðxjÞ−f

eqðxÞÞ

& ∏
j−1

m ¼ 1

knðxmÞ

k̂ðxmÞ

1
1−Pm

!
ð17Þ

Introducing multiple scattering can be performed by add-
ing a branch to the collision test, and sampling a new
direction when true scattering occurs. When dealing with
opaque boundaries a test is added to check if a boundary is
intersected before the next collision, in which case a new
binary sampling procedure is implemented to either

Fig. 2. The standard null-collision algorithm. ~f N is a Monte Carlo estimate of f ðx;ωÞ. The integral formulation displayed on the right side of the algorithm
box is a strict formal translation of the algorithm description. The Monte Carlo weight is wj when the j-th collision is the first true collision (the preceding
collisions are null-collisions). The whole algorithm could also be presented as in Fig. 1 with λ¼ λ0 þ λ1 þ⋯þ λj−1, x−λω¼ xj and sλ ¼ sðxj;ωÞ, and the
appropriate change of the coefficient k used in pΛðλÞ.



resume the algorithm, with a new sampled reflection direc-
tion, or stop the algorithm and compute the Monte Carlo
weight using the value of the equilibrium distribution
function at the surface impact. Altogether, the resulting
algorithm is a quite standard backward Monte Carlo algo-
rithm corresponding to the following recursive formulation:

AðxÞ ¼
Z

4π
pΩðω0Þ dω0

Z þ∞

0
pΛ0

ðλ0Þ dλ0

&

Hðx1∈BÞ
PE;1w1

þð1−PE;1Þ
R
2πpRðω0jω1; x1Þ dω1I1

( )

þHðx1∈VÞ
PA;1w1

þPS;1
R
4πpSðω0jω1; x1Þ dω1I1

þPN;1
R
4πδðω0−ω1; x1Þ dω1I1

8
><

>:

9
>=

>;

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ð18Þ

Ij ¼
Z þ∞

0
pΛj

ðλjÞ dλj

&

Hðxjþ1∈BÞ
PE;jþ1wjþ1

þð1−PE;jþ1Þ
R
2πpRðωjjωjþ1;xjþ1Þ dωjþ1Ijþ1

( )

þHðxjþ1∈VÞ
PA;jþ1wjþ1

þPS;jþ1
R
4πpSðωjjωjþ1; xjþ1Þ dωjþ1Ijþ1

þPN;jþ1
R
4πδðωj−ωjþ1;xjþ1Þ dωjþ1Ijþ1

8
><

>:

9
>=

>;

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ð19Þ

wj ¼ 4πhνckaðxÞ

& Hðγj ¼ 1Þ
εðxj;ωm−1Þ

PE;j
ðf eqðxjÞ−f

eqðxÞÞ
$

þHðγj ¼ 3Þ
kaðxjÞ

k̂ðxjÞPA;j

ðf eqðxjÞ−f
eqðxÞÞ

#

& ∏
j−1

m ¼ 1
Hðγm ¼ 2Þ

1−εðxm;ωm−1Þ
1−PE;m

$

þHðγm ¼ 4Þ
ksðxmÞ

k̂ðxmÞPS;m

þHðγm ¼ 5Þ
knðxmÞ

k̂ðxmÞPN;j

#
ð20Þ

where V is the volume of the considered system and B its
boundary (Fig. 4). The locations xjþ1 and directions ωj are

defined in the same way as in Section 2 with the only
difference that xjþ1 ¼ yjþ1 when xj−λωj is outside V, where
yjþ1 is the intersection with the boundary of the straight ray
starting at xj in the direction −ωj (see Fig. 4). When xj
belongs to B, εðxj;ωj−1Þ is the local value of the emissivity in
the direction ωj−1, and pRðωj−1jωj ; xjÞ is the probability
density of the reflection direction ωj−1 for an incidence along
ωj . In the absence of any specific convergence difficulty,
the branching probability PE;j (the probability that the
algorithm stops at the surface impact xj) can be taken as
PE;j ¼ εðxj;ωj−1Þ. In the expression of the weight, γj ¼ 1
if the algorithm stops at the boundary, γj ¼ 2 if the optical
path sampling is continued backward after surface reflection,

Fig. 3. The generalized null-collision algorithm in which there is no more constraint on the k̂ field. ~f N is a Monte Carlo estimate of f ðx;ωÞ justified by
Eq. (9). The integral formulation displayed on the right side of the algorithm box is a strict formal translation of the algorithm description. Note that when
kn is always positive, Pj ¼ kaðxjÞ=k̂ðxjÞ, ðkaðxjÞ=k̂ðxjÞÞð1=PjÞ ¼ 1 and ðknðxmÞ=k̂ðxmÞÞð1=ð1−PmÞÞ ¼ 1; the algorithm becomes identical to that of Fig. 2.

Fig. 4. yjþ1 is the intersection with the boundary of the straight ray
starting at xj in the direction −ωj . xjþ1 equals xj−λjωj if this location
belongs to V. Otherwise xjþ1 ¼ yjþ1 . If xjþ1∈V the collision is either a null-
collision and ωjþ1 ¼ωj (see j¼0 in the figure), or a true scattering and
ωjþ1 is sampled according to the single scattering phase function
(see j¼1 and j¼2 in the figure), or an “absorption” and the algorithm
stops (the exchange weight is computed, see j¼4 in the figure). If xjþ1∈B
the interaction with the boundary is either a reflection and ωjþ1 is
sampled according to the directional reflectivity (see j¼3 in the figure),
or an “absorption” and the algorithm stops (the exchange weight is
computed).



γj ¼ 3 in case of “absorption” within the volume, γj ¼ 4 in
case of true scattering and γj ¼ 5 in case of null-collision. The
true originalities are the definition of the branching prob-
abilities PA;j, PS;j and PN;j when xj belongs to V (probabilities
that the j-th collision is an absorption, a true-scattering
event, or a null-collision, respectively), as well as the Monte
Carlo weight expressions. As argued in Section 2, we suggest
the use of PA;j ¼ kaðxjÞ=ðkaðxjÞ þ ksðxjÞ þ jknðxjÞjÞ, PS;j ¼
ksðxjÞ=ðkaðxjÞ þ ksðxjÞ þ jknðxjÞjÞ and PN;j ¼ jknðxjÞj=ðkaðxjÞþ
ksðxjÞ þ jknðxjÞjÞ. Except for that, the algorithmic structure
strictly corresponds to the application of Skullerud and
Woodcock's strategies. Note however that although we
essentially play with probability choices, our proposition is
nothing like an importance sampling strategy. As detailed at
the end of Section 2, we do not propose to modify the
branching probabilities and change the Monte-Carlo weight
accordingly, we rather extend the applicability range of
standard null-collision algorithms by preserving exactly the
definitions of PA;j, PS;j and PN;j in the usual range, and
generalizing their definitions in order to handle rigorously
the occurrences of k̂oka.

We now present a parametric study in order to evaluate
the numerical behaviour of the above presented algorithm.
Monochromatic radiative budget densities are evaluated at
two locations within a simple academic configuration. The
algorithmic implementation is validated against a well
mastered Monte Carlo algorithm, and the code is then
used to analyse how the convergence levels and the
computation times depend on the retained k̂ field. The
considered system is a cube, of side 2L, with 0K diffuse-
reflecting faces of uniform emissivity ε, that are perpendi-
cular to the x, y and z axis of a Cartesian coordinate system
originating at the center of the cube (see Fig. 5). The
enclosed medium is heterogeneous both in temperature
and optical properties. The ka, ks and feq fields are

kaðx; y; zÞ ¼ ka;max
L−x
2L

" #
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

2L2

s0

@

1

A; ð21Þ

ksðx; y; zÞ ¼ ks;max
L−x
2L

" #
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

2L2

s0

@

1

A ð22Þ

and

f eqðx; y; zÞ ¼ f eqmax
L−x
2L

" #
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

2L2

s0

@

1

A ð23Þ

figuring an axisymmetric flame along the x axis (max-
imum temperature and maximum extinction along the
axis, and a linear decay as function of the distance to the
axis, down to zero at the corners). The Henyey-Greenstein
single-scattering phase function is used with a uniform
value of the asymmetry parameter g throughout the field.
For simplicity, k̂ is chosen uniform. As ka and ks take their
maximum values at the same location, kmax ¼ ka;max þ ks;max

is the maximum value of the total extinction coefficient
and the ratio ρ¼ k̂=kmax tells us whether negative values of
the null-collision coefficient will occur (ρo1) or not.
Because of the shape of the retained field of equilibrium
distribution function, monochromatic radiative budgets
are simply proportional to feqmax and the remaining numeri-
cally meaningful free-parameters are (in nondimensional
form): ρ, ka;maxL, ks;maxL, g and ε. The analysis will be
performed using g¼0 (isotropic scattering) and ε¼ 1
(black boundaries). The influence of g, ε, as far as numer-
ical behaviour is concerned, will then be briefly described
at the end of the section.

Table 1 displays the simulated values of AðxÞ for
x¼ ½0;0;0( (the center of the cube) and x¼ ½−L;0;0(
(the location of the maximum values of the ka, ks and feq

fields), using 106 independant realizations, for ρ¼ 1,
meaning that kn¼0 at x¼ ½−L;0;0( and kn40 at all other
locations (no negative values of the null-collision coeffi-
cient). Also given are the associated standard deviations, s,
and computation times, t. The columns labelled Aref and
sref correspond to the simulation results obtained with a
standard Monte Carlo algorithm in which the problem of
inverting optical thicknesses is solved by fitting k¼ ka þ ks
using an accurate spline decomposition. These solutions
were only used to validate the implementation procedure:
considering the values of s and sref , A and Aref are indeed
statistically compatible. The relative uncertainty s=A indi-
cates that the convergence level is good for all the
considered absorption and scattering optical thicknesses
(s=A is below 0.2% in all cases). The computation
times, that were measured without the use of any paralle-
lization procedure, are typical of standard Monte Carlo
simulations.

More open is the question of choosing k̂, in particular
the effect of modifying the Monte Carlo weight in order to
deal with negative values of the null-collision coefficient
when k̂ok at some locations. This question is addressed
by reproducing the same simulations for different values
of ρ, from ρ¼ 0:5 (i.e. k̂ is a faulty overestimate of k, as low
as 1/2k at some locations) to ρ¼ 5 (on the contrary k̂ is a
large overestimate of k). Fig. 6 displays the evolution with
ρ of s=A, Fig. 7 displays the computation times, and Fig. 8
displays the computation times required to achieved a 1%
accuracy. These results are interpreted as follows.

% Above ρ¼ 1, the standard deviation of the estimator is
independant of ρ. This is expected since no negative

Fig. 5. Considered system: a cube of side 2L, whose center is the
Cartesian coordinate system origin.



values of the null-collision coefficient occur: as indi-
cated from the start, standard null-collision algorithms
can be rigorously interpreted as only practical ways to
sample collision-locations according to Beer extinction.
Adding supplementary null-collisions increases only
the computation time but changes nothing to the
resulting sampling statistics.

% Below ρ¼ 1, the standard deviation of the estimator
increases when increasing the occurrence of negative
values of the null-collision coefficient. Again, this is
expected since the handling of negative values of the
null-collision coefficient is achieved at the price of
multiplying the Monte Carlo weight by the correction
term3 7 ðk̂ þ 2jknjÞ=k̂. The module of this weight-
correction factor is always greater than unity and the
factor is positive when absorption or true scattering is
retained, negative when null-collision is retained. If
many scattering or null-collision events occur along
the optical path, in regions where kno0, before the

algorithm stops because of absorption, then the Monte
Carlo weight can take very high absolute values as it
involves the product of a large number or correction
terms greater than unity. The convergence toward the
exact same solution of the radiative transfer equation is
insured by the fact that positive weights are compen-
sated by negative ones, but the convergence rate is
smaller: much more statistical realizations are required
to reach the same accuracy levels when no negative
values of the null-collision coefficient occur. This is
illustrated by the fact that for increasing values of the
scattering optical thickness combined with high values
of the single-scattering albedo (see ksL¼3 and kaL¼0.1
in Fig. 6), the standard deviation increases very fast
when decreasing ρ below unity. This effect is of course
much stronger when x is right at the center of the
region where kno0 (see x¼ ½−L;0;0() than when
optical paths start from a region where kn40 (see
x¼ ½0;0;0(Þ.

% For a given number of statistical realizations, the
computation times (see Fig. 7) decrease when decreas-
ing the number of null-collisions, and this is also true
when decreasing kn below zero. This is a direct result of
less collisions occurring, but this does not wholly

Table 1
Estimation, standard deviation and computation time obtained for 106 independant realizations and for ρ¼ 1 at two probe locations: x0 ¼ ½0;0;0( (see (a))
and x0 ¼ ½−L;0;0( (see (b)) for several values of the optical thicknesses ka;maxL and ks;maxL. The computation was done with a processor “Intel Core i5 -
2,4 GHz” without any parallelization.

ka;maxL ks;maxL A
4πkaðx0Þf

eq
max

s
4πkaðx0Þf

eq
max

tðsÞ Aref

4πkaðx0Þf
eq
max

sref
4πkaðx0Þf

eq
max

(a)
0.1 0.1 −0.483813 8.52E−05 2.43 −0.483717 1.13E−05
0.1 1 −0.482031 8.97E−05 7.92 −0.481921 1.40E−05
0.1 3 −0.477997 9.90E−05 24.25 −0.477883 1.93E−05
0.1 10 −0.463027 1.27E−04 122.69 −0.463068 3.56E−05
1 0.1 −0.366086 2.09E−04 2.94 −0.365971 7.96E−05
1 1 −0.356169 2.13E−04 7.43 −0.356353 8.93E−05
1 3 −0.33585 2.20E−04 19.2 −0.335928 1.06E−04
1 10 −0.277205 2.28E−04 76.39 −0.27683 1.34E−04
3 0.1 −0.218989 2.21E−04 3.48 −0.218942 1.23E−04
3 1 −0.209261 2.18E−04 6.4 −0.209529 1.26E−04
3 3 −0.190256 2.10E−04 13.63 −0.190141 1.30E−04
3 10 −0.144073 1.84E−04 41.38 −0.143501 1.27E−04
10 0.1 −0.071271 1.19E−04 3.49 −0.07137 9.15E−05
10 1 −0.068662 1.15E−04 4.66 −0.068854 8.99E−05
10 3 −0.063501 1.07E−04 7.29 −0.063369 8.61E−05
10 10 −0.050674 8.49E−05 16.23 −0.050674 7.44E−05

(b)
0.1 0.1 −0.977296 1.27E−04 2.24 −0.977336 2.58E−05
0.1 1 −0.97683 1.29E−04 6.18 −0.976679 2.79E−05
0.1 3 −0.975682 1.33E−04 15.3 −0.975767 3.22E−05
0.1 10 −0.974828 1.37E−04 44.9 −0.974733 4.36E−05
1 0.1 −0.822495 3.24E−04 2.38 −0.822111 1.97E−04
1 1 −0.822446 3.26E−04 5.13 −0.821846 2.03E−04
1 3 −0.823933 3.29E−04 10.75 −0.823994 2.14E−04
1 10 −0.83941 3.27E−04 26.32 −0.839533 2.29E−04
3 0.1 −0.658358 4.07E−04 2.22 −0.657242 3.64E−04
3 1 −0.66479 4.09E−04 3.73 −0.664704 3.62E−04
3 3 −0.67959 4.12E−04 6.67 −0.679703 3.58E−04
3 10 −0.72422 4.10E−04 14.49 −0.722886 3.42E−04

10 0.1 −0.544282 4.62E−04 1.98 −0.5438 4.60E−04
10 1 −0.551703 4.63E−04 2.47 −0.551153 4.57E−04
10 3 −0.567704 4.65E−04 3.54 −0.567366 4.48E−04
10 10 −0.61077 4.65E−04 6.76 −0.609865 4.27E−04

3 With the choices we made for PA, PS and PN, the correction terms in
the weight expression of Eq. (17) verify the property ka=k̂PA ¼ ks=k̂PS ¼
jkn=k̂PN j¼ ðk̂ þ 2jknjÞ=k̂ .



compensate the degradation in standard deviation (see
Fig. 8). For a given relative accuracy, the required
computation time is then driven by the impact of ρ
upon the standard deviation, and it is of course greater
as k̂ becomes a larger and larger overestimate of the
true extinction coefficient.

Altogether, the use of negative values of the null-
collision coefficient is fully relevant when the approxi-
mated upper-bound k̂ can be astutely designed, since the
convergence will be really reasonable: for k̂≃0:9k, the
increase of the computing effort should not be a concern
(see Fig. 8 (a)) except if domains where kno0 are optically
thick with a high single scattering albedo (see Fig. 8 (b)).
Accordingly, most efforts design of k̂ should focus on
avoiding the occurrences of such domains. Bad approx-
imates of the upper-bound (ρ⪡1) would yield pathological
behaviours, as expected.

The simulations performed with g≠0 and εo1 indicate
that the shape of the single scattering phase function has
very little influence (the values of A are affected but the
numerical behaviour is unchanged), and that surface reflec-
tion acts like scattering; because of multiple reflections,
more null-collision or scattering events can occur within
the domain of negative null-collision coefficients before

absorption and standard deviation increase (although less
than when increasing scattering).

4. Formal developments

This section is addressed to the reader interested by the
formal significance of null-collision algorithms. The phy-
sical meaning of null-collisions at the kinetic level is quite
trivial: they are additional collisions that change nothing
to the overall radiative transfer. But when looking at the
corresponding integral formulations, several observations
can be made, that could be useful in the process of
enhancing statistical convergence. A renewed viewpoint
can indeed be taken from which null-collisions are only of
secondary importance compared to the associated integral
reformulation. This reformulation alone suppresses the
need for an optical-thickness inversion procedure and
meshless algorithms can therefore be designed without
introducing any null-collision. The next paragraph,
entitled step 1, illustrates this point. In step 2 we argue
that it may still be useful to introduce a (non-strict)
overestimate k̂ of the extinction coefficient, but k̂ is not
used for sampling collision locations: it plays a role similar
to that of a control variate [7], allowing to get rid of
sign alternations that would otherwise be sources of
convergence difficulties. In step 3 we finally show how

Fig. 6. Standard deviation as a function of ρ, ka;maxL, ks;maxL at (a) x0 ¼
½0;0;0( and (b) x0 ¼ ½−L;0;0(.

Fig. 7. Computation time as a function of ρ, ka;maxL, ks;maxL at
(a) x0 ¼ ½0;0;0( and (b) x0 ¼ ½−L;0;0(.



standard null-collision algorithms can be fully recovered
by choosing to also make use of k̂ for free-path sampling as
well as for the weighting of branching tests. We advise
however that this choice does not entail optimized con-
vergence features.

Step 1: Our starting point is the observation that the
initial radiative transfer equation of Eq. (1) at stationary
state can be integrated backward along the line of sight to
give the following Fredholm equation:

f ðx;ωÞ ¼ f ðx−Lω;ωÞ þ
Z L

0
½ka;λsλ−ka;λf ðx−λω;ωÞ( dλ ð24Þ

This equation is easy to demonstrate but its structure does
not highlight the pictures of transport physics, which is
probably the reason why it is seldom mentioned in the
radiative transfer literature. Indeed, by comparison with
Eq. (3), no Beer extinction appears and it is difficult to
interpret physically the integration over space of the local
emission ka;λsλ. Of course, the exponentials are well recov-
ered due to the Fredholm structure of this equation
(f appearing within the integral). Fredholm equations are
common in photon transport physics but it is worth
mentioning that they are usually the result of scattering
or surface-reflection representations. In the present con-
text the fact that Beer extinction does not appear explicitly

is a strong advantage: the difficulties associated with the
inversion of exponential extinctions in heterogeneous
media are automatically by-passed. Let us consider the
particular case where f ðx−Lω;ωÞ ¼ 0. The same steps can
then be followed as in Eqs. (6) and (8), starting from Eq.
(24) instead of Eq. (5), to give

f ðx;ωÞ ¼
Z L0

0
pΛ0

ðλ0Þ dλ0½P1w1 þ ð1−P1ÞI1( ð25Þ

with

Ij ¼
Z Lj

0
pΛj

ðλjÞ dλj½Pjþ1wjþ1 þ ð1−Pjþ1ÞIjþ1( ð26Þ

where the only changes by comparison with Eqs. (9) and
(10) are that the j-th free path is integrated between zero
and Lj ¼ L−∑j−1

m ¼ 0λj, the probability density function pΛj
ðλjÞ

is now an arbitrary probability density on ½0; Lj(, and the
Monte Carlo weights are

wj ¼ kaðxjÞsðxj;ωÞ
1
Pj

1
pΛj−1

ðλj−1Þ
& ∏

j−1

m ¼ 1
−kaðxmÞ

1
1−Pm

1
pΛm−1

ðλm−1Þ

" #

ð27Þ

Apart from the free paths being integrated over finite
intervals, which we will comment later, the essential
differences with the null-collision algorithm of Section 2
are that no k̂ field has yet been introduced and that the
successive weights alternate signs (w140;w2o0;…). In
step 2 we argue that the first meaning and the main interest
of introducing k̂ is to break this sign alternation.

Step 2: As detailed in the literature about exponential
transforms [8–10], it is shown in Appendix B that any
arbitrary positive scalar field k̂ can be introduced to
transform Eq. (24) into

f ðx;ωÞ ¼ f ðx−Lω;ωÞ exp −
Z L

0
k̂λ dλ

" #
þ
Z L

0
exp −

Z λ

0
dsk̂s

" #

&½ka;λsλ þ ðk̂λ−ka;λÞf ðx−λω;ωÞ( dλ ð28Þ

Very much like when introducing control variates to
modify the convergence features of Monte Carlo algo-
rithms [7], we can play with the arbitrary choice of the k̂
field:

% First, if k̂40 the exponentials insure that improper
integrals converge and L may be extended to infinity
to recover the same problem as in Section 2:
evaluating f ðx;ωÞ in the particular case of an infinite
medium. Eq. (28) becomes

f ðx;ωÞ ¼
Z þ∞

0
exp −

Z λ

0
k̂s ds

" #

&½ka;λsλ þ ðk̂λ−ka;λÞf ðx−λω;ωÞ( dλ ð29Þ

which is Eq. (5) exactly, where the Dirac integration
is solved (there is indeed no more need to highlight
the physical picture of a forward scattering equiva-
lent). Note that we only take the limit L-þ∞ for
didactic reasons and that all further reasoning
can be reproduced using Eq. (28) to address the
question of evaluating f ðx;ωÞ in bounded domains.
For instance, the term f ðx−Lω;ωÞ expð−

R L
0 k̂λ dλÞ in

Eq. (28) is the one that allows the representation of

Fig. 8. Computation time in order to reach a 1% standard deviation as a
function of ρ, ka;maxL, ks;maxL at (a) x0 ¼ ½0;0;0( and (b) x0 ¼ ½−L;0;0(.



surface emission and surface reflection in Section 3.
% Second, as in Section 2, k̂ can be lower than ka. But,

as much as possible, k̂ should still be chosen such
that k̂4ka at most locations. Indeed this ensures
that both ka;λsλ and ðk̂λ−ka;λÞf ðx−λω;ω′Þ in Eq. (29)
are positive terms, with the direct consequence that
Monte Carlo weights are strictly positive: the con-
vergence difficulties due to sign alternation vanish.
The technical steps of Eqs. (6) and (8) can again be
taken, this time to recover Eqs. (9) and (10) exactly,
with the following new expression for wj (which is
strictly positive if k̂−ka40):

wj ¼ kaðxjÞ exp −
Z λj−1

0
k̂ðxj−1−sωÞ ds

" #

&sðxj;ωÞ
1
Pj

1
pΛj−1

ðλj−1Þ

& ∏
j−1

m ¼ 1
k̂ðxmÞ−kaðxmÞ

' (h

&exp −
Z λm−1

0
k̂ðxm−1−sωÞ ds

" #
1

1−Pm

1
pΛm−1

ðλm−1Þ

#

ð30Þ

where the pΛj
ðλjÞ probability densities and the Pj

probabilities are now fully arbitrary [7,11]. Note in
particular that k̂ appears in the weight expression,
but that pΛj

and Pj can be chosen independent of k̂.
% Third, choosing k̂ as close to ka as possible is useful,

this time not as far as statistical convergence is
concerned, but in terms of computational costs. Let
us indeed admit that pΛj

and Pj could be ideally
chosen according to a zero-variance strategy
[11–14]. If we temporary admit that k̂ is strictly
greater than ka at all locations, then zero-variance is
obtained with

pΛj
ðλjÞ ¼

1
f ðxj;ωÞ

exp −
Z λj

0
k̂ðxj−sωÞ ds

" #

&½kaðxjþ1Þsðxjþ1;ωÞ þ ðk̂ðxjþ1Þ−kaðxjþ1ÞÞf ðxjþ1;ωÞ(

ð31Þ

and

Pj ¼
kaðxjÞsðxj;ωÞ

kaðxjÞsðxj;ωÞ þ ðk̂ðxjÞ−kaðxjÞÞf ðxj;ωÞ
ð32Þ

(see Appendix C). Then only one sample is required to
reach the exact solution and the remaining question is
the computation cost of the sampling procedure itself.
This cost is directly related to the average value of the
recursion level: the value of the index j at which the
sampling algorithm is exited. This average recursion
level is obviously related to the value of Pj: there is
ideally no recursionwhen Pj¼1, which is reached when
k̂ is strictly identical to ka. Altogether, our conclusions
match those of all previous publications: k̂ should be
greater than ka and should be as close to ka as possible.
However, we reach these conclusions without any
reference to k̂ as an extinction coefficient to be used
for the sampling of collision locations. So, not only the
constraint k̂4ka becomes non-strict (as illustrated in

the previous sections), but it is also no more required
that the function τ̂ðλÞ ¼

R λ
0 k̂ðx−sω;ω; t þ s=cÞ ds be

analytically invertible: all we need is that τ̂ðλÞ be easily
evaluated as it appears within the exponentials in the
weight expression of Eq. (30).

Step 3: To recover the standard null-collision algorithm
of Section 2 (before extension to negative kn values), it
suffices to make the following choice for pΛj

and Pj (that
were arbitrary up to now):

pΛj
ðλjÞ ¼ k̂ðxjþ1Þ exp −

Z λj

0
k̂ðxj−sωÞ ds

" #
ð33Þ

and

Pj ¼
kaðxjÞ

k̂ðxjÞ
ð34Þ

This choice is well guided by the physical pictures, but
nothing motivates this particular choice in terms of statis-
tical convergence. We have indeed already mentioned
that the ideally optimized choice (if it was practicable)
would be that of Eqs. (31) and (32), but for Eqs. (33) and
(34) to match Eqs. (31) and (32), it is required that
f ðxj;ωÞ≈f ðxjþ1;ωÞ≈sðxj;ωÞ≈sðxjþ1;ωÞ. This is a fair approx-
imation only in the limit of thermodynamic equilibrium
and this strongly limits the applicative potential.

5. Conclusions

Altogether, the null-collision concept was revisited,
thinking more specifically of radiative transfer applica-
tions. The corresponding algorithms introduce no specific
convergence difficulty, which is not surprising considering
the well known similarities between photon-transport and
neutron or electron-transport, the two particle-transport
physics that motivated initially the introduction of null-
collisions in Monte Carlo path-tracking algorithms.

It was also shown, by two different formal means, how
null-collision algorithms provide exact unbiased statistical
estimations of the solution of the radiative transfer equa-
tion. In both cases (in Sections 2 and 4), thanks to its
linearity properties, the radiative transfer equation was
replaced by a rigorous integral-equivalent. In the first case,
the radiative transfer equation included null-collisions
from the start; in the second case, null-collisions were
introduced at the integral level.

Besides their meaning in terms of algorithmic valida-
tion, these integral formulation efforts open two new
fields of investigation. We first showed how null-
collision algorithms can be slightly transformed in order
to deal with the unexpected occurrence of negative values
of the null-collision extinction coefficient. We checked that
this transformation does not introduce pathological con-
vergence difficulties that would make it impractical, and
our conclusion is that difficulties will only be encountered
when the domain of negative null-collision coefficients
is optically thick with a high single-scattering albedo.
Absorption reduces the difficulty because it reduces the
number of times the Monte Carlo weight is multiplied by a
negative correction term of absolute value greater than



unity. Pathological behaviours will therefore only be
encountered when k̂ is a poor overestimate of the true
extinction coefficient, for scattering dominated media.

If such difficulties were practically encountered, the
question could first be addressed by adjusting the branch-
ing probabilities PA, PS and PN (we made a practical
proposition for these probabilities, but we did not explore
alternative choices). Further investigations in this direction
would then certainly consist in transforming the integral
structure. We suggest furthermore that this question
should be enlarged by considering the meaning of the
integral structure highlighted in Section 4. It seems indeed
that the meshless feature of null-collision algorithms has
very little to do with the null-collisions themselves, but
rather with an underlying Fredholm formulation that
bypasses the question of dealing with path-integrated
extinction-coefficients appearing within the exponential
function. Introducing null-collisions could then be viewed
mainly as a practical way to enhance statistical conver-
gence, very much like introducing control variates in
standard Monte Carlo convergence-enhancement techni-
ques. Accordingly, we propose that alternative solutions
could be explored starting back from the primary Fred-
holm formulation. We only opened this investigation field
in the last section, but we are convinced that it is worth to
give it a close attention.
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Appendix A. Terminology and bibliographic entries

Null-collision algorithms have been developed inde-
pendently in two branches of physics: plasma physics and
neutron transport. Consequently, according to disciplines
and authors, they are found under different designations:
null-collisions, fictitious-collisions, pseudo-collisions, null-
events, Woodcock-tracking, delta-scattering, pseudo-
scattering, etc.

In the field of plasma physics, null-collision algorithms
were first formulated by Skullerud in 1968 [1] to sample
ion/molecule collision times. This publication led to
further refinements in the same application field, for
instance [3,15] or [16]. These advances have also directly
inspired the community studying the dynamics of rarefied
gases [17].

Meanwhile, this technique was developed for neutron
transport applications by Woodcock et al. [2]. They are
legitimately recognized as the founders of null-collision
algorithms in their field. A significant step was then the

formalisation effort reported in [18], that enlarged the
application potential of Woodcock algorithm. Today, the
so-called “Woodcock tracking” is implemented in many
transport simulation codes such as SERPENT [19] or
MORET [20]. These ideas have also significantly impacted
the communities of image synthesis and tomography
research [4,5,21].

Appendix B. Exponential transform

In the literature about exponential transforms [8–10], a
new distribution function gðx;ωÞ ¼ f ðx;ωÞ expð

R L
0 k̂s dsÞ is

introduced and is reported in transport equations such as
Eq. (1) to get (here in the particular case of stationary
radiation in a non-scattering medium)

ω:∇gðx;ωÞ ¼ ½k̂ðxÞ−kaðxÞ(gðx;ωÞþkaðxÞsðx;ωÞ exp
Z L

0
k̂s ds

" #

ðB:1Þ

The problem is then solved in g instead of f, using Monte
Carlo approaches, and the arbitrary k̂ field is adjusted in
order to minimize the variance of the estimator (essen-
tially using adjoint formulation similar to that of the zero-
variance literature). Here, we build a Fredholm equation
starting from Eq. (B.1) (as in Step 1):

gðx;ωÞ ¼ gðx−Lω;ωÞ þ
Z L

0
dλ½k̂λ−ka;λ(gðx−λω;ωÞ

þka;λsλ exp
Z L−λ

0
k̂s ds

" #
ðB:2Þ

Reporting the expression of gðx;ωÞ ¼ f ðx;ωÞ expð
R L
0 k̂s dsÞ

in Eq. (B.2) leads to Eq. (28).

Appendix C. Zero-variance strategy

In the Monte Carlo literature, zero-variance refers to
algorithms such that the Monte Carlo weight is strictly and
systematically equal to the quantity to be estimated
independently of the sampling occurrences. This corre-
sponds to ideal convergence in the sense that perfect
convergence is obtained with a single Monte Carlo sam-
pling event. The design of such algorithms is always part of
pure-theoretical reasoning and can be quite tedious. Here,
starting from Eq. (29) in the restrictive case of k̂4ka
(so that, all terms are positive), such an algorithm can be
easily designed using only an ideally optimized impor-
tance sampling procedure. Indeed, a random variable Λ of
probability density function pΛ on ½0;þ∞( can be intro-
duced to give

f ðx;ωÞ ¼
Z þ∞

0
pΛðλÞ dλwðλÞ ðC:1Þ

with

wðλÞ ¼
1

pΛðλÞ
exp −

Z λ

0
k̂s ds

" #
½ka;λsλþðk̂λ−ka;λÞf ðx−λω;ωÞ(

ðC:2Þ



and wðλÞ is equal to f whatever the sampled value of λ as
soon as

pΛðλÞ ¼
1

f ðx;ωÞ
exp −

Z λ

0
k̂s ds

" #

&½ka;λsλ þ ðk̂λ−ka;λÞf ðx−λω;ωÞ( ðC:3Þ

This is Eq. (31) exactly, except for recursive notations.
If we now want that the algorithm branches between

pure absorption and null-collisions (to recover the algo-
rithmic structure of Eqs. (9) and (10)), it suffices to
introduce an absorption probability P and write

f ðx;ωÞ ¼
Z þ∞

0
pΛðλÞ dλfPwaðλÞ þ ð1−PÞwnðλÞg ðC:4Þ

with

waðλÞ ¼
1

pΛðλÞ
exp −

Z λ

0
k̂s ds

" #
ka;λsλ
P

ðC:5Þ

and

wnðλÞ ¼
1

pΛðλÞ
exp −

Z λ

0
k̂s ds

" #
ðk̂λ−ka;λÞf ðx−λω;ωÞ

1−P
ðC:6Þ

We keep the previous choice for pΛ (Eq. (C.3)), and we still
want to achieve waðλÞ ¼wnðλÞ ¼ f ðx;ωÞ, then we get

P ¼
ka;λsλ

ka;λsλ þ ðk̂λ−ka;λÞf ðx−λω;ωÞ
ðC:7Þ
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