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J. Delatorre a, G. Baud a, J.J. Bézian a,⇑, S. Blanco b, C. Caliot c, J.F. Cornet d, C. Coustet g,
J. Dauchet d, M. El Hafi a, V. Eymet a, R. Fournier b, J. Gautrais e, O. Gourmel f, D. Joseph g,

N. Meilhac b, A. Pajot f, M. Paulin f, P. Perez h, B. Piaud g, M. Roger i, J. Rolland a,
F. Veynandt a, S. Weitz b

a Laboratoire RAPSODEE - UMR 5302 - ENSTIMAC - Campus Jarlard - 81013 Albi CT Cedex 09, France
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Abstract

The Monte Carlo method is partially reviewed with the objective of illustrating how some of the most recent methodological advances
can benefit to concentrated solar research. This review puts forward the practical consequences of writing down and handling the integral
formulation associated to each Monte Carlo algorithm. Starting with simple examples and up to the most complex multiple reflection,
multiple scattering configurations, we try to argue that these formulations are very much accessible to the non specialist and that they
allow a straightforward entry to sensitivity computations (for assistance in design optimization processes) and to convergence enhance-
ment techniques involving subtle concepts such as control variate and zero variance. All illustration examples makePROMES - UPR
CNRS 8521 - 7, rue du Four Solaire, 66120 Font Romeu Odeillo, France use of the public domain development environment EDStar
(including advanced parallelized computer graphics libraries) and are meant to serve as start basis either for the upgrading of existing
Monte Carlo codes, or for fast implementation of ad hoc codes when specific needs cannot be answered with standard concentrated solar
codes (in particular as far as the new generation of solar receivers is concerned).

Keywords: Monte Carlo algorithm; Concentrated solar energy; Solar energy flux density distribution; Solar concentrators design optimization; Sensitivity
computation

1. Introduction

Concentrated solar processes such as solar thermal power
plants essentially convert solar energy into high density heat
fluxes to be collected by working fluids. As far as radiation is

concerned, such processes involve both a concentrating sys-
tem (an heliostat or an heliostat field) and a receiver. Con-
centrating systems and first generation receivers were
initially designed using geometrical optics, but higher accu-
racy requirements or advanced receiver technologies imply
a deeper entry into physical optics and radiative transfer.
This is commonly translated into the development of Monte
Carlo codes. They are preferred to other numerical
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simulation techniques because of their flexibility (in terms of
inclusion of new physical phenomena) and their ability to
deal with geometrically complex realistic systems. But this
trend introduces new methodological questions:

– Can we fill the gap between the statement of flexibility
and the practical implementation, for instance, of a
Monte Carlo code simulating such a complex system
as a full heliostat field and a hyperbolic mirror focused
on a fluidized bed receiver including multiple reflections
at metallic boundaries and multiple scattering by silicate
particles?

– Can the computation requirements of Monte Carlo codes
be reduced to become compatible with design optimiza-
tion procedures that engineers have set up thinking of fast
geometrical optics convolution methods?

– More positively, can we benefit of the specific features of
Monte Carlo methods as far as physical interpretation
of simulation results is concerned, that is to say of sen-
sitivity evaluation, adjoint computation, zero-variance
formulation, integral reformulation, etc., as ways to
understand the impacts of adjustable design parameters?

These three questions (practical implementation, conver-
gence enhancement and identification of leading physical
mechanisms) extend way beyond concentrated solar appli-
cations and are at the origin of intensive research efforts of
Monte Carlo specialists dealing with all kinds of particle
transport physics. The objective of the present text is pre-
cisely to review those among the corresponding methodolog-
ical advances that we evaluate as mature enough to directly
contribute to today’s concentrated solar research.

Among them, a particular attention is devoted to the
zero-variance concept and the sensitivity evaluation tech-
niques. Both represent recent significant advances and we
try to argue that they are very much accessible to the non-
specialist. For didactic reasons, only parts of these two
advances are fully exposed: we only consider the part of
the zero-variance concept that can be exposed without the
use of adjoint formulations and the most subtle part of sen-
sitivity evaluation techniques, corresponding to domain
deformation sensitivities, is introduced but is not illustrated.
The missing parts would require deeper developments and
we hope that the present text will serve as an introduction
for the reader wishing to enter the corresponding specialized
literature. Another point is also strongly highlighted: toady’s
easy access to the main concepts and computation tools
issued of the computer graphics research community during
the last twenty years (in particular under the solicitation of
the film and game industries). This constitutes a very signif-
icant help for radiation physicists in the process of geometri-
cally defining (modeling) complex scenes and accelerating
photon tracking in such scenes. The details of these tech-
niques are avoided here as they strictly belong to the field
of computer sciences and are exposed in excellent textbooks,
but we try to be as accurate as possible concerning the way
they can be translated for practical use in the concentrated

solar context. This objective is addressed using the public
domain development environment EDStar, a simple imple-
mentation strategy example that may be helpful to code
designers. EDStar also allows us to provide, on an associated
website, the documented codes corresponding to each of the
following concentrated solar illustrative examples. The pre-
sentation is organized so that these successive examples are
representative of the wide diversity of concentrated solar sys-
tems and are of increasing complexity, up to quite realistic
configurations meant to serve as start basis for researchers
facing the need for rapid implementation or upgrade of ded-
icated Monte Carlo codes, when their questions extend
beyond the scope of available simulation tools.

A strong presentation choice was made that consists in
putting forward, in a systematic manner, the integral for-
mulation associated to each Monte Carlo algorithm. This
led us to a set of coherent conventions and notations that
may require an adaptation effort, but the expected reader’s
benefit is that all methodological questions are then
addressed on a common basis, from the most theoretical
integral reformulation exercises, to the most practical
aspects of code implementation.

The article is organized the following way: the method-
ological review itself is exposed in Section 2 and the more
practical consideration related to implementation are the
object of a short separate section (Section 3); four con-
centrated solar examples are then detailed in Section 4
and the last section (Section 5) is devoted to a brief clas-
sification of what we perceive as the main remaining open
questions.

2. Integral formulation for variance reduction and sensitivity
analysis

Since Metropolis original work in 1949 (Metropolis and
Ulam, 1949), numerous monographs and review articles
have been devoted to the Monte Carlo method. In the pres-
ent context, we are essentially concerned by the simulation of
a linear transport phenomenon (photons do not interact,
neither directly, nor indirectly in most of the above listed
radiative transfer problems). But even concentrating on this
subclass of Monte Carlo algorithms, numerous excellent
specialized monographs and reviews are available. We
choose, very arbitrarily, to point out here Hammersley and
Handscomb’s monograph (Hammersley and Handscomb,
1964) because of the everlasting influence of this short syn-
thesis in the community and Howell’s review (Howell,
1998) because of its proximity with our more specific engi-
neering application concerns. These texts provide a sufficient
theoretical framework for most of the algorithms commonly
encountered in concentrated solar research and may serve as
a meaningful ground basis for any further bibliographic
research. We also invite the reader wishing to enter more
deeply in the field of linear transport Monte Carlo to
explore the particle transport literature (Anderson,
1986; Allison, 2006; Agostinelli, 2003), with an emphasis
on the neutron transport and plasma physics literature



(Spanier and Gelbard, 2008; Azmy and Sartor, 2010;
Doolen and Hendricks, 1987; Kalos and Whitlock,
1986; Lux and Koblinger, 1991; Glouchkov et al.,
2003), and the computer graphics literature for specific
questions associated to complex geometries (Veach,
1998; Dutre et al., 2002; Pharr and Humphreys, 2004).

Among more recent methodological advances, the
zero-variance concept and the sensitivity estimation theo-
retical framework are detailed hereafter, as they can be
at least partially translated into simple systematic proce-
dures in the concentrated solar context. Both rely on a
full explicitation of the strict relationship between a lin-
ear transport Monte Carlo algorithm and an integral
transport formulation. This relationship is therefore first
discussed in Section 2.1, which is also the opportunity to
briefly recall the essential steps of designing and optimiz-
ing Monte Carlo algorithms. Section 2.1 will also help
clarifying the description of the four examples of Sec-
tion 4, where advanced Monte Carlo algorithms will only
be discussed in terms of their corresponding integral for-
mulation. Sections 2.2 and 2.3 deal specifically with zero-
variance and sensitivities, with the emphasis on the
aspects that are mature enough for immediate use in
the present context.

2.1. Integral formulation

Just as linear transport equations are specific (among
general transport equations) in the sense that integral solu-
tions can be derived using systematic procedures, linear
transport Monte Carlo algorithms are specific in the sense
that the sampled events are strictly independent, whereas in
non-linear transport Monte Carlo algorithms the random
history of each particle is statistically dependent on that
of the other particles. This means that when considering
a physical quantity A, any approximation ~aN of A corre-
sponding to a linear Monte Carlo algorithm using N sam-
pled events is constructed as

~aN ¼
1

N

XN

i¼1

wi ð1Þ

where w1, w2 . . . wN are N independent realizations of a
given random variable W. Events can be very simple,
as in the standard algorithm for computation of the
shape factor F01 between two black surfaces S0 and S1

(the fraction of the radiation emitted by S0 that impacts
S1), where N straight rays are sampled starting from S0

and where the weight wi takes the value 1 if the ith
ray intersects S1 and 0 otherwise. On the contrary, as
illustrated in Section 4, events become rapidly quite com-
plex as soon as multiple reflection and multiple scattering
phenomena are simulated. But in all cases events are
independent, which has two essential consequences: a
meaningful statistical uncertainty (an evaluation of the
standard deviation of the estimator) is systematically
available as

~rN ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N $ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

w2
i

 !

$ ~a2
N

vuut ð2Þ

and parallel versions of the algorithm are easy to imple-
ment (see Section 3.2).

Let us first consider the above mentioned shape factor
example: the geometrical notations, the Monte Carlo algo-
rithm and its corresponding integral formulation are given
in Fig. 1. The meaning of the integral formulation is simply
that when N! +1, the estimator ~aN evaluates F01 as the
expectation of the random variable W ¼ ŵðX0;X0ðX0ÞÞ,
that is to say EðW Þ ¼

R
S0

pX0
ðx0Þdx0

R
h0ðx0Þ

pX0
ðx0jx0Þ

dx0 ŵðx0;x0Þ, where X0 is a random location uniformly
distributed on S0 and X0(X0) is a random unit vector dis-
tributed according to Lambert law on the hemisphere exit-
ing S0 at X0. On such a simple example, it is obvious that
the integral formulation is a strict translation of the initial
Monte Carlo algorithm. We will see later that even with
very complex algorithms, the translation remains quite
straightforward.

The reverse translation is also very useful. Let us still
consider the computation of F01 but let us now start from
a standard shape factor integral expression:

F 01 ¼
Z

S0

dx0

Z

S1

dx1

½x0ðx0; x1Þ & n0ðx0Þ'½$x0ðx0; x1Þ & n1ðx1Þ'
pS0ðx1 $ x0Þ2

Hðy1 ¼ x1Þ ð3Þ

where n1(x1) is the normal to S1 at location x1 and
x0ðx0; x1Þ ¼ x1$x0ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1$x0Þ2
p is the unit vector from x0 to x1. The

Heaviside notation H(y1 = x1) represents the fact that there
can be no direct exchange from x0 to x1 if the first surface
impact y1 from x0 in the direction x0 occurs before x1. In
such an integral formulation, by comparison with the inte-
gral formulation of Fig. 1, the integration domain is differ-
ent and no statistical view point is introduced. But one can
arbitrarily choose any probability density function pX0

on

S0, for instance pX0
ðx0Þ ¼ 1

S0
, and any probability density

function pX1
on S1, for instance pX1

ðx1Þ ¼ 1
S1

, and report

them into Eq. (3) in order to get the expression of the cor-
responding weight function ŵðx0; x1Þ:

F 01 ¼ EðW Þ ¼
Z

S0

pX0
ðx0Þdx0

Z

S1

pX1
ðx1Þdx1 ŵðx0; x1Þ ð4Þ

with

ŵðx0;x1Þ ¼
1

pX0
ðx0ÞpX1

ðx1Þ
½x0ðx0;x1Þ & n0ðx0Þ'½$x0ðx0;x1Þ & n1ðx1Þ'

pS0ðx1 $ x0Þ2

( Hðy1 ¼ x1Þ ð5Þ

And now this integral formulation can be easily translated
into a new Monte Carlo algorithm as illustrated in Fig. 2.

With these elementary pictures, we can rapidly illustrate
the three techniques that are most commonly used to opti-
mize a given Monte Carlo algorithm: importance sampling,
control variate and integral reformulation. For the purpose



of this illustration, let us consider the very general case of a
Monte Carlo algorithm in which:

– a random vector X of any finite dimension is sampled on
its definition domain DX according to its probability
density function pX,

– a random vector Y of any finite dimension is then sam-
pled on its definition domain DY according to its prob-
ability density function pY, where DY and pY both
depend on the sampled value of X,

– the Monte Carlo weight is computed as a function ŵ of
both the sampled value of X and the sampled value of Y.

The corresponding integral formulation is

A ¼ EðW Þ ¼
Z

DX

pXðxÞdx

Z

DYðxÞ
pYðyjxÞdy ŵðx; yÞ ð6Þ

The only lack of generality is that only two random vectors
X and Y are considered. But all the following statements re-
main strictly valid for a Monte Carlo algorithm involving a
third random vector Z depending on the realizations of X
and Y, or even involving an infinite number of random vec-

tors, as we will see with the multiple reflection, multiple
scattering receiver example. Note that our first shape factor
example belongs to the class of Monte Carlo algorithms
covered by Eq. (6): X is to be related to the location X0

and Y to the direction X0 that is indeed sampled on a def-
inition domain and according to a probability density func-
tion that both depend on the sampled value of X0.

Importance sampling. In Eq. (4) and Fig. 2, the choice of
pX0

and pX1
was arbitrary. Of course this choice has conse-

quences in terms of numerical convergence: the standard
deviation ~rN is modified when modifying pX0

and pX1
and

importance sampling is the task of optimizing these proba-
bility density functions to get small standard deviations
with a limited number of sampled events. Obviously, this
technique is very easy to implement when the algorithm
has been obtained on the basis of a given integral formula-
tion: the X0 and X1 sampling procedures are replaced by
those corresponding to the new probability density func-
tions and the probability density function expressions are
modified in the expression of ŵðx0; x1Þ in Eq. (5). In the
general case, even when the algorithm has been designed
on the basis of statistical physics pictures, without writing

Fig. 1. The standard Monte Carlo algorithm for computation of the shape factor F01 from surface S0 to surface S1, and its corresponding integral
formulation. x0 is a location sampled on S0, n0(x0) is the unit normal exiting S0 at x0, and x0 is a unit vector sampled in the hemisphere h0(x0) exiting S0 at
x0. The location y1 is the first intersection of the half-line (x0, x0) with either S0, S1, or with the limit of the simulation domain. The Heaviside notation
H(y1 2 S1) stands for the value 1 if y1 2 S1 and 0 otherwise.



down the corresponding integrals, it suffices to know that
for linear transport Monte Carlo algorithms an integral
translation exists and that its form is comparable to that
of Eq. (6). Then, replacing the probability density functions
with optimized probability density functions pX,opt and
pY,opt leads to some integral of the form

A ¼ EðW optÞ

¼
Z

DX

pX;optðxÞdx

Z

DYðxÞ
pY;optðyjxÞdy ŵoptðx; yÞ ð7Þ

with

ŵoptðx; yÞ ¼ ŵðx; yÞ pXðxÞ
pX;optðxÞ

pYðyjxÞ
pY;optðyjxÞ

ð8Þ

This means that the explicit integral formulation is not
required: the algorithm is unchanged except that the opti-
mized probability density functions are now used for sam-
pling of X and Y (instead of the original probability density
functions) and that the old weight is now simply multiplied
by the ratios of the original probability density functions to
the optimized probability density functions. However the
probability density function choice can be very subtle, with
some similarities with the question of choosing an opti-
mized non-uniform grid in deterministic numerical
methods.

Control variate. If a function v̂ðx; yÞ can be found such
that

Z

DX

pXðxÞdx

Z

DYðxÞ
pYðyjxÞdy v̂ðx; yÞ ¼ 0 ð9Þ

then the weight function ŵðx; yÞ in Eq. (6) can be replaced
by an hopefully optimized weight function ŵoptðx; yÞ ¼
ŵðx; yÞ þ v̂ðx; yÞ. Indeed

A ¼
Z

DX

pXðxÞdx

Z

DYðxÞ
pYðyjxÞdy ŵoptðx; yÞ

¼
Z

DX

pXðxÞdx

Z

DYðxÞ
pYðyjxÞdy ½ŵðx; yÞ þ v̂ðx; yÞ' ð10Þ

As for importance sampling, the explicit integral formu-
lation is not required: is suffices to know that the pondered
integral of v̂ is null. A practical example will be mentioned
below in which v̂ could be chosen using simple physical pic-
tures without any manipulation of the full integral
expressions.

Integral reformulation. We have seen with the shape fac-
tor example that two distinct integral formulations could
be used, leading to two different algorithms. Obviously this
is also a way – in practice the most efficient – to reduce the
variance of Monte Carlo algorithms. If the extensions of
the surfaces S0 and S1 are small compared to the distance
between the two surfaces, then the standard algorithm
(where a location x0 is sampled on S0 and a direction x0

is sampled in the exit hemisphere) will show a very slow
convergence rate. Indeed most rays will not intersect S1,
the corresponding weights will be null, and very seldom

Fig. 2. Monte Carlo algorithm for computation of the shape factor F01 from surface S0 to surface S1. This algorithm is constructed on the basis of the
standard shape factor integral expression of Eq. (3). x0 is the unit vector pointing from the location x0, sampled on S0, to the location x1, sampled on S1.
The notation H(y1 = x1) stands for the value 1 if x1 is the first intersection of the half-line (x0, x0) with S1 (no blocking), and 0 otherwise.



an intersection will occur leading to a weight value of 1:
consequently the relative standard deviation of the estima-
tor tends to infinity when the distance between the two sur-
faces tends to infinity. On the contrary, the second
algorithm (where a location x0 is sampled on S0 and a loca-
tion x1 is sampled on S1) leads to a relative standard devi-
ation that tends to zero in the same limit. Depending on the
characteristics of the problem, a formulation can therefore
be ideally suited or fully unadapted, and a regular practice
of Monte Carlo methods implies undeniably that one has
grown enough confidence to enter deep into the integral
formulation and transform it (on the basis of available
physical pictures) when serious convergence difficulties
are encountered.

Illustrations. Let us further illustrate these three con-
cepts (importance sampling, control variate and integral
reformulation) using a simplified version of the third exam-
ple of Section 4. A perfectly collimated uniform beam of
monochromatic surfacic power density um is incident per-
pendicularly to the horizontal plane glass window of a flu-
idized bed receiver. The window, noted G, is perfectly
transparent and all refraction effects are neglected. The
other surfaces, noted R, are diffuse perfectly reflective.
The gas–particle mixture filling the volume is purely
absorbing (no scattering) with an uniform monochromatic
absorption coefficient ka,m. One among the various Monte
Carlo algorithms allowing the evaluation of the radiative
power A absorbed by the volume in a given frequency
interval [mmin, mmax] is detailed in Fig. 3: it starts with the
uniform sampling of a frequency m on [mmin, mmax] and a uni-
form sampling of an entrance location x0 on the window,
and then a multiple reflection path is followed where reflec-
tion directions are sampled at each surface encounter, until
exit through the window.

When translating such an algorithm into an integral for-
mulation, the only additional difficulties (by comparison
with the preceding examples) are associated to the integra-
tion domain, that is now of infinite dimension, and to the
branching tests xj 2 G and xj 2 R. For the branching tests,
a generic Heaviside notation can be used where, for
instance, Hðxj 2 GÞ is to be interpreted as Hðxj 2 GÞ ¼ 1
if xj 2 G and Hðxj 2 GÞ ¼ 0 otherwise. Infinite dimension
is a direct consequence of multiple reflection (multiple
reflection and multiple scattering in the general case) and
the formal difficulty of writing expressions including an
infinite number of integral signs can be bypassed, in this
specific context, thanks to the Fredholm formalism. For
didactic reasons, in the integral formulation of Fig. 3, each
of the successive integrals is written down as a translation
of each of the successive sampling procedures. But it is
worth pointing out that Fredholm formalism is very useful
in the process of classifying and analyzing common fea-
tures of Monte Carlo algorithms. As in the previous shape
factor examples, the fact that there is a one-to-one relation-
ship between this integral expression and the algorithm is
obvious, and although the integral expressions get rapidly
very long, they remain quite easy to interpret. A simple first

consequence is that independently of any attempt to trans-
form these integrals for convergence enhancement, they are
at least an alternative to the often very long textual descrip-
tions of algorithms, and they facilitate the task of rigor-
ously controlling that the algorithm indeed converges to
the addressed quantity.

Various convergence difficulties can be encountered
when using integral formulations such as that of Fig. 3.
Let us consider for instance the particular case where the
receiver is filled with a gas (no particle) which absorption
spectrum is composed of n lorentzian absorption lines of
center frequencies mc,1, mc,2 . . . mc,n, intensities s1, s2 . . . sn

and half width at half height d (see Fig. 4). If d is small
compared to the average distance between successive line
centers, it is possible that absorption is only significant at
frequencies in the immediate vicinity of line centers. There-
fore, as frequency is sampled uniformly on [mmin, mmax],
most sampled events will lead to weight values close to zero
and the standard deviation of the estimator will be high.
Importance sampling will then be immediately useful if
the optimized frequency probability density function favors
the frequency regions around the lines. We will come back
to this example in Section 2.2. Another example of conver-
gence difficulties is the case where the considered quantity
is not the radiative power absorbed by the whole volume
V, but that absorbed by a small part X of this volume
(for instance one of the sub-volumes corresponding to a
spatial discretization of the receiver when radiative transfer
is computed to be coupled with other local heat transfer or
chemical processes). In such a case, the only modification
to the preceding algorithm is that the absorption
rate [1 $ exp ($ka,mdj)] is replaced by

Pmj
q¼1

expð$ka;mbqÞ½1$ expð$ka;mcqÞ' where bq is the length of
the multireflection optical path until the qth intersection
with X’s boundary, cq is the length of the path within X
at this qth encounter and mj is the number of times the path
crosses X before exit through the window at xj (see Fig. 3).
As soon as X is very small compared to the whole volume,
most of the optical paths never encounter X (exit through
the window or surface absorption occur before the first
encounter) and most events lead therefore to a strictly null
value of the weight. Again, the consequence is a high value
of the standard deviation of the estimator. The common
way to bypass this convergence difficulty is to make use
of a simple integral reformulation in which the optical path
is not followed from the entrance through the window until
exit or absorption, but is followed backward from the con-
sidered sub volume to the entrance through the window.

Using this receiver example, at solar frequencies, it is dif-
ficult to convincingly illustrate the control variate technique,
but if we consider the question of simulating the same system
at infrared frequencies, then a new convergence difficulty
occurs that is easily bypassed with the introduction of a con-
trol variate. At infrared frequencies we are commonly inter-
ested by radiative power balances: the radiative power
absorbed by the volume minus the emitted one. If we con-
sider the limit case where the system is isotherm, this balance



Fig. 3. Simplified version of the fluidized bed receiver example of Section 4. A perfectly collimated uniform beam of monochromatic surfacic power
density um is incident in the direction x0, perpendicularly to an horizontal plane glass window G. The gas–particle mixture filling the volume is purely
absorbing (no scattering) with a uniform monochromatic absorption coefficient ka,m. Refraction by the window is neglected and the surface of the receiver
R is assumed diffuse perfectly reflective. nq is the inward surface normal at the location xq of the qth intersection withR[ G. The reflected direction at xq is
noted xq. dj ¼

Pj$1
q¼0kxqþ1 $ xqk is the length of the multireflection optical path x0, x1, x2 . . . xj and [1 $ exp ($ka,mdj)] is the absorption rate along this

path. When a sub-volume X is introduced, bq is the length of the multireflection optical path until the qth intersection with X’s boundary and cq is the
length of the path within X at this qth encounter.

Fig. 4. A gas absorption spectrum example including four Lorentzian lines.



is null. But as most algorithms follow optical paths from an
emission location to an absorption location, they commonly
evaluate separately the absorption and emission parts and
they don’t produce a strictly null evaluation of the balance.
If the system is not isotherm but is now close to a given tem-
perature Tref, then the radiative power balance corresponds
to a small difference between the emission and the absorp-
tion contributions. But evaluating accurately a quantity as
the difference of two close quantities requires low relative
uncertainties, which means that a very large number of
events will be needed to ensure that both emission and
absorption are evaluated with enough accuracy for their dif-
ference to be meaningful. This implies that the relative stan-
dard deviation of the balance estimator tends to infinity
when the relative maximum temperature difference tends
to zero. For concentrated solar application we are seldom
dealing with quasi-isotherm systems, but when intense con-
vection is at work the system can still be isotherm enough for
such convergence difficulties to be met, as is indeed the case
in the bottom part of the fluidized bed receiver example of
Section 4. Many advanced solutions are available (Cherka-
oui et al., 1996; Howell, 1998) but a very simple one can be
rapidly exposed here: we know that the weights correspond-
ing to the isotherm case lead to a null solution at the limit of
an infinite number of events, which represents therefore a
possible choice for a control variate in the sense of Eq. (9).
In practice, using this control variate, the algorithm struc-
ture is identical, but each time the Planck function Ieq

m ðT Þ is
used to represent the thermal emission at a location where
the temperature is T, this Planck function value is simply
replaced by the difference Ieq

m ðT Þ $ Ieq
m ðT ref Þ and the problem

of evaluating the difference between two large quantities
vanishes as we are now evaluating the deviation to the iso-
therm case.

2.2. Zero-variance

Let us now use the type of integral formulations illus-
trated above to comment on the benefits that can be made
of the zero-variance concept in application fields such as
concentrated solar research. As illustrated in Assaraf
and Caffarel (1999), Hoogenboom (2008), zero-variance
algorithms are as old as the Monte Carlo method itself.
They are algorithms such that for each event the weight
value is strictly identical to the addressed quantity itself
(with the preceding notations, W is distributed according
to a Dirac distribution centered on A). This means that
only one single event is required to get a perfect estima-
tor. In the process of designing a zero-variance algorithm
for the estimation of A, an a priori perfect knowledge of
A is required, which means that such an ideal algorithm
can only be practically implemented when it is useless
(when A is known). However, even outside pure theoret-
ical considerations, we will argue that working on integral
formulations along the line of Assaraf and Caffarel
(1999), Hoogenboom (2008), as if all exact solutions were
available, is an efficient way to orient, in a quasi-system-

atic manner, the above-listed optimization procedures
(mainly importance sampling and integral reformulation).
The heart of zero-variance theory, as exposed in the
recent literature, is based on adjoint models, but hereafter
the objective will be to briefly expose the underlying prin-
ciples and translate them into application examples using
the above presented material. For advanced consider-
ations, all the required concepts are exposed in a clear
and detailed manner in Hoogenboom (2008). Note also
that there is here a possible confusion with the variance
reduction literature: research efforts concerning the zero-
variance concept have very little in common with auto-
matic importance sampling techniques, where the sampled
weights are statistically analyzed along the simulation
process (and a tunable sampling procedure is gradually
adjusted on the basis of the gathered statistical informa-
tion). Here the approach is different: the addressed ques-
tion is the physical understanding of the information
required to ideally optimize a given algorithm (when pos-
sible). If this information is easily accessible (under any
approximate form) an optimized version of the algorithm
can be designed in a straightforward manner (and can
even be combined with automatic importance sampling
techniques). If it is not easily accessible, then the reasons
can be physically analyzed in order to suggest meaningful
integral reformulations.

Ideal optimization can be easily illustrated using a one
dimension version of Eq. (6):

A ¼ EðW Þ ¼
Z

DX

pX ðxÞdx ŵðxÞ ¼
Z xmax

xmin

pX ðxÞdx ŵðxÞ ð11Þ

where the definition domain of the random variable
X is the segment DX ¼ ½xmin; xmax', and where the weight
function ŵ is assumed strictly positive on this segment.
Applying the procedure of Eq. (7) with the ideally opti-
mized probability density function pI

X ;optðxÞ ¼
pX ðxÞ ŵðxÞ

A leads
to

A ¼ EðW optÞ ¼
Z xmax

xmin

pI
X ;optðxÞdx ŵoptðxÞ ð12Þ

with ŵoptðxÞ ¼ ŵ pX ðxÞ
pI

X ;optðxÞ
¼ A for all x in [xmin, xmax]. The ran-

dom variable W opt ¼ ŵoptðX Þ is therefore distributed
according to a Dirac distribution centered on A and the
variance of the estimator ~aN is strictly null: the algorithm
evaluates A exactly whatever the number of events, even
with one single event.

We can translate this into a practical example consider-
ing the preceding solar receiver in the particular case where
all opaque surfaces are now black and where the geometry
is a cylinder of height h. Then all reflections vanish, the
weight is independent of the entrance location x0 and the
integral formulation of Fig. 3 becomes

A ¼
Z mmax

mmin

pmðmÞdm ŵðmÞ ð13Þ



with ŵðmÞ ¼ umSGðmmax $ mminÞ½1$ expð$ka;mhÞ'. The fre-
quency m plays here the role of X in Eq. (11) and the ideal
optimization is achieved with

pI
m;optðmÞ ¼

pmðmÞ ŵðmÞ
A

¼ um½1$ expð$ka;mhÞ'R mmax

mmin
um½1$ expð$ka;mhÞ'dm

ð14Þ

This ideally optimized probability density function is
therefore a normalized form of the product pmðmÞ ŵðmÞwhere
the normalization coefficient is A itself. Of course, if a Monte
Carlo algorithm is being designed, it is because the um and
ka,m spectra are complex enough for A to be difficult to eval-
uate and therefore pI

m;opt is essentially impractical. Its only
interest is in the process of choosing an approximate model
leading to a non-ideally but satisfactorily optimized proba-
bility density function. For such spectral considerations, a
common practice is to consider the optically thin and opti-
cally thick limits. At the optically thick limit, the exponen-
tials tend to zero at all frequencies and

pI
m;optðmÞ *

umR mmax

mmin
umdm

ð15Þ

At the optically thin limit, the exponentials can be line-
arized and

pI
m;optðmÞ *

umka;mR mmax

mmin
umka;mdm

ð16Þ

The code designer then addresses the question of choos-
ing a criterion on h to retain one of the two limit cases, or a
linear combination of them (remembering that this only
affects the convergence behavior but not the limit value
of the estimate at N! +1), and finally designs efficient
ways of sampling m according to these probability density
functions, for instance using pre-tabulated discrete proba-
bility density functions covering all the encountered um

and ka,m spectra.
Thinking in terms of zero-variance algorithms gets

slightly more complex as soon as each event requires the
sampling of more than one random variable. Let us con-
sider formally the question of reducing the variance to zero
using importance sampling on the basis of Eq. (6) where
each event is defined via the sampling of two random vari-
ables X and Y. Introducing two ideally optimized probabil-
ity density functions pI

X;opt and pI
Y;opt, we write (see Eqs. (7)

and (8))

A ¼
Z

DX

pI
X;optðxÞdx

Z

DYðxÞ
pI

Y;optðyjxÞdy ŵI
optðx; yÞ ð17Þ

with

ŵI
optðx; yÞ ¼

pXðxÞ
pI

X;optðxÞ
pYðyjxÞ

pI
Y;optðyjxÞ

ŵðx; yÞ ð18Þ

where pI
X;opt and pI

Y;opt are chosen such that ŵI
optðx; yÞ ¼ A.

This imposes in particular that ŵI
opt is independent of y,

which means that the ratio pYðyjxÞ ŵðx;yÞ
pI

Y;optðyjxÞ
must be independent

of y whatever x. This requires that

pI
Y;optðyjxÞ ¼

pYðyjxÞ ŵðx; yÞR
DYðxÞ

pYðyjxÞ ŵðx; yÞdy
ð19Þ

and reporting this expression into Eq. (18) leads to

pI
X;optðxÞ ¼

pXðxÞAXðxÞR
DX

pXðxÞAXðxÞdx
ð20Þ

with AXðxÞ ¼
R
DYðxÞ

pYðyjxÞ ŵðx; yÞdy. These few lines dem-
onstrate that the ideally optimized probability density
functions are unique and that they can be constructed suc-
cessively following the same procedure as the one illus-
trated in the first example with a single integral. For the
integral over x, we introduced AX(x) that is the
contribution to A of all events with the same sampled x
value,

A ¼
Z

DX

pXðxÞdxAXðxÞ ð21Þ

and assuming that AX(x) is known, Eq. (20) simply means
that the ideally optimized probability density function pI

X;opt
accounts simultaneously for both the probability of x to
occur and the contribution of x to the final result. For
the second integral and for any sampled value of x, Eq.
(19) corresponds to the ideal optimization process applied
to

AXðxÞ ¼
Z

DYðxÞ
pYðyjxÞdyAYðyjxÞ ð22Þ

with AYðyjxÞ ¼ ŵðx; yÞ. The process would be the same if
Eq. (17) would include more than two integrals: AY(yjx)
would have an integral form and each new integral would
lead to the definition of a new ideally optimized probability
density function.

As already mentioned, pI
X;opt and pI

Y;opt (and the even-
tually other successive probability density functions)
cannot be used as such and their expressions are only
useful under approximate forms corresponding to the
introduction of simplified physical models allowing ana-
lytic integrations. Let us illustrate this point coming
back to the example of Fig. 3 in its initial form, with
any geometry and perfectly reflective surfaces. With
such an algorithm, convergence difficulties are essentially
encountered when complex spectral properties are intro-
duced, such as in the case of gaseous absorption (as
already mentioned in Section 2.1 and Fig. 4). If we
apply the same methodology as in Eqs. (19) and (20)
to the successive integrals of the integral formulation
of Fig. 3, we get



pI
m;optðmÞ ¼

pmðmÞAmðmÞR mmax

mmin
pmðmÞAmðmÞdm

ð23Þ

pI
X0;optðx0jmÞ ¼

pX0
ðx0ÞAX0

ðm; x0ÞR
G pX0
ðx0ÞAX0

ðm; x0Þdx0
ð24Þ

pR;IX1;optðx1jm; x0Þ ¼
pRX1
ðx1ÞAX1

ðm; x0;x1ÞR
2p pRX1

ðx1ÞAX1
ðm; x0;x1Þdx1

ð25Þ

pR;IX2;optðx2jm; x0;x1Þ ¼
pRX2
ðx2ÞAX2

ðm; x0;x1;x2ÞR
2p pRX2

ðx2ÞAX2
ðm; x0;x1;x2Þdx2

ð26Þ

. . . ð27Þ

Then the question is: how can we model Am;AX0
;AX1

, etc.
using simple enough physical approximations so that all
expressions can be handled analytically and so that efficient
sampling procedures are available for each of the resulting
optimized probability density functions? This question is
seldom trivial, and the common practice is to concentrate
on the main source of variance. In the present example,
we should then concentrate on the sampling of frequency.
But this requires that we are able to derive a simple
approximation of Am, that is to say of the monochromatic
total absorption by the gas along all multi-reflection optical
paths. This may sound extremely difficult, but we must
keep in mind that we are only seeking information in order
to efficiently orient the sampling procedure (here to concen-
trate on the sampling of frequency in the vicinity of line
centers when required) and that approximating the ideally
optimized probability density function using very simple
approximations can reduce the standard deviation of the
estimator by orders of magnitude (for instance in the opti-
cally thin limit with thin absorption lines). We can there-
fore use any estimate of the average length hLi of multi-
reflection optical paths within the receiver (Blanco and
Fournier, 2003; Blanco and Fournier, 2006), as function
of the receiver’s geometry and of the surface emissivities,
and write (retaining only the frequency dependence)

Am * um½1$ expð$ka;mhLiÞ' ð28Þ

We are then nearly back to the first example of the present
subsection and we can make use of the optically thin and
optically thick limits as indicated above.

But even lower variances can be reached thinking in
terms of zero-variance algorithms if we allow us to consider
not only importance sampling but also simple integral
reformulations. Indeed, when optimizing the frequency
probability density function using hLi as indicated above,
frequency sampling may remain the main source of vari-
ance. The reason is that even if hLi is accurately evaluated,
this average value can be the result of small paths (exit after
one reflection at a surface location close to the entrance)
for which the optimized probability density function
derived at the optically thin limit could be satisfactory,
and long multiple reflection paths for which the optically
thick limit would be better adapted. And we cannot distin-
guish these two types of optical paths because frequency is
the first sampled variable, before the optical path sampling.

But here the surfaces are perfectly reflective and the multi-
ple reflection optical path sampling procedure is indepen-
dent of frequency. We can therefore invert integrals in
the integral formulation of Fig. 3 to get

A ¼
Z

G
pX0
ðx0Þdx0

Hðx1 2 GÞ
Z mmax

mmin

pm1
ðm1Þdm1 ŵ1 þ Hðx1 2 RÞ

Z

2p
pRX1
ðx1Þdx1

"

Hðx2 2 GÞ
Z mmax

mmin

pm2
ðm2Þdm2 ŵ2 þ Hðx2 2 RÞ

Z

2p
pRX2
ðx2Þdx2

"

. . .gg

ð29Þ

with pmj
ðmjÞ ¼ 1

mmax$mmin
. This corresponds to an algorithm in

which a multiple-reflection photon trajectory is sampled
first, and frequency is sampled afterward, at a stage where
the trajectory length dj is known. In terms of ideal optimi-
zation, this integral inversion induces a significant simplifi-
cation in the sense that

pI
mj;optðmjÞ ¼

pmj
ðmjÞ ŵjR mmax

mmin
pmj
ðmjÞ ŵjdmj

¼
umj
½1$ expð$ka;mj djÞ'R mmax

mmin
umj
½1$ expð$ka;mj djÞ'dmj

ð30Þ

which means that we are now strictly back to the first
example of Eq. (14) where the optimization procedures
based on the optically thin and thick limits are efficient,
using for instance a choice criterion based on the compar-
ison of ka;mj dj with unity. Extension to partially reflective
non-gray surfaces is quite straightforward: it only requires
that a spectral-average bidirectional reflectivity function is
used when constructing the optical path at a stage where
frequency is not yet sampled, and once frequency is sam-
pled, the weight is pondered by the product of the mono-
chromatic reflectivity to spectral-average reflectivity ratios.

In the preceding derivations, it is important to note that
an assumption was implicitly made: ŵ was assumed to be
strictly positive, otherwise pI

X;opt and pI
Y;opt (Eqs. (19) and

(20)) could not be interpreted as optimized probability den-
sity functions. Of course, if ŵ is strictly negative, the diffi-
culty can be easily bypassed using a simple sign change,
but the above presented zero-variance methodology does
not apply when the weight function changes sign across
the integration domain. More subtle approaches can be
used is such cases, based on integral reformulations, for
instance adding a constant value that shifts the weight
function and turns it into a strictly positive or strictly neg-
ative function, but nothing fully systematic could be pro-
posed. Section 2.3 will illustrate how sign changes may
lead to effective difficulties when evaluating the sensitivities
of A to parameters appearing in the sampling probability
density functions.

We will end this subsection with multiple scattering, that
was devoted a very specific attention in the zero-variance
literature and that is directly relevant to the question of
simulating some of the most recently designed solar receiv-
ers. As will be illustrated in Sections 4.3 and 4.4, solar



receivers involving multiple scattering of radiation by parti-
cle suspensions may rapidly be associated with strong con-
vergence difficulties when using standard Monte Carlo
algorithms. This question was first encountered in the early
stage of nuclear technologies with the attempts to design
nuclear protection devices using the overall reflection fea-
tures of layers composed of highly scattering material (Ham-
mersley and Handscomb, 1964). This required that the very
weak amount of radiation transmitted through the layer be
predicted with a few percents accuracy, which represented
an extremely high accuracy level in terms of percentage of
the incident radiation, and such an accuracy could not be
reached with the most common Monte Carlo algorithms.
This led to an extensive research literature that cannot be
fully summarized here but is worth a close attention consid-
ering today’s convergence open questions. The work of Ber-
ger (1955, 1956), closely revisited in Hammersley and
Handscomb (1964), is maybe one of the best examples of
how freely the integral formulation can be transformed when
one is driven by the ideal objective of a zero-variance algo-
rithm. This led to a failure for subtle numerical reasons,
but the corresponding attempt remains pedagogically the
more convincing illustration of such methodologies. The
work of Hoogenboom (2008), although very academic,
was much more successful. Some of its implications are far
reaching and are briefly illustrated hereafter, thinking of
concentrated solar applications. The reader should however
keep in mind that the question of optimizing multiple scat-
tering algorithms remains a fully open question as far as real-
istic devices are concerned.

Let us again consider the fluidized bed receiver example
of Section 2.1 with particles that are now both absorbing
and scattering. For simplification the absorption coefficient
ka,m, the scattering coefficient ks,m and the phase function
ps,m(xjxinc) (that is to say the probability density function
of the outgoing direction x after scattering for an incoming
direction xinc) are assumed uniform. An example of non-
uniform scattering is provided in Sections 2.3 and 4.3.
The side surface S is still diffuse perfectly reflective, but
the bottom surface B is now black and the addressed quan-
tity is now the radiative flux at the bottom. The algorithm
of Fig. 3 can be easily modified to address this new quan-
tity including scattering. Once xj and xj are determined, an
optical thickness jj is sampled on ]0, +1[ according to
Beer extinction law pBeer(j) = exp($j) and the next loca-
tion xj+1 + xj+1(xj, xj, jj) is at the surface, that is to say
xjþ1 ¼ yjþ1 2 S [ G [ B, if jj > ks,mjyj+1 $ xjj (where yj+1 is
the intersection with the total surface of the receiver of
the straight ray starting at xj in the direction xj, see
Fig. 5), and is in the volume otherwise, at the scattering
location, that is to say xjþ1 ¼ xj þ jj

ks;m
xj. When xj+1 is at

the surface, xj+1 is sampled according to the reflection
law as in Section 2.1, and when xj+1 is in the volume,
xj+1 is sampled according to the phase function. The opti-
cal path ends when the bottom surface (absorption) or the
glass window (exit) are encountered. This means that the
corresponding integral formulation includes sequences

such as (see Sections 4.3 and 4.4 for complete formulation
examples)

. . .

Z 1

0

pjj
ðjjÞdjj

"
Hðxjþ1 2 B [ GÞ ŵjþ1 þ Hðxjþ1 2 SÞ

Z

2p
pSXjþ1
ðxjþ1Þdxjþ1 ASXjþ1

ð. . . ; jj;xjþ1Þ þ Hðxjþ1 2 VÞ
Z

4p
pVXjþ1
ðxjþ1Þdxjþ1AVXjþ1

ð. . . ; jj;xjþ1Þ
#

ð31Þ

with pjj
ðjjÞ ¼ expð$jjÞ and pVXjþ1

ðxjþ1Þ ¼ ps;mðxjþ1jxjÞ,
and where AVXjþ1

ð. . . ; jj;xjþ1Þ represents formally all the
successive next integrals in the scattering case, and is there-
fore the contribution to the final result of all optical paths
having the same initial history, up to a scattering event at
xjþ1 2 V with a scattering direction xj+1, and differing only
afterward1. When encountering convergence difficulties
one will try, for instance, to optimize the sampling of the
scattering direction xj+1 in order to get a lower variance
of the estimated radiative flux at the bottom of the receiver.
Let us first comment on the kind of attempts that could be

Fig. 5. An example of a multiple scattering, multiple reflection optical
path within the receiver, leading to an absorption at the bottom.

1 ASXjþ1
is similarly the contribution to the final result of all optical paths

having the same initial history, up to a reflection at xjþ1 2 S with a
reflection direction xj+1. Eq. (31) provides an explicit representation of the
four algorithmic branches: xj+1 is the location of either an absorption at
the bottom B, or an exit through the window G, or a reflection on the side
surface S, or a scattering event within the volume V.



made without the use of any specific theoretical support.
This will help us to illustrate how different (and not imme-
diately intuitive) can be the physical pictures resulting of
the zero-variance approach.

The convergence difficulties are associated with the fact
that when the volume of the receiver is highly scattering,
most sampled optical paths never reach the bottom of the
receiver: the probability is high that after a few scattering
events photons are back scattered through the window
and only the unlikely trajectories penetrating deep into
the volume can contribute to the bottom flux. The variance
of the bottom flux estimator can therefore be extremely
high for high scattering optical thicknesses (ks,mh, 1 where
h is the total height of the receiver, see Fig. 5). Thinking in
terms of importance sampling, one of the first attempts
could therefore be to favor the scattering directions toward
the bottom. This leads indeed to significant variance reduc-
tions if the probability density function of xj+1 is subtly
adjusted, but this is only true for small single scattering
albedo ks;m

ka;mþks;m
(that is to say for relatively small values of

the scattering coefficient ks,m compared to the absorption
coefficient ka,m). For high single scattering albedo such an
attempt to favor the directions toward the bottom leads
systematically to an increase of the variance. This means
that the physical picture that we associated to the conver-
gence difficulties is at least partially incorrect.

Applying the zero-variance methodology to analyze this
contradiction, one first defines rigorously the ideally opti-
mized probability density function

pV;IXjþ1;optðxjþ1Þ ¼
pVXjþ1
ðxjþ1ÞAVXjþ1

ð. . . ; jj;xjþ1Þ
R

4p pVXjþ1
ðx0jþ1ÞA

V
Xjþ1

. . . ; jj;x0jþ1

$ %
dx0jþ1

ð32Þ

and then uses approximate models to understand its main
features. In particular, does pV;IXjþ1;opt favor or not the sam-
pling of directions toward the bottom? The simplest approx-
imate model of radiation propagation in highly scattering
materials is the diffusion approximation. Under this approx-
imation the angular distribution of photons at each location
is quasi-isotropic and all radiative quantities can be evalu-
ated using only the spatial distribution of the photon density:
there is no need to distinguish the photons by their propaga-
tion direction. As far as our problem example is concerned,
this implies that AVXjþ1

ð. . . ; jj;xjþ1Þ is quasi-independent of
xj+1: photons propagating toward the bottom do not con-
tribute significantly more to the flux at the bottom of the re-
ceiver than those propagating in any other direction. The
ideally optimized probability density function is therefore
approximately

pV;IXjþ1;optðxjþ1Þ *
pVXjþ1
ðxjþ1ÞAVXjþ1

ð. . . ; jj;xjþ1Þ

AVXjþ1
ð. . . ; jj;xjþ1Þ

R
4p pVXjþ1

x0jþ1

$ %
dx0jþ1

¼ pVXjþ1
ðxjþ1Þ ¼ ps;mðxjþ1jxjÞ

ð33Þ

According to the diffusion approximation, sampling direc-
tions according to the phase function (as in any standard
algorithm) is therefore very close to the ideal sampling,
which provides a simple explanation of why all attempts to
favor scattering directions toward the bottom lead to worse
convergence properties. Such attempts are in fact only mean-
ingful at locations where the diffusion approximation is not
valid, that is to say close to the boundaries (as far as we are
concerned, close to the light entrance window and close to
the bottom of the receiver). Ideal optimization therefore im-
plies that for the first scattering events, immediately after the
photon entrance through the window, angular sampling
should be biased toward the bottom, then the phase function
should be used, without any bias, for all other scattering
events, until the immediate vicinity of the bottom is reached
where again the directions toward the bottom should be fa-
vored. Obviously, such a procedure is very difficult to imple-
ment as each scattering event must be treated differently,
depending on its location, on the basis of any fast evaluation
of AXjþ1

and its dependence on xj+1. This could be achieved
successfully for pure one dimension scattering, but dealing
with realistic configurations such as those of Sections 4.3
and 4.4 remains an open question: convergence difficulties
are so commonly encountered, in so many application fields,
when dealing with highly scattering media with the Monte
Carlo method, that the above summarized ideas, initiated
in Hoogenboom (2008), are undeniably worth a very close
further attention.

2.3. Sensitivity analysis

The benefits of integral formulation efforts extend
beyond the question of bypassing convergence difficulties:
they are very significant in the process of analyzing (phys-
ically interpreting) simulation results. Among such analy-
sis, the one that was devoted the deeper theoretical
attention is sensitivity analysis. It was shown, using a gen-
eral and systematic approach, that when a Monte Carlo
algorithm is used for the estimation of any physical quan-
tity A, a simple and fast additional procedure can be imple-
mented that simultaneously estimates the sensitivity of A to
any parameter. This practically means that when a Monte
Carlo code is available that computes A, very few addi-
tional code lines are required to transform it so that not
only A is computed but also the partial derivatives of A
with respect to all the parameters of interest, this interest
being either in terms of physical analysis (how does A
evolve when modifying the parameter?), or in terms of opti-
mum design (what is the optimum value of the parameter
considering a target value for A?). Such sensitivities of A
to a parameter p are noted opA hereafter.

Prior to any formal consideration, we want to emphasize
that the keywords “Monte Carlo” and “Sensitivity Analysis”
are often associated in the literature for reasons that have noth-
ing to do with the simultaneous evaluation of A and opA. The
commonly accepted meaning of “Sensitivity Analysis” is
indeed much broader than analyzing the behavior of a model



by measuring local derivatives with respect to successive
parameter (Saltelli et al., 2004; Cacuci, 2003). It refers to
the analysis of the ways A depends on the variations of
all types of model parameters, boundary conditions and
initial conditions (for unstationary studies). This includes
non-linear responses to finite-size perturbations and com-
bined perturbations of multiple inputs viewed as random
variables (for instance because of measurements uncertain-
ties in data assimilation contexts). Evaluation of local
derivatives opA is therefore only a restricted class of sensi-
tivity-analysis tools. However, to the best of our Knowl-
edge, it is the only class for which the use of advanced
integral formulation techniques was reported. Considering
the scope of the present article, we concentrate exclusively
on how opA can be evaluated together with A. The main
point is that not only the code is little modified, but the
computation time is also little increased because the evalu-
ation of opA uses the same sampling events as those ini-
tially required for the evaluation of A. However two
distinct difficulties may be encountered when implementing
sensitivity computations: first, even if the resulting imple-
mentation is easy the required integral formulation can
be very tedious; second, nothing ensures that if the sam-
pling distributions have been carefully adjusted so that
A is accurately estimated, then opA is accurately esti-
mated using the same number of sampled events (the
zero variance algorithms for A and opA may have noth-
ing in common).

In practice, prior to any development, three questions
must be examined, each positive answer adding one com-
plexity level in terms of both formal derivation and statis-
tical convergence:

1. Do the sampling probability density functions depend
on p?

2. Does the integration domain depend on p?
3. Does p appear in any algorithmic test?

Case a: Let us first consider a simple case in which all
answers are negative. If pX ; pY ;DX and DY in Eq. (6) are
independent of p, and if ŵðx; yÞ + ŵðx; y; pÞ is a continu-
ous function of p (no algorithmic test involving p), then
opA can be written as

@pA ¼ EðW pÞ

¼
Z

DX

pXðxÞdx

Z

DYðxÞ
pYðyjxÞdy ŵpðx; y; pÞ ð34Þ

with ŵp ¼ @pŵ. The only difference between the integral
formulations of Eqs. (6) and (34) is that the weight function
ŵ is replaced by its partial derivative. This simply means
that A and opA can be evaluated using the very same sam-
pling algorithm: for each i 2 h1,Ni, xi is sampled according
to pX, yi is sampled according to pY under the condition
x = xi, wi is computed as ŵðxi; yiÞ;wp;i is computed as
@pŵðxi; yiÞ;A is evaluated using the estimate ~aN ¼
1
N

PN
i¼1wi and opA using the estimate ~ap;N ¼ 1

N

PN
i¼1wp;i.

We will see that in all cases (whatever the answers to the
above three questions), the same algorithmic structure
can be kept, modifying only the way wp,i is computed.
But sticking to the present case, a first possible convergence
difficulty can be pointed out: as suggested in de Lataillade
et al. (2002), let us consider an example where ŵ has the
functional form ŵðx; y; pÞ ¼ f ðx; yÞ þ pgðx; yÞ in the par-
ticular case of p = 0. This leads to ŵðx; y; 0Þ ¼ f ðx; yÞ
and ŵpðx; y; 0Þ ¼ gðx; yÞ. In such a case, the weight func-
tions corresponding to A and opA can obviously be so dis-
tinct (we imposed no constraint relating f–g except that
they are both independent of p) that if the sampling algo-
rithm was optimized so that it evaluates A accurately, then
the variance of the sensitivity estimator is impractically
large. Hopefully such extreme cases have only been identi-
fied theoretically and our practice of implementing sensitiv-
ity computations has always been successful when the
integration domain, the sampling probability density func-
tions and the algorithmic tests did not involve the consid-
ered parameter.

Case b: Let us now assume that the above first question
is answered positively and the two others negatively. The
sampling probability density functions pX and pY depend
on p and Eq. (6) leads again to Eq. (34) with

ŵp ¼ @pŵþ ŵ
@ppX

pX

þ @ppY

pY

& '
ð35Þ

The algorithmic conclusions are therefore identical to
those of case a, but the convergence question is complex-
ified as soon as the second and third terms of the right
side of Eq. (35) are not negligible compared to the first
one. The main reason is that the partial derivatives of
the probability density functions change sign across their
definition domain. Indeed the normalization constraintR
DX

pX ðxÞdx ¼ 1 imposes that
R
DX
@ppXðxÞdx ¼ 0 which

tells us that oppX takes positive and negative values
across DX that compensate each other. As mentioned
in Section 2.2, weight function sign changes can be
sources of convergence difficulties (no zero-variance algo-
rithm can be easily designed) and it can be shown, in the
present example, that such difficulties can for instance be
practically encountered as soon as the variations with x
of ŵ and @ppX

pX
are weakly correlated (the integral

contribution of @ppX

pX
ŵ will tend to zero but its contribu-

tion to the variance of the estimator of opA can be
large).

Case c: A positive answer to the second question leads to
domain deformation sensitivities as defined in Roger et al.
(2005). We will assume that the first question is still answered
positively and, for simplification, that DX and DY are finite
segments of one dimension domains. Let us write
DX ¼ ½a1ðpÞ; b1ðpÞ' and DY ¼ ½a2ðx; pÞ; b2ðx; pÞ'. It was
shown in Roger et al. (2005) that a domain deformation
velocity field Vp(x,y;p) could be introduced, leading to a sen-
sitivity integral formulation identical to that of Eq. (34) with



ŵp ¼ @pŵþ ŵ
@ppX

pX
þ @ppY

pY

& '

þ @xðpX pY ŵV p;1Þ þ @yðpX pY ŵV p;2Þ
pX pY

ð36Þ

where Vp,1 and Vp,2 are respectively the x-component
and the y-component of Vp. A wide degree of freedom
is associated to the choice of the Vp field, in particular
as far as convergence enhancement is concerned. But this
point was very little explored and the authors suggested
the use of one particular field constructed via a system-
atic procedure. In the present case, this procedure leads
to

V p;1ðx; pÞ ¼ @pa1ðpÞ þ
@pb1ðpÞ $ @pa1ðpÞ

b1ðpÞ $ a1ðpÞ
ðx$ a1ðpÞÞ ð37Þ

and ŵp from Eq. (36) becomes

ŵp ¼ @pŵþ ŵ
@ppX

pX
þ @ppY

pY
þ @xpX

pX
þ @xpY

pY
þ @xŵ

( )
V p;1

&

þ @ypY

pY
þ @yŵ

( )
V p;2 þ @xV p;1 þ @yV p;2

'
ð39Þ

Note that the partial derivatives of pX and pY with respect
to x and y do not induce a systematic source of conver-
gence difficulty (unlike what we observed for the partial
derivatives with respect to p in case b): they are indeed
not submitted, in the general case, to any integral con-
straint. However, it can be easily imagined that formal dif-
ficulties may rapidly appear when extending Eqs. (37)–(39)
to integration domains of higher dimensions, or of infinite
dimension as in the case of multiple reflection/scattering
radiative transfer.

Case d: Let us now assume that the second question is
answered negatively and the third positively. The preceding
derivations do not hold as ŵ is non derivable with respect
to p. But we will see that this difficulty can be easily
bypassed, leading to the same conclusions as those of case
c: no specific convergence difficulty, but a potentially very
tedious formal derivation of the sensitivity weight. Let us
take the same example as in case c assuming now that
the computation of the weight involves a test on the vari-
able y: if y < y*(x; p) it is computed using a function ŵinf ,
otherwise using another function ŵsup, both functions being
derivable with respect to p. Using Heaviside functions, this
translates into

ŵðx; y; pÞ ¼ Hðy < y-ðx; pÞÞŵinf ðx; y; pÞ þ Hðy
P y-ðx; pÞÞŵsupðx; y; pÞ ð40Þ

Under such conditions, a systematic practical approach can
be to temporarily transform the integral formulation to
make it compatible with the preceding case, derive the sensi-
tivity weight in this frame, and finally transform back the
integral formulation of the sensitivity so that it is strictly
compatible with the initial algorithm. In our example, the
integral over DY of the Heaviside functions is first
transformed into the sum of two integrals and Eq. (6)
becomes:

A ¼ EðW inf Þ þ EðW supÞ

¼
Z b1ðpÞ

a1ðpÞ
pX ðx; pÞdx

Z y-ðx;pÞ

a2ðx;pÞ
pY ðyjx; pÞdy ŵinf ðx; y; pÞ

þ
Z b1ðpÞ

a1ðpÞ
pX ðx; pÞdx

(
Z b2ðx;pÞ

y-ðx;pÞ
pY ðyjx; pÞdy ŵsupðx; y; pÞ ð41Þ

The sensitivity can then be seen as the sum of two sen-
sitivities corresponding to case c and

@pA ¼ E W inf
p

* +
þ E W sup

p

* +

¼
Z b1ðpÞ

a1ðpÞ
pX ðx; pÞdx

(
Z y-ðx;pÞ

a2ðx;pÞ
pY ðyjx; pÞdy ŵinf

p ðx; y; pÞ

þ
Z b1ðpÞ

a1ðpÞ
pX ðx; pÞdx

(
Z b2ðx;pÞ

y-ðx;pÞ
pY ðyjx; pÞdy ŵsup

p ðx; y; pÞ ð42Þ

with

ŵinf
p ¼ @pŵinf þ ŵinf @ppX

pX
þ @ppY

pY
þ @xpX

pX
þ @xpY

pY
þ @xŵ

( )
V p;1

&

þ @ypY

pY
þ @yŵ

( )
V inf

p;2 þ @xV p;1 þ @yV p;2

'
ð43Þ

and

V p;2ðx; y; pÞ ¼ @pa2ðx; pÞ þ V p;1ðx; pÞ@xa2ðx; pÞ½ '

þ @pb2ðx; pÞ þ V p;1ðx; pÞ@xb2ðx; pÞ½ ' $ @pa2ðx; pÞ þ V p;1ðx; pÞ@xa2ðx; pÞ½ '
b2ðx; pÞ $ a2ðx; pÞ ðy $ a2ðx; pÞÞ ð38Þ



ŵsup
p ¼ @pŵsup þ ŵsup @ppX

pX
þ @ppY

pY
þ @xpX

pX
þ @xpY

pY
þ @xŵ

( )
V p;1

&

þ @ypY

pY
þ @yŵ

( )
V sup

p;2 þ @xV p;1 þ @yV p;2

'
ð44Þ

where Vp,1 is defined as in case c (see Eq. (37)) and where
V inf

p;2 and V sup
p;2 are defined as in Eq. (38), replacing b2 with

y* for V inf
p;2 and replacing a2 with y* for V sup

p;2 :

Finally Eq. (42) is transformed back to a form identical
to that of Eq. (6):

@pA ¼ EðW pÞ

¼
Z b1ðpÞ

a1ðpÞ
pX ðx; pÞdx

(
Z b2ðx;pÞ

a2ðx;pÞ
pY ðyjx; pÞdy ŵpðx; y; pÞ ð47Þ

with

ŵpðx; y; pÞ ¼ Hðy < y-ðx; pÞÞŵinf
p ðx; y; pÞ þ Hðy

P y-ðx; pÞÞŵsup
p ðx; y; pÞ ð48Þ

which means that the same sampling events can be used
and opA can again be evaluated simultaneously with A:
the branching between ŵinf and ŵsup is simply translated
into one between ŵinf

p and ŵsup
p .

Multiple scattering, multiple reflection: Practical non-
academic examples of sensitivity computations for analysis
of concentrated solar devices are detailed in Section 4. But
we will first discuss a multiple scattering/reflection example
in order to point out two final remaining techniques: the
handling of integration domains of infinite dimension,
and the use of variable changes (when possible) to trans-
form a domain deformation sensitivity problem into a sim-
pler one in which p appears neither in the integration
domain, nor in any test. Let us come back to the fluidized
bed receiver example of Fig. 5 in Section 2.2, assuming now
that scattering is non-uniform and considering the question
of evaluating the sensitivity of the absorbed radiative
power to a parameter p of the scattering coefficient field
(for instance any parameter of the particle density field).
The scattering coefficients ks,m depends therefore on loca-
tion, frequency and p and we write ks,m + ks,m(x;p). Eq.

(31) is unchanged, but the test determining whether the
next scattering location belongs to the volume (or no scat-
tering event occurs before surface encounter) becomes

Hðxjþ1 2 VÞ

¼ H jj <

Z kyjþ1$xjk

0

ks;mðxj þ sxj; pÞds
( )

ð49Þ

which means that the addressed sensitivity is a domain

deformation sensitivity (p appears within the test). But it
can be quite easily observed that the sampling of an optical
thickness jj according to Beer extinction law is identical to
the sampling of a scattering free path kj according to

pkj
ðkj; pÞ ¼ ks;mðxj þ kjxj; pÞ

( exp $
Z kj

0

ks;mðxj þ sxj; pÞds
( )

ð50Þ

and that in terms of scattering free paths the test becomes

Hðxjþ1 2 VÞ ¼ Hðkj < kyjþ1 $ xjkÞ ð51Þ

Changing variable from jj to kj changes therefore nothing
to the algorithm, but the parameter does not appear within
the test anymore and the sensitivity problem can be consid-
ered as belonging to case b. The sensitivity weight can
therefore be computed in a straightforward manner, only
noticing that the successive scattering and reflection events
(potentially up to infinity) are translated into sums of log-
arithmic derivatives:

ŵp;jþ1 ¼ ŵjþ1

Xj

q¼0

@ppkq

pkq

ð52Þ

We will make use of such sensitivity weight expressions in
the infinite dimension case for the multiple scattering/
reflection applicative examples of Sections 4.3 and 4.4. This
will illustrate that most sensitivity evaluation requirements
lead to quite simple formal derivations, even in complex
non academic cases, and are very much accessible to the
non-specialist (practical implementation will be discussed
in Sections 3.2 and 3.3). However, one must keep in mind
that, as it was already pointed out, nothing ensures that
when a quantity is accurately evaluated its sensitivities
are evaluated with the same relative accuracy using the
same sampled events. When convergence difficulties are

V inf
p;2ðx; y; pÞ ¼ @pa2ðx; pÞ þ V p;1ðx; pÞ@xa2ðx; pÞ½ '

þ @py-ðx; pÞ þ V p;1ðx; pÞ@xy-ðx; pÞ½ ' $ @pa2ðx; pÞ þ V p;1ðx; pÞ@xa2ðx; pÞ½ '
y-ðx; pÞ $ a2ðx; pÞ ðy $ a2ðx; pÞÞ ð45Þ

V sup
p;2ðx; y; pÞ ¼ @py-ðx; pÞ þ V p;1ðx; pÞ@xy-ðx; pÞ½ '

þ ½@pb2ðx; pÞ þ V p;1ðx; pÞ@xb2ðx; pÞ' $ @py-ðx; pÞ þ V p;1ðx; pÞ@xy-ðx; pÞ½ '
b2ðx; pÞ $ y-ðx; pÞ ðy $ y-ðx; pÞÞ ð46Þ



encountered in terms of sensitivity evaluation, the only way
toward convergence enhancement is the use of control var-
iate. Indeed the other convergence enhancement techniques
listed in Section 2.1 lead to a modification of the sampling
procedure which means that:

– either one keeps the initial idea of using the same sample
events to evaluate both the addressed quantity and its
sensitivities, and then a better convergence for a given
sensitivity is very much likely to imply a worse conver-
gence for the main quantity

– or additional samples are specifically drawn to meet the
needs of a given sensitivity, but this obviously increases
the computation costs.

Up to now, the second choice was never explored for
practical applications, but it may be meaningful in numer-
ous cases where evaluating sensitivities is essential, and
where the attempts to make such an evaluation using the
difference of two successive Monte Carlo computations
(perturbing the parameter) lead to highly inaccurate pre-
dictions because of the statistical nature of Monte Carlo
algorithms (see Table 1 in Roger et al. (2005)).

3. Practical implementation

We advocate in this section that the practical use of such
Monte Carlo techniques as those listed in Section 2 is not
restricted to radiative transfer specialists. We illustrate
how researchers with a minimum background in radiation
physics can rapidly learn how to design codes for their spe-
cific applications, including the most recent optical data
and algorithmic tools. This illustration is made using a
development environment designed by the authors as the
result of a long term methodological research project. We
believe that this environment meets most of the needs of
today’s concentrated solar research (as far as radiative
transfer simulation is concerned), but our point is essen-
tially that many available programming libraries and data
banks are now mature enough to allow non-specialists to
design radiative transfer codes themselves when their
research needs are not yet covered by the existing solar sys-
tem simulation codes. Any other development environment
than the one described here may play a similar role and we
hope that the reader clearly understands the present section
as one reported experience of what can be performed gath-
ering the tools provided by the radiation physics, numerical
mathematics and computer sciences communities.

3.1. EDStar

The development environment EDStar (EDStar, xxxx)
is maintained by a group of physicists specialized in radia-
tive transfer and out-of-equilibrium statistical thermody-
namics (STARWest, xxxx). Its purpose is essentially to
facilitate the task of analyzing complex systems using the
family of statistical corpuscular transport models intro-

duced by Boltzmann in 1872 (Boltzmann, 1872). EDSTAR
was set up and is maintained by the present authors. Its
essential part is devoted to photon transport (within the
validity range of the radiative transfer equation) but we
are also involved in fields such as micro scale gaseous ther-
mal flows and liquid–gas transitions, or self-organization in
biology. Concerning photon transport, our application
fields outside solar energy are mainly atmospheric sciences,
astrophysics and combustion sciences. For each applica-
tion EDStar aims at:

– gathering available collision models and data banks,
essentially cross sections and transition statistics (as
far as radiation is concerned this translates into absorp-
tion coefficients, scattering coefficients and single scat-
tering phase functions);

– providing a programming environment allowing to eas-
ily design numerical codes addressing the solution of
Boltzmann-like kinetic equations (in particular of the
radiative transfer equation).

We also try to gather available reference solutions of
transport equations (analytic solutions and benchmark
solutions) in order to help the code designers during the
validation phases. Our website is still under progress but
at least all the elements required to produce codes similar
to the code examples discussed in the present article are
already accessible. The code examples themselves are pre-
sented under a fully commented and open format and are
meant to serve as useful start basis for developers.

The parts of EDStar that are directly related to concen-
trated solar research are essentially those concerning.

– particle absorption and scattering properties;
– gaseous absorption line properties;
– libraries for GPU-parallel Monte Carlo programming;
– libraries for modeling of complex geometries and fast

photon tracking in these geometries.

We concentrate hereafter on the programming libraries
that we designed more specifically to simplify the practical
implementation of advanced Monte Carlo algorithms for
photon transport in complex geometries.

3.2. Mcm

The mcm C++ object library addresses the question of
programming Monte Carlo algorithms, including sensitiv-
ity estimations, for parallel computing hardware. It hides
all the technical aspects of this question (independence of
parallel sampled random numbers, memory allocation,
input/outputs, further sampling procedures) behind an
interface that remains independent of any specific applica-
tion. The mcm3D development environment described in
the next paragraph will be dedicated to photon transport,
but as far as mcm is concerned, all kinds of Monte Carlo
algorithms can be considered.



Monte Carlo algorithms evaluate statistically one or
several quantities I1, I2 . . . Iq together with their sensitivities
to a given set of parameters p1, p2 . . . pp. As we have seen in
Section 2, whatever the algorithmic complexity each
addressed quantity A (that is to say each Aj and each sen-
sitivity @Aj

@pk
to pk) is viewed as the expectation of a random

variable W and is evaluated as ~aN (see Eq. (1)) using a finite
number N of independent samples wk of W. The computa-
tion of ~aN and its statistical uncertainty ~rN in Eqs. (1) and
(2) only require the weight and square weight averages,
which means that a common feature of Monte Carlo algo-
rithms is the random sampling of ŵi and the incrementa-
tion of

PN
i¼1ŵi and

PN
i¼1ŵ2

i for each of the q addressed
quantities and their p sensitivities. This algorithmic struc-
ture can be easily parallelized provided that a procedure
is set up that ensures that random samples performed by
distinct processes are truly independent. If this is ensured,
then the computation task can be splitted into any number
of processes, each of them taking in charge the generation
of a sub-part of the required ŵi samples. The total sample
sum and sample square sum are then obtained by simply
adding the final results of all processes. The efficiency of
such a parallelization methodology is high as the commu-
nication needs are restricted to the final task of adding
the process results: no intermediate communication is
required. This statement is not completely true if a strict
independence of the random samples is required. Some
communication is needed to ensure this independence,
however the corresponding increase of the total computa-
tion time remains very short.

The following practical choices are made in the Mcm
object library:

– The GNU Scientific Library (GSL) (GNU Scientific
Library, xxxx) is used for uniform pseudorandom num-
ber sampling in the unit interval. Many distinct pseudo-
random number generators are implemented in the
GSL, which allows to easily check that a given scientific
result is indeed the same whatever the choice of one
pseudorandom number generator among those insuring
the same level of uniformity and independence.2 In the
present text, all simulations were performed with the
RANLXD2 generator, i.e. a double precision implemen-
tation of the RANLUX generator (period of about
10171) (James, 1994).

– The Message Passing Interface (MPI) (The Message
Passing Interface , xxxx) is used for communication
between processes.

– A simple master–slave parallel algorithm is used in
which one process is dedicated to the distribution of
the tasks of generating W samples and incrementing
the sample sum and the sample square sum.

– One process is also dedicated to the control of random
number independence. The principle is that a very large
number of samples are generated prior to the Monte
Carlo run. The corresponding series is splitted into Nseq

successive sequences of Nrnd samples and the state of the
generator at the beginning of each sequence is stored.
Each process involved in the generation of the WA sam-
ples starts with one of the generator states and if it
requires more than Nrnd random number generations,
a communication is established with the random num-
ber independence controller that sends a new generator
state and keeps track of all the already used sequences.

We do not detail here the further technical choices con-
cerning how memory is allocated as function of the number
of evaluated quantities and the number of considered sen-
sitivities, how the random number independence controller
deals with processes asking for more sequences than avail-
able, and how input and output files are formatted in a way
that allows the code to be restarted by simply generating
further independent W samples when the initial evaluation
does not meet the accuracy requirements. Further informa-
tion and practical examples are available on the EDStar
website (EDStar, xxxx).

3.3. Mcm3D

The mcm3D development environment is meant to com-
bine the above described mcm library with a geometrical
object library developed by the computer graphics research
community. Photo-realistic rendering requires the model-
ling of geometrically highly complex scenes, including the
accurate representation of the optical properties of inter-
faces (in particular of opaque surfaces), and efficient track-
ing procedures to follow photons from one interface
encounter to the next. The tools developed by computer
graphics researchers to achieve these tasks are now very
mature, with a high abstraction level that makes them
immediately applicable to radiative transfer research.
Photo-realism sometimes requires also the representation
of semi-transparent media, with volume absorption, vol-
ume emission and multiple scattering, but we evaluated
that the corresponding tools do not yet meet the accuracy
requirements of radiation physicists. We therefore focus
here on the question of tracking photons in non-participat-
ing media and we give illustrations in Section 4 of how vol-
ume absorption, emission and scattering algorithms can be
easily implemented through simple additions to the non-
participating media algorithms.

Among the tools developed by the computer graphics
research community, we chose to retain the C++ object
library designed in the frame of the Physically Based Ren-
dering Techniques (pbrt) project. Pbrt is an up-to-date

2 If such a test is negative, this means that the algorithm requires a
higher level generator. This is commonly related to a high variance of W,
implying that very small sub-domains play essential roles and must be
accurately covered statistically. This may rapidly lead to the conclusion
that, whatever the available computation power, the considered algorithm
is unpractical prior to the application of some kind of importance
sampling or integral reformulation procedure.



physically based renderer that is identified as well written,
well commented and striking a good balance between per-
formance and extensibility. But its major quality, in our
context, is that it is accompanied by an excellent textbook
(Pharr and Humphreys, 2004), ideally adapted to physicists
in the sense that the leading choice is to establish each ren-
dering technique on a physically grounded basis, using a
style and a vocabulary both very close to those of the radi-
ation physics literature. Choosing pbrt, we therefore benefit
not only of a set of available computation tools, but also of
all the means to fully understand them and learn how to
design extensions meeting the needs of concentrated solar
research. Among the tasks achieved by the pbrt objects,
those related to radiative transfer are essentially:

– Geometric representation of surfaces, rays definition (as
half-lines specified by their origin and direction, contin-
uous refraction effects being excluded), and computation
of the intersection of a ray and a single surface.

– Representation of material optical properties via the
definition of (measured of phenomenologically modeled)
bidirectional reflectance distribution functions at the
interface between two different materials: absorption
and reflection at an interface between a semi-transparent
material and an opaque material; reflection and trans-
mission at an interface between two semi-transparent
materials.

– Definition of primitives that combine a geometrically
defined surface and material optical properties at each
of its points. The potentially large number of such prim-
itives that are required to model a complex scene are
then aggregated into an acceleration structure that
allows a fast computation of the first primitive encoun-
tered by a ray starting in any direction from any location
in the scene.

Pbrt objects also allow the representation of volume
optical properties and implement various integrators to
solve the radiative transfer equation. But, as above men-
tioned, we decided to define semi-transparent properties
in an independent manner and to perform integration using
the mcm library. A difficulty that we encountered was that
pbrt is not initially under the form of a ready for use C++
object class library: it is presented as a code performing
image rendering. We therefore needed to make further
choices concerning the way we should extract the required
objects in a way compatible with both mcm’s structure and
pbrt’s parser: we wanted that the Monte Carlo algorithm
be entered by the programmer exactly as defined in
mcmMonteCarlo (the higher level mcm object class), and
that scene description be performed using the exact same
input file as that of pbrt. This was achieved by modifying
Scene, the higher level pbrt object class, so that it inherits
of mcmMonteCarlo. Without entering into further techni-
cal details, this allows that we keep all the flexibility
required to implement the algorithmic diversity discussed
in Section 2 (and illustrated in Section 4), and that we still

benefit of all the experience of modelling complex scenes
using the pbrt’s input file format. As a trivial by-product,
mcm3d still allows the use of pbrt’s original code to make
images of concentrated solar systems, which, outside com-
munication purposes, is useful during the scene description
debug phases (See the image examples provided in the fig-
ures of Section 4).

Altogether, the practice of implementing a Monte Carlo
algorithm with mcm3D implies the edition of two files: one
in which the W sampling algorithm is to be coded using the
C++ programming language (together with the mcm and
pbrt object classes, in particular the mcm’s parallel random
generator), and one in which the scene is to be described
using the pbrt input conventions. Both the W-sampling
algorithm file and the scene description file are provided
on the EDStar website (EDStar, xxxx) for the very simple
shape factor of Fig. 1, as well as for each of the four con-
centrated solar applications of Section 4.

4. Concentrated solar application examples

Each of the simulation examples reported hereafter is
extracted from an independent concentrated solar research
project, which conclusions will be exposed in dedicated
publications. Here, only the Monte Carlo algorithms and
their convergence features are presented: physical interpre-
tations and potential conclusions in terms of process design
are omitted. For each application a picture of the real pro-
cess is provided together with a scheme of the correspond-
ing simulated radiative configuration. Computation times
are given in the captions of the figures displaying the sim-
ulation results. They correspond to a single process on a
Quad-Core Intel Xeon 2.66 GHz hardware and linearity
was systematically checked both as far as sample size and
parallelization are concerned. The reader should find all
means to reproduce each of the following simulation
results on the associated website (EDStar, xxxx).

The first application (Section 4.1, Fig. 6) deals with a
system of 132 heliostats pointing toward a central tower
receiver. The geometry and the shadowing and blocking
effects are quite complex, but the algorithm is very simple
in the sense that always exactly one reflection occurs. The
second application (Section 4.2, Fig. 9, a linear Fresnel
reflector) is very similar except that multiple reflection
occurs within the receiver. In these two first applications
sensitivities to mirror imperfections and pointing errors
are simultaneously computed. The third application is the
fluidized bed receiver that we used for illustration all along
the theoretical presentation (Section 4.3, Fig. 11). The cor-
responding geometry is quite simple, but an additional
algorithmic complexity is illustrated with the occurrence
of both multiple reflection and multiple scattering in an
heterogeneous medium. The sensitivity to the particle den-
sity spatial distribution is computed. The last example (Sec-
tion 4.4, Fig. 13, an enclosed solar photobioreactor) is
similar as far as algorithmic complexity is concerned, but
the geometrical complexity is high (979 parallel cylindrical



optical fibers) and spectral dependencies of optical proper-
ties are accounted for. The computed sensitivity concerns
the parameters of the size distribution of the absorbing
and scattering photosynthetic microorganisms, that
involves a coupling with electromagnetic codes allowing
the cross section characterization. Note that all evaluated
sensitivities belong to the a and b cases defined in Sec-
tion 2.3. We exclude the more complex c and d cases for
which, at the present stage, engineers may still find it easier
to evaluate sensitivities by repeating simulations with finite-
size perturbated parameter values, which is practically fea-
sible in the here-addressed examples considering our
reported computation times.

4.1. Central receiver system

Central receiver systems for solar energy concentration
and collection (see Fig. 6a) are based on fields of sun-track-
ing mirrors (heliostats) that reflect the incident solar flux
toward a receiver at the top of a tower. From 80% to
95% of the reflected energy is absorbed into a working
fluid. The main advantage of central receiver systems is

the high temperature levels (up to 1000 K) that allow to
reach high power cycle efficiency.

From a radiative point of view, the simulated system is
sketched in Fig. 6b. The evaluated quantity is the solar
power A impacting the target T þ (the receiver) after one
reflection by the heliostat field. Both pointing imperfections
and shadowing/blocking effects are accounted for. The
algorithm starts with the sampling of a location x1 on the
reflective surface of the whole heliostat field Hþ of area
SHþ (the total surface of the heliostat field, including the
non-reflective back faces, is noted H). Then a direction
xS is sampled within the solar cone C of angular radius
hS, defining the incidence direction x0 ¼ $xS. In order
to check that no shading occurs, x0 is defined as the first
intersection with a solid surface of the ray starting at x1

in the direction xS and it is tested that x0 does not belong
to H or T (the total wall surface of the tower, including the
target). When no shading occurs, a reflected direction x1 is
sampled in order to represent reflection and pointing
imperfections, and it is checked that the first intersection
x2 of the ray starting at x1 in the direction x1 belongs to
the target (no blocking occurs). Reflection imperfections
(due to surface quality and shape uncertainties) and point-
ing imperfections lead to an overall angular spreading that
is modeled all together as a distribution of effective normal
vectors nh at x1 around the ideal normal vector n1, and x1

corresponds to the specular reflection of x1 by a surface of
normal nh (see Fig. 7).

The associated integral formulation is the following:

A ¼
Z

Hþ
pX1
ðx1Þdx1

Z

C
pXS ðxSÞdxS Hðx0 2 ðH[ T ÞÞŵoutf

þHðx0 R ðH[ T ÞÞ
Z

DNh ðx0Þ
pNh
ðnhjx0; bÞdnh Hðx2 R T þÞŵout

,

þHðx2 2 T þÞŵin
--

ð53Þ

with

pX1
ðx1Þ ¼

1

SHþ
ð54Þ

pXS ðxSÞ ¼
1R

C dxS
¼ 1

2pð1$ cos hSÞ
ð55Þ

ŵout ¼ 0 ð56Þ
ŵin ¼ DNI ðxS & nhÞ & SHþ ð57Þ

Fig. 6. (a) French themis solar thermal power plant (1986). (b) The simulated central receiver system involves 132 heliostats, each based on a square
spherical structure of 10 m ( 10 m and constituted with adjacent 1 m ( 1 m square mirrors. The receiver (a 10 m ( 10 m square) is at the top of a tower of
height h (typically between 50 m and 100 m).

Fig. 7. In the algorithm, the integral
R
DNh ðx0Þ

pNh
ðnhjx0; bÞdnh is translated

into the sampling of the spherical angles (h; u) and the reflected direction
x1 is then directly computed as x1 ¼ 2ðxS & nhÞnh $ xS .



where DNI is the direct normal insolation. For probabil-
ity density function pNh

, the Blinn’s model is used3, of
parameter b, with a truncation of the distribution of nh-

&n1 avoiding the occurrence of reflected directions
toward the surface for quasi-tangent incidences. This
leads to

pNh
ðnhjx0; bÞ ¼

2þ 1
b

2p 1$ lðx0Þ2þ
1
b

$ % ðnh & n1Þ1þ
1
b ð58Þ

The definition domain DNhðx0Þ corresponds to the part of
the unit hemisphere such that nh&n1 < l(x0), where
lðx0Þ ¼ cos p

4 $
1
2 arccosðx0 & n1Þ

* +
.

Because of truncation, the angular spreading resulting
of this Blinn’s like reflection is dependent on the incident
direction (even if this dependence tends to zero when b
tends to zero, that is to say when the spreading is weak
as for most solar applications). A measure of the angular
spreading is the quadratic average deviation ! in the partic-
ular case x0 = $n1, i.e.

! ¼
ffiffiffiffiffiffiffiffi
hh2i

q
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hsinðhÞ2i

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1$
2þ 1

b

4þ 1
b

!
1$

ffiffi
2
p

2

$ %4þ1
b

1$
ffiffi
2
p

2

$ %2þ1
b

2

64

3

75

vuuuut ð59Þ

In order to evaluate the sensitivity o!A of A to the angu-
lar spreading !, we write

@!A ¼
@A
@!
¼ @A
@b

@b
@!
¼ @A
@b
& d!

db

( )$1

ð60Þ

and the sensitivity weights become

ŵ!;out ¼ 0 ð61Þ

ŵ!;in ¼ ŵin
@bpNh

ðnhjx0; bÞ
pNh
ðnhjx0; bÞ

& d!
db

( )$1

ð62Þ

with

@bpNh
ðnhjx0; bÞ

pNh
ðnhjx0; bÞ ¼

$1

b2

& 1

2þ 1
b

þ lnðlðx0ÞÞlðx0Þ2þ
1
b

1$ lðx0Þ2þ
1
b
þ ln nh & n1ð Þ

" #

ð63Þ

Fig. 8 displays the simulation results corresponding to
A and o!A as function of the tower height h, for
b = 10$5 corresponding to ! = 4.5 mrad. The very same
algorithm was implemented on a faster purely dedicated
platform (by opposition to EDSTAR that is a general
purpose development environment) and the resulting

computation efficiencies were compared to the most
standard available concentrated solar codes in Roccia
(2012).

4.2. Linear Fresnel reflector

Linear Fresnel reflectors are used for solar concentra-
tion as a promising alternative to parabolic troughs. They
are composed of mirror bands tilted to all reflect the light
on a single linear receiver over the mirror field (see
Fig. 9a and b). The receiver ensures the heating of flowing
air, acting as the heat source of a thermodynamic cycle.
The simplicity of the design saves costs that compensate
for lower efficiency (Dersch et al., 2009).

From a radiative point of view, the simulated system
is sketched in Fig. 9c. The evaluated quantity is the lineic
solar power A impacting the absorbing pipe P within the
receiver. The tested Monte Carlo algorithm is identical to
that of the preceding example up to the stage where the
ray impacts the glass window T þ. The symbol H corre-
sponds now to the union of all mirror bands, Hþ is their
reflective side, and T is the union of all the external sur-
faces of the receiver system: T ¼ T þ [R$ where R$ is
the external surface of the secondary reflector. The differ-
ence starts once the location x2 is found on the glass
window. The fraction of the solar power transmitted
through the window impacts either the external surface
Rþ of the secondary reflector or P at a location x3. If
x3 belongs to Rþ a reflection direction is sampled
according to a truncated Blinn’s model and the reflected
power is further tracked within the receiver. If x3 belongs
to P a reflection test is performed: either absorption
occurs and the tracking ends, otherwise a reflection direc-
tion is sampled according to Lambert distribution and
the ray is further tracked within the receiver. In all cases
leading to a further tracking of the ray, a new surface
intersection x4 is defined within Rþ [ P [ T þ. If x4

belongs to Rþ [ P the algorithms continues as for x3

and if x4 belongs to the glass window T þ the specular

Fig. 8. Simulation results corresponding to A and o!A as defined in Eq.
(53) with the appropriate weights, as function of the tower height h. Each
point is evaluated using 106 samples and requires a computational time of
approximately 30 s.

3 BLINN proposed a model where the distribution of microfacet
normals is approximated by an exponential falloff (Pharr and Humphreys,
2004).



reflected power is further tracked within the receiver.4 All
optical properties are given in the caption of Fig. 9.

The associated integral formulation is the following:

A¼
Z

Hþ
pX1
ðx1Þdx1

Z

C
pXS ðxSÞdxS Hðx0 2 ðH[T ÞÞŵoutf

þHðx0 R ðH[T ÞÞ
Z

DNh;1 ðx0Þ
pNh;1
ðnh;1jx0;bHþÞdnh;1

( Hðx2 R T þÞŵoutþHðx2 2T þÞf
,

Hðx3 2PÞ
Z 1

0

pR3
ðr3Þdr3

( Hðr3 > qPÞ ŵ3þHðr3 < qPÞ
Z

2p
pX3
ðx3Þdx3 A3

" #

þHðx3 2RþÞ
Z

DNh;3 ðx2Þ
pNh;3
ðnh;3jx2;bRþÞdnh;3 A3

)))

ð64Þ

with

Aj ¼ Hðxjþ1 2 PÞ
Z 1

0

pRjþ1
ðrjþ1Þdrjþ1

Hðrjþ1 > qPÞ ŵjþ1 þ Hðrjþ1 < qPÞ
,
Z

2p
pXjþ1
ðxjþ1Þdxjþ1 Ajþ1

#
þ Hðxjþ1 2 RþÞ

Z

DNh;jþ1
ðxjÞ

pNh;jþ1
ðnh;jþ1jxj; bRþÞdnh;jþ1 Ajþ1

þHðxjþ1 2 T þÞ Ajþ1 ð65Þ

and

x2 ¼ x1 ð66Þ
pRq
ðrqÞ ¼ 1 ð67Þ

pXq
ðxqÞ ¼

xq:nq

p
ð68Þ

ŵout ¼ 0 ð69Þ
ŵ3 ¼ sT þqHþ DNI ðxS & nh;1Þ & SHþ ð70Þ

ŵjþ1 ¼
Yj

q¼3

Hðxq 2 PÞ þ Hðxq 2 RþÞqRþ
*

"

þHðxq 2 T þÞqT þ
+.

sT þqHþ DNI ðxS & nh;1Þ & SHþ ð71Þ

Fig. 9. (a) The simulated linear Fresnel reflector prototype; (b) details of the corresponding linear receiver; (c) receiver scheme and geometrical definitions.
The prototype involves 21 flat 0.1 m width and 1.5 m long mirrors of reflectivity qHþ=0.91. The total width of the concentrator is 3 m. The linear receiver is
1.8 m above the mirror field. This receiver involves a 2 m long and 3.8 cm diameter diffuse gray absorbing pipe of reflectivity qP ¼ 0:1 (we usually mention
an receiver tube absorptivity of 0.9). Around this pipe is a 12 cm wide gray reflective secondary reflector of internal reflectivity qRþ=0.95, closed with a flat
glass window of reflectivity qT þ ¼ 0:04 and transmissivity sT þ ¼ 0:92. The glass window reflection is perfectly specular. The imperfections of the primary
reflection are modeled according to the same truncated Blinn model as in the preceding example, with a Blinn parameter value bHþ ¼ 5:10$5 corresponding
to a quadratic average deviation !Hþ ¼ 10 mrad. The truncated Blinn model is used with the same parameter to model the imperfections of reflexion on the
secondary reflector, as well as on the glass sheet and on the receiver tube.

4 Note that the power transmitted outside the receiver is not taken into
account in the integral formulation in Eq. (64) because its fraction
reflected back inside the receiver from the mirror bands is negligible (lower
than 0.5%).



For the evaluation of the sensitivity @!HþA of A to the angu-
lar spreading !Hþ , the same approach is used as in the pre-
ceding example, with

ŵ!Hþ ;out ¼ 0 ð72Þ

ŵ!Hþ ;k ¼ ŵk

@bpNh;1
ðnh;1jx0; bHþÞ

pNh;1
ðnh;1jx0; bHþÞ

& d!Hþ
dbHþ

( )$1

ð73Þ

The evaluation of the sensitivity @!RþA of A to the angular
spreading !Rþ involves multiple reflection and is handled
according to the procedure introduced in Section 2.3, Eq.
(52), which leads to

ŵ!T þ ;out ¼ 0 ð74Þ
ŵ!T þ ;3

¼ 0 ð75Þ

ŵ!T þ ;jþ1 ¼ ŵjþ1

Xj

q¼3

Hðxq 2 RþÞ
@bpNh;q

ðnh;qjxq$1; bRþÞ
pNh;q
ðnh;qjxq$1; bRþÞ

& d!Rþ
dbRþ

( )$1

ð76Þ

Fig. 10 displays the simulation results corresponding to
A and @!HþA as function of time (along the day).

4.3. Fluidized bed receiver

Fluidized beds are commonly used as thermal exchang-
ers for high temperature processes. A gap toward the
improvement of thermodynamic cycles for solar electricity
production will be the finding of a technological solution
for direct gas heating within solar receivers (with the objec-
tive of reaching temperature levels higher than 1000 K at
the turbine entrance) and the use of solid fluidized particles
directly submitted to the concentrated solar flux is an
extensively explored foreseen solution (Flamant and

Menigault, 1986; Haddad and Elsayed, 1988; Muller
et al., 2003; Trommer, 2005).

The system considered hereafter is described technically
in Fig. 11. It corresponds to a completed version of the flu-
idized bed receiver example that we used for illustration all
along the theoretical presentation of Section 2. The particle
density g is heterogeneous: above a given altitude, it
decreases exponentially according to a scale height h that
is highly dependant on the speed of the incoming air flow.
The absorption and scattering coefficients ka,m and ks,m are
assumed independent of frequency and are related to the
Planck average absorption and scattering cross sections
ra and rs according to ka,m = gra and ks,m = grs. The eval-
uated quantity A is the fraction of the incoming solar radi-
ative power that exits the receiver through the quartz
window G after reflection on the stainless steel surface R
and/or scattering by particles within the core V. As
described in Section 2.2 and Fig. 5, the algorithm starts
with the sampling of an incidence location x0 on G and
the incidence direction x0 is perpendicular to G. Then a
scattering optical thickness j0 is sampled exponentially
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Fig. 10. Simulation results corresponding to A and @!Hþ A as defined in Eq.
(64) with the appropriate weights, as function of time (along the day).
Each point is evaluated using 106 samples and requires a computational
time of approximately 12 min (without parallelization, nor any algorith-
mic optimization).

Fig. 11. (a) The simulated fluidized bed receiver; (b) scheme and
dimensions. The receiver includes a diffuser at the bottom (cold air
entrance), a lower cylindrical column filled with dense homogeneously
distributed silicon carbide particles (particle density around
g0 = 26.103 cm$3), and a higher cylinder-conical column surmounted by
a quartz window. The particle density decreases exponentially with
altitude above z0 = 27 cm according to gðx; hÞ ¼ g0 exp $ z$z0

h

* +
where h is

the decrease scale height and z is the vertical coordinate of the position
vector x (the altitude z = 0 corresponds to the top of the air diffuser). The
stainless steel surface of the receiver is gray diffuse reflective with a
reflectivity qR ¼ 0:4. The quartz window is gray specular reflective with a
reflectivity qG ¼ 0:1. The particles are spherical with a monodisperse
distribution radius rp = 280 lm. The Planck average absorption and
scattering cross sections ra and rs, as well as the asymmetry parameter of
the phase function g, are obtained using Mie theory (Mie, 1908; van de
Hulst, 1957) between 0.24 lm and 4 lm: ra = 0.50, rs = 1.50, g = 0.70.
The Henyey–Greenstein phase function is used.



and defines an interaction location x1 that is at the surface
(x1 2 R) if j0 is greater than the optical thickness of the
air-particle mixture from x0 to the surface, and is within
the volume otherwise (x1 2 V). If x1 is at the surface, a
direction x1 is sampled according to the reflection angular
distribution pRX1

. If x1 is within the volume, x1 is sampled
according to single scattering phase function pVX1

. In both
cases a new scattering optical thickness j1 is sampled and
the algorithm continues recursively with j1 defining a
new interaction location x2, etc., until one of the interac-
tion locations, say xj+1 belongs to the quartz window. Then
a random number rRjþ1 is sampled uniformly on the unit
interval and the optical path exits the window if rRjþ1 is
greater than the window’s reflectivity qR and is specularly
reflected otherwise (xj+1 = xj $ 2(xj&nj+1)nj+1 where nj+1

is the exit unit normal at xj+1). If the extinction along the
multiple reflection, multiple scattering optical path reaches
a given threshold (the weight ŵj is lower than a fixed value
!), the algorithm switches to a russian roulette for represen-
tation of reflection at each R encounter, which interrupts
long paths contributing only very little to the evaluation
of A, without introducing any statistical bias.

The associated integral formulation is the following:

where Aj is recursively defined as

with

pX0
ðx0Þ ¼

1

SG
ð79Þ

pjj
ðjjÞ ¼ expð$jjÞ ð80Þ

pRXj
ðxjÞ ¼

xj:nj

p
ð81Þ

pVXjþ1
ðxjþ1jxjÞ ¼

1$ g2

½1þ g2 $ 2gðxjþ1:xjÞ'3=2
ð82Þ

pRGj
ðrGj Þ ¼ 1 ð83Þ

ŵout ¼ 0 ð84Þ
ŵ0 ¼ SG ð85Þ

ŵjþ1 ¼ ŵj expð$raajÞ

Hðxjþ1 2 GÞ ( 1
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Hðŵj > !ÞqR
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" #
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>>><

>>>:

9
>>>=

>>>;
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aj ¼
Z kxjþ1$xjk

0

gðxj þ sxj; hÞds ð87Þ

The evaluation of the sensitivity ohA of A to the scale
height h involves inhomogeneous multiple reflection, multi-
ple scattering and is handled according to the procedure
introduced in Section 2.3, Eqs. (49)–(52). The only differ-
ence is that the weight is a function of the parameter. Add-
ing the weight derivative to the right side of Eq. (52) leads
to

ŵh;jþ1 ¼ @hŵh;jþ1 þ ŵjþ1

Xj

q¼0

@hpkq

pkq

ð88Þ

which translates into
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Xj

q¼0
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gðxqþ1; hÞ

& '

ð89Þ
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when the choice is arbitrarily made that ohg(x;h) = 0 for the
sampled scattering locations x that lay outside the receiver
(and are algorithmically translated into surface impacts
and reflections).

Fig. 12 displays the simulation results corresponding
to A and ohA as function of the bottom particle
density g0.

4.4. Enclosed solar photobioreactor

Enclosed solar photobioreactors are processes of bio-
mass production in which photosynthesis is catalyzed by
photosynthetic microorganisms. Future developments of
the photobioreactors technology depend on the ability to
design large scale prototypes allowing an efficient light uti-
lization. In order to reach this requirement it is necessary to
study the field of absorbed energy inside the culture, which
is a scattering and absorbing medium where the microor-
ganisms are the multi-diffusers (Cornet and Dussap,
2009; Dauchet et al., 2011).

We focus here on a concept of volumetrically light-
ened photobioreactor named DiCoFluV (see Fig. 13a)
in which the incident solar light flux density is diluted
in the volume thanks to light-diffusing optical fibers
emitting a quasi homogeneous density flux on the totality

of their surface (Cornet, 2010). The corresponding radia-
tive configuration is shown on Fig. 13b. The presented
simulations correspond to cyanobacteria Arthrospira plat-
ensis PCC 8005 (generic name: Spirulina) which radiative
properties (ra,m, rs,m and gm) are given in figure Fig. 14.
Thus, fixing a uniform microorganism density g
(under the perfect mixing assumption), radiative proper-
ties of the culture medium V are all known
ðpVX;m; ka;m ¼ g ra;m; ks;m ¼ grs;mÞ, and we will design a
Monte Carlo algorithm to evaluate the photo-syntheti-
cally active specific radiant power absorbed A5 (W kg$1)
(see Dauchet et al., 2011) at any location x0 inside the
volume of culture as well as its sensitivities to g and to
the parameters of the Spirulina size distribution !a and s
(see Fig. 14 caption).

Aðx0Þ ¼
Z mmax

mmin

Amðx0Þ dm

¼
Z mmax

mmin

Z

4p
ra;m Lmðx0;x0Þ dx0 dm ð90Þ

where Lm(x0, x) is the radiance at position x0 and in the
direction x0, and where [mmin, mmax] is the photo-synthet-
ically active radiation domain (see Fig. 14). In the fol-
lowing integral formulation, by comparison with the
fluidized bed receiver example Section 4.3, the main
differences are essentially the spectral integration and
the backward formulation (see Section 2.1). First, a fre-
quency is sampled uniformly according to pm(m). This fre-
quency determines the radiative properties and the
surface flux density um emitted by the fibers F for the
current optical path. Then, starting from x0 2 V, a first
direction x0 is uniformly sampled according to pVX0

and
the successive interaction locations xj (j > 0) are sampled
as in Section 4.3. If xj belongs to the stainless steel sur-
face of the reactor R;xj is sampled according to the
reflection angular distribution pRXj

(and the weight is mul-
tiplied by qR). If xj 2 F , a Russian roulette is performed:
if the random number rj uniformly sampled over the unit
interval is lower than the fibers reflectivity qF , then the
optical path is reflected and xj is sampled according to
pFXj

, otherwise optical path sampling ends and the associ-
ated weight is the radiance emitted by the fiber and
attenuated along the optical path. Hence, the specific
power absorbed A(x0) is calculated from:

Fig. 12. Simulation results corresponding to A and ohA as defined in Eqs.
(77) and (78) with the appropriate weights, as function of g0, with
! = 10$12. gðx; hÞ ¼ g0 exp $ z$z0

h

* +
where h = p is the decrease scale height.

Each point is evaluated using 106 samples and requires a computational
time of a few minutes.

5 Specific radiant power is defined as the radiative power per mass unit.



Fig. 13. (a) Prototype of volumetrically lightened photobioreactor DiCoFluV (Dilution Contrôlée du Flux en Volume) (Cornet, 2010). (b) EDStar
geometry: both reactor (R) and fibers (F ) are cylinders of height 1 m; reactor diameter 16.5 cm; fibers axis are organized on a 2D hexagonal lattice of angle
p
3; distance between two fiber axis is 4.8 mm; fiber diameter 2.4 mm; minimal distance between a fiber axis and the reactor 3.6 mm; 979 fibers in total. The
stainless steel surface of the reactor R is modeled as a diffuse-reflective surface with a uniform reflectivity qR, and the light-diffusing optical fibers surfaces
F are modeled as diffuse-reflective with a uniform reflectivity qF and Lambertian emitting with a uniform surface flux density um.
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where Aj is recursively defined as
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where pmðmÞ ¼ 1
mmax$mnim

; pVX0
¼ 1

4p ; p
V
Xj;m for j > 0 is an Hen-

yey–Greenstein function of asymmetry parameter gm:

pVXjþ1;m
ðxjþ1jxjÞ ¼ 1

4p
1$g2

m

1$2gmxjþ1&xjþg2
mð Þ3=2 ; pRXj

ðxjÞ ¼ pFXj
ðxjÞ ¼

xj:nj

p ; pRj
¼ 1; pjj

ðjjÞ ¼ expð$jjÞ;xjþ1 + xjþ1 xj;xj; jj
* +

as

defined in Sections 2.3 and 4.3, and finally:

ŵjþ1 ¼ ŵjðHðxjþ1 2 RÞ ( qR þ Hðxjþ1

R RÞ ( 1Þ expð$ka;mkxjþ1 $ xjkÞ ð93Þ

with

ŵ0 ¼
umra;m

p ð1$ qF Þ
1

pmðmÞ pVX0

On the basis of Sections 2.3 and 4.3 (Eq. (89) with uni-
form density g even outside the reactor and h = g), the inte-
gral formulation corresponding to the sensitivity ogA(x0) is
identical to that of A(x0) in Eqs. (91) and (92), replacing
only ŵj with ŵg;j:

ŵg;j ¼ ŵj $ra;mdj þ
Xj$1

q¼0

1$ jq

g

" #

ð94Þ

The Monte Carlo algorithm depends on the Spirulina
size distribution through radiative properties ra,m, rs,m and
gm, that are computed using a Mie code with a given size
distribution as an input. Thus, sensitivities to a parameter
p of the Spirulina size distribution (p being either !a or s)
is written as:

@pA ¼
Z mmax

mmin

@Am

@ra;m

@ra;m

@p
þ @Am

@rs;m

@rs;m

@p
þ @Am

@gm

@gm

@p

& '
dm ð95Þ

On the basis of Section 2.3 (cases a and b), the integral
formulation corresponding to the terms

R mmax

mmin

@Am
@ra;m

dm;R mmax

mmin

@Am
@rs;m

dm and
R mmax

mmin

@Am
@gm

dm are identical to that of A(x0)
in Eqs. (91) and (92), replacing only ŵj respectively with
ŵra;m;j; ŵrs;m ;j and ŵgm;j:

ŵra;m;j ¼ ŵj
1

ra;m
$ g dj

( )
ð96Þ

ŵrs;m;j ¼ ŵj

Xj$1

q¼0

1$ jq

rs;m
ð97Þ

ŵgm ;j ¼ ŵj

Xj$1

q¼0

Hðxj 2 VÞ ( $ 2gm

1$ g2
m

$ 3
gm $ xq:xq$1

1$ 2gmxq:xq$1 þ g2
m

( )& '

ð98Þ

with dj the total length of the multi-scattering-and-reflec-
tion optical path, as defined in Section 2.1. Thus the inte-
gral formulation corresponding to the sensitivities
opA(x0) are identical to that of A(x0) in Eqs. (91) and
(92), replacing only ŵj respectively with ŵp;j:

ŵp;j ¼ ŵra;m;j
@ra;m

@p
þ ŵrs;m;j

@rs;m

@p
þ ŵgm;j

@gm

@p
ð99Þ

where the spectra @ra;m
@p ;

@rs;m
@p and @gm

@p are numerically evaluated
by running the Mie codes for a 1% variation of p around its
value and taking into account that the effective mass of Spi-
rulina also depends on p, whether p is !a or s (see Fig. 14
caption).

Fig. 15 displays the simulation results corresponding to
A; dgA; d!aA and dsA in function of the position inside the
reactor.

5. Open questions

The above presented methodological advances, imple-
mentation techniques and application examples were
selected to support the argument that concentrated solar
engineers and physicists can easily enter the most recent
Monte Carlo literature and efficiently translate the exposed
material for application to their research objects. We also
tried to illustrate that numerous programming libraries
are now available that reduce very considerably the time
required for the implementation of any fully up to date
Monte Carlo code including the type of physical and geo-
metrical complexity that is typical of concentrated solar
research. Doing so we did not highlight the standard con-
vergence difficulties encountered by developers entering
the field of Monte Carlo methods for the first time, in par-
ticular those associated with geometrical difficulties. As
was illustrated with the shape factor examples, choosing
one integral formulation or the other may mean that con-
vergence is fast or unreachable. In the Monte Carlo litera-
ture, these types of geometrical alternatives are named
forward (or analog) algorithms, backward algorithms,
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Fig. 14. Spectral radiative properties of Spirulina over the photo-
synthetically active radiation domain. Results obtained running a Mie
code (Mie, 1908; van de Hulst, 1957) for available data on the
Spirulina spectral complex refractive index and considering a volume
equivalent spheres model with a radius log-normal distribution

pAðaÞ ¼ 1ffiffiffiffi
2p
p

aln s
exp $ ðln a$ln !aÞ2

2ln2 s

h i
of mean radius !a ¼ 15:52 lm and devi-

ation s = 1.11. Cross sections ra,m and rs,m are expressed per unit mass of
dry biomass by dividing the results of the Mie code (m2&particle$1) by the

effective mass of Spirulina: M ¼ q̂ 4
3 p !a exp 5

2 ln2s
/ ., -3

, where

q̂ ¼ 280 Kg m$3 is the dry biomass density inside a microorganism. For
data management convenience, information on the phase function is
reduced to its asymmetry parameter gm ¼

R
4p pVX;mðxjx0Þx:x0dx.



symmetrical (or reciprocal) algorithms, etc. They are
clearly described in the above mentioned textbooks and
should be quite easily and rapidly acquired. This means
that the only strong convergence difficulties that concen-
trated solar specialists are expected to encounter are those
involving more than pure geometrical considerations, in
particular those involving spectral properties or optically
thick semi-transparent material (as for the bottom part of
the above described fluidized bed receiver).

But the fact that very few convergence difficulties are
encountered does not mean that convergence enhancement
is not required. This only means that even the most com-
plex concentrated solar systems will require less than a
few hours of computation time (more commonly a few
minutes) for a 1% accuracy to be reached using modern
parallel computers. But the question of the very much
shorter computation times required for iterative optimized
procedures remains widely open. Today, the zero-variance
concept is the best reported theoretical approach to this
question. This statement is made thinking of researchers

also willing to gain a deeper physical understanding of
the leading mechanisms at work in the considered system.
Without this complementary objective, brute force auto-
matic variance reduction techniques could be appreciated
as playing a similar role, but the literature still points out
implementation difficulties when increasing the dimension
of the integration domain, and the reported strongest var-
iance reductions still rely on subtle physical pictures of the
source of variance, i.e. on such pictures the zero-variance
concept helps clarifying. However, we have shown that
starting from a given integral formulation, the zero-vari-
ance algorithm is associated to an ideally optimized prob-
ability density function for each of the sampled variables,
and that this is only useful, in practice, if an approximate
model can be used to derive a probability density function
that is both close enough to the ideal one and simple
enough for efficient sampling procedures to be set up.
Again, choosing one integral formulation or another may
define entirely different modeling questions, some easy to
address (as in the spectral example of Section 2.2) and some

Fig. 15. Simulation results corresponding to the field of radiant power absorbed A(x0) and its sensitivities dgA; d!aA and dsA as defined in Eqs. (91) and (92).
Sensitivities are expressed in terms of a relative variation of the Spirulina density g and the parameters !a and s of the Spirulina size distribution (see plot

key). Results obtained for the Spirulina spectral properties Fig. 14, um ¼ 10$7 2phm3

c2
1

exp hm
KB 6000$1

$ % (proportional to the Planck’s law at 6000 K),

qF ¼ 0:1; qR ¼ 0:5; g ¼ 4 kg m$3 of dry biomass and 106 realizations. For each position, the calculation (including the sensitivities) takes roughly 1 min on
one processor and gives a relative standard deviation around 0.1%.



others untractable. In summary, when the objective is to
accelerate Monte Carlo algorithms to make them compat-
ible with iterative design procedures, the only available sys-
tematic approach is to write down the ideal probability
density function for each of the most critical sampled vari-
ables and to think of simple approximate models. If such
models are missing, attempts can be made using simple
integral reformulations, or the difficulty can be translated
into a theoretical question to radiative transfer specialists.
From this point of view the practice of simulating last gen-
eration concentrated solar systems (in particular solar
receivers) is likely to open specific fields of investigation
related to complex multiple reflection, multiple scattering
optical path statistics. It is also worth reminding at this
stage that an essential part of the zero-variance methodol-
ogy has been left aside: the use of adjoint transport formu-
lations. A full understanding of these formulations requires
the help of quite advanced mathematics, but it may very
well be that the most significant forthcoming advances
are to be searched along this line.

Sensitivity evaluation is the second theoretical frame-
work that was highlighted in the above presentation.
As far as concentrated solar engineering is concerned,
the main idea is the following: Monte Carlo methods
are sometimes computationally expensive, but they can
provide additional information concerning the influence
of free design parameters. This is obviously a helpful
source of orientation for engineers attempting to make
argumented choices for these parameters. But this can
also be useful at the heart of automatic design optimiza-
tion procedures that include the evaluation of Jacobian
matrices (first order sensitivity matrices). Very much like
the expression of ideally optimized probability density
functions, the expression of sensitivity weights is com-
monly quite straightforward and can easily be repeated
for each of the sensitivities to be evaluated simulta-
neously (i.e. for each of the Jacobian matrix elements).
However, this is only practically meaningful if these
weights can be computed without too strong a modifica-
tion of the initial algorithm, and if the relative variances
of the sensitivity weights are similar to that of the main
quantity. There are essentially two reasons why the
developer may observe that the initial algorithm needs
to be strongly modified to include sensitivity evaluations.
The first reason is that sensitivity weights may involve
geometrical quantities that are not commonly included
in the geometric libraries (such as the one used in
EDStar). The second reason is that domain deformation
sensitivities require the evaluation of vector quantities
potentially of the size of the integration domain, that is
to say of infinite dimension for multiple reflection, multi-
ple scattering systems. This may therefore strongly
impact the computation sequence corresponding to opti-
cal path tracking and may require subtle memory man-
agements. These two difficulties are quite technical and
may be easily bypassed by computer science specialists,
but we want to mention them as open questions in the

present context as they moderate our statement that
today’s programming libraries solve most of our practical
requirements. But the stronger remaining open question
related to sensitivity evaluation clearly belongs to radia-
tive transfer research: how can sensitivity variances be
reduced when sensitivity convergence is observed to be
slower (when increasing the sample size) than that of
the main quantity? In many cases this difficulty is not
encountered. But when encountering it, then the devel-
oper will observe that no systematic procedure is avail-
able to address it. Furthermore, it is extremely difficult
to guess whether a sensitivity will easily converge or
not. Consequently, as for the zero-variance methodology,
the only solution is to implement the sensitivity weight
computation (which will require little investment in a
wide majority of cases) and if convergence difficulties
are encountered, they should be first addressed using
simple integral reformulations, and then forwarded to
radiative transfer specialists that will try to physically
understand the underlying reasons why the variance is
high and think of adapted control variate (as this is
the only mentioned practical solution at the present
stage).
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Linear Fresnel and Parabolic Through Collector Systems – System
Analysis to Determines Break Even Costs of Linear Fresnel Collectors,
Berlin, pp 8.

Doolen, G.D., Hendricks, J., 1987. Monte-Carlo at work Los Alamos
Science No 15.

Dutre, P., Bala, K., Bekaert, P., 2002. Advanced Global Illumination.
A.K. Peters, Ltd., Natick, MA, USA (ISBN: 1568811772).

EDStar (STARWest development environment) http://www.starwest.ups-
tlse.fr/edstar/edstar.html, including the codes of the four application
examples at http://www.starwest.ups-tlse.fr/monte-carlo-concen-
trated-solar-examples/.

Flamant, G., Menigault, T., 1986. Combined wall-to-fluidized bed heat
transfer. Bubbles and emulsion contributions at high temperature.
International Journal of the Heat Mass Transfer 30 (9), 1803–1812.

Glouchkov, D., Koshelev, K., Schulz, A., 2003. Monte Carlo simulation
of photon transport for optically thick, differentially moving plasmas:
II. Escape factors for differentially moving spheres. JQSRT 81, 191–
197.

GSL – GNU Scientific Library. <http://www.gnu.org/software/gsl>.
Haddad, I.M., Elsayed, M.M., 1988. Transient performance fluidized bed

solar receiver at various parametric conditions. Solar and Wind
Technology Journal 5 (6), 653–659.

Hammersley, J.M., Handscomb, D.C., 1964. Monte Carlo Methods.
Chapman and Hall, London.

Hoogenboom, J.E., 2008. Zero-variance Monte Carlo schemes revisited.
Nuclear Science and Engineering 160 (1), 1–22.

Howell, J.R., 1998. The Monte Carlo method in radiative heat transfer.
Journal of Heat Transfer-Transactions of the Asme 120 (3), 547–560.

James, F., 1994. RANLUX: a Fortran implementation of the high-quality
pseudo-random number generator of Lüscher. Computer Physics
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