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Nomenclature

A facteur pré-exponentiel de la loi d’Arrhénius
c célérité de la lumiére (m .s™')
= Coue/n
Coac célérité de la lumiere dans le vide (299792.5 + 0.4 m s 1)
d, diamétre d’une particule de suie (m)
D dimension typique d’un agrégat de suie (m)
D, section efficace d’absorption d’'un agrégat de suie
Dy section efficace de diffusion d’un agrégat de suie
e, vecteur unitaire normal & une surface
eq vecteur unitaire portant la direction de propagation d’un rayon lumineux
E Energie d’activation de la loi d’Arrhénius (erg unité c.g.s 107erg = 1Joule)
E champ électrique (V m™")
fo fraction volumique de suie

taux d’étirement ou facteur d’allongement ou taux de dissipation scalaire(s™!)
h constante de Planck (6.6260755 + 0.0000040 .10%* J s)

champ d’excitation magnétique (7" tesla)

J gradient de pression (Pa.m™2)

kp constante de Boltzmann (1, 3806 + 0.000012 10~2* J K1)

Kb, constante de vitesse de la :“" réaction dans le sens direct

Kr, constante de vitesse de la :“™¢ réaction dans le sens indirect

[ abscisse curviligne sur un rayon lumineux (m)

L(rp,eq), Luminance monochromatique au point P dans la direction eq (W.m ™2 str—! Hz 1)
m indice optique complexe

M Masse molaire du mélange (g.mol™")
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Nomenclature 7

Qi;D
Qi,l
qr

rp

~+

indice optique de réfraction (partie réelle de m)

nombre de particules de suie par unité de volume (m=3)
nombre d’Avogadro (6,0222 10%* molécule/mol)
Pression thermodynamique totale (Pa)

(atm pour les données spectroscopiques)

constante des gaz parfaits (8,3144 J mol~' K1)

eme

vitesse de réaction de la “"¢ réaction dans le sens direct (mol.cm3.s71)

eme réaction dans le sens indirect (mol.cm™3.s71)

vitesse de réaction de la ¢
vecteur flux radiatif (WW.m™2)

vecteur position d’un point P

une surface, en général une paroi noire
temps (s)

température du mélange (K)

vitesse hydrodynamique du mélange (m.s™")
un volume contenant des gaz et de la suie

ke espéce (m.s~t)

vitesse de diffusion de la
vitesse de production massique de la k"¢ espéce (kg.cm™3.57!)
vitesse de production molaire de la k™ espéce (mol.cm™3.57")
fraction molaire de la £ espéce

fraction massique de la k"¢ espéce

Lettres grecques

(07

terme correcteur pour tenir compte de 'hypothése de Curtis-Godson
dans les formulation en en k-distributions

exposant de la température dans la loi d’Arrhénius

intervalle spectral (bande étroite) centré sur le nombre d’onde n (m 1)
nombre d’onde du rayonnement (m™!)

coefficient d’absorption monochromatique du rayonnement (m?/m?)
longueur d’onde du rayonnement (m)

fréquence du rayonnement (Hz)

ou coefficient stoechiométrique d’une réaction chimique



Nomenclature

Vein viscosité cinématique du mélange (kg.m='.s7')

o constante de Stefan-Boltzmann (5.67 1078 W m™2 K—*)

@ flux ou puissance d’énergie radiative (1)

PA-B flux ou puissance d’énergie radiative de A vers B (V)
VAsB flux ou puissance d’énergie radiative net entre A et B (V)
0 richesse du mélange (combustion)

ou paramétre de forme d’une bande étroite (rayonnement)
P fonction de phase utilisée pour la diffusion du rayonnement

densité volumique du mélange (kg.m™3)

7, (L) transmittivité monochromatique d’une colonne de longueur L

0 angle entre la direction du rayon et la ligne de visée de 1’observateur (rad)

Indices

b corps noir

ofe Curtis-Godson

D sens direct d’une réaction chimique

1 sens indirect d’une réaction chimique

k numéro d’une espéce chimique

M Malkmus (7, désigne la transmittivité moyenne de Malkmus
et fyr la fonction de distribution de Domoto)

vac vide

Exposants

air désigne la zone d’alimentation pauvre en combustible

co relatif au monoxide de carbone

coy relatif au dioxyde de carbone

fuel désigne la zone d’alimentation riche en combustible (méthane)

hoo relatif & la vapeur d’eau

s relatif aux suies

g relatif aux gaz



Nomenclature 9

Abréviations

CEIL

Ei

ETR
HAP

MC

OTL
PNE
sans rad
SNB
TLM

Avertissements

désigne le plus petit entier supérieur ou égal & un nombre
est mis pour une fonction intégrale exponentielle

Equation de Transfert radiatif

Hydrocarbures Aromatiques Polycycliques

méthode de Monte-Carlo

modéle radiatif avec ’approximation optiquement mince
Puissances Nettes Echangées

calcul sans modéle radiatif

modéle de propriétés radiatives statistique a bandes étroites
modeéle radiatif en série de Taylor construit a partir

d’un calcul de référence par la méthode de Monte-Carlo

— Les vecteurs sont notés en caractére gras (il n’est fait aucune différence entre les vrais

et les pseudo-vecteurs)

— les dérivées par rapport au temps sont notées avec un point v

— Les dérivées partielles sont notées 9, pour =

ox

— une variable entre crochets [ | désigne un concentration molaire mol.m >

— Les moyennes d'une variable v sur un domaine D sont notées < v >p ou v”. En

I’absence de D, les moyennes se font implicitement sur une bande spectrale étroite

— Dans la notation d’une intégrale d'une fonction f intégrable [ _, dz  f(z) on désignera

par :

— dx élément de mesure

— f(z) 'intégrant



Avant-propos

[’étude que contient ce mémoire n’aurait pas été possible, si une équipe dispersée sur
trois laboratoires' travaillant dans le domaine des transferts radiatifs, ne s’était rapprochée
d’activités liées a la chimie et & la combustion. Ce document porte les marques de I'interdis-
ciplinarité naissante de cette équipe et me donne l'occasion ici de mettre en garde le lecteur

sur les travers d’une telle démarche.

Tout d’abord, se situer a la croisée des chemins peut favoriser I'incompréhension mu-
tuelle des spécialistes des différents domaines. C’est pourquoi je me suis efforcé de rappeler
dans ce document certaines notions qui peuvent paraitre élémentaires pour certains, mais
qui néanmoins sont indispensables pour éclairer mon travail. En revanche, la vaste éten-
due des domaines abordés m’a obligé a passer sous silence certains aspects certainement

fondamentaux, mais qui n’apportaient pas plus de clarté & ce mémoire.

L’esprit de ce travail, a été d’analyser les modéles de combustion et leurs prédictions,
afin d’essayer d’y introduire des modéles de transferts radiatifs aussi précis que possible avec

I’idée qu’améliorer les modeéles est un pas vers une meilleure compréhension.

!Le Laboratoire de Météorologie Dynamique & Jussieu PARIS, Le Laboratoire d’Etude des Systémes et de
I’Environnement Thermique de I’Homme - Université Paul Sabatier TOULOUSE, et Le centre Energétique-

Environnement - Ecole des Mines ALBI
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Chapitre 1

Introduction

Sur le chemin qui méne au développement de notre société, se pose le probléme de la
pollution liée notamment & son industrie. Dés le début, la motivation de ce travail s’est ins-
crite dans la perspective d’apporter des éléments nouveaux a la compréhension des émissions

polluantes observées dans les systémes de combustion.

1.1 Combustion et pollution

La combustion est un phénoméne complexe car il met en jeu des couplages forts entre
transferts de matiére et de chaleur. Les problémes rencontrés y sont nombreux : turbu-
lence, formation de polluants, rayonnement, stabilité de la flamme, etc... La formation des
espéces chimiques polluantes est étroitement liée aux températures qui pilotent les réactions

chimiques.

Pour mieux saisir ’enjeu qui se cache derriére I'étude de la pollution, revenons sur
quelques raisons qui ont conduit notre société a s’inquiéter du rejet d’espéces chimiques

mineures (monoxide de carbone CO, oxydes d’azote NO,, suies).

Santé et Social Prés de 2/3 des NO, présents dans ’atmosphére sont attribués a I'ac-
tivité humaine. Dans le monde, les émissions d’origine anthropique sont comprises entre

20 et 50 millions de tonnes par an |Bicocchi (1998)]. La contribution de la pollution au-

11



Chap.1 Introduction 12

oH HP
HAP + HO — HARZ —~ » o=HapL M

< Loy (oD

diol + R-NH2—> ADN modifiée

F1G. 1.1 — Les étapes menant a la mutation de ’ADN en présence de HAP [com (2000)]

tomobile semble étre la plus importante dans la pollution globale par NO, (68% dans
[com (2000)]). Des études concernant leurs effets nuisibles sur la santé sont réguliérement
publiées. [Rabl... (1998)] indique que ce sont des irritants des voies pulmonaires et qu’ils
jouent un role important dans la formation des smogs de par leur participation aux réactions
photochimiques. Il existe beaucoup d’autre polluants. En particulier, on peut citer les suies et
les Hydrocarbures Aromatiques Polycycliques (HAP) qui ont une nature chimique proche de
celle des suies. Ce sont des assemblages d’atomes de carbone et d’hydrogéne dans lesquels on
trouve un grand nombre de noyaux aromatiques ou radicaux phényle (CsHs). Sous le terme
HAP on désigne donc une famille qui regroupe plusieurs milliers de molécules possibles. Les
HAP ont des origines trés variées (Tab.1.1). Les mesures présentées dans le Tab.1.1 ont
été effectuées sur des échantillons constitués de 7 espéces de HAP, 16 espéces de HAP ou
par extraction de la matiére organique (EOM). Les principales sources de production des
HAP proviennent de 'utilisation de combustibles fossiles, que ce soit sur des installations in-
dustrielles ou domestiques. On remarquera qu’un inventaire complet des émissions de HAP
n’est pas possible du fait de la diversité de leurs origines. Suies et HAP sont mutagénes
et peuvent provoquer des cancers. On avance le mécanisme suivant Fig. 1.1 : en présence
d’eau, les HAP se transforment en diols. Ces derniers peuvent s’associer aux acides aminés

de I’Acide DésoxyriboNucléique (ADN) pour donner un ADN modifié ou mutant.

Une fois formés les polluants, leur extraction et leur destruction ne manquent pas de
poser des difficultés tant sur le plan technique que financier. Par exemple, I’élimination des
suies par des dépoussiéreurs est loin d’étre une solution car ces derniers sont des éléments
que ’on soupconne d’étre le lieu de formation des dioxines, également nocives pour la santé.
Le recours a des voies d’élimination catalytique semble alors une alternative intéressante
[Neeft... (1996)] mais le controle des conditions favorables aux réactions de catalyse reste un

point délicat. Globalement, les cotits de santé provoqués par la pollution et les investissements
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financiers engagés pour le retraitement des polluants et des déchets, justifient les recherches

importantes mises en oeuvre actuellement pour une “industrie propre en amont”.

Economie et Droit Avec les nouvelles normes européennes retenues a la fin du X X?me
siecle, la réduction des émissions de polluants devient plus contraignante. La nécessité d’outils
capables de faire des prédictions fines sur les températures et les polluants dans des systémes

industriels, et donc dans des géométries complexes, trouve une justification supplémentaire. A

Type de source 7 HAP | 16 HAP | EOM
fabrication de coke 51 675 -
combustion de charbon secteur tertiaire 36 173 -
combustion de charbon secteur industriel 3 165 41039
combustion de bois secteur industriel 3 152 97848
combustion de pneus 307 1720 -
raffinage/cracking catalytique 16 313 -
distribution d’essence - 727 -
production d’aluminium 141 662 3876
fabrication de papier 4 832 -
combustion de bois secteur résidentiel 072 8855 235881
combustion de charbon secteur résidentiel 32 103 1946
combustion de gaz naturel secteur résidentiel - 0 928
véhicules non routiers - - 25116
véhicules routiers 19 47 56157
feux de forét et de défrichage 964 2540 -
traitement du bois - 457 -
Autres sources 16 561 18892
TOTAL 2164 17982 | 481683

TAB. 1.1 — Principales sources de HAP aux Etats-Unis en tonnes/an |clean air act (1997)].
Ces analyses sont effectuées sur des échantillons constituée de 7 ou 16 espéces de HAP ou

bien par extraction de matiére organique (EOM).



Chap.1 Introduction 14

cela, vient s’ajouter en France la loi-cadre du 15 juillet 1975 (modifiée en 1992, 1993 et 1999)
qui prévoit la limitation des décharges aux déchets ultimes mais aussi, I’¢limination des rejets
nocifs. Bon nombre d’installations de retraitement des déchets verront alors leur activité
s’accroitre, et avec elle les rejets polluants. Au niveau international les seuils d’émissions
polluantes peuvent devenir un enjeu économique. Par exemple, si les avionneurs américains
arrivaient a abaisser leur niveau d’émissions polluantes, les avions européens fabriqués par
Airbus, devenus “pollueurs”, se vendraient moins bien et pourraient se voir interdire 1’acceés
aux Etats-Unis. Il y a donc une concurrence permanente pour limiter les rejets polluants

dans les procédés a hautes températures.

1.2 La suie au coeur du probléme

Il existe une industrie ot 'on fabrique volontairement les suies. On peut citer les chau-
diéres pour lesquelles on souhaite augmenter les transferts de chaleur aux parois, mais il
existe aussi I'industrie de 'impression : toner pour photocopieurs, etc. Signe de prospérité
et de richesse au sommet des cheminées d’usine au début du X X®™¢ siacle, les suies sont
jugées de nos jours dangereuses pour la santé et néfastes pour les installations. Leur présence
rend une flamme jaune et lumineuse. Quand une partie des suies s’échappe de la zone chaude

avant d’avoir été oxydée, la lamme se met a fumer.

Leur présence modifie considérablement les pertes d’énergie par rayonnement provoquées
par les niveaux élevés de température : 20 & 50% dans les flammes de méthane (C'Hy)
[Bockhorn (1994), Hall (1994)|. Les vitesses de production chimiques, trés sensibles aux tem-
pératures, peuvent étre alors changées et les équilibres chimiques sont également déplacés.
La production de monoxyde d’azote (NO) peut alors étre trés sensiblement affectée par la
présence des suies (50% en fraction massique selon [Hall (1994), Frank... (2000)]). Les consé-
quences en retour sur la formation de suie sont tout aussi importantes et de nombreux auteurs
relévent le couplage fort entre rayonnement et cinétique de suies' qui devient un élément
majeur lors de la formation des polluants (notamment des NO,) dans les systémes indus-
triels [Carvalho... (1991), Hall (1994), Warnatz... (1996)][Bressloff... (1997), Bressloff (1999),

M s’agit des auteurs suivants : [Hall (1994), Sivathanu... (1994), Adams... (1995), Kaplan... (1996),
Sivathanu... (1997), Hall... (1997), Desjardin... (1999)]
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Frank... (2000)|. Par exemple dans un moteur diesel, lorsque la production de suie augmente,

la quantité de NO diminue [Abraham... (1997)] et inversement.

Les schémas de cinétique de suie sont actuellement en plein développement et le be-
soin, mal satisfait, de pouvoir s’appuyer sur un calcul de transfert radiatif de qualité couplé
a la chimie, est souvent mentionné de nos jours, par exemple pour les flammes de C'Hy
[Hall... (1997), Frank... (2000)|. Nous reviendrons sur les difficultés de modélisation des ci-
nétiques de formation des suies. Attardons nous sur les besoins de modélisation en transferts

radiatifs.

1.3 Les besoins en rayonnement

Au coeur de ces systémes complexes, ¢’est sur le rayonnement que nous souhaitons por-
ter notre effort. Le transfert radiatif est un des modes de transfert de chaleur dominants
dans les systémes industriels & hautes températures et grandes échelles [Carvalho... (1998)].
Son influence est incontournable dans les domaines de la motorisation, en particulier pour
les moteurs diesel [Rutland... (1994), Abraham... (1997)| mais aussi dans les fours indus-
triels, les chaudiéres [Coelho... (1995), Coelho... (1996)], les fours verriers et les incinérateurs

[Nasserzadeh... (1991), Olsommer... (1997a), Shin... (2000)|. A titre d’illustration :

— Dans une étude de moteur diesel [Abraham... (1997)| estime les pertes par rayonnement
entre 40 et 60% des pertes totales de chaleur pour des températures pouvant aller de
1000 a 3000 K.

— Dans le cas de fours d’incinération d’ordures ménagéres, on atteint des températures
de parois de 500 & 1000 K, pour lesquelles le rayonnement représente 95% du transfert
thermique total [Olsommer... (1997a)|.

— A des échelles plus petites, on retrouve de tels effets : la prise en compte du rayonnement
peut représenter 20% dans les flammes d’hydrogéne [Dagusé (1996)] et jusqu’a 60%

dans une flamme de diffusion turbulente d’acétyléne |Gore... (1988)].

Si les flux globaux aux parois sont souvent assez bien estimés a partir des modéles les plus
courants, en revanche, les termes sources radiatifs locaux représentent une difficulté plus

grande. En effet, si pour les parois il suffit d’évaluer le flux radiatif, lorsqu’il s’agit de cal-
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culer un terme source volumique il faut en prendre la divergence, avec tous les problémes
de perte de précision numérique associés. Il s’agit pourtant la d’'un enjeu important si 1’on
croit aux besoins croissants d’études énergétiques pour une bonne compréhension des mé-
canismes de formation des polluants au coeur des flammes dans les systémes industriels
[Desroches Ducarne... (1998), Mukadi... (2000)|. Tenir compte a la fois du rayonnement des
suies et des gaz de combustion est de ce point de vue essentiel. A ce sujet, on peut voir repro-
duit Fig. 1.2 un résultat de Hall pour une petite flamme a jets opposés montrant différents
niveaux de formation de NO, selon que dans le modéle il a été tenu compte du rayonnement,

des gaz seuls ou des gaz mélés aux suies. On peut observer que la formation des NO,, varie

Adisautis

T,

ki - ppm (wass)

5 L
-0 13 LR ] [i] 0.8 oL WL

Displucesenl (cam)

F1G. 1.2 — Niveaux de formation de NO, dans une flamme plane extrait de [Hall (1994)]

au minimum de 50% entre un modéle avec et sans rayonnement lorsqu’il y a une quantité
de suie importante. L’effet de la contribution radiative des gaz et des suies sur le taux de

formation de NO, est comparable dans cet exemple.

1.4 Présentation du travail

Dans ce paysage, les problémes scientifiques émergeant sont nombreux. Il y a cependant
un verrou scientifique sur lequel nous souhaitons porter notre attention. Les études de ciné-

tiques chimiques associées aux efforts de minimisation des émissions polluantes exigent une
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connaissance trés précise des champs de température et relancent les recherches autour de
la thermique fine des systémes de combustion. Pour les systémes de grande taille (incinéra-
teurs, chaudiéres industrielles,...) la thermique est dominée par les transferts radiatifs dans
les mélanges gaz/particules et les techniques de modélisation existantes, développées pour
des besoins de dimensionnement énergétique, ne satisfont pas aux exigences des modéles de
cinétiques. L’utilisation conjointe de modéles numériques trés complets en chimie, en méca-
nique des fluides et en rayonnement est actuellement hors de portée pour des configurations

industrielles. Ces difficultés numériques sont a ’origine de nos travaux.

Notre but est de développer des simulations rapides et précises du rayonnement des
flammes qui puissent étre simplement raccordées aux autres éléments d’'un modéle de com-
bustion détaillée. Au-dela de ces difficultés numériques, c’est la maniére de modéliser les
transferts radiatifs que nous souhaitons rediscuter. La principale originalité de notre pro-
jet est de proposer un renouvellement de la démarche usuelle de réduction des modéles en
transferts radiatifs. La démarche la plus courante consiste a dégrader les modéles de proprié-
tés radiatives, ou bien a traiter la réabsorption du rayonnement de maniére grossiére. Nous
pensons au contraire qu’une grande précision de représentation des propriétés spectrales
des mélanges gaz et suie, ainsi que de toute la complexité des questions de transfert asso-
ciées, est incontournable dans le contexte actuel de minimisation des émissions polluantes.
De ce point de vue, les techniques de simulation stochastique des transferts radiatifs au-
torisent un renouveau de la démarche en ce sens que, grace aux évolutions algorithmiques
et matérielles, il est possible d’envisager la production de solutions de référence en géomé-
trie réelle, a partir desquelles on peut construire des modéles simplifiés de grande qualité.
L’atout premier des techniques statistiques d’estimation d’intégrales multiples est certaine-
ment que les performances numériques ne se dégradent pas rapidement en relation avec la
dimension du probléme. Plus précisément, la dimension d’intégration la plus délicate, ici la
dimension spectrale, controle souvent la rapidité de convergence, et les autres dimensions
d’intégration peuvent n’avoir que peu d’influence sur les temps de calcul. Cela signifie pour
nous qu’en ’absence de diffusion et de réflexions multiples, les intégrations spatiales et an-
gulaires peuvent ne représenter qu’'un faible cotit numérique supplémentaire dés lors qu’une

intégration spectrale fine est requise.

Les limites d'une telle démarche sont & explorer. C’est le sens premier de ce travail qui se
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donne avant tout pour objectif de tester ce principe méthodologique sur des configurations
simples, bien maitrisées, en préalable a toute extension vers des systémes de complexité
croissante. Nous étudierons une flamme de diffusion laminaire monodimensionnelle, mais
tout dans la démarche sera mis en oeuvre en préservant ’extension vers des géométries
réelles, sans compromis sur les propriétés radiatives. Ces travaux d’extension ont d’ailleurs
été amorcés, et au moment d’écrire ces lignes, des versions multidimensionnelles et avec

diffusion sont en cours de validation.

A T'issue de ce chapitre introductif, le second chapitre contient des rappels en combustion
suivi des détails du modéle de combustion pour la flamme a jets opposés que nous utiliserons a
la fin de ce travail. Le chapitre suivant abordera les questions de modélisation du rayonnement,
dans le contexte de la combustion et & cette occasion un rappel important en rayonnement

sera effectué.

Les chapitres suivants 2 et 3 sont donc trés généraux. Ils permettent de rappeler des
éléments de combustion et de rayonnement, sans rentrer dans les détails d’un travail qui
n’était pas le notre. La suite du document se concentre sur nos travaux dans le domaine
de la modélisation des transferts radiatifs couplés a la physico-chimie de la combustion.
Le chapitre 4 donne les raisons, les choix sous-jacents a notre modélisation alors que le
chapitre suivant présente des développements formels permettant d’aboutir a l'expression
des densités de probabilités adaptées que nous suggérons pour réduire la variance d’une
estimation statistique des termes source radiatifs en combustion. Le sixiéme chapitre a pour

but d’illustrer cette démarche a partir de résultats en géométrie monodimensionnelle.



Chapitre 2

Eléments de combustion

Ce chapitre présente la majeure partie des aspects en combustion dont nous aurons
besoin. Au premier plan, il y aura des généralités sur la combustion puis, sur leurs bases,
nous énoncerons le choix de la flamme-test sur laquelle nous développerons notre démarche
de modélisation couplée du transfert radiatif avec la combustion. A cette occasion, nous
entrerons dans la description du modéle de combustion que nous illustrerons par quelques

résultats typiques.

2.1 Flammes de diffusion

La combustion qui retient notre attention est une réaction chimique fortement exother-
mique qui se produit dans un écoulement gazeux non-prémélangé. En effet, les impératifs
de sécurité dans les systémes industriels conduisent a séparer combustibles et comburants
pour ne conserver que la classe des flammes dites non-prémélangées'. Nous n’aborderons

A 3 Y ) A 3 Y
pas en détail ’aspect turbulent de I’écoulement car notre travail ne concerne pas 1’aspect

dynamique de ces phénomeénes ou d’éventuels couplages avec celui-ci.

!que nous appellerons souvent “de diffusion” par abus de langage.

19
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2.1.1 Généralités sur les lammes de diffusion laminaires

Les flammes de diffusion laminaires ont fait I’objet de nombreuses études depuis plusieurs
décennies, que ce soit sous la forme d’études analytiques, numériques ou expérimentales. Elles
représentent une configuration idéale pour valider notre compréhension de la combustion.

On doit a [Burke... (1928)| I'un des premiers calculs théoriques avec une flamme a jet plan.

Dans les flammes de diffusion laminaires, on distingue les flammes & co-courant en géné-
ral axisymétriques [Sivathanu... (1997)], et les flammes & contre-courant pour lesquelles on
trouve des modélisations monodimensionnelles. On distingue pour ces derniéres (Fig. 2.1)
un front de flamme courbe (brileur de Tsuji : Tsuji et Yamaoka 1971) ou plan (braleurs a

jets opposés). C’est en négligeant la diffusion dans la direction orthogonale aux lignes de

Stagnation line

Air
/\ Air l (Upper side)
Flame front sessesseeseesee
¢ . di2 d / \\ Porous plane
Burnt gases

Stagnation plane
T Flame front
—~  Fuel f |
& Fuel | (Lower side)
(a) Braleurs de Tsuji (b) Braleurs a jets opposés

F1G. 2.1 — Schémas de flammes non-prémélangées a contre-courant

flux (Approximation de Prandtl ~1904) que le probléme se réduit a une dimension (flamme
auto-similaire). Ces flammes de diffusion laminaires & jets opposés offrent encore de nos jours
un terrain de recherche riche. D’une part, elles permettent de s’affranchir des problémes géo-
métriques pour mettre au premier plan 1’étude physique de la combustion (validation de
cinétiques chimiques, comparaison aux résultats expérimentaux). D’autre part, elles sont
I’élément, de base d’une modélisation de la combustion turbulente dans certaines théories

fondées sur le concept de flammelettes [Peters (1986)].
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Les forces opposées des deux jets qui se rencontrent, sont responsables de I’étirement de
la lamme. Cette derniére se stabilise non loin du plan de stagnation pour lequel les vitesses
dans la direction paralléle a I’axe de symétrie e, sont nulles. Le gradient de vitesses le long
de la direction e, donne le taux d’étirement local de la flamme. On utilise également le taux
d’étirement global, calculé sur le front de flamme, et qui a beaucoup d’importance puisque
deux flammes de diffusion avec ce méme taux d’étirement ont une structure dynamique
analogue. L’inverse du taux d’étirement s’appelle le temps de séjour. Il mesure le temps

pendant lequel les réactifs restent en contact.

Aux forts et faibles étirements, la lamme est trés sensible aux pertes radiatives. Si I’éti-
rement, est trés grand, la flamme peut-étre souffliée et s’éteindre. Dans ces conditions le
rayonnement peut modifier significativement la limite d’extinction [Chao... (1993)]. A I'op-
posé, pour un faible étirement, la flamme s’épaissit, et les pertes d’énergie par transfert
radiatif augmentent par rapport aux pertes par conduction et convection. On parle alors
(|T’ien (1986)] ou [Chao... (1993)]) d'une extinction radiative. Pour une flamme a jets op-
posés de méthane a taux d’étirement faible, le rayonnement a une influence marquée sur la
température de flamme [Chan... (1995), Garcia... (1996)]. Ces derniers auteurs, bien que la
flamme soit de dimension trés petite, trouvent un domaine de fonctionnement ot nous avons
la possibilité de mettre en évidence des écarts, entre un modéle radiatif mince (négligeant la
réabsorption du rayonnement) et un modéle radiatif complet. Par ailleurs, on peut observer
dans les articles précités que, dans cette zone instable ou les taux d’étirements sont trés
faibles, la flamme modélisée avec rayonnement et soumise a ’action d’une baisse des vitesses
d’injection des réactifs, s’éteint plus difficilement qu’une autre qui serait modélisée sans bilan
radiatif. Les arguments sont que, sous la contrainte radiative, I’abaissement de la tempéra-
ture influe sur les processus convecto-diffusifs, favorisant la rencontre des espéces chimiques
et augmentant le taux d’étirement. De sorte que, pour les mémes vitesses de jets une flamme

modélisée avec rayonnement a un taux d’étirement plus fort qu’une flamme modélisée sans.

2.1.2 Etudes sur les lammes de diffusion laminaires & jets opposés

Les études asymptotiques des flammes de diffusion a contre-courant débutent dans les
années cinquante avec |Zeldovitch (1949)], [Spalding (1957)] puis [Linan (1974)|. Elles sont

suivies dans les années soixante dix par des calculs numériques de structures de flammes.
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On peut trouver de nombreuses références sur ces flammes dans l'article de synthése de
[Tsuji (1982)] et dans la thése de [Dagusé (1996)]. Ces études numériques sont indispen-
sables parce qu’elles offrent un bon complément aux mesures expérimentales. On peut citer
a titre d’exemple et de maniére non exhaustive, les travaux numériques? de [Bonne (1971)],
[Dixon Lewis... (1984), Dixon Lewis... (1988)|, |[Darabiha... (1988), Darabiha (1992)|,
[Darabiha... (1992)], [Behrendt... (1991), Liu... (1991)|, [Smooke... (1986)], [Vranos... (1993)],
[Wu... (1972)], [Yamaoka... (1986)], [Dagusé... (1996)] et [Blevins... (1998)].

Parmi ces travaux, on distinguent ceux a faible étirement et ceux a fort étirement pour
lesquels les échelles des temps chimiques les plus importantes deviennent comparables a celles
de transport. Ces études concernent plus particuliérement les sujets suivants : les schémas
de réactions chimiques, les transferts radiatifs, ou bien les instabilités hydrodynamiques. A
propos des transferts radiatifs, pendant longtemps, ils ont été considérés comme un mode
de transfert mineur par rapport aux autres échanges de chaleur [Bonne (1971)]. Ils ont donc
d’abord été traité de maniére trés simple en étant assimilés a une simple perte globale
de chaleur. Cette perte d’énergie par rayonnement se réduisait donc a un parameétre ajus-
table pouvant prendre des valeurs artificiellement trés différentes. Ces modéles furent ensuite
remplacés par des modéles de rayonnement optiquement fins donc sans tenir compte de la
réabsorption du rayonnement. Il est désormais établi que pour des configurations optique-
ment épaisses (ou ’absorption du rayonnement est trés importante) il est nécessaire d’avoir
des modéles a plus grande dynamique spectrale [Dagusé (1996)], ¢’est-a-dire reproduisant le
plus fidélement possible toute la complexité des transferts radiatifs. C’est pour une étude
plus fine de la structure de flamme et des limites d’extinction, que certains travaux se sont
clairement orientés vers une étude radiative pointue. Plus récemment, ce sont les besoins de
comprendre la formation des polluants, ou les conditions de fonctionnement en microgravité

qui ont conduit & prendre en compte de maniére rigoureuse le transfert radiatif.

Dans les faits, les études de flammes de diffusion non-adiabatiques (spécifiques aux
tranferts radiatifs) commencent dés les années soixante-dix [Negrelli... (1977), T"ien (1986),
Liu... (1991)]. Plus récemment, ces travaux concernent l'interaction rayonnement/formation

des suies [Sivathanu... (1997), Smooke... (1999), Beltrame... (2001)]. Pour des études ra-

2Nous compléterons cette liste non exhaustive par des travaux numériques spécifiques aux aspects radia-

tifs.
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diatives concernant spécifiquement les flammes a jets opposés on peut se référer princi-
palement & [Law... (1992)] [Egolfopoulos (1994)] [Vranos... (1993), Hall (1993), Hall (1994),
Garcia... (1996), Chan... (1995)], [Dagusé... (1993), Dagusé (1996), Dagusé... (1996), Zhang (1999)],
avec en particulier le travail de [Hall (1994)] qui concerne le fort couplage entre le rayonne-

ment et la formation des suies pour ces flammes a jets opposés. En termes d’émission pol-
luante, on peut retenir principalement que les pertes radiatives conduisent a une diminution

de la température de flamme [Behrendt... (1991), Liu... (1991), Hall (1993), Dagusé (1996)]

qui se traduit par une baisse de la production des espéces mineures (NO,, etc...)[Vranos... (1993),
Hall (1994), Chan... (1995), Smooke... (1996), Beltrame... (2001)|. Peu de travaux abordent

la présence des suies et la limite d’extinction qu’elles pourraient provoquer, par pertes ra-

diatives, en régime riche pour les flammes a jets opposés.

Nous verrons que pour cette géométrie simple les difficultés spatiales et spectrales que
représente le rayonnement, sont difficiles a introduire dans les modéles. Nous aborderons cet
aspect fondamental du couplage du rayonnement avec la combustion lorsque nous discuterons
des modéles radiatifs. Pour commencer & coupler un modéle radiatif détaillé & un modéle
de combustion avec chimie complexe il vaut lieux s’affranchir de difficultés géométriques.
C’est certainement sur la base d’'une géométrie simple qu’on peut commencer & éprouver
une méthodologie de couplage nouvelle entre rayonnement et cinétique chimique. Le choix
du modéle de combustion se fait donc a la lumiére des éléments que nous venons de présenter.
Dans I’ensemble des flammes de diffusion, c’est la flamme plane de diffusion laminaire a jets
opposés que nous retenons. C’est une flamme de référence en combustion. Dans la théorie des
flammelettes, les flammes turbulentes sont représentées par une collection de flammes 1-D a

jets opposés qui sont convectées et déformées par la turbulence mais qui restent identifiables.

2.2 Schémas de cinétiques chimiques

Les processus chimiques sont au premier plan de la combustion. Ils ne sont en général pas
infiniment rapides devant les transferts de masse et de chaleur. Les échelles de temps sont
importantes pour déterminer 1’état du systéme : on parle de cinétique chimique. Un prérequis
indispensable & notre objectif de coupler un modéle radiatif détaillé avec la combustion pour

un mélange gaz et suies, est de disposer d’un modéle de cinétique de formation des suies,
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méme grossier. Nous nous intéresserons donc en premier lieu a la cinétique de formation des

suies, puis nous parlerons des gaz.

2.2.1 Rappels en chimie

Avant d’aborder les schémas réactionnels, faisons quelques rappels sur les aspects quanti-
tatifs de la chimie de la combustion. Commencons par rappeler la notion de richesse. Il s’agit
d’une grandeur ¢ qui mesure l'excés ou le défaut de combustible par rapport au mélange

stoechiométrique :

d) B quantité d’oxygéne )mélange studié

quantité de combustible
quantité d’oxygéne

(quan‘cité de combustible

) mélange stoechimétrique
Pour un mélange riche (¢ > 1), il y a un excés de combustible par rapport a la stoechiométrie.
On appelle dilution ajout de molécules neutres® dans le combustible ou dans 'oxygéne. Elle

n’agit pas sur la richesse.

En chimie, il existe deux sortes de schémas réactionnels : les schémas a chimie simple
et les schémas détaillés qui se composent d’un grand nombre de réactions élémentaires.
L’introduction de schémas cinétiques détaillés dans un modéle de combustion peut trés ra-
pidement constituer un obstacle d’un point de vue numérique. La réduction des modéles
de cinétiques, notamment pour les hydrocarbures lourds, est donc un aspect important de
la cinétique chimique. Ce sont des analyses de sensibilités des réactions qui permettent de
simplifier les modéles de cinétique. Il existe différentes techniques, dont les méthodes ILDM
[Maas (1998), Blasenbrey... (2000)]. Celles-ci permettent de prendre en compte la chimie dé-
taillée tout en la décrivant dans un espace de dimension réduite. On distingue également
les cinétiques de réaction lentes et infiniment rapides. Les équilibres chimiques auxquels on
aboutit par ces derniéres sont prédits par la thermodynamique classique des états d’équilibre
et ne nécessitent donc pas de schémas réactionnels complexes. Au contraire, pour la produc-
tion de suie nous nous placons dans le cas ou la connaissance d’intermédiaires réactionnels

est essentielle. Nous devons donc introduire quelques notions de cinétique chimique. Il s’agit

311 s’agit en général d’azote N,. Bien que cette espéce soit consommeée par la réaction de formation du
NO, elle peut étre considérée comme non réactive (lors d’un calcul de dilution) car la quantité consommeée

est trés faible par rapport & la quantité totale d’azote
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de caractériser la chimie d’'un mélange constitué¢ de K espéces impliquées dans I réactions.
On distingue les réactifs (présents a 'instant initial) et les produits. Le cas général d’une

réaction élémentaire réversible, se formalise ainsi :

K K

Z v Ly = Z v Ly (2.1)

k=1 k=1
ou L, symbolise la k"¢ espéce. v.. et v). sont respectivement les coefficients stoechiomé-
k ki ki

yeme

triques dans le sens direct et inverse de la "¢ réaction mettant en jeu les K espéces.

La vitesse de production massique de la k™ espéce s’écrit :

avec M, la masse molaire de 'espéce L, et W, sa vitesse de production molaire.

I
Wi = Z <Vllcliqz'.,l - Vllciqi:D) (2.3)

i=1
ol ¢i p et g;; sont respectivement les vitesses de réaction® dans les sens direct et inverse de

la 7™ réaction, exprimée en phase gazeuse, par :

K K
gip = Kp, [ [1Cel" et qir = Kp, [J1£x] (2.4)
k=1

k=1
Lorsque la réaction n’est pas élémentaire, les exposants des concentrations sont différents
des coefficients stoechiométriques : on les appelle ordre de la réaction pour 'espéce L. Cela
n’est pas supposé se produire pour un schéma détaillé de cinétique. Il faut alors pouvoir
exprimer la concentration molaire [L;], par exemple en fonction de la fraction molaire X}, :

P

= X, —
L] "RT

et la constante de vitesse Kp, de la :“** réaction dans le sens direct, par la loi d’Arrhénius :

: —E;
’CDi = AiTﬁl exp(ﬁ)

On appelle habituellement A; le facteur pré-exponentiel, 3; 'exposant de la température,

et F; ’énergie d’activation, de la réaction directe. La constante de vitesse du sens indirect

40n peut noter ¢; = gi.p — ¢i,r la vitesse de réaction globale



Chap.2 Eléments de combustion 26

Kp,
Kr.

k3

peut se déduire de celle du sens direct en utilisant la constante d’équilibre Kp, =
Elle se calcule a partir des lois de la thermodynamique. On peut voir les détails de tels
développements dans [Warnatz... (1996), Dagusé (1996)|. Terminons en précisant que lorsque
'on traite des réactions de surface (Ex : gaz/solide), on rajoute dans 'Eq. 2.4 une fonction
de la surface de réaction. Nous le verrons pour le cas des suies. Les termes sources massiques
ou molaires d’espéces chimiques que nous venons de présenter nécessitent pour leurs calculs
'utilisation de tables (relatives aux schémas de cinétiques chimiques) qui contiennent les
valeur des coefficients A;, B; et E;. Ce sont ces schémas que nous présentons dans les §

suivants.

2.2.2 Schéma cinétique des suies

2.2.2.1 Généralités : physique et agrégats

L’existence d’un systéme passe par différents états. Il existe des conditions (proches de
points critiques) ot les corrélations entre les éléments du systéme deviennent trés fortes et ou
les phénomeénes de groupe prédominent. De maniére plus large, par expérience, on constate
des phénoménes d’auto-organisation qui sont irréversibles dans les systémes hors-équilibre
[Vidal... (1994)].

Les agrégats de suies offrent un exemple tout a fait remarquable d’une telle organisa-
tion avec I’émergence de structures de type fractal (figure dont les propriétés géométriques
sont invariantes par changements d’échelle [Julien... (1987), Mandelbrot (1995)]). Jugés trés
complexes, il faut attendre Forrest et Witten (1979), inspirés par la théorie des phénoménes
critiques, pour avoir la premiére interprétation des agrégats en termes de lois d’échelle pour
les aérosols [Gouyet (1996)]. C’est en gardant a I’esprit, la complexité de la structure poreuse
des suies que nous abordons les mécanismes conduisant & leur formation. L’agrégation s’ap-
puie sur des idées fondamentales que nous allons retrouver dans les descriptions proposées

pour la formation des suies.
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2.2.2.2 Phénoménologie : la chimie des suies

La littérature sur les cinétiques de formation des suies est trés vaste. C’est un domaine
ou il reste actuellement de nombreuses incertitudes [Warnatz... (1996)|. La suie est un as-
semblage de particules carbonées, plus ou moins hydrogénées, qui peuvent se regrouper en
longues chaines parfois repliées sur elles-mémes (Fig. 2.6 page 30). Pour des suies fraiche-
ment formées, le rapport molaire H/C vaut 1 [Warnatz... (1996)] puis il tend vers 0. Des
mesures de températures et de richesses dans les flammes [Calcotte (1981)] ont montré la
nature hors-équilibre thermodynamique du processus de formation des suies. D’un point de

vue chimique, on dit que la production de suies est sous controle cinétique.

La température, la richesse du milieu, et la nature du combustible sont trois facteurs
importants. La production de suie croit avec la richesse [Calcotte (1981), Borghi... (1995)]
et les fractions volumiques® de suies peuvent atteindre des valeurs entre 10~ et 10~°, voire
105, Les cinéticiens ont pour objectif de poser les bases des chemins réactionnels menant a la
formation des agrégats de suie. La transformation gaz/solide (Fig.2.2) est un phénoméne qui
passe par l'intermédiaire de structures aromatiques. Bien que définir chimiquement les suies
soit un probléme d’actualité, on arrive a trouver un consensus autour des idées suivantes.
C’est par pyrolyse des produits de la combustion que la formation des suies est en général
initiée. On a constaté [Calcotte (1981)] deux régimes : une faible dépendance en température
au dessous de 1800 K et une plus forte au dessus. Les radicaux libres semblent jouer, avec
les HAP, un role fondamental comme le montrent [Frenklach... (1988)] et [Howard (1988)].
On évalue entre 10 et 30% les liaisons périphériques C-H des HAP qui se transforment en
sites réactifs, aprés arrachement de I’atome d’hydrogéne (mécanisme HACA) permettant

"assemblage complexe de radicaux phényle (CgHsj).

Les HAP sont donc étroitement liés a la formation de suies. Le plus petit des aromatiques
est le benzéne CgHg (dont on voit des assemblages Fig. 2.2). Quelque soit le combustible, il
serait un point de passage obligé vers la formation des suies (Fig.2.3). En amont, en revanche,
la formation du benzéne dépend de I’hydrocarbure d’origine. Le chemin n’est pas unique. On

distingue trois chemins principaux menant au benzéne selon la légéreté de I'hydrocarbure :

— Voie 1 : Le benzéne CgHg se forme sous ’action de recombinaisons de radicaux propar-

qui est le rapport entre le volume occupé par les suies et le volume total des constituants.
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F1G. 2.2 — Schématisation de la formation des suies extrait de [Bockhorn (1994)]
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F1G. 2.3 — Principales voies réactionnelles menant a la formation des suies [com (2000)]

gyl C3Hs. A la base de ce mécanisme, on trouve 'acétyléne C'y Hs et le propyne CsHy.
Pour une flamme de méthane, il y a des régimes peu éloignés de la stoechiométrie ou
la conversion en acétyléne peut devenir trés importante comme le montre la Fig. 2.4

— Voie 2 : Le propéne C3Hg permet également d’arriver a la formation du benzéne, en

passant par le 1,3-cyclohexadiéne
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— Voie 3 : Cette derniére solution part du 1,3-Butadiéne pour arriver au benzéne

5, acstylene

(=]
I

b4 0OF OB 10 12 14

Fi1G. 2.4 — Pourcentage de carburant converti en acétyléne en fonction de la richesse dans

une flamme de méthane [Warnatz... (1996)]

Fi1Gg. 2.5 — Schéma des étapes menant a la formation des agrégats de suie, extrait de
[Reilly... (2000)]

Quelque soit le chemin réactionnel prépondérant il y a une premiére phase dans la for-
mation des suies qui s’appelle nucléation. Les premiers germes ou nuclei de suies y sont
formés. Mal connue, la nucléation s’accompagne d’une croissance dont la rapidité s’explique-
rait par des mécanismes radicalaires. Les nombreux radicaux libres mis en jeu, favorisent leur
propre production par autocatalyse ou effet de groupe et provoqueraient un emballement du
phénomeéne. On obtient des sphérules i.e un assemblage sphérique de 1 & 2 nm de diamétre
dont le volume est essentiellement di aux atomes de carbone (Fig. 2.5 :2°¢ pictogramme).
On évalue entre 60 et 100 le nombre d’atomes de carbone contenus dans ces germes de suie

[Leung... (1991), Beltrame... (2001)|. Une trés grande énergie d’activation caractérise cette
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étape. Les constantes de temps sont donc trés grandes et cela permet de traiter en premiére
approximation la formation des suies comme un post-traitement vis a vis d’un équilibre chi-
mique gazeux déja établi. Il existe une polémique sur la nature ionique ou non des nuclei.
Une étude récente [Hall Roberts... (2000)] semble indiquer la neutralité des intermédiaires

réactionnels.

La seconde étape correspond & une croissance (plus lente) des sphérules qui atteignent
des diamétres de 10 a 50 nm (Fig. 2.5 :3“"“pictogramme). Une baisse de réactivité du
méchanisme de nucléation, laisse place ici & une croissance de surface qui est plus lente.

Les nuclei deviennent des sphérules par absorption de molécules légéres (acétyléne) ou plus
lourdes (HAP).

F1G. 2.6 — Photo de suies extraite de [Bockhorn (1994)]
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Deux autres phénoménes interviennent simultanément. Il s’agit de 'oxydation et de
I’agglomération. [L’oxydation se décompose en différents processus qui dépendent de la
maniére dont 'oxygeéne diffuse dans la particule de suie. Les oxydants des suies ne se réduisent,
pas a l'oxygeéne. L’espéce OH est également un oxydant important®, mais il est rarement pris

en compte dans les modéles.

L’agglomération des sphérules est la quatriéme et derniére étape
(Fig. 2.5 :4°™¢  5™¢pictogrammes et Fig. 2.6). C’est I’assemblage des sphérules qui ont
été produits au moment de I’étape de croissance qui forme un agrégat de suie. C’est un
processus qui reste mal compris dans les régimes extrémes du nombre de Knudsen, que nous
A

n’aborderons pas : K, = & >> 1 et K;, << 1 ou d, est le diamétre de la particule et A son
P

libre parcours moyen [Kennedy (1997)].

2.2.2.3 Vers le choix d’un modéle de cinétique de suies

Alors que pour suivre I’évolution de la quantité de gaz il suffit de connaitre la fraction

molaire (ou massique), pour les suies nous avons besoin de deux observables :

— fu : la fraction volumique de suie qui varie lors des phases de nucléation, de croissance

et d’oxydation.
volume de suie

f'u:

— Npgrt : le nombre de particules de suie par unité de volume qui varie lors de la nucléation,

3/ 3
m>/m
volume total des constituants[ /m’]

de l'oxydation et de I'agglomération.

nombre de particules

Npart = [m ]

volume total des constituants

Sous I'hypotheése de particules sphériques, ces deux variables sont liées par la relation suivante

ot d,, est le diamétre des particules de suies (nuclei, sphérule ou agglomérat)”.

™

f'u - ENpartd?)

La grande famille des modéles cinétiques de suie est largement documentée depuis une

bonne dizaine d’années [Jander... (1990), Bockhorn (1994)]. On peut souligner ’excellente

Ssurtout dans la zone du c6té du carburant [Puri... (1994)].

Tceci n’est vrai que si d,, est un diamétre moyen apparent construit & partir d’une moyenne volumétrique.
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synthése de [Kennedy (1997)] qui montre notamment que le choix d’un modéle dépend du
combustible utilisé. Choisir un modéle de suie, c’est implicitement commencer & faire le choix
d’un combustible. Inversement, choisir un combustible ne peut étre dissocié de ’existence

d’un modeéle de suie adéquat.

Pour la flamme de diffusion laminaire, les modéles de cinétiques de suie les plus simples
sont a une variable (f, est fonction de la fraction de mélange) ou a deux variables (la fraction
volumique et la densité de particules). Colket et Hall dans [Bockhorn (1994)] trouvent des
résultats de fraction volumique de suies trés sensibles aux choix des germes de suies (nuclei).
Lors de la phase de croissance, une étude de sensibilité a différents choix paramétriques
pour les modéles de croissance(Colket, Hall dans [Bockhorn (1994)]) montre que le modéle
de croissance peut changer la fraction volumique de suie f, de 2 & 3 décades. Il faut donc
s’efforcer de choisir le modéle qui correspond le mieux au type de flamme que nous souhaitons
modéliser. Plus I’hydrocarbure est léger, plus le modéle de suie sera simple. Pour une flamme
a jets opposés de méthane [Kennedy (1997)| répertorie principalement deux modéles. Le
premier d’entre-eux est celui de [Hall... (1997)] qui se veut le plus détaillé possible et qui
notamment utilise une nucléation a base d’acétyléne et de dérivés benzéniques®. Le second
est plus simple. Il s’agit du modéle de [Leung... (1991), Lindstedt (1992), Lindstedt (1994)]

qui utilise uniquement le Cy Hy comme précurseur de suie.

A la recherche de la mise en oeuvre d’'un couplage formation de suie/rayonnement, nous
souhaitons sélectionner un modéle de cinétique de suies le plus simple possible mais dont les
résultats auront été largement discutés dans la littérature. Il doit exhiber les caractéristiques
essentielles des mécanismes fondamentaux du couplage car notre objectif ne concerne pas
strictement la physique de la flamme a jets opposés. Cette derniére est 'occasion de mettre
en oeuvre un couplage radiatif avec un systéme gaz et suies. Cette raison, ainsi que la
complexité de phénoménes de formation de suie encore mal cernée, encouragent 1'utilisation
d’un modéle paramétrisé. Notre choix s’est donc porté sur le modeéle de |Lindstedt (1994)]
parce qu’il utilise uniquement le C'y, Hy, comme précurseur de suie. Il est adapté aux flammes
de diffusion laminaires & co-courant et contre-courant pour différents carburants dont le

CH,. Son utilisation par [Sivathanu... (1994)] couplée avec le transfert radiatif a montré

8La prise en compte explicite des radicaux phényle dans le processus de nucléation nécessite alors un

modéle de cinétiques de gaz qui s’étend jusqu’a la famille des carbones Cg.
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une relative cohérence avec des mesures expérimentales [Kennedy (1997)|. En pratique, nous
nous en tiendrons a I’étude d’une lamme de C'H, dont le mécanisme d’oxydation bien connu

sera présenté dans le § “Schéma cinétique des gaz”.

D’un point de vue cinétique chimique, nous pouvons donc compter sur un modéle détaillé
et bien connu de cinétique de méthane pour nous permettre de produire l'intermédiaire
réactionnel CyH,. Les incertitudes sont donc principalement reportées dans le modéle de
suie. Suivant les remarques de [Lindstedt (1992)] concernant les faibles temps de séjour
des réactifs dans les flammes a jets opposés, en premiére approximation nous négligerons
la phase d’oxydation. Les trés grandes énergies d’activation que nécessitent ces processus,
nous autorisent a traiter la formation des suies comme découplée d’'un équilibre chimique
gazeux déja établi. C’est a dire que nous ne prendrons pas en compte les éventuels effets
de rétroaction des suies sur la cinétique des gaz. Pour simplifier, on supposera localement

n’avoir qu’une seule classe granulométrique de particules.

D’un point de vue énergétique, les suies seront supposées étre en équilibre thermique
avec le gaz. Le calcul du terme source radiatif limite nos besoins & la connaissance de la
fraction volumique de suie f, : la phase d’agglomération a donc peu d’importance. Le taux de
dégagement de chaleur issu de la formation des suies n’est pas utilisé dans le bilan d’énergie.
En revanche, on a pris soin & ce que la valeur de f, varie avec la température et a ce que
son influence sur les transferts radiatifs soit prise en compte. On peut démontrer pour les
flammes de C'H4 que nous pouvons négliger la part du rayonnement diffusé par les particules.
On s’attend a ce que les quantités de suies formées puissent étre treés faibles, voire inexistantes.
Le modéle radiatif devra donc étre en mesure de balayer une gamme de régimes allant des
gaz propres a un milieu fortement chargé en suies. Bien que peu rayonnante et produisant
peu de suie, cette flamme s’est imposée comme base pour un premier test a notre démarche
de couplage dans un contexte cinétique relativement bien maitrisé. Les § suivants détaillent

les modéles de combustion que nous venons ainsi de sélectionner.
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2.2.2.4 Modéle macroscopique de cinétique de suie pour une flamme laminaire

de méthane a jets opposés [Lindstedt (1994)]

Nous présentons ici seulement les équations du modéle de cinétique de suies sans rentrer

dans les détails de leur établissement.

Nous allons nous limiter aux phases de nucléation et de croissance du modéle de Lind-
stedt en supposant localement une seule classe granulométrique de particules sphériques et
en négligeant les effets d’accumulation qui pourraient étre traduits par des équations de
transport : convection et effet thermophorétique. Seule I'énergétique liée aux transferts ra-
diatifs sera rigoureusement prise en compte. C’est le temps de séjour local des réactifs qui
permet de prendre en compte I'aspect temporel dans les équations de cinétiques. La premiére
réaction (nucléation) est décrite par un modéle homogéne, et la seconde (croissance) par un

modeéle de front ou la surface de réaction joue un role important :
CyHy—2C(s) + Hy nucléation

CyHy +n C(s)—(2+n) C(S)+ Hy croissance

Pour la premiére réaction (nucléation) Leung et Lindstedt proposent une équation de
modéle homogéne d’ordre un :
d[C(s)]
dt

avec ki (T) la constante cinétique d’Arrhénius qui vaut : ky(7) = 0.1 % 10°.e=21100/T [1/5].

La quantité de nuclei est donc directement proportionnelle & la concentration de CoHy. A
cette étape on peut calculer la fraction volumique de suie f,, la concentration molaire de
suie [C(s)], et le nombre de particules par unité de volume N4 en sachant qu'un nu-
clei est constitué d’environ 100 atomes de carbone et que son diamétre vaut 1,24.107° m
[Lindstedt (1992)].

fu» se calcule en faisant le rapport entre le volume de suie sur le volume total de tous
les constituants. Pour cela, on a besoin du volume molaire de suie que nous calculons en
prenant pc;) = 1950 kg.m 2 pour la densité du carbone et Mgy = 12.01g/mol pour sa

masse molaire. Nous utilisons la loi des gaz parfaits pour calculer le volume molaire des gaz.

N,ari s’0btient en faisant le rapport entre la fraction volumique et le volume d’un nuclei®.

°Tl est calculé en prenant 100 atomes de carbone dans un nuclei conformément & [Lindstedt (1992)]
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Pour I’étape de croissance, Leung et Lindstedt donnent I’équation de production suivante :

diC(9)]

= ka(T).f(5)-[CoH][C ()] (Npare)® (2.6)

ou :

ko(T) = 0,6.10%~12100/7

et

6. 2/3
£(s) = \/ﬂ<70<8>>
TPC(s)
La fonction f(s) permet de tenir compte d’une réaction de surface qui dans le cas des suies

se produit sur un ensemble de sites réactionnels bien distincts.

2.2.3 Schéma cinétique des gaz

Les réactions d’oxydation du méthane sont bien documentées |Leung... (1995)]. On peut y
trouver des modéles réduits de bonne qualité [Jones... (1988)] avec une dizaine de réactions.
Pour comprendre les mécanismes de couplage entre la formation d’espéces mineures et le
transfert radiatif, nous avons besoin d’un code de combustion avec une chimie détaillée.

C’est pour cela que nous utiliserons un mécanisme cinétique avec de nombreuses réactions.

En P’absence d’extinction, un aliphatique est d’abord décomposé dans des familles & un
ou deux atomes de carbone [Warnatz (1981)], puis ensuite, les hydrocarbures plus lourds®
sont formés. L’oxydation du méthane peut donc se décomposer en deux filiéres principales
a un et deux carbones (Fig.2.7). Le CyH, étant le point de passage obligé vers les voies

réactionnelles menant aux hydrocarbures plus lourds (HAP et suies).

Nous utilisons le mécanisme GRImech [Bowman... (1999 last visited)| pour loxydation

du méthane dans sa version 2.1 & 48 espéces et 279 réactions (Cf. Annexe 1).

10les HAP, et les suies
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Voie pauvre Voie riche
ou stoechiométrique
CH, CyoHg
CHg - ‘ < C2H5
Ci’IQO C2H4
CHO ! o H
4 CyHy HAP
CcO : suies, ...
! v
CO, CH

FiG. 2.7 — Schéma simplifi¢ d’oxydation du méthane

2.3 Modéle macroscopique de combustion pour la flamme

laminaire & jets opposés

Nous allons maintenant présenter les éléments qui composent le modéle d’aéro-thermo-
chimie. On mettra ’accent sur les hypothéses a partir desquelles il est construit. Nous pré-
senterons dans l'ordre : les variables, les propriétés thermodynamiques et diffusives, et les

équations de conservation.

2.3.1 Définition des variables

Pour décrire correctement 1’écoulement réactif, complétons les variables chimiques, déja
introduites. Pour la £°™¢ espéce on note : M sa masse volumique, X sa fraction molaire, Y},
sa fraction massique, pj sa densité, vy sa vitesse hydrodynamique, ¢, sa chaleur massique a
pression constante, iy, son enthalpie massique a pression constante, j, son flux de diffusion
dans la direction y, et wy sa vitesse de formation. On note v, la viscosité cinématique du

mélange.
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Pour le mélange, on a :

Pour chaque espéce :

v, =2
P
M

X = Vi
My,

avec Vi la vitesse de diffusion.

La conservation de la masse permet d’écrire trois égalités :

K
Y ViVi=0
k=1

2.3.2 Propriétés thermo-chimiques et de transport : équations struc-

turelles

Pour compléter le systéme formé par les équations de conservation qu’on explicitera dans

le § suivant, on fait appel & des relations qui caractérisent les propriétés du fluide :

1. Lois de forces et Lois d’états : dans le bilan des forces extérieures, nous ne prenons pas

en compte la force de gravitation F= mg, parce que son influence est peu significative
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comme le précise [Dagusé (1996)]. Pour évaluer la pression, on suppose le gaz parfait

(P = pRT). La densité du mélange peut s’écrire ainsi :

P
=
‘Fg]ﬂIZkZI%I;c

ot R est la constante universelle des gaz parfaits (8,314 Jmol™'K™').

2. Lois gradients-flux : ces lois relient les flux de matiére et de chaleur aux gradients : lois
de Fourier, de Fick, etc... C’est I'occasion de signaler ici que la diffusion des espéces
provient principalement d’un gradient de concentrations. Mais il existe également les
effets Dufour et Sorret |[Ern... (1995)]. Le premier est négligeable que la flamme soit
laminaire ou turbulente, et le second devient important seulement s’il y a une grande
différence entre les masses molaires du carburant et du comburant : c’est le cas du
meélange Air/Hydrogéne ou il peut jouer sur des centaines de Kelvins. Pour le méthane

nous n’en tenons pas compte.

2.3.3 Equations de bilan

Elles sont établies a partir des équations de Navier-Stockes en supposant I’écoulement
quasi-isobare!!. Elles sont largement documentées [Egolfopoulos (1994), Warnatz... (1996),
Dagusé (1996)]. La flamme que nous étudions Fig.2.8 (page 39) est & géométrie de révolution.
En toute généralité, les équations de conservation de type parabolique s’expriment dans un
repére cylindrique bidimensionnel. On a déja dit qu’en négligeant les dépendances dans I'axe
radial e, (sauf pour la vitesse radiale) on se raméne & un systéme monodimensionnel : la
complexité du systéme est ainsi réduite sous I’hypothése de solution similaire a un systéme
d’équations monodimensionnel sur ’axe de symétrie. Rappelons les hypothéses :

— La vitesse dans I'axe de révolution v,, la température et les fractions massiques ne

dépendent que de y : par exemple, v, =V, (y)/p=V/p

— La vitesse radiale v, est proportionnelle a x (hypothése d’écoulement potentiel ou

approximation de Prandtl) : v, = 2 V,(y) = 2U

— On considere les solutions proches de I'axe e, de révolution.

HTe gradient de pression est présent dans I’équation de conservation de 'impulsion mais négligé dans celle

de ’énergie.
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[Dagusé (1996)| présente alors deux formulations : une a étirement constant, 'autre a vitesses
imposées. Le modéle que nous présentons est écrit pour la seconde, plus facile & interpréter
et a confronter aux données expérimentales. Sous ces hypothéses, on fait apparaitre dans les

équations un gradient de pression :

J—op
X

qui conserve une valeur constante dans les directions radiales e,.

Les équations de conservation se composent de 1’équation de conservation de la masse,
de conservation de 'impulsion (sur l’axe e,), de I'équation de conservation de chacune des
espéeces chimiques puis de ’équation de conservation de I’énergie. Equation de conservation

de la masse :
op+2pU +0,(V) =0 (2.7)
Equation de conservation de I'impulsion (une équation pour la composante U) :
OUp + pU? +VO,U + J — 8,(ven0,U) =0 (2.8)

Equation de conservation des espéces chimiques gazeuses, ou on rappelle que j;, = Y, Vip

est le flux de matiére de I'espéce k dans la direction e, :
p@tYk + Vaka + 8y(]k,y) - Wk == 0, Pour k =1..K (29)

Equation de conservation de 1’énergie, exprimée en température (On relie enthalpie a la

température par dh = ¢, dT) :
1
pO,T — 0,P + VO,T — —0,(A0,T) + Z}m%aT+ }:mwk :0 (2.10)
C” % k=1 “ =

ol s, est le terme source radiatif en [I¥/m?] positif quand le milieu est déficitaire en énergie,

conformément a la convention de la normale sortante.

On définit le taux d’étirement local de la flamme par :

G =0,V
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2.3.4 Conditions aux limites, aux interfaces & conditions initiales

Notons d la distance entre les deux alimentations (Fig. 2.8). Les conditions aux limites
pour les brileurs sont constituées par les compositions chimiques, les vitesses normales, et

les températures.

Air | (Upper side)

PDOYYYYYYYYeeWw
E e %

dr2 d/ \ Porous plane
- Burnt gases

Stagnation plane

Flame front

Fuel T (Lower side)

F1G. 2.8 — Schéma de la flamme plane non-prémélangée a contre-courant

Eny = +d/2 (Lower Side) :

~U=0

o V — Ug,air
__ m0,air

~ T =1

— Xj = X2 Pour k=1..K espéces
En y = -d/2 (Upper Side) :

~U=0

V= vg,fuel
__ 70, fuel

T = Ty f

- X = X,S’f“el Pour k—=1..K espéces
Les conditions initiales ne sont jamais quelconques, des besoins numériques imposent a ce
que les profils de concentrations et de température soient proches de ceux de la flamme
stationnaire vers laquelle nous voulons converger. Nous exposerons cet aspect dans le §

concernant la méthode numérique utilisée.
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2.3.5 Termes sources

Les termes sources d’espéces chimiques et d’énergie radiative viennent clore I’ensemble
des équations. Celui d’espéces chimiques a été présenté avec les modéles de cinétiques chi-
miques. Les données des mécanismes dont on a besoin pour le calculer (les trois coefficients
d’Arrhénius) et les divers paramétres thermodynamiques sont contenus dans les tables des

mécanismes chimiques (pour la phase gazeuse nous utilisons GRImech 2.1).

L’enjeu de notre travail est de proposer une représentation efficace pour le terme source
d’énergie radiative s,. Le prochain chapitre sera consacré a une discussion sur la maniére
d’introduire un terme source radiatif dans cet ensemble déja important d’équations. Il sera

le point de départ de tous nos développements concernant le rayonnement.

Mais avant d’y arriver, présentons 1’aspect numérique associé¢ au code de combustion.

2.4 Solution numérique au modéle de combustion et quelques

exemples de résultats

Pour un tel ensemble d’équations non linéaires, il n’y a pas de solution analytique sauf
dans des cas trés rares en utilisant l’analyse asymptotique |Linan (1974), Cuenot (1995)].

On est donc conduit en général a utiliser des méthodes numériques.

Le code de combustion que nous utilisons pour résoudre ce systéme d’équations nous a
été fourni par F.N. Egolfopoulos. Il provient d'un code de flamme stationnaire [Kee... (1988),
Dixon Lewis (1990)] qui utilise un schéma de discrétisation aux différences finies avec une
procédure de maillage adaptatif. Il fait appel a la librairie CHEMKIN-IT pour 'interprétation
des tables de cinétiques chimiques, les calculs de thermo-chimie [Kee... (1989), Kee... (1986)]
et de transport. [Egolfopoulos... (1996)] y a rajouté un schéma Crank-Nicolson du second
ordre pour simuler une lamme instationnaire. Ce programme n’inclut pas de modéle de for-
mation se suies en revanche, il est pourvu d’un calcul radiatif qui fait ’hypothése d’un milieu
optiquement mince (absorption négligée), et dont on peut retrouver les développements dans
[Hubbard... (1978)]. Les modifications que nous apporterons a ce code concernent, la par-

tie cinétique des suies, indépendante et découplée, qui viendra se rajouter comme un calcul
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supplémentaire aprés chaque itération numérique du programme et la partie radiative. Les
questions de mise en oeuvre dans le code, de ces deux nouveaux éléments, seront reprises
dans le dernier chapitre (Chap. 6) aprés avoir auparavant discuté et developpé le modéle

radiatif.

Revenons sur la procédure numérique du code de combustion pour en donner quelques
détails. Sur la base d’une discrétisation des équations par une méthode aux différences finies
le code trouve la solution du systéme d’équations par la méthode itérative de Newton. Il lui
est donc plus facile de converger lorsque I’on dispose déja d’une solution dans des conditions
pas trop éloignées de celles que ’on veut simuler. La résolution du systéme nécessite donc le
calcul numérique de la matrice jacobienne et une condition initiale proche de la solution vers
laquelle on veut converger. Le code recherche d’abord une solution pour une température
fixée (pour résoudre les équations de continuité et du mouvement), puis la solution générale

est calculée en introduisant I’équation de ’énergie.

Pour fixer les idées, nous présentons des résultats standards pour une flamme air/méthane

! calculé sur le front de flamme (Fig. 2.9).

pur avec un taux d’étirement global de 28,5 s~
Ils ont été obtenus avec le code décrit auparavant. Les deux alimentations sont distantes de
2,2 cm et le méthane et injecté par la droite!?. La premiére figure présente le taux d’étirement
local avec la vitesse locale le long de ’axe e,. La combustion provoque un échauffement qui
par effet de dilatation augmente la vitesse locale a I’endroit ou se situe la flamme. Sur les
deux figures suivantes on peut observer les concentrations du méthane et de I'air (la richesse

est proche de 10) puis les concentrations des produits de la réaction (H0,COo, CO et OH).

Le terme source radiatif est de 'ordre du million de Watts par métre cube pour un
taux d’étirement global de 28,5 s~!. La perte maximale d’énergie radiative coincide avec
le maximum de température qui se trouve ici a 2000K. Cette correspondance sera toujours

vraie par la suite.

Pour illustrer I'influence croissante du rayonnement a faible taux d’étirement sur la tem-
pérature nous avons fait varier ce dernier et reporté la température maximale pour plusieurs
flammes avec le modéle de rayonnement sans réabsorption (OTL Hubbard) et en absence de

modéle radiatif (sans rad). A trés faible taux d’étirement on peut observer des écarts d'une

12La Fig. 2.8, ot I'alimentation en méthane se fait par le bas, doit étre retournée dans le sens trigonomé-

trique.
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centaine de Kelvins. Les équilibres convecto-diffusifs sont donc modifiés a faible taux d’éti-
rement et provoquent une influence plus grande des échanges radiatifs sur la température de

flamme.



Chapitre 3

Les transferts radiatifs en combustion

Notre travail porte sur le couplage du rayonnement avec la combustion. Cet objectif déja
évoqué peut étre résumé en deux points fondamentaux :
— Savoir intégrer dans 1’équation de conservation de I’énergie un bon modéle du terme
source radiatif s, (pour un mélange gaz et suies).
— Développer un outil d’analyse pour aider a la détermination d’ une démarche de
couplage avec la combustion.
Alinsi, des pré-requis en matiére de rayonnement s'imposent. Nous allons voir que, par rapport
a d’autres mécanismes de transfert, les difficultés spécifiques de I’étude des transferts radiatifs
sont principalement liées au fait que la détermination du terme source en un point dépend de
toutes les directions de 1’espace et de toutes les fréquences radiatives pour chaque direction.
Nous allons développer dans les deux premiéres parties de ce chapitre des rappels généraux
en rayonnement qui permettront d’appréhender les spécificités du transfert radiatif et de
discerner les différentes méthodes de résolution radiatives. La troisiéme partie est un rapide
point bibliographique sur la facon avec laquelle ces différentes approches radiatives ont pu

étre mis en oeuvre dans des applications en combustion.

45
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3.1 Rappels sur la physique du rayonnement

3.1.1 Introduction au vocabulaire et aux difficultés de modélisation

du rayonnement

Lorsqu’on s’interroge sur la physique du rayonnement, on s’apercoit qu’elle peut étre
décrite simultanément par un aspect ondulatoire et corpusculaire. Chaque corpuscule, appelé
photon, véhicule une énergie propre € = hv qui est fonction de sa fréquence v (= 5= = {). On

appellera également par la suite 7 le nombre d’onde qui est 'inverse de la longueur d’onde
A(n=73)

Il existe différentes interprétations concernant 1’origine du rayonnement. Dans les théories
planétaires de ’atome ou de la molécule (de type Bohr), la structure en niveaux d’énergie des
molécules est responsable d’une émission radiative sur des fréquences bien déterminées. La
transition autorisée d’un électron, d’une orbitale moléculaire! & une autre, d’énergies diffé-
rentes provoque 1’émission ou I’absorption d’un photon de fréquence v ot hr est la différence
d’énergie entre les deux niveaux d’énergie moléculaire. Les raies d’émission (respectivement
d’absorption) qui constituent le spectre de raies des molécules de gaz sont le résultat éga-
lement de phénomeénes d’élargissement qui ont plusieurs origines. Le profil de raie est donc
un élément déterminant dans la modélisation des propriétés radiatives. Dans la classe des
problémes de combustion que nous abordons, ce sont les élargissements collisionnels qui
dominent. Par conséquent, ’ensemble des formulations de propriétés radiatives que nous

utiliserons sont établies sur la base d’un profil de raie de Lorentz.

Pour les transferts thermiques en combustion, c’est dans le domaine spectral de 'Infra-
Rouge (I.R.) compris entre les longueurs d’onde de 0.1 4 100 um (Fig. 3.1) que se rencontrent
les principales applications dans le domaine des transferts énergétiques. Dans ces systémes,
le rayonnement constitue I'un des trois modes? de transfert de chaleur avec la particularité
d’exister en l'absence de matiére. Sa délocalisation dans ’espace constitue, avec les diffi-
cultés de description des spectres de raies, une des principales difficultés a sa modélisation.

A T’échelle de phénoménes macroscopiques, il existe deux classes de modéles descriptifs du

!Les niveaux d’énergie moléculaire sont le résultat de combinaisons entre les niveaux d’énergie électro-

niques, vibrationnels et rotationnels de la molécule.
211 s’agit de la conduction, de la convection et du rayonnement.
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F1G. 3.1 — Différentes plages spectrales du rayonnement [Welty ()]

rayonnement : ceux fondés sur la description ondulatoire de Maxwell et ceux qui s’appuient

sur la description énergétique en flux corpusculaire (ou en “paquets de photons”). Bien que

pour la caractérisation des propriétés spectrales des particules de suies on a tendance a utiliser

une approche ondulatoire, dans le domaine des transferts radiatifs infrarouges on utilise prin-

cipalement une description énergétique des transferts radiatifs en milieu semi-transparent.

C’est par cette derniére que nous poursuivons notre exposé. Suivent deux § supplémentaires,

I’'un concernant les spectres de raies des gaz et l'autre concernant les propriétés spectrales

des particules de suies.
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3.1.2 Transferts radiatifs en milieu semi-transparent

Les configurations rencontrées en combustion peuvent le plus souvent se ramener a I'image

L, . . 5 , . . 3 .
générique d’un volume de gaz confiné par des parois solides opaques® au rayonnement infra-
rouge. Le cadre radiatif général qui sera le notre sera donc celui de 1’étude d’un milieu semi-
transparent au sein d’une cavité fermée, sachant que nous qualifions de “semi-transparents”
des milieux (tels que les gaz de combustion) qui peuvent a la fois transmettre, absorber,

émettre et parfois diffuser une puissance radiative.

3.1.2.1 Définition de la luminance

Les formulations énergétiques que nous utiliserons ont a leur base une grandeur radiative
qu’on appelle luminance. L’énergie rayonnante se distingue selon sa direction de propagation
et le point de vue de I'observateur. Notons d*¢ le flux d’énergie rayonnant, au voisinage d’un
point P, a travers une surface fictive dS de normale e,,, dans ’angle solide df2 autour de la
direction eq, pour l'intervalle de fréquence dv autour de v et pendant I'intervalle de temps
dt autour de ¢. La luminance L(rp,eq,v,t) correspondante est alors définie de sorte qu’est
vérifiée la relation de proportionnalité suivante :

d*¢ = L(rp,eq, v, t).e,.eq.dS.dQ.dv.dt = L(rp, eq, v, t).cos(#).dS.dQ.dv.dt

d=cdt

Fia. 3.2 — La luminance

La luminance est donc une densité d’énergie surfacique directionnelle spectrale par unité de
temps [J/m2 /str /Hz /s|. Par la suite, nous indicerons la luminance par le nombre d’onde

n et nous masquerons la dépendance temporelle : L(rp, eq,v,t) = L,(rp, eq).

3Nous verrons que pour notre étude de couplage avec la flamme 4 jets opposés, une hypothése de parois
noires sera largement suffisante. En effet, sans confinement 1’environnement qui ’entoure peut en premiére

approximation étre considéré comme un corps noir  la température ambiante.
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3.1.2.2 Luminance noire

Le rayonnement d’équilibre d’une cavité fermée isotherme a des propriétés remarquables.
Il ne dépend que de la température de la cavité. Par un orifice infiniment petit pratiqué
sur cette derniére est émis un rayonnement d’équilibre. On I’appelle rayonnement noir et
la surface de orifice est également appelée corps noir. Un corps noir absorbe la totalité
du rayonnement qui lui arrive et ’énergie qu’il émet se répartit sur une large gamme de
fréquences (ou de nombres d’onde) selon la loi de Planck. On appellera luminance noire
Ly, (rp), la luminance d’un corps noir a la température 7'(rp) observée au point P. Elle a

pour expression :
2 % he?n?

: (3.1)
exp (kBT(ZP)> -1

Lb,n(rP) =

avec kp la constante de Boltzmann.

3.1.2.3 Coefficient d’absorption et de diffusion

Pour les Milieux Semi-Transparents (M.S.T.) on caractérise la maniére dont le rayonne-
ment est absorbé, émis ou diffusé* par la matiére en utilisant des coefficients monochroma-
tiques d’absorption k,,, d’émission . ,, de diffusion o, et une fonction de phase ® pour
indiquer la distribution angulaire de 1’énergie radiative diffusée. En supposant I’équilibre
thermodynamique local (E.T.L.), on égale les coefficients d’absorption et d’émission® notés
indifféremment &, par la suite et I’émission radiative volumique monochromatique direction-
nelle au point P est isotrope et s’exprime par kL, (rp). On utilise également la transmittivité
monochromatique qui représente la fraction de rayonnement qui est transmise le long d’une

colonne de longueur 1 :

(0 = 1) = exp <— / | /in(x)dx) (3.2)

=0

qui lorsque le milieu est homogéne devient :

(1) = exp (—kyl) (3.3)

4Avec trois contributions : la réflexion, la réfraction et la diffraction
5Cf. lois de Kirchoff
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3.1.2.4 L’Equation de Transfert Radiatif : ETR

L’Equation de Transfert Radiatif (ETR) s’établit a partir d’un bilan radiatif sur un petit
volume (Fig. 3.3) centré en un point P (localisé par le vecteur rp), dans une direction de visée
eq sur laquelle se propage le rayonnement considéré. On peut en trouver des démonstrations
élégantes dans [Howell (1988), Goody (1989)]. Si on fait les hypothéses suivantes :

— indice de réfraction uniforme;

— pas d’effet de polarisation du rayonnement ;

— équilibre thermodynamique local ;

— rapidité des échanges radiatifs devant les autres modes d’échange
Diffusion "entrante”

F1a. 3.3 — Conservation de la luminance dans un volume

PETR peut se mettre sous la forme différentielle suivante :

a ’
€q.Orp Ly(rp,eq) = —fnLn(rp,egl+i€an,n(rp)J—gnLn(rp,eQ)J+ ﬁ /QI4 dQY L,(rp,eq)®(eq,eq)

wV
. , . . . . N g
absorption émission dif fusion ~~
dif fusion”entrante”

(3.4)

~” ~”




Chap.3 Modélisation des transferts radiatifs en combustion 51

Dans les problémes que nous traiterons, le milieu est supposé non diffusant ce qui nous

permet de ne considérer que ’expression simplifiée de 'ETR en I"absence de diffusion :

€q.Or, Ln(rp, €q) = fig[Lyy(rp) — Ly(rp, eq)] (3.5)
Nous I'appellerons forme différentielle de 'ETR 6.

La forme intégrale de 'ETR sans diffusion s’obtient a partir de I'Eq. 3.5 en résolvant

I’équation sans second membre associée :
€0.0pp Ly(rp,eq) + kyLy(rp,eq) =0

puis en reportant la solution obtenue dans I’'Eq. 3.5, par la méthode de la variation de la
constante, on obtient ’équation suivante intégrée entre une origine Py et un point P de la

ligne de visée repéré par rp :

rp

L,(rp,eq) = L,(rp,,eq)m(rp, — rp) +/ drpr.eq Ly, (rp)k,(rp, eq)r,(rpr — rp)

rp,

(3.6)
C’est la forme intégrale de 'ETR. Le premier terme du second membre représente le rayon-
nement incident au point Py et qui est transmis jusqu’au point P. Le terme intégral qui suit
représente la somme de la contribution du rayonnement émis dans la direction de visée en

chaque point P’ compris entre Py et P et qui est transmis jusqu’a P.

3.1.2.5 Corrélations spectrales

On est souvent conduit a considérer I'intégration de I'Eq. 3.5 et 'Eq. 3.6 sur une bande de
fréquence. Supposons pour simplifier que cette bande de fréquence soit suffisamment étroite

pour que la luminance noire puisse étre supposée constante (bande étroite). On obtient alors :
€0.0rp < Ly(rp,eq) >=< kK, >< Ly,(rp) > — < kL, (rp, eq) >

et

rp
< Ly(rp,eq) >=< Ly(rp,, eq)ry(rp, = rp) > +/ drpr.eq < Ly,(rp) >< K, 1) >

rp,

6A ne pas confondre avec les formes intégrale et différentielle qui désignent en mécaniques des fluides
et en électromagnétisme des formules intégrées en volume ou non. Elles seront appelées dans ce document

écriture faible (pour la forme intégrale) et écriture forte (pour la forme différentielle)
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Les termes dont on connait la dépendance spectrale ne posent aucun probléme de corrélation
(termes en luminance noire, le produit x,7,). En revanche, ce sont le terme de conditions aux
limites < L,(rp,, eq)7,(rp, — rp) > dela formulation intégrale et le terme < &, L, (rp, eq) >
de la formulation différentielle qui sont difficiles a modéliser du fait des corrélations spectrales
possibles entre la luminance d'une part et la transmittivité ou le coefficient d’absorption

d’autre part.

En pratique pour une formulation intégrale, il y a pour le terme < L, (rp,, eq)7,(rp, —

rp) >, deux conditions pour lesquelles on peut contourner cette difficulté :

— En rp, on a une surface noire (la dépendance spectrale de L,(rp,, eq) est alors celle
de la luminance noire).

— En rp, la surface est quelconque mais la résolution est assurée par une méthode qui
permet de reconstituer la dépendance fréquentielle de L, (rp ,eq). Cest le cas des
méthodes dans lesquelles on a accés a toute la physique des transferts d’énergie depuis
chaque lieu d’émission (Ex : méthode par tracé/suivi de rayons).

Pour une formulation différentielle, si une décorrélation est proposée, elle doit étre justifiée
en tout point du domaine d’étude. Dans le cas général, on retiendra que 1'utilisation de
PETR intégrée sur une bande de fréquence nécessite de pouvoir proposer des modéles de

corrélations ou de justifier des hypothéses de décorrélation spectrale.

3.1.2.6 Passage du champ de luminances au terme source radiatif volumique

Lorsque ’on connait le champ de luminance pour chaque direction, on peut construire

en tout point le vecteur flux radiatif & partir de ’expression :

qr:/ dn qm,:/ dn/ dQY L, (rp, eq)eq
0 0 4

Le terme source radiatif volumique est alors :
oo
s, = div q, = V/ dn/ dY L,(rp,eq)eq
0 4

Pour compléter ces quelques rappels en rayonnement, nous présentons par la suite des
éléments supplémentaires concernant les propriétés radiatives des gaz et des particules de

suie.
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3.1.3 Spectre de raies des gaz de combustion

Au § 3.1.1 nous avons évoqué les propriétés spectrales des molécules de gaz dans I'infra-
rouge. De ce fait, les spectres d’absorption-émission des gaz de combustion sont composés
d’un grand nombre de raies dont, par défaut, nous supposerons ici qu’elles sont de forme

lorentzienne.

L’enjeu de modéles facilement utilisable dans un code de calcul, c’est d’avoir un nombre
de parameétres réduits. A 'opposé, les spectres gazeux semblent si complexes que trouver un
modéle pour les représenter semble trés délicat. Il y a donc un compromis a trouver lorsqu’on
cherche a décrire les propriétés spectrales des gaz. Dans ce cadre, il existe quatre types de
modéles [Taine... (1998)], le plus précis d’entre eux est le modéle raie par raie par lequel nous

commencons notre présentation.

3.1.3.1 Modéle raie par raie

Cette premiére classe de modéles correspond a des modéles de référence dans le domaine
des transferts radiatifs en milieu gazeux. On suppose connu I’ensemble des raies d’absorption
de chacun des gaz du mélange considéré. Cela signifie que ’on a accés avec précision, pour
chaque raie, a la fréquence du centre de raie, son intensité et sa forme (par l'intermédiaire
de la demi-largeur de raie a mi-hauteur v dans le cas d’une forme lorentzienne). Le coeffi-
cient d’absorption & une fréquence donnée est alors obtenu en sommant a cette fréquence
les contributions de chacune des raies. La précision de ce type de modéle dépend alors es-
sentiellement de celle des banques de données spectroscopiques disponibles, ainsi que des
éventuelles hypothéses de troncature utilisées lors de la mise en oeuvre. Par exemple, pour
un spectre infrarouge de COy et HyO vers 2500 K, chaque calcul de coefficient d’absorption
va demander de sommer les contributions de prés de 1000000 raies. Les temps de calcul
inhérents a 'emploi d’un modéle raie par raie sont toujours importants et ces modéles res-
tent trés difficilement exploitables sur des configurations réelles. Ils servent avant tout de

référence pour la validation de modéles paramétriques simplifiés moins cotiteux.
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3.1.3.2 Modéles simplifiés

Il existe des modéles beaucoup plus légers & mettre en oeuvre, adaptés a certaines ap-
plications en fonction de la précision recherchée. Ces modéles simplifiés visent a représenter
I’essentiel de la physique spectrale a partir de grandeurs intégrées sur des plages de fré-
quences. Le gain en facilité d’utilisation qu’on obtient est cependant toujours obtenu au
sacrifice de la généralité de leurs conditions d’application. On peut donc retenir que pour
tous les modéles qui suivent la confrontation au modéle de référence raie par raie reste une

étape incontournable.

- Modéles globaux : A l'opposé des modéles raie par raie, les modéles globaux utilisent
des propriétés intégrées sur tout le spectre. On peut citer le modéle "somme pondérée de gaz
gris" (WSGGQG) [Hottel... (1967)] qui approche la distribution spectrale continue du coefficient
d’absorption par un nombre discret de valeurs pondérées, permettant ainsi de réduire le pro-
bléme gazeux & une combinaison simple de problémes de transferts en milieu gris. Une logique
similaire préside a des modéles plus récents tels que SLW [Denison (1993), Denison... (1995)],
ADF, ADF-FG [Pierrot (1997), Taine... (1998)] qui, appuyés sur des banques de données
spectrales de qualité, permettent d’assurer de bonnes précisions de simulation dans bon
nombre d’applications industrielles. Ces modéles globaux rencontrent principalement leurs
limites pour des systémes ou les propriétés de surface sont dépendantes de la fréquence, ou

encore (et c’est le cas de notre étude) en présence de particules absorbantes non grises’.

- Modéles de bande : La principale difficulté rencontrée par les modeéles globaux est celle
de la représentation des effets combinés de la déformation du spectre d’absorption du gaz
et de la fonction de Planck en fonction de la température. Cette difficulté est contournée
en découpant le spectre en intervalles suffisamment étroits pour que I'on puisse négliger les
dépendances fréquentielles de la fonction de Planck au sein de chaque bande. C’est le point
de départ des modeéles de bande qui se distinguent ensuite par le type de représentation

proposé pour le spectre de raie du gaz.

Les modéles a bande large (tels que le modéle d’Edwards) proposent des représentations

"Certaines difficultés de mise en oeuvre de calcul apparaissent également lorsqu’il s’agit de traiter des

mélanges de gaz hétérogénes
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de ’ensemble d’une bande de rotation-vibration sur la base d’analyses spectroscopiques quant
a la distribution fréquentielle des intensités de raie au sein de la bande. Etant données les
largeurs des bandes de rotation-vibration de H>O et C'O, qui nous concernent en combustion,
nous sommes alors proches des limites de validité de 'hypothése d’indépendance fréquentielle

de la fonction de Planck.

Que ce soit pour cette raison ou d’autres exigences de précisions, il apparait dans la
littérature que les modeéles a bandes larges se voient souvent préférer des modéles a bande
étroite qui quant & eux s’appuient sur un découpage fréquentiel & une échelle nettement
inférieure & celle de la bande de rotation-vibration. Ces découpages peuvent aller de 5 a
200 ¢m~! mais pour des applications en énergétique industrielle un trés bon compromis
semble avoir été trouvé a 25 cm ™ ![Soufiani... (1994)]. Nous reprenons ci-dessous en détail la
discussion des modéles a bande étroite, mais on peut dores et déja retenir que I’on peut choisir
de distinguer deux familles de modéles a bande étroite, selon qu’ils sont issus directement
de données spectroscopiques expérimentales ou théoriques, ou bien qu’ils font au préalable
des hypothéses sur la répartition des raies et de leurs intensités. Nous préférerons cependant
distinguer les modéles par la maniére avec laquelle ils sont formulés : en transmittivité

moyenne sur une partie du spectre < 7, > ou en distribution de coefficients d’absorption.

3.1.3.3 Modéles a bande étroite : formulation en transmittivité moyenne

Ces modéles proposent pour des milieux homogénes en concentrations et températures
une représentation de la transmittivité moyenne sur une bande étroite [Goody (1989)]. Pour

une colonne homogéne de longueur [ on la note :
_ 1
() =< 1(l) >= —/

Pour les applications en combustion [Soufiani... (1985), Soufiani... (1994)] il est courant d’uti-

liser le modéle de [Malkmus (1967)] qui sera repris en détail au chapitre suivant.

3.1.3.4 Modéle a bande étroite : formulation en k-distributions

Principe des k-distributions : Les modéles en k-distributions proposent une représenta-

tion de la distribution du coefficient d’absorption «,, au sein de la bande de fréquence. C’est
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pour éviter la lourdeur liée a la résolution d'un spectre difficile & mettre en équation que
G.A. Domoto présente en 1974 [Domoto (1974)] le principe des k-distributions dont le but
est d’abandonner la dépendance fréquentielle au profit d’'une description statistique du co-
efficient d’absorption. Exposons le principe des méthodes en k-distribution. Supposons que,
pour une quelconque fonction F' du coefficient d’absorption on veuille évaluer sur une bande

étroite An :
G= / dn F(ky)Ly,(rp) =~ AnLy,(rp) < F > (3.7)
An
ou :
<F>—i/ dn F(r,) (3.8)
A77 An ! .

avec une dépendance fréquentielle du coefficient d’absorption illustrée par la Fig. 3.4. Choisissons

[ee]
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560 580 600 620 640
n encm-1

F1G. 3.4 — Spectre d’absorption synthétique obtenu par élargissement de raies prédéfinies de

maniére discréte

alors un coefficient d’absorption x symbolisé par la bande grise sur la Fig. 3.4. Il est ren-
contré pour différents nombres d’onde 1 qui forment un ensemble discret de i valeurs 7; (ici
8) du nombre nombre d’onde 7. A chaque k correspond une fréquence de rencontre, ce qui

permet de fabriquer une fonction f(x) représentée a la Fig. 3.5. La fonction f(k)® représente

8Les petites irrégularités de la courbe sur la Fig. 3.5 s’explique par I’échantillonnage en valeur de &, sur
le spectre Fig. 3.4. Les grandes amplitudes proviennent du choix des raies spectrales. D’ou I'importance du

choix de la largeur de An
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la distribution des coefficients d’absorption &, sur la bande étroite. Elle correspond a la
densité de probabilité de trouver une valeur x de &, lorsque I'on parcourt de facon uniforme

I’intervalle des nombres d’onde. On I'utilise pour calculer I'intégrale de I’Eq. 3.8 qui devient, :
— 1 o0
F=<F>= A—n dn F(k,) = / dk f(k)F (k) (3.9)

An k=0

Lorsque I'on utilise une valeur de k, on ne peut plus dire a quelle nombre d’onde 7 elle
correspond. Cela n’a pas d’importance, puisque ce qui est recherché, ce n’est pas la fonction
mais la valeur de son intégrale. Il est important de remarquer également que la dépendance
fréquentielle dans un probléme de rayonnement est double au départ : le spectre d’absorption
est décliné en fonction de 7 et la luminance noire (ou fonction de Planck) est soumise a la
méme dépendance. Cependant I'hypothése de bande étroite permet de nous libérer de cette
deuxiéme contrainte puisque l'on considére l'intervalle d’étude suffisamment étroit pour
prendre Ly, (rp) indépendant de 7 et donc la seule dépendance en 7 est celle des «,. L’essentiel

dans cette démarche, réside dans la construction de f(k).

Modeéles en k-distributions : Ily a deux moyens de parvenir a un modéle en k-distributions.
Le premier consiste & partir d’un spectre expérimental détaillé. On découpe la bande étroite
An en intervalle i ol K, est monotone entre deux valeurs extrémes Kpin ;i €t Kpqq,i- La densité

de probabilité s’écrit alors :

N i
f(r) = Zi:1fn (ZL

X {h, [Ii — Iimm,i] —h [K?max,i - ’i]}

ol h représente la fonction échelon unité. La deuxiéme démarche consiste a retenir dans la lit-
térature un modéle de transmittivité. On reécrit alors la transmittivité moyenne sur la bande

o0
étroite ( 7 (1) = Ain [ exp(—k,l)dn ) enterme de k-distributions, soit : 7 (I) = Ofexp(—nl)f(/i)d/i
ou 'on voit que 7 est une transformée de Laplace de f. Donc en notant L~! la transformée

de Laplace inverse, on obtient :

fk) =L (7 () (3.10)

C’est pourquoi f(k) est appelée aussi fonction de transmittivité inverse. En pratique Do-
moto propose une telle fonction correspondant au modéle en transmittivité de Malkmus. (k)
a alors des propriétés tres particuliéres d’un point de vue mathématique que nous détaille-

rons.
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f(k) fonction densite de presence de k
14 ‘ ‘ ‘ ‘ ‘

0.8}

f(k)

0.6 -

0.4}

0 1 2 3 2 5 6 7 8
k absorption en m-1

F1G. 3.5 — Fonction f(x) pour le spectre d’absorption synthétique de la Fig. 3.4

3.1.3.5 Questions de corrélations spectrales

Pour clore nos remarques sur les modéles de propriétés radiatives des gaz disons quelques
mots sur les avantages et les inconvénients a utiliser un modéle & bandes étroites formulé en
transmittivité moyenne ou en distribution de coefficients d’absorption. En effet, le choix d’un
modeéle de propriétés radiatives implique parfois, le choix implicite d’'un modéle de transfert
radiatif. Les modéles de propriétés en k sont compatibles avec toutes les formes (différentielle
et intégrale) de 'ETR. En revanche, les modéles de propriétés en 7 nécessitent de pouvoir
justifier les décorrélations spectrales. Il n’y a pas a notre connaissance de solution pleinement
satisfaisante pour I'utilisation de 7 en combinaison avec la forme différentielle de 'ETR. En
ce qui concerne la forme intégrale les corrélations spectrales ne posent de problémes qu’au
niveau des conditions aux limites, ce qui fait qu’en pratique on ne rencontre aucune diffi-
culté dans le cas de configurations a parois noires. Pour des configurations réfléchissantes,
[Pierrot (1997)] a montré que 'hypothése de décorrélation spectrale peut entrainer des er-
reurs importantes (- 30%) sur les calculs de flux radiatifs. Ce probléme disparait si dans la
formulation intégrale, on explicite les conditions aux limites sous la forme d’une combinaison

d’intégrales multiples représentant ’ensemble des multi-réflexions [Dutre (1996)].

9Pour laquelle le probléme de corrélation spectrale se pose en tout point
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Régime de Rayleigh | Régime de Mie | Optique géométrique

paramétre de taille z, = T2 z, < 0.3 03<2,<5 5< x,

énergies mises en jeu Eiiffusee < Eiransmise - -

TAB. 3.1 — Les régimes de diffusion en fonction du paramétre de taille

3.1.3.6 Questions d’hétérogénéités

Pour une seule espéce gazeuse'? participante, nous venons de présenter les modéles de
bande qui permettent de décrire son spectre radiatif pour un milieu homogéne en température
et concentration. Le probléme est maintenant de pouvoir tenir compte de la déformation de ce
spectre lorsque parcourant 1’espace, les conditions en température, pression et concentrations
évoluent. Les modéles de bande décrits au-dessus font I'hypothése d’un milieu aux propriétés
radiatives homogeénes. Sans approfondir ici cet aspect que nous détaillerons par la suite, on
peut mentionner que les solutions utilisées pour traiter les configurations hétérogénes sont
principalement d’une part ’approximation de Curtis-Godson pour les modéles & bandes
étroites en transmittivité moyenne et d’autre part la méthode ck (ou ckfg) [Goody (1989),

Taine... (1998)] pour les modéles & bandes étroites formulés en k-distributions.

3.1.4 Propriétés spectrales des particules de suies

C’est a partir de la théorie électromagnétique que ’'on aborde de maniére efficace la
modélisation de I'absorption et la diffusion du rayonnement par les particules. Dans le cas
d’une particule sphérique, on fait appel dans ces théories & un paramétre de taille qui est
proportionnel au rapport entre la dimension de 1’objet et la longueur d’onde de I’éclairement :

D
A

l'p:

Aux faibles z,, on utilise I'approximation de Rayleigh (sachant que les centres diffuseurs
sont petits et donc que I’énergie diffusée est faible). Aux forts x,, on se retrouve dans le
domaine de l'optique géométrique, sans diffraction. Le régime de Mie est le cas général

intermédiaire (Tab. 3.1). Pour les suies, la complexité du probléme physique est accrue du

1°0On abordera les mélanges au Chap. 4
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fait que les particules quasi-sphériques élémentaires (par exemple, 30nm) s’agrégent pour
donner des ensembles qui peuvent comprendre jusqu’a 10000 particules élémentaires (taille
totale de l'ordre du micron). Les théories disponibles actuellement font alors I’hypothése
d’une structure fractale dans les développements électromagnétiques des propriétés radiatives
pour aboutir aux sections efficaces d’absorption et de diffusion ainsi qu’a la fonction de phase
de diffusion |Farias (1997)].

En pratique, principalement du fait de la complexité de cet ensemble théorique, les études
de combustion font en général de trés fortes simplifications, en particulier :
— Du fait de la petite taille caractéristique des agrégats de suie devant les longueurs
d’onde du rayonnement infrarouge, les effets diffusifs sont négligés.
— Des corrélations simples sont employées pour modéliser la dépendance spectrale du
coefficient d’absorption. En particulier, nous ferons appel dans ce travail a la corrélation

suivante proposée par [Dalzell... (1969), Lee... (1981)] :

K suie = 95 91 v (3.11)

Un travail mené au laboratoire [Eymet (2000)] nous a permis de tester les incertitudes
associées a ce type d’approximations et il apparait que pour les configurations qui nous
concernent celles-ci sont au maximum de quelques pour cent sur le terme source radiatif
volumique. De ce point de vue, les conditions les plus critiques semblent devoir se rencontrer
a hautes fréquences (a proximité de la plage visible) et pour des systémes en combustion de

grandes tailles (dimension supérieure au métre).

3.2 Formulations des Transferts radiatifs et méthodes nu-

mériques associées

Avec les rappels précédents, nous avons cherché a faire le point sur ce que sont les éléments
de départ des modélisations radiatives actuelles dans le domaine de la combustion. On peut
retenir globalement qu’aprés de gros travaux sur les données spectroscopiques, 1'état actuel
des connaissances est tel que dans la plupart des cas, la précision des estimations radiatives
est principalement définie par les limites de la procédure de résolution numérique employée

pour résoudre le modéle de transfert.
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En général, ces limites se déclinent en termes de compromis entre finesse et temps de
calcul. Cette recherche de compromis est d’autant plus sensible en combustion que :
— du fait des questions de cinétique chimique, les questions de précision sont cruciales
— nous sommes confrontés a des complexités spectrales et géométriques souvent assez
considérables
— les besoins de couplage avec la combustion demandent de pouvoir gérer des schémas
numeériques itératifs avec des appels répétés a la procédure de calcul radiatif.
Le choix d’un modéle de transfert détermine de maniére forte la qualité des résultats et notre
possibilité d’analyse a leur égard. Cela nous conduit & développer un travail d’approfondis-
sement des démarches de formulation des processus de transfert. Nous avons déja introduit
les formes différentielles et intégrales de ’équation de transfert radiatif et nous les reprenons
ici pour pousser plus avant I’analyse et aboutir & une présentation sommaire des grandes

familles de méthodes numériques actuelles.

Nous considérons pour cela un systéeme S Fig. 3.6 dont on connait sur la frontiére la
valeur de la luminance dans toutes les directions rentrantes'! et pour toutes les fréquences

L,(rp,,eq). On note S la surface totale qui entoure le volume total V.

FiG. 3.6 — Calcul du terme source en un point P

HDirectement comme condition aux limites explicites au travers de conditions de réflexion ou encore

comme condition de raccord avec un systéme extérieur
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3.2.1 Formulation différentielle

Nous cherchons tout d’abord a écrire, en un point P repéré par le vecteur rp, le terme

source radiatif s, (rp).

Dans les développement suivants, le vecteur unitaire eq porte la direction du rayon lu-
mineux sur lequel [ désigne ’abscisse curviligne, qui prend son origine en rp . On a alors les
relations suivantes : eg.V = eq.0,, = %
s, (rp) = —div(q,)

:/ d77 (—V qr,n)
0

——
= —/ dn V dY eq L, (rp, eq)
0

am
:_/ dn / dY eq.VL,(rp,eq)
0 4

:_/ diy / ag ILnlre. co)
0 4m ol

:—/ d77 / ds2 aan(I‘p,eQ)
0 4w ———

formulation différentielle

(3.12)

On a besoin dans cette expression pour exprimer la dérivée partielle de la luminance le long
du chemin optique de la connaissance du champ de luminance. Cette formulation n’est donc
pas autonome mais peut s’accompagner de la résolution de ’'ETR sous sa forme différentielle
(Eq. 3.5). Nous appellerons “méthodes différentielles” les méthodes numeériques correspon-
dant a cette approche, c’est a dire résolvant le champ de luminance a partir de 'ETR sous
forme différentielle et construisant le terme source radiatif par intégration angulaire. Dans
cette famille, les différentes méthodes numériques se distinguent principalement par la fa-
con de représenter la dépendance angulaire de la luminance. Nous n’approfondirons pas les
détails de ces méthodes car ce n’est pas sur cette voie que nous poursuivrons. Elles sont
bien documentées dans de nombreux ouvrages [Modest (1993), Siegel... (1992)] et nous nous

contenterons ici de mentionner les grandes lignes de leurs bases théoriques.

En schématisant, on peut retenir que les méthodes différentielles peuvent se ranger en
trois classes selon que :
— la dépendance angulaire de la luminance est abordée par discrétisation de la sphére

unité [Liu (1999)] (Méthode des Ordonnées Discrétes ou Méthode Sn) ;
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— la fonction luminance en chaque point est décomposée sur une base angulaire, par
exemple une base d’harmoniques sphériques (Méthode des Harmoniques Sphériques ou
Méthode Pn [Languénou... (1994)]);

— I’ETR est transformée par intégration angulaire de la luminance de facon a produire
un jeu d’équations différentielles sur des grandeurs intégrées (Méthode des Flux).

Du fait de leur gestion des aspects angulaires, ces méthodes sont souvent retenues pour la

résolution de problémes radiatifs avec diffusion. Nous rappelons qu’elles sont utilisables sans
difficulté avec un modéle spectral en k-distribution, mais qu’elles sont d’un emploi délicat

avec un modéle spectral en transmittivité moyenne (problémes de corrélations spectrales).

3.2.2 Formulations intégrales

Pour les développements qui suivent nous avons décidé de passer sous silence les questions
lices aux réflexions aux parois et aux diffusions en volume. Non qu’elles soient insurmontables
a traiter, mais elles rajoutent des lourdeurs aux développements mathématiques que nous
avons souhaité ne pas introduire, d’une part pour ne pas perdre le lecteur et d’autre part parce
qu’elles ne constituent pas un point fondamental de notre étude. En effet, bien que dans le cas
général la réflexion et la diffusion soient des éléments fondamentaux dont dépend grandement
la convergence des schémas numeériques, comme nous l'avons déja exprimé, elles jouent un
role secondaire dans les flammes a contre-courant sur lesquelles nous nous concentrons. Cette
observation n’est cependant pas valable pour ’ensemble des problémes de combustion et,
par conséquent, pour permettre au lecteur qui le souhaiterait d’approfondir cette question,
nous prendrons soin d’attirer son attention sur les possibilités d’extension vers ces deux

phénoménes dés que cela pourrait s’avérer nécessaire'?.

L’Eq. 3.12 peut-étre reprise pour aboutir a une forme intégrale autonome. Pour cela, on

remplace d’abord la dérivée partielle de la luminance par son expression de I'Eq. 3.5, puis

2La démarche que nous proposons par la suite s’inscrit dans une logique équivalente & celles de
[Fournier (1994), Cherkaoui... (1998)] qui pour l’analyse de probléme de convection naturelle ont été prati-
quement confrontés aux questions de réflexions multiples. On pourra donc trouver dans ces deux références

I’ensemble des éléments nécessaires a ’extension de notre travail aux systémes & parois réfléchissantes
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la luminance par son expression de 'Eq. 3.6.
Sr(rp) = —/ d?’] / d$2 81Ln(rp,e9)
0 4

:—/ dn / dQY eq.0p,Ly(rp,eq)

0 47

- / dn / 00 wy(tp)  Ly(rprea) — (y(rp)Log(rr))
0 4 Se——

formulation intégrale

:/ dr) / 2 (Ly(rp,, eq)7)(rp, —= rp)ky(rp))
0 4m

Al

Si 'on regarde formellement le terme source radiatif volumique comme le rapport d’un élé-

dSy
dv >’

(3.13)

drpieq  ky(vp)Lyy(rp) m(rp — rP)’%@'P)) — (Ky(rp) Loy (rp))

ment différentiel de puissance dS, et d’un élément différentiel de volume dV' soit s, =
alors on peut noter que la derniére égalité se compose de trois termes : le flux provenant de
la frontiére et absorbé dans le volume dV, le flux issu des volumes intermédiaires et absorbé
en dV, puis le terme d’émission du volume dV. Il est donc possible, a partir de cette écri-
ture, pour d’éventuels besoins d’analyse, de distinguer les contributions des frontiéres et des

volumes.

D’un point de vue numérique, la question se pose a ce stade en termes de techniques
de résolutions d’intégrales multiples, avec principalement l'alternative entre les méthodes
déterministes (discrétisation ou décomposition de chacune des dimensions du probléme) et
les méthodes statistiques. Dans la premiére classe nous pouvons mentionner les méthodes par
lancer de rayon (discrétisation de la sphére unité et intégration le long chaque rayon depuis
P jusqu’a la paroi) et dans la seconde classe les méthodes de Monte Carlo sur lesquelles nous

reviendrons a la fin de ce paragraphe.

Nous verrons au chapitre suivant que nos choix méthodologiques nous conduisent a tra-
vailler sur la base d’une formulation intégrale avec une résolution numérique de type statis-
tique. Cependant, par rapport & ce qui vient d’étre dit, nous poussons plus avant les travaux
d’écriture, d’'une part en réarrangeant ’'Eq. 3.13 de facon a faire apparaitre de fagon expli-
cite le principe de réciprocité des rayons lumineux, d’autre part en utilisant un découpage
en zones conduisant & une formulation en puissances nettes échangées. Nous détaillons donc

ces deux étapes supplémentaires pour finir par une description sommaire de la méthode de
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Monte Carlo telle que nous la manipulerons par la suite.

3.2.2.1 Inclusion du principe de réciprocité

L’établissement de I’Eq. 3.13 s’articule autour d’un bilan énergétique sur un volume élé-
mentaire centré en un point P. Il y a en rayonnement un principe, qui est celui de la réciprocité
des rayons lumineux. [Hottel... (1967), Green (1967), Cherkaoui... (1996), Dufresne... (1998),
Dufresne... (1999), Tessé... (2000b)| ont montré l'intérét d’inclure cette idée explicitement
dans la formulation. Il est clair qu’il faut pour cela correctement identifier les chemins op-
tiques et leurs positions extrémes comme lieux d’échange. La formulation intégrale, par ses

contributions distinctes est donc appropriée.

Nous repartons donc de I'’Eq. 3.13 :

sr(rp) = /OOO dn /M dQ (Ly(rp,, eq)my(rp, = rp)ky(rp))

(L

Suivant la démonstration issue de [Fournier (1994)], on écrit 'Eq. 3.13 (valable dans le cas

drpieq  fiy(rp)Lyy(rp) m(rp — rP)’%@'P)) — (kn(rp) Loy (rp))

générale) pour le cas on I'on plonge notre systéme S dans une cavité isotherme. Dans chaque
direction et en tout point, donc aux frontiéres également, la luminance devient la luminance

noire. Le bilan radiatif volumique local est nul.

0:/ dn/dQ
0 4

(Lo (rp)my(rp, = Tp)ky(rp)) (3.14)
+ (/rp drpreq  ky(rp)Lyy(rp) m(cp — I‘P)"én(rP)> — (kg (rp) Loy (rp))

En retranchant a 'Eq. 3.13, I'Eq. 3.14, on obtient ’expression du terme source ponctuel
sy(rp) décomposé selon les échanges deux a deux que le point P a :
— avec le points P’ qui est le point courant sur ’ensemble du volume (Fig. 3.6)

— avec le point Py qui est le point courant sur I’ensemble des surfaces (Fig. 3.6)
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d’ou :

sy (

I‘p)
:/ dn / dQ
0 4

[Ln(I’PO, eq) — Lb,n(rPi):| 7, (tp, — Tp)ky(Tp) (3.15)

+ (/rp drpr.eq ky(rpr) [Lb,n(rp/) — Lyy(rp)| 7y(rp — I‘Pi)’?n(rP)>

rp,

Pour la suite, et dans le but de simplifier notre présentation on supposera que les frontiéres
sont des surfaces noires ce qui permet de remplacer les conditions aux limites L,(rp,,eq)

par Ly, (rp,). Ce qui donne :

Sr(rP)

[

/4 ] g ( /rp drpr.eq fip(rp) |:Lb,n(I‘P') — Lb,n(rp)] T (rp — rP)Hn(rP)>

rp,

(3.16)

i /47r 40 {me(rpo) — Lb,n(rp):|7'n(rp0 — I'P)K)n(I'P)}

Dans cette écriture, les points courants (P’ pour le volume, Py pour la paroi) sont identifiés a
partir de 'intégration angulaire et pour P’, de I'intégration linéique le long du rayon. Par la
suite, nous préférerons identifier directement ce point courant par intégration sur le volume
et la surface. Pour aider les développements ultérieurs, nous changeons ici de notation avec
d’une part P; comme notation générique pour le point d’échange courant P’ ou P et d’autre
part P; pour le point d’étude P. On effectue alors un changement de variables sur I’élément
de mesure d2. Si on note e, la normale a I'élément de surface dS et l;; = [rp, —rp | la
distance entre les points P; et P;, il y a deux expressions pour df2 selon que le point P;
échange avec un élément de volume dV centré sur le point P; courant, ou un élément de
surface dS centré sur le point P; courant :
— pour un volume : dQdl = édv

— pour une surface : dQ) = *3*=dS
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On peut alors réécrire, 'Eq. 3.16 sous la forme :

s(rp,)

1 (3.17)
[ Vi) e | Baaten,) = Lunten)| 5o, = e (er)
ij
€en.e,
+/Sd5(rP,-) B [Lb,n(l‘Pj) - Lb,n(rPi)]Tn(er — rPi)ffn(l‘Pi)}
ij
En notant les densités d’échanges radiatifs nets entre deux points P; et P; par
1
QOPi,volumeHPj,volume = l?lin(rp]) Lbﬂ?(rpj) - Lbﬂl(er) Tn(rP] - er)/{/n(er) (3‘18)
ij
en.e,
QOPi,volumeHPj,surface = S;T |:Lb,7l(rpj) - Lb7n(rp7,):| Tn(rpj - er)K;n(er)
]
on peut réécrire I’Eq. 3.17 sous la forme :
ST(rPi)
_ / i
0
(3.19)

/ dV(rP]) QOPi,volumeHPj,volume
1%

+ / dS(I‘p]) SOPi,volu”m,eHPj,surface }
S

3.2.2.2 Formulation en puissances nettes échangées

Dans I’Eq. 3.19, on se place au point P; et on évalue d’abord les densités d’échanges
radiatifs nets avec un point P;. On fait ensuite courir contintiment le point P; sur I'ensemble
du volume V et de la surface S qui constituent notre systéme S. Il s’agit bien ici d’une
formulation “ponctuelle” du terme source : c’est ce que nous appelons une écriture forte.
Il arrive cependant que l'on veuille regrouper les points de maniére naturelle, parce qu'’ils
correspondent a des sous-surfaces ou a des sous-volumes dont on veut analyser séparément

les contributions radiatives. Que ce soit ainsi pour un besoin d’analyse ou pour des raisons
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numériques de couplage avec d’autres phénomeénes physiques on procéde la plupart du temps

a un découpage en zones. Imaginons qu’on veuille calculer le terme source radiatif S, (V;) d’un

Systéme S

F1G. 3.7 — Calcul du terme source d’'un volume V;

volume V; qui contient un point courant P; repéré par le vecteur position rp. (Fig. 3.7). On

intégre alors I'Eq. 3.19 sur le volume V; :
S (Vi)
— [ aver) s
Vi

= /Ooo d"[ (3.20)

/ dV(er) / dV(rP]) @Pi,volumeHPj,volume
Vi 1%

+ / dV(er) / ds(rP]) gOP)i,volurrLe<_)})j,surfa.ce
Vi S

k3

Si nous poursuivons notre raisonnement en découpant le volume V en ny volumes (dont V;

est un représentant) et la surface S en ng surfaces, 'Eq. 3.20 devient :

ny 00
= d /dVr : /dVr 4 : 4
S o f e [ Ven) oo

ns 00
+ Z/ dT]/ dv(rpz) / dS(rP]) SOPi,volu”m,eHPj,surface
j=1 0 Vi S;
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En notant les échanges radiatifs nets entre éléments (volumes ou surfaces) :

I
8

o—

S
=

4V (rp.) /V AVER,) PPyt (3.22)

J

dV(er) / dS(rP]) SOPi,volumeHPj,surface
S.

J

PVieV;

8

S
=

PV S;
On obtient :
ny ns
Si(Vi) =Y ovioy, + D prios, (3.23)
j=1 j=1

C’est la troisiéme et derniére formulation intégrale que nous voulions présenter concernant le
calcul d’un terme source radiatif. Pour la résumer, ¢’est une évaluation du terme source radia-
tif par une écriture faible par échange de I'ETR sous forme intégrale. Cette formulation sera
appelée par la suite formulation en Puissances Nettes Echangées (PNE). Elle s’identifie aux
formulations proposées par les travaux de Hottel (méme si sa généralité et sa symétrie sont
abandonnées lors du passage a la méthode des zones) |Osuwan (1972), Edwards... (1972),
Tucker... (1984), Viskanta... (1987), Walters... (1992), Olsommer... (1997b)] et de Green [Green (1967)]

(dans le domaine des Sciences de 'atmosphére).

Remarque : Dans le cas de volumes et de surfaces isothermes (hypothése que nous retenons
pas par la suite) nous pouvons revenir aux notations de Hottel en utilisant le fait que la
luminance noire devient alors indépendante de la position dans chaque zone. Ce qui conduit

a:

Prior, = ( [ [ aveer) [ avee) %ijrp,.)mrp,.%rp,.m(rpi)) Lan(V5) ~ La (V)
Pries, = ( [Can [ avee) [ aster) e, %rpim(rpi)) Lan(57) ~ Lun (1)

(3.24)
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Ce qui en général est noté :

v — Vs, [Lb,n(v» - Lb,nw;)} (3.25)

PVierS; = VSz'j [Lb,n(sj) - Lb,n(w)}

ou les coefficients optico-géométriques VV;; et VS;; sont les surfaces d’échange de Hottel.

3.2.2.3 Méthode de Monte Carlo

Pour résoudre numériquement des intégrales, on peut faire appel & des techniques stan-
dards (méthode des trapézes...) ou a des méthodes stochastiques. Lorsque le probléme posé
est formulé en termes d’intégrales multiples, la complexité des méthodes standards croit pro-
portionnellement a la puissance du nombre d’intégrales qui se succédent. En revanche, les
techniques stochastiques permettent de reconstruire simultanément I’ensemble des intégrales.
C’est alors l'intégrale la plus complexe qui fixe le degrés de précision du calcul. C’est & nos

yeux une raison suffisante pour porter une attention particuliére aux méthodes stochastiques.

La méthode de Monte Carlo est une méthode statistique qui représente une classe a
part parmi les méthodes numériques utilisées en rayonnement parce qu’elle reste étroitement,
liée aux processus physiques aléatoires sous-jacents. Les débuts de la méthode de Monte-
Carlo remontent aux années 1940. Elle a pour principe de reconstituer statistiquement un
résultat par la réalisation d’un grand nombre d’événements aléatoires [Hammersley... (1967),
Halton (1970), MacKeown (1997), Dutre (1995)]. En ce qui nous concerne, la méthode de
Monte Carlo supporte deux points de vue distincts, mais fortement complémentaires :

— Une fois posé un modeéle stochastique de transfert énergétique sur la base d’images de
transport, corpusculaire, il s’agit simplement de reproduire un grand nombre de fois les
événements aléatoires correspondants et de décompter les redistributions énergétiques
résultantes. Au premier niveau de modélisation on trouve ainsi I'image originelle de la
méthode de Monte Carlo en rayonnement avec 1’émission aléatoire d’un grand nombre
de photons suivis dans leur marche aléatoire au sein du systéme jusqu’a absorption.

Dans cette logique, les travaux de formulation intégrale présentés au § précédent n’ap-
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paraissent pas comme essentiels'.

— Au contraire, une autre approche consiste a se restreindre au développement de formu-
lations intégrales adéquates et ne regarder la méthode de Monte Carlo que comme une
méthode de résolution d’intégrales multiples. La dimension statistique ne se voit alors
associer aucune image physique a priori et la “liberté” résultante permet de bénéficier
de I'ensemble des techniques d’optimisation existantes [Dutre (1996)].

Aprés quelques pratiques, on constate rapidement que c’est dans la combinaison de ces
deux points de vue que réside I'essentiel du savoir-faire nécessaire pour celui qui recherche a
optimiser cette méthode. Nous consacrons le Chap. 5 aux détails de la logique a laquelle nous
avons abouti dans notre contexte de combustion, avec 1’espoir que le lecteur percevant la
démarche sera en mesure de pousser plus loin ’optimisation en fonction des caractéristiques

de son contexte d’étude.

Aprés avoir ainsi insisté sur la nature physique de la méthode de Monte Carlo nous
poursuivons par une présentation strictement mathématique. Cette méthode représente le
moyen numérique d’accéder a la solution exacte, pour autant qu’on fasse un nombre infini
de tirages aléatoires, d’'un systéme d’équations. Pour calculer I'intégrale d'une fonction f par
N réalisations aléatoires de sa valeur f(x;) selon la loi de probabilité arbitraire p(x), définie

positive, on doit satisfaire & :

Py
&=
Py
&=

AV

3

H_

A
=~
3‘@

<

AV

3

|

/A
=B |~
k

AV
@ [\

/Dd:vf(x):/[)dxp(x)p—x)z<p—$)

Ao LTI (1) L3 ()

i=1

avec :

On peut de la méme maniére aisément calculer I'intégrale de la dérivée de la fonction f(z).

C’est par ce moyen que I'on peut calculer sans cotits supplémentaires des sensibilités :

. N
3@//]36150 flz;y) = <ayf2()‘/€;)y) Sp o %Z@yf(%y)) 7

p(x)

La procédure de tirage aléatoire de la valeur v d’une variable aléatoire X selon la densité de

13C’est bien uun argument de ce type qui nous permet de mentionner avec confiance les possibilités
d’extension de notre méthodologie aux systémes réfléchissants et diffusants, ceci malgré la lourdeur que

représente ’extension, de notre édifice formel & ces deux physiques délicates
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probabilité P(X) se fait en général en utilisant la fonction de répartition de P :

R(z) = /0 " da! P

Le “théoréme de la limite centrale” démontre que les valeurs de R(x) sont uniformément
réparties sur U'intervalle [0,1]. C’est en utilisant la fonction réciproque X = R7'[0, 1] que 'on
remonte aux valeurs v de X. La recherche de densités de probabilité, minimisant la variance

statistique est au coeur des enjeux pour l'utilisation efficace de la méthode de Monte-Carlo.

En transfert radiatif on peut utiliser la méthode de Monte Carlo avec de trés nombreuses
variantes [Thynell (1998)]. En particulier, lorsqu’il s’agit de tenir compte du principe de
réciprocité on pourra consulter [Cherkaoui... (1996), Dufresne... (1998), Tessé... (2000b)].

3.3 Eléments bibliographiques

Parmi I’ensemble de la littérature du rayonnement en combustion, nous resserrons le do-
maine avec une présentation de quelques travaux visant a un couplage précis entre un modéle
de cinétique chimique et un modeéle de rayonnement détaillés au sens ou nous I’entendons

dans ce document.

En particulier, pour ce qui est des problémes spectraux, nous avons deux exigences qui

ressortent de notre analyse précédente :

— Traiter les propriétés spectrales a partir de modéles spectraux de qualité : c’est-a-dire
au moins un modeéle de bandes.

— Calculer les termes d’émission, mais aussi les effets de réabsorption du rayonnement,
ce qui revient a traiter correctement les problémes de corrélation spectrales entre le
spectre du rayonnement et le spectre des propriétés radiatives du milieu qu’il traverse.

Voici donc des exemples de couplages entre combustion et rayonnement détaillé que nous

avons sélectionnés parce qu’ils sont proches des critéres qui sont les notres.

La majorité des exemples que nous avons trouvés, ne tiennent pas compte d’effets tem-
porels et proposent un couplage stationnaire. Rares sont les mentions faites concernant les

écarts de ces méthodes a une solution de référence.

C’est par une étude de |Negrelli... (1977)] que nous commencons & voir 'introduction



Chap.3 Modélisation des transferts radiatifs en combustion 73

de modéles de bande. Il ne s’agit 1a encore, que d’'un modéle de bande large mais une
attention particuliére est portée sur les effets d’absorption et d’hétérogénéité. C’est une
flamme de diffusion de méthane mais avec une chimie a une réaction et sans modéle de suie.
La méthodologie de couplage est assez standard : le modéle de combustion converge vers
un profil de température puis, ce dernier est fourni au modéle radiatif qui doit calculer les
termes sources. Une fois terminée cette estimation, les termes sources sont réintroduits dans
le modéle de combustion et le processus peut continuer. Le critére d’arrét a été fixé sur un

écart de la température inférieur a 0,1 K entre deux processus.

Il faut ensuite parler de lexcellent travail de [Hall (1994)]. Pour un mélange gaz/suies
en géométrie plan paralléle il propose un ensemble couplé : rayonnement/combustion. Les
propriétés radiatives s’appuient la aussi sur un modéle de bandes larges, mais nous sommes
a forte pression, ce qui se justifie d’autant mieux. Il tient compte de I’absorption du rayon-
nement, mais les hétérogénéités sont grossiérement traitées en prenant des valeurs moyennes
pour la température et les fractions molaires le long d’un chemin optique. Ce modéle a
I’avantage de traiter une chimie complexe, mais la suie y est introduite de maniére artificielle
par une constante, empéchant tout couplage entre sa formation et le rayonnement. L’auteur
qualifie la procédure de couplage d’assez lourde, de sorte qu’il limite le transfert radiatif aux

principales bandes d’absorption.

Puis la méme année, nous trouvons les travaux de [Sivathanu... (1994)| sur une flamme
d’acétyléne a géométrie cylindrique. L’auteur néglige une discussion sur les aspects spectraux
et ’hétérogénéité, cependant il traite la réabsorption avec 'avantage d’utiliser une chimie
détaillée des gaz et un modéle de suie intéressant a 4 étapes. Le couplage se fait ici de la méme
maniére que dans article de [Negrelli... (1977)]. Le critére d’arrét est fixé & une variation

inférieure a 2% sur les termes sources radiatifs.

Ensuite, viennent des travaux qui commencent a produire des résultats avec des modéles
de propriétés radiatives découpées en bandes étroites. Commencons par [Dagusé (1996)]. 11
utilise un modeéle ck, en tenant compte de la réabsorption du rayonnement et de I’hétérogé-
néité par la méthode de Curtis-Godson. C’est une flamme a chimie complexe, sans modéle
de suie, pour laquelle la procédure de couplage est plus élaborée que dans les exemples pré-
cédents. Un maillage différent est utilisé pour le radiatif et pour la combustion. Une fois

le calcul effectué sur le maillage radiatif, il est introduit dans le code de combustion. Le
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couplage prend beaucoup de temps, et la réactualisation des termes sources radiatifs ne se
fait que sous les critéres suivants :

— la température a varié de plus de 20K

— ou les fractions molaires de plus de 10%.
A cela vient s’ajouter la possibilité trés importante de converger rapidement pour les pre-

miéres itérations numériques en utilisant un modéle radiatif simplifié, type modéle mince.

La méme année, [Garcia... (1996)| propose pour une flamme a jets opposés de méthane
une étude sur la limite d’extinction a faible taux d’étirement. C’est un modéle & bande large
qui est utilisé. L’absorption est prise en compte mais le traitement des hétérogénéités a les

mémes limites que celui de [Hall (1994)]. La chimie est complexe mais sans suies.

L’année suivante, [Sivathanu... (1997)] propose des améliorations a son modéle pour une
flamme cylindrique de méthane. Le terme d’émission radiatif est calculé par le code RADCAL
|Grosshandler (1993)| qui tient compte d’'un découpage du spectre en bandes étroites. En
revanche, le terme d’absorption ne tient pas compte des rayons provenant de régions éloignées,

une procédure dont les effets sur la précision sont difficiles a évaluer.

Enfin, le travail de [Hall... (1997)] pour une flamme & jets opposés propose des résul-
tats basés sur un modéle de bandes mais sous ’hypothése d’un milieu optiquement mince.
L’avantage de ce travail est cependant de proposer un modéle de chimie détaillée a la fois

pour les gaz et pour les suies.

Ce n’est enfin que tout récemment que des travaux apparaissent qui permettent d’ouvrir
vers le traitement de géométries réelles. Il s’agit de travaux faisant appel a la méthode de
Monte Carlo avec un modéle radiatif & bandes étroites de type ck. Ces études de couplage
entre radiatif détaillé et cinétiques complexes de gaz et de suies pour une flamme turbulente

sont menés par [Tessé... (2000a)].



Chapitre 4

Choix méthodologiques pour le
développement d’un modeéle radiatif de
référence, sa réduction et son couplage

avec la combustion

Ce chapitre de transition va, sur la base de la synthése précédente, nous servir a énoncer
I’ensemble de nos choix méthodologiques. La combinaison de ces choix ne va pas faire partie
de celles qui sont couramment adoptées en combustion pour modéliser les transferts radiatifs.
La question posée est celle de la simulation précise des transferts radiatifs infrarouges au sein
d’un mélange gaz-suie hétérogeéne et dans ce cadre nous discuterons successivement nos choix
de formulation, de représentations des propriétés spectrales des suies, de celles des gaz, et
enfin notre sélection d’'une méthode de résolution numérique et d’une démarche de couplage

avec la combustion.

75
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4.1 Formulation des transferts

4.1.1 Formulation intégrale

Nous avons vu a quel point le choix d’une formulation de I’équation de transfert radiatif
est déterminant. Elle impose des contraintes quant aux modéles spectraux utilisés (problémes
de corrélations spectrales) et elle définit un ensemble de solutions numériques possibles. Mais
avant tout la formulation fixe des lignes d’analyse pour la compréhension aussi bien des

transferts radiatifs que de leurs couplages avec la combustion.

C’est principalement ce dernier aspect qui motive ici notre choix d’une méthode intégrale.
Nous tenons & développer un outil d’analyse qui puisse étre utilisé pour un domaine assez
large de configurations de combustion pour des échelles spatiales et des compositions trés
variables. Au stade actuel de la compréhension des mécanismes de couplage entre combustion
et rayonnement, il est fondamental, pour chaque nouvelle famille de configurations, de pou-
voir accompagner les simulations radiatives d’une phase d’analyse détaillée des mécanismes
d’échanges. Cette analyse est particuliérement délicate en présence de spectres de raies et,
lorsque nous choisissons une formulation intégrale, c¢’est en pensant & une formulation dans
laquelle les chemins optiques sont identifiés de fagon explicite, depuis chaque point d’émis-
sion jusqu’au point courant, avec donc la possibilité d’interpréter les résultats en intégrant
les questions de corrélations spectrales entre émission et atténuation. Nous verrons en parti-
culier que chaque bilan radiatif volumique sera vu comme le résultat d’échanges partiels avec
les parois opaques du systéme d’une part et avec les volumes de gaz d’autre part, les images
physiques associées étant trés différentes dans les deux cas. Dans I’ensemble des formulations
intégrales, nous retenons une formulation en puissances nettes échangées (PNE, voir Chap.

3) pour des raisons que nous détaillons ci-apres.

4.1.2 Formulation en PNE

On a vu que dans les formulations standard en flux, il est difficile de quantifier I'impor-
tance relative des contributions variées a un terme source. Green (1967) suggére que la refor-
mulation des transferts radiatifs en termes d’échanges nets (i.e. incluant de fagon explicite le

principe de réciprocité) puisse étre une aide précieuse d’analyse. Le principe en Echanges nets
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sera repris dans le domaine atmosphérique par Joseph et coll. (1976) et par Bresser et coll.
(1995) dans des développements analytiques. Des raisonnements similaires dans le domaine
des applications ingénieur par Hottel et Sarofim (1967) seront a l’origine de la méthode des
zones'. [Cherkaoui... (1996), Cherkaoui... (1998)] et [Dufresne... (1998), Dufresne... (1999)]
montrent que de nouveaux apports théoriques rendent cette approche prometteuse. L’uti-
lisation du principe de réciprocité a également des avantages conséquents d’un point de
vue numérique, que ce soit face a des problémes de complexité géométrique? ou d’épaisseur

optique, ou encore lorsque les systémes sont quasi-isothermes.

Contrairement au chapitre précédent, nous utiliserons ici un choix de présentation formulé
a 'aide de chemins optiques, ce qui facilite ’extension de la formulation aux questions de

diffusions et de réflexions multiples.

Prenons une cavité constituée de n, volumes et n, surfaces. Soient deux éléments quel-
conques C; et C; indifféeremment un volume ou une surface sur lesquels on définit un point
courant P; ou P;. On désigne par I'(C;, C;) 'ensemble des chemins optiques v dont les ex-
trémités P; et P; (repérées par les vecteurs rp () et rp (7)) sont situées dans Cj et Cj.
On définit aussi un vecteur unitaire e, le long du chemin optique 7, qui lui est tangent en
tout point, et une abscisse curviligne [. On la note [;(7y) en rp () et [;(y) en rp (7). La

transmittivité le long du chemin optique entre P; et P; s’exprime par :

Li(v)

(i (7)) = exp(—/ dl k(1))

L)

ol l;; = |rp, — rpj| est la longueur totale du chemin. La notation générique de 1’échange net

d’énergie radiative entre les éléments C; et C; est alors par convention :

PCiesC; :/ dn/ dy  O(v) [Ly(rp, (7)) — Ly(re, (v 4.1
o 0 ooy L ( ) [Ln(re,( ))v 2(rp, (7)) (4.1)
géometrie optique énergétique

Cette présentation vise également & aider la phase d’analyse et d’interprétation grace a

la séparation des aspects géométrique, optique et énergétique. La différentielle dv regroupe

IDu fait des difficultés liés aux réflexions de parois, la mise en oeuvre de la méthode des zones passe

souvent cependant, par un abandon de cette réciprocité explicite (méthode des radiosités)
211 s’agit principalement de la maniére dont 1’échange peut se faire entre deux volumes ou surfaces de

tailles trés différentes.
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les aspects purement géométriques, a savoir les angles solides, les cosinus des angles d’inter-
section avec les parois et les fonctions de phase de réflexion et de diffusion. Dans le cas d’une
cavité a parois noires sans diffusion, dy s’écrit : dy = % dC(rp,(v)) dC(rp, (7)) avec pour
un échange

— Volume-Volume : A =1

— Volume-Surface : A = [e,(l;).e,(rp,)|

— Surface-Surface : A = |e,(l;).en(rp;)| [e,(l;).en(rp,)]
ol e,(rp,) et e,(rp;) sont les normales & S; et Sj en rp, et rp; respectivement. Les aspects
optiques (non géométriques) sont regroupés dans le facteur O qui se décompose en le produit
des propriétés d’émission/absorption aux deux extrémités du chemin et des atténuations par
diffusion, absorption de volume et absorption de surface le long de I’ensemble du chemin.
Toujours dans le cas simplifié sans réflexion ni diffusion, O devient :

— Volume-Volume : O(7y) = — Pl ()

al; ol;
— Volume-Surface : O(y) = —%ﬂm)
— Surface-Surface : O(v) = 7,(l;;(7))
et comme dans ce cas ’ensemble des chemins optiques entre deux éléments est un ensemble de
droites les reliant, en notant eq le vecteur unitaire dans la direction (P;F;), nous retrouvons

les Eq. 3.22 que nous exprimons pour les trois cas fondamentaux :

| "y /V 4V (rp,) /V AV (rp,) l%mn(rp»rn(zij)nn(rpg[Lb,nupj)—Lb,n(rp)]

ij

00 eQ.en(er)
PViess; = dn [ dV(rp,) dS(I'Pj) TTn(lij)“n(rPi) Lb,n(I'P,-) — Lyy(rp,)
0 Vi Sj ij

©S;058; = /000 dn /S dS(rp,) /S dS(rp,) °a-en(r,) eQ.en(er)Tn(lij) [Lb,n(rpj) — Lb,n(rPi):|

2
: Lij

(4.2)

Lorsque pour un systéme divisé en volumes et surfaces élémentaires nous chercherons a
analyser la matrice de ’ensemble des PNE, nous garderons en mémoire la ligne interprétative
soutenue par Eq. 4.1 avec :

— une énergétique fixée par la différence de luminances noires (soit par la différence de

températures) entre les deux éléments considérés

— une dimension géométrique qui détermine comment deux éléments se voient I'un I’autre.
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— un pouvoir d’échange entre les deux éléments dépendant des propriétés d’émission /absorption,

de 'atténuation par le milieu intermédiaire et surtout de leurs corrélations spectrales.
Au sujet de ces difficultés spectrales, nous pouvons d’ores et déja avancer une image essen-
tielle que nous utiliserons a plusieurs reprises : a méme distance, ’atténuation est beaucoup
plus forte pour les échanges gaz-gaz que pour les échanges paroi-gaz. En effet, le spectre du
rayonnement émis par une paroi est un spectre continu, donc sans corrélation avec le spectre
du gaz. Au contraire, le rayonnement émis par le gaz est principalement localisé au centre
des raies d’absorption ou il sera également réabsorbé et donc rapidement atténué par le mi-
lieu. Il en résulte que lors de I'analyse des matrices de PNE, nous retrouverons fréquemment
que des échanges gaz-paroi significatifs peuvent avoir lieu a distance alors que les échanges

gaz-gaz sont principalement des échanges de proximité.

4.2 Les Modéles de propriétés spectrales

4.2.1 Modéle pour les suies

En ce qui concerne la représentation des propriétés radiatives des suies, conformément &
la présentation faite au Chap. 3, la premiére hypothése que nous faisons est de considérer
comme négligeable leurs propriétés de diffusion. Nous avons vu en effet que les particules de
suies sont de faibles dimensions et que la diffusion n’a que peu d’effet aux fréquences que

nous considérons.

Pour représenter la dépendance spectrale du coefficient d’absorption en fonction de la frac-
tion volumique de suie f,, nous utilisons une corrélation simple proposée par [Lee... (1981)]

et [Dalzell... (1969)] ot 1 est le nombre d’onde :

Fnsuie = 9 Mo (4.3)

Le préfacteur 5,5 dépend de ’hydrocarbure, ici il est ajusté pour le méthane. Etant donné la
régularité fréquentielle de ce type de modéle, comme pour la luminance noire, le coefficient
d’absorption des suies sera considéré constant sur 'intervalle d’une bande étroite; on en

verra la nécessité lors de la discussion des mélanges gaz et suies.
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4.2.2 Modéle pour les gaz formulé en k-distributions
4.2.2.1 Les espéces gazeuses participant au rayonnement

Concernant les gaz, la premiére chose a faire consiste a s’interroger sur les espéces rayon-
nantes en combustion. A priori les espéces CHy, OH, C'O, H50 et CO, sont susceptibles de
contribuer aux transferts radiatifs dans I'IR, le visible et I'UV. [Dagusé (1996)] montre que
les échanges dans I’UV sont négligeables. Nous allons nous-mémes négliger le rayonnement
des espéces CH, et OH pour ne tenir compte que des trois espéces ayant les contributions
les plus significatives : CO, HyO et CO,.

4.2.2.2 Le modéle en k-distribution de Domoto

Pour des raisons de précision (ne serait-ce que vis a vis de la dépendance spectrale des
propriétés de suies), nous retenons un modéle & bandes étroites pour chacun des trois gaz
évoqués ci-dessus. Nous avons vu que les modéles & bandes étroites peuvent étre formulés de
maniére équivalente en termes de transmittivité moyenne ou de k-distribution. La raison pour
laquelle nous choisissons une formulation en k-distribution est principalement associée a notre
méthodologie de résolution numérique. L’algorithme de Monte Carlo que nous retenons et
surtout les méthodes de réduction de variance associées, sont beaucoup plus simples & mettre
en oeuvre sur une base de k-distribution, avec des atténuations exponentielles, que sur une

base de transmittivités moyennes (non exponentielles).

Nous avons déja présenté le principe des k-distributions. Le modéle en k-distribution que
nous utilisons est construit sur les bases du modéle de Malkmus, pour un volume de gaz
homogéne composé d'une seule espéce chimique. Le modéle de Malkmus est établi sur les

hypothéses suivantes :

le nombre de raie N contenu dans la bande Av est suffisamment élevé pour raisonner

en moyenne statistique

les fréquences des centres de raies sont distribuées aléatoirement de fagon uniforme sur
I'intervalle
— toutes les raies ont la méme demi-largeur a mi-hauteur 7

— les intensités de raies sont distribuées selon une loi de densité de probabilité expo-
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S

nentielle inverse : p(S) = %exp(—ﬁ

bande

— un profil de raies Lorentzien et un intervalle spectral qui est entouré d’une infinité

) olt S* est l'intensité moyenne de raie sur une

d’intervalles spectraux aux propriétés statistiques identiques et dont les ailes de raies

contribuent a 1’absorption dans I'intervalle d’origine.

Pour chaque bande étroite, on définit en particulier la grandeur % qui est la valeur moyenne,

sur une bande étroite, du coefficient d’absorption et qui est liée a k, par la relation :
—_ 1 [o©
Fm 7 mudy

Cette valeur moyenne du coefficient d’absorption sur une bande étroite sera appelée par
la suite “coefficient d’absorption moyen” sans mention répétée aux confusions qui pourraient
s’établir avec les différents coefficients d’absorption moyen introduits dans la littérature dans
I’espoir de représenter les propriétés spectrales des gaz a partir de modeéles gris équivalents.
Notre logique est au contraire de conserver strictement toute la complexité spectrale du
modeéle retenu et ce coefficient moyen représentera donc simplement le moment d’ordre zéro
de la k-distributions employée. En aucun cas nous ne nous servirons de cette valeur moyenne

pour justifier d’'un modéle spectral simplifié.

Dans le cadre du modéle de Malkmus, la valeur moyenne du coefficient d’absorption est

reliée a 'intensité moyenne des raies, par ’égalité suivante :

K =

=%

ou ¢ est I’écart moyen entre deux centres de raies contigués. On utilise fréquemment ¢

appelé paramétre de recouvrement des raies ou parameétre de forme :

o=

SIS

¢ permet de savoir si le spectre a des raies d’absorption trés distinctes ( ¢ faible, cas
d’une absorption trés localisée) ou si les raies se recouvrent de par leur proximité ou leur
élargissement ( ¢ fort, cas d’un spectre qui a la limite (¢ — 00) se rapproche de celui d’un

milieu gris).

A partir de ces hypothéses, le modéle de Malkmus permet de construire analytiquement

la transmittivité moyenne d’une colonne homogéne en concentrations et températures de
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longueur [ par :

=1\ 1/2
7 () =Tu(l; %, ¢) = exp [qﬁ (1 - (1 + %) )] (4.4)

Ceci est donc le modéle de Malkmus tel que I'on peut le trouver repris un peu partout dans
la littérature. C’est Domoto [Domoto (1974)] qui avance 'idée d’un passage de ce modéle en
transmittivité moyenne a un modéle en k-distributions équivalent. Il effectue la transformée
de Laplace inverse de I'expression analytique de 7 (/) afin de déterminer, selon I’ Eq. 3.10 la

fonction densité de probabilité f(k) correspondante :

f(8) = fu(s; &, ¢) = \/Eexp [?%]

Il a été observé dans [Dufresne... (1999)] que f(k) est mathématiquement ce que 1'on

nomme une distribution inverse Gaussienne. Il existe de trés nombreux écrits sur les proprié-
tés statistiques des distributions inverses Gaussiennes et on peut abondamment tirer bénéfice
de ces travaux. En ce qui nous concerne, nous utiliserons a plusieurs reprises 1’expression sui-

vante de la fonction de répartition :

=

9(k) = gu(r; R, ¢) = [ f(K')d' =T {— & (11— g)] +exp (2¢) T {— &1+ g)]

Il est également montré dans [Dufresne... (1999)] que les propriétés d’inverse gaussienne
de la fonction f(k) permettent I’échantillonnage de x selon la probabilité f(x) en utilisant
la fonction de distribution normale I' ce qui facilite ['utilisation des k-distributions au sein
d’un algorithme de Monte-Carlo. On pourra retrouver les détails de la procédure analytique

d’échantillonnage de k dans I’annexe 3.

4.2.2.3 Données spectroscopiques du laboratoire EM2C

Paramétrage et interpolations

Les paramétres %, 6 et 7 condensent, pour chaque bande étroite, 'ensemble des propriétés

spectrales. Ils sont donc indispensables pour établir les densités de probabilité précédentes.
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A cet effet, nous exploitons les données spectroscopiques qui nous ont été fournies par J.
Taine et A. Soufiani du laboratoire EM2C [Soufiani... (1997)].

Dans cette banque de données, le spectre infrarouge est découpé en bandes réguliéres de
R
X Prot

nombre d’onde et sur chaque bande les paramétres intensifs k& = [em ™ .atm ™ ]* et
[em| sont estimés pour un nombre limité de températures, le reste du domaine étant couvert
par interpolation linéaire. Ils sont donnés pour un spectre compris entre 150 cm™" et 9300
em ! par bandes de largeur 25 cm !, soit 367 bandes, et pour une gamme de températures
de 300 K a 2900 K par pas de 200 K, soit 14 valeurs de température. Pour un gaz a une
température 7' comprise entre deux températures 7; et T;,q, les relations d’interpolation

s’écrivent simplement :

Ei(Ti—i—l -T)+ Ei—l—l(T -1

E] (Ppt0t7 T7 X]) = T’+1 _ T P]
_ e (4.6)
ki(Tig1 = T) + ki (T = T) -
== ﬂ_i_l — ﬂ -Ptot-Xj [Cm 1]
L_afin =Dt 0T [em] (4.7)
- = cm .
(5]' T%—i—l - ﬂ

Les formules pour 7y

La demi-largeur de raie, supposée indépendante de la bande étroite, est donnée par des
expressions différentes pour chaque gaz absorbant. Ces formules représentent ’élargissement
collisionnel et sont donc fonctions de la température, de la pression totale et des pressions
partielles des principaux gaz du mélange (No, Oy, HO,CO,). Elles sont validées sur une

plage qui couvre la plupart des configurations classiques de combustion :

__ B T 06 T5 .52 T,\* 1
Yoo = {0075X002(—) + 012XH20(_) + 0.06| — (1 — X002 — XHQO)} [cm ]
P, T T T
_ Ptot Ts o —1
’)/OO2 = —P ? [0.07X002 + 0058(1 — XC’()2 — XHQO) + Ongzo] [cm ]
— Ptot Ts Ts 05 —1
f)/HQO = 2 {0462XH20(T) + ? [0079(1 - X002 - XO2) + 0.106X002 + 0036X02]} [cm ]

avec Ty, =296 K et P, =1 atm.

L porte le nom également de coefficient d’absorption réduit moyen sur une bande étroite. & = E.Pj =

E.Xj.Ptot ot P; est la pression partielle du gaz j.
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4.2.3 Meélanges et hétérogénéités

Le modéle en k-distribution que nous venons de présenter est directement utilisable pour
un milieu homogéne avec un seul gaz absorbant. Pour ’étude de milieux réels tels que ceux
de la combustion, il nous faut un jeu d’hypothéses supplémentaires en ce qui concerne les
propriétés de mélanges et les effets liés a la déformation du spectre le long d’une colonne

hétérogene.

4.2.3.1 Les mélanges

Le coefficient d’absorption monochromatique d’un mélange de trois gaz et de suies est sans

ambiguité la somme des coefficients d’absorption monochromatiques de chaque constituant :
_ .8 hoo co2 co
e o e e N

Mais lorsque nous raisonnons en k-distribution, nous perdons au sein de chaque bande la
localisation fréquentielle. Il nous faut donc des hypothéses permettant de construire la dis-
tribution du coefficient d’absorption du meélange a partir de celle de ses constituants. La
premiére de ces hypothéses sera pour nous de supposer que les variations fréquentielles de x;
sont a une échelle supérieure a celle de la bande étroite de sorte que x; pourra étre supposé
constant a l'intérieur de chaque bande. La seconde hypothése sera de supposer, en accord
avec la littérature du domaine [Gerstell (1993)], que les distributions du coefficient d’absorp-
tion pour H,O, COy et CO sont strictement indépendantes. Cette hypothése ne pourrait
étre valable rigoureusement que pour des bandes de fréquences de largeur infinie, mais elle
semble néanmoins conduire & de trés bons résultats quantitatifs pour des configurations telles
que les notres. Ainsi pour le calcul de la moyenne fréquentielle d’une quelconque fonction F

du coefficient d’absorption, on admettra que :

< F>:/dlico/dlicoz/d/ﬁ}HQOf(HCO,/ﬁ}COQ,HHQO)F(K}CO+I€COQ—|—/ﬁ}H20+I€s)

<F>:/dlico/dliCOQ/dliHQOf(HCO)f(HCOQ)f(HHZO)F(IiCO—i—/{coz+I€H2O—|—l€s)

k* prenant une valeur unique dans la bande étroite (Distribution de Dirac). On notera

par exemple pour un échange volume-volume dans un milieu homogéne, en sommant les
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contributions sur toutes les bandes étroites :

np 00 o] o]
SOV,<—>V] — ZAT]TL |:/ dh;co f(HCO)/ d/ﬁ}hZO f(/ﬁ}hZO)/ d/‘f,COZ f(h;COZ)
n—1 0 0 0

1
[ avien) [ avien) guten )@ nten)] B - Lier)
Vi V; ij

(4.8)

On peut noter que cette hypothése d’indépendance des distributions des trois gaz conduit a
supposer que la transmittivité moyenne du mélange correspond au produit des transmittivités

moyennes de chacun des constituants.

4.2.3.2 les hétérogénéités

La question de la représentation des hétérogénéités est tres délicate dés lors que 1'on
choisit de travailler en moyenne sur une bande de fréquence. Comme pour les mélanges,
nous nous contentons de retenir une hypothése simplificatrice parmi celles communément

employées dans la littérature sans pousser plus avant la réflexion sur ce point.

Si 'on met de coté un nombre réduit d’études approfondies pour des configurations
fortement hétérogenes (panaches de gaz chauds observés a grande distance dans une atmo-
sphére froide, atmosphéres planétaires fortement hétérogénes), nous I’avons déja mentionné
au Chap. 3 que les solutions retenues pour la prise en compte des effets d’hétérogénéiteés
sont principalement au nombre de deux : 'approximation de Curtis-Godson est utilisée pour
les travaux a base de modéles en transmittivité moyenne, alors que ’approximation des

k-distributions corrélées est pensée pour les modéles en k-distributions.

Etant donné le choix que nous faisons d’'un modéle en k-distributions, c’est dans un
premier temps ’approximation des k-distributions corrélées qui devrait étre retenue. Selon
cette technique, on fait I’hypothése que dans un milieu hétérogéne le long d’un chemin
optique, la grandeur conservée est la valeur de la fonction de répartition g(k) Eq. 4.5. En
pratique, si 'on connait la valeur du coefficient d’absorption x; en un point P; quelconque
d’un chemin, la valeur du coefficient d’absorption en tout point P, du méme chemin est liée
a kp par la relation ko = g5 '(g1(k1)). Cette technique nécessite donc de pouvoir inverser

la fonction de répartition. A notre connaissance, il n’y a pas de solution analytique simple



Chap.4 Choix méthodologique... 86

a ce probléme dans le cas du modéle de Malkmus. Cette difficulté ne serait pas pour nous
un obstacle si nous acceptions d’utiliser une technique de résolution numérique déterministe
avec un nombre réduit de points de discrétisation de l'intervalle de g (voir Chap. 3) : des
techniques d’inversion numériques pourraient alors étre utilisées au préalable en chaque point
de discrétisation, ou bien encore nous pourrions directement exploiter une banque de données
CK du type de celle du laboratoire EM2C [Soufiani... (1997)|. En pratique, bien que nous ne
retenions pas cette solution ultérieurement, nous avons exploré la possibilité d’une inversion
numeérique par tabulation et certains résultats obtenus avec cette démarche seront présentés

au Chap.6. On peut en trouver les détails dans I’Annexe 4.

Cependant, nous verrons plus loin qu’une des raisons pour laquelle nous faisons le choix
d’une résolution par la méthode de Monte Carlo est précisément qu’elle a I'avantage de
ne pas nécessiter de choix préalable de discrétisation. Nous tenons donc a la continuité de
notre description de I'espace des coefficients d’absorption. Ce point de vue nous a finalement
poussé a nous retourner vers I’approximation de Curtis-Godson avec ’ambiguité que sa for-
mulation habituelle en transmittivité moyenne est différente de celle que nous avons retenue

(k-distributions).

Néanmoins nous avons vu qu’il existe une correspondance stricte entre les deux formu-
lations (transmittivité, k-distribution). Dans le cas homogéne, il apparait clairement que le

terme optique O de I’Eq. 4.1 peut prendre en moyenne sur la bande étroite les trois formes

suivantes :
_ _ %7l () _ oo 2 .
Volume-Volume : O(v) = az o = [, dk f(k)K* exp(—klij)
— Volume-Surface : O(v) = J = [ dk f(k)k exp(—rl;)
— Surface-Surface : O(y) = = [7 dr f(k) exp(—rl;)

La question est donc ici de retrouver la méme correspondance dans le cas hétérogene.

Dans I'approximation de Curtis-Godson, on admet que la transmittivité moyenne d’une
colonne hétérogene suit la méme loi que celle d’une colonne homogéne équivalente. Les pa-
rameétres spectraux de cette colonne homogéne sont définis comme des moyennes pondérées
des propriétés locales le long de la colonne de longueur /;; repérée en ses extrémités par les

abscisses curvilignes [; et [; :

Kea = M (4.9)

fll’ dx
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fllj dx 7 (z)od
flij dr ®(x)

Si I’on retient le modéle de Malkmus, f(x) devient fy/(k; &, @) et la transmittivité moyenne

Pca = (4.10)

de la colonne hétérogene s’écrit donc sous I’hypothese de Curtis-Godson :
Teallij) = Tu(lijs Rea, dea)

ce qui par définition de la densité de probabilité f,; peut s’écrire également :
(0.0)
Toa(li;) Z/ dk fu(K;Fea, boa) erp(—rly)
0

Nous somme donc en mesure d’exprimer O dans le cas hétérogéne en termes de k-distributions
comme :

— Volume-Volume : O(y) = — [;° dx ﬁ[fM(H;ECGa ¢ca) exp(—klij)]
(7) = = ;" dk 3-1fa(k Foa, doa) exp(—rlij)]

— Surface-Surface : O(y) = fooo dr [fu(KiRea, dca) exp(—klij)]

X0
— Volume-Surface : O
La difficulté qui apparait alors concerne la dépendance de K¢ et de ¢pce au chemin optique.
Ces coefficients ne peuvent donc pas, pour les échanges volume-volume et volume-surface,
se soustraire a 'action des dérivées partielles. Tout d’abord, concernant la dépendance de
Kcq au chemin optique nous allons utiliser une propriété d’homothétie des fonctions inverses

gaussiennes qui permet de s’affranchir rapidement du probléme. On note pour cela :

La formule de la partie optique de I’échange Surface-Surface devient alors :

O(7) = /0 " da fa(a:1, b06) exp(—a /l "R () di)

En ce qui concerne les autres échanges nous allons montrer comment il est possible de calculer

I’ensemble des dérivées partielles qui affectent la fonction de Malkmus par 'intermédiaire de

bca-

Un seul gaz Nous nous placons d’abord dans le cas d’un seul gaz. La difficulté consiste
a exprimer les différentielles qui se trouvent sous le signe intégral par rapport aux abscisses

curvilignes [; et [; repérant les extrémités du rayon lumineux dans un volume ou sur une
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surface. On notera pour simplifier &; = &(/;) et &; = %(l;) et on pourra observer par exemple

que : 9, (lijRce) = ;. On rappelle que a = 22—

Commencons par exprimer O(v) pour le cas Volume-Surface :

O(y) = -9, /°° de [fu(K;Fea, doa) exp(—klij)]
0
= _ali/ da [fM(a§1a¢CG) exp(_ECGalij)}
0
= —/ da [0, [fu(a; 1, pca)] exp(—Feaali) — fu(a; 1, doc)Fi a exp(—Fegaly;)]
0

- /0 4o fu(ai 1, doa)s a exp(—Fogaly) 1 - ?L{f ga;cf)(?i

WV
terme correctif ays(a)

= / da fr(a;l, pce)Ri a exp(—Rogal;) ays(a)
0

7

(4.11)

On remplace alors Ec par son expression (Eq. 4.9) pour obtenir I’expression Volume-Surface
de O(7) :

O(y) = /000 da fr(a; 1, ¢cc)Ri a exp(—a/lj R(l) dl) ays(a) (4.12)

i

avec,

o fua; 1, deq)

 fula; 1, doa)Fia

tosla) = [1 (4.13)

On trouvera des compléments mathématiques pour exprimer analytiquement «,(a) en fonc-

tion de paramétres spectroscopiques dans ’annexe 5.

Passons a la derniére expression que nous devons démontrer toujours dans le cas d'un

seul gaz, il s’agit du cas Volume-Volume o dans Pexpression intégrale de O(7) on trouve
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une dérivée partielle seconde :

_ 62 o)
(7) L, J, K [fM(KJ Rog, bog)exp(—k ])]
» [ i
= — alzal] /0 da [fM(CLQ 1, d)CG)exp(_ﬁCGalij)]
oo 62 . 5 ) )
- _/ da | (far(a; 1, ¢ca))exp(—Fegalij) + - (fu(a; 1, doe))E: a exp(—FKogalij)
0

- ﬁ(fM(CL; 1, 606))E; a exp(—Fegalij) — fu(a; 1, poc)k R a® exp(—FKogal;)]

= / da fu(a; 1, poc)RiR; a® exp(—FKogal;)
0

L0 fulal,¢0c) 10, mu(a;l,¢cc) 1 0,0, m(a;l, dcc)

Fi fu(a;l, dcq) R fu(a;l, ¢cq) Rik;  fu(a; 1, deoc)

terme correctif vy (a)

= / da fu(a; 1, dec)RiR; a’ exp(—Fogalij) ouyy(a)
0

1+

(4.14)
On remplace alors Eo par son expression (Eq. 4.9) pour obtenir I’expression Volume-Volume

de O(7) :

00 lj
O(y) = /0 da far(a; 1, boc)Fsfes o exp(—a /l 7(1) dl) cuy(a) (4.15)
avec,

B 10 fula; 1, ¢0c) 10, m(a;l0cc) 1 0,0, mla; 1, dcc)
avv(a)_[1+ﬁi fula; 1, 0ca) Ry fulasl,0cq) KRy fula; 1, ¢ca) } @16

Le lecteur trouvera dans 'annexe 5 la possibilité d’exprimer «,,(a) de maniére analytique a

partir des parameétres spectroscopiques de bandes.

Pour un mélange de gaz Ces écritures se généralisent a plusieurs gaz. On désigne les gaz
respectivement par 1, 2 et 3 et on leur associe les fonctions de Malkmus que 1’on note pour
alléger écriture : far, fare €t farg. Pour effectuer le calcul des fonctions O(7y) dans le cas de
plusieurs gaz il faut alors remplacer fj; par le produit des fonctions de Malkmus de chacun
des trois gaz : far; fuo et farg et le coefficient d’absorption x par la somme des coefficients

d’absorption des gaz et éventuellement des suies si elles sont présentes. Les expressions des
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dérivées partielles premiére et seconde de la fonction de Malkmus qui servent au calcul de

ays(a) et ay,(a) sont modifiées. Elles ont pour expression :
al,-fM al-fM1 al-fM2 al-fMg

Far = }M1 + }Mz + }Mg (4.17)

et,
alialij :alialijl 4 alial]‘fMZ i alialijg,
fm fu e fus
oy, 1
+ 0, (fMl)[fM ;@JJ;M + 0, fM ]
1 1
1 alsz
% (fMQ)[fMQ S o sz] (4.18)
1 0 1
+3zj(fM3)[fM3 lf]\J;M + 0, Y ]
_ Z 31 al fMa Z Z alifMa alijb)
a=1,2,3 a=1,2,3 b=1,2,3 fva S
b;éa

On trouvera dans ’annexe 5 tout les compléments mathématiques nécessaires pour exprimer

analytiquement 1’ensemble de ces dérivées partielles.

Remarque : Dans le cas particulier ou le paramétre de forme ¢ est constant le long
d’un chemin alors on a ¢; = ¢; = ¢cg. Dans ce cas, les expressions des termes correcteurs
a que nous venons d’établir sont égales a 'unité parce que les dérivées partielles premiére
et seconde s’annulent (Cf annexe 5). On s’apergoit alors que ’hypothése de Curtis-Godson
et ’hypothése de séparabilité du spectre sont équivalentes pour ce cas particulier ot ¢ est
constant. En effet, sous les exponentielles, le coefficient d’absorption apparait comme le
produit d’une fonction de I'espace et d'une fonction spectrale [Goody (1989), Pierrot (1997)].
La mauvaise performance de I'hypothése de séparabilité pour le traitement des hétérogénéités
sera illustrée au Chap.6 en méme temps que seront comparés les hypothéses des k-corrélés

(CK) et et de Curtis-Godson (CG) sur des configurations plans paralléles.

Compléments :
— D’un point de vue pratique, les développements précédents appellent trois remarques.
Tout d’abord, pour une validation, la bonne marche de la méthode sera illustrée sur

des cas tests au Chap. 6.
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— Un second point concerne la fonction de Malkmus fi/(a; 1, poe) qui, comme nous le
verrons ultérieurement, sera utilisée a I'origine d’un chemin optique, dans le cadre de
la méthode Monte Carlo, pour générer aléatoirement le coefficient d’absorption. Or,
au début du chemin la valeur de ¢cg n’est pas encore connue. Pour contourner cette
difficulté nous utilisons la fonction fis(a; 1, dinitiar) lors des générations aléatoires et

_fm(aildoa) Arnit
Fu(@l b & chaque extrémité de

nous corrigeons le terme d’échange par le rapport
chemin.

— Notre troisiéme et dernier complément concerne les coefficients correcteurs «(a) que
nous avons mis en évidence pour tenir compte de 'effet des dérivées partielles. Leurs
dépendances a a = % peut étre forte et provoquer des difficultés d’intégration. Il est
alors possible de bénéficier du fait que la transmittivité moyenne est accessible ana-
Iytiquement?® pour extraire le coefficient correcteur a(a) de I'intégrale et le remplacer
par un terme correcteur moyen sur une bande étroite qui vient se placer en pré-facteur
devant l'intégrale spectrale.

Le principe, pour le cas Volume-Surface, est le suivant :

O(y) = /0 da fr(a;l, pea)Ri a exp(—Rogali;) ays(a)

_ fooo da fr(a;l, ¢ca)Ri a exp(—Rogalij) s

fooo da fu(a; 1, dca)FRi a exp(—FKegalij)

(0@
= aqtf;t/ da fu(a; 1, dca)Fi a exp(—Feogalij)
0

“ / da fu(a; 1, ¢cc)FRi a exp(—Fegalij)
0

= Oéi‘it/ da fu(a; 1, ¢ca)ki a e:rp(—a/ 7(1) dl)
0 !

i

(4.19)
ol o’ est une moyenne pondérée des a,s(a), qui s’écrit :
tot fgoo da fa(a; 1, dea)FRi a exp(—FRogalij) ows(a) (4.20)
v 157 da far(a; 1, ¢ce)E; a exp(—Fegali;)
On peut montrer qu’elle se met sous la forme suivante :
wor _ _OuT(lij; Fealliy), ¢callis)) (1.21)

{@f(lij; Fea(lij), ¢)}

P=dca

40n retrouve ici le fait que de raisonner en k-distributions & partir d’un modéle de transmittivité moyenne
sous-entend que, pour des raisons numériques et d’interprétations physiques, on fait le choix délibéré de

reconstruire le résultat de l'intégrale spectrale connu analytiquement.
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ol ¢ = ¢cq signifie que le numérateur est évalué sans tenir compte de la dépendance
de ¢cq au chemin optique.

On obtient une formule identique pour le cas Volume-Volume :

O() = / da far(a; 1, boa)FF: 0 exp(—Foaals;) am()
0

[7 da fa(a; 1, ¢cc)RjE; a® exp(—Fogal;j) Oém(a)/oo o _
Iy da fu(a; 1, ¢oa)RiR; a? exp(—Fegal;) 0 @ fu(a: 1, foc)RiFi aeap(—Rogal)

(0@
= aqtﬁjt/ da fu(a; 1, dca)RiFR; a’ exp(—Regal;j)
0

= aqtﬁjt/ da fr(a;1, poc)FiF; o €xp(—a/ ®(l) dl)
0 I

(4.22)
avec,
ot — S da fula;1, ¢ca)RiFi ® exp(—Fogalij) aw(a) (4.23)
° [- da fu(a; 1, 9)RR; a® exp(—Fogal;)) '
et :
92 —(1 .=
aiar; T Uigs Foa (L), doa(l)
0 = (4.24)
{ az?;zj 7(lij; Fea(li), ) }
P=¢cc
Les deux nouveaux coefficients correcteurs o' et o, qui remplacent a,s(a) et o, (a)

qui se trouvaient sous l'intégrale, peuvent alors se calculer a partir de la formule ana-
lytique de 7 (Eq. 4.4 page 81). Le résultat non trivial de ces développements mathé-

matiques pour les mélanges de gaz a été reporté dans ’annexe 5.

4.3 Solution numérique par la méthode de Monte-Carlo

4.3.1 Choix de la méthode de Monte Carlo

Les raisons pour lesquelles nous choisissons la méthode de Monte Carlo (voir Chap. 3)
pour la résolution numérique de 'Eq. 4.1 sont diverses. L'une d’entre elles est sans doute
que notre travail s’est inscrit dans la continuité des travaux d’une équipe de recherche qui
avait placé la méthode de Monte Carlo au centre de ses préoccupations. Mais les arguments

suivants sont plus directement associées aux problémes spécifiques de la combustion.



Chap.4 Choix méthodologique... 93

Une méthode “exacte” L’avantage le plus réputé de la méthode de Monte Carlo par
rapport aux méthodes déterministes est de ne pas imposer un choix de discrétisation (avec
des erreurs numériques associées). On lit souvent pour cette raison que la méthode de Monte
Carlo est une méthode “exacte”. Exacte voulant dire que pour un nombre infini de réalisations
aléatoires on obtient la solution du modeéle posé sans erreur liée au schéma numérique. En
pratique, le nombre de réalisations aléatoires est limité, mais I'incertitude associée peut alors
étre quantifiée de facon fiable. Une barre d’erreur statistique sera donc systématiquement

associée aux calculs Monte Carlo que nous présenterons.

En ce qui nous concerne, cette assurance de fiabilité apparait comme essentielle dés que
I’on considére la diversité des configurations de combustion auxquelles nous pensons a terme
pouvoir étre confrontés. A titre d’exemple, nous avons mentionné auparavant les questions
de discrétisation de I'espace des coefficients d’absorption au sein de chaque bande étroite.
Selon les auteurs et selon les configurations (type de spectre, épaisseur optique, profil de
température) le nombre de points de discrétisation requis peut aller de quelques unités a
plusieurs dizaines, et sans expérience préalable il est difficile d’étre confiant quant a cette
exigence de discrétisation en fonction de la précision recherchée. En choisissant un algo-
rithme de Monte Carlo nous assurons indépendamment de la configuration une description
continue de la distribution du coefficient d’absorption, avec comme seul risque d’observer en
fin de simulation que les barres d’erreurs ne sont pas satisfaisantes et que par conséquent il
est nécessaire d’augmenter le nombre de réalisations aléatoires (ou d’améliorer le choix des

densités de probabilités, voir ci-aprés).

Les dimensions spectrales et géométriques Contrairement aux méthodes détermi-
nistes, pour lesquelles le colit numérique augmente a la puissance de la dimension du pro-
bléme (produit des nombres de points de discrétisation de chaque dimension), la méthode
de Monte Carlo est particulierement adaptée a la résolution d’intégrales multiples délicates.
Cette affirmation est aussi ambigué que celle d’exactitude, en ce sens que ce n’est pas sans
un effort conséquent de formulation et de réduction de variance que l'on finit par afficher de
bon comportements numériques. Il reste néanmoins que ce potentiel est réel et qu'’il fait de
la méthode de Monte Carlo un outil privilégié pour I'’étude de configurations complexes en

combustion.
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La complexité des problémes radiatifs de combustion est principalement liée a la com-
binaison des difficultés spectrales associées aux gaz et des difficultés géométriques caracté-
ristiques des systémes de combustion. Imaginons a titre d’illustration, dans une démarche
déterministe, que le spectre est découpé en 400 bandes étroites et que dans chaque bande
on discrétise I'espace des coefficients d’absorption en une dizaine de points. Chaque calcul
radiatif se résume donc a la succession de 4000 calculs radiatifs pseudo-monochromatiques
indépendants. Pour une configuration géométrique non triviale, la résolution de I’équation
de transfert radiatif nécessite une discrétisation angulaire suffisamment détaillée. Admettons
qu’un minimum réaliste pour une décomposition se situe entre 20 et 30 éléments de décom-
position angulaire. Nous en arrivons au niveau de 100000 points de discrétisation de par
la seule combinaison des dimensions spectrales et angulaires, avant méme d’avoir considéré
la dimension spatiale qui intervient en produit. Ces ordres de grandeur grossiers® fixent le
niveau de complexité pratique des intégrales multiples du rayonnement en combustion et

suffisent & justifier un intérét pour les démarches statistiques.

Néanmoins ces méthodes statistiques nécessitent de nombreux travaux d’optimisation et
ce n'est que récemment que les calculs Monte Carlo ont pu apparaitre compétitifs face aux
démarches déterministes. Pour 'instant les travaux proposant une démonstration convain-
cante de cette solution méthodologique en milieux gazeux restent peu nombreux. Les étapes
franchies en termes de formulation et d’optimisation spectrale sont néanmoins conséquentes
et permettent de notre point de vue de considérer I’algorithme de Monte Carlo comme bien

adapté a des fins pratiques en combustion.

Réflexion et diffusion La derniére raison motivant notre choix de la méthode de Monte
Carlo est commune a tous les utilisateurs de cette méthodologie : il s’agit de sa (relative)
simplicité de mise en oeuvre. Les algorithmes de Monte Carlo sont trés proches des images
physiques corpusculaires du rayonnement. On retrouve au plus bas niveau de la program-

mation une logique de transport corpusculaire qui facilite beaucoup la mise en oeuvre et

®Dans cette description, nous ne raisonnons qu’avec un seul gaz absorbant. Pour un mélange de trois
gaz, en supposant toujours 10 points de discrétisation pour I’espace des coefficients d’absorption de chaque
gaz, nous nous retrouvons avec 10¥10*10*400 calculs pseudo-monochromatiques indépendants. Donc, sauf a
produire une banque de données de k-distribution pour chacun des mélanges rencontrés, I’estimation ci-dessus

est & majorer de deux ordres de grandeur.
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I’adaptation des algorithmes existants. En particulier, I’extension vers des complexité phy-
siques croissantes, telles que la représentation de parois réalistes (dépendance fréquentielle,
réflexion anisotrope), ou des propriétés de diffusion du milieu, ne pose aucune difficulté

pratique insurmontable.

4.3.2 Description de l'algorithme

La méthode de Monte Carlo dans son principe a été décrite au Chap. 3. Nous décrivons
ici, 'ensemble des points techniques tels que nous les avons utilisé et tels qu’ils peuvent
étre repris pour réaliser un code dans une configuration gaz/suies, sans diffusion et avec des
parois noires. La mise en oeuvre de Monte Carlo pour le calcul de I'Eq. 4.1, avec les modéles
spectraux que nous avons retenus, passe par la définition de lois de probabilités pour la
génération aléatoire de chacune des variables du probléeme :

— p, pour chaque bande étroite n parmi les 367 bandes couvrant le spectre I.R.,

— p(a) pour le coefficient d’absorption de chaque gaz au sein de la bande étroite (a = k/F),

— p(rp,) pour le point courant P; dans le premier élément de volume ou de surface,

- p(rpj) pour le point courant P; dans le second élément de volume ou de surface.
L’Eq. 4.1 peut alors étre réécrite sous la forme de la moyenne pondérée d’une fonction w

qui est le rapport de l'intégrant de Eq. 4.1 et du produit des lois de probabilités :

b 0 0 00
Coioc; = Z Dn, Ann |: / dac® p(aco) / dah?o p(ahQO) / daco? p(aco2)
n=1 ’ ’ ’ (4.25)

[ acte) sire) [ acte) s Jo

avec,

A
U}:F fM(aco;l,(bE?G) fM(aCOQ;lagbg‘)gw’) fM(ah20;17¢}é’ZCg) O(/Y)
ij

(4.26)

n

Tater, ) - Tater )|

pn p(ac) p(a"?°) p(ac?) p(rp,) p(rp,)

— N . . 2 . .
ot Ly(rp,) représente la valeur moyenne de la luminance noire dans la bande étroite n et ou

O() prend les formes suivantes en accord avec nos hypothéses sur les mélanges hétérogénes :
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— Volume-Volume :
O(’)/) :[EhZO(I_Pi) ah20+E002(I'pi) acoZ +Eco(rpi) aco]

[EhZO(er) ah?o + ECOZ (er) acoZ + ECO (er) aco]

L l; l;
ea:p(—am"/ w2l dl) ea:p(—aCOQ/ 7?1 dl) exp(—a“’/ "l dl) (4.27)
l; l; l;

L
copl— [ 1) ()
Li
— Volume-Surface :

O(y) =[F"*(rp,) a"* + 7 (rp,) a®* +7°(rp,) a*]
I l i
e;cp(—a“o/ Rl dl) e:vp(—ac‘ﬂ/ R dl) exp(—aw/ Rl dl) (4.28)
l; ki i ‘

L
cop(~ [ wLdl) (ol
l

7

— Surface-Surface :

l]‘ lj lj
O(v) :exp(—am"/ Rl dl) ea:p(—aCOQ/ Rl dl) exp(—a“’/ £l dl)
i i i (4.29)

lj
e:vp(—/ Rl dl)
l;

L’algorithme de Monte Carlo correspondant consiste en une série de N évaluations de

h2o0 co2 co

w pour des valeurs de n, a"*, a®*, a®, rp, et rp générées aléatoirement selon les densités

de probabilités qu’il nous reste a définir, pc;,c; étant alors estimé comme la moyenne de la

fonction w :
N
1
@Cﬂ—)Cj ~ ﬁ E Wy
m=1

avec comme estimation de I'incertitude statistique :

1 |1 1 & ’
azﬁ Nmz:%wfn—<ﬁn;wm>

4.4 Méthodologie de couplage avec la combustion

Nous avons vu au Chap. 3 que le temps de calcul pour le radiatif peut représenter une

réelle difficulté lors du couplage avec la combustion. En effet, les principes de résolution
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numérique en combustion sont pour la plupart basés sur des algorithmes itératifs qui pour
étre précis doivent inclure les calculs radiatifs. Face a cette difficulté, nous choisissons une
démarche qui consiste, pour un profil initial de températures et de concentrations, a calculer
simultanément les termes sources radiatifs et leurs sensibilités & I’ensemble des variables du
probléme (concentrations et températures). Le couplage avec la combustion peut alors se
faire ensuite sur la base d’un développement de Taylor au premier ordre des termes radiatifs.
C’est le modéle que nous appellerons TLM désormais. Pour effectuer une validation, un
calcul radiatif détaillé par Monte Carlo est relancé a la fin d’une simulation couplée avec le
modéle TLM de fagon a s’assurer que la solution couplée est restée dans la plage de linéarité
du modeéle TLM.

Cette approche ne serait pas envisageable sans avoir au préalable proposé une solution
efficace pour le calcul des matrices de sensibilités. Cette solution est fournie par ’algorithme
de Monte Carlo qui peut étre trés simplement adapté, de facon a estimer I’ensemble des
sensibilités en paralléle du calcul de terme source. En effet, dans nos calculs, le principal
colit est celui associé a ’ensemble des générations aléatoires et des suivis de rayons. Le
calcul de la fonction w et les calculs de moyenne sont sans difficultés. On peut donc envisager,
pour chaque jeu de générations aléatoires, de ne pas calculer uniquement la fonction w mais
également de calculer les fonctions correspondant & chacune des dérivées par rapport aux
concentrations et températures. Pour toute variable Z, on peut en effet écrire la sensibilité
correspondante comme la moyenne pondérée d’'une fonction wy et donc de I’estimer selon

[de Guilhem de Lataillade... (2001)] :

) 1
a—Z(PCﬂ—)C]‘ ~ N mz:lwz,m
avec :
_éi 0. 1 Heo co2, 1 co2 h2o, 1 h2o0 O
Wz _l2 EYA fM(a’ ) 7¢C’G)fM(a ) 7¢C’G)fM(a ) 7¢CG) (7)
]

pap(a®)p(a”?)p(a?)p(re, )p(rp;)

[Lb(I'P,-)n - Lb(I'P,-)n} )

En premiére approximation, lors du calcul de ces dérivées partielles, nous négligeons les

effets de déformation du spectre liés aux hétérogénéités. Cela signifie que nous négligeons les
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variations de ¢cq, iy €t 5. Nous faisons de plus 'hypothése que I'essentiel de la dépendance
en température des échanges nets passe par celle de la luminance noire et nous négligerons
donc les dérivées de K et ¢ par rapport aux températures. Ces deux simplifications nous
permettent d’écrire, pour les sensibilités aux concentrations (fractions molaires ou fraction

volumique de suie) :

A
Wx :F (fM(aCO; ]-7 QSE?G)fM(aCOZ; ]-7 qsg)g;)fM(ahZO; ]-7 qsf(':'QGo)
ij

Tuter,)" - Tater)| ) ;

pap(a)p(a)p(a®?)p(rp,)p(re,;) ax 00

0X
et pour les sensibilités aux températures :

A

wr ZZT
]

(fM(aco; 17 ¢CC(’)G)fM(a002; 17 ¢Cc(’)g¥)fM(ah20; 17 ¢}(':‘2GO)O(7)

n

pap(ac)p(ah?)p(a?)p(rp, )p(rp;)

4 [0y - L] )

pour fixer les idées, le modéle TLM que nous proposons peut s’écrire sous la forme
suivante, oll N, est le nombre de variables liées aux concentrations de gaz et de suies et

N.ome 1€ nombre de zones ol on effectue un calcul radiatif du terme source :

Nvar Nzone Nzone

ST(rP) =5y (rP)|initial T Z Z wX’"“initieﬂ [Xk(rpl) B (rPl)initial] * Z leinitial

k=1 [=1 =1

(4.30)

Discussion sur la limite de validité du modéle TLM : Le couplage que nous sou-
haitons mettre en oeuvre en utilisant une flamme a jets opposés de méthane ne devrait
pas poser de gros problémes de non-linéarité. Nous avons fait une étude de perturbation en
températures et concentrations dans [de Guilhem de Lataillade... (2001)] qui a montré que
pour des variations de 10 % en température ou concentrations dans les gammes qui sont les
notres, le TLM conduit a de bons résultats pour un cotit numérique incomparablement plus

faible que ceux d’un Monte Carlo.

De maniére générale, nous nous sommes assurés que ’approximation linéaire que nous

faisons et largement suffisante pour la flamme que nous souhaitons modéliser. Il n’en reste pas

[T(rpz) - T(rPl)

initial

]



Chap.4 Choix méthodologique... 99

moins que de maniére systématique, les résultats du TLM sont toujours confrontés & ceux
d’un calcul complet par Monte Carlo pour des profils de flamme stationnaires. Une telle
vérification sera exposée dans le Chap.6. Pour I’ensemble de nos simulations nous n’avons

jamais été confrontés en pratique aux limites de validité du TLM.

En revanche, dans le cas général il serait nécessaire de mettre au point une procédure
de controle systématique de I'écart a la linéarité. Un tel travail consisterait a calculer les
expressions des termes du second ordre du TLM pour les utiliser comme critére d’arrét du
calcul linéaire. Ces écritures sont en cours d’étude au moment ot nous écrivons ces lignes et

elles dépassent le cadre que nous nous sommes fixés pour notre étude de couplage.



Chapitre 5

Densités de probabilité adaptées au

probléme de combustion

Nous avons annoncé au chapitre précédent ’ensemble de nos choix méthodologiques abou-
tissant a la description de notre algorithme de Monte Carlo. Nous avons vu que cet algorithme
nécessitait le choix de lois de probabilités pour I’ensemble des variables du probléme et que
ces choix étaient déterminants pour assurer de bonnes qualités de convergence. Classique-
ment, une loi de probabilité s’établit en choisissant de dénombrer des cas favorables sur des
cas possibles. L’objectif de ce chapitre est d’aborder ces choix sur la base d’analyses phy-
siques et mathématiques permettant de cerner, pour chaque variable, les plages de variations

essentielles vis a vis de la grandeur a estimer.

Le principal compromis a la base du choix d’une loi de probabilité sera d’inclure le plus
grand nombre d’informations possible sur la contribution de la variable concernée, tout en res-
tant mathématiquement suffisamment simple pour autoriser le développement d’algorithmes
de génération aléatoire numériquement performants. Gagner en ajustement pour une densité
de probabilité donnée permet de réduire la variance de la fonction & calculer (nous I’avons
notée w au chapitre précédent), donc d’obtenir une estimation fiable de sa moyenne a partir
d’un nombre réduit de générations aléatoires. Mais souvent un ajustement trop fin peut se
traduire par une forte augmentation des temps de calcul nécessaires a chaque génération
aléatoire et, malgré une convergence assurée par un plus faible nombre de tirages, le temps

total de calcul peut étre plus élevé.

100



Chap.5 Densités de probabilité adaptées... 101

Pour les configurations que nous étudions, la principale source de difficultés est associée
a la dimension spectrale du probléme. Tout d’abord, les spectres de raies font que la plage
des épaisseurs optiques rencontrées est trés large (centres de raies, ailes de raies), ce qui
impose que la partie optico-géométrique de 1’algorithme soit en mesure d’assurer une bonne
convergence a toutes les épaisseurs optiques. De plus, la dépendance spectrale de la fonction
a intégrer est trés forte et il est essentiel de travailler finement & 'optimisation des lois
de probabilité concernant cette dimension spectrale, a savoir les lois de tirages des bandes
étroites, d'une part, et des coefficients d’absorption des gaz au sein de chaque bande, d’autre

part.

5.1 Aspects optico-géométriques : probléme de I’épais-

seur optique

Au sein de cette section, notre problématique est celle de 'optimisation, en fonction de
I’épaisseur optique, de 'algorithme de génération aléatoire des positions F; et P; au sein de
chacun des deux éléments géométriques dont on veut estimer 1’échange net d’énergie radia-
tive. Cette problématique est identifiée dans la littérature a travers les difficultés reconnues
de convergence de la méthode Monte Carlo a la limite optiquement épaisse. En général, les
travaux concernant cette difficulté n’utilisent pas une formulation en PNE, mais simplement
une formulation en flux direct. Comme cette question de formulation est relativement indé-
pendante des questions purement optico-géométriques, et dans I’esprit de permettre un lien
avec la littérature du domaine, nous aborderons cette question en abandonnant temporaire-
ment la formulation en PNE pour adopter une formulation dans laquelle on ne regarde que
la puissance émise depuis le premier élément vers le second (sans sa réciproque). Cela revient
en pratique dans 'Eq. 4.1 et ’Eq. 4.2 a4 remplacer la différence de luminance par la seule

luminance au point P;.

Dans les algorithmes de Monte Carlo les plus classiquement employés en rayonnement
infrarouge, la position P; dans I’élément géométrique “émetteur” est générée aléatoirement de
fagon uniforme. La position P; dans ’élément géométrique “absorbant” quant a elle n’est pas

générée au sein de C; de facon directe. Pour chaque paquet de photons “émis” depuis P, le
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tirage de la position d’absorption correspondante passe d’abord par le tirage d'une direction
d’émission eq, qui définit un chemin optique. Le long de ce chemin optique, la position a
laquelle le paquet de photons est “absorbé” est tirée aléatoirement selon la loi d’extinction

du milieu et les propriétés d’absorption des parois rencontrées.

Avec un tel algorithme, lorsque le milieu est optiquement épais, les paquets de photons
sont vite absorbés par la maille d’ou ils ont été émis et participent trés peu, voire pas du

tout, aux échanges radiatifs.

Cela fait croitre considérablement le nombre de réalisations avant d’atteindre la conver-
gence. D’autre part, le coiit numérique que provoquerait un découpage en volumes as-
sez petits pour étre optiquement fins, contraint a se limiter a des tailles géométriques
ou le probléme de I'auto-absorption reste fortement présent et la question de la prise en
compte du profil sous-maille de température devient essentielle. Cela est d’autant plus
vrai pour les gaz oul les raies spectrales produisent de grandes plages d’épaisseur optique.
[Farmer... (1994a), Farmer... (1994b), Surzhikov... (1998)| proposent des solutions sur la base
d’algorithmes hybrides combinant la méthode de Monte-Carlo et des algorithmes de diffusion
mais la discontinuité des modéles qu’ils introduisent et le critére que ceux-ci nécessitent sont

peu satisfaisants dans notre contexte.

Nous reprenons ci-dessous ce probléme de la convergence des algorithmes de Monte Carlo
a forte épaisseur optique en nous limitant tout d’abord & une géométrie plane monodimen-
sionnelle. Nous montrons dans ce cadre (qui se préte a des solutions analytiques) comment la
difficulté peut étre contournée en modifiant le tirage de la position d’émission. Nous étendons

ensuite l'algorithme proposé a une géométrie quelconque.

5.1.1 Géométrie plane

Nous nous proposons donc d’illustrer dans un cas simple le comportement de quatre
statistiques différentes, dont celle que nous préconisons pour les milieux optiquement épais.
Nous considérons donc une lame de gaz entre deux surfaces noires Fig. 5.1, avec un profil
linéaire de luminance noire, que nous noterons B(z) = B + £2z dans les calculs (AB = —B
dans le cas de la Fig. 5.1). Pour simplifier notre démonstration nous allons nous limiter au

calcul du flux radiatif émis du volume vers la face noire inférieure. En tout point on définit
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F1G. 5.1 — Lame de gaz entre deux plans paralléles

la densité d’énergie spectrale directionnelle émise par unité de temps comme : E = kB(z2)

A chaque instant, cette quantité d’énergie est émise de tous les points du volume, puis
les “photons” associés parcourent une distance variable (libre parcours) distribuée exponen-

tiellement puis sont absorbés par le milieu ou par la paroi.

En se donnant des images au plus proche de cette description corpusculaire, avec un grand
nombre de paquets de photons, on imagine qu’un de ces paquets est émis uniformément dans
le volume, avec une direction équiprobable sur la sphére mais avec une longueur de parcours
tirée selon la loi d’atténuation de Bouger-Lambert. Synthétiquement, la formulation intégrale

de la marche aléatoire d’'un grand nombre de paquets de photons se met sous la forme

suivante :
pvos= [ a0t [ a00@) [ do plo) (w)
” 1
p(z) = 7
1
p(Q) = e
p(o) = ke™™

w = LAtk BS(z)

ou S(z) est une fonction qui vaut l'unité lorsque I’énergie atteint effectivement la paroi,
c’est a dire que le libre parcours moyen tiré au hasard est plus long que la distance qui

sépare la position initiale du paquet de photons et la paroi. Dans notre cas sans réflexion ni
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diffusion, comme on considere le flux sur la face inférieure on peut intégrer sur une demi-

sphére seulement :

os= [ Cdz m(2) [a2n@ ["ar o) @

ou :
1
Pl(Z)ZE
1
)= —
p1( ) 27
pi(o) = ke ™

wy = L21kBS(z)

Par la suite on note formellement © I’ensemble des intégrations géométriques (spatiale et
angulaire) ce qui permet, en accord avec la démarche de Monte Carlo, de présenter py .5

comme une moyenne pondérée de wy : gy 5 =< Wy >¢

5.1.1.1 Algorithme 1 : Statistiques construites par analogie

On traduit directement la formulation intégrale précédente dans un algorithme de Monte
Carlo en utilisant les lois de probabilités mises en évidence. Pour évaluer la performance de

cette estimation statistique, nous nous permettons dans ce cas simple d’exprimer analyti-

quement! oy _g.

<wp >e = Pvos
— /Ldz pl(z)/ d pi(2) /000 do pi(o) (w1)

/ dz ~ /2 49 o o ke (2mB(2)LS(2))

2m 7r/2
:/ dz —/ d¢/ dfsind —/ do ke "7 (2kmB(z)L)

= 20(B(3 ~ By(kL) + 1 (1/3 ~ Ba(sL) ~ rLEs(xL))
=27B(1/2 — 3% + LLE4(/<;L)) si AB=—B

!Par la suite E, fera référence aux fonctions intégrales exponentielles dont on trouvera un rappel en

annexe 3



Chap.5 Densités de probabilité adaptées... 105

La moyenne de w? est également analytique, ce qui permet d’estimer I'incertitude statistique

associée & cette formulation.

L 2
<w?>e = 47r2(B2(% — KLEy(xL)) + BAB(~2kLEs (L) — 2B4(vL) + 3)

2 2
+AB?(—kLE3(kL) — 2E4 (kL) — E}35(/~eL) + m))
kL 2 2

1
4Bt 2 p (kI -4+ —) si AB=-B
B = Bl — g+ o) s

Pour atteindre une erreur relative fixée a 1%, le nombre de tirages nécessaires est alors donné

par

La Fig. 5.2 montre le nombre de réalisations aléatoires attendues en fonction de 1’épais-
seur optique pour obtenir une erreur relative de 1%. A forte épaisseur optique, les photons
sont vites réabsorbés par le gaz. Par conséquent, seule une trés petite partie d’entre-eux,
proches de la paroi, participe au flux ¢y _,5. La variance de I'estimateur Monte Carlo est

donc élevée.

Cette explication peut conduire a croire que des algorithmes différents ou le paquet
de photon est atténué le long du chemin optique seraient d'un comportement statistique

meilleur. C’est ce que nous allons tester dans ’algorithme suivant.

5.1.1.2 Algorithme 2 : Atténuation intégrée

Nous évaluons strictement la méme intégrale que précédemment mais ce n’est qu’aprés
avoir procédé a une premiére intégration sur les longueurs d’absorption que l'on désigne

I’intégrant qui contient alors une information sur I’extinction exponentielle ecs¢ appliquée a
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un “paquet de photons”.

L 00
PV :/ dz p1(z)/ ds? p1(9)/ do pi(o) (w1)

0 2 0
L 1 1 00 B

= dz — | dQ) — do ke " (2kmB(z)LS(2))
0 L Jar 21 Jo
L 1 2m /2 1 00

:/ dz —/ d¢/ dfsind —/ do ke (2kmB(2)L)
0 L Jo 0 21 T
L 1 2T w/2 1 Cn

:/0 dz Z/o d¢/0 dfsind py (keeest 27B(z)L)
L

:/0 dz py(2) /27r dS2 p2(2) (w2)

=< wy >o
avec :

1
L
1
2m
wy = (kew 2rB(2)L)

L’intégrale de la fonction au carré est alors différente de la précédente puisque les statistiques

sont changées. En jouant ainsi sur la formulation, a solution identique, on rend possible la
réduction de la variance statistique :

kL kL

1 1
<ws >g = 47r2(B2(Z — 7E?,(an)) + BAB(—kLE;3(2kL) — §E4(2/§L) + =)

— kL 1 1 1
AB2(ZE B, (26L) — —E4(26L) — —— Ex(2xL
FABA( A B, (24L) — JBa(26L) — - Bo(26L) + )
L 1 1
— 4B - L E.(2kL) — - ' AB=—_B
BT T el — 5t gp) o

Toujours pour une erreur relative fixée & 1%, le nombre de tirages nécessaires est donnés

par :
1 < w? >
Na = L2 ~ S_l
(100) < wy >4

On voit sur la Fig. 5.2 que ce deuxiéme algorithme se comporte mieux, mais qu’il garde
malgré tout les stigmates du comportement du précédent algorithme dont il est issu. La

raison simple en est que, bien que l’auto-absorption compléte ait été supprimée, il reste
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cependant que seules les émissions pas trop éloignées de la paroi gardent un poids statistique
important. Ainsi a forte épaisseur optique, ’atténuation étant trés forte, la décroissance de
I’énergie sur le chemin optique est si rapide qu’elle est trés proche d’une absorption compléte

telle que nous I'avions employée dans le premier algorithme.

5.1.1.3 Algorithme 3 : Atténuation intégrée et optimisation des positions d’émis-

sion

Dans les deux algorithmes précédents, les difficultés sont clairement associées a la position
du point d’émission. Ces difficultés peuvent étre levées en modifiant la loi de probabilité de
’abscisse du point d’émission po(z). L’optimisation de l’abscisse z dépend fortement de
'inclinaison du rayon par rapport a la paroi (rasant ou pas). Pour une méme position de
départ l'atténuation peut en effet étre beaucoup plus forte pour un rayon rasant que pour
un rayon perpendiculaire & la surface de sortie. Par conséquent, nous choisissons d’inverser
les intégrales d’angle solide et de position et donc de générer la direction de propagation
avant l’abscisse du point d’émission. Le vecteur eq est d’abord généré puis, une loi de tirage
adaptée de z peut étre choisie. Voici son expression :

@ P (—F)
1 —exp (—%)

De facon a assurer une bonne convergence dans la limite optiquement épaisse, nous modifions

également la densité de probabilité angulaire en choisissant une distribution lambertienne.

ps(€) = cos(0)

™

On aboutit ainsi a I’expression suivante :

ovas= [ Cdz () | 49 ) (2

L 1 2m /2 1 s
:/ dz —/ dd)/ dfsinf —(mam 21 B(z)L)
27

2m /2 0 K_oroeg? -
:/ d¢/ dfsinf ﬁ/ dz @87 (1~ e=%) 7B(z))
0

1 — € cosh

= /%dQ p3(Q)/ dz p3(2;0) (ws3)

0
=< w3 >o



Chap.5 Densités de probabilité adaptées... 108

avec :

—wL

w3 = (1 — e=s0) 7B(2)
La moyenne des carrés vaut alors :

BAB (% _Ei(4, kL) — L Ei(3, £L))
kL

1
< wi >g = 277 (5 B? — 2 B?Fi(3, kL) + 2

1
AB? (—xkL%Ei(3, kL) — 2 kL Ei(4, L) — 2Ei(5, sL) + =)

kL2
, BAB(—+LEi(3, 2xL) — Ei(4, 24L) + Ei(4, xL))
kL
AB? (—kL2FEi(3, 2 kL) — 2xLEi(4, 2kL) — 2Ei(5, 2 kL) + 2 Ei(5, HL)))

+ B?Ei(3, 2kL)

_|_

kL2

11 1 2
= 47’ B*(~ — +

4 3kl  4(kL)? N ,{2L2E5("0L) — E3(kL)/2

1 1 ,
+ EE4(/€L) + WE5(2I€L)) st AB=—B

et on a toujours pour une erreur relative fixée a 1% :

1 < w? >
N3 = 2|/ ° S_l
(m) < wz >4

Nous avons avec le troisiéme algorithme (Fig. 5.2) gagné en précision pour les fortes

épaisseurs optiques. Il faut cependant modérer ce résultat en constatant que, pour de faibles
épaisseurs optiques, les performances sont moins bonnes que dans les deux cas précédents.
C’est un résultat qui se comprend dés lors qu’on a présent a ’esprit que la loi de tirage
angulaire a été changée par celle de Lambert dans le dernier algorithme. Les directions vers
I’avant sont donc privilégiées, et ce qui est un avantage a forte épaisseur optique devient
un inconvénient dés lors que le milieu est optiquement mince et que I'on parcourt de faibles
distances dans chaque maille de volume. L’ajustement de la loi de tirage angulaire en fonction
de I'épaisseur optique devient une nécessité. C’est ce dernier travail que nous abordons dans

le § suivant.
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Erreur relative fixée a: 1%
10 T T H T

[N
(=]
o
T

10°E

© Algorithm 1
=f=_Algorithm 2
=%= Algorithm 3
= = Algorithm 4 =

Nombre de réalisations aléatoires

10'k 9
100 -2 1—:L ! 0 ! 1 ’5 3
10 10 10 10 10 10

Epaisseur optique: kappa*L

Fi1G. 5.2 — Nombre de réalisations aléatoires nécessaire en fonction de 1’épaisseur optique

pour obtenir une erreur relative de 1 %

Comparaison de différentes pdf (épaisseur optique = 0,36)

2 T T T T T T T T T
1.8 -
1.6 -
14 -
121 =
5 / /
a 1
0.8 -
0.6 i
0.4 -
=—— mince
0.2 — épais B
— idéal
—— adapté
0 | | | | | | | | I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cosinus de I'angle par rapport a la normale

F1G. 5.3 — Fonctions densité de probabilité (pdf) pour les tirages angulaires
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5.1.1.4 Algorithme 4 : Atténuation intégrée et optimisation des positions et

angles d’émission

Pour ajuster la loi de tirage angulaire, nous raisonnons sur la base de I’émission d’une
couche homogeéne. Sous cette hypothése (AB = 0) I'expression ws (qui a été obtenu sur la
base d’une distribution angulaire lambertienne) est uniquement dépendant du cosinus de

I’angle d’émission :
—kL
=(1- — 7B
wz = (1 —exp 008(9))7r

On retrouve que le choix d’un tirage lambertien permet d’assurer une trés faible variance a

la limite optiquement épaisse. En effet,

li =7B
NLA}Eifn(lua) T
d’ou

lim (< w;>— <ws>%)=0
KL —>-+00

Ce n’est au contraire pas le cas a faible épaisseur optique étant donné que ws tend vers

—kL
cos(0)

de probabilité isotrope pour le tirage angulaire. En effet, si on choisit p(Q2) = %, on aboutit

7B lorsque kL tend vers 0. Une adaptation est alors possible en choisissant une densité

a:
—kL

w = 2eos(6) (1 exp(__ o

))nB

avec

lim (w) = 2kL7wB
KL—=>0

et la variance du calcul Monte Carlo est donc nulle & la limite mince.

On voit que nous disposons de deux densités de probabilité adaptées pour les limites
épaisse et mince respectivement. Nous avons alors cherché a définir une densité de proba-
bilité adaptée en fonction de I’épaisseur optique du systéme, passant réguliérement d’une
distribution uniforme a une distribution lambertienne. La distribution que nous avons rete-
nue est définie par morceau (Fig. 5.3) :

— uniforme sur la plage angulaire correspondant aux rayons qui traversent le systéme

sous des épaisseurs optiques faibles (00’1%0) <1);

— lambertienne sur la plage angulaire correspondant aux rayons qui traversent le systéme

sous des épaisseurs optiques fortes (coF;%e) > 1).
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Cela conduit a la définition suivante, dans laquelle on peut noter que ’on retrouve exactement

la distribution lambertienne pour les systémes d’épaisseur optique caractéristique supérieure

a l'unité :
cosf) .
p*(2; e, kL) = a—— si cos(f) < kL (5.1)
s
1 .
p*(Q;e,, kL) = 52— si cos(#) > kL
T
avec
a=1sikL>1
et
1
b= 1—rkL/2

a:%iLsinL<l

En reportant cette nouvelle densité de probabilité dans ’équation de I’algorithme 3 (page

106), et en conservant la densité de probabilité spatiale précédente, on obtient :

L
Pvss Z/ dS2 p4(Q)/ dz pa(z;0) (ws)
27 0
=< w4 >o

avec

pa(2) = p3(2)

Comme précédemment les qualités d’adaptation de cette densité de probabilité sont illustrées
dans la Fig. 5.2, en terme de tirages nécessaires pour atteindre une précision de 1% par
comparaison avec les trois précédents algorithmes. On retrouve qu’aux épaisseurs optiques
supérieures a l'unité, les résultats de ce nouvel algorithme coincident avec ceux obtenus sur
une base lambertienne. De méme, a la limite mince, on retrouve les résultats d'un tirage
angulaire uniforme. Par contre, les résultats sont améliorés pour les épaisseurs optiques

intermédiaires.
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5.1.2 Géométrie quelconque

L’algorithme précédemment développé en 1-D peut se généraliser pour une géométrie
quelconque. Pour étre tout a fait général, nous reprenons également la formulation en puis-
sances nettes échangées que nous avions abandonnée seulement pour les besoins de la dé-
monstration précédente. Imaginons que le systéme soit divisé en n, volumes V; et ng surfaces
opaques S;. Une remarque essentielle est que les éléments géométriques ne sont pas iso-
thermes ni optiquement minces. La température est décrite de maniére continue sur chaque
éléments et il lui correspond un champ de luminance noire L, ,(Z), en notant Z le vecteur

position au sein de 1’élément.

(a) en utilisant I’enveloppe de V; (b) en utilisant une surface convexe autour
de V;

F1G. 5.4 — Génération aléatoire de la position d’émission

Au moment du calcul d’'un échange radiatif net entre un volume et une surface py; s,

ou entre deux éléments de volume ¢y .,v., la premiére étape consiste a générer aléatoirement
J

une position initiale P; dans V; et une direction eq. L’extension la plus directe de 1’algorithme

4 a trois dimensions se réduit a la procédure suivante (Voir Fig. 5.4 a et b) :

. un ition x; uniformément générée sur 'env u volume V; notée S;.
1 e positio est formément générée sur I’enveloppe du volume V; notée S;

2. une direction sortante eq est générée a son tour selon la distribution p®(eq;e,;, kd)
(Eq. 5.1) ou e, est le vecteur normal & la surface orienté selon la convention de la

normale sortante, et ol d est une dimension caractéristique du volume V;

3. X1 et eq sont utilisés pour définir, par intersection entre le rayon lumineux qu’ils
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définissent et le volume V;, un segment de longueur L repéré en ses extrémités par x;
et xo. La position x, désigne par convention la premiére interception que 1’on rencontre
entre 'enveloppe du volume V; et la droite passant par x; dans la direction —eq.

4. La position rp. = x; — 0eq (o0t o désigne l’abscisse curviligne) peut alors étre géné-
rée aléatoirement le long du segment de longueur L conformément a la distribution

exponentielle :

K./e—K,O'i

1 — e &llx2—x1]|

p(oi) = (5.2)

- . < P . ) v
Il arrive que pour des géométries complexes, la génération d’un point x; sur I'enveloppe du
volume devienne lourde. Sans rentrer dans des développements géométriques complexes, on
indique ici la possibilité d’utiliser une alternative en utilisant une enveloppe convexe autour

du volume V; telle qu’elle est représentée Fig. 5.4 b [de Lataillade... (2001)].

A cette étape le chemin optique est initié par une position rp, et une direction egq.

Lorsque l'on calcule un échange net ¢y;.,s;, ces données sont suffisantes et rp, est défini

F1G. 5.5 — Génération aléatoire de la position d’absorption

par l'intersection entre la demi-droite (rp.,eq) et la surface S;. Lorsque l'on calcule un
échange net ¢y, v, on suit la demi-droite (rp,,eq) de facon a déterminer son intersection
avec le volume V;. Cette intersection est potentiellement composée de m segments dont les
extrémités sont repérées par les vecteurs yq_1 et yo avec [ = 1..m (Voir Fig. 5.5). Pour
optimiser la procédure de calcul, plutot que de tirer aléatoirement une position rp; unique

sur 'union des m segments, nous préférons générer une position rp,, dans chaque segment
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et nous sommons les contributions correspondantes. De méme que nous le pratiquons pour
le point initial, la loi de probabilité utilisée pour chacun de ces tirages intégre la physique

d’atténuation exponentielle au sein de la maille :

K;eflilo'jl
o) = 5.3
p( Jl) 1_ 67"“”3'2173’21—1“ ( )
avec, rp; = Ya-1 + 0j€q. Lorsque l'on calcule ¢g,..5, ou @g,y, tout est identique a la

différence que la position initiale est générée uniformément sur la surface et que la probabilité

angulaire est p®(Q2; e,, kD) ou D est une dimension caractéristique du systéme.

5.2 Aspects spectraux

5.2.1 Pondération des bandes étroites

D’un point de vue spectral, ’algorithme que nous proposons passe tout d’abord par la
génération aléatoire d’une bande étroite parmi les 367 bandes qui nous servent a couvrir le
spectre infrarouge. Comme pour I’ensemble des lois de tirage, le choix de cette probabilité

n’affecte pas le résultat final mais uniquement la rapidité de convergence.

Associer un jeu de probabilités & ’ensemble des bandes, ¢’est pour nous essayer de prévoir
le poids relatif de la contribution de chaque bande a la PNE considérée. Pour cela, nous
nous appuyons sur des modeéles approchés séparés des termes optiques et énergétiques de
I’Eq. 4.1. Dans notre algorithme, chaque rayon suivi sert a ’estimation des PNE entre la
maille de départ et chacune des mailles traversées; nous construisons ces modéles approchés
en songeant au bilan radiatif total de la maille de départ, c’est a dire a la PNE entre la maille

de départ et tout le reste du systéme.

Pour ce qui concerne la partie énergétique, donc la différence de luminance noire, nous
souhaitons prendre un AL, typique de I’échange net entre ’élément ol on se trouve et
le reste du systéme. Face a cet objectif, lors de travaux sur des cavités quasi-isothermes
[Cherkaoui... (1996), Cherkaoui... (1998), Clergent (2000)| ont choisi de représenter cette dif-
férence de luminance & partir de la dérivée partielle de la luminance noire en P; par rapport
a la température. Dans notre contexte, cette solution n’est pas réaliste du fait des hétérogé-

néités thermiques des systémes de combustion. Nous avons alors choisi d’utiliser la différence
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'}

paroi le reste du systeme

F1G. 5.6 — Echange entre une paroi et le systéme

maximale de luminance, & savoir :

AL_b = ma?ﬁ[(m(rﬂ) - L_b(Tmm)) ’ (L_b(rpl) - m(me))]

ol Tinin et Tynax sont respectivement les températures maximale et minimale du systéme.

Pour I'estimation de la partie optique, il faut distinguer la physique d’émission des parois

et des mailles de gaz :

— Pour une paroi, toutes les bandes sont représentées a I’émission. Le rayonnement d’une
partie d’entre elles sera atténué par les gaz. Les autres pourront parcourir de plus
grandes distances. Une paroi échange donc avec I’ensemble du systéme sur de grandes
distances. Dans les systémes de combustion, les parois sont souvent a des températures
faibles devant celles des gaz. Ces parois échangent donc principalement par rayonne-
ment avec le volume de gaz chaud et trés peu entre elles. Dans notre pondération des
bandes étroites, nous n’utiliserons comme terme optique que I’échange avec le gaz. Pour
cela, nous introduisons une distance D caractéristique de la dimension du volume de
gaz tel qu’il est perqu depuis P; (Fig. 5.6) et le terme de pondération est calculé en
supposant un échange avec un volume isotherme, soit (1 — 7(D)) ou T est le produit
des transmittivités moyennes de chacun des constituants.

— Pour un volume d’émission, les distances caractéristiques sont plus courtes puisque
le rayonnement va étre absorbé sur des fréquences ot il a été émis. En notant d une

distance caractéristique de I’épaisseur de la maille, et en considérant ici I’ensemble des
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volume le reste du systeme

F1G. 5.7 — Echange entre un volume et le systéme

échanges radiatifs (gaz/paroi et gaz/gaz), la partie optique de I’échange net devient,
toujours en considérant 1’échange avec un milieu extérieur isotherme : (1 — 7(d)).
Donc, lorsque sont identifiées les dimensions caractéristiques d ou D, nous retenons dans les
deux cas, pour chaque bande étroite, la pondération suivante :
F =|1=7" (L7 (L)7(L)7*(L)
(5.4)
maz[(Ly(rp,) = Ly(Tin)) » (Lo(rp,) = Ly(Tinas))]
avec : L = D pour une émission de paroi Fig. 5.6 et L = d pour une émission de volume

Fig. 5.7. La probabilité utilisée pour le tirage d’une bande étroite n est alors :
Fy

P = s g (5.5)
n=1+n

Pour illustrer la pertinence de notre analyse, & partir du modéle de flamme que nous
détaillerons au chapitre suivant, nous avons reporté Fig. 5.8 la loi de probabilité issue des
discussions précédentes et la répartition du bilan radiatif sur les bandes étroites telle qu’elle
ressort lors d’une simulation par la méthode de Monte-Carlo. Bien que relativement grossiére,
notre loi reproduit trés bien la statistique sous-jacente a notre probléme de combustion. La
raison de ce trés bon accord est & trouver dans la faible épaisseur optique de la flamme
considérée, parce que les raisonnements précédents sont exacts a la limite mince. Néanmoins,
la généralité des analyses physiques qui ont conduit & ce résultat nous permet d’accorder une
bonne assurance dans 'aptitude de cette loi de probabilité a assurer une bonne qualité de

convergence pour de nombreux problémes de combustion.
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Statistique sur les bandes étroites pour une maille de volume
0.09 T

T T T T T T
=0~ Loi de probabilité utilisée en fonction du numéro des bandes étroites
= Bilan d’une maille réparti sur les bandes étroites (10000 réalisations)

0.08 - u

x10°*

0.06 -

fréquence
o o
o o
= a
T T
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0.03-

170

0.02- 9

0.01

0 400
Numéro de bande

FiG. 5.8 — Comparaison entre la densité de probabilité utilisée et la densité de probabilité

idéale pour le tirage des bandes étroites

5.2.2 Densité de probabilité du coefficient d’absorption

Pour I'optimisation des lois de tirage des coefficients d’absorption, nous raisonnons sur la
méme base schématique que précédemment pour le tirage des bandes. A savoir, un volume
d’épaisseur d échangeant avec un systéme total extérieur isotherme (pour les émissions de
volume, Fig. 5.7), ou bien une paroi échangeant avec un volume isotherme d’épaisseur D

(pour les émissions de surface, Fig. 5.6).

Du fait du modele physique employé, il apparait déja explicitement un jeu de densités
de probabilité, dans la formulation intégrale de départ, pour chacun des gaz du mélange. Il

s’agit des k-distributions fﬁ;o, 2 et f£9 qui apparaissent dans les équations (Eq. 4.26)%

2En pratique, les questions d’hétérogénéité font que ces fonctions ne sont pas appliquées au coefficient
d’absorption local x mais & la variable a = k/R qui est la grandeur conservée le long du chemin optique.
Pour ce qui nous concerne ici, les écritures en k et en a sont équivalentes étant donné que la k-distribution

du modeéle de Malkmus vérifie
fu(ksE, ¢)de = fu(a; 1, ¢)da

Pour des raisons de clarté de ’exposé, nous choisissons de raisonner en x pour la discussion des lois de tirage.
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Cependant ces densités de probabilité ne sont pas toujours les mieux adaptées pour le
tirage des valeurs de x puisque l'intégrant se compose parfois d'un pré-facteur x ou k2 et
d’une atténuation exponentielle e %! (Eq. 4.2). Il peut alors étre judicieux d’utiliser pour le
tirage de x une fonction adaptée f,,(x;[) [Dufresne... (1999)] ot m prend les valeurs 0, 1 ou
2 respectivement pour des échanges entre éléments infinitésimaux, surface-surface, volume-

surface ou volume-volume, séparés d’une distance 1 :

N —1 ’ wu™ e ™ £y
FnlriD) = 0,(= / d f(w)) (5.6)
avec .
- — OOd m _—kl .
Prm /0 n k™ e f(k) (5.7)

Pour le modéle de Malkmus, les fonction f,,(x;1) sont reliées directement a des distributions
inverses gaussiennes, ce qui permet une procédure d’échantillonnage analytique (sauf pour
f2) dont on pourra retrouver les détails dans [Dufresne... (1999)] ou bien dans 'annexe 3.
On peut retenir ici que f,, peut se réécrire plus simplement :

= fo=s¢ " (k)

- h= 31;%1) ke " f (k)

_ f2 — a?;(l)k%—nlf(ﬁ)

Nous aurons également besoin de définir les fonctions de répartition associées a chacune de

ces densités de probabilité : .
gm (K1) = / dk' fm (K1)
0

Si ces densités de probabilité sont parfaitement adaptées pour les échanges entre éléments
infinitésimaux il reste encore une étape a franchir pour traiter des volumes ou des surfaces
réelles. Ce qui était justifié pour des volumes élémentaires reste valable dans le cas ou les
volumes sont optiquement minces. Lorsqu’un volume est optiquement épais il peut -étre assi-
milé & une surface noire. Ce qui permet de se ramener & un probléme connu. Dans le cas d'un
volume d’épaisseur optique intermédiaire, nous avons choisi d’utiliser des fonctions pondérées
des distributions f,,. Pour un volume de dimension L échangeant avec une surface qui se

trouve a une distance [, nous introduisons une densité de probabilité adaptée d’expression :

fe(rl) = afi(k;l) + (1 — a) fo(k; 1) (5.8)

Le coefficient o € [0, 1] "mesure" si on se rapproche d’avantage d’un volume épais (o = 0)

ou d’un volume optiquement mince (o« = 1). On choisit alors de fixer la limite entre les
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valeurs de k correspondant & des cas minces et épais par un coefficient d’absorption critique
k. vérifiant k. L = 1. On fixe alors a a partir de la somme des contributions relatives des

mince et épais :

. Jo dif (k) fOL dx Kk e F+7)
f d/if(li) fOL dr K e~rl+2)
_ o drf (k) 1 — e e (5.9)
f d/ff(li) [1—e "‘L]e ril
(l)go(’ic; l) — (l + L)go (’fc; [+ L)

T() —7(l+ L)
Dans notre algorithme, étant donné les représentations associées que nous nous sommes fixées
(Fig. 5.6 et Fig. 5.7), que la position initiale P; soit dans une maille de volume (L = d) ou
bien sur une paroi (L = D), « peut-étre calculé analytiquement pour [ = 0 (aucune distance

intermédiaire) et f%(x;0) permet d’ajuster au mieux le tirage du coefficient d’absorption .

L’ensemble du raisonnement précédent n’est cependant valable que pour un gaz unique.
L’optimisation des fonctions densités de probabilité du coefficient d’absorption nécessite une
derniére série de calculs pour tenir compte du mélange de plusieurs gaz et de suies. Pour
simplifier, commencons par de la suie mélée a un seul gaz. Il y a deux éléments & modifier :

— le coefficient d’absorption critique qui devient k. = % — K*

— le calcul du coefficient de pondération a qui va venir modifier la loi de probabilité pour

le coefficient d’absorption du gaz
Reprenons les calculs précédents en remplacant x par (k9 + £°) qui désignent respectivement
les coefficients d’absorption du gaz et de la suie. L’astuce dans les calculs suivants consiste a

mettre en facteur les parties qui dépendent du coefficient d’absorption des suies (en caractéres
gras).

Y s W
- J draf(k9) 1 —e ”gLe KLl ekl
AR e[ )
?(l) — e " L7(L 4+ 1)
(D) go(kie; 1) — e 7 (1 + L)go(ke; | + L)
7(l) — e *LT(L +1)

(5.10)

La généralisation a trois gaz se fait sur les mémes principes. On aura trois fonctions adaptées,

chacune pour un gaz. Il faudra alors exprimer trois coefficients a;, as et as respectivement
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pour les gaz 1, 2 et 3. Pour un gaz donné, I’expression de alpha doit laisser libre le coefficient
d’absorption du gaz. Les deux autres coefficients d’absorption sont alors “verrouillés”. Cela
s’effectue difféeremment pour les deux conditions suivantes :

— si un des coefficients d’absorption qui doit étre “verrouillé” n’est pas connu, alors il faut
effectuer une intégration sur ce dernier pour exprimer « avec la transmittivité moyenne
qui lui est associée.

— si un des coefficients d’absorption qui doit étre “verrouillé” est connu, alors il est possible
d’en utiliser directement la valeur.

Tout calcul fait on trouve pour le :

—logTa (L —logT3(L
972 ( ))_( g73(L)

T T ) avec pour expression du coefficient

— premier gaz : k. = % — K —(

de pondération :

T(D)go(ker; ) — (e”SLFz(L)Fg,(L))?(l + L)go(ker; 1+ L)
a1 (L,1) =

(5.11)
7(l) — <e”SLF2(L)F3(L)>?(L +1)

— deuxiéme gaz : K. = % — K — K] — (40%3@)) avec pour expression du coefficient de
pondération :
7(1)go(ke; 1) — (e”SLemL?s(L))?(l + L)go(ke2; 1 + L)
as(L, 1) = (5.12)

(1) — <ensLen1L?3(L)>F(L +1)

L _ k% — Ky — kg9 avec pour expression du coefficient de pondération :

— troisiéme gaz : kg3 = 7

?(l)gg(/ﬁ}cg; l) — (e_“SLe_(“1+“2)L>F(l + L)go (/ﬁ}cg; l+ L)

az(L,1) = (5.13)

7(l) — <e—“SLe—(“1+“2)L>?(L +1)
Ici encore, pour I’algorithme tel que nous 1’avons mis en oeuvre, oy, as et ag sont utilisés

avec [ =0et L =D ou L = d selon la position initiale.

Le travail d’optimisation sur les coefficients d’absorption aurait pu a lui tout seul consti-
tuer un chapitre. Nous avons volontairement réduit la discussion aux points essentiels. Dans
[Dufresne... (1999)] on pourra retrouver de maniére compléte les discussions concernant une
seule espéce gazeuse. Pour les mélanges, il n’y a pas de remarque physique fondamentalement,

différente.
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5.3 Syntheése algorithmique

Dans ce chapitre, nous avons jusqu'’ici présenté nos suggestions quant a ’ensemble des
générations aléatoires requises pour la mise en oeuvre de ’algorithme de Monte Carlo proposé
au § 4.3.2; a savoir le tirage :

— des positions FP; et P; au sein des éléments géométriques dont on étudie ’échange net

(§ 5.1.2)

— d’une bande étroite (§ 5.2.1)

— des coefficients d’absorption de chaque gaz au sein d’une bande étroite (§ 5.2.2).

Néanmoins, a ce stade, le lecteur n’est pas en mesure de reproduire notre algorithmique
sans quelques précisions supplémentaires concernant, d'une part, I’ordre dans lequel les gé-
nérations aléatoires sont menées, et d’autre part, la facon avec laquelle notre méthode en
“suivi de rayon” peut coincider avec la présentation formelle de I'algorithme de Monte Carlo
du § 4.3.2. Nous reprenons donc ici point par point la logique algorithmique a laquelle nous

aboutissons.

Nous avons quatres cas de figure selon que I'on cherche a estimer s, s, Y5, v, Pviss;
ou py; ,y;. Dans chaque cas, 'algorithme commence par la génération aléatoire d’une bande

étroite.

Tirage d’une bande étroite Si la maille C; est une maille de volume, on en détermine
une dimension caractéristique d et on prend L = d. Si la maille C; est une maille de surface,
on détermine une dimension caractéristique du systéme total D tel qu’il est percu depuis
C; et on retient L = D. Ayant ainsi fixé la longueur L, on calcule pour chaque bande la
probabilité donnée par I'Eq. 5.5 et on génére aléatoirement une bande étroite n selon le jeu

de probabilités ainsi obtenues.

Tirage des coefficients d’absorption La longueur L retenue précédemment est utili-
sée ici également pour le tirage des coefficients d’absorption de chacun des gaz. On utilise
pour cela la densité de probabilité adaptée f*(k; L) de 'Eq. 5.8 avec comme paramétre de
pondération & = a4 (L, 0) pour le premier gaz (Eq. 5.11), &« = ay(L,0) pour le second gaz
(Eq. 5.12), et a = a3(L, 0) pour le troisiéme gaz (Eq. 5.13). On calcule alors pour chaque
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K

gaz le rapport a = £ et la densité de probabilité de a qui apparait dans 'Eq. 4.25 est donnée

par :

pla) =&f"(xk; L)

Remarque : Lors de ces deux générations aléatoires, dans le cas du calcul de ¢y, s, ou
¢v.»v;, les propriétés spectrales utilisées sont celles de la maille V;. Dans le cas du calcul
de ps; s, ou s, v, on utilise les propriétés spectrales du gaz au contact de la surface S;.
Cependant, si le gaz au contact de la surface n’est pas représentatif du milieu avec lequel
S; va échanger, il est alors préférable d’utiliser une estimation quelconque des propriétés

spectrales moyennes du systéme.

Tirage d’une position sur ’enveloppe de la maille C; L’étape algorithmique suivante
est le tirage d’une position x; sur I’enveloppe de la maille. Ce tirage s’effectue suivant une
densité de probabilité uniforme.

— Dans le cas d’une maille de surface, ’enveloppe coincide avec la surface elle-méme et

la position obtenue est directement la position initiale de 'Eq. 4.25 (P; = x1), avec

— Dans le cas d'une maille de volume, x; ne suffit pas a définir le point origine du rayon
P; et donc, aprés le tirage angulaire, il sera nécessaire de générer une abscisse curviligne

sur le rayon entrant dans V; depuis x;.

Tirage d’une direction sortante Le point x; sur la surface S; ou sur ’enveloppe de V;
fixe une normale e,(x;) a partir de laquelle une direction eq peut étre tirée aléatoirement

selon la densité de probabilité p®(eq; e, (x;), kL) de I'Eq. 5.1.

Tirage d’une abscisse curviligne (maille de volume) Dans le cas d'une maille de
volume, la position x; et la direction —eq fixent une demi-droite entrant dans V; jusqu’au
premier point de sortie x5. Une abscisse curviligne o; est alors générée aléatoirement selon la

densité de probabilité exponentielle p(o;) de 'Eq. 5.2. La position initiale P; de 'Eq. 4.25
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est alors déterminée® par rp. = X; —0;eq. La fonction densité de probabilité correspondante

est alors donnée par :

per) = (o)

3

ou S; est ici 'enveloppe du volume V.

Trajet du rayon : Suivi de rayon et tirage de la seconde extrémité du chemin

optique La position initiale P; et la direction eq définissent une demi-droite sortant de C;.

Celle-ci est suivie jusqu’a la paroi de facon & définir 'ensemble des segments d’intersection
avec toutes les mailles de volume.

— L’intersection avec la paroi définit, sans tirage supplémentaire, une position P; dans

la maille de surface S; correspondante. L'Eq. 4.25 peut alors étre utilisée directement

pour le calcul Monte Carlo avec comme fonction densité de probabilité pour rp, :

enen(rr,)

plrr,) = (et e (x0). 5 L) <20
ij

ol e,(rp,) est le vecteur sortant normal & S; en rp, et oi [;; est la distance entre P
et Pj.

— Pour chaque segment d’intersection avec un volume Vj}, repéré par les extrémités yo
et yy, une abscisse curviligne o;; est tirée aléatoirement selon la densité de probabilité
exponentielle de I'Eq. 5.3. Une position Pj; est alors définie par rp,, = Ya-1+0jeq et
I’Eq. 4.25 peut étre utilisée pour le calcul Monte Carlo avec comme fonction densité
de probabilité pour rp_,

p(rp,,) = p*(ea; en(x1), KL)P(0j1) >

Remarque : Le rayon défini avec origine en P; est utilisé pour calculer les puissances
nettes échangées entre C; et ’ensemble des éléments géométriques rencontrés. On en appelle
donc a 'Eq. 4.25 a chaque intersection. Par rapport a la présentation générale de Monte

Carlo que nous avons proposée, deux points sont alors a noter :

— Les estimateurs statistiques ainsi produits sont corrélés.

30n peut noter que le cas de la surface n’est qu’un cas limite de celui d’une maille de volume en faisant

tendre ’épaisseur optique vers l'infini. En effet dans ce cas on trouve o; = 0 et donc rp, = x3
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— Lorsque le rayon intersecte plusieurs plusieurs fois (m fois) une maille de volume V7,
a chaque fois une fonction w; est estimée. L’estimateur Monte Carlo sera alors w =
S, wy et c’est la moyenne des carrés de w (et non pas la somme des carrés des w;)

qui est a utiliser pour le calcul d’incertitude.

5.4 Illustration des qualités de convergence

A cette étape de notre travail, vient le moment d’apporter la preuve de la qualité du
modeéle radiatif que nous venons de décrire. Il s’agit a la fois de valider nos résultats face
a des configurations de référence mais également de tester la performance des qualités de

convergence.

Puisque nous venons de présenter les lois de probabilités optimisées, c¢’est tout d’abord sur
la qualité des écart-types que nous allons nous pencher par I'intermédiaire de configurations

académiques®.

Notre objectif est donc dans ce § de montrer que sur une large gamme d’épaisseurs op-
tiques 'algorithme ne diverge pas. En effet, nous avons vu que les difficultés de convergence
lies aux épaisseurs optiques étaient au coeur des enjeux concernant ’optimisation des va-
riables aléatoires aussi bien géométriques que spectrales. Nous allons donc procéder a une
étude paramétrique et tracer pour une large gamme d’épaisseurs optiques le comportement,
de I'écart-type lié a I’évaluation du terme source radiatif volumique. Ainsi, nous aurons la
possibilité de commenter les performances de I’algorithme pour des conditions extrémes :
optiquement minces et optiquement épaisses. Pour tester le comportement numérique de
notre méthode en fonction des caractéristiques spectrales du milieu, nous nous plagons dans
la configuration suivante : nous reprenons la géométrie unidimensionnelle du § 5.1.1. ol une
couche de gaz est confinée entre deux parois noires paralléles. Le milieu est constitué d’un
seul gaz aux propriétés radiatives uniformes définies sur une bande étroite par les parameétres
R et ¢. Ainsi, une étude paramétrique en K et ¢ permet-elle de balayer un grand nombre
d’épaisseurs optiques moyennes et de structures spectrales. Sur une bande étroite, le profil

de température n’est pas indispensable, on se donne seulement la luminance moyenne dans

4La validation du code sur des configurations réelles est reportée au début du Chap.6



Chap.5 Densités de probabilité adaptées... 125

la bande en fonction de la hauteur z. C’est un profil parabolique qui est représenté a la
Fig. 5.9.

Luminance noire Lb

3 04 05  os o7
Hauteur z (m)

F1G. 5.9 — Profil parabolique de luminance Ly(z) = 4z(1 — z)

Les résultats que nous présentons se scindent en deux parties. Tout d’abord, pour une
valeur de ¢ fixée (¢ = 1072) nous présentons différents profils de puissances radiatives volu-
miques de fagon a commenter le comportement d’un milieu gazeux de la limite optiquement
mince a la limite optiquement épaisse. Dans une seconde partie nous discutons plus spécifi-
quement le comportement statistique de 1’algorithme. Les calculs de termes sources que nous
présentons correspondent dans les deux cas a des puissances radiatives volumiques intégrées

sur une bande étroite et divisées par la largeur de la bande An.

Dans la figure Fig. 5.10 nous présentons (pour une valeur de ¢ constante) quatre profils
de termes sources respectivement pour quatre valeurs de % : 107° m =%, 10~ m !, 1072 m !
et 107 m~L. Pour estimer ces termes sources, la lame de gaz d’un métre d’épaisseur est
divisée en 20 mailles de volumes et nous procédons a 10000 tirages de rayons lumineux par
maille. Nous comparons ces résultats a deux calculs théoriques. Le premier faisant I’hypothése
d’un rayonnement optiquement mince et le second calculé sous ’hypothése de Rosseland
(rayonnement épais). Pour le cas mince, la solution analytique du terme source volumique

moyen s’exprime ainsi sur une maille ¢ d’épaisseur Az; :

A [ Ay AnRLy(2)
Az A (5.14)
= Anl6nk (— 2> — 2(Az — 1) + oA

> 3

A la limite mince, le profil analytique de termes sources correspond donc a une parabole de

S (Vi)

concavité vers le haut que 'on peut observer Fig. 5.10a. Le terme source volumique sous
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I’hypothése de Rosseland pour une maille ¢ correspond a I’échange que cette maille peut

avoir avec ses deux voisines :

_ PVieVio T PVievig
An[ — [°dr f(k) 3m¢ (52): + fo~ dr f(K) 578 (52)ara:]
AZi

_ Andm Az (BB). [T dk f(5iF,9)
AZZ'
1
L+ —
(1+3)

On voit donc ici que, pour des mailles de volume non-contigués a une paroi, le profil de

(5.15)

= Angﬂ (—8)

Sl =

termes sources est une constante indépendante de la hauteur z. Cela n’est vrai que parce
nous avons retenu un profil de luminance noire parabolique. A la limite optiquement épaisse
en effet, le bilan d’une maille se résume a la somme des échanges nets avec les deux mailles
adjacentes, et chacun de ces échanges est proportionnel au gradient de luminance a 'interface
entre deux volumes. On retrouve ainsi un modéle de type diffusif® et dans notre cas oiu le
profil de luminance noire est a dérivée seconde constante, ce calcul conduit & un bilan radiatif
identique pour toutes les mailles sauf celles au contact des parois. Le résultat de ce modéle

est reporté sur les Fig. 5.10c et Fig. 5.10d.

On constate que pour la Fig. 5.10a oi1 ® = 10°° m ! I’hypothése mince est pleinement
satisfaite. De la méme maniére pour & = 10"® m~"! I’application du modéle de Rosseland se
justifie tout a fait. En revanche, pour des valeurs intermédiaires de & aucune des deux limites
ne convient. Lorsqu’on pose une valeur de & qui semble faible (£ = 107! m 1) il peut étre
dangereux de faire appel a des modéles minces. En effet, & ne peut s’interpréter a partir d’une
image d’atténuation exponentielle que dans le cas d’un milieu gris. Dans le cas ¢ = 1072
(ou 'on se trouve pour cet exemple) le spectre est trés marqué et le rayonnement, émis par
le gaz au centre des raies peut étre fortement atténué. De méme, lorsqu’on augmente x on
ne se rapproche pas rapidement de la limite épaisse. Pour & = 100 m ! on voit en effet sur
la Fig. 5.10c que le modéle de Rosseland conduit & des résultats trés irréalistes. Il s’agit 1a
encore de phénoménes spectraux, le rayonnement aux fréquences des ailes de raie étant trés

peu atténué malgré une épaisseur optique moyenne élevée. Il existe alors une large gamme

®dans le modeéle de Rosseland, la puissance nette échangée entre deux couches adjacente devient, comme

en diffusion de chaleur (conduction), proportionnelle au gradient de luminance noire
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termes sources radiatifs (W/m3/m-1)
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F1G. 5.10 — Profils de termes sources radiatifs volumiques par unité de An pour ¢ = 1072 et

differents & : 10 °m 1, 107 'm =1, 10™2m ! et 10"5m !

de valeurs pour lesquelles on a un comportement non mince mais pas encore épais.

Une fois construites ces images physiques du probléme étudié, nous nous concentrons sur

les performances numériques en balayant une large gamme de valeurs de % (entre 10~* et

10* m~! ) pour différentes valeurs de ¢, donc différents types de spectres : 0,01, 0,1 et +o0

(cas gris).

Nous allons présenter I’évolution du terme source et de son écart-type pour deux mailles

de volume aux comportements différents. D’abord pour la maille qui se situe au centre sur

la ligne médiane entre les deux parois noires puis, pour une maille de volume proche de la

paroi

6

. Pour la maille centrale, la Fig. 5.11 représente les termes sources et ’erreur relative

6Nous choisissons une maille, le plus proche possible de la paroi, pour laquelle le signe du terme source
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Terme source au centre (10000 realisations par maille)
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Erreur relative sur le terme source au centre (10000 realisations par maille)
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FiG. 5.11 — Courbes de termes sources radiatifs par unité de An et leurs erreurs relatives

pour la maille centrale

statistique associée’. Pour un & faible, les 3 évolutions du terme source sont confondues mais
dés que I’épaisseur optique augmente elles se distinguent selon la valeur de ¢. En effet, dans
les deux équations des termes sources aux limites mince et épaisse (Eq. 5.14 et Eq. 5.15),
le paramétre de forme ¢ n’intervient que dans la seconde. Dans le cas mince, le modéle du

bilan volumique est proportionnel a £ donc sur 1’échelle logarithmique de la figure la pente

reste toujours négatif : nous prenons la 3°°™¢ maille en partant de la paroi
"1l s’agit de 'écart-type divisé par la valeur du terme source
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Terme source dans la maille de cote (10000 realisations par maille)
100

PRI =001 ——
phi=0.1 t-es
10 o phi = Inf, =~~~ |4

1

0.1

0.01

0.001

0.0001

Valeur absolue du terme source (W/m3/m-1)

1e-05 I

1le-06
0.0001 0.01 1 100 10000 1e+06  1le+08  1le+10

K (m-1)

Erreur relative sur le terme source de cote (10000 realisations par maille)
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FiG. 5.12 — Courbes de termes sources radiatifs par unité de An et leurs erreurs relatives

pour la maille proche de la paroi (3" maille en partant de la paroi)

|—=

est de un®. A I'opposé pour le cas épais, le modéle est proportionnel a = et la pente est
égale & moins un®. Les solutions aux limites correspondantes sont reportées en trait plein
a la Fig. 5.11. En ce qui concerne les erreurs relatives, le résultat essentiel est qu’elles ne

divergent pas en fonction de I’épaisseur optique méme dans la limite infiniment épaisse. Il est

8Cela vient de 'équation log(S,(V;)) = log(k) + log(Anl6m f(z)) qui est une droite avec une ordonnée &
I’origine unique
9L équation log(S,(V;)) = —log(R) +log(Anzm(—8) (1+ %)) désigne une famille de droite qui se distingue

par leur ordonnée a l'origine.
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d’ailleurs intéressant de noter que pour de grandes épaisseurs optiques moyennes les erreurs
relatives sont constantes, insensibles a 'augmentation de I’épaisseur optique. La valeur limite
obtenue est de 2% dans le cas gris et de 5% pour les spectres a raies (Fig. 5.11). Ce compor-
tement asymptotique peut s’expliquer en invoquant qu’a forte épaisseur optique les échanges
radiatifs ont une faible portée spatiale et, conformément au modéle de Rosseland, 1’essen-
tiel est de représenter I'intégration spatiale le long d’un profil quasi-linéaire de luminance
noire a proximité de l'interface. Toute la capacité de 1’algorithme est donc contenue dans
la procédure d’intégration sous maille, ou plus précisément dans son aptitude & reconstruire
les gradients de luminance a partir de la double intégration sur les points P; et P;. Donc
pour réduire encore cette erreur relative, il suffirait de rentrer explicitement ce profil linéaire
dans les lois de tirages des positions P; et P;. Ceci semble réalisable mais nous n’avons pas
poursuivi dans cette voie car les cas limites concernés ne font pas partie des configurations

que nous nous attendons a rencontrer en combustion.

Ce qui nous semble essentiel a retenir, c’est que pour des épaisseurs optiques moyennes
intermédiaires, avec des spectres de raies marqués, bien que les épaisseurs optiques puissent
étre trés élevées au centre des raies, 'algorithme conduit & des trés bonnes estimations (dans
la plupart des cas moins de 1% pour 10000 réalisations aléatoires/maille). Ce résultat valide
bon nombre de nos choix de densités de probabilités et nous permet d’accorder une bonne
confiance en 'aptitude de notre algorithme a aborder une grande diversité de configurations

radiatives.

Pour la maille de volume se situant & coté de la paroi Fig. 5.12 nos commentaires sur
les profils de termes sources précédents peuvent étre repris a ceci prés que les incertitudes
relatives sont plus élevées. La raison en est assez simple : a la limite épaisse, le bilan est le
résultat de la différence des échanges radiatifs nets & gauche et a droite du volume. Etant
donné notre profil parabolique de luminance noire, plus on se rapproche de la paroi, plus les
gradients de luminance sont forts et plus le bilan apparait comme la différence de termes
de valeurs comparables. Le calcul d’une valeur a partir de la différence entre deux grands

nombres est une source d’erreur qui rend le bilan volumique difficile & estimer.



Chapitre 6

Validations et applications du modéle
radiatif a des géométries 1-D
cylindriques ou planes - Résultats de

couplage avec la combustion

Les chapitres précédents nous ont amené au terme de la mise en place du modéle radiatif et
de sa procédure de couplage. Notre présentation du probléme radiatif a évité volontairement
tout choix concernant les dimensions géométriques. A ce stade, pour la mise en oeuvre de
configurations réelles en combustion notre choix s’oriente clairement vers des géométries

monodimensionnelles.

Un premier § sera donc consacré a la description du maillage monodimensionnel du code
radiatif. Ce sera ’occasion également de rappeler briévement 1’ordre dans lequel nous effec-
tuons la génération des variables aléatoires pour voir comment elle s’adapte a la géométrie
proposée. Ensuite, nous exposerons une étude de validité du code de rayonnement qui s’ap-
puie sur une comparaison avec des travaux de référence effectués au laboratoire EM2C a
I'occasion de la thése de L. Pierrot [Pierrot... (1999a)|. Elle sera suivie par deux illustrations
en combustion. La premiére concerne une configuration cylindrique, optiquement épaisse
dont l'intérét se résume a celui d’'un pur calcul radiatif sur des profils de température et

de vapeur d’eau donnés, mettant en évidence les effets de réabsorption du rayonnement sur

131
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le calcul d’'un flux & la paroi. La seconde application plus complexe présente une mise en
oeuvre compléte de notre démarche de couplage radiatif sur une flamme de méthane a jets
opposés. C’est alors que nous serons finalement capables de montrer I'influence de la qualité

du modéle radiatif sur la formation de polluants tels que les monoxydes d’azote (NO).

6.1 Description de la géométrie du code de rayonnement

et des générations de variables aléatoires associées.

Notre étude s’inscrit a long terme dans le développement du transfert radiatif pour des
configurations industrielles. Pour permettre une extension rapide vers des flammes axisy-
métriques, souvent rencontrées en combustion, nous avons développé un code de transfert
radiatif pour une géométrie cylindrique monodimensionnelle (cylindre de hauteur infinie).
L’extension de notre modéle radiatif & une géomeétrie 2-D cylindrique est en cours dans le

cadre d’une thése qui se déroule au laboratoire.

Notre domaine de calcul cylindrique 1-D, infiniment allongé, est bordé par deux frontiéres.
Ces derniéres sont matérialisées par deux parois cylindriques (mur noir interne et mur noir
externe) aux propriétés radiatives noires (Fig. 6.1) respectivement de rayon R; pour la paroi
interne et R, pour la paroi externe (Fig. 6.2). Entre ces deux mur-frontiéres, il y a un
ensemble de volumes qui discrétisent le domaine en zones concentriques. Chacune d’elles
a pour base une couronne (par exemple la couronne du volume i qui est au contact de la
paroi interne sur la Fig. 6.2) et renferme un mélange d’espéces chimiques participantes au

rayonnement.

Chaque volume est donc délimité par deux cylindres. Sur celui qui se trouve vers 'ex-
térieur (le plus éloigné de I’axe de symétrie), on note M le point par lequel passe un rayon
lumineux (Nous avons représenté le point M pour le volume k sur les figures Fig. 6.1 et
Fig. 6.2). A chacun de ces rayons est associé un repére cylindrique, on notera € 1’angle entre
le rayon et le vecteur e, (vecteur normal au cylindre) et ¢ I’angle d’inclinaison du rayon par
rapport au vecteur es (vecteur tangent au cylindre)'. Dans ce contexte, le déroulement de la

procédure algorithmique du Monte Carlo est constituée principalement des étapes suivantes :

'Le couple de vecteur (e,,es) définit toujours le plan horizontal
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mur noir
interne volume k

mur noir
externe

\

/\/ lumineux

porté par la
direction eq

FiG. 6.1 — Géométrie cylindrique infiniment allongée

— choix d’un volume ou d’une des deux surfaces interne ou externe

— génération des variables spectrales : numéro de la bande étroite et coefficient d’émis-
sion?

— choix implicite d’un point M sur I’enveloppe connexe au volume courant ou a la surface
courante®

— génération des deux angles 6 et ¢ pour déterminer une droite passant par le point M

— génération d’une abscisse curviligne® o; dans le volume initial (volume k sur la Fig. 6.2)
déterminant ainsi un point origine P du rayon® (pour une surface, ce point est implicite)

— suivi du rayon lors de sa traversée dans chaque volume. Pour chacun d’eux on génére

’Dans le cas d’un volume on utilise les conditions thermophysiques locales, pour une surface on prend
une valeur moyenne de la température et des concentrations sur la totalité du cylindre

3Par raison de symétrie cylindrique la position de M n’a pas d’importance et ce choix devient donc
implicite

4sa projection s’appelle 0'11 dans le plan horizontal (Fig. 6.2)

5La projection de P sur le plan horizontal s’appelle P’ (Fig. 6.2)



Chap.6 Applications... 134

volume k

volumei

murs
noirs

projection du
rayon lumineux
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F1G. 6.2 — Géométrie cylindrique vue de dessus

une abscisse curviligne oy qui positionne un point d’arrivée®. On procéde alors au
calcul d’une puissance radiative nette échangée. Cette séquence s’arréte lorsque le rayon
atteint une paroi noire. Le processus de génération aléatoire recommence par le choix

d’un volume ou d’une surface a partir de laquelle on va tirer un nouveau rayon.

Remarques :  Une des difficultés rencontrées pour cette géométrie est qu'un volume peut
étre intercepté deux fois par un méme rayon. Ainsi la détermination des abscisses curvilignes
oy et 0y ne se fait pas sur un seul segment d’interception mais aussi parfois sur deux. La

modularité de notre maillage volumique permet le passage a une géométrie cylindrique pleine

6oy serait générée dans le volume i si 'on poursuit dans la logique de notre exemple Fig. 6.2
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en prenant pour le cylindre interne R; un rayon proche de zéro. De méme, le passage a la
géométrie plane est rendu possible en prenant une valeur élevée pour le rayon du cylindre

interne R;.

Interface avec le maillage du code de combustion :  Lorsque dans la derniére partie
de ce chapitre nous traiterons du couplage entre rayonnement et combustion nous devrons
mettre en relation chaque point de la grille utilisée pour discrétiser les équations différentielles
du code de combustion avec un volume du code radiatif. La correspondance est trés simple :
il y a autant de volumes que de points de maillage. C’est la demi-distance entre deux points
qui définit les limites d’'un volume. Dans les zones de forts gradients et de fortes distorsions
de maille cette correspondance pourrait ne pas étre justifiée. Mais ce ne sera jamais notre
cas car la procédure de remaillage du code de combustion tient compte des gradients pour

ajuster ’espace entre les mailles.

6.2 Etude de validité du modéle radiatif formulé en PNE

L’ensemble de notre édifice radiatif a fait 'objet de tests rigoureux a chaque étape du
développement de facon a assurer la qualité des résultats. Le besoin de validation est double.
Il concerne a la fois le traitement de la géométrie cylindrique mais également la maniére
dont sont traités les modeles de rayonnement des gaz. Nous présentons ici un ensemble
d’éléments, des plus élémentaires au plus complexes, qui nous ont permis de satisfaire a ces

deux exigences.

tests analytiques La confrontation des résultats de notre code avec des solutions ana-
lytiques a été notre premiére démarche. Nous avons artificiellement rendu des volumes op-
tiquement épais pour en faire des parois noires et ainsi pour tous les cylindres nous avons
retrouvé les facteurs de formes entre cylindres concentriques infiniment allongés, a savoir si

leur rayons sont tels que ry < o :
8] 1
Fio=1 Fy=— Fyp=1-—
Ty T

Pour des rayons lumineux fixés (c’est-a-dire pour un point d’émission et une direction donnés)

nous avons comparé les longueurs de rayons parcourues dans le code avec celles théoriques
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que nous savions prévoir avec exactitude. Cela nous a permis de valider la majorité des

aspects liés a la géométrie cylindrique.

La partie optique du code, pour une géométrie plans paralléles, a d’abord été testée pour
un gaz gris et comparée avec succeés aux solutions analytiques qui se formulent & ’aide d’in-
tégrales exponentielles (Cf. Chap. 5). Les aspects spectraux, plus pointus, et le traitement
des hétérogénéités par Curtis-Godson ont été validés dans un premier temps sur des configu-
rations académiques telles qu’une colonne hétérogeéne composée de deux colonnes homogeénes

adjacentes.

tests croisés avec d’autres résultats Pour des configurations réelles, non académiques,
nous avons comparé nos résultats avec d’autres codes en géométrie plans paralléles. Les
grandeurs que nous avons comparées sont des termes sources volumiques ou bien des flux
aux parois. A basses températures et en mélange de gaz homogéne nous nous sommes com-
parés avec les résultats de [Clergent (2000)]. A hautes températures pour des mélanges de
gaz hétérogénes nous nous sommes confrontés aux résultats d’'un modéele raie par raie du
laboratoire EM2C que 'on peut retrouver dans |Pierrot... (1999a), Pierrot... (1999b)]. C’est

ce dernier ensemble de validations que nous présentons maintenant.

Etude comparative avec un modéle de propriétés de gaz raie par raie Pour chacun
des cas a étudier nous allons comparer de maniére intrinséque les performances de trois

deles d iétés radiati truit la méme base de donné t iques’
modéles de propriétés radiatives construits sur la méme base de données spectroscopiques

a un calcul de référence raie-par-raie.

Nous étudions trois configurations. Pour chacune, nous présentons nos résultats de simu-
lation comparés a ceux de |Pierrot... (1999b)|. Les simulations sont menées successivement :
— avec le modéle de traitement des hétérogénéités faisant 'hypothése de Curtis-Godson
noté : SNB 367 CG.
— avec une hypothése CK (Cf. annexe 4) notée : SNB 367 CK
— avec une hypothése de séparabilité du spectre : SNB 367 sep
Les résultats du modéle raie-par-raie nous ont été fournis par J. Taine et A. Soufiani du

laboratoire EM2C ; ils peuvent étre consultés dans [Pierrot... (1999b)].

"Les données de bandes étroites que nous avons présentées au Chap.4
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o 10° Bilan radiatif (Tc =500K)

Terme source (W/m3)

—— Notre modele SNB 367 CG
=== Raie par Raie, L. Pierrot (JQSRT 1999 - Vol.62 p543)
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F1G. 6.3 — Puissance radiative volumique dissipée - Xp,0 = 0,1 - P = latm - température
parabolique, T, = 500 K
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F1G. 6.4 — Différence relative avec le raie-par-raie pour la puissance radiative volumique

dissipée - Xpy,0 = 0,1 - P = latm - température parabolique, 7, = 500 K
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Dans cette partie et par la suite, la pression est fixée & une atmosphére. Le gaz est compris
entre deux parois noires paralléles entre lesquelles on utilise deux types possibles de profils
paraboliques en température. Le premier est un profil de température parabolique avec les
parois plus chaudes (7, = 2500K) que le gaz pour lequel la température au centre 7, sur le
plan médian entre les deux parois est égale a T, = 500K . Inversement, pour le second profil
T, = 500K et T, = 2500K.

a/ cas d’un seul gaz participant :  Nous calculons les termes sources radiatifs pour
un mélange contenant 10 % d’H,O et 90% de N, et le profil parabolique a parois chaudes.
La Fig. 6.3 représente la puissance radiative volumique entre les deux murs noirs en fonction
de I'abscisse ou 1’on se trouve. La distance entre les deux murs est de 20 em. Il y a 20 mailles
de volume et nous effectuons 10000 tirages a partir de chacune d’entre elles. Nous avons
reporté a la fois sur cette méme figure le modéle raie-par-raie et le modéle SNB 367 CG. Les
erreurs relatives des trois modéles (SNB 367 CG, SNB 367 CK, SNB 367 sep) par rapport au
calcul raie-par-raie sont représentées sur la Fig. 6.4 accompagnées de ’écart-type statistique
provenant du Monte Carlo que nous avons systématiquement représenté par des traits en
pointillé. Les erreurs relatives de plus de 10 % sur les bords ne sont pas trés significatives
parce que, a proximité de la paroi, le bilan est proche de zéro. On constate que I’hypothése
de séparabilité est trés mauvaise et conduit en général & 10 % d’erreur relative au centre. Les
autres modeles sont au plus a 4 % d’erreur relative au centre et compte tenu de l'incertitude
statistique il apparait difficile de distinguer leur performance respective a partir de cette

simulation.

b/ cas d’un mélange gazeux H,O / CO, : Nous allons maintenant procéder a une
étude paramétrique du flux & la paroi en fonction de la distance entre elles deux. Nous
ne mentionnons qu'un flux car, en raison du profil symétrique de la température, il est le
méme sur les deux parois. Comme précédemment la pression est d’'une atmosphére et a
partir de chacune des 20 mailles de volume nous langons 10000 rayons. Le mélange gazeux
a changé, il est composé désormais de vapeur d’eau et de gaz carbonique (Xg,0 = 0,155,
Xco, = 0,116). Le germe aléatoire est différent pour chacun des flux calculés de maniére
a assurer une décorrélation statistique sur I'ensemble des résultats. Nous présentons deux

séries de résultats correspondant respectivement aux deux profils en température, d’abord
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Flux radiatif (W/m2)
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FiG. 6.5 — Flux a la paroi en fonction de la distance entre elles deux - Xy,0 = 0,155 et

Xco, = 0,116 - P = latm - température parabolique, T, = 500 K
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F1G. 6.6 — Différence relative du flux a la paroi par rapport au raie-par-raie en fonction de

la distance entre elles deux - Xp,0 = 0,155 et X¢o, = 0,116 - P = latm - température

parabolique, T, = 500 K

celui avec T, = 500 K (Fig. 6.5 et Fig. 6.6) puis celui avec T, = 2500K (Fig. 6.7 et Fig. 6.8).

Le modele qui fait I’hypothese de séparabilité, sur les figures Fig. 6.6 et Fig. 6.8 reste

toujours globalement peu précis. Comme auparavant, les modéles CG et CK restent bien plus
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Flux radiatif (W/m2)
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FiG. 6.7 — Flux a la paroi en fonction de la distance entre elles deux - Xy,0 = 0,155 et

Xco, = 0,116 - P = latm - température parabolique, T, = 2500 K
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F1G. 6.8 — Différence relative du flux a la paroi par rapport au raie-par-raie en fonction de

la distance entre elles deux - Xpy,0 = 0,155 et X¢p, = 0,116 - P = latm - température

parabolique, T, = 2500 K

performants mais toujours indiscernables quant a leur capacité a traiter les hétérogénéités.

Dans le cas de parois chaudes (Fig. 6.5 et Fig. 6.6) ils ont tendance a surestimer le flux

pour de petites distances entre parois alors qu’ils le sous-estiment pour de grandes distances.
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L’erreur relative ne dépasse pas en général 5 %. Dans le cas de la paroi froide ou le phénoméne
dominant est 1’émission du rayonnement par le gaz absorbé par la paroi, I'erreur relative
est presque toujours négative. Les résultats obtenus sont globalement en accord avec ceux
de [Pierrot... (1999b)| mais on peut noter que pour ces estimations de flux pariétaux, nos
incertitudes statistiques sont plus élevées que lors de I’estimation de puissances radiatives
volumiques. Nous n’avons pas approfondi cette question mais il s’agit probablement d’un
effet de nos lois de tirage qui sont adaptées en vue d’un calcul de puissances volumiques

essentiellement.

L’ensemble des résultats radiatifs que nous allons présenter par la suite a été obtenu sur la
base du modéle SNB 367 CG dont nous venons de présenter la performance face a un modéle
de référence raie-par-raie. Il ne sera plus question par la suite de résultats de simulations
ayant utilisé les modéles SNB 367 CK et SNB 367 sep.

6.3 Premiére application : calcul d’un flux radiatif pa-
riétal pour des profils de température et de vapeur

d’eau dans un moteur-fusée

Le principe de déplacement utilisé par le moteur-fusée est celui de 'action et de la ré-
action. Ainsi, pour produire les gaz chauds en expansion qui vont provoquer le mouvement
on utilise des substances (ergols) qui réagissent lors d’une réaction chimique fortement exo-
thermique. Les ergols cryotechniques (Ex : oxygéne, hydrogéne) sont ceux que 'on conserve
sous forme liquide & des températures trés basses de I'ordre de —200°C'. Dans les chambres a
combustion de moteur-fusée '’hydrogeéne liquide est préchauffé avant d’étre introduit. L’étape
pendant laquelle on chauffe le liquide avant de 'injecter dans la chambre de combustion est
réalisée par 'intermédiaire d’'un échangeur de chaleur placé a la base de la tuyére d’éjection.
La prédiction de la température de paroi est donc fondamentale pour rechercher le point de
fonctionnement du dispositif. Ainsi, une attention particuliére est portée au calcul des flux
radiatifs a la paroi. C’est dans le cadre d’une estimation de leur valeur que nous présentons
un calcul radiatif sur des profils de température et de vapeur d’eau donnés. Cette étude ne

reste cependant qu’un point de départ pour une étude plus réaliste qui devrait tenir compte
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de la réelle géométrie finie du systéme et de son émissivité de paroi.

Ces résultats viennent illustrer également les capacités de notre code Monte-Carlo a trai-
ter les spécificités de la géométrie cylindrique précédemment décrite et a bien converger pour
des nombres de réalisations aléatoires pas trop élevés, du fait des optimisations des densités

de probabilités, en présence d'un gaz absorbant (vapeur d’eau) a fortes concentrations.

Le diamétre du systéme est de 0,9932 métres. La pression est partout égale & une atmo-
sphére. Par raison de symétrie on ne fait le calcul que sur un demi-cylindre dans lequel on
distingue deux zones ol le comportement des profils en température et concentration est trés
différent (Fig. 6.9). Dans la zone centrale “A” la température est constante a une valeur de
2980 K et la fraction molaire d’eau est égale a 0,7. Ce n’est que sur un trés petit domaine,
quelques millimétres proche de la paroi, que se développe une couche limite pour laquelle
les profils de température et de vapeur d’eau ont été reportés sur la Fig. 6.10. Cette zone
sera maillée beaucoup plus finement que le reste du systéme et nous ’appellerons zone “B”.
Les profils de couche limite que nous utilisons sont issus d’un travail du groupe combustion
du CERFACS®. Nous avons cherché sur cette flamme & déterminer les termes sources ra-

diatifs et le flux radiatif pariétal. Nous présentons les résultats de calcul pour un maillage

Zone A :Zone B

L

0 mur noir 49,66 cm

Axe de symétrie

F1G. 6.9 — Localisation des profils sur un schéma en coupe verticale d’'un demi-cylindre de

hauteur infinie

constitué de 130 volumes et pour 10000 tirages de rayons lumineux a partir de chacun d’eux.
Les résultats de termes sources radiatifs sur la totalité du domaine de calcul et sur la zone

B sont reproduits sur la premiére ligne de la Fig. 6.11. Sur la seconde ligne on observe les

8European Center for Research and Advanced Training in Scientific Computation (Toulouse - France)
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F1G. 6.11 — Termes sources radiatifs sur un demi-cylindre - Zoom sur la couche limite pariétale
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contributions distinctes des volumes et de la paroi aux calculs des termes sources que 1’on
commentera plus loin. On note au passage que le profil de termes sources ne commence pas
a ’abscisse zéro parce son point extréme du coté de 'axe de symétrie est centré sur le grand

volume que nous avons placé dans la zone A.

Le terme source radiatif en haut a gauche de la Fig. 6.11 présente deux maxima. L.’un
proche de I’axe de symétrie qui correspond a une perte radiative de prés de —1,81 105 W.m =3
et autre dans la couche limite qui est un gain atteignant 1,4 10° W.m 3. Lorsque la fraction
molaire et la température diminuent dans la zone B, le terme source croit et devient positif.
En fait, le coeur formé par la zone A rayonne et vient réchauffer la couche pariétale qui recoit

alors plus d’énergie qu’elle en émet au fur et & mesure que I'on se rapproche de la paroi.

On peut ensuite vouloir commenter les contributions séparées des volumes et de la paroi
dans le calcul du terme source volumique. La paroi interne n’a pas de contribution parce
que c’est un axe de symétrie (cylindre interne de rayon proche de zéro). Pour expliquer le
comportement différent des gaz et des parois on peut tout d’abord rechercher le potentiel
énergétique d’échange a travers les différences de température du volume avec la paroi. En
particulier on observe que les échanges avec la paroi sont nuls proche de celle-ci et s’élévent
a mesure qu’on s’en éloigne c’est-a-dire lorsque la différence de température gaz/paroi aug-
mente. De méme, les échanges gaz/gaz étant ici essentiellement des échanges avec la masse
de gaz chauds au coeur de la flamme, ils sont nuls sur ’extérieur de la couche 1a ou la tempé-
rature locale rejoint celle du centre. Ils s’élévent a proximité de la paroi la ou la température

du gaz diminue favorisant donc un échange plus important avec le coeur.

Ces résultats sont & compléter par I’élément essentiel que nous souhaitions évaluer, c’est-
a-dire le flux a la paroi. Il est égal a 0,576 4 0,004 MW.m 2. L’incertitude relative? sur
le résultat est proche de 1,4%. Nous avons effectué le méme calcul en supprimant les ré-
absorptions du rayonnement dans le code pour nous donner une idée de 'erreur que 1’on
pourrait commettre avec un modéle optiquement mince. Le résultat du flux pariétale a été
alors de 1,237 4 0,008 MW.m 2. Ainsi, I'erreur commise avoisine les 100% si ’on ne tient
pas compte des effets de réabsorption du rayonnement comme c’est souvent le cas dans les

modéles radiatifs simples qui sont utilisés en combustion.

Nous venons de présenter les résultats d’un calcul Monte Carlo dans des conditions trés

Tl s’agit de deux fois I’écart-type divisé par la valeur
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difficiles d’un point de vue géométrique puisque nous avons des tailles de maille allant de
quelques centimétres a quelques dixiémes de millimétres et d’un point de vue optique puis-
qu’on peut atteindre jusqu’a 70 % de vapeur d’eau en fraction molaire. Ce méme calcul
a été repris avec 100 tirages par maille pour un résultat de flux en paroi alors estimé a
0,54 + 0,03 MW.m~2 soit donc avec une erreur relative de 11 %. On voit que la perte de
précision de 10 % n’est pas énorme face au gain de temps obtenu en abaissant le nombre de
tirages'®. Un tel gain est directement lié & I'optimisation des lois de probabilités que nous
avons présentées au Chap.5. Nous allons passer maintenant & un autre aspect de notre travail

qui concerne la mise en oeuvre du couplage entre la combustion et le rayonnement.

6.4 La flamme de diffusion & jets opposés

Notre dernier objectif est de mettre en oeuvre la méthodologie de couplage sur laquelle
nous avons travaillé pour un mélange gaz/suie et de montrer les effets que peut apporter un
modeéle de rayonnement détaillé dans la prédiction des espéces mineures pour une flamme a
jets opposés de méthane a pression atmosphérique (P=1 atm en tout point). Nous revenons
d’abord sur les caractéristiques du modéle de combustion pour y apporter quelques complé-
ments puis nous procéderons en trois étapes : élaboration de la solution de référence radiative
par Monte Carlo, mise en oeuvre de la procédure de couplage, puis effets du couplage dans

le domaine des faibles taux d’étirement de la flamme.

6.4.1 Rappels sur le modéle de combustion

Etant donnée la forte interaction entre le terme source radiatif et la formation des par-
ticules de suies, leur prise en compte dans les bilans radiatifs est nécessaire lorsque 'on se
fixe comme objectif de prédire la température de maniére fine. Le modéle de suies que nous
utilisons fait un certain nombre d’hypothéses évoquées au Chap.2. Rappelons que le schéma
cinétique utilisé est a deux réactions : nucléation et croissance. Ce modéle de cinétique de

suie reste largement grossier face aux développements radiatifs que nous avons menés. Ce-

19Gyr une machine Sun Ultra-30 300MHz cela correspond & 7 heures de calcul pour 10000 tirages par

maille et & 9 min pour 100 tirages par maille
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pendant dans la gamme de taux d’étirement qui est la notre pour une lamme de méthane
avec, & la base, le méme modéle de suie, un auteur [Beltrame... (2001)| indique que pour
faire correspondre ce modeéle & des valeurs expérimentales de fractions volumiques de suie il
a été obligé d’ajuster le taux croissance. Lindstedt [Lindstedt (1994)] mentionne également
cette nécessité dans son propre modeéle. Nous avons tenu compte de ces deux remarques dans
la mise en oeuvre du modeéle de suie en procédant a I’ajustement du taux de croissance. Par
exemple, cela fixe raisonnablement la fraction volumique de suie & 0,03. 10~% pour un taux
d’étirement de 20 s !. Dans le modéle de flamme que nous utilisons, nous rappelons éga-
lement que le modéle radiatif mince avec lequel nous avions présenté les premiers résultats
(Fig. 2.9 page 43 : OTL Hubbard) est construit sur des données spectroscopiques qui ne
sont pas celles dont nous avons fait usage par la suite. Pour effectuer une comparaison stricte
entre les différents modeéles radiatifs, nous avons donc fabriqué un modéle mince!! en accord

avec nos données spectroscopiques que nous désignerons par OTL.

Nous commencons par reprendre la configuration de lamme a jets opposés utilisée a titre
d’illustration au Chap.2 (Fig. 2.9 page 43). Nous rappelons qu’il s’agit d’une flamme plane a
jets opposés air/méthane pur (richesse proche de 10) qui correspond a un taux d’étirement de
28,5 s 1. Les exemples de flammes sensibles au rayonnement exposés dans la bibliographie
du Chap.3 sont trés souvent avec de fortes richesses. Nous conservons donc cette flamme, bien
qu’elle soit encore a un taux d’étirement élevé par rapport aux exemples de la bibliographie,
parce qu’elle va nous servir de flamme de départ pour une étude paramétrique concernant
I’influence du rayonnement lorsqu’on procéde a I’abaissement du taux d’étirement. On re-
prend donc la méme flamme qu’au Chap.2 avec les mémes conditions aux limites mais en
y introduisant les deux compléments précédents : le modéle de suie et le nouveau modéle
OTL.

Une série de nouveaux résultats est présentée Fig. 6.12. La température maximale coin-
cide toujours avec le pic de pertes radiatives. Il existe des différences avec la Fig. 2.9 du
Chap.2 au niveau des concentrations des produits. Nous avons rajouté la fraction molaire
de NO et la fraction volumique de suie. Le pic de fraction volumique de suie est décalé par

rapport a ceux de la vapeur d’eau ou de monoxyde d’azote. En effet, la suie est produite

HTe terme d’émission se présente comme une somme sur I’ensemble des bandes étroites indicées par n :

T4k, Ly, (rp)n(Tgaz) — wLy ,(rp), (Tparoi)
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en général de maniére localisée du coté de la flamme par lequel arrive le méthane. On peut
remarquer que la présence de la suie provoque une déformation du terme source radiatif
sur le zoom qui en a été fait (Fig. 6.12 : 2°°™¢ ligne a gauche). Ceci reste cependant sans
incidence sur la structure de flamme (le taux d’étirement de 28,5 s~ ! reste inchangé) car elle

se comporte globalement de maniére optiquement mince.

Nous pouvons nous assurer de cette derniére remarque en observant les points a forts
taux d’étirement sur la figure en bas a droite de la Fig. 6.12 présentant 1’évolution de la
température maximale de flamme en fonction du taux d’étirement pour différents modéles
radiatifs. On observe une différence naissante entre les deux modéles minces (OTL Hub-
bard et OTL) due a l'utilisation de propriétés radiatives différentes. Le second modéle a été
construit sur la base des données spectroscopiques en bandes étroites qui nous ont également,
servi a I’élaboration du modéle complet formulé en Puissances Nettes Echangées. On s’aper-
coit également que la présence des suies provoque, dans la région des faibles taux d’étirement
(1071, 1072), un abaissement en température de 20 K par rapport a la température qui serait
calculée pour des gaz sans suies (comparaison entre OTL et OTL+suies). La différence avec
et sans modéle radiatif mince pour les gaz est plus importante; elle est supérieure a 80 K
(comparaison entre “sans rad” et OTL). De maniére générale, la contribution des suies au
rayonnement total apparaitra par la suite toujours plus petite que celle des gaz pour cette

flamme de méthane.

Nous allons maintenant aborder les différentes étapes qui vont nous permettre de coupler
a cette flamme un calcul complet et précis des transferts radiatifs. Le principe est le suivant :
nous allons expliciter la mise en oeuvre du couplage a partir de la lamme dont nous disposons
pour un taux d’étirement de 28,5 s~!. Bien évidemment ce ne sont pas des conditions
favorables a la mise en évidence d’effets radiatifs importants puisque la flamme a ici un
comportement global optiquement mince. Mais cette flamme sera un point de départ a une

étude paramétrique pour laquelle nous abaisserons le taux d’étirement.
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FI1G. 6.12 — Les profils d’'une flamme a jets opposés air/méthane pur et I’évolution de sa

température maximale en fonction d’un taux d’étirement décroissant
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6.4.2 Construction d’une solution de référence sur les profils en

concentrations et température de la lamme & 28, 557!

Pour coupler le TLM avec la combustion, il faut disposer d’une solution radiative de
référence. Ce calcul complet est produit par la méthode de Monte-Carlo sur les profils de

concentrations et température de la flamme que nous venons de présenter dans le § précédent.

Les Fig. 6.13 et Fig. 6.14 présentent les résultats radiatifs obtenus. Pour la Fig. 6.13
a gauche nous avons le terme source radiatif et & droite sa décomposition en différentes
contributions a savoir les échanges d’un volume avec ’ensemble des autres volumes de gaz,
avec la paroi gauche ou avec la paroi droite. Il est possible de poursuivre cette décomposition
en décomposant a son tour I’échange d’un volume avec tous les autres en leurs contributions

distinctes (volume/volume) : c¢’est ce que représente la matrice des PNE de la Fig. 6.14.
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F1G. 6.13 — Contributions séparées aux termes sources radiatifs pour la flamme a 28,5 s~ ! -

Monte Carlo complet

On observe, sur la Fig. 6.13 a gauche, qu’en tout point le rayonnement se traduit par
une perte énergétique, sauf en bord de flamme ot les gaz froids peuvent étre réchauffés par
les gaz chauds du centre de flamme. Si ’'on met de coté cette zone extrémement petite, le
terme source radiatif est donc un terme de refroidissement dont on voit qu’il résulte princi-
palement de I’échange avec les parois qui se trouvent aux frontiéres du domaine (Fig. 6.13
a droite). Il s’agit donc d’une configuration favorable a I'utilisation d’un modéle de rayonne-

ment optiquement mince. Néanmoins, en regardant de plus prés les échanges avec le volume,
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F1G. 6.14 — Echanges radiatifs volume/volume

donc les effets de redistribution énergétique au sein de la flamme, on voit qu’ils ne sont pas
si négligeables. On le voit sur la contribution des échanges avec les parois gauche et droite
qui sont disymétriques. La flamme étant décentrée légérement sur la gauche, la paroi droite
percoit les points de la flamme & travers une couche de gaz absorbant plus importante, ce
qui explique sa plus faible contribution au bilan. Malgré ces effets qui semblent importants le
modéle mince de la Fig. 6.12 (sur lequel on a fait un zoom) n’est pas trop éloigné du calcul
de référence. C’est parce qu’intervient un phénomeéne de compensation spécifique des profils

de flammes.

Prenons par exemple un point au niveau du pic de température (c’est-a-dire au pic du
terme source volumique Fig. 6.13). Les effet d’atténuation par absorption gazeuse font que
les puissances nettes qu’il échange avec les parois sont plus faibles dans notre modéle que sous
I’hypothése optiquement mince. Cependant ces absorptions sont autant de lieux d’échange
avec le volume de gaz et on peut méme affirmer que si le gaz intermédiaire était a la méme
température que la paroi, ceci compenserait cela et le modéle mince serait exact. En pratique
dans notre flamme, les gradients de température sont trés forts et donc, excepté immeédiate-
ment & proximité d’un point, les échanges gaz-gaz se font avec un milieu relativement froid.

L’effet de compensation est donc manifeste.

Le modéle optiquement mince conduit donc a de trés bons résultats dans la majeure
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partie de la flamme pour des taux d’étirement pas trop faibles. On peut garder en mémoire
que s’il peut exister un bon comportement, face & un modéle optiquement mince, ce n’est pas
uniquement lié a la faiblesse des échanges gaz-gaz, mais également a un effet de compensation
qui est fortement dépendant des conditions aux limites en luminance (ici les deux parois
noires sont a température froide par rapport a la flamme). Ce point peut s’avérer important
lorsque 1'on pense a l'utilisation qui est faite des résultats de lammes monodimensionnelles

dans les modéles de turbulence de type flammelettes.

La contribution des gaz seuls peut étre elle-méme décomposée par l'utilisation directe
des puissances nettes échangées volume/volume que nous avons reproduites Fig. 6.14. Cette
matrice d’échange est antisymétrique (Chap.3). Pour la lire, on peut donc ne prendre que
la moitié de la figure a partir de la diagonale. On peut également, pour chaque élément de
volume, se placer sur ’horizontale correspondant & son abscisse et lire successivement, par
une échelle de couleurs, les puissances nettes qu’il échange avec chacun des autres éléments
de volume. Par exemple, si I’on se place au niveau du front de lamme qui correspond au point
le plus chaud du systéeme, on peut voir que les échanges nets avec les éléments de gaz sur la
droite et sur la gauche ont tous valeur de refroidissement radiatif. Dans un premier temps,
ils augmentent avec la distance du fait de I'augmentation de I’écart de température entre les
deux mailles du couple considéré. Dans un second temps, bien qu’en s’éloignant du front de
flamme, la température continue a s’abaisser, et donc que le potentiel énergétique d’échange
continue a augmenter, les PNE diminuent du fait de la combinaison : d’une part de l'effet
d’atténuation associé a 1’éloignement, et d’autre part plus simplement, de la diminution des

concentrations des espéces rayonnantes (H,O, CO; et CO).

Cette représentation détaillée des redistributions énergétiques au sein de la flamme peut
apparaitre comme un simple exercice de style pour une configuration aussi académique, mais
il a été montré dans d’autres contextes (étude de couplage rayonnement-convection naturelle
[Fournier (1994), Clergent (2000)|) qu’elle pouvait étre d’un soutien précieux dans les phases

d’exploration des mécanismes de couplage.

Apreés cette discussion sur le comportement radiatif de la lamme & jets opposés, la mise
en oeuvre pratique du couplage sur la base de nos calculs radiatifs détaillés va étre traitée
dans le § suivant. Cela va nous rapprocher du moment ot nous pourrons montrer que pour

des taux d’étirement plus faibles, I'effet de compensation spécifique ne suffit pas a rattraper
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I’erreur commise par l'utilisation d’un modéle optiquement mince.

6.4.3 Mise en oeuvre de la procédure de couplage et controle de la

qualité des résultats couplés

Notre approche de couplage des codes de rayonnement et de combustion va donc étre
illustrée. La procédure de couplage entre le code de rayonnement et le code radiatif est
schématisée Fig. 6.15. On rappelle qu’on doit effectuer un premier calcul de combustion sur
les résultats duquel (profils de température et de concentrations) nous effectuons un calcul
radiatif de référence de type Monte Carlo. C’est ce que nous venons de présenter dans le
§ précédent. Ensuite, un calcul de combustion couplé (repartant de ’ancienne solution de
flamme convergée) est effectué par I'intermédiaire du modéle radiatif réduit (TLM), construit
a partir des termes sources radiatifs et des matrices de sensibilités du calcul de référence.
C’est ce que symbolisent les deux fléches en trait gras de la Fig. 6.15. Une derniére étape
de controle, comme le souligne la derniere ligne dans la Fig. 6.15, consiste a reprendre un
calcul par Monte Carlo sur la base des profils de température et concentrations obtenus apreés
couplage, de fagon a s’assurer que le modéle TLM n’a pas été utilisé en dehors de sa plage
linéaire de validité.

Flamme
initiale convergée

Fichier de description

° vitesses aux injecteurs Code de Combustion Flamme Méthode de ° termes sources radiatifs
° températures rayonnement: OTL Hubbar convergée Monte Carlo ° matrice de sensibilités

° compositions chimique

° distance entre injecteurs

Code de Combustion
rayonnement: TLM

_ p Flamme o » | Monte Carlo
convergée Test de validatio

F1G. 6.15 — Procédure de couplage numeérique entre le code de combustion et le code radiatif

Monte Carlo

Sur la flamme précédente la mise en oeuvre de cette procédure de couplage a permis
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d’obtenir de nouveaux profils de flamme pour lesquels se pose le probléme attendu de vé-
rification de la qualité du couplage vis-a-vis de la plage de validité linéaire du TLM. Pour
cela systématiquement, comme nous ’avons déja annoncé, on effectue un calcul de controle
avec le Monte Carlo sur les nouveaux profils de flamme obtenus aprés couplage. Ainsi, pour
notre flamme & 28,5 s7!, le terme source radiatif obtenu par couplage avec le TLM et ler-
reur relative par rapport au terme source obtenu avec le Monte Carlo de controle ont été
représentés Fig. 6.16. Dans la zone importante du calcul (terme source radiatif non nul)
Perreur relative n’excéde pas 5% et avoisine le plus souvent 1% au centre. Cet écart ne peut

pas avoir d’incidence notable sur le calcul couplé de la température.

L’ensemble des calculs radiatifs couplés, réalisés par la suite, sont tous effectués pour
une erreur relative d’au maximum 5 % sur les termes sources radiatifs couplés par rapport
a un calcul complet Monte-Carlo et ceci dans une large zone autour du pic radiatif'?. Nous
n’en ferons plus mention mais un calcul par Monte Carlo est systématiquement effectué pour

s’assurer que l'on est dans les limites de tolérance que nous venons de fixer.

6.4.4 Calculs couplés pour des flammes & bas taux d’étirement

Pour explorer les effets du rayonnement sur ce type de flammes, il est plus intéressant
de prendre des conditions aux limites conduisant a de faibles taux d’étirement. En effet, a
faible taux d’étirement, la flamme s’épaissit avec des effets de réabsorption plus significatifs,
mais aussi, les termes de refroidissement convectifs et conductifs diminuent, ce qui rend la

flamme d’autant plus sensible au terme source radiatif.

Nous proposons de présenter une étude paramétrique de la température maximale de
flamme et de fraction molaire maximale de NO en fonction d’un taux d’étirement décroissant.
Depuis notre flamme de départ (étirement de 28,5 s!), nous avons donc réguliérement
abaissé les vitesses des jets de C'Hy et d’air de maniére symétrique jusqu’a obtenir des taux

d’étirement inférieurs a 0,01 s

Commencons par examiner 1’évolution de la température maximale de flamme en fonction

12Qbjectivement, une telle démarche nécessite d’établir un critére rigoureux. Cela a déja été commenté et
il s’agit d’une étude actuellement en cours, au moment ot 'on écrit ces lignes, qui concerne ’évaluation des
) )

termes de second ordre du modéle TLM. Cela dépasse largement le cadre de notre travail actuel.
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du taux d’étirement. Nous avons reproduit sur la Fig. 6.17 les courbes déja présentées sans
rayonnement et avec 'OTL auxquelles on a rajouté les résultats couplés avec notre modéle
TLM. Nous avons donc sur la Fig. 6.17 ’évolution de la température maximale en fonction
du taux d’étirement décroissant pour trois modéles radiatifs différents. Le premier provient
d’un calcul sans terme source radiatif et on constate que l'introduction d’'un modéle radiatif
conduit a une baisse de température d’une centaine de kelvins. L’utilisation de notre modéle
radiatif précis apporte a cet écart une correction positive d’'un peu moins de 10 K. Si I'on
se rappelle que I'utilisation du modéle de suie conduisait a un écart de 20 K, on voit que
I'utilisation d’un modéle radiatif détaillé est aussi importante que 1'usage d’un modéle de
suie pour cette flamme. On ne peut pas tenir pour exacts, de maniére absolue nos résultats
étant données les incertitudes associées & notre modeéle de cinétique de suies. Ils montrent
en revanche la relative importance entre le modéle de suie et le modéle radiatif détaillé. Une
étude fine ne peut donc se faire ni sans 1'un ni sans 'autre. On retrouve la une justification
premiére du développement de notre méthodologie, ceci indépendamment des effets beaucoup
plus importants attendus pour des flammes industrielles de dimension géométrique beaucoup

plus importante.

Mais ceci n’est qu’un des points importants que nous voulions souligner. Un autre résultat
a été de pouvoir mettre en évidence 'influence de la prise en compte de transferts radiatifs
précis dans la prédiction de production d’espéces mineures polluantes comme le NO. On peut
voir Fig. 6.18 que les écarts en fraction molaire de NO auxquels on aboutit, & trés faible
taux d’étirement, entre un modéle radiatif mince et un modéle complet sont de 'ordre de 5%.
Non seulement ces résultats sont en accord avec les rares études de la littérature sur cette
configuration de flamme a savoir [Chan... (1995)] et plus récemment [Beltrame... (2001)]
mais aussi ils permettent de mieux cerner les enjeux du couplage du rayonnement dans la
prédiction d’espéces chimiques mineures. Un écart de 10 K en température peut provoquer
une variation du pic de fraction molaire de NO de 5 %. Il est difficile d’extrapoler a ce que
pourrait indiquer ’étude de flammes de plus grandes dimensions ou plus riches en suies. Mais
on voit que méme pour cette flamme peu rayonnante (et qui malgré tout s’imposait comme
premiére étape) les modéles simplifiés de rayonnement conduisent & des erreurs faibles mais
non négligeables en terme de prédiction d’espéces polluantes, ce qui justifie la encore la

réflexion méthodologique qui a été la notre dans cette étude.
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Température maximale de flamme en fonction du taux d'étirement
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Conclusion

Les modeles de transfert radiatifs spectraux permettant un couplage avec une chimie
détaillée en combustion sont assez peu nombreux a ce jour. Dans ce contexte, la premiére
conclusion de notre travail est qu’il a été possible de mettre en oeuvre un modéle de com-
bustion associant une cinétique détaillée et un modéle précis de rayonnement, sur la base
d’une méthodologie pensée depuis le point de départ, pour permettre, sans compromis de
précision incontrolée, une extension vers des configurations de complexité croissante. A la
base de notre méthodologie se trouve la méthode de Monte Carlo associée des principes
d’optimisation que nous avons détaillés. Ceci pour deux raisons :

— Produire un calcul de référence, pour lequel un controle de précision systématique est
effectué, deviendra essentiel pour I’étude de configurations moins maitrisées que les sys-
témes a plans paralléles que nous avons étudiés jusqu’ici. ’optimisation s’impose alors
comme une nécessité face au compromis a trouver entre temps de calcul et précision.

— Coupler notre modéle de rayonnement, par I'intermédiaire des sensibilités des termes
sources radiatifs aux températures et concentrations, exige de porter une grande at-
tention a la qualité des estimations de sensibilités.

Cette optimisation de la méthode de Monte Carlo repose sur le lien étroit que nous avons
voulu maintenir entre ’algorithme et la formulation mathématique sous-jacente. Elle repré-
sente une base numérique tout & fait favorable au traitement des géométries réelles, ainsi
qu’a la diversification des phénoménes physiques a prendre en compte (réflexions aux parois,

diffusion).

Du point de vue de la combustion, en quelque sorte, nous pourrions dire que nous n’avons
rien avancé de fortement significatif, si ce n’est de confirmer les principaux résultats de

la littérature sur une base méthodologique différente. Nous espérons néanmoins que cette
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méthodologie aura l’attrait, dans le domaine de la combustion, d’'une approche fiable de
couplage cinétique chimique/rayonnement, évitant les compromis souvent délicats sur la
représentation des propriétés spectrales des gaz. Cette sécurité peut en particulier s’avérer
utile dans les phases d’exploration de mécanismes qui seront probablement essentielles dans

le contexte actuel de recherche autour de la physico-chimie des émissions de polluants.

L’essentiel des résultats que ’on peut trouver dans la littérature sur le couplage rayonnement-
combustion sont obtenus en utilisant des modéles radiatifs simplifiés. Ces modéles reposent,
en général sur ’hypothése de milieu optiquement mince, qui apparait comme bien adap-
tée aux calculs des échanges radiatifs dans les flammes monodimensionelles & jets opposés.
L’analyse détaillée des échanges volume/volume confirme que le modéle mince décrit correc-
tement les échanges radiatifs de maniére globale sur une large plage de taux d’étirements.
Cela s’explique par des effets de compensation liés principalement aux conditions aux limites
en température et en luminance. Il n’est pas certain cependant que ces effets de compensation
persistent lorsque cette flamme se trouve plongée dans une ambiance & haute température
et turbulente (on peut imaginer par exemple cette configuration dans le cadre de la “théorie
des flammelettes”). En effet, dans ce cas, le probléme est beaucoup moins simple a traiter car
les conditions aux limites provoquent des problémes de corrélations spectrales et 1'utilisation

du modéle mince peut s’avérer moins réaliste.

D’un point de vue radiatif, ce travail nous a poussé & mener une réflexion approfondie sur
la formulation des transferts radiatifs ainsi que sur les optimisations nécessaires & une bonne
exploitation des potentiels des méthodes d’intégration statistiques telles que la méthode de
Monte Carlo. Nous espérons que les différentes lois de probabilité que nous avons pu proposer,
sur la base d’analyses spectrales et optico-géométriques en géométrie simplifiée, auront un
pouvoir de généralisation suffisant pour étre utiles sur une large classe de configurations de
combustion. Dans cet esprit, les perspectives d’extension de ce travail sur un plan radiatif
ont été déja mentionnées a différentes reprises :

— La premiére concerne le passage a des géométries bi- et tridimensionnelles. Tout dans
nos travaux a été développé en ce sens et il a déja été possible d’étendre notre code ra-
diatif a des géométries cylindriques bidimensionnelles, sans difficulté autre que la com-
plexité croissante de la programmation associée. Le code ainsi obtenu est actuellement

en phase de validation. Il a été pensé comme une étape intéressante pour d’éventuels
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travaux de couplage rayonnement/combustion sur des flammes de diffusion axisymé-
triques laminaires en accompagnement de travaux expérimentaux en cours au labo-
ratoire. Mais c’est surtout un moyen de tester les difficultés pratiques du passage en
géométrie tridimensionnelle, passage autour duquel un travail a été amorcé en colla-
boration avec I’équipe de recherche en informatique d’images de synthése de P'IRIT!?
[Thése en cours de P. Pérez|. qui dispose d'une base algorithmique avancée autour de
I’ensemble des questions de suivi de rayon en milieu semi-transparent.

— La seconde concerne la prise en compte de phénoménes de réflexion et diffusion. Au
sujet des phénomeénes de multi-réflexions, nous pouvons nous inspirer de trés nombreux
travaux qui abordent la question a partir de la méthode de Monte Carlo, que ce soit
dans le domaine de la thermique, ou la encore dans le domaine des images de synthése.
Les questions de diffusions sont moins explorées, surtout dés lors que les libres parcours
moyens d’absorption et de diffusion sont comparables. A ce jour, notre algorithme a
été repris et implanté en géométrie monodimensionnelle pour I’étude de configurations
d’atmosphéres planétaires diffusantes [DEA Energétique, Jean-Luc Garcia, 2000, UPS,
Theése en cours de V. Eymet|. Les résultats sont satisfaisants aux épaisseurs optiques
de diffusion intermédiaires, mais ’extension de nos propositions d’optimisation optico-
géométriques et spectrales aux fortes épaisseurs optiques de diffusion demanderont
certainement un investissement important.

— D’un point de vue plus technique, nous avons également exploré les potentiels de pa-
rallélisation de nos algorithmes qui héritent sans difficulté des avantages intrinseques
de la méthode de Monte Carlo. Une version de développement de notre code radiatif
a été parallélisée avec succeés, ce qui a permis de confirmer que les gains de parallélisa-
tion sont trés élevés, méme a partir d’une base matérielle modeste (montage PVM sur
une dizaine de PC en réseau) du fait des trés faibles besoins de communication entre
processeurs.

Pour revenir a la combustion, on peut sur ce plan également lister une série d’extensions

envisageées :

— La premiére serait de pousser plus en avant notre représentation de la cinétique de
formation des particules de suie de facon a proposer des résultats quantitatifs fiables,

par exemple en ce qui concerne 'effet du schéma cinétique et de la prise en compte du

BInstitut de Recherche en Informatique de Toulouse.
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transport des suies sur la production de NO,.

Indépendamment des questions d’amélioration du modéle, sur lamme dont nous dis-
posons actuellement, nous envisageons d’explorer des configurations qui pourraient
apparaitre optiquement plus épaisses. Soit en changeant les conditions aux limites en
températures, soit par I'enrichissement en oxygéne de la flamme. L’influence de la di-
lution du méthane semble aussi un réel moyen de rechercher des configurations otu la
formation de NO, serait plus sensible au rayonnement.

Il est prévu également d’exploiter I'information disponible dans la matrice de sensibilité
des termes radiatifs pour amorcer une analyse physique détaillée des mécanismes du
couplage rayonnement /cinétique, en particulier rayonnement/cinétique de suie.

A plus long terme, nous comptons travailler au développement d’'un modéle de couplage
instationnaire. Il deviendra alors essentiel de mettre en oeuvre une procédure automa-
tique de re-calcul des matrices de sensibilités lorsque la flamme s’écarte de la plage de
validité du modele TLM. Pour cela nous comptons nous appuyer sur un calcul Monte
Carlo des dérivées au second ordre des termes sources en fonction des températures et
concentrations, calcul dont nous espérons qu’il ne sera pas plus cotiteux que celui des
matrices de sensibilités.

Enfin, comme annoncé ci-dessus, nous comptons assez rapidement nous orienter vers

I’étude de configurations de flammes laminaires axisymétriques bidimensionnelles.



Annexe 1 : Schéma GRImech 2.1

A; Bi E;
facteur exposant de  Energie d’activation

pré-exponentiel la température dans le sens direct

ELEMENTS

H

¢

N

END

SPECIES

CH4 CH3 CH2 CH HCCOH CH20 HCO C02 CO

H2 H 02 0 OH HO2 H202 H20

G2H6 C2H5 C2H4 C2H3 C2H2 C2H

HGCO C CH2CO

CH30 CH20H CH30H

CH2(S)

N NH

NH2 NH3 NNH NO2 HNO CN

ESN H2CN HCNN HCNO HOCN HNCO NCO

REACTIDNS

20+M<=>02+M OE+17  -1. 00
H2/ 2.40/ H20/15.40/ CH4/ 2.00/ CO/ 1.75/ 002/ 3.60/ C2H6/ 3.00/
0+H+M<=>0H+M 5.000E+17  -1.000 .00
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ 002/2 00/ C2H6/3 00/

0+H2<=>H+0H 5.000E+04 2.670 6290.00
0+H02<=>0H+02 2.000E+13 000 .00
0+H202<=>0H+H02 9.630E+06 2.000 4000.00
0+CH<=>H+C0 5.700E+13 000 .00
0+CH2<=>H+HCO 8.000E+13 .000 .00
0+CH2 (S) <=>H2+C0 1.500E+13 .000 .00
0+CH2(S) <=>H+HCO 1.500E+13 .000 .00
0+CH3<=>H+CH20 8.430E+13 .000 .00
0+CH4<=>0H+CH3 1.020E+09 1.500 8600.00
0+C0+M<=>C02+M 6.020E+14 .000 3000.00
H2/2.00/ 02/6 00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/3.50/ C2H6/3.00/
0+HCO<=>0H+CO 3.000E+13 .000 .00
0+HCO<=>H+C02 3.000E+13 000 .00
0+CH20<=>0H+HCO 3.900E+13 .000 3540.00
0+CH20H<=>0H+CH20 1.000E+13 .000 .00
0+CH30<=>0H+CH20 1.000E+13 000 .00
0+CH30H<=>0H+CH20H 3.880E+05 2.500 3100.00
0+CH30H<=>0H+CH30 1.300E+05 2.500 5000.00
0+C2H<=>CH+CO0 5.000E+13 .000 .00
0+C2H2<=>H+HCCO 1.020E+07 2.000 1900.00
0+C2H2<=>0H+C2H 4. 600E+19 -1.410 28950.00
0+C2H2<=>C0+CH? 1.020E+07 2.000 1900.00
0+C2H3<=>H+CH2C0 3.000E+13 .000 .00
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H4<=>CH3+HCQO
H5<=>CH3+CH20
H6<=>0H+C2H5
CO<=>H+2C0

2C0<=>0H+HCCO
%CD< >CH2+C02
H
+

=

VOO0 OONOY OONNNINO0OOOOOWOM
QOO0 OQUIO OONIIN) OHOOOOONOW
QOO0 OOOO OOOOO OOOOOOOOO

<=>0+C0
20<= >H02+HCO
M<=>H02+M
.00/ H20/ .00/ CO/ .75/ C02/1.50/ C2H
2<=>H02+02
+H20<=>H02+H20
2+N2<=>H02+N2
H+02<=>0+0H
2H+M<=>H2+M
H2/ .00/ H20/ .00/ CH4/2.00/ C02/ .00/ C2
OH+H2<=>2H2
2H+H20<=>H2+H20
2H+C02<=>H2+C02
H+0DH+M<=>H20+M
H2/ .73/ H20/3 65/ CH4/2.00/ C2H6/3.00/
H+H02<=>0+H2
H+H02<= >D2+H2
H+H02<=>20H
H+H202<=>H02+H2
H+H202<=>0H+H20
H+CH<=>C+H2
H+CH2 (+M) <=>CH3 (+M)
LOW / 3.200E+27 -3.140 1230.00/
TROE/ .6800 78.00 1995.00 5590.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ €C02/2.00/ C2H6/3.00/
H+CH2(S) <=>CH+H2 3.000E+13 .000
H+CH3 (+M) <=>CH4 (+M) 1.270E+16 -.630
LOW / 2.477E+33 -4.760 2440.00/
TROE/ .7830 74.00 2941.00 6964.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3.00/
H+CH4<=>CH3+H2 6.600E+08 1.620
H+HCO (+M) <=>CH20 (+M) 1.090E+12 .480
LOW / 1.350E+24 -2.570 1425 .00/
TROE/ .7824 271.00 2755.00 6570.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3.00/
H+HC0<=>H2+C0D 7.340E+13 .000
H+CH20 (+M) <=>CH20H (+M) 5.400E+11 .454
LOW / 1.270E+32 -4.820 6530.00/
TROE/ .7187 103.00 1291.00 4160.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
H+CH20 (+M) <=>CH30 (+M) 5.400E+11 .454
LOW / 2.200E+30 -4.800 5560.00/
TROE/ .7580 94.00 1555.00 4200.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3.00/
H+CH20<=>HCO+H?2 2.300E+10 1.050
H+CH20H (+M) <=>CH30H (+M) 1.800E+13 .000
LOW / 3.000E+31 -4.800 3300.00/
TROE/ L7679 338.00 1812.00 5081.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3. 00/
H+CH20H<=>H2+CH20 2.000E+13
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H+CH30<=>H2+CH20 2.000E+13 .000
H+CH30<=>0H+CH3 3.200E+13 .000
H+CH30<=>CH2(S) +H20 1.600E+13 000

14413,

[
DANDHOD
QOOWOHN
OO0

wo

10840.
-260.

2600.

3275.
.00

QOOOOOO OO0 OO0 OOOOOOOOO
OQOOOOOO OOOO OO0 OOOOOOOOO

.00
383.

00

00
00

.00
3600.

00

00

00

.00
.00
.00

QOO0
OOOO



163

H+CH30H<=>CH20H+H2 1.700E+0Q7 2.100
H+CH30H<=>CH30+H2 4.200E+06 2.100
H+C2H (+M) <=>C2H2 (+M) 1.000E+17 -1.000

LOW / 3.750E+33 -4.800 1900.00/
TROE/ .6464 132.00 1315.00 5566.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
H+C2H2 (+M) <=>C2H3 (+M) 5.600E+12 .000
LOW / 3.800E+40 -7.270 7220.00/
TROE/ .7507 98.50 1302.00 4167.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
H+C2H3 (+M) <=>C2H4 (+M) 6.080E+12 .270
LOW / 1.400E+30 -3.860 3320.00/
TROE/ .7820 207.50 2663.00 6095.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3 00/
H+C2H3<=>H2+C2H2 +13
H+C2H4 (+M) <=>C2H5 (+M) 1 080E+12 .454
LOW / 1.200E+42 -7.620 6970.00/
TROE/ .9753 210.00 984.00 4374.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3. 00/
H+C2H4<=>C2H3+H2 5E+06 2.530
H+C2H5 (+M) <=>C2H6 (+M) 5 210E+17 -.990
LOW / 1.990E+41 -7.080 6685.00/
TROE/ .8422 125.00 2219.00 6882.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3.00/
H+C2H5<=>H2+C2H4 2.000E+12

H+C2H6<=>C2H5+H2 1.150E+08 1.900
H+HCCO<=>CH2(S)+C0 1.000E+14 00
H+CH2C0<=>HCCO+H2 5.000E+13 000
H+CH2C0<=>CH3+C0 1.130E+13 000
H+HCCOH<=>H+CH2C0 1.000E+13 .000
H2+C0 (+M) <=>CH20 (+M) 4.300E+07 1.500

LOW / b5.070E+27  -3.420 84350.00/
TROE/ .9320 197.00 1540.00 10300.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/

OH+H2<=>H+H20 2.160E+08 1.510
20H (+M) <=>H202 (+M) 7.400E+13 -.370
LOW / 2.300E+18 -.900 -1700.00/

TROE/ .7346  94.00 1756.00 5182.00 /
2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3.00/

H

20H<=>0+H20 3.570E+04 2.400
OH+H02<=>02+H20 2.900E+13 .000
D§GE20%X >H02+H20 1.750E+12 .000
OH+H202<= >H02+H20 5.800E+14 .000

DUPLICATE

OH+C<=>H+C0 5.000E+13 000
OH+CH<=>H+HCO 3.000E+13 000
OH+CH2<=>H+CH20 2.000E+13 000
OH+CH2<=>CH+H20 1.130E+07 2.000
OH+CH2 (S) <=>H+CH20 3.000E+13 000
OH+CH3 (+M) <=>CH30H (+M) 6.300E+13 000

LOW / 2.700E+38 -6.300 3100.00/
TROE/ .2105 83.50 5398.00 8370.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ C02/2 00/ C2H6/3. 00/0

OH+CH3<=>CH2+H20 E+07 1

OH+CH3<=>CH2 (S)+H20 2.501E+13 .000
OH+CH4<=>CH3+H20 1.000E+08 1.600
OH+C0<=>H+C0O2 4.760E+07 1.228
OH+HCO<=>H20+C0 5.000E+13 .000
0H+CH20<=>HCO+H20 3.430E+09 1.180
OH+CH20H<=>H20+CH20 5.000E+12 .000
0H+CH30<=>H20+CH20 5.000E+12 .000
OH+CH30H<=>CH20H+H20 1.440E+06 2.000
OH+CH30H<=>CH30+H20 6.300E+06 2.000
OH+C2H<=>H+HCCO 2.000E+13 .000
OH+C2H2<=>H+CH2CO0 2.180E-04 .500

2400.

280.

1820.

12240.
1580.

00

00

00
00

00
00

7530.00

8000.00
342800

79600 .00

3430.
.00

WOl

9560.

3000.

5420.
3120.0
70.
-447 .
-840.
1500.
-1000.
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0H+C2H2<=>H+HCCOH 5.040E+05 2.300 13500.00
OH+C2H2<=>C2H+H20 3.370E+07 2.000 14000.00
OH+C2H2<=>CH3+C0 4.830E-04 4.000  -2000.00
OH+C2H3<=>H20+C2H2 5.000E+12 .000 .00
OH+C2H4<=>C2H3+H20 3.600E+06 2.000 2500.00
OH+C2H6<=>C2H5+H20 3.540E+06 2.120 870.00
OH+CH2C0<=>HCCO+H20 7.500E+12 .000 2000.00
2H02<=>02+H202 1.300E+11 .000 -1630.00
DUPLICATE
2H02<=>02+H202 4.200E+14 .000 12000.00
DUPLICATE

HO2+CH2<=>0H+CH20 2.000E+13 .000 .00
HO2+CH3<=>02+CH4 1.000E+12 .000 .00
HO2+CH3<=>0H+CH30 2.000E+13 .000 .00
HO2+C0<=>0H+C02 1.500E+14 .000  23600.00
HO2+CH20<=>HCO+H202 1.000E+12 .000 8000.00
C+02<=>0+C0 5.800E+13 .000 576.00
C+CH2<=>H+C2H 5.000E+13 .000 .00
C+CH3<=>H+C2H2 5.000E+13 .000 .00
CH+02<=>0+HCO 3.300E+13 .000 .00
CH+H2<=>H+CH2 1.107E+08 1.790 1670.00
CH+H20<=>H+CH20 1.713E+13 .000 -755.00
CH+CH2<=>H+C2H2 4.000E+13 .000 .00
CH+CH3<=>H+C2H3 3.000E+13 .000 .00
CH+CH4<=>H+C2H4 6.000E+13 .000 .00
CH+CO (+M) <=>HCCO (+M) 5.000E+13 .000 .00

LOW / 2.690E+28 -3.740 1936.00/

TROE/ .5757 237.00 1652.00 5069.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ CO/1.50/ CO2/2 00/ C2H6/3.00/
CH+C02<=>HCO0+CO 3.400E+12 .000 690.00
CH+CH20<=>H+CH2C0 9.460E+13 .000 -515.00
CH+HCCO<=>C0+C2H2 5.000E+13 .000 .00
CH2+02<=>0H+HCO 1.320E+13 .000 1500.00
CH2+H2<=>H+CH3 5.000E+05 2.000 7230.00
2CH2<=>H2+C2H2 3.200E+13 .000 .00
CH2+CH3<=>H+C2H4 4.000E+13 .000 .00
CH2+CH4<=>2CH3 2.460E+06 2.000 8270.00
CH2+C0 (+M) <=>CH2CO0 (+M) 8.100E+11 .500 4510.00

LOW / 2.690E+33 -5.110  7095.00/

TROE/ .5907 275.00 1226.00 5185.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3. 00/
CH2+HCCO<=>C2H3+C0 3.000E+13 .00
CH2(S) +N2<=>CH2+N2 1.500E+13 .000 600.00
CH2(S)+02<=>H+0H+CO0 2.800E+13 .000 .00
CH2(S)+02<=>C0+H20 1.200E+13 .000 .00
CH2(S) +H2<=>CH3+H 7.000E+13 .000 .00
CH2(S) +H20 (+M) <=>CH30H (+M) 2.000E+13 .000 .00

LOW / 2.700E+38 -6.300  3100.00/

TROE/ .1507 134.00 2383.00 7265.00 /
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
CH2(S)+H20<=>CH2+H20 3.000E+13 .000 .00
CH2(S)+CH3<=>H+C2H4 1.200E+13 .000 -570.00
CH2(S)+CH4<=>2CH3 1.600E+13 .000 -570.00
CH2(S)+C0<=>CH2+C0 9.000E+12 .000 .00
CH2(S)+C02<=>CH2+C02 7.000E+12 .000 .00
CH2(S)+C02<=>C0+CH20 1.400E+13 .000 .00
CH2(S) +C2H6<=>CH3+C2H5 4.000E+13 .000 -550.00
CH3+02<=>0+CH30 2.675E+13 .000  28800.00
CH3+02<=>0H+CH20 3.600E+1 .000 940.00
CH3+H202<=>H02+CH4 2.450E+04 2.470 5180.00
2CH3 (+M) <=>C2H6 (+M) 2.120E+16 -.970 620.00

LOW / 1.770E+50 -9.670  6220.00/

TROE/ .56325 151.00 1038.00 4970.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3.00/
2CH3<=>H+C2H5 4.990E+12 .100 10600.00
CH3+HCO<= >CH4+CO 2.648E+13 .000 .00
CH3+CH20<=>H 3.320E+03 2.810 5860.00
CH3+CH30H<= >CH2OH+CH4 3.000E+07 1.500 9940.00
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NCO+02<= >N0+C02 2.000E+12 .000
NCO+M<=>N+CO+ 8.800E+16 -.500
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
CO+NO<=>N20+C0 2.850E+17  -1.520
CO+NO<=>N2+C02 5.700E+18  -2.000
HCN+M<=>H+CN+M 1.040E+29 -3.300
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
HCN+0<=>NCO+H 1.107E+04 2.640
HCN+0<=>NH+C0 2.767TE+03 2.640
HCN+0<=>CN+0H 2.134E+09 1.580
HCN+0H<=>HOCN+H 1.100E+06 2.030
HCN+0H<=>HNCO+H 4.400E+03 2.260
HCN+0H<=>NH2+C0 1.600E+02 2.560
H+HCN+M<=>H2CN+M 1.400E+26 -3.400
H2/2.00/ H20/6.00/ CH4/2.00/ C0/1.50/ C02/2.00/ C2H6/3.00/
H2CN+N<=>N2+CH2 6.000E+13 .000
C+N2<=>CN+N 6.300E+13 .000
CH+N2<=>HCN+N 2.857E+08 1.100
CH+N2 (+M) <=>HCNN (+M) 3.100E+12 .150

LOW / 1.300E+25 -3.160 740.00/

TROE/ .6670 235.00 2117.00 4536.00 /
H2/2.00/ H20/6 00/ CH4/2.00/ C0/1.50/ C02/2 00/ C2H6/3. 00/
CH2+N2<=>HCN+NH 1.000E+13
CH2(S) +N2<=>NH+HCN .000E+11

o
SO
OO

C+NO<=>CN+0 .900E+13
C+NO<=>CO+N .900E+1
CH+NO<=>HCN+0 .000E+13
CH+NO<=>H+NCO 00QE+13
CH+NO<=>N+HCO 000E+13
CH2+NQ<=>H+HNCO 100E+17 -1
CH2+NO<=>0H+HCN 900E+14 -

CH2+NO<=>H+HCNO
CH2(S) +NO<=>H+HNCO
CH2(S) +NO<=>0H+HCN
CH2(S) +NO<=>H+HCNO
CH3+NO<=>HCN+H20
CH3+NQ<=>H2CN+0H
HCNN+0<=>C0O+H+N2
HCNN+0<=>HCN+NO
NN+02<=>0+HCO+N2
N+0H<=>H+HCO+N2
+H<=>CH2+N2
+0<=>NH+C02
+0<=>HN0O+C0
+0<=>NCO+0H
+H<=>NH2+C0
+H<=>H2+NC0
+0H<=>NCO+H20
+0H<=>NH2+C02
+M<=>NH+CO0+M
2.00/ H20/6.00/ CH4/2.00/ C0O/1.50/ C0O2
Q+H<=>H+HNCO
0+H<=>0QH+HCN
HCNO+H<=>NH2+C0
HOCN+H<=>H+HNCO
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Annexe 2 : Les équations de Maxwell

dans les milieux matériels

Dans la description ondulatoire du rayonnement, proposée par les équations de Maxwell,
le rayonnement est une superposition d’ondes transverses monochromatiques de pulsation
w. Chaque onde, est portée par un couple de vecteurs (E, H), qui sont respectivement, le

vecteur champ électrique et le vecteur champ d’excitation magnétique.

Les équations de maxwell s’appuient sur la constante diélectrique et la permittivité,
auxquelles il faut ajouter deux vecteurs (Polarisation volumique P, et Aimantation volumique

M) pour caractériser la présence de matiére. Le systéme d’équation s’écrit alors :
rotE+0,B=0

divD = pex
divB=0

rotH — ;D = Jox

avec
D=¢E+P

B
H=—-M

Ho

auxquels il faut rajouter des relations de passages en guise de conditions aux limites.
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Annexe 3 : Rappels mathématiques

Inverse Gaussienne Une fonction inverse gaussienne Z est définie par, au maximum, deux

parameétres a et b. Elle est la densité de probabilité d'une variable aléatoire x telle que :

ab b(x—a)? .
=7 = ———=a 7 1
1) = Tahos =\ gogean| 5~ T(oa) (6.1)
Sa fonction de répartition est exprimée en termes d’une combinaison de loi normale I :
I b b
o) = [ T = |- |- g0 +er - [ Do) )

C’est avec l'algorithme de Michael (proposé en 1976) que I’on peut échantillonner la variable
x selon la loi de probabilité f(x) :
— Une variable z; est générée aléatoirement avec la probabilité du x? utilisant le para-
meétre a.
— Une variable x5 est ensuite obtenue par :

T T T 2
= 1 — — — -
s a< o +(26)>

— Pour achever la procédure, un test de Bernouilli permet de retenir avec une probabilité

P =a/(a+ ) la valeur x = x5 et la probabilité 1 — P la valeur z = a?/x5.

Fonction intégrale exponentielle Soit E,(x) une fonction intégrale exponentielle. Elle
est définie par les intégrales suivantes :

E,(x) = /00 dt t™"exp(—xt)
! (6.3)

1
= / du u"*exp(—x/u)

0
Dans le domaine des transferts radiatifs on utilise plutot la seconde expression ot u est en

général remplacé par cos(6)
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Annexe 4 : Mise en oeuvre de la
méthode CK

Pour tenir compte de la déformation du spectre du fait des hétérogénéités en concentra-
tion et température le long d’un chemin optique nous avons retenu ’hypothése de Curtis-
Godson cependant, nous avons fait usage de la méthode CK comme moyen d’exploration et

de controle. Voici un apercu technique de son utilisation.

Comme il a été expliqué au Chap. 4 I'utilisation de la méthode CK nécessite I'inversion
de la fonction g (fonction de répartition de la loi de Malkmus). L’inversion numérique de la
fonction g que nous avons testée est bien trop cotiteuse en temps de calcul donc nous avons
mis en place une méthode CK tabulée qui utilise des interpolations linéaires. On procéde de

la maniére suivante :

Au point initial, caractérisé par un parameétre de séparation ¢, une valeur initiale a; de
a = £ est générée aléatoirement selon les lois statistiques annoncées au paragraphe 4.2.2.2
La fonction de répartition gy (a; ¢, 1) correspondant au modeéle de Malkmus est alors utilisée

pour calculer g = gpr(ag; ¢1,1).

A chaque traversée de maille, on recontre une nouvelle valeur ¢, du paramétre de sépa-

ration. On cherche alors & déterminer une valeur ay vérifiant g = gpr(ag; ¢o, 1).

Pour cela on utilise une interpolation linéaire a partir de résultats d’inversion numé-
rique de la fonction gpr(a; ¢, 1), ce qui conduit a une fonction d’approximation a(¢, g). Cette

fonction est alors utilisée pour estimer a,; comme

d(d)%g)

o = A1 ———~

d(d)hg)
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Pour finir voici quelques compléments concernant la procédure d’interpolation. Une pro-

cédure de dichotomie a été utilisée pour construire un tableau @y, (gn, ¢m) :

* pour 200 valeurs de phi : le découpage en phi est régulier selon la fonction in(¢) entre
6 =103 et ¢ = 1073,

* pour 20 valeurs de g : le découpage en g est régulier selon la fonction /1 — g entre g=0
et g=0.99.

L’utilisation de cette méthode CK tabulée sera illustrée au chapitre résultats (Chap. 6).



Annexe 5 : Formules développées des
termes correctifs a établis pour
I’hypothése de Curtis-Godson formulée

en k-distributions.

L’objectif de cette note est de donner ici quelques éléments mathématiques concernant

tot tot

le calcul analytique des termes aus, qu,, o,y et a,, dont les formules ont été posées dans le
Chap.4.
Pour les termes «,, et «,, : Pour finir d’exprimer analytiquement ces termes comme

le montrent leurs formules respectives dans le Chap.4, il reste & obtenir ’expression analy-
tique des dérivées partielles premiére et seconde de la fonction de Malkmus par rapport aux

abscisses curvilignes [; et [; du rayon de longueur [;;.

o, ; ; . .\ . . , C ey
1 101,6¢6) 60 tient de manidre analytique sans difficulté particuliére par :

fu(sléca)
Ofu(a;l,0cc) _ Ki(¢i—dec), 1 (a— 1)2]

fu(a; 1, dcq) 2Rca boc 0 (6.4)

La dérivée seconde s’obtient également sans difficulté de principe et s’écrit :

fula; 1, 6cq) 2Kca 2Rkca bca a AR aPtq

A0, fula;1,606)  kildi — dca) Ki(dj — dca) [ 1 (a— 1)2] : n 2Rk (i — dca)(dj — dea)

— I
j —
bca a 2Rcq

B [ 1 (a_l)Qlﬁi_'wCG_@_%
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Nous rappelons que selon les formules qui ont été établies dans le Chap.4, les dérivées
partielles que nous venons de calculer sont utilisées aussi bien dans les formules pour le cas

particulier d'un gaz que pour des mélanges de gaz.

tot tot .
et a e

tot tot
Vs et avv’

Pour les coefficients intégrés o Pour le cas des coefficients de correction

moyens intégrés sur une bande étroite nous proposons les formules générales
valables pour les mélanges de gaz. Tout calcul fait pour les mélanges de gaz on arrive aux

formules suivantes.

En notant n l'indice qui repére un gaz et n, le nombre total de gaz on peut écrire pour
un échange entre le volume V; et la surface S; le coefficient correcteur de la bande sous la

forme :
tot __ N

v;S; M
avec N et M des sommations sur les coefficients A, et B, qui dépendent du gaz et dont les

. 4 n n N
expressions sont données en dessous. Ona: N =% 7,4, et M =X 7, B, ol pour un gaz

n:
—FK; 1 Roals Roalij
A, = 14+ —0,(¢cc) (1 + —4[1+2 )] (6.6)
/1 4 9Fccli kea bca bca
oleZe]
B, — — " (6.7)

' Ecalij
V 1+2 PG

De méme pour I’échange entre un volume V; et un volume V; le coefficient correcteur

moyen sur un bande étroite peut écrire :

tot _C

a'ui'u]- 5
avec C et D des combinaisons linéaires des coefficients A,,, B,, qui ont été exprimés pré-
cédemment et de leur dérivée partielle. On a : C' = X7, (9, An,) + 2,2, 80, Ay, Ap, et
pEn
D =30%2,(8,Bn,) + 2,253, By, By,. Pour simplifier Uécriture des dérivées partielles de A

pPEN
et de B on adopte le systéme de notations suivant :

o Realij
bca
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L=(1+2K)
Poak; — Rj(d; — dca)
M=
e

Le calcul des dérivées partielles de A et B aboutit aux expressions suivantes qui viennent

clore ’ensemble de nos calculs :

O, An, =ML~ 3/2(—2M)(1+K L712)

HCGlzy

; —2 _
(“CGZZJ)

1/2( d)z ¢CG(M M.L~ 1/2))

Rea i

et,
0. B, = Kik, (1+ 2%)*3/2

! Gi bi
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