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Résumé :

MODELISATION DES TRANSFERTS RADIATIFS DANS LES SYSTEMES EN COMBUSTION PAR
METHODE AUX ORDONNEES DISCRETES SUR DES MAILLAGES NON STRUCTURES TRIDIMEN-
SIONNELS

Mots clés : Transferts radiatifs, combustion, maillage non structuré, méthode aux ordonnées discrétes, modele de
rayonnement des gaz

La prédiction des concentrations d’espéces polluantes, telles que les suies et oxydes d’azote, émises par les sys-
témes de combustion et I’évaluation de la durée de vie des parois de ce type d’installation nécessitent une bonne prise
en compte des transferts radiatifs dans les modéles de combustion. Dans cette optique, nous avons développé un code
de calculs des transferts radiatifs basé sur la Méthode aux Ordonnées Discrétes et utilisant des maillages non structurés
de la dynamique des fluides. Le rayonnement des gaz de la combustion est pris en compte par un modéle statistique a
bandes étroites en k-corrélés. Divers types de quadratures angulaires et trois schémas de dérivation spatiale différents
ont été intégrés et comparés. Des tests de validation ont permis de montrer les limites a fortes épaisseurs optiques de
I’approximation de type volumes finis sur laquelle s’appuie la méthode aux ordonnées discrétes. Les premiers calculs
effectués sur des solutions obtenues par LES permettent de déterminer les termes sources radiatifs et les flux incidents
aux parois instantanés, ce qui permet d’envisager le couplage avec la combustion.

Abstract :

RADIATIVE TRANSFER MODELLING IN COMBUSTING SYSTEMS USING DISCRETE ORDINATES
METHOD ON THREE-DIMENSIONAL UNSTRUCTURED GRIDS

Keywords : Radiative transfer, combustion, unstructured grids, Discrete Ordinates Method, Spectral Line Gaseous
Radiation Model

The prediction of pollutant species such as soots and NO,. emissions and lifetime of the walls in a combustion
chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the deve-
lopmeent of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and
wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using
the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the
combustion gases are taken into account by a statistical narrow bands correlated-kx model (SNB-ck). Various types
of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The
validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Or-
dinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative

source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling.
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Chapitre 1

Contexte scientifique

1.1 Enjeux industriels

Un des problémes majeurs que doit affronter actuellement la population mondiale est celui de
la pollution de I’air engendrée principalement dans les pays industrialises. Cette pollution a un
impact local, sur la santé de la population dans les zones urbaines, mais aussi global, sur la chi-
mie de I’atmosphére pouvant aller jusqu’a des modifications climatiques. Une grande partie de
I’énergie domestique et industrielle responsable de cette pollution est produite par des systemes
de combustion qui émettent des especes polluantes extrémement toxiques telles que le monoxyde
de carbone, les oxydes d’azote (NO,.), les suies et les Hydrocarbures Aromatiques Polycycliques
(HAP). Ces deux derniéres en particulier, essentiellement produites par la combustion de com-
bustibles fossiles, ont été reconnues comme mutagénes voire cancerigénes pour les étres vivants.
D’autre part, les NO,. sont des irritants pulmonaires et jouent un réle important dans la forma-
tion des brouillards de pollution. Prés de 67% des NO,, rejetés dans I’atmosphére sont d’origine
anthropique, parmi lesquels 68% sont dds seulement a I’activité automobile. Le colt global du
retraitement des déchets, les investissements nécessaires pour la santé publique et I’incertitude sur
I’impact climatique sont autant d’arguments justifiant pleinement le développement d’une indus-
trie propre.

Des mesures ont déja été prises pour réduire les rejets de polluants au niveau industriel et domes-
tique, que ce soit au niveau européen avec la mise en vigueur de nouvelles normes depuis 2002,
ou a I’échelle mondiale avec les accords de Kyoto signés en 2002. Ces préoccupations atteignent
aussi directement I’opinion publique. Ainsi les systémes moins polluants sont mieux percus et
font partie d’enjeux économiques importants. Dans le domaine de I’aviation civile, la réduction
des émissions polluantes des avions est devenue une priorité, afin de satisfaire les normes euro-
péennes, mais aussi comme un sérieux argument de vente. De méme les constructeurs automobiles
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proposent des véhicules de plus en plus propres et économiques.

La conception de systemes de combustion propres requiert des outils numériques de prédiction
fine pour I’émission de polluants, prenant en compte tous les facteurs influents relatifs a la dyna-
miqgue, la chimie et la thermodynamique. Ces outils sont de deux natures :

— les outils d’analyse et de compréhension permettent d’identifier, d’analyser et de comprendre
dans des configurations simples mais représentatives, les divers mécanismes physiques et
chimiques impliqués dans la production d’especes polluantes. C’est le cas par exemple du
calcul de flammes monodimensionnelles, laminaires et stationnaires (donc simples d’un
point de vue dynamique), pour lesquelles on est capable de prendre en compte la réelle
complexité chimique et thermodynamique ainsi que le couplage direct avec les transferts
radiatifs.

— les outils de conception permettent de calculer les systéemes a géométrie réelle complexe, sur
la base de modélisations plus ou moins détaillées des processus physiques et de leur cou-
plage. Ces outils sont destinés a une utilisation en production chez les industriels et doivent
combiner rapidité et fiabilité. Ainsi depuis quelques années maintenant, les ingénieurs de
I’industrie utilisent couramment des codes de calcul moyenné stationnaire (RANS) pour la
conception des chambres de combustion. Le défi actuel est de permettre a ces ingénieurs
d’accéder a des techniques plus sophistiquées telles que le calcul instationnaire.

Dans tous ces problémes, le rayonnement joue un réle clé sur la formation des suies et des espéces
mineures polluantes, ainsi que sur les contraintes thermiques imposées aux matériaux composant
les parois. Il faut donc étre capable de comprendre I’influence du rayonnement sur les flammes et
les systemes, et d’estimer son impact le plus précisément possible compte tenu de la complexité
géométrique des chambres de combustion et des écoulements qui sy développent.

1.2 Objectifs de I’étude

Le principal objectif de ce travail est de fournir un outil fiable pour le calcul des pertes par
rayonnement au sein de systemes en combustion ainsi que des flux radiatifs regus aux parois. Pour
cela il faut d’abord comprendre et évaluer le rayonnement comme mode de transfert thermique,
avec une attention particuliere pour le mécanisme de couplage combustion/rayonnement. Il faut
ensuite étre capable de modéliser les transferts radiatifs de facon fiable et ce, dans des configura-
tions les plus proches possible de la réalité.

Pour mieux appréhender les géométries complexes qui sont celles des applications industrielles
(turbines a gaz, réacteurs de fusee,...), les codes de Mécanique des Fluides actuels utilisent souvent
des maillages non structurés. Envisager - méme a long terme - un couplage rayonnement/combustion
dans des géométries réelles implique que le rayonnement soit calculé sur le méme maillage que le
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calcul de la dynamique, c’est-a-dire un maillage non structuré.

Il parait donc necessaire de développer un outil de modélisation des transferts radiatifs adapté aux
maillages non structurés et qui soit flexible, fiable et surtout suffisamment rapide pour pouvoir,
a plus long terme, étre couplé a moindre codt en temps de calcul avec le calcul de combustion
turbulente.

1.3 Démarche

Nous visons dans ce travail deux domaines différents : le rayonnement et la combustion. Le
Chapitre 2 fait une large introduction au rayonnement et précise les nombreuses notions néces-
saires pour comprendre et justifier les choix qui ont été adoptés. Etant donné la complexité des in-
teractions entre les différents mécanismes entrant en jeu dans le couplage combustion/rayonnement
(turbulence, cinétique chimique, rayonnement), une premiére étape a été d’etudier une configura-
tion simple de flamme monodimensionnelle. Afin de se libérer des problémes d’interaction entre la
turbulence et la cinétique chimique ou le rayonnement, nous avons choisi de mener notre étude sur
une flamme laminaire permettant de comprendre une physique dont les mécanismes de base sont
les mémes qu’en combustion turbulente. Le chapitre 3 de cette thése traite donc d’une flamme la-
minaire de diffusion C'H4/Air étirée dans un écoulement a jets opposés. Nous avons poursuivi les
travaux de thése d’A.De Lataillade (EMAC, 2001) en effectuant une étude paramétrique mettant
en évidence les parameétres de contréle des transferts radiatifs dans une flamme. Un modéle couplé
de rayonnement précis basé sur une méthode Monte Carlo optimisée nous a permis d’étudier en
particulier I’importance du phénomeéne de réabsorption dans le couplage rayonnement/combustion
pour ce type de flamme.

Dans une deuxieme étape, le calcul du rayonnement en géométrie complexe a été abordé. Pour
des raisons de complexité et de colt en temps de calcul restant encore trop conséquent, le cou-
plage direct tel que nous I’avons fait pour la flamme monodimensionelle n’est pas envisageable
aujourd’hui. De plus I’augmentation de la complexité du probléme due au passage a des géomé-
tries tridimensionnelles doit étre compensée et nous améne a considérer une cinétique chimique
moins détaillée ainsi qu’ une modélisation du rayonnement plus simple. Nous avons adopteé ici la
méthode aux ordonnées discrétes (DOM), connue pour sa flexibilité et sa rapidité. Le développe-
ment d’un code basé sur les DOM en maillage non structuré avec prise en compte des propriétés
spectrales des gaz constitue une innovation dans le domaine. Toutefois, il existe une littérature
abondante sur la méthode DOM proposant de nombreuses techniques pour accroitre la précision
des résultats et constituant une base de données intéressante pour faire des comparaisons de va-
lidation. Le développement d’un code DOM directement couplable avec un code de combustion
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est abordé au chapitre 4. Dans ce chapitre, le domaine de validité du code (hnommé DOMASIUM)
a été exploré et le degreé de fiabilité des solutions obtenues a été évalué par des comparaisons
avec des solutions de référence, qu’elles soient analytiques ou issues de calculs offrant une grande
précision (Méthode Monte Carlo et « Ray Tracing »). Nous présentons au Chapitre 5 les premiers
résultats obtenus par le code de calcul DOMASIUM sur des configurations industrielles. Les cal-
culs radiatifs ont été realisés a posteriori sur des solutions de combustion turbulente obtenues au
CERFACS?! de Toulouse par simulation des grandes échelles (LES pour Large Eddy Simulation)
avec le code de calcul AVBP.

1Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique



Chapitre 2
Eléments de rayonnement en combustion

Le rayonnement thermique est un mode de transfert que I’on associe essentiellement aux mi-
lieux semi-transparents. En combustion, des lors que I’on observe un milieu gazeux a haute tem-
pérature, ayant un fort pouvoir d’absorption d’un point de vue radiatif (c’est le cas des produits
de la combustion d’hydrocarbures tels que H,O, CO, et CO), il devient nécessaire de s’attacher
a une bonne description des transferts radiatifs. Dans certaines configurations, ils peuvent deve-
nir un mode de transfert énergétique non négligeable voir prépondérant. Dans ce chapitre nous
aborderons ce probléme du point de vue de la combustion en gardant pour objectif de souligner
I’existence d’un phénoméne de couplage combustion/rayonnement. Ce couplage se fait dans les
deux sens. D’abord, il y a I’influence du rayonnement sur la solution des équations de I’aérother-
mochimie en tant que mode de transfert thermique. Mais a I’inverse, le champs de flux rayonné
est lui méme dépendant des champs de température, de pression et de concentration des especes
chimiques, par le biais, entre autres, du modele spectral utilisé pour représenter le rayonnement
des gaz.

En définissant, d’abord les notions thermodynamiques et chimiques nécessaires a I’écriture des
équations de I’aérothermochimie, nous expliciterons le réle des transferts radiatifs en combus-
tion. On posera alors quelques généralités nécessaires a la compréhension des grandes lignes de
la modélisation des transferts radiatifs. On en profitera pour faire une synthese de ce qui s’est déja
fait dans le domaine de la modélisation des transferts radiatifs en citant quelques-unes de leurs
applications en combustion. Enfin, pour mettre en évidence I’aspect spectral, certaines notions
de rayonnement des gaz et les outils analytiques et numériques qui permettent de modéliser les
propriétés spectroscopiques d’un gaz ou mélange de gaz a partir de ces caracteristiques thermo-
dynamiques et chimiques seront introduites. Ceci fera I’objet de la derniere section de ce chapitre
ou nous aborderons le domaine des modéles de gaz par une description des modeles déja déve-
loppés qui permettent de prendre en compte la complexité du spectre d’absorption des gaz. Par
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la suite, nous présenterons la méthode des k-distributions qui est a la base du modele utilisé dans
nos travaux : le modéle statistique a bandes étroites en k-corrélés (SNB-ck). Ce modele, ob-
tenu en appliquant la méthode des k-distributions au modéle a bandes étroites de Malkmus, a été
retenu pour la présente étude parce qu’il est considéré comme le modele proposant actuellement
le meilleur compromis entre efficacité et simplicité. Son utilisation fait appel a I’hypothése des
« k-corrélés » (ck), que I’on définira et dont on discutera du bien-fondé pour une utilisation dans
le domaine de la combustion.

2.1 Equations de conservation
2.1.1 Grandeurs de la Thermochimie

La modélisation numérique d’un probléme de combustion vise la résolution des équations de

I’aérothermochimie [129]. On appelle « équations de I’aérothermochimie » le systeme composé
des équations de conservation de la masse, de la quantité de mouvement, des espéces et de I’éner-
gie. Nous faisons ici un rappel sur les définitions et notions nécessaires a la compréhension des
équations de I’aérothermochimie que nous formulerons par la suite. Ces derniéres seront d’abord
établies sous leur forme la plus générale. Puis nous observerons les hypothéses les plus courantes
permettant de récrire ces équations sous une forme simplifiée.
Les équations sont écrites pour un fluide hétérogene non isotherme compressible composé de K
especes chimiques. Si on considére un mélange de masse volumique moyenne p et de masse mo-
laire moyenne T/, constitue d’un nombre K d’especes de masse molaire 17/, on notera p, la masse
de I’espéce k présente dans une unité de volume du mélange. On a ainsi :

K
pP=> P (2.1)
k=1

On peut alors définir pour chaque espéce du mélange, sa fraction massique Y, grandeur sans
dimension, de la fagon suivante :

K
Vi = % Ph o tels que d V=1 (2.2)

m P k=1

La masse molaire d’un mélange est obtenue a partir des fractions molaires d’espéces qui le com-

posent par :
K
Yi .4
W = — 2.3
Q) (23)
k=1
la loi des gaz parfaits peut alors s’écrire :
PW P
P (2.4)

~ RT RrY %
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ou P et T représentent respectivement la pression et la température du mélange et R = 8.314 J.mole " '.K~!
la constante des gaz parfaits. Pour chaque espece du mélange, on définit une autre grandeur adi-
mensionnée, la fraction molaire Xy, telle que :

K

W
X. = YkW tels que ZXk =1 (2.5)

k k=1

Ainsi que sa concentration molaire Cy, :

P

7 (2.6)

P K
Cr = Xy oo tels que ;Ck:

Une autre fagon de présenter les proportions des espéces dans un mélange est de les exprimer en
pressions partielles py, :

k
= telsque P = E 2.7
Dk er ; 1pk ( )

L’enthalpie du melange est obtenue a partir des enthalpies de chaque espéce. On appelle h.(T),
I’enthalpie massique d’une espéce k& a une tempeérature 7" (supérieure a sa temperature de forma-
tion 7°), représentative de son énergie interne a I’équilibre thermodynamique :

T
o o /
he(T) = Ahg . (T°) +/ CprdT’ (2.8)
A/_/ TO
Enthal pie de formation
Enthalpie sensible

oU ¢, représente la chaleur massique de cette espece a pression constante tabulée.
La chaleur massique du mélange C, peut étre obtenue par la loi de mélange :

K
Cp=_ Yicy, (2.9)
k=1

De méme, I’enthalpie massique ~ du mélange s’obtient par :

K
h=>Y Yl (2.10)
k=1

2.1.2 Notions de Cinétique Chimique Complexe

En combustion, on considére des réactions chimiques fortement exothermiques. Chaque réac-
tion chimique élémentaire est représentee par une équation bilan. Toute équation bilan d’une ré-
action élémentaire réversible i & K especes, notées M, peut étre formulée de la fagcon suivante :
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K K
Z Vllc,iMk,i = Z Vl/c,,iMk,i (2.11)

k=1 k=1
ou v, ; et v}, sont les coefficients stoechiometriques de I’espéce chimique M, dans la réaction.
On definit le coefficient stoechiométrique x; représentant le nombre de moles de I’espéce k
intervenant réellement dans le bilan de la réaction chimique consideérée :

Vpi =V . — U, . 2.12
s ki k

52

ce qui permet d’exprimer la loi de conservation de la masse de la fagon suivante :

K
> v iWii =0 (2.13)
k=1
Chaque réaction est caractérisée par une grandeur physique K, appelée « taux de reaction di-
rect » :
Ky = A, TP exp —% = A, TP exp(—Tjaf) (2.14)

obtenue par la loi d’Arrhenius ou A; est le facteur pré-exponentiel, 3; I’exposant de la température
et E; I’énergie d’activation de la réaction directe (associée a 7, ; la température d’activation par la
relation : E; = RT, ;).

On définit aussi le « taux de réaction inverse » tel que :

K, = K;;/Kg, (2.15)

ou K, est la constante d’équilibre, obtenue a partir de la loi thermodynamique suivante :

P s al
KEZ' — Zk:l Vl{c,i exp (Z V;c,i(

ASY AH?
(_) i,k B i,k
RT
k=1

R RT )

(2.16)

ASZ% et AHgk sont respectivement les entropies et enthalpies molaires de formation a la pression
atmosphérique de chaque espece.

On appelle « taux d’avancement de la réaction », @);, la différence entre la vitesse de réaction
directe et la vitesse de réaction inverse :

Qi = Ky H C/:l;’i - K H C;:g’i (2.17)
k k

On exprime alors wy, le «taux (ou vitesse) de production massique » de I’espéce k& comme étant
la masse de produit formée ou consommeée par unité de volume et par unité de temps. Il est lié au
taux d’avancement de la réaction par la relation suivante :

wy = Wi, Z Vk,i@i (2.18)
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L’évaluation des taux de production massique, pour chaque espece & d’un mélange, implique
une connaissance des A;, 3; et E; pour chaque réaction élémentaire constituant le schéma cinétique
complexe. L’obtention de ces facteurs de facon expérimentale et I’évaluation de I’importance de la
réaction élémentaire correspondante au sein d’un schéma font I’objet de travaux importants dans
le domaine de la Cinétique Chimique.

La quantité d’énergie générée par la réaction chimique, appelée « production de chaleur » et notée
wr est calculée par :

K
Wr ==Y AhS ix (2.19)
=1

2.1.3 Equations de I’aérothermochimie

Les quelques éléments de thermodynamique et cinétique chimigque, que nous avons exposés,
permettent de modéliser I’aspect énergétique (énergie d’origine chimique) d’un milieu réactif en
posant I’équation de conservation des espéces et I’équation de conservation de I’énergie. Ils in-
terviennent aussi dans les équations permettant de résoudre I’aspect dynamique de I’écoulement
via la masse volumique du mélange et I’influence des forces extérieures qui varient en fonction
des espéces chimiques composant le mélange. Tout probléme de modélisation en combustion se
base sur les équations de I’aérothermochimie présentées ci-dessous sous leur forme générale (elles
peuvent étre simplifiées en fonction du type de probleme traité, cf. 83) :

— Equation de conservation de la masse

op B
% +V.(pv) =0 (2.20)

ou v représente la vitesse d’écoulement du mélange.

— Equation de conservation de la quantité de mouvement

ov

K
Py TPV = V.o + ; oY Fi (2.21)

ou F est le vecteur des forces extérieures et o,; le tenseur des contraintes tel que :

2
Oij = Tij — P(SZ] = IM(VV + (VV)T) — (gluVV)I — PI (222)
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ou I est la matrice identité. Si I’on suppose qu’il n’y a pas de force extérieure (en negligeant
aussi I’effet de la gravité), I’équation (2.21) devient :

ov
pat + p(V V) = —V.Uij (223)
Equation de conservation des espéces
Y} :
Py T PVV)Ye = =V (pYivaw) + i (2.24)

oU v4 x est la vitesse de diffusion de I’espece £ dans le mélange.

Equation de conservation de I’énergie

Oh oP = ,
Por + p(v.V)h = [E + (V.V)P + 75 : VV] + ; pYivaxFx — V.q+wr (2.25)

avec

K K K
q= —AVT + Z pthka,k + RT Z Z W D Vd,k — Vd,l) + qr (226)
— = WiDy

k=1 k
avec D} et Dy, qui sont respectivement les coefficients de diffusion thermique de I’espéce k
et le coefficient binaire des espéces k et [ et vy la vitesse de diffusion.
Le couplage entre la combustion et le rayonnement apparait dans I’equation (2.25). Comme
pour I’égquation de conservation de la quantité de mouvement, on peut négliger I’influence
des forces extérieures (Fy, = 0). En utilisant :

dh = C,dT (2.27)

et en négligeant le troisiéme terme dans I’équation (2.26) (représentant I’effet Dufour),
I’équation de I’énergie pour T" s’écrit :
oT oP
pCp— o pCo(v.V)T = [E + (V.V)P + 7,5 : V] 4wy — V.q (2.28)
ou w’. est le terme source de production chimique totale (prenant en compte les enthalpies

sensibles des especes composant le mélange) tel que :

K
Wp == hid (2.29)
=1

et V.q est le terme puits représentant les pertes par conduction, diffusion des espéces et par
rayonnement, soit :

K
V.q=-VAVT)+ V(> phYivax) + S, (2.30)

k=1
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S, est le terme source radiatif ou bilan volumique que I’on cherchera a modeliser, sachant
que si I’on note q, le flux d’énergie rayonnée (ou flux radiatif) :

S, = V.q (2.31)

Si I’on suppose que le fluide considéré se comporte comme un gaz parfait, I’équation d’état des
gaz parfaits est vérifiée et peut étre considérée comme une cinquieme équation :
P RT

T (2.32)

L’influence des phénomeénes radiatifs sur les champs de température, et par conséquent de
concentrations, que modélise la combustion est explicitée par les équations (2.28) et (2.30). La
modélisation de ce phénomeéne de transferts radiatifs, qui n’apparait que sous la forme d’un terme
source S, dans I’équation (2.30), est complexe et colteuse en temps de calcul. Nous verrons au
chapitre 8§ 2.2 quelques eléments de rayonnement permettant d’illustrer cet aspect redhibitoire des
choses lorsque I’on parle de modélisation du rayonnement dans le cas d’un milieu hétérogéne et
anisotherme contenu dans une enceinte géométriqguement complexe.

2.1.4 Modele de Combustion turbulente

La résolution des équations de conservation est relativement aisée lorsque I’on considére un
écoulement laminaire (a faible nombre de Reynolds); nous montrons dans notre étude sur la
flamme monodimensionelle laminaire & jets opposés (cf §3.1.2) une facon de résoudre numéri-
quement un probléme de combustion considérant un écoulement laminaire. Cependant dans la
plupart des systemes de combustion du domaine industriel, le type de régime d’écoulement ob-
servé est turbulent et interagit avec la combustion. La combustion turbulente résulte de cette in-
teraction entre deux phénoménes complexes ayant lieu a des échelles de temps trées faibles. En
CFD pour modéliser numériquement les phénomenes liés a la combustion turbulente, on peut
distinguer, a I’heure actuelle, trois degrés de résolution des équations de I’aérothermochimie (cf.
Fig.2.1). Le premier degré, le plus grossier, est celui du RANS (pour Reynolds Averaged Navier-
Stokes). Ce modele s’appuie sur une résolution des valeurs moyennes des grandeurs physiques
de la combustion turbulente, en utilisant des modeles de fermetures pour les équations de conser-
vation formulées en valeur moyenne. Seuls les champs moyens sont résolus. Les estimations des
grandeurs physiques d’un probléme obtenues correspondent a leur moyenne temporelle dans un
écoulement stationnaire ou périodique (moyenne sur plusieurs cycles). Le deuxiéme degré de ré-
solution correspond a des simulations numériques faites a I’échelle des plus grands tourbillons
de I’écoulement turbulent : c’est la LES (pour Large Eddy Simulation). Les équations ne sont
résolues numériquement que pour les grandes échelles de la turbulence repérées par une méthode
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E(k)
Domaine modélisé par RANS

Domaine calculé par DNS

Domaine calculé par LES Domaine modélisé par LES

k filtrage k

F1G. 2.1 — Domaines fréquentiels du spectre d’énergie turbulente calculés et/ou modélisés par
méthode RANS, LES et DNS

de filtrage, alors que les effets dlis aux plus petites échelles sont représentés a I’aide de modeles
de fermeture adaptés. Les modeles de fermeture RANS ou LES peuvent étre obtenus en étudiant
les phéenomenes a modeliser par simulation numérique directe (DNS, pour Direct Numerical Si-
mulation). Dans ces simulations, les équations de I’aérothermochimie sont directement résolues
a chaque instant, sans nécessiter de modele approché pour la turbulence. Toutes les échelles et
toutes les variations des grandeurs physiques de la combustion turbulente sont calculées. Ce type
de simulation s’est beaucoup développé durant ces dernieres années mais reste appliqué a des
géométries de petites dimensions pour des configurations basiques car trés lourd en temps de cal-
cul. Le calcul DNS a permis de mieux comprendre les mécanismes de la combustion turbulente a
petite échelle et de générer des modeles de fermetures adéquats pour le RANS et la LES.

2.2 Introduction aux Transferts Radiatifs

Avant de présenter les méethodes permettant de modéliser les transferts radiatifs, il convient de
définir quelques bases et notations du rayonnement thermique qui permettront de le représenter
tout au long de ce mémoire.

Le rayonnement thermique est un phénomene d’origine électromagnétique émis par les molécules
du milieu lorsqu’elles sont le lieu de transitions de niveaux électroniques. L’énergie rayonnee
lors de ces transitions se situe dans les zones du spectre électromagnétique correspondant aux
domaines de I’ultra-violet, du visible et de I’infrarouge. Dans la plupart des applications en com-
bustion, les transferts thermiques par rayonnement s’effectuent a des longueurs d’ondes appar-
tenant au domaine du visible et de I’infrarouge (0.1 — 100um). Les configurations rencontrées
peuvent le plus souvent étre ramenées a I’image générique d’un volume de mélange de gaz confiné
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dans une enceinte aux parois solides. Par soucis de clarté, nous formulerons les équations de cette
section en monochromatique, c’est-a-dire a une seule fréquence v donnée.

2.2.1 Quelques Définitions et Concepts en Rayonnement
2.2.1.1 Hypothese de I’équilibre thermodynamique local et Principe de réciprocité

Ces deux concepts trés importants sont une base nécessaire pour I’introduction des propriétés
radiatives des milieux semi-transparents.
Par le principe de réciprocite, on exprime le fait qu’entre deux éléments P(r;) et P(r;) le che-
min optique I'(P; — P;), support de I’échange radiatif entre eux, peut étre parcouru dans les deux
sens.
L’hypothése de I’Equilibre thermodynamique local (ETL) permet de considérer qu’en tout point
P(r) d’un milieu semi-transparent, autour duquel on observera un volume élémentaire dV/, les
propriétés thermodynamiques locales sont celles de ce méme volume dV a I’équilibre, lorsqu’il
est plongé dans un milieu qui posséde les mémes propriétés thermodynamiques. On admet donc
en rayonnement que les propriétes radiatives en ce point P(7") sont indépendantes de son environ-
nement. Nous admettrons dans le cadre de notre étude, que I’ETL est toujours vérifiée.
Il en résulte que si I’on considére un volume élémentaire de milieu semi-transparent V' comme
étant un corps noir a I’équilibre thermodynamique local, alors on admet qu’il émet son rayonne-
ment dans les mémes proportions qu’il I’absorbe.

2.2.1.2 Luminance

Pour intégrer I’énergie liée au rayonnement dans un bilan thermique, on introduit la notion de
flux d’énergie rayonnée sous la forme d’une grandeur intensive que 1’on appellera « luminance ».
La luminance rayonnée en un point P(7) de I’espace dans la direction 5'et a la fréquence v, notée
L,(7, 8 t), est la densité de flux d’énergie monochromatique d¢ ,(7,t) rayonnée & travers une
surface dS orientée selon la normale 77 dans un angle solide df) autour de cette direction s (cf.
Fig.2.2) pendant un intervalle de temps dt autour de cet instant ¢ tel que :

A
(5.1)dQdtdS

Comme toute forme de rayonnement électromagnétique, la vitesse de propagation du rayonne-

L, (7, 5,1) = (233)

ment thermique est la vitesse de la lumiere c. Ceci en fait un mode de transport d’énergie thermique
qui atteint I’équilibre thermodynamique local beaucoup plus vite que les autres modes que I’on
peut rencontrer en combustion. On suppose donc un état stationnaire du rayonnement a I’échelle
des temps considérés en combustion et on occulte la dépendance temporelle de la luminance en
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Fic. 2.2 — La luminance

I’écrivant simplement L, (7, §).

2.2.1.3 Luminance du Corps noir

On appelle « corps noir » un corps qui absorbe la totalité du rayonnement qui lui arrive de
toutes les directions de I’espace et a toutes les fréquences, et qui, en fonction de sa température
T'(), émet une puissance radiative totale L, (7) (par unité de surface), dans toutes les directions et
de fagon isotrope :

O'bT4

™

Ly(r) =

(2.34)

ol o, = 5.667 1078 W.m~2.K* est la constante de Stefan-Boltzmann. On obtient cette quantité
d’énergie radiative totale L,(7) en intégrant I’équation la luminance noire monochromatique sur
I’espace des fréquences (ou nombres d’ondes) :

Ly(7) = /0 " L (P (2.35)

Cette quantité d’énergie radiative totale se répartit fréquentiellement selon la loi de Planck qui
définit la luminance noire monochromatique obtenue a une fréquence correspondant au nombre

d’onde v (m~1) de la fagon suivante :
2.3
MAﬂ=2—g¥;— (2.36)

eI — 1
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F1G. 2.3 — Absorption d’un flux de photons incidents

ol h = 6.6261073* J.s est la constante de Planck et k, = 1.38051072% J.K~! la constante de
Boltzmann.

Lorsque nous formulons les équations en monochromatique, c’est cette définition monochroma-
tique de la luminance noire que nous observons.

2.2.1.4 Absorption et Emission

En rayonnement, un milieu semi-transparent est caractérise par sa capacité a absorber une
certaine quantité d’énergie d_L, , provenant d’une luminance L, (7, §) sur un trajet ds en établissant
que :

dLu,a(F; g) = _ﬁu,aLl/ (ﬁ §‘>d5 (237)

Puisque le terme dL,,, correspond a une diminution de la luminance incidente, il est retranscrit
avec un signe "-". k,,, est appelé le coefficient d’absorption du milieu a la longueur d’onde v.
D’un point de vue corpusculaire, on peut associer cette luminance L, (7, §) a un flux de N photons
incidents a la fréquence v traversant une épaisseur de molécules absorbantes ds et la variation
de luminance dL, ,(7, §) au nombre de photons absorbés dN sur I’intervalle ds (cf. Fig.2.3). Le
coefficient d’absorption «, , représente alors :

1 dN
= — — 2.38
o, ds N ( )
L’origine moléculaire de ce coefficient d’absorption est exposée au §2.2.4.
Une méme épaisseur ds de ce milieu aura la capacité d’émettre une certaine quantité d’énergie

dL, . (cf. Fig.2.4) telle que :
dLy (7, 5) = +KyeLp, (7, 5)ds (2.39)

Ce terme correspond a un gain pour la luminance a la traversee d’un élément d’épaisseur ds, d’ou
le signe "+". k,, . est appelé le coefficient d’émission du milieu a la longueur d’onde v.
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Diffusion (out-scattering)

Diffusion|(in—scattering)

Absorption | Emission

- Rayonnement Incident

F1G. 2.4 — Différentes contributions du phénomeéne radiatif local

A I’ETL, tout milieu capable d’absorber est susceptible d’émettre dans les mémes proportions.
On consideére donc que :

Kye = Kyaq = Ky (2.40)

Cette notation ,, est alors utilisée pour caractériser les deux phénomenes et est aussi appelé « co-
efficient d’absorption ».

2.2.1.5 Diffusion

Le troisieme phénomene caracteristique du rayonnement thermique est le phénomene de diffu-
sion des photons (représentant la luminance dans une approche corpusculaire). Elle se traduit par
la déviation de la trajectoire de ceux-ci, a la suite de chocs, a la traversée d’une épaisseur ds d’un
milieu semi-transparent « diffusant ». Ceci se traduit par une variation dL,, 4(7, 5) de la luminance
se propageant selon direction s. On peut discerner deux types de variations liées au phénomene de
diffusion : le gain de luminance par diffusion entrante ou « in-scattering » et la perte par diffusion
sortante ou « out-scattering » (cf. Fig.2.4). On notera dL,, ,ut—scattering 12 diffusion sortante repre-
sentant une perte de luminance proportionnelle a la luminance a I’entrée d’une épaisseur de milieu
ds, sans aucun discernement pour les directions dans lesquelles le rayonnement est diffuse :

dLu,out—scattering(’F: g) = _O-d,uLu(Fa g)dS (241)
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04, est appele le coefficient de diffusion du milieu a la longueur d’onde v.

On notera d L, i, scattering 12 diffusion entrante représentant un gain de luminance, en intégrant les
contributions de toutes les luminances provenant des directions s’ qui sont déviés dans la direction
S, soit :

1 [e's) 4 . .
ALy in—scattering (T, ) = +0a, [E / / (s, 5,1, y)L,,/(s/)dQ'dy’} ds (2.42)
0 0

ou df) définit un élément d’angle solide d’ou peut provenir la luminance obtenue par diffusion
entrante et CD(E', s,V v) représente la fonction de phase de diffusion.
Cette fonction de phase de diffusion représente la densité de probabilité qu’un rayonnement pro-
venant d’une direction s’ avec une longueur d’onde +’ soit dévié dans la direction 5'a la fréquence
v. La plupart des chocs rencontrés en diffusion étant élastiques (la fréquence des photons ne varie
pas au cours du choc), le terme ®(s/, §, 1/, ) devient simplement &, (s, 5).
1 47 . .
dLu,infscattering (F7 g‘) = +Ud,u [4_ / (I)V(Slu gjLu(S/)dQl] dS (243)
T Jo
La fonction de phase étant une densité de probabilité pour qu’un rayon provenant d’une direction

s’ soit dévié dans la direction 5, elle obéit a la relation de normalisation suivante :
1 47 .
— D, (s,5)dY =1 2.44
el ARG (2.44)

La variation globale de la luminance lié au phénoméne de diffusion s’écrit :

dLu,d(Fy g‘) = dLu,infscattering (Fy g‘) + sz/,outfscattering (Fa 5‘) (245)

2.2.2 Equation de Transfert Radiatif (ETR)
2.2.2.1 Formulation différentielle

Pour obtenir I’expression standard intégrodifféerentielle de I’équation de transfert radiatif pre-
nant en compte toute la complexité du probleme physique (émission, absorption, diffusion et dé-
pendance spectrale), on écrira d’abord la variation totale de la luminance traversant normalement
un milieu semi transparent d’épaisseur ds autour de la position i dans la direction s (cf. Fig.2.4).
Elle est obtenue en sommant les termes liés a chacun des 3 phénomeénes rencontrés en rayonne-
ment que nous avons definis :

dL,(7,8) = dL, o(7,8) + dL, (7, §) + dL, 4(7, 5) (2.46)

En remplacant ces termes par leur expression ((2.38), (2.39) et (2.45)) dans I’équation (2.46) et en
divisant par ds, on obtient I’équation de transfert radiatif sous sa forme différentielle :

dL,(T,5) Odu
- VL v ’
ds oL (7) + 47

4
/ @, L, (7 )|~ [(s, + o)L 9] (247)
0
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On introduit la notation du coefficient d’extinction [, représentant I’atténuation du rayonnement
par diffusion sortante et par absorption tel que :

ﬁu =Ky + Od,v (248)
et celle de I’albédo de diffusion w,, obtenu de la fagon suivante :

wy = 24 (2.49)

Ky + Od,v

Ceci nous permet d’écrire plus simplement selon la direction s':

L — — —
AL 5) _ o) VI (P) 4 B | Lo 9de - BLES (@50
ds ’ AT Jim
soit :
dL, (7, . a
WA 5 (8,(7.9) ~ L5 9) (251)
avec
1 S 5
8u(7,8) = (1= wi) Lo (7) +wu— [ Lo )y (5, 5)dsY (2.52)
T J4r

2.2.2.2 Formulation intégrale

A partir de L, (7, §) la luminance en 7%, la solution L, (7, §) de I’équation différentielle (2.51)
peut étre intégree sur le chemin optique entre les positions 77 et 7~ et s’écrit :

d T, (" .
Lo(F,3) = Ly(7, 8T, (7 — 7) +/ s, (7 5 =1 4

o or’

(2.53)

ou TV(F’ — 7') représente la transmittance d’une épaisseur de milieu semi-transparent comprise
entre deux points de I’espace, P(r7) et P(7), obtenue en posant :

T, (" — ) = exp( — 7,(" — 7)) (2.54)

ou ry(ﬁ — 1) est I’épaisseur optique, grandeur sans dimension obtenue par I’intégration suivante :

(' — 7) = / T By (x)dx (2.55)

En considérant une épaisseur de milieu homogéne [ = || # — +/ ||, 3, ne dépendant pas de z, on
écrit plus simplement :

(1) = Bl (2.56)
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et nous noterons 2.54 plus simplement :

T, (1) = exp(— B.1) (2.57)

L’équation (2.53) constitue ce que I’on appelle la formulation intégrale de I’équation de transfert
radiatif.

2.2.2.3 Formulation en Puissances Nettes Echangées (PNE)
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F1G. 2.5 — Calcul du terme Source pour un Volume V;

Une autre facon d’aborder la modélisation des transferts radiatifs est de considérer le terme
source radiatif comme un bilan radiatif. En 1967, en s’appuyant sur le principe de réciprocité,
Green [63] puis Hottel [67] proposent une premiere approche de la formulation en puissance
nettes échangées pour quantifier les différentes contributions radiatives au bilan en un point de
I’espace. D’un point de vue théorique, Cherkaoui et al. [21, 22, 46, 47] ont montré les grands
avantages d’une telle formulation, initiant des travaux dans des domaines d’applications trés variés
[38, 122, 48].

Considerons un systéme constitué d’un volume V' délimité par une surface S. Le bilan radiatif
Sy.,(73) en un point P(r;) au centre d’un élément de volume V; ou de surface S; (cf. Fig.2.5) est
obtenu directement en posant :

S, () = / oL () — Ly (7, )]d9 (2.58)

ou L, (r7) est la luminance noire émise au point P(r;) dans la direction 5'et & la fréquence v, et
L,(r;, §) la luminance incidente dans la méme direction et a la méme fréquence.
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En partant de (2.58) et en utilisant la formulation (2.53) pour exprimer la luminance incidente
et moyennant un peu d’algebre, ce qui permet de remplacer I’intégration sur I’espace des angles
solides par une intégration sur les éléments de volume et de surface [38, 122], nous pouvons écrire
le terme source radiatif comme étant :

~ 5. . S . _
Su(F) = / T @>Ty<r~m){u,b(m—Ly,bm)}czsj

_frz

+ / W@(ﬁ)n(ﬁﬁﬁ)m(rg)[u,b(r})—Ly,b(r:-)} dv; (2.59)
j g i

ou
T —T;
|75 =73 ||
Ennotant /;; = || ; — 7 || et en intégrant I’équation (2.59) sur I’élement de volume V; autour du

point P(77;), nous déduisons :

5.0 = | dvm)( [ ST = )| Lusl)  Lual)| a5
b [ AT = )| L) - Lun) dvj) (261)
v; lij

Il est possible d’intégrer de la méme fagon sur un élément de surface .S; autour du point P(7;)
d’une paroi pour obtenir S, ,(.5;), le bilan surfacique de cet élément de paroi.

Le domaine V' étant découpe en N,,m. Volumes notes V; et le domaine .S en Ny fqc NOtEES S,
I’équation (2.61) peut étre écrite sous la forme discrete suivante :

volume su'rface

Z PVi—Vyp T Z PVi—S;v (2.62)

ou v, v, est le terme de puissance nette échangée a la fréquence v entre deux volumes V; et V,
tel que :

pue = [ VG [ AV R T = ) l) Lb,y<@>—Lb,u<m] 263)

J
et v, s, le terme de puissance nette échangée a la fréquence v entre un volume V; et une surface
S; défini par :

S. TL]

Priso = [ V) [ 4SRRI - 1) [Lb,m)—Lb,xm] 26)

i J )
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avec 7i;, la normale a la surface 5.
De facon similaire, pour calculer le bilan radiatif d’un élément de surface S;, on cherchera a
calculer les échanges nets radiatifs entre deux éléments de surface en posant :

(5.12,)(5.1;)

psmse = [ dS) [ as(r) ST 7
S; s ij

J

Ly (75) = Lb,u(ﬁ)] (2.65)

En considérant la luminance noire comme étant uniforme sur les éléments de volume et de surface,
Nous pouvons écrire ces puissances :

ovioviw =& [ Low (V) — Liyu (V3) (2.66)
_ VS

PV;—Sjv = ijv Lb,V(Sj) - Lb,u(‘/i) (267)
__ ¢SS

©8i—8;0 = iy | Lo (S7) — Ly (Si) (2.68)

Les termes 5};»‘;, Z‘Jfﬁ et 555; sont alors des coefficients optico-géométriques appeles « surfaces
d’échanges de Hottel » ou « facteurs d’échanges de Hottel ». lls représentent toute la complexité
optico-géométrique du probléme contenue dans les intégrales multiples des équations (2.63),

(2.64) et (2.65). Le principe de réciprocité permet de poser les égalités suivantes : £ = &7V,

Vo = et &ns = £55 . Ainsi, le signe des puissances nettes échangées repose sur les diffé-
rences de luminance noire.

Il est important de bien préciser que la formulation (2.59) est simplifiée pour des raison de clarté
de presentation mais que le chemin optique /;; peut étre celui généralisé a un chemin prenant en
compte le phénoméne de réflexion aux parois (Fig.2.6) [123]. Ainsi, la formulation en PNE se
base sur une intégration sur I’angle solide 47 et permet de définir une surface d’échange totale
entre deux éléments en prenant en compte tout les chemins optiques possibles.

C’est sur cette formulation en Puissance Nettes Echangées que repose les calculs utilisant le mo-
dele TLM qui sera présenté au chapitre 3 dans le cadre de notre étude parametrique sur la flamme

monodimensionnelle.

2.2.2.4 L’approximation du milieu optiquement mince (OTL)

Ce que nous présentons dans ce paragraphe n’est pas une modele en lui méme mais une ap-
proximation permettant de formuler le probleme radiatif de facon extrémement simple.
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< - —» Chemin optique direct
=<+« Chemin optique direct avec reflexion

F1G. 2.6 — Chemins optiques participants au calcul de v s, ,

Lorsque I’épaisseur optique d’un milieu semi-transparent est trés faible), lesprincipaux échang es
radiatifs se font a grandes distances. De ce fait, on peut considérer qu’un point du milieu trans-
parent échange de I’énergie principalement avec les conditions limites du systéme (avec la paroi
si le systeme est fermé). Cette hypothese appelée « approximation du milieu optiguement mince »
permet d’établir le modele radiatif le plus simple existant a ce jour pour traiter les systémes ou-
verts ou aux conditions limites uniformes : le modéle dit « optiquement mince » (optically thin
limit) que I’on note plus simplement OTL.

Ce modeéle OTL ne considére aucun echange entre deux volumes de gaz. Le terme source radiatif
S, calculé en un point P(7) résulte uniquement des échanges entre I’élément de volume de gaz
défini autour de ce point et les conditions limites. Cela revient a ne pas prendre en compte le phé-
nomene de réabsorption du rayonnement par le systeme. Le modéle OTL permet d’écrire le terme
source radiatif de la fagon suivante :

Sy = Amky, [ Ly, (TT) — Ly, (To)] (2.69)

Evidemment, ce modéle n’est plus valable des que le milieu devient épais, car le phénoméne de
réabsorption ne peut plus étre négligé.
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////p(m/// 4 p(m///

Réflexion diffuse Réflexion spéculaire

FI1G. 2.7 — Reflexion a la paroi

2.2.2.5 Rayonnement aux conditions limites

En rayonnement, les conditions limites d’un probleme sont toujours représentées par un élé-
ment de paroi localement plan, opaque et participant aux transferts radiatifs. Considérons un point
P(r,,) a la surface d’une paroi. Nous noterons L, ,(7,) la luminance noire de paroi obtenue a la
température 7;,. On définit alors (7, §) la luminance émise & la paroi telle que :

Lu(Fwa g) = E(Fw)Lb,V(Fw) + p(Fw)Lu,incident(Fw) (270)

OU Ly incigent (T, S) représente la luminance incidente, p la réflectivité et e I’émissivité a la paroi.
L’émissivité est le rapport entre la quantité d’énergie émise par un élément de paroi de maniére
intrinséque (ou émittance) et la luminance noire émise dans ces mémes conditions. Ce coefficient
peut prendre une valeur comprise entre 0 et 1. Lorsque I’émissivité est maximale et égale a 1, la
paroi est dite noire. Si e est nul, la paroi se comporte comme un miroir parfait. Pour toute autre
valeur de ¢, on parlera de paroi grise. La réflectivité peut étre obtenue en posant :

p(ﬁu) =1- E(Fw> (271)

Dans le cas d’une réflexion spéculaire (Fig.2.7), la luminance incidente a la paroi provient de la
direction s’, symétrique de 5 par rapport & la normale 77 du plan, et est notée L, (T, 5’) :

Ly (T, 8) = €(Fo) Ly (F) + (1 — €(F)) Loy (P, 87) (2.72)

Lorsque la réflexion est diffuse (Fig.2.7), on considére que la luminance quittant la paroi est
isotrope et que la partie réfléchie est fonction de la luminance incidente totale provenant de toutes
les directions du demi-espace (au dessus de la paroi) orienté selon la normale 7. Pour toutes les
directions s appartenant a ce demi-espace on aura :

1 —€(ry)

Ly(F) = e(Fu) Lo () + ——

/ Ly (Fy, .57 dQU(s) (2.73)
27
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2.2.2.6 Grandeurs radiatives intégrales

La luminance L7, 5) est une grandeur fonction du vecteur position 7 et de la direction de
propagation dans I’espace s. Nous introduisons ici des grandeurs issues d’intégrales sur I’angle
solide 47 obtenues en un point P(7) de I’espace. Les plus courantes sont :

— le rayonnement incident :

G, (7) = /4 L, (7. 5)d9 (2.74)

— le flux de chaleur rayonné :

@ul?) = [ Lu(75).50 (2.75)
47

— I’éclairement surfacique en un point P(r,,) a la paroi :

A7) = [ L7, 15100 (2.76)

ou 72, est la normale d’un élément de paroi autour du point P(7,).

Ces trois notions sont trés importantes car elles permettent d’exprimer aisément toutes les autres
grandeurs physiques recherchées en transferts radiatifs. Ainsi, on exprimera le flux aux parois
comme étant :

@ (Tw) = @Ml = €(F) [T Ly (F) — Hy (7)) (2.77)

avec €(r,,) I’émissivité de la paroi au point P(r,).

En un point P(7) d’un petit volume dV de milieu semi-transparent homogene et de coefficient
d’absorption «,,, le terme source radiatif S,. (') représente la divergence du flux rayonné (cf. (2.75))
et s’écrit :

Sy (F) = V. e (7) (2.78)

Nous avons vu qu’il peut aussi étre formulé comme un bilan radiatif au point P(7) (cf. (2.58)), ce
qui devient alors en utilisant I’équation (2.74) :

ST,V(F) = '%u[47TLb,V(F) - GV(F)] (279)

La dépendance angulaire est une difficulté uniqguement attachée a la résolution de I’ETR dans
une direction de propagation donnée. Le rayonnement apparait comme un terme source radiatif
dans I’équation de I’énergie, représentant le bilan energétique global en un point. Les grandeurs
intégrales sont donc les seules qui puissent présenter un intérét pour prendre en compte le rayon-
nement en combustion.
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2.2.3 Méthodes de Résolution

Nous avons vu que I’équation de transfert radiatif peut étre formulée sous une forme diffé-

rentielle ou sous une forme intégrale. A partir de cette observation, nous pouvons regrouper les
méthodes permettant de modéliser les transferts radiatifs en 4 classes [111, 162] : les méthodes de
type différentiel, les méthodes de type intégral, les méthodes de type statistique et les méthodes
dites "hybrides”. Cependant, il est a noter qu’une telle classification ne peut étre qu’indicative (de
par la grande quantité de méthodes rencontrées dans la littérature). Nous avons trouvé de nom-
breux tests dans la littérature comparant différentes méthodes de résolution et discutant de leur
efficacité pour un type de probléme radiatif précis [8, 11, 23, 28], certaines méthodes pouvant étre
plus particulierement adaptées aux configurations testées. Il n’existe pas de comparaison directe
de I’ensemble des différentes méthodes existantes. On ne mentionnera ici que les méthodes les
plus communément utilisées.
Pour simplifier ce tour d’horizon, on conservera la vision monochromatique du rayonnement pour
formuler les différentes méthodes citées. Les paramétres importants dans ces méthodes de réso-
lution des transferts radiatifs sont de types géométriques. L’épaisseur optique 7, en fait partie.
Cependant la fagon dont elle varie sur I’espace des fréquences est totalement décorrélée du pro-
bléme lié a I’impact de son amplitude sur le comportement des méthodes de résolution de I’ETR.
Nous soulignons toutefois que la méthode de type statistique (Méthode de Monte Carlo) que nous
présenterons intégre la dépendance fréquentielle en générant aléatoirement la fréquence ou plage
de fréquence a laquelle se passe un événement. Elle sera donc abordée en prenant en compte
I’intégration spectrale.

2.2.3.1 Les méthodes différentielles

Elles ont pour objectif de résoudre la forme différentielle de I’équation des transferts radia-
tifs (cf. (2.51)) en utilisant une forme approchée de I’intensité de la luminance incidente L(7, 5).
Les plus utilisées sont les méthodes aux Harmoniques Sphériques (Approximation Py) et les Meé-
thodes aux Ordonnées Discrétes (DOM pour Discrete Ordinates Method). Nous rangerons aussi
dans cette catégorie la Méthode des Volumes Finis (FVM pour Finite Volume Method), cette
derniére ne présentant pas de différences fondamentales avec les DOM, et les méthodes de flux
[97, 130].

Les méthodes aux Harmoniques Sphériques ou méthodes Py : Le principe de base est
d’écrire la luminance L(7, §) sous la forme d’une série de Fourier généralisée séparant la dépen-
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dance spatiale et la dépendance directionnelle en deux termes distincts :

L(7, §) = Z Z L (7)Y (2.80)

=0 m=—1

Les Y;™(s) sont les harmoniques sphériques associées telles que :

(1 — |m))1"?

Ylm(g) _ (_1)(m+\m|)/2 [W} ez’mwp)m\ (COS 9) (2.81)

ou 6 et ¢ sont les coordonnées polaire et azimutale du vecteur unitaire s et P, est un polyndme de
Legendre.

En ne retenant que les termes tel que [ < N, on obtient un set de N + 1 équations différentielles
du 1¢" ordre nécessitant NV + 1 conditions limites.

Les méthodes d’ordre IV impair sont les plus courantes. La méthode P, aussi appelée « approxi-
mation de diffusion », demeure la plus utilisée pour sa simplicité. Elle permet de déterminer avec
une seule équation I’éclairement volumique G et, proportionnellement a son gradient, le flux de
chaleur rayonnée. Elle permet de traiter des problemes ou I’épaisseur optique du milieu est grande
(ex. : four verrier). Elle débouche sur des résultats erronés dans le cas de milieux optiquement
minces et plus particuliérement aux limites (pres des parois). La méthode P; permet d’obtenir des
résultats cohérents pour des épaisseurs optiques de I’ordre de 0.5 mais Ialgorithme de résolution
est plus lourd. A partir de P5 la complexité du calcul est trop colteuse par rapport au gain en
précision.

Marakis et al. [103] ont utilisé la méthode P; en tant que méthode de calcul ultra-rapide dans le
cadre d’une étude paramétrique sur les transferts radiatifs menée dans le cas d’un four cylindrique
axisymétrique en présence de cendres et autres particules pulvérisées. Cette étude avait surtout
pour but d’évaluer I’influence des suies, cendres et particules aux niveaux des transferts. Elle
a permis d’observer I’inefficacité de la méthode 3 a modéliser les transferts radiatifs en com-
bustion dans un milieu optiquement mince (v = 0.1m~!). La présence de cendres et particules
résiduelles leur a permis de traiter un milieu optiquement plus épais (x = 0.5m~!) et la qualité
des résultats obtenus en a été améliorée. Toutefois, bien qu’elle soit plus adaptée aux milieux trés
absorbants, elle présente des limites aux trés fortes épaisseurs optiques (7 >> 10).

Les DOM ou méthodes aux ordonnées discretes : Elles sont basées sur une représentation
discréte, sous la forme d’une quadrature, des variations directionnelles de toute fonction f(s) de
la luminance par une approximation de I’intégration sur I’angle solide telle que :

JECEEN RN (2.82)
dr =1
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n étant un nombre de directions discrétes s; donné et w; leurs poids de quadrature associes. De
I’application de cette approche a I’équation (2.51) découle un set de n équations différentielles
identiques définies suivant § :

5.V L(5;) + BL(5;) = BS(5) avec i=1,..,n (2.83)

La sélection des directions discrétes s; n’est pas arbitraire. Elle doit respecter certaines hypotheses
de symeétrie. On appelle « ordonnées discrétes » les cosinus directeurs des vecteurs unitaires s; défi-
nis dans un repére cartésien. Nous pouvons énoncer les deux points essentiels suivants nécessaires
a la mise en oeuvre des DOM :

— définir un schéma de dérivation spatial correct afin de résoudre chacune des n équations
différentielles (cf. (2.83)) sur un domaine découpeé en volumes finis.

— établir des quadratures intéressantes permettant d’obtenir une bonne représentation des dé-
pendances angulaires en ne rajoutant pas trop de directions angulaires discrétes et donc
d’équations différentielles supplémentaires au probléme.

Il est important de remarquer que ces deux lignes directrices des DOM apportent deux défauts
majeurs a la validité d’une modélisation [14, 24, 25] :

— la fausse diffusion (false scattering), phénomene di a I’erreur des schémas de dérivation
spatial et apparaissant plus particulierement quand les directions sont obliques par rapport a
I’orientation des lignes du maillages.

— I’effet de rayon (ray effect), lié a la discrétisation angulaire insuffisante, et se manifestant
par des discontinuités irréalistes dans la distribution des luminances et des flux de chaleurs
pouvant conduire a des solutions physiques erronées inattendues;

Ces deux difficultes seront plus amplement abordées et mises en évidences au Chapitre 4, ou nous
présenterons de fagon plus détaillée la formulation liée a cette méethode.

Les quadratures angulaires le plus souvent utilisées sont les quadratures S. Par abus de langage,
certains parleront souvent de « Méthodes SN » pour désigner les DOM [111]. Plus généralement,
le type de quadrature donne son nom a la DOM qui I’utilise (certains auteurs mentionnerons donc
I’utilisation de méthode 7', etc.). La S, (24 directions discrétes) est la quadrature angulaire la
plus couramment utilisée dans la littérature. Elle représente un excellent compromis entre rapidité
et précision. Elle a notamment été recommandée par Selguk et Kayakol [141] pour modéliser les
transferts radiatifs en combustion. Ces auteurs I’ont compare a la « Méthode des Transferts Dis-
crets » de Shah (DTRM, cf 82.2.3.4) dans un calcul de transferts radiatifs en trois dimensions mo-
délisant un four (veine carrée horizontale avec un brdleur a gasoil en entrée) contenant un milieu
émissif et absorbant, et présentant de forts gradients de température. Les tests effectués ont montré
que I’utilisation des DOM avec une quadrature angulaire .S, procure une meilleure précision sur
le terme source radiatif et ce en mille fois moins de temps CPU que la DTRM. D’autres auteurs
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tels que Abraham et Magi [1] ont utilisé cette méthode pour calculer les échanges thermiques par
rayonnement au sein d’un moteur Diesel en forme de chapeau mexicain. Cette géométrie com-
plexe a été étudiée en utilisant deux maillages cartésiens non-orthogonaux en trois dimensions
I’un composés de 1500 hexaedres et I’autre de 6300 hexaedres. Bien qu’ayant considéré des pa-
rois grises et diffuses, ils ont considéré des conditions de parois périodiques. Cette étude a montré
que, de part sa formulation basée sur une approche en volumes finis, la méthode aux ordonnées
discretes permettait de coupler de fagon efficace la résolution de I’équation des transferts radiatifs
a celle des équations de conservation.

Cette méthode a permis a Luan et al. [100] de modéeliser de facon efficace les transferts radia-
tifs dans une maquette de réacteur a lits fluidisés et étudier leur réle et leur importance pour ce

systeme. Il ont ainsi pu montré un réle du rayonnement croissant quand la taille des particules
considérées augmentent. Cette étude confirme que la modélisation des transferts radiatifs dans
un milieu absorbant et diffusant n’apporte pas de difficulté supplémentaire du point de vue de la
formulation et que, de par leur simplicite et leur formulation, les DOM sont facilement utilisables
dans des simulations prenant en compte les autres modes de transferts thermiques.

Plus récemment, dans un autre domaine et a une plus grande échelle, Yeoh et al. [169] ont déve-
loppé un modele d’incendie en appartement, en trois dimensions, prenant en compte le rayonne-
ment par une méthode aux ordonnées discrétes formulée dans un repére cartésien pour un maillage
structuré. Le modele de rayonnement des gaz utilisé est grossier et la quadrature angulaire est mi-
nimale (S4). Le modéle RANS permet de modéliser la combustion turbulente. Bien que le modéle
radiatif soit trés allegé, les résultats obtenus sont en accord avec les mesures expérimentales et ont
permis de montrer que, dans cette configuration, le rayonnement thermique jouait un réle impor-
tant sur les prédictions de température. Cependant, de fagon rigoureuse, I’utilisation d’un modele
RANS basé sur des grandeurs moyennes ne suffit pas et I’influence de la turbulence sur le rayon-

nement auraient du étre prise en compte.

Les Méthodes aux Ordonnées Discrétes sont parfois classée parmi les méthodes des flux. Les
méthodes des flux reposent sur une grossiére simplification de la variation angulaire de la lumi-
nance, basée sur des directions orientées, de fagon arbitraire, selon les axes d’un repére cartésien.
On trouve dans la littérature de nombreuses méthodes de ce type, utilisées notamment pour les
modeéles atmosphériques [157]. Les méthodes de type Schuster-Hamaker (méthode a deux flux)
considere le rayonnement de plans paralléles infinis grace a deux équations différentielles donnant
le flux ascendant et le flux descendant. Ceci pouvant étre effectué pour chaque direction (axe des
x, ¥ 0U z), on trouve aussi dans la littérature des modeles a quatre flux (modele de type Gos-
man et Lockwood) et des modeéles a six flux. Certaines méthodes de flux comme le modele de



2.2 Introduction aux Transferts Radiatifs 45

type Schuster-Schwarschild (4 a 6 flux) consistent a diviser I’angle solide qui entoure un point de
I’espace en plusieurs angles solides orientés autour des axes du repére et a I’intérieur desquels la
luminance est considérée comme étant constante. La mise en équation différentielle qui en résulte
est tres pratique pour une introduction dans un calcul simultané d’écoulement et cette méthode a
été tres utilisée en combustion (géométries simples). Cependant, les méthodes de flux souffrent
géneralement d’une inaptitude a bien modéliser les systéemes geométriquement complexes et a y
représenter d’éventuelles variations des flux directionnels. De plus, les fortes discontinuités du
champs de luminance qui apparaissent sont beaucoup plus importantes que celles que I’on peut
rencontrer dans les DOM.

La plupart des auteurs ont donc utilisé des méthodes de flux en combustion dans le cadre d’études
ou I’attention n’était pas focalisée sur la nécessité d’obtenir un modele radiatif précis, mais sim-
plement de prendre en compte une approximation du terme source radiatif pour I’équation de
I’énergie [12, 170].

La formulation des méthodes différentielles est la plus compatible avec les algorithmes de cal-
cul d’écoulement formulés en différences finies ou éléments finis. Cependant, il est a noter que les
méthodes aux ordonneées discrétes et les méthodes aux harmoniques sphériques classiques ne sont
pas initialement adaptées a la résolution de systemes complexes en trois dimensions pour lesquels
on a besoin de maillages non structurés. Des algorithmes particuliers ont été mis au point au cours
des dix derniéres années pour répondre a cette attente (FVM et DOM pour maillages non struc-
turés). Ceci a fait I’objet de notre étude et sera abordé au chapitre 4 ou nous exposerons de facon
détaillée le développement d’un code DOM adapté aux maillages non structures et I’évaluation
de ses performances. Cependant les méthodes différentielles ne sont pas non plus les plus appro-
priées pour la modélisation de systéemes constitués de parois réfléchissante de maniere spéculaire
puisqu’elles nécessitent alors une procédure itérative commandeée par un critere de convergence.

2.2.3.2 Les méthodes intégrales

Les méthodes intégrales font appel a la formulation intégrale (2.53) ou en puissance nettes
échangeées pour calculer la luminance le long des chemins optiques vecteurs des transferts radia-
tifs. Nous rangeons dans cette catégorie la méthode des zones de Hottel et la méthode de tracé de
rayon (ou Ray Tracing).

La méthode des zones, introduite en 1967 par Hottel et Sarofim pour des applications dans le
domaine de I’ingénierie, repose sur la formulation en puissance nettes échangees (cf. §2.2.2.3).
Elle considére des propriétés radiatives (luminance noire (2.36) et coefficient d’absorption) uni-
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formes sur chaque élément de volume et de surface. L’évaluation des transferts radiatifs se fait a
I’aide de facteurs d’échanges appelés « aires ou volumes d’échanges directes de Hottel » , prenant
en compte le phénomene d’absorption du rayonnement par le milieu séparant deux éléments. Cette
méthode améne une hypothése simplificatrice par rapport a la formulation en PNE : I’échange se
fait uniquement a travers I’angle solide sous lequel un élément voit I’autre de facon directe. Le phé-
nomeéne de réflexion aux parois n’est pas intégre dans les aires et volumes d’échanges de Hottel.
On distingue les trois types d’échanges de la formulation en PNE (surface/surface, surface/volume
et volume/volume). Les aires et volumes d’échanges correspondants peuvent étre réunis dans des
matrices d’échanges, d’ou une possibilité d’utiliser les connaissances du domaine du calcul matri-
ciel pour optimiser I’application de la méthode des zones [116]. La méthode des zones demande
un calcul préalable des aires d’échange direct. Ceci présente de nombreux inconvénients. En parti-
culier, si I’épaisseur optique varie, sous I’influence de la température par exemple, il est nécessaire
de recalculer les nouvelles aires d’échange direct en fonction des nouvelles épaisseurs optiques.
Pour augmenter la precision, il faut raffiner le maillage et gerer de matrices d’échanges impor-
tantes, ce qui rend rapidement cette méthode colteuse en temps de calcul. Enfin, pour des confi-
gurations géométriquement complexes, les facteurs d’échange direct (obtenus a partir des facteurs
de formes) sont difficiles a calculer et il faut avoir recours a une méthode statistique (type Monte
Carlo) pour les estimer.

La méthode des zones a srement été la méthode la plus couramment utilisée pour prédire les
transferts radiatifs dans les chambres de combustion, convenant parfaitement a une approche en
volumes finis. En 1997, Olsommer et Spakovski [118] I’ont utilisé pour une étude sur un four
incinérateur d’ordures meénageéres (température de 1300 — 1800 K) et obtenus des résultats assez
fiables en utilisant le méme maillage pour modéliser la combustion et les transferts radiatifs.

Une autre méthode pouvant étre classée parmi les méthodes intégrales est la méthode du Ray
Tracing. Cette méthode repose sur une discrétisation angulaire de I’espace en un trés grand
nombre d’angles solides suffisamment nombreux et petits pour pouvoir considérer une distribu-
tion uniforme du rayonnement a I’intérieur de chacun d’eux. Pour chaque direction ou « rayon »
associe a chacun des angles solides, on suit le chemin optique en découpant le trajet en segments
de longueur [, supposeés isothermes et homogeénes, et pour lesquels on peut calculer une transmit-
tance moyenne T, (1) [143]. L’équation de transfert radiatif est alors intégrée analytiquement des
surfaces au point P(7) ou la luminance incidente est recherchée. Ainsi, I’intégration sur tout le
chemin optique peut étre faite par partie, en considérant NV segments homogenes, et la luminance
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peut étre calculée sur le trajet en posant :

L,(F,8) = L, (re, T (ry, — 7) +Z 1—T,(1) Ly (7)) (2.84)

La précision du calcul dépend du nombre de rayons choisis ainsi que du nombre de segments
permettant de représenter les inhomogénéites sur le trajet. De plus le temps de calcul est accru de
facon consideérable lorsque I’on integre les phénomeénes de réflexion aux parois. Coelho et al. ont

produit un benchmark comparant des résultats obtenus par méthode Ray Tracing et par méthode
Monte Carlo, a partir de profils de température et de concentrations d’espéeces analytiques sur
des configurations axisymétriques [28]. Tant que I’on ne considére pas la réflexion aux parois, le
Ray Tracing affiche une précision equivalente a celle du Monte Carlo pour des temps de calculs
Iégerement inférieurs. Cette méthode permet elle d’obtenir des solutions de référence mais est trop
colteuse en temps de calcul pour étre utilisée dans des calculs de combustion.

2.2.3.3 Les méthodes statistiques

Quand on parle de méthode statistique, on fait allusion a la méthode Monte Carlo. La méthode
Monte Carlo consiste a reconstruire les transferts radiatifs par la génération d’un grand nombre
d’évenements aléatoires a I’issue de laquelle les variables d’état du systéme sont calculées en
moyennant les valeurs obtenues. On modélise un phénomeéne physique, notamment la trajectoire
d’un photon ou « rayon » de son point d’émission jusqu’a son point d’absorption, par une suite
de processus aléatoires. Les phénomenes tels que I’émission, I’absorption, la diffusion sont repré-
sentées par des lois probabilistes qui régissent alors le comportement de chaque photon émis par
un élément du systeme. La réflexion du rayon aux parois, en fonction de leur émissivité e est aussi
représentée. Chaque rayon possede une fréquence d’émission propre qu’il conserve sur son trajet.
Dans la méthode Monte Carlo analogue, chaque élément émet un nombre de quanta d’énergie
proportionnellement a son émittance.

La MCM (Monte-Carlo Method) est la plus apte a modeéliser avec précision les transferts radiatifs
puisque pour un grand nombre de tirages aléatoire on tend vers la solution exacte. De plus, elle
permet de calculer parallelement I’incertitude associée a chaque résultat - la barre d’erreur pro-
vient de I’écart-type. Elle donc considéré comme une méthode de référence dans le domaine de la
modélisation des transferts radiatifs.

Une des grandes difficultés liées aux méthodes statistiques est de trouver les lois mathématiques
décrivant au mieux la physique du probléme.

Howell et Farmer ont largement contribué a faire avancer la méthode de Monte Carlo en produi-
sant de nombreux travaux visant a I’optimisation de cette méethode.[68, 69, 49, 51, 50].

Toutes les autres techniques actuelles de modélisations numériques des transferts radiatifs, méme
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les méthodes les plus rigoureuses comme la méthode des zones, font une approximation pour ce
qui est des fonctions de bases ou du maillage (approches en volumes finis). Excepté pour des cas
ou la géométrie et les propriétés radiatives du milieu sont simplifiés, il n’y a, a ce jour, aucune
solution analytique utilisable de maniére universelle dans des géométries complexes.

La méthode de Monte Carlo incorpore tous les effets possibles sans approximation, si ce n’est
la modélisation des lois statistiques. Cependant son codt en temps de calcul force a émettre des
réserves pour ce qui est de son utilisation directe en combustion.

De récents travaux effectués au sein de notre laboratoire [38, 122] ont montré qu’a partir d’un
travail de reformulation des équations intégrales de I’ETR (formulation en PNE, introduction
des fonctions de densités de probabilites, utilisation des techniques d’accélération du suivi de
rayons propre au domaine de la synthése d’images), des gains en temps de calculs trés significa-
tifs peuvent étre obtenus.

Récemment, Tessé et al. [152, 151] ont étudié I’influence du couplage turbulence/rayonnement en
s’appuyant sur des calculs de transferts radiatifs par méthode de Monte Carlo au sein d’une flamme
de diffusion Ethyléne/Air, turbulente et produisant de la suie. Ils ont pu estimer que la prise en
compte de ce type d’interaction pouvait correspondre a un accroissement de 30% des pertes ra-
diatives estimées. Dans cette étude, la modelisation de la combustion turbulente a été effectuée
par un modele simplifié basé sur des densité de probabilité. Le choix de la MCM se justifie donc
puisqu’il integre facilement ce type de formulation. Toutefois, le maillage utilisé (environ 9000
cellules) est bien moins dense que ceux utilisés par les codes de combustion actuels. De plus, la
nécessité de pouvoir fournir des PDF adaptées au probléme pose font que cette méthode n’est pas
encore suffisamment flexible.

La méthode Monte Carlo peut étre considérée comme une méthode d’intégration. Elle per-
met par un reformulation du probleme de résoudre I’ETR sous sa forme intégrale en effectuant
les intégrations qui apparaissent dans la formulation en PNE (cf. § 2.2.3.2). Elle présente alors
la particularité intéressante de permettre une modélisation simultanée des dépendances spatiale,
angulaire mais aussi spectrale du rayonnement thermique. L’ajout de I’intégrale sur I’espace de
fréquences genéere une difficulté conséquente pour tous les autres types de méthodes. Pour ré-
soudre des intégrales multiples de ce type, on peut utiliser la méthode statistique qui consiste
alors a résoudre la fonction a intégrer pour un grand nombre de tirage aléatoire de point appar-
tenant a I’ensemble des domaines d’intégrations. Dans cette thése, nous effectuerons une étude
(cf. Chapitre 3) en utilisant cette approche de la méthode Monte Carlo. Le gros avantage de cette
formulation est de calculer simultanément la participation du milieu et I’émission locale, ce qui
permet d’utiliser une méthode de sensibilité basée sur un développement de Taylor de la fonction
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FI1G. 2.8 — Trace de rayon par la Méthode des Transferts Radiatif Discret (DTRM)

S,.. Ceci sera expliqué plus en détails ultérieurement.

2.2.3.4 Les méthodes Hybrides

On réunit sous ce nom toutes les techniques basées sur une combinaison de plusieurs des mé-
thodes citées dans les sections précédentes, permettant de corriger les défauts que celles-ci pré-
sentent individuellement. Face aux grands nombres de méthodes hybrides proposées dans la lit-
térature, nous ne présentons ici que deux de ces méthodes, la premiere étant la plus connue et la
seconde étant la plus récente.

La Meéthode des Transferts Radiatifs Discrets ou DTRM a été proposee par Lockwood et
Shah en 1981 [99]. Elle a été spécialement développée pour la combustion, combinant méthode
des zones, MCM et méthodes des flux. La DTRM est élaborée autour du concept de résolution
de I’équation de transferts radiatifs sous sa forme différentielle pour un certain nombre de rayons
représentatifs.

L’espace des angles solides autour d’un point P est découpé en un grand nombre de petits angles
solides autour des rayons représentatifs choisis. Le domaine physique est découpé en volumes de
contr6le qui peuvent étre donnés par le maillage. Le point d’intersection de chaque rayon partant
de P avec la limite physique du systeme considéré est déterminé et noté (). Puis, connaissant le
rayonnement émis de la paroi en ), ’ETR est résolue par parties en passant par les volumes de
contr6le qui se trouvent sur la trajectoire () P (c’est une méthode de tracé de rayon). On détermine
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ainsi la luminance incidente G pour le rayon considéré. Cette opération est effectuée pour chacun
des rayons qui auront été définis au point P. Contrairement a la MCM, les directions des rayons
ne sont pas obtenues aléatoirement et on ne résout I’ETR que sur un trajet linéaire d’un point a un
autre. 1l n’y a pas de modélisation directe de la réflexion aux parois). Une procédure itérative est

donc nécessaire si les parois ne sont pas noires.

Cette methode est applicable a des geométries complexes sans pour autant compliquer la physique
du probléme. Elle est plus précise que la méthode aux ordonnées discrétes et plus rapide que la
méthode de Monte Carlo (elle présente tout de méme un codt en temps de calcul assez élevée).

Comme pour les méthodes aux ordonnées discretes, la précision peut étre accrue en augmentant
le nombre de directions prédéterminées. La DTRM présente un avantage pour les problémes né-
cessitant une solution simultanée en énergie et en écoulement en utilisant le méme maillage. Pour
se faire une idée plus concréte, on peut s’appuyer sur les travaux de Coelho et Carvalho [26, 27]

qui ont utilisé la DTRM pour évaluer les transferts radiatifs dans un modéle tridimensionnel d’un
systéme de centrale thermique. Les flux aux parois calculés sont en accord avec les données expe-

rimentales, validant ainsi la qualité des estimations radiatives pouvant étre obtenues par la DTRM.
Cependant, il est a noter que le maillage utilisé a été optimisé sur le plan radiatif afin de gagner
en temps de calcul sans perdre trop de précision sur les résultats. Il était plus grossier que celui
utilisé pour résoudre le probleme de combustion. De plus, I’évaluation du rayonnement n’était
effectuée que toutes les dix itérations du module de combustion afin d’accélérer la procédure. En
1998, Huang et al. [70] ont réalisé le méme type d’étude en ne calculant le champ radiatif que
toutes les trente itérations. Bien qu’elle soit directement couplable avec la CFD, il semble que
cette méthode reste tout de méme trop codteuse en temps de calcul pour pouvoir étre utilisée sur
des maillages trés denses.

Nous pouvons aussi citer les travaux de Yan et Holmstedt [168] qui ont aussi utilisé la DTRM
pour modéliser le phénomene radiatif dans le cadre d’une étude sur des flammes de diffusion tur-

bulentes coincées entre deux parois.

La méthodes de rayonnement des éléments par modele d’émission de rayons ou « REM? » est
exposée par Maruyama et Aihara en 1997 [105]. Cette méthode utilise des rayons émis d’eléments
de surface ou volume pour déterminer les facteurs d’échanges. Elle permet de discrétiser le milieu
en polyédres et les parois diffuses et spéculaires en polygones, puis d’introduire la notion d’aire de
rayonnement effective pour chacun de ces éléments (ce qui permet de ne plus faire de distinction
entre éléments de surface et éléments de volume) et la notion de facteurs optiques d’extinction,
d’absorption et de diffusion pour modéliser les événements importants en transferts radiatifs. Ces
notions contribuent a un calcul rapide et direct des flux d’énergie échangés. Cette méthode peut
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étre associée a une DTRM étendue a des geométries complexes prédécoupées en polyedres et
polygones standardisés et qui prend en compte la réflexion aux parois. Elle permet de traiter des

milieux inhomogénes ou les propriétés spectrales ne dépendent pas de la température (dans le cas
contraire, comme pour la DTRM, il est nécessaire de recalculer le facteur d’échange a chaque ité-
ration). Cependant, le nombre de rayons utilisé est bien plus grand que dans une DTRM puisque
chaque type de volumes a une émission angulaire discrétisée qui lui est propre. En 1999, Guo et
Maruyama [106, 107] ont appliqué cette méthode a des calculs en milieu inhomogeéne, non gris et
a diffusion anisotrope. Leurs résultats comparés a ceux obtenus par une méthode de Monte Carlo
ont montré des écarts de I’ordre de 2% en milieu gris, 10% en milieu non gris et pouvant aller
jusgu’a 20% dans ce dernier cas au voisinage des limites (parois). Les temps de calcul affichés
sont tout de méme supérieur a ceux d’une DOM. Il est a noter que, lorsque que I’on utilise la
Remz2 dans des milieux optiquement épais le temps de calcul décroit.

Nous reprenons les méthodes présentées dans cette section dans le tableau 2.1. Il apparait de

maniére évidente qu’il n’existe pas de méthode-clef unique prévalant sur les autres, mais plutét
des méthodes plus ou moins adaptees a un certain type de probleme. Méme si la méthode Monte-
Carlo semble étre la « méthode tout terrain », il n’est pas encore envisageable de I’introduire dans
un modéle de combustion en géométrie réelle, et ce malgré les récents progres réalisés dans son
optimisation [38, 122]. Cependant, nous montrerons au chapitre 3 comment I’utiliser efficacement
dans une configuration monodimensionnelle, a géométrie simple, en I’intégrant un modeéle basé
sur le calcul de sensibilités. Les objectifs sont alors differents : modélisation détaillée du probléme
et compréhension de la physique associée.
La méthode DOM nous apparait comme étant une bonne facon de prendre en compte les transferts
radiatifs dans les modéles de la combustion. Nous avons donc choisi développé un code de calcul
des transferts radiatifs par méthode aux ordonnées discrétes adapté au maillage non structuré. Ceci
fera I’objet du chapitre 4.

2.2.4 Modeles de Rayonnement des Gaz

Nous avons introduit I’ETR sous sa forme monochromatique pour clarifier la présentation des
principales méthodes permettant de modéliser le rayonnement d’un point de vue géométrique.
En réalité, la résolution de problémes de transferts radiatifs au sein d’un milieu semi-transparent
nécessite aussi une intégration en fréquence a cause de la dépendance fréequentielle de la luminance
du corps noir, mais surtout de la complexité du spectre d’absorption d’un gaz (ou mélange de
gaz)[113, 29]. La luminance qui présente un réel intérét est une luminance regroupant tous les



TAB. 2.1 — Tableau récapitulatif des méthodes énoncées

Eléments de rayonnement en combustion

Méthodes Type Rapidité Précision Flexibilité
Méthode Py Différentiel + + - +
DOM/FVM Différentiel + + - ++
Méthode des Flux Différentiel ++ - +
Méthode des Zones Intégrale - + -
Ray Tracing Intégrale -— ++ ——
Méthode Monte Carlo Statistique - ++ +
DTRM Hybride - + +t+
REM? Hybride -~ + ++

52
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flux obtenus a toutes les fréquences du spectre :

L(7,5) = /0 L7 ) (2.85)

Cela revient soit a avoir une intégrale de plus, soit a résoudre les équations différentielles a chaque
longueur d’onde afin de pouvoir sommer les luminances monochromatiques résultantes. On sait
parfaitement intégrer la luminance noire sur tout le domaine spectrale (cf. (2.34) ou sur un inter-
valle fréquentielle (fraction du corps noir tabulée par Siegel et Howell [143]). Cependant, pour
pouvoir procéder a une intégration spectrale, il est nécessaire de définir comment varie réellement
le coefficient d’absorption des gaz en fonction de la longueur d’onde. Pour cela, il existe de nom-
breux modeles de rayonnement des gaz plus ou moins appropriés a un besoin donné en précision
et/ou en temps de calcul, élaborés et étudiés aux cours des trente derniéres années [155, 60, 149].
Nous distinguerons quatre catégories de modeéles allant du plus précis, le modéle raie par raie, aux
plus grossiers, les modeles globaux.

2.2.4.1 Modeéle “Raie-par-Raie” (LBL pour Line-By-Line)

Ce modele est considéré comme la référence en terme de précision, intégrant une description
du mécanisme de base du rayonnement des gaz : les transitions entre niveaux d’énergie. L’état
moléculaire d’un gaz est caractérisé par les quatre types de niveau d’énergie suivant : translation-
nel, rotationnel, vibrationnel et électronique. Le spectre d’absorption est constitué des coefficients
d’absorption/émission x, correspondant aux différentes transitions de niveau d’énergie par ab-
sorption/émission d’un photon. Les raies spectrales issues de ces transitions sont rattachées a des
fréquences discrétes v et corrigées par des profils d’élargissement.

On distingue trois principaux profils d’élargissement de raie. Le profil de raie de Doppler repré-
sente I’elargissement par effet Doppler qui provient du fait que la fréquence a laquelle on observe

le phénomene d’absorption (ou émission de photon) différe selon que I’on se place dans le réfé-

rentiel moléculaire ou dans celui du laboratoire. Le profil de raie de Lorentz est di aux collisions
intermoléculaire qui ont pour effet de déplacer les niveaux d’énergie de celles-ci. C’est souvent la

principale cause d’élargissement des raies dans les conditions de trés fortes températures (fours,

foyers). Le troisieme type de profil rencontré est le profil de raie de Voight obtenu mathémati-
guement par produit de convolution des deux premiers types de profil, dans des conditions de
température et de pression telles que les effets Doppler et Lorentz sont du méme ordre de gran-

deur.

Avec I’aide de ces différents types de profil, on définit la fonction (v — 1) représentant le pro-

fil de raie normalisé associé a une raie centrée en . Pour chaque raie 4, on introduit la notion
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d’intensité de raie intégré S donnée par la mécanique quantique telle que :
exp(—FE1/k,T) [1 hv;

Qp(T) kgT
ou les indices 1 et 2 représentent les niveaux bas et haut de la transition i, g; le degré de dégé-
nérescence de ce niveau bas, B, le coefficient d’absorption d’Einstein de cette transition, iz la
constante de Boltzmann, E; le plus bas niveau d’énergie, ,(T) la fonction de partition et v; la
fréquence de transition de la raie 7.

S;"aie — 91312

— exp(— )] hy; (2.86)

Le modéle LBL permet de reconstruire le spectre d’absorption/émission d’un mélange de gaz en
déterminant a une fréquence donnée le coefficient d’absorption x, résultant du recouvrement de
I’ensemble des raies :

especes

7al£$ X )
Z kp raie (v — 1) (2.87)

k=1 i=1

Xyp est la pression partielle de I’espéce k£ dans un mélange de gaz. Le nombre N,.., de raies
contribuant au calcul d’un coefficient d’absorption pouvant atteindre le million, les temps de cal-
culs associés seront toujours trop important pour envisager I’emploi d’un tel modele sur des confi-
gurations réelles. Ce modele sert avant tout d’outil de validation de modeles simplifiés beaucoup
moins lourds et adaptables a certaines applications selon la précision necessaire [128]. Ces mo-
deles simplifiés consistent en un découpage du spectre en intervalles (ou « bandes ») plus ou moins
larges. En fonction de cette largeur de bande, on distinguera trois grandes catégories de modeéles :
les modeles a bandes étroites, les modéles a bandes larges et les modéles globaux.

2.2.4.2 Modeéles a bandes étroites

On appellera bande étroite un intervalle de fréquence sur lequel la luminance noire L, , peut
étre considérée comme constante. Le principe d’un modéle a bandes étroites est de représenter la
dépendance spectrale du coefficient d’absorption x, comme une fonction simplifiée du nombre
d’onde, afin de decrire I’essentiel de ce qui ce passe sur un petit intervalle spectral recouvrant
un grand nombre de raies. Les modéles les plus utilisés sont des modeles statistiques donnant la
transmittance moyenne sur une bande étroite A pour une colonne de gaz homogene et isotherme
de longueur [ :

_ 1
Tau(l) = 55 /A e "dy (2.88)

Ces transmittances moyennes ne sont jamais calculées directement a partir de cette expression.
Leur formulation est généralement basée sur des grandeurs moyennées sur une bande étroite Av,
telles que le coefficient d’absorption moyen :

_ 1
far =R,

K, dv (2.89)
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b)

FI1G. 2.9 — Raies d’absorption distribuées (a) selon un modeéle régulier (type Elsasser) et (b) selon
un modele aléatoire (type Goody)

7~ étant la demi-largeur & mi-hauteur moyenne des raies et 6 I’écartement moyen entre deux raies
successives sur une bande étroite (cf. Fig.2.9(a)), un paramétre de forme 3 peut étre définit par :

B=4

|2

(2.90)

Le modele a bandes étroites d’Elsasser (1943) considére que toutes les raies ont la méme largeur
et sont régulierement espacées (cf. Fig.2.9(a)). Ceci permet d’écrire I’expression de la transmit-
tance moyenne de la fagon suivante :
_ 1 [? —kaylsinh n8
Th, = 5/ exp[ = (%) ]dz (2.91)
0 cosh(7) — cosh(%)

Le modele a bandes étroites de Goody (cf Fig.2.9(b)) considére des raies de Lorentz espacées

aléatoirement et exprime la transmittance moyenne sur une bande étroite de la fagcon suivante :

LA{ (2.92)
/1 + _’%AVZ

Le modéle a bandes étroites de Malkmus propose pour un méme type de raies, espacées en

Ta, = exp

moyenne de §, une formulation ol chaque bande étroite est paramétrée par deux grandeurs : le
coefficient d’absorption moyen'x et le facteur de forme ®. Ce modele sera plus amplement abordé
au § 2.3.2.
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2.2.4.3 Modeéles a bandes larges

Les modeles a bandes larges, plus grossiers, decoupent le spectre en un plus petit nombre de
bandes dont la largeur Av est de plusieurs centaines de cm~!, se placant au dela de la limite de
validité de I’hypothese d’indépendance fréquentielle de la fonction de Planck sur une bande. Ob-
tenus a une autre échelle, les modéles a bandes larges ont pour objectif de décrire les variations
des paramétres moyens tel que I’intensité de raie moyenne S, /9, ou le coefficient d’absorp-
tion moyen %, sur toute la bande large. Les deux modeles les plus connus sont : le modele a
bande large d’Edwards et le modéle théorique dit “Rigid Rotator, Harmonic Oscillator” [113]. On
ajoutera les modeéles formulés en k-distribution appliqués sur des bandes spectrales tres larges.

2.2.4.4 Modeéles globaux

Les modeles globaux permettent de représenter tout le spectre d’un gaz avec un minimum d’in-

formations telle que I’émissivité totale e ou la transmittance totale T'y_,.. du gaz. Les modeéles les
plus simples permettent ainsi de définir pour un gaz une émissivité constante sur toute le spectre :
on dit alors que le gaz est gris.
Hottel [67] présente ceci sous forme d’abaques établies en fonction des grandeurs thermodyna-
miques P, T et de la fraction molaire X}, pour des milieux homogénes et isothermes. On peut
aussi citer le modéle « somme pondérée de gaz gris» (WSGG pour « weighted sum of grey gas »)
de Modest [110] amélioré par Denison et Webb dans le modele SLW (pour « Spectral Line-based
Weighted-sum-of-grey-gas »)[42, 41]. Ce modele consiste a représenter le comportement d’un
gaz par rapport aux variations des grandeurs thermodynamiques comme une somme pondérée des
grandeurs representatives de plusieurs gaz gris. Une logique similaire a donné naissance a des mo-
déles plus récents tels que I’ AD F' (Absorption Distribution function) et I’AD F'- F'G (Absorption
Distribution function - Fictitious gas) développés par Pierrot et al. [127, 128].

On dispose donc d’un grand éventail de modéles permettant de représenter les propriétes ra-
diatives de mélanges de gaz de fagon plus ou moins précise mais aussi, en contrepartie, plus ou
moins codteuses en temps de calcul.

2.3 Modéle statistique a bandes étroites en k-correlés (SNB-ck)

Dans notre étude, nous avons fait le choix d’utiliser le modele a bandes étroites de Malkmus.
Pour pouvoir intégrer ce modéle dans une méthode de type différentiel telle que la méthode aux
ordonnées discrétes, nous aurons besoin d’une description du spectre en variable x,. Afin de
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pouvoir traduire la transmittance moyenne du modele de Malkmus en coefficients d’absorption,
nous utilisons ce qu’on appelle la méthode des k-distributions. Le modéle reposant sur une telle
procédure est appelé « modele statistique a bandes étroites en k-corrélés » (SNB-ck) et a fait
I’objet de nombreuses études. Nous devons notamment a Liu et al. des travaux tres intéressants
permettant d’optimiser I’application de ce modeéle [85, 86, 89, 90, 92, 93, 95, 96]. Goutiere et al.
ont mené des études comparatives permettant de déduire que le modéle SNB-ck est le modele
de rayonnement de gaz proposant le meilleur compromis entre précision et temps de calculs, a
I’heure actuelle [61, 62].

2.3.1 Meéthode des k-distributions

Prenons F, une fonction du coefficient d’absorption x, et définissons I’intégrale I de la fagon
suivante :

I :/ Ly, F (k,)dv (2.93)
Av

ou Ly, est la fonction de Planck dépendant de la température mais aussi de la fréquence du
rayonnement. Si I’intervalle fréquentiel Av est suffisamment étroit, on peut écrire :

I ~Tyna, / F (k) dv = Lyay. Av.Fn, (2.94)
Av
ou
7 —i/ F,)d (2.95)
AV_AI/ . Ky )arv .

Cette egalité sous-entend que L, , peut étre considérée comme constante sur cette bande étroite
de fréquence ou, du moins, que sa variation est négligeable sur I’intervalle d’étude Av.

Afin d’éviter la lourdeur liée a la résolution d’un spectre peu organisé obtenu a partir d’un modéle
raies par raies, G.A. Domoto a présenté en 1974 [45] le principe des k-distributions dont le but
est de se libérer de la dépendance en fréquence de «,, en utilisant la fonction de distribution des
coefficients d’absorption f(x). f(x) représente alors la densité de probabilité de trouver la valeur
k sur I’intervalle A,. Si I’on considére une bande étroite Ar suffisamment petite pour que x,
soit une fonction de () monotone, alors on peut définir sa fonction inverse v(x). f(x) est alors
simplement définie par :

dv
dr

fs) = 5

(2.96)

Cette hypothese n’est jamais vérifiée lorsqu’il s’agit de spectres de raies, méme dans le cas de
modele & bandes étroites ou chaque bande contient un grand nombre de raies (spectre non mo-
notone). On peut néanmoins généraliser cette définition en découpant cette bande étroite Av en



58

Eléments de rayonnement en combustion
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F1G. 2.10 — Spectre d’absorption synthétique obtenu par élargissement de raies définies de maniére
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FIG. 2.11 — Fonction f(k) pour le spectre d’absorption synthétique de la Fig.2.10



2.3 Modéle statistique a bandes étroites en k-corrélés (SNB-ck) 59

N sous-intervalles ou () est monotone avec pour chaque sous intervalle 7 une valeur minimum
Kmin,i €t UNE valeur maximum x,,,.,. ; ainsi qu’une fonction inverse v;(x). La densité de probabilité
s’écrit alors :

1) =Y

ou h représente la fonction échelon unité [60].

de‘
dr

X {h [/‘i — /imin,i] —h [Hmax,i — H]} (297)

Dés lors, sans se soucier de la fréquence a laquelle correspond une valeur de x,, on a une possi-
bilité d’intégrer sur « et non sur v. Cela a pour conséquence de faire perdre I’information sur
la fréquence (ou les fréquences) d’une valeur de x donnée pour ne conserver finalement que
la probabilité de rencontre de cette valeur de « sur toute la bande d’étude Av (Fig.2.11). Il
est important de rappeler que la dépendance fréquentielle dans un probléme de rayonnement est
double au départ : le spectre d’absorption est décliné en fonction de v et la fonction de Planck est
aussi soumise a cette dépendance. Cependant I’hypothése de bande étroite permet de nous libé-
rer de cette deuxieme contrainte puisque I’on considere un intervalle d’étude suffisamment étroit
pour prendre L, indépendant de v et donc la seule dépendance en v est celle des «. Cette derniere
assertion n’est plus problématique une fois que I’on écrit la valeur moyenne de la fonction F'(x,)
sous une forme probabiliste a partir des équations (2.95) et (2.96) :

Fa, = /OOO F(r)f(k)dr (2.98)

On transforme ainsi I’intégrale (2.95) sur v en une intégrale sur «. Il est nécessaire de connaitre
f(x) pour obtenir un outil effectif, ce qui est possible a partir du spectre détaillé en se servant de
I’équation (2.97).

Le modéle de Malkmus est un modéle permettant d’obtenir de maniére analytique T a partir
de certaines propriétés de spectres répondant a des hypotheses précises. En appliquant (2.98) a
I’équation (2.57) (3, = x, pour un milieu absorbant), on obtient la transmittance moyenne sur
une bande étroite telle que :

Ta (1) = /eXp(—lil)f(li)d/{ (2.99)

Domoto [45] a montré qu’il était possible, a partir des modeles de transmittance moyenne, de
déterminer f(x), en observant que T A, est une transformée de Laplace de f qui peut donc s’écrire :

f(w) =L (Tan(l)) (2.100)

f (k) est donc aussi appelée fonction transmittance inverse. Sauf cas particulier, I’allure de cette
fonction f(x) n’est pas monotone. A deux valeurs différentes de ~ peut correspondre une méme
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Representation de k(g)
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Fi1G. 2.12 — Fonction g(k) pour le spectre d’absorption synthétique de la figure Fig.2.10

densité de probabilité f(x). Il s’avere plus commode d’introduire la fonction bijective g(x) sui-
vante :

9(k) = /0 N, (k)dr' (2.101)

Cette fonction g(x) est appelée fonction cumulative de la densité de probabilité de x ou fonction

de répartition. Elle est monotone, croissante et définie sur I’intervalle [0, 1], ce qui permet d’ob-
tenir facilement la fonction inverse x(g). Pour toute fonction F'(x), on peut obtenir & partir des
équations (2.98) et (2.101) :

1

Far—
A AV Av

F(k,)dv = /o F(r(g))dg (2.102)

Ceci revient a effectuer un réarrangement de la fonction sur le spectre d’absorption pour la bande
Av en ordonnant par rapport a la variable g. On peut donc aussi obtenir x(g) en procédant a une
réorganisation du spectre raie par raie (ceci est a I’origine du modeéle ck [146]).

Le véritable intérét de cette fonction x(g) tient dans le fait que I’on peut en faire une simple
approximation puisqu’elle est monotone et croissante sur un intervalle [0,1]. La résolution nume-
rique de cette intégrale en fonction de ¢ (2.102) peut étre faite par une méthode statistique ou par
une quadrature de Gauss. Dans ce dernier cas on aboutit & une formulation discrétisée :

Fa(l) =) wn.F(r(gn)) (2.103)
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ou g,, et w,, sont respectivement les points de quadrature et les poids associés.

Connaissant la fonction de répartition g(x), la détermination des (g, ) peut se faire par une mé-
thode simple de résolution d’équation implicite (ex : dichotomie ou Newton-Raphson amélioré
[92]). La fonction x(g) étant continue et monotone, sa quadrature est beaucoup plus aisée et re-
quiert moins de points de définition qu’une méthode « raie par raie », pour de représenter le spectre.
En premiere approximation, le gain informatique de la méthode des k-distributions par rapporta la
méthode « raie par raie » est donné par le nombre de raies pouvant étre contenues dans I’intervalle
spectral Av choisi et qui peut atteindre une valeur de I’ordre de 10%.

2.3.2 Modeéle SNB de Malkmus et Distribution Inverse Gaussienne

Le modele statistique a bandes étroites (SNB) de Malkmus [102] s’avére trés représentatif
du type de regroupement de raies les plus fréguemment rencontrés en combustion. Beaucoup de
recherches effectuées dans le domaine du rayonnement infrarouge dans les milieux gazeux sont
basés sur ce modele. J. Taine et A.Soufiani [146] I’ont notamment utilisé dans leurs études et ont
produit des banques de données SNB utilisables que I’ont présente au §2.3.3. Ce modeéle est établi
sur les hypothéses suivantes :

les intensités de raies sont distribuées selon la loi de densité de probabilité suivante :
1 S
S)=cexp (- =) 2.104
p(s) = gosp (- g (2.104)
ou S* est I’intensité moyenne ;

toutes les raies ont la méme demi-largeur a mi-hauteur 7 ;

les centres de raies sont distribués de fagon uniforme ;

le nombre de raies N contenu dans la bande Av est suffisamment élevé pour permettre une
représentation statistique.

On définit &, la valeur moyenne du coefficient d’absorption obtenue par la relation (2.89),
comme étant reliée a I’intensité moyenne des raies, par I’égalité suivante :
S*
4]
ou § est I’écart moyen entre deux centres de raie contigus.
On introduit ® appelé le parameétre de forme ou de séparation des raies défini par :
-
= % (2.106)
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® permet d’évaluer si le spectre d’absorption est composé de raies étroites ou élargies et si les
centres de ces raies sont tres espacés. Dans le cas de raies étroites, I’absorption est trés localisée
sur I’espace fréquentiel. Des raies trés élargies, se recouvrant grace a une grande proximité, cor-
respondent a un spectre qui tendra vers celui d’un milieu gris.

Le modéle de Malkmus propose de reconstruire analytiqguement la transmittance moyenne d’une
bande étroite Av, sur une épaisseur de gaz [, en utilisant ces deux parametres = et ® :

o\ 172
) (1 + (1 + %’fl) )] (2.107)

A partir de ce modele, une méthode de k-distribution peut étre construite. Afin de déterminer la

TAV(Z) = exp

fonction densité de probabilité f(x), Domoto [45] propose de calculer la transformée de Laplace
inverse de T'(1), en appliquant la relation (2.100) a I’expression (2.107) :

oy
2mK3

D (k—7)

f(k) = ——_7] (2.108)

ex
P 2 RK

La fonction transmittance inverse f(x) a la forme d’une distribution inverse Gaussienne. Il existe
de trés nombreux écrits sur les propriétés statistiques des distributions inverses Gaussiennes. En
particulier, on sait que la fonction de répartition s’écrit :

B %(1_%> +exp (20) er f [_\/%(1+%>

Une présentation succincte des propriétés de cette distribution est proposée dans I’article de Du-

9(Kk) = /0 ' f(K)dK = erf (2.109)

fresne, Fournier et Grandpeix paru en 1999 [47].

Cependant, la méthode des k-distributions s’appuie sur la connaissance de la fonction x(g). L’ex-
pression de g(x) (2.109) n’est pas analytiquement inversible & premiere vue. 1l est donc nécessaire
de faire appel & des méthodes numériques d’inversion ou de recherche de racine pour obtenir x(g).
Nous présentons I’allure de la fonction x(g) (Fig.2.13) obtenue graphiquement par une simple in-
version d’axe.

Une interprétation de cette figure peut se faire sur les deux cas extrémes : $=100 et ®=10"".
Dans le premier cas, $=100, les recouvrements de raies sont trés importants ce qui correspond
a un milieu gris et il n’existe quasiment qu’une valeur de x(g) possible. Dans le deuxiéme cas,
®=10""1, les faibles valeurs de  sont trés probables, ce qui correspond aux espaces entre raies.
Les centres de raies rencontrés trés rarement ont par contre une trés forte contribution a la valeur
moyenne %. Remarquons que seul ® influence I’allure générale de la fonction x(g) puisque < ne
fixe en fait que la moyenne des valeurs de x que I’on observe en ordonnée.
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Comparaison des k(g) pour un k moyen de 0.1 m-1

1 T T T T
phi=1.E-1
phi=10 —

c 0.8 r phi=100 — -
S
=
o
(%] i
G 0.6 | =
©
=
o :
©
e 0.4 e
o
o B
£ o2} /

;:,i,:fi—?fffffff”* -

o - 1 - - I Il Il
0 0.2 0.4 0.6 0.8 1

g fonction cumulative de probabilite

FIG. 2.13 — k(g) obtenue par inversion d’axe a partir du tracé de g(x) pour différentes valeurs de
P

2.3.3 Banque de Donnees SNB

Pour nos applications, les espéces rayonnantes qui a priori pourraient contribuer aux transferts
radiatifs sont CH,, OH, H,0O, CO, et C'O. Les trois derniéres especes citées ayant les contribu-
tions les plus significatives, nous ne prendrons pas en compte dans notre étude I’effet des concen-
trations en C'H, et OH au niveau spectral. Pour modéliser le rayonnement des gaz nous avons
utilisé les données spectroscopiques fournies par J.Taine et A.Soufiani du laboratoire EM2C de
Paris [146]. Cette banque de données fournit deux des trois parametres importants du modele de
Malkmus : % et 6. Ces données ont été obtenues par une méthode d’ajustement aux moindres car-
rés de la transmittance moyenne sur une bande étroite calculée a différentes épaisseurs optiques a
partir d’un modéle raie-par-raie. Dans le cas de la vapeur d’eau, la banque de données fournit les
parameétres intensifs k = % (ol p; est une pression partielle) et (§)~* pour des valeurs discrétes de
température allant de 300K a 2900 K par pas de 200K, et ce pour 367 bandes étroites de largeur
Av = 25 cm~! découpant une plage du spectre comprise entre 150 cm~! et 9300 cm~!. Pour
C'O,, les mémes paramétres ne sont fournis que sur 96 de ces 367 bandes étroites (sur 4 plages
plages spectrales : 450 — 1200 cm~1, 1950 — 2450 cm~!, 3300 — 3800 cm~! et 4700 — 5250
cm~1). Le CO2 peut étre considéré comme étant transparent dans les régions manquantes. Pour
le CO, les paramétres sont fournis pour 48 de ces bandes étroites s’étalant sur deux courtes plages
spectrales : 1750 — 2335 cm~! et 3775 — 4350 cm~1.

Le paramétre 7 (en cm~!) est supposé identique pour toutes les bandes étroites d’un gaz absor-
bant. Les auteurs de cette banque de données propose de calculer ce parametre a I’aide des trois
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formulations suivantes, fonctions de la température 7', de la pression totale P, et des fractions
molaires X des principaux gaz d’un mélange pouvant étre influents, c’est-a-dire Vo, O,, H50,
CO,etCO::

P T 0.5 b
WHQO — F (?S) X |:0079(1 — X002 — XOQ) + 0.106)(002 + OO36X02
S |
o (2.110)
10.462X Is
. H>O ?
0.7
_ P (Ts
Yoo, = 5| 7 0.07Xco, +0.058(1 — Xco, — Xm,0) + 0.1X 0 (2.111)
S
P T\ % Ts\ 7
Yoo = 5 {0.075)(002 (%) +0.06(1 — Xco, — Xi,0) (%)
s (2.112)

TS 0.82
a0 %)
avec Ts = 296 K et Py = latm.

Les données spectroscopiques & (en cm~'atm~1) et (§)~* (en cm) étant fournies pour seulement

14 valeurs de température allant de 300 K & 2900 K, il est nécessaire d’effectuer une interpolation

linéaire pour obtenir ces parameétres a une température 7" quelconque comprise entre 7 et T;, 1 :

ki(Tiwr — T3) + ki (T = T;)
T — T,

®(P,T,X;) = P.X;. (2.113)

—1 —
—1 6 (T —T)+01 (T-T)

= 2.114
’ Tiv1 —T; ( )

Le parametre %; = (P, T, X;) est obtenu en cm~1.

On peut donc considérer un nombre Ny..qs = 367 de bandes étroites decoupant la plus grande
plage spectrale sur laquelle les données sont fournies. Pour chaque bande ¢ de gaz rayonnant
considéré (i = 1, .., Nyandes), ON aura les parametres suivants :

Pour H,O : 7™° et @20
Pour COy, : 792 et @00
Pour CO "9 et 9,00

Pour les bandes ou il n’y a pas de données pour le CO, ou le CO, nous considérerons #;“°2 = 0
ou %;“Y = 0. Il est a noter qu’a 300 K, 98,8% de la luminance noire de Planck (cf. (2.34)) est
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obtenue en intégrant I’équation (2.36) sur I’intervalle [150 cm~!;9300 cm~!]. A 2900 K, seule-
ment 70% de cette luminance est obtenue sur le méme intervalle. Il sera donc nécessaire d’étendre
la plage spectrale au dela de 9300 cm~! dans notre étude, méme si les propriétés radiatives ne
sont pas fournies dans ce domaine. Nous considérerons que dans cette région étendue tous les gaz
rayonnants sont transparents. .

2.3.4 Hypothése des k-corrélés (ck)

La transmittance moyenne pour un spectre répondant aux conditions de Malkmus permet de
traiter la majorité des problémes lorsque le milieu est inhomogene et/ou anisotherme. Malheureu-
sement, pour un spectre réorganisé, il n’est pas simple d’effectuer les transformations permettant
de prendre en compte I’influence des inhomogénéités sur le spectre d’absorption initial. 1l est donc
nécessaire d’effectuer de nouvelles approximations pour parvenir a utiliser cette méthode de cal-
cul qui s’avere efficace mais a sens unique (v — g).

L’évaluation de I’intégrale (2.109) ne demeure valable que pour une température et une pression
fixée. Si I’on veut prendre en compte des variations de température, pression ou concentrations
d’especes rayonnantes dans un milieu inhomogene il faut faire appel a ce que I’on appelle I’hypo-
these des k corrélées (notée ck [60, 59]), cette hypothése ayant donné naissance a la méthode ck.
Les intensités des raies appartenant a un spectre d’absorption augmentant ou diminuant avec les
variations de P et T, on est amené a supposer que ces fluctuations, le long du trajet du rayonne-

ment, soit n’influent pas trop sur le spectre soit le modifient de maniére uniforme. On admet ainsi
que le long de chaque chemin optique, seule la valeur moyenne du coefficient d’absorption évolue
et la forme de la distribution reste inchangée.

Cette hypothése ck revient & admettre qu’en chaque point de I’espace le réarrangement (v — g)
est identique, ce qui est valable pour un spectre ou toutes les raies se déforment de fagon compa-
rable (Fig.2.14(a)).

Dans le cas contraire (le plus courant pour un spectre observé dans un milieu caractérisé par
de fortes variations de température : par exemple lors de I’observation a plusieurs kilometres du
panache a la sortie d’un réacteur), le long d’un trajet dans un milieu inhomogeéne, les raies d’ab-
sorption varieront de facon trés différente (Fig.2.14(b)). Si le fait que les intensités et formes des
raies soient modifiées n’empéche pas un passage a f(x) et/ou g(x), les informations perdues sur
la localisation en fréquence des raies ne permettent plus de recalculer un nouveau spectre en un
point B & partir d’un spectre x(g) connu en un point A. Dans de tels cas, on peut faire appel a
la méthode CKFG ou méthode des « gaz fictifs en k-corrélés ». Cette méthode est basée sur un
regroupement des raies d’un spectre par familles ayant le méme comportement face a une forte
variation du parametre influent du milieu et ceci dans I’optique de pouvoir étudier séparément ces



66 Eléments de rayonnement en combustion

Exemple de variation du spectre valable pour la methode c-k
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F1G. 2.14 — Comportement d’un spectre synthétique dans un milieu homogéne : a) solvable par
méthode ck, b) nécessitant une méthode CK F'G
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groupements considérés chacun comme un gaz fictif répondant parfaitement aux conditions né-
cessaires a I’utilisation d’une méthode ck . Ceci a pour finalite de ne travailler que sur un nombre
limité N de gaz fictifs pour lesquels, le spectre de «, variant de maniére uniforme, on peut simuler
simplement I’évolution du spectre de x(g) et ainsi optimiser I’étude des échanges radiatifs dans
un milieu thermiquement inhomogéne, par exemple. Cette méthode est reprise et amplement ex-
pliquée par Taine et Soufiani dans leur article de synthése [149]. Des résultats convaincants ont
été présentés pour des modeles CKFG a cing et a huit gaz fictifs [135].

Cependant, pour des systémes dont la taille ne dépasse pas la dizaine de métres, I’hypothése
ck peut étre faite. De nombreuses études ont ainsi été faites sur la base de ces méthodes de k-
distributions corrélées. On citera, plus particulierement, les travaux menés par Liu visant des ap-
plications du modele SNB-ck en combustion [92, 94, 87, 91].

Il s’avére que plusieurs méthodes de calculs des transferts radiatifs par modéle de bande basés

sur la transmittance moyenne donnent de fagon plus directe de trés bon résultats. Cependant, ces
méthodes sont généralement de type intégral, ne permettant pas de prendre en compte de fagon
simple les propriétés radiatives d’un milieu discrétisé sur un maillage non structuré. De plus, les
modeéles de transmittance moyenne deviennent souvent inutilisables des que I’on s’attaque aux
problemes de la diffusion. La méthode des k-distribution, faisant I’hypothese ck, offre une tech-
nique de calcul radiatif en milieux inhomogénes pouvant étre appliquée dans une région spectrale
dans laquelle le spectre a une complexité arbitraire, a la simple condition que la fonction de Planck
puissent y étre considérée comme constante. Cela permet donc de produire un modele de rayon-
nement des gaz formulé en x pour les methodes de type différentiel.
L’utilisation d’un modéle SNB-ck pour prendre en compte le rayonnement des gaz de la combus-
tion dans une méthode aux ordonnées discretes (de type différentiel) ne semble pas souffrir de
contre-indication. De plus la formulation en bandes étroites se préte parfaitement a une paralléli-
sation des calculs radiatifs.
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Chapitre 3

Etude paramétrique de la flamme laminaire
de diffusion

C’est en se basant sur une géomeétrie simple et suffisamment représentative de la physique de
la combustion que I’on peut étudier I’importance du couplage entre le rayonnement et les écou-
lements réactifs et envisager le développement de nouvelles méthodologies de couplage. Notre
objectif est de mener une étude paramétrique sur I’impact du rayonnement sur une flamme a jets
opposés de C'H,/Air a pression atmosphérique : estimation de la température maximale, prédic-
tion des espéces rayonnantes (H,O,C O, et C'O) et des espéces polluantes mineures (N Ox). Nous
nous intéressons plus particulierement a la contribution des différents transferts radiatifs en jeu
(impact de la non adiabaticité et du phénomene de réabsorption du rayonnement thermique au
sein d’une flamme). Deux modeéles de rayonnement sont utilisés : un modele détailleé basé sur la
méthode Monte Carlo et un modele couramment utilise dans la littérature, le modele OTL (Opti-
cally Thin Limit Model, cf. § 2.2.2.4). Cela nous a permis de déterminer les parameétres influents
du probleme et de définir les situations ou une modélisation fine des transferts radiatifs est né-
cessaire. Le modele détaillé de référence développé dans notre équipe, le « Taylor-Like-Model »,
s’appuie sur une nouvelle méthodologie de couplage basée sur les sensibilités [38, 40, 39] et uti-
lise une modélisation fine des transferts radiatifs par une méthode Monte Carlo optimisé et une
cinétique chimique détaillée (GRImech 2.11 * prenant en compte 48 espéces dans 279 réactions
chimiques élémentaires). Les raisons du choix de la méthode Monte Carlo pour calculer les pertes
radiatives S, pour ce type de flamme sont diverses. La raison principale est la grande précision
de cette méthode, colteuse en temps de calcul mais accessible dans une géométrie et permettant
d’intégrer toute la complexité spectrale du calcul. Nous avons pu ainsi déterminer les caracté-

Ihttp://ww. ne. ber kel ey. edu/ gri _mech/
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ristiques des flammes pour lesquelles le couplage rayonnement/cinétique chimique a une réelle
influence et estimer quel est I’apport d’un modeéle radiatif précis prenant en compte le phénoméne
de réabsorption au sein de ce type de flamme.

3.1 Laflamme de diffusion laminaire monodimensionelle
3.1.1 Etatdel’art

La « flamme de diffusion », par opposition a la « lamme de prémélange », est obtenue a partir
d’un écoulement gazeux non prémelangé : combustible et comburant ne se rencontrent que sur
le lieu de la flamme, ce qui présente au niveau industriel des avantages sécuritaires. Les flammes
de diffusion sont étudiées en régime laminaire depuis le début du siecle dernier tant sur le plan
théorique (Burke, 1928 [7]) que sur le plan expérimental (Tsuji et Yamaoka dans les années 70
[160], cf. Fig.3.1). Elles représentent un outil d’investigation et de compréhension indéniable en
combustion. On peut classer ce type de flammes en deux sous-catégories : les fammes de diffusion
a co-courant (coflow jets diffusion flames) et les flammes de diffusion a jets opposés (opposed
jets diffusion flames) (Fig.3.2). Ces dernieres présentent un intérét particulier de par leur carac-
téristigue monodimensionelle et stationnaire.

Les études asymptotiques des flammes de diffusion & contre-courant débutent vers le milieu du
siecle dernier avec les travaux de Zeldovitch [171], puis Spalding [147] et Linan [98]. Ce type
d’analyse a encore été utilisé récemment par Liu et al. [94] pour mener une étude sur les limites
d’extinction et de flammabilité des flammes de diffusion avec pertes radiatives (par une approxi-

mation de milieu optiquement mince).

Parallelement, de nombreuses études numériques ont été effectuées sur la structure de ces flammes
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et leurs limites d’extinction a fort et faible taux d’étirement [43, 44, 166]. Darabiha et al. ont cal-
culé des flammes trés étirées, c’est a dire soumise a de forts gradients de vitesse, en intégrant une
cinétigue chimique complexe [37, 35, 36]. On doit aussi citer les nombreux travaux effectués par
Warnatz et Behrendt [2].

De nos jours, I’approche monodimensionelle de la flamme de diffusion a jets opposes représente
encore un outil indéniable pour la compréhension des mécanismes physico-chimiques liés a la
combustion. En 1998, Blevins et Gore [5] ont essayé de comprendre les phénomenes liés a la for-
mation de polluants dans ces flammes a faible taux d’étirement. Dans tous ces travaux cités, les
transferts radiatifs n’ont pas été pris en compte ou traités de maniere simple [6]. La perte d’énergie
par rayonnement est le plus souvent réduite a un simple paramétre ajustable en fonction d’hypo-
theses sur la physique de I’écoulement comme I’a fait Tien [156], par exemple, en 1986, pour
caractériser le mécanisme d’extinction par pertes radiatives des flammes faiblement étirées. On
doit a Negrelli [117] les premiers calculs de flammes non-adiabatiques prenant en compte I’inter-
action convection/rayonnement dans le cas d’une flamme de diffusion. Certes, la chimie n’est pas
détaillée (une seule équation) mais un modéle de gaz a bandes larges est utilisé, prenant en compte
I’hétérogénéité du systeme et ses effets sur le phénomene de réabsorption. 1l faut attendre le début
des années 90 pour voir apparaitre les premiers travaux sur le couplage entre le rayonnement et
la combustion avec mise en oeuvre d’une cinétique chimique plus détaillée. Dagusé et al. [34]
utilisent le modele statistique a bandes étroites pour alimenter un modéle numérique basé sur une
méthode de calcul des échanges radiatifs a partir de la formulation intégrale de ’'ETR exprimée
en transmittance. Par la suite [32, 33], ces mémes auteurs ont aussi utilisé un modéle ck adapté au
traitement des inhomogénéités en concentrations d’especes rayonnantes. Une réeelle procédure de
couplage entre le rayonnement et la cinétique chimique dans laquelle le terme source radiatif n’est
recalculé que lorsque cela est nécessaire (les criteres fixés étant a priori des variations de la tem-
pérature de plus de 20K ou des fractions molaires de plus de 10%) est mise en oeuvre. Sivathanu
et Gore [144, 145] ont aussi étudie le couplage entre le rayonnement et la cinétique des suies pour
des flammes laminaires de diffusion a géométrie cylindrique en prenant en compte le phénoméne
de réabsorption.

Pourtant, de nombreuses études plus récentes menées sur les flammes de diffusion a jets opposées,
se font toujours en utilisant le modele OTL [64]. En faisant I’hypothese que la flamme étudiee est
un milieu optiqguement mince, on considére que les pertes radiatives sont échangées avec le mi-
lieu ambiant, au dela de la condition d’adiabaticité dans la plupart des calculs en combustion. Les
modeles d’émission radiative sont les seuls a étre pris en compte et le phénomeéne de réabsorption
est considéré comme négligeable. Trés simple a mettre en oeuvre, le modéle OTL s’est avéré inté-
ressant pour étudier des flammes de diffusion a jets opposés dans le cas de forts taux d’étirement.
Law et Egolfopoulos [78] ont utilisé un modéle OTL basé sur des données de rayonnement des gaz
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proposées par Tien dans les années 80 afin de modéliser les pertes radiatives pour des flammes de
diffusion C'H,/Air non étirées. Ils ont ainsi pu observer I’influence de I’utilisation d’un modeéle
non adiabatique sur la vitesse de propagation d’une flamme en fonction de sa richesse. Chan et
al. [17, 18] utilisent le modéle OTL ou les coefficients d’absorption moyen pour un mélange de
gaz sont fournis par le code RADCAL? pour les espéces C'H,, H,O, CO, et CO, afin d’étudier
la structure de ce type de flamme. Une modélisation de la chimie cinétique plus detaillée est faite
en utilisant le schéma de cinétique chimique GRImech 2.11. Par la suite, Ju et al. [72, 104] ont
étudié le domaine de flammabilité et d’extinction de flammes C'H ,/Air a jets opposés, avec ou
sans micro-gravité, en prenant en compte le rayonnement par un modéle OTL couplé a une chimie
détaillée. Leur modele OTL prenait en compte le rayonnement des especes H,0 et CO, en se
basant sur les données de Tien [155] pour calculer le coefficient d’absorption moyen du mélange.
Intégrant ainsi les pertes d’énergies par rayonnement de facon suffisamment significative sans au-
cune lourdeur, de nombreux autres travaux, visant une compréhension et une modélisation plus
juste des structures dynamiques et chimiques des flammes de diffusion a jets opposes, ont été me-
nés en utilisant ce modeéle OTL basé sur les données de Tien. Plus particulierement, Park et al. ont
étudié les effets de I’ajout de C'O, [79] et de la dilution [119, 121, 120] sur des profils de concen-
trations d’espéces polluantes telles que les NOx pour des flammes de C'H 4/air ou de Hy/Ar en
utilisant ce type de modele OTL prenant en compte les données de Tien pour C'H,, H,O, CO,
et C'O associé a une cinétique chimique détaillée. Ces études numériques ont apporté beaucoup
d’information sur la modélisation de la structure de ce type de flammes. Cependant il est a regret-
ter I’absence de prise en compte du phénomene de réabsorption pour des flammes sachant que la
dilution du fuel est faite par une espece rayonnante (donc ayant un certain pouvoir d’absorption
au niveau radiatif). Dans une autre étude, Ruan et al. [136] utilisent un modéle similaire en se
basant sur la banque de données SNB (cf § 2.3.3) pour calculer un coefficient d’absorption moyen
sur chaque bande étroite. Cette derniére approximation se justifie par le fait qu’ils cherchaient a
étudier les effets du rayonnement pour des flammes de C'H 4/O,/C O, & haute pression (0.04 2 0.5
MPa).

Un autre modeéle radiatif, basé sur les méthodes aux ordonnées discrétes exprimées pour un pro-
bléme monodimensionnel, est utilisé en association avec cette méme banque de données (prise
en compte de la réabsorption). Une comparaison est faite entre I’expérience et les résultats numé-
riques obtenus en utilisant ces deux modéles (OTL et DOM) pour prendre en compte le couplage
rayonnement/cinétique chimique. Cette étude a confirmé la nécessité d’utiliser un modéle radiatif
prenant en compte la réabsorption. De la méme fagon, recemment, Wang et Niioka ont étudié I’ef-
fet du rayonnement sur la formation de N Oz en utilisant la méme approche comparative entre un

2Code calculant le coefficient d’absorption d’un mélange de gaz de combustion par un modéle a bandes étroites
proposé par Grosshandler en 1992 - http ://fire.nist.gov/bfrlpubs/fire93/PDF/f93096.pdf
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modéle OTL et DOM montrant ainsi les faiblesses du modele OTL a faible taux d’étirement. C’est
dans cette méme optique que nous avons cherché a mener notre etude paramétrique sur I’influence
du couplage combustion/rayonnement sur la structures des flammes C'H 4/ Air.

On doit aussi mentionner les travaux expérimentaux menés par Beltrame et al. [3] sur la formation
des suies et des NO dans des flammes de C'H ,/Air. Le modéle numérique proposé pour repré-
senter les flammes obtenues expérimentalement estime les pertes radiatives par un modele OTL
avec un modele de rayonnement des gaz WSGG (cf. 82.2.4.4) et un modéle de rayonnement des
suies. Cependant le phénomeéne de réabsorption du rayonnement est loin d’étre négligeable pour
des flammes contenant des suies. Dans ce domaine, Liu et al. ont montré un réel couplage entre
le rayonnement des suies et leurs cinétique de formation. En se comparant a des résultats expé-
rimentaux, ils ont utilisés un modéle OTL et un modéle DOM/SNB-ck pour réaliser un couplage
avec une cinétique chimique complexe (GRImech 3.0 2 avec 219 réactions) et une cinétique de
formation des suies. Les flammes de diffusion d’Ethyléne/Air modélisées, dans le cadre des de
leur travaux, sont des flammes a co-courant (& deux dimensions) [87] et des flammes a jets op-
posés [88]. Dans le cas de la flammes a co-courant, une comparaison des résultats obtenus avec
les deux différents modéles de rayonnement avec I’expérience montre une grande importance du
rayonnement des suies et I’influence de la réabsorption qui modifie la cinétique de formation. Au
contraire, dans le cas d’une flamme a jets opposés, c’est le rayonnement des gaz qui est le plus
prépondérant et joue un réle sur le profil de température et le processus de formation des suies.
L’apport du modeéle radiatif plus détaillé (DOM) est cependant moins marqué.

Au dela de cette propriété d’outil d’investigation, les flammes laminaires de diffusion a jets op-
posés constituent aussi un élément clef dans la modélisation de la combustion turbulente non-
prémélangée ou partiellement prémélangée faisant appel au concept de la théorie des flammelettes
[165, 124, 125, 126]. Dans ce concept, les flammes turbulentes (convectées et déformées par la
turbulence) sont représentees par une collection de flammes laminaires monodimensionnelles a
jets opposés que I’on identifie par leur taux de dissipation stoechiométrique local £ (proportionnel
au taux d’étirement)[30]. Ce concept a été utilisé par Yamashita et al. [167] pour prédire le taux de
production de NOx dans une flamme de diffusion turbulente a co-courant. Les résultats obtenus
dans ces travaux montrent bien que les phénomenes physiques liée a la une lamme laminaire ne
sont pas complétement différents de ceux d’un flamme turbulente prise a un instant ¢.

Nous avons porté une attention particuliere aux résultats des travaux de Laurendeau et al. [115,
132, 133] qui ont étudié expérimentalement les flammes de diffusion C'H ,/Air a jets opposés et
effectué des mesures de concentrations de NOx pour des flammes peu étirées par une technique
de LIF (Laser Induced Fluorescence). Parallelement, des calculs numériques ont été effectués

Shtt p: // ww. me. ber kel ey. edu/ gri _mech/
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avec deux schémas de cinétique chimique différents, I’un étant schéma cinétique GRImech 2.11
et I’autre obtenu en incluant une correction personnelle de I’auteur sur le schéma de formation des
NOz. La comparaison de leurs résultats expérimentaux avec les résultats numériques permet de
conclure que la prise en compte des pertes radiatives permet de corriger les profils de concentra-
tion obtenus. Dans leur derniere etude, les résultats numériques obtenus en utilisant une cinétique
chimique GRImech 3.0 et un modeéle radiatif de type OTL sont en accord avec les profils de NOx
mesurés par deux méthodes expérimentales différentes (LIF et LSF - Laser Satured Florescence)
[115].

Dans notre travail sur la lamme monodimensionelle, nous chercherons a évaluer, d’un point de
vue qualitatif, I’importance des transferts radiatifs a I’échelle de la flamme de diffusion a jets op-
posés. Dans cette étude nous avons d’abord effectué une recherche des paramétres ayant le plus
influence sur la température maximale atteinte au sein de la flamme puis mené observé leur in-
fluence sur le couplage combustion/rayonnement en utilisant un modéle OTL basé sur les données
SNB de Taine et Soufiani (cf. 2.3.3). Une seconde étude, plus ciblée sur I’impact du phéenomene de
réabsorption du rayonnement par la flamme, utilise le modele TLM (pour « Taylor-Like-Model »)
et le modele OTL sur quelques flammes type choisies a I’issue de la premiére étude.

3.1.2 Formulation monodimensionelle

La flamme de diffusion a jets opposés est obtenue a partir de deux injecteurs de section iden-
tique. Les forces mises en opposition par ces deux jets se rencontrent et imposent une stabilisation
de I’écoulement au « plan de stagnation »(lieu ou la vitesse axiale s’annule, cf. Fig.3.2) et un
étirement de la flamme qui résulte du gradient de vitesse. Le lieu de la lamme ne coincide pas
obligatoirement avec le plan de stagnation méme si il n’en est pas trés éloigné. Considérons la
symétrie de révolution du probleme pour écrire les équations en coordonnées cylindriques r et
x. Nous noterons v(u, v) la vitesse en un point de I’écoulement. On écrit alors les équations de
conservation (équations (2.20),(2.23),(2.24) et (2.28)) comme il suit :

;

o 19(rpu) | 9(pv) __
B_It) + T or + or 0

u u u (rtrr O(rTrz
p%+p(u%+v%)+%—lg— re) — )

r Or ox
Ov Ov Ov Op 1 0(r7er) O(rTea) __
po tolug +vg) + 55— e — T =0 (3.1)
aY;, aY,, dY;, 100rpYiVak,r)  0(pYeVag,r) G
P T olugr o)+ Tt - T —wk =0

pey L+ pe,(uih + vy — V. (AVT) + 35, pViVaroCop 2L + 8, — i = 0
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Injecteur de Fuel

Plan de stagnation X A

Front de flamme \ 0 /
—

Injecteur d’ Oxydant

FI1G. 3.2 — Flamme a jets opposés

ou Vyr. et Vi, sont respectivement les composantes axiale et radiale du vecteur vitesse de
diffusion vqx de I’espece k. On considere les hypothéses suivantes proposées par Warnatz et
al.[164] :

la temperature et les fractions massiques de toutes les especes en jeu ne sont fonction que de

la composante selon x ;
v est fonction de = uniquement;

u est proportionnel a r;

la solution est considérée selon I"axe des z.
On définit ;
— Ji, le gradient de pression tangentiel tel que :

_ _10p
Jt - ror

— (4, le gradient de vitesse tangentiel tel que :

_ _lou
Gt_ r Or

— 7, le tenseur des contraintes visqueuses défini dans I’expression (2.22).
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Le systeme d’équation devient alors :

(

% 4 2pG, + 220 —

pZet 4+ pGE + p2t + J — ;%(uaait) =0
p ol 4 G 40WG) 5,06 49,80y (3.2)
paYk + vaYk B B(pY%‘;d,k,w) =0

| pe, % + peudE — V.(AVT) +3 YV wCo S + 8 — & =0

Les conditions aux limites associées s’écrivent :

Coté Fuel :
u(L) =0
v(L) = vp
Yi(L) = YF
T(L) = Ty
Coté Air :
u(0) =0
v(0) = vo
Y, (0) =Y,
T(0) =To

Pour résoudre ces équations avec une chimie complexe, nous avons eu recours au code de com-
bustion OPPDIF de la suite logicielle CHEMKIN-I1I [101]. Ce code utilise un schéma de discreéti-
sation spatiale aux différences finies et un algorithme itératif fondée sur une méthode de Newton
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et incluant une procédure de maillage adaptatif. Cette méthode itérative de Newton converge plus
rapidement en partant d’une solution déja connue dans des conditions proches de celles de la
flamme que I’on souhaite modéliser. La résolution du systeme nécessite le calcul de la matrice
Jacobienne pour résoudre dans un premier temps le systéme constitué des quatre premiéres équa-
tions a profil de température fixé. Puis, a partir de cette premiére solution, I’équation de I’énergie
est résolue et la solution générale est calculée.

La description des cinétiques chimiques est contenue dans des tables fournissant les trois coef-
ficients d’Arrhenius (cf. 2.14). Le schéma que nous avons utilisé dans notre étude paramétrique est
GRImech 2.11. La librairie de routines de CHEMKIN-II permet d’interpréter ce genre de tables
de cinétiques chimiques et de calculer toutes les propriétés thermochimiques et les propriétés de
transport de I’écoulement.

3.1.3 La Richesse

La caractérisation d’une flamme de combustion se fait d’abord par I’identification des espéces
les plus significatives qui permet d’obtenir la flamme : le Fuel F contenu dans le combustible et
I’oxydant O contenu dans le comburant tels que :

viFuel + v,Oxydant — v Produits (3.3)

On définit alors la fraction massique steechiométrique :

E N V,O WO

pu— pumm— 3 -4
° ( YF ) stoech. V}; WF ( )

ou Wy et Wy sont respectivement les masses molaires de I’Oxydant et du Fuel.

Pour la flamme de diffusion les especes réactives sont amenées séparément par des injecteurs ou la

fraction massique et les débits ne sont pas obligatoirement identiques. Si on établit que le Fuel est
amené par I’injecteur 1 et que I’Oxydant arrive par I’injecteur 2, on peut alors définir la richesse
d’une flamme laminaire de diffusion a jets opposés en prenant en compte les fractions massiques

aux injecteurs respectifs de la fagon suivante :

d=s5— (3.5

Y1 r est la fraction massique de combustible a I’injecteur 1 et Y5 o la fraction massique d’oxydant
a I’injecteur 2. Les réactifs peuvent étre dilués : notamment, du coté de I’injecteur 2, I’oxydant
sera uniquement I’oxygene, représentant 21% de la composition du mélange Air. Cette définition
de la richesse caractérise la structure locale de la flamme a I’endroit ou les réactifs se rencontrent
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en restant équivalente a la richesse d’une flamme de prémélange. Il est donc plus judicieux de
s’appuyer sur cette définition, puisqu’on s’intéressera a des phénomeénes physiques intervenants
dans la région de la flamme (notamment la réabsorption du rayonnement par les produits de com-
bustion).

Une autre définition de la richesse pour un brileur a deux injecteurs prend en compte les débits
iy et mé des réactifs amenés par ces deux derniers. On définit ainsi la richesse globale @, :

-1
B, = 5L (3.6)
mo

qui peut s’écrire aussi, dans le cas ou les injecteurs de comburants ont la méme surface de section :

p1Y1,rpn
b, =5 —— 3.7
977 p2Yo 002 (3.7)

3.1.4 Le Taux d’étirement

Un autre parameétre permettant de caractériser les flammes de diffusion est le taux d’étirement,
gradient de la vitesse a la flamme : Deux flammes de méme richesse auront des structures iden-
tiques si elles ont le méme taux d’étirement. Exprimé en s—!, le taux d’étirement est inversement
proportionnel au temps de séjour des espéces de la réaction : un faible taux d’étirement traduit un
temps de présence des réactifs (au contact I’un de I’autre) plus long, entrainant une combustion
plus compléte.

Pour estimer, le taux d’étirement d’une flamme a partir des vitesses d’injection v  (coté Fuel) et
vo (coté Oxydant) et de la distance de séparation des injecteurs L, on peut faire I’hypothése d’une
densité constante dans I’écoulement et utiliser une formulation globale [129] :

A= Lol v vol (3.8)

Il existe un lien étroit entre le taux d’étirement A et le taux de dissipation scalaire £. Le taux de
dissipation scalaire se définit a partir du scalaire passif ¢ (ou fraction de mélange) en posant :

on €
¢ =20 (3.9)

ou D est un coefficient de diffusion défini pour toutes les especes.
Bish et al. [4] puis Warnatz et al. [164] définissent le taux d’étirement local de la fagcon suivante :

=27 76€ 263: erf! C_%( ++C7) ’
A=2 D<(<+_C_>>. p<2.< f [ e )) (3.10)
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En considérant a laflamme ¢ =0, " =1 et (- = —1 on obtient :
D
A= (VO = 1€ (3.11)

Cependant, cette formulation est relativement complexe et sied plus a une modélisation bidimen-
sionnelle de I’écoulement.

D’autres formulations ont été proposees dans la littérature, telle que celle de Chellian et al. [66],
utilisée aussi par Lee et al. [79] dans son etude sur les effets de I’addition de C'O- pour les flammes
de diffusion a jets opposés , et qui prend en compte la variation de la densité aux injecteurs :

j— 1/'O—F] (3.12)
—vVo Y po

Cette définition permet de se rapprocher des valeurs mesurees experimentalement mais ne per-

—2?]0
A=
L

met pas de paramétrer correctement les flammes. Pour les deux configurations différentes donnant
des flammes identiques proposées dans notre exemple ci-apres, nous avons calculé deux taux
d’étirement différents a partir de cette définition. De plus, elle ne nous permettrait pas d’estimer
I’influence de I’utilisation d’un modéle radiatif donné sur le taux d’étirement d’une flamme puis-
qu’elle s’appuie uniquement sur les conditions aux limites du probleme.

Le taux d’étirement caractérisant la fagon dont les réactifs alimentent la flamme, il est plus judi-
cieux d’essayer de I’estimer dans la zone de réaction, ou la température est maximale. Cependant,
les hautes températures qui regnent dans la région du front de flamme provoquent un échauffement
qui diminue localement la masse volumique du mélange par dilatation et augmente la vitesse de
I’écoulement (cf. Fig.3.3(a)). Le gradient de vitesse seul n’est donc pas représentatif de I’écoule-
ment et il faut prendre en compte les fortes variations de vitesse (cf. Fig.3.3(c)) au front de flamme
en considérant plutét le débit massique pv [31]. Pour un écoulement stationnaire, I’équation (2.20)
permet de considérer un debit massique constant. Nous considérons que la zone qui présente un
veritable intérét est celle s’étalant autour du point ou la température est maximale. C’est la que se
produisent les réactions les plus importantes et ou existe la majorité des espéces précisément que
le temps de séjour de certaines de ces especes est le plus déterminant. Enfin, c’est la que la dyna-
mique de la flamme subit les plus grandes modifications. Dans cette région, la définition suivante
du taux d’étirement sera utilisée pour caracteriser les flammes de notre étude :

A — F d(pv)]
p dx =T

(3.13)

Exemple :

Nous montrons, a la figure Fig.3.3, les profils de température, de concentrations d’especes, de
vitesse et de gradients de vitesse obtenus pour deux flammes de méme richesse (¢ = 15.63)
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FIG. 3.3 — Comparaison de deux flammes ayant le mémes taux d’étirement A * = 605!
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modélisées aux mémes taux d’étirement A* = 60s~!. Dans le premier cas, deux brileurs écartés
de Az = 2.2cm injectent les réactifs a v = 17.276cm.s~1. Dans le second cas, deux brileurs
écartés de Az = 5.64cm injectent les réactifs a v = 50cm.s~. On observe une parfaite similarité
des profils dans la région de la famme sur les profils de température, d’especes chimiques et de
vitesse. Les domaines de définition de ces deux configurations n’étant pas de méme dimension,
nous avons di recentrer la flamme obtenue avec un faible écartement des braleurs pour effectuer
la comparaison; ainsi le domaine de définition s’étend de z = 0.015 m a x = 0.045 m. Les autres
définitions de taux d’étirement donnent toutes deux valeurs différentes.

3.1.5 Indices d’émission

On s’intéresse aux émissions de deux polluants particuliérement dangereux pour la santé : le
CO etles NO,. Une nouvelle grandeur appelée « indice d’émission » permet de quantifier le taux
de polluants émis. Elle est définie comme le rapport de débit massique du polluantr,uyan: SUr le
débit massique de combustible consommeé m .

Ainsi, la concentration de C'O produit dans nos flammes de diffusion C'H ,/Air est convertie en
indice d’émission du CO (EICO) :

EICO = ¢ (3.14)

mcH4

De la méme fagon, un indice de NOx noté EINOX est défini. Par le terme NO,, nous désignons
I’ensemble des espéces chimiques NO et NOs.
Mmyo + Mo,

mMcH4

EINOz = (3.15)

Takeno et al. ont proposé une formulation permettant de calculer ces indices d’émission d’especes
[150], adaptée par Blevins et al. [5] aux donnees fournies par le code OPPDIF. C’est cette formu-
lation que nous utilisons, donnant pour une flamme laminaire a jets opposeés les indices d’émission
du CO etdes NO, par :

fOL ,0 YCO dx

EICO = -—
fo P Yomadr

(3.16)

L .
Yo + Yno,)d
EINOx — Jo  (Vivo + Vo, )d (3.17)

fOL /) YCH4dZL‘

ou [z = L] est la position de I’injecteur de combustible et [x = 0] celle de I’injecteur de d’oxy-
dant.
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Par convention, les débits de polluants sont exprimés en g.s~! et les débits de combustible en
kg.s~t.

Pour notre étude sur le rayonnement, nous introduisons aussi I’indice d’émission de vapeur d’eau
EIH,0 et I’indice d’émission de dioxyde de carbone EICO,. Nous les estimerons par une formu-

lation identique a celle utilisée pour définir I’indice d’émission CO :

fOL p YHzodl‘

EIH,0 = =
fo P Yopadz

(3.18)

L .
Yoo, d
EICO, = Jo P Yco,dr (3.19)

fOL /J YCH4dZL‘

3.2 Modéles de couplage Combustion/Rayonnement

Le rayonnement est un des modes de transfert thermique de la combustion et influence son
comportement. Par exemple, Chao [20] a montré que le rayonnement peut modifier significative-
ment la limite d’extinction d’une flamme étirée. A faible taux d’étirement, le temps de résidence
des espéces augmente et la flamme s’épaissit, entrainant ainsi une augmentation des pertes ra-
diatives. Ce mode de transfert peut alors devenir prépondérant par rapport a la conduction ou la
convection et controler I’extinction de la flamme : on parle d’extinction radiative.

Dans notre étude, nous nous sommes intéressés a I’influence du rayonnement sur une flamme a

jets opposés de C'H,/Air, a faible taux d’étirement. Dans ce cas, le rayonnement influence forte-
ment le profil de température [17, 57]. Cependant, I’augmentation de I’épaisseur de la flamme et
de sa composition en espéces rayonnantes (a savoir H,0O, CO, et CO qui sont les produits d’une
réaction C'H4/Air) résultent en un accroissement de I’épaisseur optique du milieu. Dagusé [34]
a montré que, dans de telles situations, méme pour des flammes de petite dimension comme celle
que nous étudions, I’hypothese de milieu optiquement mince s’avére inadaptee. L’objectif de ce
travail est d’observer I’impact du rayonnement sur ce type de flamme et d’en tirer des conclusions
pour la modélisation. Plus particuliérement, I’apport réel que représente la prise en compte du phé-
nomene de réabsorption de fagon plus ou moins détaillée est étudié. Deux modeles de transferts
radiatifs sont utilisés. Le premier et le plus simple est basé sur I’approximation de milieu optique-
ment mince (OTL) et le second utilise une nouvelle méthodologie basée sur les sensibilités que
nous avons développée au sein de I’équipe (le modele TLM).
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3.2.1 Couplage avec le Modéle OTL

La resolution des équations de I’aérothermochimie est faite par le code OPPDIF présenté au
83.1.2. Elle permet de déterminer les différents profils de température et concentrations d’es-
péces (réactifs et produits), permettant de calculer le profil du terme source radiatif S.. Ce terme
source est lui-méme introduit dans I’équation de I’énergie et permet une prise en compte directe
du rayonnement. Cette procédure de couplage directe est tres lourde si on utilise un modéle ra-
diatif détaillé, puisqu’il faut refaire un calcul radiatif complet a chaque itération [87, 88, 163]. Le
modeéle radiatif le plus simple permettant de calculer le rayonnement des flammes est le modele
OTL (cf. §2.2.2.4). 1l est basé sur I’estimation des échanges radiatifs avec les conditions limites
et sur I’hypothese que le phénomene de réabsorption est négligeable. Dans le cas de la flamme de
diffusion a jets opposés qui est confinée, il n’y pas de limite physique pour le systeme. D’un point
de vue radiatif, on considérera alors une paroi fictive prise a la température ambiante 7,, = 300 K.
Du point de vue spectral, le modele OTL utilisé est basé sur les données spectroscopiques du mo-
dele statistique a bandes étroites (données SNB) fournies par le laboratoire de I’'EM2C de I’ECP
de Paris (cf. 82.3.3). Le terme source radiatif s’écrit donc de la fagcon suivante :

Nbandes

Sp = Fu[dnLy,(T(7)) — 7Lyu(T,)] (3.20)

n=1

3.2.2 Couplage avec la méthode Monte Carlo : I’approche TLM

Nous appellerons « modele TLM » (pour Taylor Like Model) le modéle de couplage avec la
combustion basé sur un développement de Taylor au premier ordre des termes sources radiatifs. Il
est basé sur la connaissance du profil du terme source et la matrice de sensibilité de ce terme source
aux parametres que sont la température et les différentes concentrations d’espéces. Pour calculer
le terme source radiatif, nous nous basons sur la formulation en Puissances Nettes Echangées
(2.62) présentée au §2.2.2.3. La méthode Monte Carlo nous permet de calculer les puissances
nettes échangées (PNE) par rayonnement entre paires d’éléments du systéme ((2.63) et (2.64))
[38, 122]. Le modele spectral s’appuie sur la méme bangue de données SNB que celle utilisé
par le modéle OTL afin que les résultats obtenus a partir des différents modéles radiatifs soient
comparables. La particularité de I’approche TLM que nous proposons est d’utiliser un avantage
que presente la methode Monte Carlo qui est de permettre le calcul du terme source radiatif et de
la matrice de sensibilité de fagon simultanée.

Pour un élément de volume V;, la formulation en Puissances Nettes Echangées du terme source
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radiatif .S, peut étre simplifiée de la facon suivante :

Nzone

=Y e (3.21)
j=1

ou p;_.; représente le terme de puissance radiative nette échangée entre le volume V; et un autre
élément j (surface ou volume). Si nous notons 67, = Z; — Z,QJ) les petites variations du
parameétre Z ; d’un élément j du systéme, nous pouvons calculer, par un développement limité a
I’ordre 1, un nouveau terme de PNE ¢, _; a partir du terme initial ¢;_,;° comme il suit :

Nparametres 6
7/—7_]

Pini = Ping’ + Z o7 (i = i) (3.22)
J

A partir des équations (3.21) et (3.22), nous pouvons calculer le nouveau terme source .S, associé
au volume V; tel que :

Nzone Nparamétres

0pi_.;
Z[% DI (Zes = 24,)] (3.23)
Soit :
Nyone Nparamétres 8g0
S (Vi) = S (V)" + ) Z aZZJ (Zi;— 22.) (3.24)
Jj=1 =

Cela permet de calculer le terme source radiatif, lors des différentes itérations amenant le code
de combustion a la solution, sans avoir a refaire un calcul de transfert radiatif complet a chaque
itération. Cette approche implique I’hypothese de linéarité puisqu’on s’arréte a I’ordre 1 dans le
développement de Taylor. Pour vérifier la validité de cette hypothese, un calcul radiatif de contrdle
est fait sur la solution convergée puis comparé au champ du terme source obtenu par le modele
TLM. La barre d’erreur associée au calcul Monte Carlo sert de critere de validité. Cette méthodo-
logie de couplage est résumé par I’algorithme représente a la figure Fig.3.4. Au cours du calcul de
combustion, il n’y a pas de calcul complet du terme source radiatif, ce qui en fait une procédure
simple et rapide et précise.

Tout probleme de non linéarité du terme source nécessiterait une extension du développement de
Taylor au second ordre. Cette extension de la méthode est envisagée comme une suite possible
a ce travail. En effet, pour de trés faibles taux d’étirement, il s’est avéré que le modele linéaire
était insuffisant et ne permettait pas d’obtenir une solution convergée a partir d’une solution déja
obtenue avec OTL. Il a été nécessaire de passer deux a trois fois par la boucle de correction montré
alaFig.3.4.
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Solution initiale

l

Code de
Combustion/Rayonnement :

Modéle OTL
Code de calcul

des transferts radiatifs

par méthode Monte Carlo

Flamme convergée
sans prise en compte
de la réabsorption

Terme source radiatif
+
Matrice de sensibilité
A

|

|
Code de

|

|

(Phase de validation )
(Phase de validation )

(correction
si nécessaire )

Combustion/Rayonnement :

Modeéle TLM

Terme source radiatif
+

Matrice de sensibilité

Flamme convergée
avec prise en compte
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3.3 Etude paramétrique
3.3.1 Détermination des parameétres influents

L’objectif de I’étude est de déterminer I’influence de plusieurs parameétres physiques sur la
structure de la flamme de diffusion a jets opposés. Nous avons retenu cing parametres importants
auxquels un expérimentateur peut avoir accés indépendamment les un des autres : la vitesse des
jets aux deux injecteurs, la température a chacun des injecteurs (T, et T;-), la richesse de la
flamme & (cf. 3.5) et I’écartement L des brdleurs. Nous avons calculé la température maximale
et les concentrations d’espéces rayonnantes produites sur le profil axial de cette flamme.

Nous exposons d’abord une campagne préalable qui nous a permis de réduire le nombre de para-
meétres de notre étude. Nous définirons par le terme « adiabatique » (= sans pertes thermiques) les
résultats obtenus en faisant abstraction du rayonnement dans I’équation de I’énergie. Puisque les
hautes températures favorisent la formation des NOzx et influencent sur la transformation du CO

en C'O2, nous avons étudié mené cette premiére partie de I’étude en ne considérant que I’influence

des cinq parameétres cités sur la température maximale. Nous avons vu (cf. 8 ) que la structure de
la flamme était contrdlée par le taux d’étirement. Nous observerons donc I’évolution de 7,,,.. €n
fonction du taux d’étirement A* pour chacune des series de calculs.

3.3.1.1 Influence de la température des jets (cf. Fig.3.5 et Fig.3.6) :

La flamme considérée ici est une flamme riche (& = 15.32). L’augmentation de la température
d’un des jets d’entrées entraine un apport d’énergie initial et une modification des conditions
limites qui ont pour conséquence d’augmenter la température maximale de la flamme.

Nous avons fait varié la tempeérature des jets d’Air de 300 K a 1200 K. Par la suite, nous avons
effectué la méme opération sur la température du jets de C'H,4. En préchauffant I’un des réactifs, le
profil de masse volumique et donc le profil de vitesse se trouvent modifiés. Les vitesses d’injection
étant fixées, la diminution de p quand la température augmente, a pression constante, entraine
une baisse du débit massique du comburant préchauffé. Nous avons pu observer (Fig.3.5) que la
diminution du débit de I’oxydant ou du fuel modifie la dynamique de I’écoulement et abaisse le
taux d’étirement local sur le lieu de la flamme. Cependant la température maximale de la flamme
augmente puisque le gain en enthalpie compense largement la perte qu’entraine la baisse du débit
massique. Ceci est confirmé par le fait que le préchauffage de I’air a beaucoup plus d’influence
sur la flamme que le préchauffage du C'H 4. Bien que la chaleur massique ¢, ¢y, Soit plus grande
que celle de I’air ¢, 4, a la steechiométrie, c’est a dire sur le lieu de la flamme, la masse d’air
étant plus importante que celle du méthane (le rapport est de I’ordre de 16.7), le préchauffage
de I’air amene plus d’énergie enthalpique que celui du combustible. Ceci est en accord avec les
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F1G. 3.5 — Influence des températures des jets sur le taux d’étirement

résultats obtenus par Chan en 1998 [18]. Nous augmenterons donc plus facilement la température
maximale des flammes en préchauffant le jet d’air et c’est ce parameétre qui a été retenu pour tester
I’impact d’une température de flamme élevée sur le rayonnement.

3.3.1.2 Influence de la vitesse des jets et de I’écartement des injecteurs (cf. Fig.3.7) :

Ce parametre a été testé pour une flamme ayant la méme richesse que celle étudiée au para-
graphe précédent (& = 15.32), la température des deux jets étant fixée a 300 K. La formulation
globale du taux d’étirement (3.8) montre clairement qu’une diminution des vitesses de jets revient
a écarter les injecteurs (écartement noté Ax a la Fig.3.7). Méme si le systeme est différent d’un
point de vue géomeétrique, la température maximale 7., n’est fonction que du taux d’étirement
A* (cf. 8 3.1.4). Les résultats présentés a la Fig.3.7 ont été obtenus a partir d’une flamme ayant des
injecteurs écartés de 2.2 cm et des vitesses de jets de 20 cm.s~!, en faisant varier soit les vitesses
d’injection ou soit I’écartement des injecteurs. Les courbes en trait plein représentent I’évolution
de la température en fonction du taux d’étirement lorsque I’on fait varier la distance entre les in-
jecteurs. Les cercles présentent I’évolution obtenue en abaissant les vitesses d’injection.

Les deux parameétres (vitesse d’injection et écartement des injecteurs) ont bien la méme in-
fluence sur la structure de la flamme. Cependant la diminution des vitesses entrainent un épaissis-
sement de la flamme tel que les limites du domaine sont rapidement atteintes (la flamme touche
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les injecteurs. Nous nous exposons alors a une forte influence des conditions limites, faussant le

comportement de la flamme (cf. Fig.3.7). Nous nous placerons donc dans une configuration ou
I’écart entre les braleurs est suffisamment grand (10 cm) pour diminuer le taux d’étirement sans
interférer avec les conditions limites.

3.3.1.3 Influence de la richesse :

La richesse d’une flamme modifie directement la structure de la flamme. En particulier, elle
influence le domaine d’existence de la flamme en fonction du taux d’étirement. En effet, la limite
d’extinction par blow-off (lorsque le temps de résidence des especes chimiques n’est pas suffisant
pour qu’elles puissent briler) décroit avec la richesse. De méme, I’énergie dégagee par la flamme
est moindre lorsque la richesse diminue et les proportions augmentées de gaz inerte non préchauffé
en consomment une partie significative. Nous avons effectué des calculs pour différents cas, a vi-
tesses de jets fixés, en faisant varier la richesse de la flamme de ® ~ 15 a ® = 1, en utilisant le
modele adiabatique et le modele OTL. Pour cela, nous avons abaissé la fraction massique de C H,
injecté Y7 p, la température des jets étant fixée a 300 K. Nous avons pu observer une croissance
puis décroissance du taux d’étirement (sur des plages différentes) lorsque la richesse varie. Ceci
est lié au fait que la variation de la masse volumique est prise en compte dans notre définition de
A. En réalité, la variation de la richesse n’a que trés peu d’influence sur le taux d’étirement. Tou-
tefois, nous avons bien pu vérifié que la température 7., ne peut étre liée a un taux d’étirement
A* unique que si la richesse est fixée. Ce parametre doit donc étre défini dés le départ pour mener
une étude parametrique.

L’étude de I’influence des différents parametres permet finalement de restreindre le champs
d’étude a trois parameétres intéressants : les vitesses d’injections, la température du jet d’air et la
richesse. Dans la section qui suit, nous observerons I’influence de la richesse en étudiant deux
types de flammes : riches (& ~ 15) et steechiométriques (¢ ~ 1).

3.3.2 Influence du modeéle radiatif
3.3.2.1 ROle des pertes radiatives

La prise en compte des pertes radiatives provoque un abaissement de la température et influe
sur les processus convecto-diffusifs par un accroissement des débits alimentant la lamme, donc
du taux d’étirement. Nous nous attendons aussi a ce que la prise en compte du phénomeéne de
réabsorption du rayonnement modifie la structure dynamique de la flamme. Il apparait que le bon
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paramétre de définition de la flamme dans le cadre d’une comparaison des différents modéles est
le taux d’étirement tel que nous I’avons défini (cf. (3.13)) et la richesse, ceci étant confirmé par
les résultats de I’étude préalable faite dans la section précédente.

Nous nous sommes placés dans le cas d’une configuration ou les injecteurs sont séparés de 10 cm
afin de balayer une plage de taux d’étirement suffisamment grande sans étre confronté au pro-
bléme que nous poserait une flamme trop épaisse a faible taux d’étirement. Ayant pu observer que
la richesse modifiait grandement la température maximale de la flamme et sachant que le taux de
formation de NOx est trés influencé par les fortes températures, nous avons effectué notre étude
paramétrique a deux richesses différentes : ® ~ 1. et & = 15.32.

Nous representons sur les Fig.3.8 et Fig.3.9 les résultats de I’étude paramétrique menée sur la
flamme de riche et sur les figures Fig.3.10 Fig.3.11 les résultats obtenus pour la flamme stoe-
chiométrique. Puisque la température du jet d’air modifie notablement la température maximale
correspondante, nous avons effectué les calculs pour différentes valeurs de ce parametre. Pour la
flamme riche, nous avons étudié quatre valeurs de T 4, : 300 K, 500 K, 700 K et 900 K. Dans
le cas de la flamme steechiométrique, nous avons été confronté au probléme d’inexistence de la
flamme en I’absence de préchauffage, et da restreindre I’étude a trois températures : 400 K, 550 K
et 900 K. L’unique paramétre que nous modifions pour faire varier le taux d’étirement est la vi-
tesse des jets. Cette vitesse est toujours prise identique aux deux injecteurs (v g = v2,0).

Dans la premiere partie de I’étude, I’utilisation du modéle OTL suffit a rendre compte de la né-
cessité de la prise en compte des phénomeénes radiatifs et permet de comprendre le r6le des trans-
ferts radiatifs au sein d’une flamme. Les tendances que nous avons pu observer en comparant les
flammes « adiabatiques » aux flammes calculées en utilisant le modéle OTL sont semblables pour
les deux richesses de flamme considérees.

La figure Fig.3.8 montre les résultats obtenus pour la flamme riche a différentes températures
du jet d’air. Nous observons sur la Fig.3.8(d) que la différence entre le modéle adiabatique et le
modeéle OTL s’accentue vers les faibles taux d’étirement alors gqu’elle est quasiment nulle vers
des taux d’étirement élevé. Ceci est essentiellement d0 a la forte augmentation de la puissance
chimique totale (définie comme I’intégrale du terme source chimique pour I’énergie au travers de
la flamme) avec le taux d’étirement, alors que la puissance radiative (définie comme I’intégrale
du terme source radiatif au travers de la flamme) diminue du fait de la réduction de I’épaisseur
de flamme associée (Fig.3.8(a) et Fig.3.8(b)). Ainsi, la contribution du transfert radiatif au bilan
énergétique de la flamme devient importante aux faibles taux d’étirement (Fig.3.8(c), rapport ex-
primé en % des puissances chimique et radiative) : jusqu’a 80% pour une flamme a 7" 4;. = 900 K.
On parle d’extinction par rayonnement a faible taux d’étirement puisque I’extinction de la famme
est alors due a une température de flamme qui diminue par pertes radiatives. Nous n’avons pas
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observé d’influence notable du rayonnement sur la puissance chimique degagée.

La Fig.3.9 montre les indices d’émission obtenus. Quand le taux d’étirement baisse, les concen-
trations d’especes rayonnantes sont mal estimées par le modele adiabatique . La perte d’énergie
par rayonnement qui entraine une baisse de température de la flamme et du taux de production
de certaines especes chimiques. De plus, dans le cas des flammes riches, les fortes temperatures
atteintes par le modéle adiabatique entrainent une surestimation du taux de CO émis aux dépend
du taux de C'O,. Aux faibles taux d’étirement, les concentrations de vapeur d’eau et de dioxyde
de carbone augmentent, impliquant un accroissement de la puissance radiative totale dégagée par
les flammes obtenues par modele OTL.

La figure Fig.3.10 montre les résultats obtenus pour la flamme steechiométrique a différentes tem-
pératures du jet d’air. Nous observons les méme comportements que dans le cas de la lamme
riche mais dans des proportions nettement inférieures. Si le préchauffage de I’air n’a aucun ef-
fet sur la puissance chimique dégagée, il joue un role trés important au niveau radiatif lorsque le
taux d’étirement diminue (Fig.3.10(c)). La contribution du rayonnement au bilan énergeétique est
moins importante que dans le cas de flamme riche (Fig.3.10(d)) bien que la puissance chimique
totale dégagée n’est pas réduite dans les mémes proportions. La puissance radiative totale est
moindre. Ceci est d0 au fait que les ordres de grandeurs des températures maximales des flammes
steechiométriques sont nettement inférieures a ceux des flammes riches. Les flammes riches sont

nettement plus rayonnantes que les flammes stoechiométriques.

La figure Fig.3.11 montre les indices d’émission obtenus pour la lamme steechiométrique. 1l est
a remarquer que les indices d’émissions sont obtenus par rapport au débit massique de C' H,, ce
qui a pour effet de fournir des indices d’émissions bien supérieurs a ceux obtenus pour la flamme
riche. Les températures maximales atteintes étant inférieures a1800 K, les concentrations de CO,
sont trés influencées (plus de 50% d’écart a faible taux d’étirement) alors que I’impact sur le taux
de C'O émis est beaucoup moins marqué que dans le cas de la flamme riche.

En comparant les résultats obtenus avec un modele adiabatique a ceux obtenu avec le modéle
OTL, nous avons pu observer des écarts conséquents entre les tempeératures maximales de ces
flammes, ceci étant renforcé dans les situations de préchauffage de I’air : jusqu’a 900 K d’erreur
possible sur la Fig.3.8(d)). Il en découle que les écarts observés sur les indices d’émissions de
NO, deviennent conséquents.

Nous observons donc sur ces calculs menés avec un modele de rayonnement simple que les trans-
ferts radiatifs ont un fort impact sur la structure des flammes tant au niveau chimique que thermo-
dynamique.
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3.3.2.2 Role du phénomeéne de réabsorption du rayonnement

Lorsque le taux d’étirement diminue, I’épaisseur des flammes augmente et les concentrations
en espéces rayonnantes sont plus importantes. Ceci signifie que I’épaisseur optique des flammes
peu étirées est beaucoup plus importante. Nous avons cherché a modéliser les effets du phénoméne
de réabsorption du rayonnement au sein de la flamme en comparant les profils de flamme obtenus
par un modele TLM a ceux obtenus par le modele OTL pour des flammes riches, ayant un taux
d’étirement faible de A ~ 5.0 st etde A ~ 10.0 s~1. A ce taux d’étirement, les concentrations
des espéces polluantes C'O et NO, semblent étre maximales (cf. Fig.3.9(c) et Fig.3.9(a)). Les
calculs ont été meneés pour deux temperatures de jets extrémes (300 K et 900 K). Les profils de so-
lutions sont regroupés dans les figures Fig.3.12, pour les deux flammes obtenues a A ~ 5.0 s, et
Fig.3.13 pour A ~ 10.0 s1. Sur ces quatre configurations, I’écart sur les profils de concentration
est le plus marqué pour le cas présenté a la figure Fig.5.13(c). Les faibles écarts en température
observés sont dls a la modeélisation du phénomene de réabsorption par le modele TLM qui fait que
le rayonnement joue son rdle de transport d’eénergie des zones les plus chaudes vers les zones les
plus froides. Cependant la correction apportée sur I’évaluation de la température maximale d’une
flamme et des espéces rayonnantes par la méthode TLM reste négligeable. Il y a a peine 30 K
d’écart entre les maxima de température atteints dans le cas de la flamme a A ~ 10.0 s ~! avec
Tai» = 900 K. Bien que le schéma cinétique utilisé (GRImech 2.11) ne soit pas adapté a une esti-
mation précise des NO,, ces faibles écarts en température montre que le rayonnement thermique
joue un réle important sur la production des NO,, et des corrections importantes sont apportées
par le modeéle TLM. Un calcul a tres faible taux d’étirement (A* = 2.0s™1 a la Fig.3.14) a pu
étre réalisé pour une flamme riche a 7" 4;, = 300 K, montrant un écart tres important de I’ordre
de 50% sur le profil des NO, lié a un écart de plus de 50 K sur la température maximale. Méme
dans un taux d’étirement aussi faible, I’impact sur la prédictions des espéces rayonnantes reste
négligeables.

3.3.3 Discussion

En conclusion seules les flammes riches trés peu étirées et ayant une température maximale
élevée sont sensibles au phénomeéne de réabsorption. Les répercussions sur les profils d’especes
rayonnantes restent tout de méme négligeables (de I’ordre de quelques pourcents dans le pire des
cas). Ceci est d( aux petites dimensions du probléme qui ne permettent pas le développement du
phénoméne d’absorption. L’utilisation d’un modéle OTL se justifie donc bien pour des flammes
de faible richesse et/ou a fort taux d’étirement.
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Rappelons que Ravikrishna et Laurendeau [115, 132, 133] ont mis en évidence le fort impact des
modeles de cinétique chimique des especes mineures. En modifiant le schéma de cinétique de for-
mation des NO,, ils ont obtenu un impact de la réabsorption sur les profils de ces polluants bien
plus important que ce que nous avons pu obtenir. Par la suite, ces auteurs ont effectué des calculs
avec une version plus récente de GRImech et ont retrouvé les résultats expérimentaux. Cependant
cette derniere étude ne prenait pas en compte le phénoméne de réabsorption, et la question de
la validité du schéma reste posée. Ceci montre qu’il y a un réel besoin de disposer d’un schéma
de cinétique précis et validé (en prenant en compte tout les parametres nécessaires), pour espérer
quantifier précisement I’impact du rayonnement sur ce type d’espéces chimiques.

Enfin nous n’avons pas traité ici le probleme des suies, mais il est connu que ces particules solides
sont fortement influencées par le rayonnement en émission et en absorption. Nous verrons égale-

ment au chapitre 5 comment le phénomeéne d’absorption agit sur la combustion dans des systemes
de plus grande taille.



Chapitre 4

Développement d’un code radiatif adapté
aux geometries complexes

4.1 Introduction

Un de nos principaux objectifs est de produire un outil de calcul qui permette d’estimer les
termes sources radiatifs et les flux aux parois a partir des champs de concentration et de tempéra-
ture fournis par un code de combustion LES sur des configurations a géométrie complexe. Ce type
de géométrie implique I’utilisation de maillage non structuré, ce qui complique le calcul radiatif.
L’objectif a long terme est de prendre en compte de maniére couplée les transferts radiatifs dans
de tels codes. Pour des raisons de codt en temps de calcul, il n’est pas possible a I’heure actuelle
d’envisager de coupler directement la combustion et le rayonnement détaillé. Nous avons donc
cherché un compromis entre précision et colt en temps de calcul répondant aux questions liées
a la modélisation des transferts radiatifs dans les géométries complexes en association avec des
modeles spectraux. Ainsi notre choix s’est porté sur la Méthode aux Ordonneées Discretes (DOM).
Notre principal souci a donc été de I’adapter aux maillages non structurés sans rendre sa formu-
lation trop complexe et colteuse en moyens informatiques. Nous exposerons dans ce chapitre la
méthodologie liée aux DOM, qui nous a permis de developper le code de calcul DOMASIUM
(Discrete Ordinates Method Applied with Spectral Integration on Unstructured Meshes). Nous
aborderons d’abord la fagon dont on traite la dépendance angulaire du rayonnement, puis nous
étudierons différents schémas de discrétisation spatiale permettant de résoudre I’'ETR. Nous ex-
pliquerons également le modele que nous avons choisi pour prendre en compte le rayonnement
des gaz. Nous discuterons finalement des résultats obtenus sur des configurations académiques a
I’issu de tests visant la validation du code sur le plan angulaire, spatial et enfin spectral.
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4.2 La Méthode aux Ordonneées discretes (DOM)

Dans le domaine de la modélisation numérique de la dynamique des fluides (CFD), le couplage
entre le transfert radiatif et la combustion se situe au niveau de la résolution de I’équation de I’éner-
gie (cf. (2.28) et (2.30)). Le terme source de chaleur rayonnée, .S,., est évalué en prenant en compte
les profils de température et de concentrations des espéces rayonnantes, obtenus a partir de la réso-
lution des equations de I’aérothermochimie. Parmi toutes les méthodes numeriques développées
pour calculer les transferts de chaleur par rayonnement, la Méthode aux Ordonnées Discrétes
(DOM) et la Méthode des Volumes Finis (FVM) offrent un trés bon compromis entre précision et
colt en temps de calculs. Ces deux méthodes ont été largement utilisées durant ces vingt dernieres
annees pour résoudre les problémes de rayonnement thermique, dans des géométries tridimen-
sionnelles, établis en coordonnées cartésiennes ou cylindriques sur des maillages structurés. En
particuliers, les DOM, décrites par Chandrasekar en 1950 [19], ont été I’objet d’études plus appro-
fondies menées par Lathrop et Carlson dans les années 60-70 [10], puis par Truelove, Fiveland et
Jamaluddin dans les années 80 [54, 55, 56, 71, 159]. Des progres notables ont été réalisés, durant
la derniére décennie, visant la réduction de I’effet de rayon (« ray effect ») et de la diffusion numé-
rique (« false scattering »). Des quadratures angulaires mieux adaptées et des méthodes permettant
I’extension de la méthode aux géometries complexes ont été proposées [16, 148, 153, 154]. Nous
pouvons aussi citer ici les récents travaux de Li, Flamant et Lu proposant de nouvelles approches
pour traiter d’une part les problémes lié a I’effet de rayon dans le cas de sources radiatives locali-
sés [83, 84] et d’autre les problémes liés a la diffusion numérique provoquées par la discontinuité
des champs de luminances discrets [82].

Néanmoins, le couplage entre le rayonnement et d’autres phénomenes physiques, tels que la com-
bustion et la dynamique des fluides a haute température requiert que la solution de I’équation de

transfert radiatif soit obtenue sur le méme maillage que celui employé pour résoudre les équations
de conservation. Les maillages non structurés sont souvent utilisés en CFD pour leur flexibilité

géométrique. Au cours de la derniére décennie, de nombreux travaux ont été menés dans ce sens
afin de pouvoir appliquer la FVM, en trois dimensions, sur des maillages structurés non orthogo-
naux et des maillages non structurés [15, 97, 109, 114, 131]. De méme, des méthodes permettant
I’extension des DOM aux géométries complexes utilisant de maillages non structurés ont été pro-
posées : Sakami et al. [137, 138, 139, 140] ont développé une méthode de discrétisation spatiale
précise prenant en compte le phénomeéne d’extinction exponentielle du rayonnement et que nous
appelons « schéma exponentiel ». Cependant, celle-ci nécessite la mise en ceuvre de procédures de
prétraitement lourdes. Liu et al. [97] ont utilisé dans leurs travaux le schéma « Step » équivalent
du schéma « Upwind » en CFD, et Strohle et al. [148] ont proposé les schémas d’interpolation en
flux moyennés (Mean Flux Schemes). Raithby [130] a montré que les différences entre les DOM
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et les FVM ne tiennent réellement qu’en la fagcon de discrétiser le probleme sur le plan angulaire.
Il en découle que de nombreuses avanceées faites sur le plan de la discrétisation spatiale pour I’'une
de ces deux méthodes sont applicables pour I’autre. La Méthode d’Interpolation aux Ordonnées
Discretes (DOIM) est un autre type de discrétisation spatiale des DOM, ne reposant plus sur une
integration de I’équation des transferts radiatifs sur des volumes de contréle, comme le veulent les
DOM classiques ou la méthode FVM, mais plutét sur I”intégration de I’équation le long d’une tra-
jectoire suivant une direction discréte. Cette méthode a été introduite par Seo et al. en 1998 [142],
puis étendue a des maillages non structurés par Cha et al. en 2000 [13]. Récemment, Koo et al.
[75] ont pu comparer trois méthodes appliquees a des geométries bidimensionnelles curvilignes :
la méthode DOIM précitée, la méthode aux ordonnées discrétes en coordonnées curvilignes et
la DOM-FV-RT (Discrete Ordinates Method associated to the Finite Volume and Ray Tracing).
Cette derniére méthode est une reformulation dans un systéme a deux dimensions du schéma ex-
ponentiel proposeé par Sakami.

Il n’existe pas dans la littérature de d’exemple de travaux associant les DOM en non structuré et et
des modeéles spectraux détaillés pour le rayonnement des gaz. Nous avons donc développé un code
de calcul effectuant la modélisation des transferts radiatifs en utilisant la DOM et en prenant en
compte la complexité des spectres de rayonnement thermique des gaz de combustion (CO,, H,O
et C'O). Le code a été écrit spécialement pour des maillages utilisant des cellules tétraédriques
en essayant d’éviter toute formulation compliquée pouvant étre colteuse en temps de calcul. Les
performances des différentes quadrature angulaire et des différents schémas spatiaux disponibles
ont été etudiées et comparés dans des géométries simples. La restriction du code a des cellules
tétraédriques se justifie par le fait que le schéma exponentiel qui nous a servi de référence n’est
pas, en I’état de nos connaissances actuelles, adaptable a des cellules d’un autre type. Toutefois,
nous soulignons déja que les deux autres schémas spatiaux développés dans le code ne constituent
pas un obstacle pour étendre la méthode aux ordonnées discrétes a des maillages « hybrides ».

4.3 Principe

Notre objectif étant de définir le terme source radiatif S., nous cherchons a résoudre I’équation
(2.58). Cela nécessite la détermination de la luminance L, (7, 3).
Considérons donc un milieu absorbant, émettant et diffusant. La variation de la luminance le long
d’un axe de propagation est donnée par les relations (2.51) et (2.52), en fonction de la luminance
noire monochromatique Ly, (7), du coefficient d’extinction monochromatique [, et de I’albédo
de diffusion correspondant w, . Soit :

dL, (7, 5)

ds = ﬁzx(Sl/<F7 g) - LV<F7 5‘)) (41)
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avec

-
/

Sy (7,8) = (1 — wy) Ly (7) +w,,4i/ L,(7,s)®(s, §)dSY (4.2)
™ 4

Les conditions aux limites, qui sont celles de surfaces diffuses, sont obtenues a partir des rela-
tions (2.73) et (2.76) :
LT 3) = €L (7o) + 22 / Lo (Fo, 8)[7.5|dY = €Ly (7) + 22 H,, (4.3)
T Ji.s<o T
Nous résumerons la méthode aux ordonnées discreétes par les deux approximations suivantes :
— Toute intégration faite sur I’espace des angles solides 47 est remplacée par une quadrature
angulaire numérique représentée par un nombre n de directions orientées selon les vecteurs
unitaires s; (ou ordonnees discréetes) sur lesquelles I’équation de transfert radiatif est résolue.
— la résolution spatiale de I’équation pour une direction donnée est faite sur un maillage par
une méthode de type volumes finis.
Nous aborderons I’aspect angulaire en premier lieu. Nous exposerons ensuite différents sché-
mas de dérivation spatiale utilisés pour des maillages cartésiens structurés et non-structurés.

4.4 Discrétisation angulaire

L’application d’une quadrature angulaire permet de remplacer toute intégrale sur I’espace des
angles solides par une sommation pondérée sur n directions discrétes. On considére que pour toute
fonction f(3), on peut faire I’approximation suivante :

| a0 =Y ) 4

ou les directions s; doivent étre choisies judicieusement et les poids w; correspondants correcte-
ment définis. Chaque direction discréte § peut s’écrire dans le repére cartésien R(O, i7, k) sous
la forme :

S = pii +mij + &k (4.5)

ou u;, n; et & sont les cosinus directeurs de s; ou projections de celui-ci sur les axes du repere
cartésien. A chaque direction s; est associé un poids w; correspondant a un angle solide défini
autour de cette direction. Ainsi, pour la fonction unité f(3) = 1, I’équation (4.4) se raméne & la
principale condition nécessaire sur les poids :

i w; = 4m (4.6)
i=1
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Les poids w; sont des coefficients réels positifs et non nuls. En effet, la luminance intégree sur
un angle solide d2; autour de la direction s; ne peut en aucun cas étre négative. L’ensemble de
directions s; et de poids w; constitue le set de quadrature.

Les vecteurs directions discretes s; étant des vecteurs unitaires :

ot & =1 (4.7)

En remplagant dans I’équation (4.4) la fonction f(3) de fagon adéquate, on peut récrire les
équations (2.74),(2.75) et (2.76) comme il suit :

G, (7) = / L, (7, 8)dQ ~ ) " wiL,(F, 5) (4.8)
arm i=1
(7 :/ 7, 8).5dS) ~ w;L, (7, 5;).§ (4.9
(™) . v(T,5). Z
Hy(mz/ (P AL = S Wiy (7o ) | 7.5 (4.10)
dm 7.8;<0

Pour des parois diffuses, la discrétisation des conditions limites (cf. (4.3)) est directement obtenue
en posant :

Ly(F) = €Ly () + > wil, (7, 5) | .5 | (4.12)

La divergence du flux radiatif donne S',.,, :
Sy =V.Q,, =r,(Arly, —G,) (4.12)
et le flux radiatif net @) ., , a la paroi s’obtient en posant :

Qu,v = 67T[b,u(ﬁu) - Hu(ﬁu) (413)

Il apparait donc que seule la détermination de L, (7, 5;) aux centres des mailles du systéme et
de L, (7, S;) aux centres des faces coincidant avec les parois, pour chaque direction discréte s;
imposeée, est nécessaire pour calculer nos deux grandeurs physiques importantes : G, permettant
de définir le terme source radiatif S, et H, représentant le flux radiatif incident aux parois.
Une telle méthode d’approximation de I’intégration angulaire nécessite, comme premiére optimi-
sation, la recherche d’ordonnées discrétes liées aux directions permettant une bonne couverture de
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a2 |

al j

FI1G. 4.1 — Quadrature angulaire S,

I’espace par une quadrature numérique précise et fiable. Pour cela, différentes quadratures angu-
laires, que I’on rencontre dans la littérature, peuvent étre utilisées : notamment les quadratures .Sy
[9, 76, 77, 111, 153], les quadratures T’y [153, 154] et les quadratures de type polaire/azimutale
plus typique des FVM [97, 114, 131]. Une récente étude menées par Koch et Becker comparent
I’efficacité de plusieurs types de quadratures angulaires [73]. Nous avons choisi d’intégrer les trois
types de quadrature précités : les quadratures S étant les plus communément utilisées et les deux
autres présentant I’avantage de pouvoir étre formulées analytiquement a tout ordre V. Nous allons
donc définir ces trois principales stratégies de quadrature dans les sections qui suivent.

4.41 Quadrature Sy

Une quadrature Sy est un set de n = N(V + 2) directions discretes s;. Carlson et Lathrop
dans les années 60 [9], puis Fiveland [52, 53], ont définis certaines lois permettant d’accéder
a des sets de quadrature satisfaisants qui répondent a certaines propriétés de symétrie. Les sets
de quadrature obtenus sont invariants par toute rotation de 90° autour d’un des axes du repére
cartésien. L’ orientation des axes du repére utilisé ne doit pas influencer les résultats obtenus. Ils
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imposent les contraintes suivantes pour tout i=1,..,n :

pi i+ =1 (4.14)
D wi=4rm (moment d’ordre 0) (4.15)
i=1
> piwi =0 (moment d’ordre 1) (4.16)
i=1
On peut écrire plus généralement pour i=1,..,N/2 :
2(i — 1)

2 _ 2 (1 = 3u2 4.17

Mz M1 + N —9 ( Mz) ( )

Le terme iy est un terme arbitraire déterminant la premiere direction. 1l doit cependant étre

déterminé par une procédure numérique de fagcon a permettre a I’ensemble du set de quadrature
obtenu de respecter les conditions imposees (cf. (4.14),(4.15),(4.16)).
Cependant, depuis la fin des années 80, on évoque par quadrature de type Sy un certain type de
set redéfini par Truelove en 1987 [158], bati sur des propriétés de la physique du rayonnement.
Afin d’obtenir une bonne adéquation avec la physique liée au rayonnement, Truelove propose les
contraintes suivantes :

Z fiw; = T (4.18)
Hi>0
> pjw; = 4x/3 (moment d’ordre 2) (4.19)
=1

Les relations (4.16), (4.18) et (4.19) doivent aussi étre vérifiées pour les 7 et les &;. Ces conditions
lui ont permis de déterminer par une méthode de type Newton-Raphson, les sets de quadratures
présentés dans le tableau 4.4.1. Dans ce tableau, nous ne présentons les données que pour I’oc-
tant (ou triédre rectangle) défini par les vecteursfj,lg ou les ordonnées sont toutes positives. Pour
définir, I’ensemble des n directions, il suffit d’attribuer le signe des vecteurs définissant I’octant
considéré aux coefficients respectifs (cf. (4.1)) définis dans le tableau.

Exemple :

Pour tout vecteur direction s; appartenant a I’octant défini par @ —7, —/5) les cosinus direc-
teurs 7, et &; auront pour valeurs absolues celles du tableau 4.4.1 mais seront négatifs. Le cosinus
directeur y; restera positif.
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Ordre de quadrature

I

U

§

w

S2

0.5773503

0.5773503

0.5773503

1.5707963

Sy

0.2958759
0.2958759
0.9082483

0.2958759
0.9082483
0.2958759

0.9082483
0.2958759
0.2958759

0.5235987
0.5235987
0.5235987

0.1838670
0.1838670
0.1838670
0.6950514
0.6950514
0.9656013

0.1838670
0.6950514
0.9656013
0.1838670
0.6950514
0.1838670

0.9656013
0.6950514
0.1838670
0.6950514
0.1838670
0.1838670

0.1609517
0.3626469
0.1609517
0.3626469
0.3626469
0.1609517

0.1422555
0.1422555
0.1422555
0.1422555
0.5773503
0.5773503
0.5773503
0.8040087
0.8040087
0.9795543

0.1422555
0.5773503
0.8040087
0.9795543
0.1422555
0.5773503
0.8040087
0.1422555
0.5773503
0.1422555

0.9795543
0.8040087
0.5773503
0.1422555
0.8040087
0.5773503
0.1422555
0.5773503
0.1422555
0.1422555

0.1712359
0.0992284
0.0992284
0.1712359
0.0992284
0.4617179
0.0992284
0.0992284
0.0992284
0.1712359

TAB. 4.1 — Table des quatre premiers sets de quadratures Sy

4.4.2 Quadrature Ty

Les quadratures de type Ty sont construites de facon geométrique, ce qui facilite I’élabora-
tion des sets qui se définissent analytiquement. Les tableaux de données n’ont donc pas besoin
d’étre stocker. On définit () le triangle basique équilatéral délimité par les points d’intersec-
tions de la sphére unité S(O, 1) avec les axes définissant I’octant considéré (dans R(0.,i, 7, k) :
(1,0,0), (0,1,0) et (0,0, 1)). Pour une quadrature d’ordre N le triangle basique est subdivisé en
N? triangles équilatéraux de coté a = +/2/N (cf. Fig.4.2). Notons C,; les centres des triangles
équilatéraux. Les V2 vecteurs directions 3; définis dans cet octant seront des vecteurs unités portés
par les droites passant par le centre O du repére et par les centres C; des N? triangles équilaté-
raux.

Les sommets et centres de chaque triangle équilatéral sont projetés par rapport au centre O, sur
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P(0,0,1)

P(1,0,0) P (0,1,0)

FIG. 4.2 — Mosaique du triangle équilatéral (7")

la portion de sphére S(O, 1) délimitée par I’octant, de telle sorte que :
— les sommets et centres des triangles soient alignes avec le centre O de la sphere et leurs
projetés respectifs sur la sphere ;
— le vecteur direction s; est déterminé par le bipoint partant du centre de sphére O et arrivant
au point Cy ;, projeté du point C' ; sur la sphere;
— les projetés des sommets sur la sphere délimite une portion de sphére dont la surface n’est
autre que le coefficient de pondération «; associé a notre vecteur s;.
Le set de quadrature défini sur les 8 octants est composé alors de 8V directions discrétes s; et
reste globalement invariant par toute rotation de 90° autour de I’un des axes de notre repere R. On
peut établir I’équation du plan auquel appartient le triangle équilatéral de base :

T+y+z2—1=0 (4.20)

La construction de la mosaique du triangle de base permet de déterminer les coordonnées z;, y; et
z; des centres des triangles équilatéraux, C' ;. On obtient les coordonnées ;, n; et &; des projetés
Ci ;» sur la sphere unite, en écrivant :

X

RV

(4.21)




110  Développement d’un code radiatif adapté aux géométries complexes

P(0,0,1)

F1G. 4.3 — Quadrature angulaire T,

n; = Ui (4.22)

£ = ' (4.23)

VYl + 2

Ces trois relations permettent d’écrire de fagon analytique les coordonnées des directions discrétes
S; permettant de procéder a une quadrature de la sphére unité.

4.4.3 Quadrature polaire/azimutale

Cette discrétisation est typique des méthodes aux volumes finis (FVM). Utilisée par Raithby
et al. en 1990 [131], pour établir les FVM en maillage structuré, puis par Murthy et Mathur pour
appliquer les FVM en non-structuré en 1998 [114], J.Liu I’applique aux DOM en 2000 [97].
Pour créer ce type de set de quadrature on discrétise I’octant en un nombre n = Ny x N¢ d’angles
solides. Prenons notre repére R(O, 07, E) et notons & I’angle polaire par rapport a la droite dirigée
par le vecteur i et ¢ I’angle azimutal par rapport & la droite dirigée par le vecteur 7, tous deux
compris dans I"intervalle |0; 5[. On divise I’angle polaire 5 en N, angles égaux de valeur Af et
I’angle azimutal en NV, angles égaux de valeur A¢.

On prendra alors comme directions discretes, les vecteurs s; = v, , passant par les centres des
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FIG. 4.4 — Quadrature angulaire polaire/azimutale avec Ny = 2 et Ny = 2 (FVM 2X2)

angles solides w,, , que I’on définit par les angles g, et ¢, de telle sorte que :

— .

Upg = smﬁpsmgbq;Jr sin9p008¢qj+ COSQPE (4.24)
et
Af
Wy = / A¢ / Asinfdodep = zsmepsm(7>m (4.25)

ou 6, prend les valeurs (p — 1/2)Af avec p = 1, Ny et ¢, prend les valeurs (¢ — 1/2)Af avec
q=1,Np.

4.5 Discrétisation spatiale

L’application d’une DOM consiste a résoudre I’équation de transfert radiatif pour le nombre
fini n de directions §, conduisant a un ensemble de n équations différentielles du 1¢" ordre en
fonction de s;. Chacune de ces équations est resolue selon la méme procédure. On peut écrire les
équations qui suivent de fagon générale pour chaque direction s; avec i = 1,...,n. La résolution
de I’équation de transfert radiatif, sous sa forme différentielle, par une méthode de type volumes
finis sous-entend une discrétisation spatiale du domaine d’application qui peut-étre structurée
(decoupage en cellules hexaedriques disposees de fagon réguliére) ou non-structurée (découpage
en tetraédres, prismes ou autres polyedres de fagcon désordonnée). Dans un premier temps, nous
allons aborder la résolution de I’ETR pour un maillage cartésien structuré. Cette approche plus
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S
Ax,e;WniZ> /;,i Axs: E
p

ol

<y

Ay.e: S

FI1G. 4.5 — Vue de profil (2D)

simple, nous permettra de mieux présenter la procédure a mettre en place pour utiliser une DOM.
Par la suite nous exposerons les différents schémas de dérivation adaptés un maillage cartésien
non structuré que nous avons pu étudier.

Afin d’alléger les formules qui seront présentées dans ce paragraphe traitant uniquement de la dis-
crétisation spatiale, nous noterons, pour une direction discréte s, et en un point P(7), la luminance
L; = L,(r, 5;), ainsi que le gain en luminance S; = S, (7, 5;) (cf. 4.2). Pour définir les conditions
limites aux parois du systéme, nous noterons Lw, i) = L7, 5;) la luminance a la paroi (cf. 4.3).

1—c¢
Lwi =1L _)wa _; = Lw L | 1.8 4.26
: (Tw, 5i) = €Ly + - ij j | 7.8 | (4.26)

45.1 DOM pour maillage structuré

Dans un repére cartésien orthogonal, I’équation (4.1) peut étre écrite de la fagon suivante :

dL; dL; drL; drL;
' — 3 VL, = . — L P I, 4.27
ds; 5. VL = pi dr + 7 dy + & dz B(S; i) ( )

Pour déterminer les conditions limites aux parois du systéme, nous remplacons la luminance a la
paroi L, ; par une formulation discrétisée :

1

Lw,i - 6Lw,b +

¢ o
- Z w;L; | 1.5; | (4.28)

ﬁ.gj<0
Nous prenons V' un élément de milieu semi-transparent entourant le point P et étant suffisamment
petit et homogeéne pour considérer S; et L; comme uniformes. Nous associerons alors au point P
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au centre de ce volume V/, les valeurs moyennes Lp; et Sp;. En intégrant I’équation de transfert
radiatif sur V', nous obtenons :

dL; dL; dL;
[ Gt 652V = [ 85— Loav = 5V (Ses — L) (4.29)
En adoptant comme sens de balayage du maillage celui imposé par le vecteur s;, nous indiquons
y
A
Ays=N
S z
§§::: 3 ///////7
N Ax,s=U
. hyyias
Axe=W — \\\\\% ° Axs=E v
=
e
= —aEEEEl EEEEEEES
A
n; i,/,/,/ o
0 g

Aye=S

FI1G. 4.6 — Systéeme cubique maillée ( vue 2D )

les grandeurs liées aux faces d’entrées par I’indice « e » et celles liées aux faces de sorties par
«$»; onindiquera avant I’axe auquel on se réfere par des indices x, y ou z (Fig.4.5.1). En prenant
I’élément de volume dV = dxdydz dans un repere cartésien, nous développons I’expression (4.29)
comme il suit :

Lmsi_Lxei Lysi_Lyei Lzsi_Lzei
) s 5 . ) ) . ) ’ d d d et . — L 430
/V O 0 & )dwdydz = 5(Si = Li)V (4.30)

OU Lye iy Lys ivLyeiLys,is L. €t L, ; sont les luminances a travers les six faces d’une cellule hexa-
Ay, ALe et A, (cf. Figd.5.1). Si p; > 0 la
variation dx = x,s; — %, Sera positive et inversement si ; < 0 alors dz < 0. On déduit que

édrique de volume V' d’aires respectives A,., A, A

yer{lys,

pour représenter un élément d’intégration dx toujours positif il faut utiliser la valeur absolue de 1;
et que cette remarque est aussi valable pour 7; et &;. Ce qui revient a écrire :

/ ummeWk—/ i | Loes dy dz+ ... = BV(S; — L) (4.31)

s zre
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En considérant la luminance comme étant uniforme tout point d’une face, nous obtenons :

| Hi | (AmsLms,i_AxeLme,i)+ | nz\ | (AysLys,i_AyeLye,i)+ | gz | (Azsts,i_AzeLze,i) - ﬁV(Sz_Lz)
(4.32)

On résout I’équation (4.32) en utilisant des schémas de dérivation spatiale. Les schémas les plus
classiques sont les schémas pondérés de type « diamant » et le schéma « Step ». Les schémas
pondérés permettent d’écrire la luminance au centre de la maille, suivant sur les trois axes du
repére cartésien (O, x,y, 2) :

LP,i = ’nys,i + (1 - ’7>Lme,i - ’yLys,z‘ + (1 - V)Lye,i - ’yLzs,i + (1 - V)Lze,i (433)

Lorsque I’on a un schéma diamant, on utilise v = % ce qui correspond a une attribution du méme
poids aux luminances entrées et en sorties. Ce schéma peut amener a calculer des luminances
Lysi Lys; ou L ; negatives. Ce qui n’est pas physique. Ceci fait que I’on lui prefere souvent le
schéma Step.

Lorsque I’on a un schéma Step, on utilise v = 1 ce qui revient a ecrire Lp; = L,,. Ce schéma
ne génere donc jamais de valeurs de luminances négatives. Cependant il est généralement moins
précis que le schéma diamant.

A partir de ces trois formulations, on peut isoler les luminances aux faces de sortie en fonction de
la luminance recherchée L p; et des luminances connues aux faces d’entrée :

L:cs,z' = (LP,Z' + (7 - 1)L$€7l)/7
Lysi = (Lpi + (v = 1) Lyes) /v
L.si= (Lpi+ (v —1)L.ei) /7

puis les remplacer dans I’expression (4.32). Ce qui permet d’isoler par la suite le terme L p; et
d’écrire de maniére générale en tout point P la luminance émise :

— ’yﬁVSP,z + ‘ g ‘AmLme,i + | i |AyLye,z’ + | éz |Asze,z’
Vﬁv_‘_ ‘ 9% ‘Ams + ‘ i |Ays + ‘ éz ‘Azs

Lp; (4.34)

avec .

AJ: = (1 - ’7>Axs + ’yAxe
Ay = (1 - V)Ays + ’VAye
Az = (1 - V)Azs + VAze
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Rappelons que les indices « e » et « s» indiquent que les grandeurs en question sont liées res-
pectivement a la face d’incidence et la face de sortie. Le tableau de correspondance des surfaces en
fonction des signes des cosinus directeurs, ci-dessous, compléte cette formulation générale (4.34).

i >0 i <0 n; >0 n; <0 & >0 & <0
Axe = AW A:ce = AE Aye = AS Aye = AN Aze = AD Aze = AU
AZ‘S e AE A$S = AW Ays = AN Ays - AS Azs — AU Azs == AD

La procedure de résolution d’un probléme par méthode aux ordonnées discrétes va donc se dérou-
ler en trois étapes :

— On estime S; et L,,; a partir des données initiales connues ;

— La direction discréte 5; ayant déterminée le coin délimitant le systéme a partir on va débuté
un balayage du maillage structuré, on calcule pour chaque maille P, ., . les inconnues
Lp;,LysiiLys; €t L, ,; apartir des valeurs de L. ;,Ly. et L..; (si la face ou I’on desire avoir
la luminance d’entrée qui coincide avec la paroi, cette luminance d’entrée vaudra L,, ; sinon
on la prendra égale a la luminance de sortie de la cellule précedente ayant en commun la face
en question) ; puis on met a jour les luminances d’entrée mailles adjacentes suivantes;

— On effectue ce balayage pour toutes les directions discretes imposées par la quadrature an-
gulaire utilisée.

— On peut alors calculer les différentes grandeurs que sont G(7) et ¢{(r) au centre P(r) de
chaque cellules et H (7,) au centre P(7,,) de chaque élément de surface constituant les parois
en utilisant les formulations discrétisées (4.8), (4.9) et (4.10).

Si les parois sont réfléchissantes et/ou le milieu diffusant, une mise a jour des termes S'; et L, ;
est nécessaire et une itération supplémentaire reprenant la procédure que nous venons de décrire
doit étre effectuér. Dans notre étude nous avons concidére la rélexion comme étant diffuse, ce qui
permet d’écrire plus simplement :

1—e¢
L, = €Ly iLi _)~_)i
€Ly p+ - Zw | 7.5 |

(4.35)
7.5;<0
Nous ne nous somme pas intéressé au phenomene de diffusion; toutefois la prise en compte la

diffusion isotrope (& = 1 pour toutes les directions) peut étre formulée comme il suit
w
Sp,i = (1 - w)vai + —G (436)
47

ou 7 a été calculé a I’itération précédente. Ici, w représente I’albedo de diffusion.
Il faut donc fixer un critére de convergence § permettant de déterminer s’il est nécessaire de faire
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une nouvelle itération en fonction du degré de précision recherché sur la solution. Divers critére
de convergence ont éte déja proposés dans la littérature [58]. La condition gque nous avons retenue
est base sur le rayonnement incident et elle s’écrit :
- (Max(G™) — Max(G"™1))
Maz(Gn—1)

Un code permettant de calculer les transferts radiatifs dans une enceinte rectangulaire en trois di-

(4.37)

mensions a eté développé avec cette algorithme, afin de fournir les éléments de comparaison pour
un étude sur I’effet du maillages (cf. § 4.8.2.1).

Il est possible de simplifier le probléme en ne prenant pas en compte la diffusion, ce qui ne mo-
difie donc que le terme S(s), en le réduisant uniquement a la luminance noire locale du milieu, et
en ramenant le coefficient d’extinction au coefficient d’absorption. Dans une premiére approche,
pour nos applications, nous considérons que le milieu n’est pas diffusant et nous fixons w, = 0.

4.5.2 DOM pour maillage non-structureé

Nous avons volontairement explicité toute la procédure de calcul par DOM sur les maillages
structuré parce qu’elle est identique a celle utilisée pour des maillages non structurés. L’applica-
tion de la méthode aux Ordonnées Discrétes en maillage non structuré nécessite une reformulation
du probléme qui differe peu de celle que nous avons abordée a la section précédente si ce n’est
concernant la discretisation spatiale utilisée pour définir les luminances aux centres et aux faces
des cellules.

Nous avons formulé nos équations en fonction du terme S qui prend en compte I’émission et la
diffusion entrante afin de montré comment la diffusion isotrope peut étre facilement introduite
dans un calcul par itération. Etant observé que la prise en compte de la diffusion ne change rien a
la formulation du schéma spatial, nous considérerons, dans cette section, un milieu émissif absor-
bant et non diffusant. Le terme S se simplement réduit a un terme de luminance noire émise L.
L’équation de transfert radiatif est résolue pour toutes les directions discrétes s; :

dL;

ds;
L’intégration de ’ETR sur le volume V' d’un élément de maillage délimité par une surface X, et

= k(Ly(7, 8) — L(7, 3)) (4.38)

I’application du théoréme de la divergence permettent d’écrire :

/ L.57idY = / (kLy — KL(3)) AV (4.39)
b \%

Dans le cadre de notre étude, le domaine est discrétisé en cellules tétraédriques, qui sont les formes
de volumes de contrdle les plus simples en trois dimensions. En effet, tout maillage structuré ou
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non structuré peut-étre « sous-maillé » par des tétraedres. Considérons que L; est la luminance
moyenne sur la j*™ face d’un volume de contrdle, associée au centre de cette face et définie
comme il suit :

L= Ai / /A A, (4.40)

ou A; est Iaire de cette 4% face. Nous définissons aussi L, p et Lp les luminances moyennées
sur le volume V/, associée au centre de la cellule P, telles que :

Lyp — % / / /V Ly(5) dV (4.41)
Lp= % / / /V L(3)dV (4.42)

Ayant défini ces grandeurs moyennes pour un volume de contréle, I’équation (4.39) peut étre
discrétisée :
Nyigee=4

> L&) Ay = &V (Lop — Lp) (4.43)

j=1
ou 72, est le vecteur unitaire de la normale sortante a la face ;.
Nous définissons aussi I2; comme étant le produit scalaire du i*™ vecteur direction discréte avec
ce vecteur normale de la 7™ face du tétraédre considéré :

Dij = Si.1t; = pingg + ning; + &inz; (4.44)

Nous faisons alors I’hypothése que L, et L(5) sont constants sur un volume de contréle V' et que
les luminances L; aux faces sont constantes sur chacune de ces faces. La discrétisation angulaire
du probléme est identique a celle utilisée en maillage structuré et a été exposée a la section 8
4.4. Nous allons donc détailler, pour les trois schémas de dérivation spatial utilisé dans le code
développé, les procédures de calcul de la luminance L(s;).

4.5.2.1 Leschéma exponentiel

Sakami et al. ont proposé en 1998 [137, 140] un schéma de dérivation spatiale utilisable dans
des configurations en trois dimensions et prenant en compte le phénoméne d’extinction exponen-
tielle le long du chemin optique a I’intérieur de la cellule considérée (on le retrouve aussi, dans
la littérature, sous le nom de « DOM-FV-RT »). D’un point de vue formulation, ce schéma repose
sur des idées employées dans le domaine des Méthodes aux Volumes Finis [131]. Considérons un
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chemin optique ¢t = sg — sa, OU s €t sg sont respectivement les positions a I’entrée et a la sortie
de la cellule, la solution de I’équation de transfert radiatif (cf. (4.38)) peut s’écrire :

sB
L(3,s8) = L(5,sp)e " + /{/ Lye "85 {5 (4.45)

SA

L’intégration sur la trajectoire a travers la cellule donne :
L(5, sp) = L(5,sa)e”™ 4+ (1 — e ") Ly (4.46)

Pour une direction s; et une position finale s; a la face de sortie, la position de départ s a la face
d’entrée et la trajectoire associée ¢ sont fixées. La luminance I; a travers une face de sortie [, telle
qu’elle a été définie précédemment (Eqg. 4.40), s’écrit :

1

L= —
A A,

[L(gz, SA) e_"“t + Lb (1 — G_Ht)] dAl (447)

Sakami a demontré [140] que, connaissant I’épaisseur optique 7; = Klyqz,is OU Lyar i FEPresente
la longueur maximale a I’intérieur d’une cellule selon la direction s; (segments [AB] de la figure
Fig.4.7), pour les trois différents types d’événements presentés a la figure Fig.4.7, on pouvait
calculer la luminance L; a une face de sortie [ comme il suit :
Ly = ( Z %Lk)Xi + Lp(1 — xi) (4.48)
D;<0
ou A; est I'aire de la face de sortie et A;; représente I’aire de la portion de la face de sortie [,
obtenue par projection de la face d’entrée £ sur cette face de sortie [ selon la direction s;. x; est un
coefficient typique du modele permettant de prendre en considération I’extinction exponentielle a
travers la cellule :
1 2 1—e™

e "dA; = —(1-—) (4.49)

Xi = &
Ar Ja, i i

La complexité de ce modele repose sur le calcul des épaisseurs géométriques maximales /,,q, ;
pour tous les cas possibles présentés a la figure Fig.4.7. D’un point de vue numérique, [, ; peut
étre déterminé si I’on connait les coordonnées des points A et B. En se référant a I’équation (4.43),
L p est directement calculé par :

Nface:4
1
Lp=Lyp=— > 1: Dy AL (4.50)
j:

D’un point de vue numérique, bien que ce schéma permette d’éviter des valeurs négatives pour
toutes les luminances L; obtenues aux faces d’une cellules, il ne garantit pas que la luminance
Lp calculée au centre d’une cellule soit toujours positive, en particulier quand « devient tres petit
(k << 1072 m™1).
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Type d’événement | : 3 faces d’entrée

S (1 face de sortie)

Type d’évenement |1 : 2 faces d’entrée

(2 faces de sortie) (1 face de sortie)

Type d’évenement 11 : 1 face d’entrée

(2 faces de sortie) (1 face de sortie)

Fi1G. 4.7 — Six facons de traverser un tétraédre du point A au point B en fonction du nombre de
faces en entrées et en sorties.
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45.2.2 Leschéma Step (ou Upwind)

En 2000 [97], J.Liu a testé le schéma « Step » qui correspond au schéma « Upwind » habi-
tuellement utilisé en CFD. Ce schéma avait déja été proposé par Chai et al., en 1995 [15], pour
résoudre I’équation de transfert radiatif par une Méthode des Volumes Finis dans des géométries
irrégulieres en utilisant des coordonnées curvilignes. Dans de nombreuses études antécédentes,
ce schéma avait été appliquée pour des maillages structurés cartésiens afin d’éviter les luminances
négatives qui peuvent apparaitre lorsque I’on utilise des schémas tels que le schéma « Diamant »
[16]. En ne considérant pas le phénomeéne de diffusion tel que I’a fait Liu, la luminance Lp peut
étre obtenue au centre d’une cellule en appliquant la relation suivante :

Nface
KVLy+ Y DyA;L;

Jj=1
Dij<0

Lp (4.51)

Nface
j=1
Dij>0
0U Nyqce €st le nombre de faces que possede la cellule considérée (N, = 4 dans notre étude).
Les luminances aux faces de sorties sont prises égales a la luminance L p calculée au centre de la

cellule.

4.5.2.3 Les schémas de flux moyens (Mean Flux Schemes)

Afin de calculer les luminances rayonnées aux faces d’un volume de controle, Strohle et al.
[148] ont proposé un schéma de dérivation spatial basé sur les flux moyens qui s’avére trés inté-
ressant dans le cas de maillages non structurés. Le schéma en question repose sur la formulation
suivante :

Lp=aLys+ (1 —a)Li, (4.52)

ou L,, et L,,; sont respectivement les luminances moyennées sur les faces d’entrées et les faces
de sortie du volume de contrdle, définies par :

> DyA;L;
J

Dij <0

L= (4.53)

J
D;;<0
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(A e

FIG. 4.8 — Transformation géometrique liée au terme D,;.

et

> DyA;L;
J

Dij >0

Loyt = (4.54)

J
D;;>0

En utilisant L, et L;, dans I’équation (4.43), on obtient aprés quelques calculs algébriques :
Dij<0
O[/{V + Z DijAj

J
Dij>0

Lp=

(4.55)

avec .

Z Di;A;

J
D;;>0

Z DijAj

J
D;;<0

O=a—-(1-a) (4.56)

Comme nous le représentons a la figure Fig.4.8, si nous considérons que le produit scalaire D),;
est un terme de transformation analytique correspondant a une projection de la surface A, suivant
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le vecteur s;, sur le plan A perpendiculaire a ce vecteur, nous pouvons écrire I’égalité suivante :
N7 DyAj ==Y DyA; = Aa (4.57)
j j
Dij>0 Dij<0
Ainsi, pour toute valeur de « appartenant a son domaine de définition |0, 1], nous avons © = 1 et
finalement, I’équation (4.55) peut étre reformulée plus simplement :
aVkL,— Y DyA;L;

J
Lp= Di <0 (4.58)

J
Dij >0

Le cas o = 1 correspond au schéma Step (cf. (4.51)) utilisé par Liu et al. [97]. Le cas o = 0.5 sera
appelé Schéma Diamant en Flux Moyens (DMFS pour Diamond Mean Flux Scheme). 1l peut étre
compare au schéma « Diamant » utilisé pour des maillages structurés, cependant Stréhle a montré
[148] que le DMFS utilisé sur un maillage structuré est différent du schéma Diamant classique.
Ceci est lié a I’approximation sous-jacente a la formulation en flux moyens. Les schémas Diamant
sont formellement plus précis que les schémas Step.

Aprés avoir effectué la calcul de Lp a partir de I’équation (4.55), la luminance aux faces pour
lesquelles D;; > 0 est prise égale L,,; obtenue a partir de I’équation (4.52) (toutes les faces de
sortie recoivent la méme luminance). Il peut arriver que ce terme de luminance aux faces de sortie
calculé soit négatif. I,,,,, est négatif sous la condition suivante :

Lb,P < Cneg~L—in (459)

avec

Aa

Cheg = (1 —a) — v

(4.60)

Le calcul qui nous a permis de déterminer cette condition de positivité du schéma DMFS est
développé a I’ Annexe A.

4.5.2.4 Procédure de « réordonnancement » (Sweeping Optimization)

Pour une géométrie simple possédant un maillage structuré, nous avons montré que I’on pou-
vait balayer les mailles par ordre croissant sur x et y selon la direction discrete 3; choisie. Ainsi, a
titre d’exemple en deux dimensions (cf. Fig4.5.1), pour une direction discrete s; pour laquelle y; et
n; sont positifs, il suffit que les luminances L(P(nz,ny + 1)) et L(P(nx + 1, ny)) soient connues
pour pouvoir calculer la luminance L(P(nxz + 1,ny + 1)). La chose s’avére automatique si on
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TableT,  TableT(S,)
: 0 [
2 1
3 4
4| 3
5 5
6 7
7 6
5 ™
9 8
10 1
1 10
12 12
13 13
14 15
15 14
16 17
o0 X

F1G. 4.9 — Principe du réordonnancement

part de la cellule (1, 1) et que I’on calcule toutes les cellules d’une ligne de (1, j) a (nz + 1,7) en

faisant varier j de 1 a ny + 1. Cette demarche est gouverné par la direction discréte s; qui permet

de définir le quadrant (ou octant en 3D) a partir duquel il faut commencer le balayage.

Lorsque I’on traite un maillage non structuré, et plus particulierement un maillage composé de

tétraedres, il est impossible de définir la position d’une cellule par un triplet (i, 7, k). De plus,
il existe de fortes irrégularités qui font que I’on ne saura jamais, d’emblée, si les luminances

aux faces d’entrées nécessaires a la résolution d’une cellule ont déja été calculées. Une fagon de

surmonter ce probléme consiste a effectuer des itérations jusqu’a connaitre les valeurs de ces lumi-

nances et qu’elles soient en accord avec la solution. Ceci présente les désavantages notables d’étre

lourd en temps de calcul et de nécessiter un critere de convergence fixant la fin des itérations (la
solution obtenue est donc une solution approchée).

Pour éviter cela, les volumes de contrdle doivent étre traités en suivant un ordre de balayage tel

que les luminances aux faces d’entrées des cellules soient toujours connues. Il suffit de savoir
exactement I’ordre dans lequel les cellules doivent étre résolues, une a une, et ce pour chaque di-

rection discrete. Les cellules d’un maillage non structuré sont numérotées dans un ordre arbitraire

définir par le mailleur dés leur génération. Un procédure de réordonnancement ou optimisation
du balayage permet de lister, pour une direction donnée, I’ordre de traitement des cellules garan-

tissant que chaque cellule sera calculable (cf. Fig.4.9). Un algorithme d’optimisation du balayage

a été utilisé dans nos travaux. Nous avons remarqué que cette procédure d’optimisation permet

de créer un tableau (ensemble des listes de balayages obtenues pour chaque direction) qui reste
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valable pour le maillage donné et la quadrature choisie quelles que soient les données physiques
du probleme (ceci est tres important pour pouvoir envisager le couplage a long terme). Cette pro-
cédure d’optimisation du balayage a donc été construite comme un post-traitement des données
de maillage en dehors du code de calcul des transferts radiatifs.

Nous resumerons cette procédure de la fagon suivante :

— Pour réordonner les cellules, nous devons avant tout définir la direction discrétes 5.

— Pour chaque cellule du maillage, nous définissons, pour cette direction, le nombre total de
faces d’entrées Ny .,... €t le nombre de faces d’entrées connues Ny onnue (initialement,
seules les faces communes avec les parois sont considérées comme connues).

— Nous effectuons une recherche par tri (type « tri a bulles ») des cellules pour lesquelles I’éga-
lité Nt entre = N connue €St Verifiée.

— Deés qu’une cellule de ce type est repérée, elle intégre la liste de balayage et une mise a jour
des données Ny connue €St faite pour les cellules dont les faces d’entrées correspondent aux
faces de sorties de la cellule repérée.

— Nous réitérons la procédure de recherche par tri sur les cellules restantes jusqu’a I’obten-
tion de la liste compléte puis nous retournons au premier point afin de définir une nouvelle
direction pour créer une nouvelle liste associée.

L utilisation d’une méthode basique de « tri a bulles » reste lourde en temps de calcul pour des
maillages aussi denses que ceux utilisés en CFD. Il est envisageable d’améliorer cette procédure
d’optimisation du balayage.

Dans le cas de probléemes ou I’on considere les parois comme étant noires, le probleme est ferme
et I’optimisation de balayage permet d’obtenir la solution « exacte » (par opposition a celle ap-
prochée en utilisant un critére de convergence) directement en une seule itération. L’optimisation
de balayage permet aussi d’éviter un trop grand nombre d’itérations pour les cas ou le milieu est
diffusant ou les parois réflechissantes.

4.6 Discrétisation spectrale : Modéle SNB-ck

Pour prendre en compte la dimension spectrale du rayonnement, nous avons intégré sur I’espace
des fréquences les grandeurs physiques obtenues par résolution de I’ETR, telle que nous I’avions
formulée en monochromatique :

dLl/Z — —
d—’ = Ky (Lo (7,8) — L,(1,5)) (4.61)
Si
Nous définissons ainsi le terme source radiatif 5. comme étant le bilan radiatif, sur toutes les
fréguences et dans toutes les directions de I’espace la différence entre ce qui est émis et ce qui est
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absorbé en un point P(7) de I’espace :

S.(7) = / Sy (P = / | Rl 59) = L7 )t (4.62)

soit finalement :
Sy (1) = / Ky (4 Ly, (1) — G, (7))dv (4.63)
0

Afin de prendre en compte le rayonnement des gaz de combustion, plus précisément des es-
péces rayonnantes H,0O, C'O, et C'O, nous avons utilisé le modéle statistique a bandes étroites
en k-corréles développé précédemment (voir § 2.3). L’espace des fréquences est donc decoupé en
Npang bandes étroites. Sur chacune de ces bandes la luminance noire est considérée comme étant
constante. Nous notons, pour une bande étroite, L, »,.(7) la luminance noire obtenue a la fré-
guence v; au centre de la ™ bande de largeur Av;. Pour une bande étroite 7, nous pouvons définir
les parametres du modele de Malkmus %; et ®;, a partir de la banques de données SN B fournie
par le laboratoire EM2C de Paris [146]. Nous calculons, par une méthode de .-distribution, les
Nyuaa coefficients d’absorption x; correspondant aux N,,.q points de quadrature g; permettant
de discrétiser I’intégration faite sur la bande étroite réorganisée i (cf. §2.3.1, (2.103)) et a leurs
poids associés w,;. Nous résolvons I’ETR pour chaque point de quadrature j donné dans chaque
bande étroite z. Nous déterminons ainsi les grandeurs G; et H,,;; calculées en prenant x, = &; ;
dans I’équation (4.61). Le terme source radiatif, prenant en compte la dépendance spectrale du
rayonnement des gaz, peut donc étre discrétisé et mis sous la forme suivante :

Nband Nguad
So(F) =Y Avi > wikij(4mLya,, (F) — Gi (7)) (4.64)
i=1 j=1
Nous intégrerons aussi le flux incident aux parois sur le domaine fréquentiel en posant :
Npand Nguad
H(Fy) = Avp Y wiH () (4.65)
i=1 j=1

Liu et al. ont effectué en 2001 une étude comparative sur les différents modeéles actuels permettant
de representer les propriétes radiatives de mélange de gaz composés d’espéces rayonnantes en
prenant en compte les phénomenes de recouvrement de bandes [96]. Le modele que nous avons
retenu, car proposant le meilleur compromis entre précision et gain en temps de calcul, est le
modele basé sur la limite optiqguement mince et donnant Kmgjange €t Pmetange POUr un mélange de
Ny gaz tels que :

N(](lZ

Emélange = Z K (4-66)
=1
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et

Ngaz —

melange
E 4.67
@ ( )

melange

Nous nous sommes appuyé sur une autre étude de Liu et al. [92] afin de pouvoir estimer la qua-
lité de la quadrature de Gauss-Legendre que nous utilisons par rapport a celle de Gauss-Lobatto
proposée par Riviere et al. [135]. Cette etude a montré qu’il n’était pas nécessaire de prendre un
grand nombre de points de quadrature pour pouvoir bien représenter la dépendance spectrale sur
une bande étroite.

4.7 Parallélisation du code DOMASIUM

La parallélisation d’un code consiste a partager et repartir sur différents processeurs les actions
gu’ordonne ce code. Dans la littérature, certains auteurs ont déja abordé le probléme de la parallé-
lisation de la méthode aux ordonnées discrétes. Coelho et al. [58] ont observé qu’il était préférable
de répartir les directions discrétes sur différents processeurs plutot que de répartir des portions de
maillages. En effet, un interfagage permettant la transmission de données entre les différentes por-
tions de maillage est nécessaire, alors que chaque calcul pour une direction discréte est totalement
décorrélé des autres. Méme pour le traitement de la réflexion et de la diffusion, toutes les infor-
mations sont d’abord réunies avant de procéder a une itération supplémentaire. Cependant, cette
étude a été menée dans le cas d’un milieu gris (un seul calcul spectral). Dans notre étude, I’intro-
duction d’un modele spectral aussi élaboré que le modele SNB-ck, nous ameéne a effectuer plus
de 1600 calculs monochromatiques pour reconstruire les luminances intégrées sur le spectre des
fréquences. Chaque calcul monochromatique doit étre effectué sur toutes les directions discrétes
afin de reconstruire les G;;. Nous avons donc choisi de procéde a une parallélisation par rapport
aux bandes étroites. La principale raison de ce choix est que la procédure de calcul des coefficients
d’absorption du modele SNB-ck est colteuse (inversion de la fonction g (k) faite par dichotomie,
cf. 82.3.1) et ne doit donc pas étre effectuée pour chaque direction puisque les données spectrales
calculés pour toutes les cellules ne changent pas. Il n’est pas envisageable de stocker des milliers
de coefficients d’absorption pour chaque cellule de maillage en sachant que les maillages de la
CFD actuels atteignent le million de mailles.

Toutefois, il est possible de paralléliser la méthode sur les directions discretes. Cela peut s’avérer
plus judicieux si I’on souhaite associer au DOM un modele global du type WSGG sur un grand
nombre de processeurs (ex. : cing gaz gris sur dix processeurs).
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F1G. 4.10 — Cas test du cylindre contenant un milieu transparent

4.8 Validation : Résultats et discussion

Nous avons développé un code de transfert radiatif basé sur la Méthode aux Ordonnées Dis-
cretes permettant de travailler sur des maillages non structurés. directement issus de mailleurs tels
gue GAMBIT (Fluent) ou CFDGeom. Le code radiatif recrée lui méme la table de connectivité
et repere les mailles et faces juxtaposées aux parois. Pour prendre en compte les propriétés spec-
trales des gaz de combustion nous avons avons intégre un modele SNB-ck, ainsi que les différents
schémas de discrétisation angulaire et spatiale que nous avons presentés dans les sections § 4.4 et
8 4.5.2. Le module de création de la table de connectivité entre cellules et la fonction d’optimisa-
tion du balayage s’avérent colteux en temps de calcul mais ne sont effectués qu’une fois avant le
calcul. Nous avons mené de nombreuses campagnes de validation afin de s’assurer de I’efficacité
et d’évaluer la précision de ce code.

4.8.1 Etude de la dépendance angulaire

Le code a éeté testé au niveau de I’efficacité des sets de quadrature angulaire qu’il integre. Un
test mettant en évidence I’effet de rayon (« ray effect » ) a été mené. Ce phénomene se traduit par
une incapacité des DOM a prendre en compte les contributions de la luminance pour des directions
n’appartenant pas au set de quadrature. Pour éliminer les effets de rayon il suffit d’augmenter le
nombre de directions discretes. Nous avons donc modeélisé un cylindre de hauteur H = 2 m et
de rayon R = 1 m, décomposé en 26000 tétraédres environ. Nous avons consideré que la paroi
latérale et la face supérieure étaient noires et froides et que la face inférieure était noire et a une
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température 7,,. Le milieu est considéré comme transparent (x = 0. m~!). Une solution « pseudo-
exacte » a été déterminée par une méthode de tracé de rayon (cf. § 2.2.3.2) en prenant un trés
grand nombre de rayons (N, yons = 200000). Nous avons testeé les quadratures suivantes :

— FVM 10x10 (800 directions), FVM 5X5 (200 directions), FVM 3X3 (72 directions), FVM

2X2 (32 directions)

— T (800 directions), T5 (200 directions), T3 (72 directions), T, (32 directions)

— S12 (168 directions), Sg (80 directions), S, (24 directions),
sur les lignes représentées en pointillés gras sur la figure 4.10.

Le flux aux parois adimensionné par o7" 2 est obtenu le long d’une ligne paralléle a I’axe du cy-
lindre (tel que & = 30°) et sur la circonférence du cylindre aux hauteurs H = 0.057, H = 0.57,
et H = 0.957,, Z, étant la hauteur du cylindre. Les résultats sont traces sur les Fig.4.11, 4.12 et
4.13. Les solutions obtenues par Ray Tracing sont représentees en trait continu sur ces figures. Il
apparait qu’augmenter le nombre de directions discréetes permet de mieux représenter les varia-
tions angulaires du rayonnement sur 47 et donc de réduire I’effet de rayon. Bien sdr le temps de
calcul est proportionnel au nombre de directions. A titre d’exemple, un test simple effectué sur
cette géométrie avec une quadrature 75 (soit 32 directions) dure environ 30 secondes mais passe
a environ 550 secondes avec une 7o (800 directions). Nous pouvons aussi conclure qu’aucune
méthode n’élimine réellement le probleme d’oscillations di aux discontinuités que génére la qua-
drature angulaire.

Si on compare les différentes quadratures a nombre de directions discretes égales, la supériorité
génerale d’un type de quadrature sur I’autre n’est pas flagrante. Nous pouvons donc utiliser de
fagon totalement arbitraire un type de discrétisation angulaire plutét qu’un autre. Cependant une
Sy (24 directions) permet d’avoir des résultats du méme ordre qu’une 75 (32 directions) ou une
FVM 2X2 (32 directions) pour 25% de directions et donc de temps de calcul en moins. Les me-
thodes Sy reste donc plus adaptées pour un problémes ne nécessitant pas beaucoup de directions
discretes.

Nous avons aussi étudié I’influence du maillage sur le « ray effect ». Ceci fait I’objet de I’annexe
C.

Récemment, Koch et al. ont pu mener une étude beaucoup d’autres types de quadrature [73]. Ils
en ont aussi déduit qu’aucune quadrature angulaire (pour un nombre de directions raisonnables)
ne permettait d’éliminer I’effet de rayon mais que certaines étaient plus aptes a le réduire. lls
recommandent tout de méme deux quadratures qui semblent efficaces : la L(i; de Lebedev (96
directions) et la DCT020-2468 (48 directions). Nous adopterons les quadratures S dans la plu-
part des tests effectués par la suite. Nous utiliserons aussi comme référence la quadrature LC'1;
proposée par Koch.
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FI1G. 4.11 — Flux aux parois adimensionné aux parois pour les quadratures polaires/azimutales
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TN Quadrature : Axial representation for 6=30°
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FI1G. 4.12 — Flux aux parois adimensionné pour les quadratures 7'y
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SN Quadrature : Axial representation for 8=30°

SN Quadrature : Radial representation for z:O.OSZu
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4.8.2 Etude des schémas de dérivation spatiale

L’étude menée sur I’efficacité des différents schémas de dérivation spatiale que nous avons pu
utiliser dans le code DOMASIUM a fait I’objet d’un rapport interne soumis a la publication dans
une revue scientifique internationale. Nous reprenons donc ici la partie de ce document traitant
spécifiquement des applications et résultats que nous avons obtenus et des conclusions qui ont été
faites.

4.8.2.1 Gray media cases

Several simple test cases have been carried out to compare the efficiency of the spatial dif-
ferencing schemes for different types of enclosures containing a participating and homogenous
medium that are summarized in the following table :

Type of geometry Participating medium Calculations

Parallelepipedic Gray and Isothermal Quw
Cylindrical Gray and Isothermal Q. and S,
Spherical Gray and Isothermal Sy.c
Spherical Gray and et Non-Isothermal Sy.c
Spherical Non-Gray and Non-Isothermal Sr.c

A first test using the parallepipedic geometry allows us to compare the solutions obtained using
structured and unstructured grids, and to have a good representation of the hemispherical wall flux
by the angular quadrature. This configuration type commonly used for validation exercises allows
to have a good representation of three dimensionnal wall fluxes by the angular quadrature. The
next test concerns the cylindrical geometry to illustrate the influence of the angular quadrature on
the radiative heat flux at the walls. The third test, that is more academic than the two first ones,
has the advantage of yielding an analytical solution of the radiative source term at the center of
the sphere. It’s used to further investigate the conclusions of the preceeding test case in regards of
typical combustion situations. In particular, the influence of the optical thickness has been inves-
tigated in details in a wide range representative of infra-red gaseous line spectra. To go towards
combustion situations, we perform then a calculation that integrates the gaseous line spectra pro-
perties of water vapor. It should be pointed out that for output purposes an interpolation is done
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3m

FiG. 4.14 — Parallelépipedic enclosure

Y

Zi}X

F1G. 4.15 - Black walled rectangular enclosure grid (number of control volumes = 20425 tetrahe-
dra).

on the results obtained with the unstructured code in order to have the values for a given axis or a
given point. This 3D-interpolation can generate inaccuracies, especially for the points taken near
the walls or when the grid is coarse.

Black or gray walled rectangular enclosure  The first test case is made on a box-shaped fur-
nace enclosure (Im x 1m x 3m). The walls are black (e = 1.0) or gray (¢ = 0.8 or 0.5) at 1000 °C
and the medium is gray with x = 0.1 m~! and at a temperature of 1500 °C. A fine grid (20425
tetrahedra, see Fig.4.15) has been used. For the case where ¢ = 1.0, the results are compared with
those calculated using a Cartesian grid with 20x20x60 control volumes and a reference solution
calculated using the Ray Tracing method with 80000 rays (in this way, the results can be conside-
red as numerically quasi-exact). For e = 0.8 and 0.5, the available reference solution is computed



134  Développement d’un code radiatif adapté aux géométries complexes

by a Monte Carlo method.

The incident heat flux, H ., along the centerline of the largest walls is shown in Fig.4.16(a) and
Fig.4.16(b). The tests have been performed for two different Sy quadratures - S, and Sy, - and the
three different spatial differencing schemes - exponential scheme, Diamond Mean Flux Scheme
(o = 0.5) and Step scheme. Independently of the order of the considered angular quadrature, if the
number of cells used are of the same order, results obtained using structured grids and unstructured
grids are very close (see Fig. 4.16(a) and 4.16(b)). We also have noticed that there is no signifi-
cant difference between the solutions obtained by using the three different numerical schemes.
The results obtained using unstructured meshes are in good agreement with the reference solution
regardless of the angular quadrature and the differencing schemes used.

Black walled cylindrical enclosure A cylinder (» = 3m and » = 0.5m) containing a gray
isothermal medium at 7" = 1200K is considered. The walls are black and at 7}, = 300K. The
radiative heat source .S, along the central axis of the cylinder and the radiative net heat flux () ,, at
the side wall are obtained with the unstructured code using the three different spatial discretiza-
tion schemes described previously and the Sg quadrature is employed. Two grids are used in this
test case : a coarse one (18920 tetrahedra) and a finer one (140010 tetrahedra) (see Fig.4.17(a)
and Fig.4.17(b)). A third comparison is made on the same fine grid using a more accurate angular
discretization (S;2). Results are compared to those obtained with the ray tracing method using
320000 rays. In the case of a homogeneous medium, the results of the ray tracing method are
independent of the grid.

Three different values have been chosen to represent weak (x = 0.1m~1), intermediate (v =
1.0m~1) and strong (x = 10.0m~!) optical thicknesses. In the case of optically thin media (see
Fig.4.18), the peak of the net heat flux at the wall predicted by the DOM is about 10% lower than

the ray tracing solution. This is due to the fact that the distribution of optical thicknesses in the
medium is fonction of the angular direction and consequently needs a good angular representa-
tion ( what can be linked to the well known « ray effect »). Increasing the order of the angular
quadrature (Fig.4.18(c)) improves the accuracy of the results. However, such an order of accuracy
is compatible with today’s expectations in combustion problems. For medium and strong optical
thicknesses (see Fig.4.19 and 4.20), the ray effet is softened. The aforesaid distribution of optical
thicknesses is less sensitive to angular variation. For optically thick media, the increase of the
absorption coefficient of the medium yields also an increase of the wall heat flux. The walls re-
ceive the radiation mainly from the closest cells of the medium, so there is no need to refine the
grid and the angular discretization. In the case of optically thin media (see Fig.4.18), the radiative
heat source term solutions are in good agreement. Refining the grid gives better results. Increasing
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F1G. 4.16 — Black walled rectangular enclosure case : a) Radiative heat flux along the wall using
the S, quadrature, b) Radiative heat flux along the wall using the S ;5 quadrature.
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FIG. 4.17 — Cylindrical enclosure grids : a) Coarse grid (number of control volumes = 18920
tetrahedra), b) Fine grid (number of control volumes = 140010 tetrahedra).
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FIG. 4.18 — @Q,, on the side wall and S, on the central axis for k = 0.1 m~! of a cylindrical

enclosure with participating gray medium : a) - Unstructured coarse grid (18920 cells) and an-

gular quadrature Sg, b) - Unstructured fine grid (140010 cells) and angular quadrature &, ¢) -
Unstructured fine grid (140010 cells) and angular quadrature S;5.
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FIG. 4.19 — ., on the side wall and S, on the central axis for k = 1.0 m~! of a cylindrical

enclosure with participating gray medium : a) - Unstructured coarse grid (18920 cells) and an-

gular quadrature Sg, b) - Unstructured fine grid (140010 cells) and angular quadrature &, ¢) -
Unstructured fine grid (140010 cells) and angular quadrature S;5.
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FiG. 4.20 - Q,, on the side wall and S, on the central axis for x = 10.0 m~! of a cylindrical

enclosure with participating gray medium, a) - Unstructured coarse grid (18920 cells) and an-

gular quadrature Sg, b) - Unstructured fine grid (140010 cells) and angular quadrature &, ¢) -
Unstructured fine grid (140010 cells) and angular quadrature S,
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the absorption coefficient of the medium leads to decrease the accuracy obtained for the radia-
tive source term solutions (see Fig.4.19(a) and 4.20(a)). The relative difference between the DOM

and the ray tracing solutions is negligible in the vicinity of the walls and becomes significant far
from the walls. Most of the energy emitted by the medium is absorbed within a short distance.

That leads to a strong exponential extinction that none of the three spatial differencing schemes

succeeded in representing if the grids are not sufficiently fine (Fig.4.19(a) and 4.19(b)). So, in
the next section, a particular attention will be paid to the accuracy on the radiative source term

estimation in a simpler configuration. The Step scheme gives better results in optically thin case
and the DMFS is the most accurate for very absorbing medium. The angular refinement do not
really govern the accuracy of the source term along the centerline. We have noticed that the grid

refinement influence is stronger than the angular one when we compare the three spatial differen-

cing schemes. The angular refinement do not really govern the accuracy of the heat source term
along the centerline.

Maximal, mean and minimal relative errors for the source term given in the tables 4.2 and 4.3,

are computed for the three different spatial differencing schemes as follows :

E= }S“DOM ~ Snar X100 (4.68)
ST,RT

and for the wall heat flux :

Hoy pon — Ha
E-— ’ DOM — "Tw,RT ’XlOO (4.69)
Hw,RT

with RT standing for the Ray Tracing. Epse., 1S Simply the averaged values of relative errors
calculated in several points. For the incident wall heat flux, the solutions computed with the three

numerical schemes are in a good agreement. Nethertheless, we can notice that the « Diamond
Mean Flux Scheme » gives significantly better results than the exponential scheme for k = 10.0
m~!. The DMFS remains accurate enough for a large range of optical thicknesses.

Black walled Spherical enclosure To analyze in more details the trends identified here above,
this new section presents a simple test case which provides an analytical solution (of the source
term only) in order to further understand, via a parametric study, the influence of the optical

thickness on the source term calculations.

In this test case, a sphere with a radius £ = 1 m has been considered and three different grids
have been used (Fig.4.21(a), 4.21(b) and 4.21(c)). In a first case, the medium is isothermal at
Trnex = 1200 K and the wall is black at 7;,,;,, = 300 K. In a second test case, wall conditions are
identical but the temperature of the medium is depending on the space variable r as follows :

T(r) = (T: (1—12)+ T4 r?)a (4.70)

max man
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TAB. 4.3 — Relative Errors on the radiative heat flux at the wall @ ,

Absorption coefficient k=0.1nr! k=10m"1 k=10.0m™!
Relative Errors Eraz Enrean Enin Enrraz Errean Enin Enrraz Errean Enrin

Coarse Mesh | Step scheme 11.0% 7.39% 4.46% 8.91% 3.79% 0.40% 4.55% 0.78% 0.41%
and Expon. scheme 10.9% 7.29% 4.58% 9.78% 3.13% 0.44% 5.20% 0.98% 0.26%
Sy Diam. scheme 10.8% 7.18% 4.72% 10.7% 2.45% 0.12% 7.15% 0.61% | 7.7E-2%
Fine Mesh Step scheme 7.78% 5.92% 2.64% 3.72% 1.94% 0.55% 2.33% 0.61% 0.23%
and Expon. scheme 7.73% 5.86% 2.58% 3.31% 1.60% 0.68% 2.66% 0.44% 0.15%
Sy Diam. scheme 7.67% 5.80% 2.51% 2.99% 1.25% 0.26% 3.80% 0.28% | 5.8E-2%
Fine Mesh Step scheme 6.69% 4.57% 2.54% 2.90% 1.17% 0.62% 2.50% 0.50% | 5.4E-2%
and Expon. scheme 6.63% 4.51% 2.48% 2.49% 0.83% 0.23% 3.40% 0.56% | 3.7E-3%
Sia Diam. scheme 6.57% 4.45% 2.42% 2.88% 0.50% | 6.3E-4% 4.58% 0.73% 0.27%
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F1G. 4.21 — Spherical enclosure grids : a) - Coarse grid (number of control volumes = 4000 tetra-
hedra), b) - Medium grid (number of control volumes = 30000 tetrahedra), c) - Fine grid (number

of control volumes = 210000 tetrahedra).



144 Développement d’un code radiatif adapté aux géométries complexes

The source term S, « is evaluated at the center of the sphere using a S;» quadrature with the three
different spatial differencing schemes studied in the previous section. Results are compared to the
analytical solution obtained considering the spherical symmetry :

R
Sy Cranatytical = 47k [ Ly — (Lye ™™ + & / Lye ""dr)] (4.71)
0

The relative error of the radiative source term is represented versus « in Fig.4.22 and is computed
as follows :

E— ST,C,DOM - Sr,C,analytical

X100 4.72)

Sr,C,analytical
From Fig.4.22, we can notice that the relative error increases when the absorption coefficient
increases. The change of direction of the curve, in Fig.4.22(b),4.22(d) and 4.22(f), is only due
to the use of the absolute value in the relative error formulation (see Eq. 4.72). In the isother-
mal test case, extremely poor levels of accuracy are observed when increasing optical thickness
(Fig.4.22(a),4.22(c) and 4.22(e)). That phenomenon could be interpreted as the « false scatte-
ring » effect (numerical diffusion linked to cell optical thickness) with the use of the finite volume
approximation (cf. Appendix B). This observation can be related to the fact that, in numerical
experiments, the geometrical mesh structure is kept constant when increasing the absorption coef-
ficient, leading to a regular increase of the optical thickness of each mesh. For the non-isothermal
case, the same phenomenon occurs but radiative exchanges at small distances (exchanges between
closest gas volumes) contribute more than the exchanges with the walls. This reduces the optical
thicknesses effectively linked to the most contributing exchanges. Consequently, false scattering
has less influence and the relative error on the radiative source term is smaller than the one ob-
tained in the isothermal test case. These errors remain however very high when optical thickness
reaches values of the order of ten or above, which is commonly encoutered at the center of gaseous
absorption lines such as those of H,O and C'O, in combustion.

4.8.2.2 Cases with gaseous line spectra : Sphere containing water vapor

The aim of this last test is to propose a case which is close to combustion applications in
order to show how the problems encountered at high optical thicknesses (at the centers of gaseous
spectral lines) may affect the accuracy of the radiative source term in a real gas. The spectral
dependency in the absorption coefficient is here represented with the use of a SNB-ck model
[92, 94, 96]. The SNB data have been provided by the EM2C laboratory [146]. The same sphere
as above is considered and filled with an isothermal gas constituted by 20% of water vapor and
80% of nitrogen. The second grid (cf. Fig. 4.21(b)) is used. The source term S, is obtained by
computing Npanas X Nguaqa 9ray calculations where Ny,,,qs = 367 is the number of narrow bands
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FIG. 4.22 — Relative Error for S, - at the center of the sphere
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TAB. 4.4 — Relative Errors on the Radiative source term S, ¢ at the center of the sphere

Test case configuration Angular quadrature Relative Error
Medium : isothermal and non-gray Sy (Ngir = 24) 1.11%
Xm0 =02 Ss (Nyir = 80) 1.27%
Grid : Medium sphere (Fig.4.21(c)) S12 (Ngir = 168) 1.22%
Spatial differencing scheme : DMFS LC11 (Ng, = 96) 1.21%

which have the same spectral width, and for each narrow band N, = 5 is the number of the
Gauss-Legendre quadrature points used in the approximation of the spectral integration. Then, the
analytical solution integrated on the whole spectrum is written as :

Nyand Nquad

Sr,C,analytic = Z Z 47TAViwij/{ije_mjR(Lb,C,ij - Lb,w,ij) (473)

i=1 j=1
Consequently, using the DOM, the source term [28] is obtained as follows :

Nyand Nquad

Sepom = Y Y Aviwjki(4n Ly — Gyj) (4.74)
i=1 j=1

where G;; is obtained from Eq. 4.8 for x = ;. The source term S,.c poas IS then determined by
interpolation. The same mathematical expression of the relative error of the source term Eq. 4.72
is computed with the DMFS and for four different angular quadratures. Table 4.4 shows that the

choice of the quadrature doesn’t influence the relative error on the estimation of Sr,c.
Consequently, in the next test, the quadrature is fixed (S;) and the relative error of the source
term is computed for the three numerical schemes. Fig. 4.23 represents the relative error versus
the molar concentration of water vapor. As we noticed previously, the relevant parameter that in-
fluences the solution accuracy is the optical thickness which is directly related to the water vapor
molar fraction X g,o. The sensitivity of the solution accuracy to the molar fraction of water vapor
is illustrated in Fig.*4.23. A very small discrepancy between the three schemes is observed, with
a relatively better accuracy of the DMFS. Altogether, the accuracy level is much better than what
could be feared on the basis of preceeding analysis. As the medium is isothermal, the radiative ex-
changes with the walls are the only relevant ones. They occur at a long distance, which means that
the line wings of the spectrum contribute more than the centers of the lines where complete extinc-
tion rapidly occurs. This means that the frequencies at which most of the radiative exchanges take
place correspond to small and moderate optical thicknesses. Strong relative errors are undoubtly

For small molar fractions (X = 0.01), the exponential scheme could not provide an acceptable physical solution
because of the sign of the intensity which is negative.
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FiG. 4.23 — Relative Error for S, ¢ at the center of the sphere using the medium grid : case of an
isothermal gaseous medium (H2O/N53)

made at line center frequencies, but they do not appear in the spectral integrated results because
the line center contributions are very weak.

Finally, the last figure Fig.4.24 deals with a very thick medium where soot particles are added to
water vapor and nitrogen, taking into account a very high soot volumetric fraction f, = 10~°. The
total absorption coefficient is expressed by x; = Kij gas + Ki,soot With [80] :

Ki soot = 9.0 ful; (4.75)

where f, stands for the soot volumetric fraction and v; is the wave number taken at the center of
a narrow number. As soot radiation becomes dominant, the medium tends to become thick and
gray. Then, the results obtained in Fig. 4.24 show big discrepancies between the three schemes
which confirm the trends of the relative error for S. observed in the first cylinder test case and a
good behavior of the DMFS. In this case, because of soot, the absorption coefficient is increased
to similar levels at line centers and at line wings. All the frequencies contribute similarly to the
estimation of the exchange with the wall, consequently we can use similar explanations than those
made in the gray case.

Altogether, these results only confirm that the code is available with satisfactory accuracy le-
vels for well mixted combustion chambers, where the gas volume can be considered as quasi-
isothermal, with moderate soot concentration levels. It has been shown in the previous section
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FIG. 4.24 — Relative Error for S, ¢ at the center of the sphere using the medium grid : case of an
isothermal mixture of gas and soot (H,O/N, and f, = 107>

that, in non-isothermal media, the main exchanges contributing to the radiative source term eva-
luation are the exchanges with the gas at short or intermediate distance. Therefore, a final interes-
ting test case considering the spherical enclosure containing non-isothermal and non-gray medium
is necessary but is not presented here because no analytical solution is available. A Monte-Carlo
calculation is presently being performed, that will serve as a reference solution for an extension
present analysis.

4.8.3 Conclusion

Nous avons développé un code permettant d’utiliser la méthode aux ordonnées discrétes sur
des maillages non structurés, puis nous I’avons validé en effectuant divers cas tests. Cette étude
a montré que I’épaisseur optique du milieux était le principal facteur influencant la précision des
trois schémas de derivation et ceci étant dd a I’approximation en volumes-finis (cf. Annexe B)
faite par les DOM.

Le schéma exponentiel, le schéma DMFS et le schéma Step donnent des solutions trés proches
I’une de I’autre et en accord avec les solutions de référence, quand I’épaisseur optique est moyenne
ou faible. Par ailleurs, la précision obtenue devient médiocre quand on augmente I’épaisseur op-
tique du milieu jusqu’a des ordres de grandeurs qui sont ceux des amplitudes des centres de raies
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des gaz de la combustion. Dans ces conditions extrémes le modele DMFS fournit la meilleure
précision.

Dans le cas de spectres de gaz réels, nous avons rencontré beaucoup moins de difficultés pour
obtenir une précision acceptable que I’avait laissé présager I’étude menée en milieu gris. Cela est
dd au fait que, dans le cas test effectué, des effets de saturation apparaissent aux fortes amplitudes
de x correspondant aux centres de raies. Dans le cas de I’étude menée sur la géométrie acade-
mique qu’est la sphére en prenant en compte un modéle de rayonnement des gaz, la plupart des
échanges avec les parois ont lieu a des fréquences correspondant aux faibles valeurs de «, ou les
trois schémas sont tous performants. Cette conclusion n’a été validée que pour des configurations
de milieux fortement homogenes, telles que celles rencontrées dans des chambres de combustion
en écoulement parfaitement mélangé. Nous avons aussi mis en évidence que le « ray effect » peut
avoir une forte influence sur I’estimation des flux nets aux parois.
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Chapitre 5

Application a des configurations reelles en
combustion turbulente

L’ impact du rayonnement sur la combustion a deja été reconnu et suscite un vif intérét au ni-
veau industriel. Actuellement, de nombreux projets d’études sont orientés vers la prise en compte
des transferts radiatifs dans les systémes complexes. Nous avons pu développer un module de
calcul des transferts radiatifs pour des codes de combustion turbulente en maillage non structuré.
Une premiére étude, présentée dans ce chapitre nous a permis de tester les performances du mo-
dule radiatif et d’estimer les différents paramétres pouvant influencer le degre de précision d’une
solution. L’objectif est de trouver un équilibre acceptable entre temps de calcul et précision tout
en acquérant une totale maitrise de I’outil développé. Une seconde étude, nous a permis de mener
une premiere investigation sur la faisabilité d’un couplage rayonnement/combustion turbulente
dans le cas d’une géométrie réelle complexe. Nous présentons dans ce chapitre ces deux études et
les premiéres conclusions faites a la lumiére des résultats obtenus.

5.1 Etude des performances du code en configuration réelle

Cette étude est basee sur les résultats de simulations numériques menées dans le cadre du
programme de recherche lié au projet europeen ICLEAC (Instability Control for Low Emis-
sion Aero Combustors) mené conjointement par (partenaires : SNECMA, Turbomeca, CERFACS,
EM2C, Rolls Royce, .. ). Les résultats nous ont été fournis par le CERFACS.

Dans les systemes de combustion tels que les propulseurs de I’aéronautique, les réactifs sont ame-
nés séparément par des injecteurs situés en amont de la zone réactive. Les injecteurs doivent
produire rapidement un mélange homogene et propice a la combustion. Une flamme turbulente
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F1G. 5.1 — Maquette de la chambre de combustion non prémélangée ICLEAC (Laboratoire EM2C,
B.Varoquié)

partiellement prémélangée se stabilise en aval. La LES offre la possibilité d’évaluer le comporte-
ment instationnaire de la flamme, déterminant pour la prédiction des instabilités en combustion.

Les calculs radiatifs que nous proposons dans cette premiere étude sont effectués a partir d’une
solution instantanée issue d’une simulation LES obtenue par le code AVBP! du CERFACS. Cette
configuration nous permet de mener une étude des performances du code radiatif DOMASIUM
dans le cas d’un milieu fortement inhomogene et non isotherme. Bien qu’elle ne soit pas com-
plexe d’un point de vue géométrique, cette configuration présente des gradients de température et
de concentrations d’espéces rayonnantes moins simples que ceux modélisés lors de la phase de
développement du code (cf. 84.8.2.2) et plus représentatifs du type de probléme ciblé.

5.1.1 Application & une chambre de combustion expérimentale

La configuration est celle d’une chambre de combustion dont la geométrie a été spécifiée pour
une comparaison directe expérience/simulations. L’installation expérimentale localisée a I’Ecole
Centrale de Paris (cf. Fig.5.1.1) a servi de base d’étude de la combustion partiellement prémé-
langée pour la thése de B.Varoquié [161]. Le fuel est injecté par I’intermédiaire de deux fentes

http://ww. cerfacs.fr/cfd/
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F1G. 5.2 — Représentation 2D de la chambre de combustion (Dimensions exprimées en millimeétre)

Plan z=0.01 m
Plan z=0.02 m
Plan z=0.04 m
Plan z=0.06 m
Plan z=0.07 m

FI1G. 5.3 — Zones de modélisation des transferts radiatifs : Plans de coupe selon z
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(visibles de face sur la figure Fig.5.1.1) dans un écoulement principal d’air. Les instabilités de
I’écoulement permettent de réaliser un prémélange partiel dans la chambre. Un élargissement
brusque au niveau du plan d’injection permet de stabiliser la flamme. La chambre de combustion
est parallélépipedique afin de faciliter les diagnostics expérimentaux et de simplifier les simu-
lations numériques. Elle mesure 0.30 m x 0.10 m x 0.08 m. Le dispositif est muni de hublots
latéraux résistants aux hautes tempeératures et de parois en béton réfractaire assurant une certaine
adiabaticité du systeme. La solution numérique instantanée qui nous a été fournie par K. Truffin
du CERFACS correspond a un écoulement de Propane/Air adiabatique et compressible a pression
atmosphérique. La richesse globale de la flamme est proche de la steechiométrie (1 45, = 65 g.5*
et mpropane = 4.5 9.571). Les gaz frais sont injectés a la température ambiante c’est a dire 298 K.
Les résultats expérimentaux ayant montré une symétrie de la flamme par rapport a un plan hori-
zontal situé entre les deux injecteurs de propane, les simulations numériques n’ont été effectuées
que sur la partie supérieure de la configuration. Nous montrons a la figure Fig.5.4 les profils de
température et de concentration d’especes chimiques rayonnantes (H,O, C'O, et CO) obtenus sur
le plan vertical situé en z = 0.04 m. D’un point de vue radiatif, nous ne modelisons que cette
demi-chambre supérieure et sans injecteurs, ce qui réduit la géométrie a un simple pavé droit de
0.30 m x 0.05m x 0.08 m. La symétrie qui justifie une telle réduction du probléme pour la CFD
ne marche pas pour le rayonnement - a moins de considérer une réflexion spéculaire a I’interface
or le code DOMASIUM ne considere que la réflexion diffuse a I’heure actuel - mais I’objectif de
ce calcul est de pouvoir tester les potentialités du code. Pour des raisons de compatibilité avec
DOMASIUM, la solution instantanée a également été interpolée sur deux maillages différents :
I’un composé de 68000 tétraédres, que nous appellerons « maillage F1 » et I’autre de 138000
tétraedres, qui sera le « maillage F2 » .

5.1.2 Analyse du probléme radiatif

Nous montrons a la figure Fig.5.5 le terme de production chimique (ou dégagement de cha-
leur obtenu par réaction chimique) obtenu sur le maillage F2 en cing plans verticaux paralléles
(z=00Im, z =0.02m, z = 0.04m, z = 0.06 m et z = 0.07 m). L’aspect tridimensionnel
de I’écoulement est visible par les fluctuations observées sur les cing coupes effectuées. En effet,
B.Varoquié a pu estimer lors des tests de prototypes de la maquette que les variations de vitesse
longitudinale suivant la profondeur z de la chambre sont de I’ordre de 10%, entrainant un plisse-
ment de la flamme dans cette direction. Nous avons aussi effectué un calcul du terme d’émission
radiative pour chaque cellule de ce maillage (cf. Fig.5.6), correspondant a un calcul par modéle
OTL pour cette configuration. Seule la prise en compte d’un terme de luminance de paroi fait
défaut pour avoir un modéle OTL complet, mais ce terme peut étre considéré comme négligeable
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F1G. 5.4 — Profils de température et d’especes rayonnantes dans la chambre de combustion sur le
plan z = 0.04 m
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F1G. 5.5 — Solutions sur les cing plans paralléles (cf. Fig.5.1.1) obtenues en utilisant le maillage a
Neeiutes = 138000, une quadrature LC1; et Ny,qq = 5 : Production chimique de la flamme P .,
(W.m—3)
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F1G. 5.6 — Solutions sur les cing plans paralléles (cf. Fig.5.1.1) obtenues en utilisant le maillage a
Neeitutes = 138000, une quadrature LC'q et Ny,qq = 5 : Emission radiative £ (W.m—3)
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F1G. 5.7 — Solutions sur les cing plans paralléles (cf. Fig.5.1.1) obtenues en utilisant le maillage a
Neetutes = 138000, une quadrature LC; et Ny,q.q = 5 @ Terme source radiatif S, en prenant des
parois refroidies a 700 K (W.m—3).
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F1G. 5.8 — Profils de S. (W.m—3) sur les cing plans paralléles (cf. Fig.5.1.1) en prenant des parois
adiabatiques et en utilisant une quadrature LC4; et Ny,.q = 5 sur le maillage F2.
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F1G. 5.9 — Profils de S. (W.m—3) sur les cing plans paralléles (cf. Fig.5.1.1) en prenant des parois
adiabatiques et en utilisant une quadrature Sy et N,,.q = 5 sur le maillage F2.
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F1G. 5.10 — Profils de S. (W.m—3) sur les cing plans paralléles (cf. Fig.5.1.1) en prenant des
parois adiabatiques et en utilisant une quadrature .Sy et N,,,q = 5 sur le maillage F1.
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FiG. 5.11 — Profils de S. (W.m—3) sur les cing plans paralléles (cf. Fig.5.1.1) en prenant des
parois adiabatiques et en utilisant une quadrature Sy et N,,,q = 3 sur le maillage F2.
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par rapport aux amplitudes du terme source .S, observés pour une température de paroi inférieure
a 500 K. Le terme d’émission pure est toujours positif ou nul.

Nous avons modélisé deux types de conditions limites radiatives différentes. Dans un premier cas,
nous avons modélisé un systéme ayant les parois refroidies a 700 K telles qu’elles devraient I’étre
dans un systeme réel (Fig.5.7). Le terme source radiatif obtenu dans cette configuration est du
méme ordre que le terme d’émission correspondant. Dans un second cas, nous avons utilisé les
températures de parois fournies par le code de combustion, celui-ci ayant considéré que le sys-
téme étudié est adiabatique (Fig.5.8). En comparant ce résultat a I’émission pure (Fig.5.6), nous
voyons que le phénomeéne de réabsorption du rayonnement thermique diminue fortement le terme
source radiatif correspondant. Il apparait donc que la flamme recoit une grande quantité d’énergie
radiative provenant des parois et que le phénomene de réabsorption directe du rayonnement émis
par la flamme n’est pas prépondérant. En retour, les flux rayonnés par la zone réactive modifient
les températures de parois. A cela s’ajoute le fait que, dans les configurations réelles, les parois ne
sont pas noires mais grises (émissivité différente de 1). Le flux radiatif provenant des parois est
alors changé en conséquence, mettant en place un réel couplage via les parois. Une modélisation
des bonnes conditions limites s’avére nécessaire et déterminante.

Comme le milieu est optiqguement mince (forte influence des parois), un modéle OTL pourrait
étre suffisant pour rendre compte des pertes radiatives dans cette configuration. Cependant, les
températures de parois observées ne sont pas homogénes et induisent une dépendance spatiale des
luminances de paroi. Ceci ne rend pas I’utilisation du modéle OTL aussi aisée que dans le cas de
la flamme & jets opposés, posant le probleme de la variation angulaire du rayonnement provenant
des parois.

Le terme source radiatif pour le cas a parois adiabatiques est représenté en fonction des dif-
férents parametres qui gérent le modéle de rayonnement des gaz : température et concentration
d’especes rayonnantes sur les Fig.5.12 et Fig.5.13. Cette représentation montre la non-linéarité
de la dépendance du terme source a ces parametres. Cela rappelle qu’en chaque point les condi-
tions environnantes sont tres importantes pour estimer le terme source radiatif qui ne doit pas
étre basé uniquement sur les propriétés locales en chaque cellule. Un calcul radiatif complet est
donc nécessaire pour chaque solution instantanée. Comme pour la flamme monodimensionelle,
une stratégie basée sur une formulation en puissance nettes échangées avec calcul des sensibilités
serait possible. Cependant, bien que les moyens informatiques aient progressé de maniére phéno-
ménale au cours des dix derniéres années, un couplage complet n’est pas encore envisageable en
trois dimensions, surtout pour des maillages aussi denses que ceux de la CFD.
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F1G. 5.12 — Dépendance de S, en fonction de la température et des concentrations d’espéces

rayonnantes
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Effet de la quadrature angulaire
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F1G. 5.14 — Effet de la reduction du nombre de points de quadrature spectral par bandes comparée
a I’effet de I’augmentation du nombre de directions de la quadrature angulaire : Ecart relatif en %
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Maillage Quadrature Angulaire | Quadrature spectrale | Figure
F1 (138000 cellules) | LC,; (96 directions) Nyuad =5 Fig.5.8
F1 (138000 cellules) | S4 (24 directions) Nyuad =5 Fig.5.9
F2 (68000 cellules) S, (24 directions) Nyuad =5 Fig.5.10
F1 (138000 cellules) | S4 (24 directions) Nywaa =3 Fig.5.11

TAB. 5.1 — Différents algorithmes testés avec DOMASIUM

5.1.3 Influence des parametres de calculs de DOMASIUM

Nous avons testé quatre algorithmes de transfert radiatif disponible dans DOMASIUM, repré-
sentés dans le tableau 5.1. L’influence du nombre de cellules a également été testée en sachant
gu’un maillage grossier, ayant donc des cellules de volume supérieur, conduit a de plus grandes
épaisseurs optiques pour chague cellule. Nous testons aussi I’effet de la quadrature angulaire (ray
effect) en effectuant les calculs avec une quadrature S, (bon compromis entre temps de calcul
et estimation acceptable des flux) et la quadrature angulaire LC' {; proposée par Koch [74]. Nous
avons aussi changé le nombre de points de quadrature permettant de représenter une bande étroite
du spectre (cf. 84.6). Nous utilisons habituellement cing points de quadrature. Nous avons donc ef-
fectué un calcul en ne prenant que trois points de quadrature, accélérant ainsi le calcul d’un facteur
5/3. Nous représentons ainsi les fortes, moyennes et faibles amplitudes de coefficient d’absorp-
tion. Les résultats obtenus sont affichés pour les cing plans verticaux paralléles (z = 0.01 m,
z=0.02m, z =0.04m, z = 0.06 met z = 0.07 m) et présentés aux figures répertoriées dans le
tableau 5.1.

Globalement, I’influence des différents parameétres est négligeable. Les zones ou le terme source
est négatif correspondent a des zones ou I’on apporte de I’énergie par rayonnement. Dans cette
situation, nous remarquons que ces zones correspondent a des zones tres réactives au voisinage du
front de flamme (Fig.5.5). Plus particuliérement, dans le plan z = 0.04 m (a comparer avec ceux
de la figure Fig.5.4), la zone chaude (a la sortie de la chambre) contient des espéces rayonnantes
a des températures inférieures a 1300 K. Le terme de luminance émise correspondant est faible
dans cette zone. Un couplage serait donc nécessaire pour déterminer I’'impact du phénomene de
réabsorption sur la cinétique chimique dans cette région (ex : transformation du CO en CO2).
L’utilisation d’un maillage grossier n’a pas de grande influence sur le calcul. Les écarts relatifs
entre les solutions obtenues en changeant les quadratures angulaire et spectrale sont illustrées sur
la Fig.5.14.

Le ray effect étant d’autant plus prononcé quand I’épaisseur optique est faible, nous pouvons esti-
mer que la quadrature S, a donné des résultats intéressants. Les zones ou la quadrature angulaire
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joue un réle important (> 15% d’écart) sont principalement des zones ou le terme source est faible
en valeur absolue ou des zones proches des parois. Sur le plan de I’intégration spectrale, le nombre
de points de quadrature utilisé par bande étroite ne semble pas vraiment influent. Cependant cer-
taines zones ou I’écart observé est supérieure a 15% correspondent a des zones ou le terme source
radiatif est négatif et élevé en valeur absolue. Cela signifie que le modele est moins précis dans
ces zones proches du front du flamme.

Les flux radiatifs incidents obtenus aux parois latérales (paroi Sud a la figure Fig.5.15 et paroi
Nord a la figure Fig.5.17) et a la paroi supérieure (Fig.5.16) montrent une faible influence de la
réduction du nombre de points de quadrature spectrale et confirme le besoin d’utiliser des qua-
dratures angulaires adéquates, c’est a dire avec suffisamment de directions discrétes, quand on
observe les phénomenes aux parois. En effet, les profils obtenus en utilisant la quadrature L(i,
sont plus réalistes et plus homogeénes. Le « ray effect » est particulierement remarquable aux pa-
rois Nord et Sud. Ceci confirme les observations faites au chapitre précédent concernant les flux
aux parois. Il est nécessaire d’utiliser une quadrature suffisamment efficace pour bien estimer ces
flux. Nous recommandons la quadrature LC'{; pour obtenir des solutions acceptables moyennant
des temps de calcul quatre fois supérieure. Toutefois, nous faisons remarquer que, si le temps de
calcul n’est pas une contrainte pour un utilisateur voulant calculer les flux au parois avec plus de
précision, les quadratures 7y et polaires azimutales présentent I’avantage de pouvoir utiliser de
fagcon simple un nombre de directions discrétes supérieur a la centaine.

5.2 Combustion turbulente et rayonnement

Quelques travaux cherchant a modéliser les transferts radiatifs en combustion turbulente ont été
menés par le passé [65]. Dans la plupart de ces études, le calcul radiatif était effectué a partir de
données moyennées, a des pas de temps supeérieurs a ceux de la CFD. La modélisation du couplage
rayonnement/combustion dans des écoulement turbulents requiert une modelisation de I’interac-
tion turbulence/rayonnement (TRI). Cette interaction entre le rayonnement et la turbulence a été
abordé par Modest et al. [81, 108, 112] dans I’optique de mieux comprendre le probléme et d’es-
timer ses effets d’un point de vue théorique. Récemment, Ripoll [134] a proposé une discussion
portant sur la proposition de modéles de fermeture adaptés pour la variance des grandeurs radia-
tives. Le probleme de la prise en compte de la TRI est soulevé mais reste encore irrésolu a I’heure
actuelle. Nous proposons ici un calcul radiatif sur une géométrie de chambre aéronautique pour
laguelle un calcul LES instationnaire a été réalisé. La comparaison avec une solution moyennée
donne quelques indications sur les effets de I’interaction combustion turbulente/rayonnement.
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FiG. 5.15 — Profils de flux radiatif incident /., (WW.m~2) recu aux parois : Paroi latérale Nord



170 Application & des configurations réelles en combustion turbulente
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FiG. 5.16 — Profils de flux radiatif incident /,, (W.m~2) recu aux parois : Paroi latérale sud
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FIG. 5.17 — Profils de flux radiatif incident /., (WW.m~2) recu aux parois : Paroi supérieure
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F1G. 5.18 — Configuration et maillage de PRECCINSTA
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FiG. 5.19 — Isosurface a 7' = 1400 K de la chambre PRECCINSTA

5.2.1 Application a une chambre de combustion industrielle

La configuration utilisée pour cette étude est celle d’une de chambre de combustion dévelop-
pée dans le cadre du projet européen PRECCINSTA (partenaires : ALSTOM Power, Turbomeca,
CERFACS, CNRS, EDF, ENEL, Rolls Royce, ..) et représentée a la figure Fig.5.18(a). Cette confi-
guration a été choisie a cause des fortes instabilités qu’elle présente dans la zone de la flamme.
Dans le dispositif expérimental, le fuel est injecté par un swirler dans un écoulement d’air pro-
venant du plenum. Le mélange se faisant trés rapidement, I’écoulement arrivant dans la chambre
est considéré comme étant parfaitement prémelangé. Le fuel utilisé est du méthane. Son débit en
entrée est de 0.5 g.s~! et le débit d’air provenant du plenum est de 12.33 ¢.s~!, ce qui donne une
flamme de richesse globale ® , = 0.7. La température du mélange arrivant dans la chambre de
combustion est de 300 K. Les calculs ont été réalises au CERFACS avec le code AVBP.

Nous montrons a la figure Fig.5.19 une représentation 3D de I’isosurface de température a 1400 K.

5.2.2 Influence de la turbulence sur le rayonnement thermique

Nous avons modélisé les transferts radiatifs uniquement a I’intérieur de la chambre de com-
bustion. Le maillage utilisé (cf. Fig5.18(c)) est constitué d’environ 270000 tétraedres. Nous avons
considéré les parois comme étant noires et conservé les températures de parois fournies par le code



174 Application a des configurations réelles en combustion turbulente

de combustion afin de mieux observer I’influence de la turbulence sur le phénomene d’absorption.
Pour des raisons de temps de calcul, nous avons préferé utiliser une quadrature angulaire Sy, en
supposant que les différentes solutions de champs radiatifs sont affectées de la méme fagon par
le « ray effect ». Notre précédente étude sur la configuration /CLEAC a montré que I’influence
de la quadrature angulaire sur le profil de terme source était relativement faible mais qu’elle était
plus marquée aux parois. Le nombre de points de quadrature pour chaque bande étroite du modéle
spectral est Nyyqq = .

Nous avons utilisé le code DOMASIUM pour calculer les champs radiatifs a six instants différents
a partir de six solutions instantanées obtenues par LES et réparties sur une période de 4 ms. Nous
noterons donc S,.(7°(¢;), X;(t;)) le terme source radiatif calcule a chaque instant ¢, a partir de la
température et des concentrations d’espéces rayonnantes (notées X,) a cet instant. Nous avons pu
calculer a partir de ces solutions instantanées de champ radiatif un profil de « terme source radiatif
moyenné » tel que :

Sy =< ST(T(tj)sz‘(tj)) > (5.1)

Ce terme source moyenné est comparé au terme source calculé a partir d’une solution moyennée
de cet écoulement sur la période considérée. Nous appellerons « terme source moyen » le terme
source radiatif correspondant a ce calcul :

Sr,moyen = S?"(< T(t]) >, < Xl(tj) >) (52)

De la méme fagon, nous déterminons H,, le flux incident aux parois moyenné sur les six instants
et Hy moyen 1€ flux incident aux parois obtenu par le calcul effectué en utilisant les champs de
données moyennées.
Nous ne représentons ici que les profils radiatifs obtenus pour les deux premiéres solutions ins-
tantanées (t = 0.0450s et ¢ = 0.0454s). La figure Fig.5.20 montre les profils de $ pour le plan
vertical y = Om et le plan horizontal z = Om. Le profil de terme source est trés influence par la
turbulence. Les profils pris a deux instants successifs peuvent étre totalement différents puisque
I’écoulement qui les génére est tres turbulent. Nous remarquons que la zone proche de la sortie
de la chambre est trés homogéne et présente des termes sources radiatifs proches de zéro. Cela
signifie que le domaine est relativement homogéne et isotherme. Les échanges volumes-volumes
sont alors prépondérants dans cette zone et le bilan radiatif local en chaque point de cette zone est
trés faible (la puissance nette échangée entre deux zones identiques est nulle).

Les figures Fig.5.21 et Fig.5.22 montre les profils de flux radiatif incident aux parois de la
chambre de combustion (Sud, Nord, Bas et Haut), correspondant aux deux mémes instants. Les
profils de flux au parois different moins que ceux du terme source. Cela est d0 au fait que les
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F1G. 5.20 — Termes source radiatif instantanés S,
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F1G. 5.21 — Flux radiatif incident instantané H,, regu aux parois Sud et Nord
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F1G. 5.22 — Flux radiatif incident instantané H,, regu aux parois Bas et Haut
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échanges entre parois chaudes sont prépondérants et ont tendance a masquer I’impact des fluctua-

tions du rayonnement provenant de la flamme. Les dimensions de cette configurations étant du
méme ordre que celle de la configuration /CLEAC' le rayonnement des parois joue un role du
méme ordre.

A la Fig.5.23, une comparaison du terme source radiatif moyenné S,., obtenu sur les six instants,
avec le terme source moyen S, ..oy, Obtenu a partir de champs données moyennées, montre des
solutions du méme ordre de grandeur surtout dans les zones de forte émission ou le bilan radiatif
est positif (maximum de I’ordre de +100kW). Toutefois la solution moyennée présente des zones
trés absorbantes ou le terme source peut étre de I’ordre de —700 kW alors que celles correspondant
au terme source moyen n’excede pas les —500kW. Globalement, nous faisons une surestimation
du terme source radiatif en utilisant les champs de données moyennées pour modéliser les trans-
ferts radiatifs. L’écart relatif entre les deux termes sources radiatifs a été calculé et représenté en
fonction de I’amplitude du terme source moyenné (cf. Fig.5.26(a)). Les écarts observés sont trés
grands.

Une comparaison identique a été faite sur les flux aux parois Sud, Nord et aux parois inférieure

et supérieure (cf. Fig.5.24 et Fig.5.25). Elle montre que le flux radiatif incident moyen H ., ,open
aux parois différe peu de du flux radiatif incident moyenné H ,,. Pour chaque face la plage sur
laquelle varient ces flux est identique : entre 6.45 10 6 et 7.35 10° . Une représentation de I’écart
relatif entre ces deux grandeurs est faite en fonction de I’amplitude de H,, (cf. Fig.5.26(b)). Elle
confirme que I’on ne commet pas vraiment d’erreur sur le flux regus aux parois en le calculant a
partir des champs de données moyennées. Ceci est consistant avec le fait que le flux incident aux
parois n’est pas principalement di a la flamme mais aux autres parois et aux zones de gaz brales
pres de la sortie de la chambre. Ces zones étant peu fluctuantes le flux re¢u aux parois varie peu
et les données moyennées suffisent a le calculer.
Cette étude montre que le rayonnement est couplé de fagon non-linéaire avec la combustion et que
I’utilisation de champs moyens conduit a des erreurs sur I’estimation du rayonnement. Le rayon-
nement étant un phénomene beaucoup plus rapide que la combustion, ses effets sur la cinétique
chimique et la dynamique du systéme sont immédiats. Une attention particuliere doit étre appor-
tée a la facon de prendre en compte ces effets. Il est necessaire de calculer les champs radiatifs
instantanés pour effectuer un couplage de qualité avec la combustion.

5.3 Conclusions

Nous avons montré I’efficacité du code DOMASIUM pour le calcul radiatif dans des chambres
de combustion en géométrie complexe et sur des maillages non structurés. Le code est capable
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de calculer les flux aux parois et le champ de terme source radiatif pour une solution donnée de

combustion turbulente. Un résultat intéressant concernant les flux aux parois est qu’il est possible

d’obtenir une meilleure précision en augmentant simplement le nombre de direction discrétes dans
I’algorithme. D’autre part nous avons confirmé que le couplage combustion rayonnement requiert
une prise en compte des fluctuations turbulentes, ce qui nécessite en théorie un calcul radiatif com-

plet a chaque instant et a partir des valeurs locales des variables température et concentrations. Les
calculs présentés dans ce chapitre utilisent des valeurs filtrées (au sens LES) de ces variables, ne
prenant en compte que les fluctuations (spatiales et temporelles) de grande échelle : la question

du couplage a petite échelle et de son impact sur le résultat global reste posée. Il est nécessaire
a priori d’utiliser un modele de « sous-maille » pour ce couplage mais de tels modeles sont en-
core a développer et a valider. En ce sens, I’utilisation d’un modele OTL couplé avec la DNS
peut étre d’une grande aide. Cependant, cette approche ne permettra pas d’étudier le phénoméne
d’absorption qui, comme on I’a déja vu, n’apparait que dans les systemes de grande dimension.
Enfin, méme a grande échelle, les temps de calcul obtenus ne permettent pas encore d’envisager
le couplage direct. Au court de notre étude nous avons pu observé que les temps de calculs est
fonction du nombre de processeurs sur lesquels le calcul est parallélisé et du type d’architecture
de ces processeurs. Chaque calcul effectué sur la configuration PRECCINSTA (270000 tétraedres
I Sy | Nyuaa = 5) @ duré en moyenne 2h30min sur 8 processeurs soit un volume horaire équi-
valent & 20A de calcul. Par comparaison, pour cette méme configuration, une itération du calcul
de combustion par LES correspondant a un calcul instantané prend une dizaine de seconde. Il est
nécessaire de réduire fortement le temps de calcul radiatif. Une grande partie du temps de calcul
est consacrée a I’intégration spectrale qui représente plus de 1600 calculs monochromatiques. Il
est donc nécessaire de proposer des modeéles de rayonnement des gaz plus simples que le modele
SNB-ck. Celui-ci pourra servir de référence dans une telle démarche.

Pour mieux estimer si les échanges gaz/parois sont prépondérants ou pas (nous avons notamment
observé deux configurations qui semblent différentes de ce point de vue), il serait intéressant de
calculer les puissances nettes échangées (PNE) entre un élément de volume et le reste du sys-
téme, gaz et parois. Ce calcul pourra étre effectué par une méthode Monte Carlo en utilisant le
code CASIMIR développeé par Patrice Perez au sein de notre laboratoire [122]. Il peut déja four-
nir I’information sur la puissance nette échangée entre un point et I’ensemble des parois et sur la
puissance nette échangée entre ce méme point et le reste du volume de gaz. Ce code est en cours
d’adaptation aux géométries utilisées par DOMASIUM. Il pourra aussi effectuer des calculs de
contréle en un point du systéeme pouvant donné lieu a des tests de validation des solutions obte-
nues par DOM.
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Chapitre 6
Conclusions et Perspectives

Dans cette these, nous avons cherché a obtenir les premiers éléments nécessaires a la mise en
place du couplage entre la combustion et le rayonnement. Nous nous sommes placés a deux ni-
veaux d’analyse différents : une géométrie simplifiée et une description détaillée des phénomenes
physiques nous a permis

de mieux appréhender le phénoméne du couplage entre le rayonnement et la cinétique chi-
mique ; parallelement, un code (DOMASIUM) permettant de calculer le rayonnement dans des
géométries complexes tridimensionnelles a été développé en vue d’un couplage avec les codes de
combustion. Le code DOMASIUM est base sur une extension aux maillages non structurés de la
méthode aux ordonnées discretes. Il prend en compte le rayonnement des gaz de combustion par
un modele statistique a bandes étroites en k-corrélés. A I’heure actuelle, ce code permet de calcu-
ler les flux aux parois et les champs de termes sources radiatifs, par post-traitement des solutions
instantanées du code de combustion AVBP du CERFACS.
La fiabilité de I’outil a été confirmeée par une campagne de validation sur des configurations aca-
démiques. Une étude menée sur I’efficacité de différents schémas de dérivation spatiale a montré
que la diffusion numérique qui apparait aux fortes épaisseurs optiques est intrinséquement liée a
I’approche en volumes finis de la méthode aux ordonneées discretes. Les résultats montrent que le
schéma DMFS permet le meilleur compromis entre flexibilité (utilisation en maillage hybride) et
simplicité (faible colt en temps de calcul).
Les premieres applications du code DOMASIUM a des configurations de combustion turbulente
proposées par le CERFACS ont montré la forte influence des températures de parois sur les trans-
ferts radiatifs. Il est donc nécessaire de porter une attention particuliere au probléme des conditions
limites, qui doivent étre compatibles entre le modele de combustion turbulente et le modale radia-
tif.
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Une étude de I’influence de la turbulence sur le rayonnement a confirmé que les transferts radia-
tifs etaient tres dépendants des fluctuations de température et de concentrations. Si on envisage
un couplage direct avec la combustion turbulente, le rayonnement devra étre calculé en théorie a
chaque incrément en temps de la simulation de la combustion. En pratique il sera nécessaire de
développer des stratégies plus économiques, ou le calcul radiatif complet sera fait a une fréquence
moindre. Toutefois on a pu voir que dans certaines configurations, les flux aux parois sont moins
sensibles a la turbulence et sont correctement estimés a partir des champs de données moyennés.

Une étude paramétrique de la flamme monodimensionelle a jets opposés a pu étre menée grace
a un outil numérique permettant de modeliser de maniére grossiére (OTL) ou fine (TLM) le cou-
plage entre les transferts radiatifs et la cinétique chimique en combustion laminaire. Cette étude
nous a montré que pour des flammes riches et/ou faiblement étirées le transfert radiatif devenait
un phénomene énergétique prépondérant et que I’hypothése de flamme adiabatique n’était plus
valable. Cependant le phénomene de réabsorption reste faible pour des flammes de cette dimen-
sion.
Ce dernier point est important pour la modélisation des phénomenes radiatifs aux petites échelles,
telles que celles rencontrées en Simulation Numérique Directe (DNS). Ainsi pour le calcul radiatif
en DNS, il est quasiment inutile de prendre en compte le phénomeéne de réabsorption et un modele
tel que le modale OTL est suffisant pour étudier le probleme rayonnement/turbulence. En effet ce
modele permet d’estimer L, , et «, en prenant en compte les fortes variations de température et
de concentration qui existent a toutes les échelles de la turbulence, ces deux grandeurs radiatives
étant uniquement fonction des propriétés thermodynamiques et chimiques a I’intérieur d’un éle-
ment de volume.
Cependant nous avons vu que, méme si elle reste faible, I’erreur commise sur les températures
calculées avec I’approximation du milieu mince conduit a des erreurs significatives sur les concen-
trations de NO,. Lorsqu’il s’agit de calculer ces concentrations il devient nécessaire, méme pour
les flammes laminaires isolées de petites dimensions obtenues aux faibles taux d’étirement, de
prendre en compte le phénoméne de réabsorption.

Ces premiers résultats nous ont donné une premiére information sur la fagcon dont pourra étre
abordée la modélisation de la combustion instationnaire dans des géomeétries réelles en prenant
en compte les phénomenes radiatifs. Nous avons montré en particulier I’importance du couplage
direct instationnaire. Cependant, ce couplage entre le code radiatif DOMASIUM et le code de
combustion AVBP n’est pas envisageable en I’état actuel. Au niveau du calcul radiatif, le pro-



187

bléme du colt en temps de calcul se pose encore. Un gain certain devrait étre obtenu en travaillant
sur I’aspect spectral du probleme. Pour traiter le rayonnement des gaz de combustion, nous avons
utilisé un modale approché réalisant un bon compromis entre temps de calcul et précision (modéle
SNB-ck). Ce modeéle peut étre encore accéléré sans sacrifier a la précision du résultat, comme le
montrent de nombreux travaux dans la littérature. L’impact de I’utilisation de modéles spectraux
plus grossiers doit également étre précisé. A titre d’exemple, nous estimons que I’utilisation d’un
modéle WSGG (Weighted-Sum-of-Gray-Gas) permettrait de réduire le temps de calcul d’un fac-
teur 500, ce qui le rapproche du temps de calcul d’une solution instantanée de la combustion.

Suite a la thése de Patrice Perez (EMAC, 2003), des travaux portant sur la modelisation des
transferts radiatifs par la méthode Monte Carlo dans des géométries complexes sont actuellement
en cours dans le laboratoire. Ces travaux sont complémentaires a I’approche DOM et permettront
de valider les diverses approximations faites par cette méthode (quadratures angulaires et schémas
de discretisation spatiale) en fournissant des solutions de référence. L’automatisation d’une pro-
cédure de validation par Monte Carlo en calcul stationnaire sous la forme d’un contréle final est
intéressante et envisageable aujourd’hui.
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Annexe A

The condition of negative Intensity obtained
with the Mean Flux Scheme

From Equation (27), we obtain L p in the center of the grid at point P :

OzKJVLbJD - Z Dz‘jAij
D¢j<0

J
Dij>0

Lp= (A1)

While L; > 0 and D;; < 0, Lp will be always positive. As the sum at the numerator is performed
with D,; < 0, we consider that, while L; > 0 at the incoming faces, Lp > 0 at the center of the
grid. The intensity is always positive at the boundary conditions of the wall.

Lp=aLy:+ (1 —a)L;, (A.2)

where :

> DyAL

Dij <0

Lin= ———— (A3)
> Di;
D;;<0
and
> DyAL
Lo = 2222 (A4)

out — Z DijAj

D;;>0
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if we substitute Equations (A.3) and (A.1) in Equation (A.2), we obtain :

arVLyp — Y DAL > DyA;L;
Lout = l 2ol D” = (A5)
al  arV+ ) DyA, Z Dy, A;
D;;>0 D;;<0

If one admits that :

Then, the use of Equation (A.6) in Equation (A.5) :

Tow = D1.<a/<;VLb,P( > Dud) = (X DuAiL) (0 D)

Dij>0 Dij<0 Dij>0

(A.7)

ront (1= X2 ppans) + -0 X pua)( X o)

Dz7<0 D”<0 Dij>0

where :
D L (A.8)
1= .
Oé(OéHV"— Z DZJAJ) Z DZ']'A]’
D¢j>0 D¢j>0

The common denominator D, is always positive. That implies that the sign of L,,; depends on
the numerator. Grouping terms in Equation (A.7) leads to L, :

Low = Di <Oz/<;VLbP< > Diyd;) +arv(1-a)( Y DyAiL;)-

D;;>0 D;;<0 (A9)

Dij<0 Dij>0

That yields :
Tow = D [( > D) (omVL@p —a( X DijAij)> +
D;;>0 D;;<0

1stterm (AlO)

arV (1l — «a) ( Z DZ]AL>

D;;<0

N J/
-~

2ndterm
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The first term will be always positive and the second term negative while the intensities keep
positive at the incoming faces. If o = 1 (Step scheme), the second term is zero and the averaged
intensity at the outcoming faces will be always positive.

Otherwise, when o < 1, the term L,,, could become negative : As D; (Equation (A.8)) is
always positive, the condition L,,; < 0 could be written as :

( ;ODZJA ) (omVLb,p —a( 2 DijAij)> +arV(1-a)( Y DyAiL;) <0 (ALY

D;;<0 D;;<0

That is equivalent to :

Lyp(asV 3 Dya;) < (a( > DiyA;) —arV(l-a ) S DyAL; (Al2)

ij > ij > D;;<0

If we substitute the Equation (A.6) and the Equation (A.3) in Equation (A.12), we get finally :
Lyp < Cn.Liy (A.13)

with

An

~ (A.14)

Co=(1—a)+ ZDZJA_ —a)—

D”<O

where A represents the surface obtained by an orthogonal projection of the volume on the plan
(A) in Figure 4.8 .






Annexe B

Finite Volume Approximation in optically
thick limits

The aim of this appendix is to show the limit of the finite volume approximation in terms of
false scattering. Even if we use an exact spatial differencing scheme (such as the exponential
scheme), the numerical error induced is correlated to high optical thicknesses encountered in the
medium. Then we consider the following simplified problem (Figure B.1) :

- as a downstream condition : a black wall with a surface setto S = 1 m? emitting L;,, ;

- a medium of height » = 1 m, volume V/, emitting L;, and that we can divide in two identical
triangular cells of volume V., = % with centres quoted P; et P

- as downstream condition : a black wall with a surface set to S = 1 m? receiving the intensity L,
at the upper boundary.

- as discrete direction for radiation propagation : s'orthogonal to the two black walls.

Incident intensity L (s) at the upper wall can be obtained analytically as follows :

h
Lot :/ [Lb7we_“h+ff/ Lbe_mdr}ds (B.1)
S 0

Using the informations given on the configuration, in each point of the upper face, one can write :

Lf = leﬂe_fi + Lb(l — B_H) (BZ)
and

Lf,tot = LfS = Lf (B.3)
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FiG. B.1 - Simplified configuration

On another way, L, can be computed using the “exponential” scheme as spatial differencing
scheme. Firstly, the intensity L;,;, at the intermediate face between the two triangular cells is
calculated, using the Equation (4.48) :

Lint = Lb,wX + Lb(l — X) (B4)
where :
2 1—e™"
x=-(1- ) (B5)
K K

From Equation (4.47), we can deduce the exact value for L, .., the total intensity integrated on
the face A;,; and determined by :

Linttot = Lint Aint (B.6)

Finally, as the two cells are geometrically similar, L, is obtained by replacing L,, by L;,; in
Equation (B.4) :

Ly = Ly,X* + Lo(1 — x?) (B.7)

As it was mentioned previously, L, is an exact calculation. We consider that, by setting the
intensity equal to L;,, at each point on the intermediate face, we introduce an error for the next
cell calculation at the incoming face because the intensity is not a constant along [AB]. That
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Numerical method Case 1 Case 2
Analytical f(k)=¢e" f(k)=1—¢e"
Exponential scheme f(r)=[2(1- %)]2 f(r)=1-[2(1- %)]2
Diamond Mean flux scheme flr) = 5558 fr) = 552
Step scheme f(K) = iap f(k) = Zii;;g

TAB. B.1 - Expression for L (k) at the upper face

could be illustrated by the two points : on the point B the intensity is Ly # L;,;, coming from
Equation (B.2), and the intensity at the point A is L,, w # L;,. Aiming at a third formulation,
we can propose the use of Diamond Mean Flux Scheme (DMFS). By proceeding in the same way
than in the previous case but taking as a basis the Equation (4.58), one obtains the two following
expressions :

4 — K 2K

Lini = Ly L B.8
¢ b, . + b4+ - (B.8)
and
4 K
Ly=L;,—+ L B.9
f "4tk + "4 + K (89)
Finally, we can apply the step scheme (Equation (4.51)), which leads to :
2 K
L = Ly, L B.10
t SE + Sy ( )
and
2 K
Li= Liyy— + Ly (B.11)

2+ kK 2+ kK

By considering the two following cases (as limit cases), we can model respectively the trans-
mission phenomenon and the emission/self-absorption phenomenon :
-casel: L, =0¢et Ly, =1;
-case2: L, =1et L, =0.
For these both cases, the expressions of L (x), obtained using the analytical method and the three
numerical methods mentioned above, are given in the Table B.1. The relative error for the inten-
sity (at the boundary) L compared to the analytical solution is represented in (Figures B.3 and
B.5). Ln the first case, the more the optical thickness increases, the more the numerical solutions
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FiG. B.2 — 1% case : Comparison between the four expressions of L (k)
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calculated with the three schemes are far from the analytical solution. The error obtained using the

exponential scheme is only due to the approximation made when we consider the intensity L;,;

constant over all the intermediate face. According to the shape of the solutions represented for the

three different spatial differencing schemes used, it appears this approximation introduces some

false scattering in the same proportion when the optical thickness increases. This approximation

has a real impact on the modelling of transmission phenomenon. At the contrary, considering the

emission/self-absorption phenomenon (case 2), the finite volume approximation is justified when
the medium becomes thicker and the error on L, decreases(Figure B.4 and B.5). A third test

case which is more realistic for combustion problem is studied. The temperature of the medium

is 1200 K and of the wall is 300 K. The obtained solutions for L (k) are illustrated in Fig.B.6.

We notice the same trends than in the second test case (cold wall and hot medium). The relative

error has the same behavior than in the first test case for small optical thicknesses (the transmis-
sion phenomenon leads) the and than for the second test case for high optical thicknesses (the

emission/self-absorption phenomenon becomes dominant).
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Annexe C

Influence de la diffusion numerique sur le
« ray effect »

L’objet de cette annexe est de mettre en evidence I’impact de la diffusion numérique (due
aux hypotheses induites par I’approche en volumes finis, cf. ANNEXE B) sur le « ray effect ».
Nous avons cherché, a travers une configuration simple, a éliminer I’influence de I’utilisation
d’un maillage pour résoudre I’ETR. Pour bien observer le phénomene de « ray effect », nous avons
donc considéré un milieu transparent (x = 0) contenu dans une enceinte cylindrique de hauteur
h = 2.0 met de rayon R = 1.0 m. Les parois du cylindre sont noires. La paroi latérale et la paroi
supérieure sont froides (&2 7" = 0 K) tandis que la paroi inférieure est chaude (7" = T.,). Il en
résulte que le flux radiatif @) ., obtenu en un point P(r,,) de la paroi latérale provient uniquement
de la paroi inférieure et que le flux adimensionné @ ,,*, par rapport a la luminance noire émise a la
paroi chaude, vaut simplement :

Qw* = Hw/Lb(Tw> = (Cl)

ou 2 est I’angle solide a travers lequel on voit la paroi chaude depuis un point P(7,). Pour calcu-
ler la luminance incidente H,, a la paroi, nous avons utilisée la méthode aux ordonnées discrétes
avec le schéma Step pour résoudre la dérivation spatiale, ceci pour différents types et degrés de
quadrature. Nous avons aussi effectué un calcul direct de cette luminance par une méthode que
nous avons apparenté a une méthode de « Ray Tracing » utilisant un tres faible nombre de rayons.
Cette méthode consiste a utiliser les rayons orientés selon les vecteurs 35; définis par une quadra-
ture angulaire utilisée en DOM et a tester pour chacun de ces rayons si on touche la paroi chaude.
Le cas échéant, nous considérons que la luminance incidente associée a s; est H,,; = w; Ly(Ty).
La luminance totale H,, est obtenue directement en faisant une somme sur toutes les directions.
Nous avons ainsi pu observer les discontinuités dues a la quadrature de I’espace des angles solides,
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Fi1G. C.1 - Configuration étudiée et maillage
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—-©- S-4:ray tracing
—— S-4:DOM

0 50 100 150 200 250 300 350 400
e

—-©— S-8:ray tracing

—— S-8:DOM
*070.45 = - - e NANmC - X - -
0.4 | | | | | | |
0 50 100 150 200 250 300 350 400
0 o)
>3 @ B2 'o‘..,@e e".._"‘ 2 -6~ S-12:ray tracing
YU og © YU og © U og U YU og © —— S-12: DOM
0.481 i
* ;
© \/\/\/\/\/‘/\/\/\/\f\/\/\/\/\/\/\\]\/\/\f\/
0.46 i
0.44 | | | | | | |
0 50 100 150 200 250 300 350 400

()

F1G. C.2 — Flux adimensionné a la paroi sur le périmétre en z = 0.05h pour les quadratures de
type Sy

sur 47, en un nombre restreint d’angle solide ou la luminance est considérée comme constante.
Nous avons observé le flux adimensionné @ ,,*sur la circonférence de la paroi latérale (cf. figures
Fig.C.2-Fig.C.10, a trois hauteurs différentes (z = 0.05h, z = 0.5h et z = 0.95h) et pour chacune
de ses hauteurs nous avons fait varié le nombre de directions discrétes pour les quadratures an-
gulaires de Sy, T et « polaire/azimutale » (notée FVM N, X N,). L’observation du flux incident
sur la périphérie permet de mettre en évidence I’effet de rayon. Nous avons représenté, en tiret sur
chacune des courbes de résultats, la solution exacte qui a été obtenue analytiquement et qui est
constante sur la circonférence pour une hauteur z fixée.

Les résultats obtenus par notre méthode de type « tracé de rayon » (notée « ray tracing »)
montrent bien I’inaptitude intrinséque des quadratures a faibles nombres de directions, a décrire
des dépendances angulaires d’un probleme tel que celui-ci (variation de I’orientation de la normale
a la paroi induise une variation du produit scalaire 7i.5;). De maniére générale, I’augmentation du
nombre de direction a pour conséquence de réduire I’écart par rapport a la solution exacte. De la
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F1G. C.3 — Flux adimensionné a la paroi sur le périmétre en z = 0.05h pour les quadratures de
type Ty
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type « polaire/azimutale »
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Influence de la diffusion numérique sur le « ray effect »
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Fi1G. C.9 — Flux adimensionné a la paroi sur le périmétre en z = 0.95h pour les quadratures de
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FiG. C.11 — Propagation de I’information via le maillage

méme facon, plus le point d’estimation du flux adimensionné est proche de la paroi, plus I’angle
solide a representer est grand et donc plus les résultats sont en accords avec la solution référence.
Nous pouvons observer un effet de lissage des discontinuités angulaires et une variation de la va-
leur moyenne du flux incident, sur la circonférence de la paroi, dis a I’utilisation d’un maillage
(résultats obtenus par DOM). Ceci peut-étre expliqué a travers la figure Fig.C.11. Nous y repré-
sentons la résolution de la luminance incidente pour une direction s; par nos deux différentes
méthodologies. Dans une telle situation la luminance sortante L,,; pour une des cellules véhicu-
lant I’information de la paroi chaude a la paroi froide, au point considéré, est obtenue a partir des
luminances aux faces d’entrées. Le chemin I" véhicule la bonne information liée a I’angle solide
défini autour de §. Cependant le chemin IV introduit une influence de la paroi froide qui aura pour
conséquence de réduire I’lamplitude de L,,; calculée. La diffusion numérique aurait donc tendance
a réduire les fortes discontinuités dues a I’effet de rayon. Il est a noté qu’elle ne conduit pas pour
autant a une solution plus exacte de fagon systématique.
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Résumé :

MODELISATION DES TRANSFERTS RADIATIFS DANS LES SYSTEMES EN COMBUSTION PAR
METHODE AUX ORDONNEES DISCRETES SUR DES MAILLAGES NON STRUCTURES TRIDIMEN-
SIONNELS

Mots clés : Transferts radiatifs, combustion, maillage non structuré, méthode aux ordonnées discrétes, modele de
rayonnement des gaz

La prédiction des concentrations d’espéces polluantes, telles que les suies et oxydes d’azote, émises par les sys-
témes de combustion et I’évaluation de la durée de vie des parois de ce type d’installation nécessitent une bonne prise
en compte des transferts radiatifs dans les modéles de combustion. Dans cette optique, nous avons développé un code
de calculs des transferts radiatifs basé sur la Méthode aux Ordonnées Discrétes et utilisant des maillages non structurés
de la dynamique des fluides. Le rayonnement des gaz de la combustion est pris en compte par un modéle statistique a
bandes étroites en k-corrélés. Divers types de quadratures angulaires et trois schémas de dérivation spatiale différents
ont été intégrés et comparés. Des tests de validation ont permis de montrer les limites a fortes épaisseurs optiques de
I’approximation de type volumes finis sur laquelle s’appuie la méthode aux ordonnées discrétes. Les premiers calculs
effectués sur des solutions obtenues par LES permettent de déterminer les termes sources radiatifs et les flux incidents
aux parois instantanés, ce qui permet d’envisager le couplage avec la combustion.

Abstract :

RADIATIVE TRANSFER MODELLING IN COMBUSTING SYSTEMS USING DISCRETE ORDINATES
METHOD ON THREE-DIMENSIONAL UNSTRUCTURED GRIDS

Keywords : Radiative transfer, combustion, unstructured grids, Discrete Ordinates Method, Spectral Line Gaseous
Radiation Model

The prediction of pollutant species such as soots and NO,, emissions and lifetime of the walls in a combustion
chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the deve-
lopmeent of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and
wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using
the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the
combustion gases are taken into account by a statistical narrow bands correlated-k~ model (SNB-ck). Various types
of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The
validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Or-
dinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative

source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling.
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