
Had I the heavens’ embroidered cloths,
Enwrought with golden and silver light,

The blue and the dim and the dark cloths
Of night and light and of the half-light

I would spread the cloths under your feet :
But I, being poor, have only my dreams ;
I have spread my dreams under your feet ;

Tread softly because you tread on my dreams.

W.B. Yeats, “He wishes for the cloths of heaven”
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2.3.2.2 Modèles de bandes étroites en transmittivité moyenne . . . 47
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Chapitre 3 — Développements méthodologiques dans le contexte de la syn-
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Nomenclature

Abréviations

BRDF : bidirectional reflectance distribution function : réflectance bidirectionnelle
CFD : computational fluid dynamics
ETR : équation de transfert radiatif
MCM : Monte Carlo method : méthode de Monte Carlo
PNE : puissance nette échangée
cdf : cumulative d’une fonction de distribution
c-k : correlated-k : méthode des k corrélés
pdf : probability density function : fonction de densité de probabilité

Symboles

c : vitesse de la lumière (m.s−1)
fv : fraction volumique de suie
h : constante de Planck (6.6260755± 0.0000040.10−34 J.s)
~ : constante de planck réduite ~ = h

2π

k : coefficient d’absorption dépendant de la pression (m−1.atm−1)
kB : constante de Boltzmann (1.3806 ± 0.000012.10−23J.K−1 )
l : longueur (m)
~n : normale à une surface
~qr : vecteur flux radiatif (W/m2)
~u : direction
t : temps (s)
xk : fraction molaire de la kième espèce chimique
A21 : coefficient d’Einstein pour l’émission spontanée
B12 : coefficient d’Einstein pour l’absorption
A21 : coefficient d’Einstein pour l’émission induite
E : énergie (W ) ou éclairement (W/m2)
H : fonction de Heaviside
L(~r, ~u) : Luminance au point ~r dans la direction ~u (W/m2/str/Hz)
M : émittance (W/m2)
R : opérateur de réflexion
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P : pression (atm)
R : nombre ∈ [0, 1] correspondant à la valeur d’une cumulative
S : surface (m2)
Sr : terme source radiatif (W/m3)
V : Volume (m3)

Symboles grecs

β : angle (rad)
ε : émissivité
η : nombre d’onde (m−1)
γ : demi-largeur à mi-hauteur d’une raie (m−1)
κ : coefficient d’absorption (m−1)
λ : longueur d’onde (m)
ν : fréquence (Hz)
ω : terme de pondération
φ : paramètre de forme, flux (W ), ou angle (rad)
ρ : BRDF
σ : constante de Stefan-Boltzmann (5.67.10−8W.m−2.K−4) ou écart-type
τ(l) : transmittivité d’une colonne de gaz de longueur l
θ : angle (rad)
∆ : intervalle
ϕA↔B : flux net ou puissance d’énergie radiative entre A et B (W)
Φ : fonction de phase

Indices

0 : initial
∞ : infini
b : corps noir
λ : grandeur dépendante de la longueur d’onde
η : grandeur dépendante du nombre d’onde
ν : grandeur dépendante de la fréquence



Résumé - Abstract

Résumé

La modélisation du transfert radiatif et la production, dans des temps de calcul raison-
nables, de solutions de référence dans des procédés de combustion (en présence de mélanges
de gaz et de particules à haute température) restent encore des problèmes ouverts, alors
que l’ensemble apparâıt nécessaire au bon dimensionnement de ces procédés. En effet, la
production d’espèces mineures polluantes comme les Nox est particulièrement sensible au
niveau de température, et la durée de vie des structures dépend du flux radiatif pariétal.
Simuler le transfert de chaleur par rayonnement dans de tels systèmes demande de tenir
compte simultanément des complexités spectrale (spectre de raies des gaz de combustion) et
géométrique (détails géométriques des brûleurs et échangeurs) du problème. Les méthodes
de Monte Carlo sont connues pour devenir compétitives face aux méthodes déterministes dès
lors que le système atteint de tels niveaux de complexité. Elles permettent également la mise
en œuvre de techniques d’analyse à partir de possibilités de découpage zonal (volumes et pa-
rois) et de calculs de sensibilités. Elles s’appuient enfin sur des algorithmes de suivi de rayons
pour lesquels il est possible d’hériter des avancées significatives issues de la communauté de
synthèse d’images. Ce sont là les principales raisons qui justifient ici le choix du développe-
ment d’une méthode de Monte Carlo dans laquelle une attention particulière est portée sur
l’optimisation des lois de générations aléatoires (spectrales et géométriques), afin d’assurer
de bonnes qualités de convergence dans les applications aux procédés à hautes températures.
En nous plaçant à l’interface entre les recherches actuelles en synthèse d’images et les tra-
vaux récents de modélisation radiative en milieu gazeux, nous proposons une méthodologie
permettant la production de solutions de référence pour la validation en configuration réelle
des modèles approchés communément employés en phase de dimensionnement.

Abstract

The increasing consumption of limited source of energy and the severity of air quality le-
gislations necessitate the improvement of the thermal design and the emission performances
of combustion processes objectives that require intensive analysis of radiative heat transfers.
Despite numerous studies in modeling radiation in multidimensional configurations an ac-
curate analysis of three-dimensional non-grey radiation in real combustion systems is still
lacking. That is due to the prohibitive computing time required to simultaneously take into
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account complex geometries and detailed physical properties (spectral dependence of surfaces
and volumes, directional surface properties, anisotropic scattering). In deterministic models
this difficulty is exacerbated, and the common techniques to solve the radiative transfer
equation generally rely on various degrees of approximation. Numerous previous works show
that statistical methods such as the Monte Carlo Method (MCM) are able to include easily
the important effects into numerical models without approximation. One advantage of this
method is to provide a better understanding of physical analysis, that is due to the domain
decomposition in volumes and surfaces (zonal method) and the possibility of cost-less sen-
sitivity calculations. Finally, the MCM are based on ray tracking algorithms, and we could
really inherit the know-how from the computer graphics community by using their advanced
tools. All these reasons justify the choice of the MCM. Additionally, this study investigates
some suitable probability density functions (for the spectral and the geometric integrations)
to improve the convergence of the MCM. By combining the advanced tools in the computer
graphics community and our recent developments in modeling of gas radiative heat transfer,
we propose here an approach that allows to produce benchmark solutions to validate the
approximate models that are commonly used in the stage of designing processes.



Préambule et organisation du
mémoire

Ce sujet de thèse lié à la production de solutions radiatives de référence en géométrie com-
plexe dans des procédés à haute température, est né de la rencontre entre deux équipes de
recherche qui se sont aperçues qu’elles menaient des travaux et développaient des savoir-faire
complémentaires. L’équipe Rayonnement et Procédés de l’École des Mines d’Albi-Carmaux,
associée au Laboratoire d’Énergétique de Toulouse, a mené des travaux sur la résolution de
l’équation de transfert radiatif (ETR) par la méthode de Monte Carlo en géométrie mono-
dimensionnelle, en tenant compte de toute la complexité spectrale des propriétés radiatives
des gaz de combustion. Par ailleurs, l’équipe Synthèse d’Images de l’Institut de Recherche
en Informatique de Toulouse travaille à la résolution de cette même équation, avec des sim-
plifications au niveau spectral, mais en s’attachant à une représentation fidèle de scènes
tridimensionnelles complexes.

La finalité de ce travail de thèse est donc, d’une part d’unifier les savoir-faire des deux
équipes pour permettre la résolution spectrale de l’ETR en géométrie complexe, mais aussi
et c’est peut-être le plus important, d’établir une communication durable entre ces deux
univers par la création d’une problématique et d’un langage communs. Dans cet esprit je
m’attacherai à être aussi pédagogue que possible sur les différents aspects abordés durant
nos travaux, au risque de parâıtre parfois simpliste.

Ce travail s’inscrit dans la continuité logique du travail de thèse d’Amaury de Guilhem
de Lataillade portant sur la modélisation des transferts radiatifs dans les systèmes de com-
bustion, d’une part parce qu’il en constitue une extension à des géométries réelles, et d’autre
part parce qu’il perpétue la dynamique d’interdisciplinarité de cette activité de recherche.
Cette précédente étude a fait la démonstration d’un couplage avec la cinétique chimique,
chose qui ne sera pas abordée dans ce mémoire, mais qui reste un objectif essentiel du projet
plus général auquel j’ai tenté de contribuer.

Le mémoire est organisé de la façon suivante :

– Le premier chapitre présente le positionnement de la thèse en termes de problématique
industrielle et scientifique en ce qui concerne le transfert radiatif dans les systèmes
de combustion. Ce chapitre présente également les parallèles possibles entre une telle
logique, de type génie des procédés, et la dynamique de recherche actuelle dans le do-
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maine de la synthèse d’images.

– Ensuite, nous définissons les principales grandeurs utilisées pour décrire la physique
du transfert d’énergie par rayonnement (propriétés spectrales d’émission et interaction
matière-rayonnement). Sur cette base, nous établissons l’équation de transfert radiatif
en évoquant sommairement les méthodes de résolution les plus utilisées actuellement.

– Le troisième chapitre est plus particulièrement consacré aux développements faits en
synthèse d’images. Il évoque la problématique de la production d’une image en couleur
à partir de calculs sur le spectre et aborde quelques unes des logiques algorithmiques
découlant de ces besoins spécifiques. Il finit par poser les principes des méthodes de
conception orientées objet, comme une étape nécessaire à la production d’outils de si-
mulation souples et efficaces. Certains des éléments de ce chapitre peuvent apparâıtre
comme très éloignés de la préoccupation centrale de cette thèse, mais nous espérons
qu’ils seront d’un soutien utile pour le lecteur physicien souhaitant comme nous béné-
ficier des idées développées dans cette communauté.

– A ce stade, nous affichons un choix de méthode de résolution : la méthode de Monte
Carlo sur la base d’un formulation intégrale de l’équation de transfert radiatif. Nous
justifions ce choix en nous référant aux développements théoriques récents dans ce
domaine, principalement en ce qui concerne les questions de formulation, les possibili-
tés d’optimisation des lois de générations aléatoires optico-géométriques et spectrales,
et les techniques d’analyse associées (matrices de puissances nettes échangées et ma-
trices de sensibilités). L’essentiel du chapitre est ensuite consacré à l’adaptation des
lois de générations aléatoires en fonction de nos exigences de traitements géométriques
tridimensionnels. Nous finissons par donner un exemple de mise en œuvre dans une
configuration géométrique simple : il s’agit d’une géométrie cylindrique 2D, un cas de
référence usuel pour le calcul du transfert radiatif en génie des procédés.

– Dans le dernier chapitre, nos travaux détaillés au chapitre précédent sur les optimi-
sations optico-géométriques et spectrales sont associés à une méthodologie de syn-
thèse d’images pour l’optimisation du suivi des rayons, dans un outil souple issu d’une
conception orientée objet et pouvant traiter des géométries complexes. Nous illustrons
finalement l’édifice ainsi obtenu par un exemple de calcul dans un four dédié à un
procédé d’incinération de composés organiques volatils, présentant de fortes variations
d’échelles entre les dimensions globales de la scène et les détails géométriques d’un
brûleur de type veine d’air.

Le manuscrit se termine par un paragraphe de conclusion et quelques éléments de pros-
pective.



Chapitre 1

Description du problème

Ce premier chapitre d’introduction expose brièvement le contexte industriel dans lequel
viennent s’insérer les travaux rapportés dans ce manuscrit. Les enjeux scientifiques de la
modélisation et de la simulation du transfert radiatif apparaissent dans le contexte plus
vaste de la compréhension et du contrôle du transfert de chaleur dans les installations de
combustion. Enfin, nous faisons le lien entre la problématique du transfert radiatif en génie
des procédés et en synthèse d’images.

1.1 Introduction

Le transfert d’énergie par rayonnement est un problème complexe mais passionnant et
intervient dans de nombreuses disciplines de la physique. Pour l’astrophysicien, c’est un pré-
cieux messager qui vient le renseigner aussi bien sur les secrets des phénomènes lointains
que sur l’histoire de l’univers, dont la jeunesse tumultueuse (le big-bang) est à l’origine du
rayonnement fossile à 3K du fond du ciel. Pour le biologiste ou le physicien de la matière, les
courtes longueurs d’onde sont un scalpel pour aller disséquer la matière. L’atmosphéricien
étudie ce phénomène comme l’un des mécanismes de la machine climatique ; à ce titre il est
amené à s’intéresser aux mêmes domaines spectraux que nous, à savoir ceux de l’infra-rouge.
En effet, le rayonnement reçu du soleil est en partie piégé et absorbé par la terre qui émet du
rayonnement infra-rouge (se comportant ainsi comme un générateur d’entropie) à son tour
piégé en partie par l’atmosphère et la couverture nuageuse. Ce phénomène bien connu est en
ce moment sous les feux de l’actualité en raison du réchauffement constaté de la planète et
est au centre d’une mobilisation internationale pour réduire les émissions de gaz à effet de
serre dues à l’activité humaine industrielle. Dans un même esprit de protection environne-
mentale, nous nous intéressons ici aux mécanismes de production d’espèces polluantes dans
les systèmes de combustion, en particulier à la façon avec laquelle le rayonnement thermique
peut affecter ces émissions. Les cinétiques chimiques de production de polluants sont en ef-
fet très sensibles à la température, dont le niveau résulte de l’équilibre entre les différents
mécanismes de production et de transfert d’énergie, parmi lesquels le rayonnement peut ra-
pidement jouer un rôle prépondérant, notamment dans les systèmes combustifs de grande
dimension. Pour les mêmes raisons, indépendamment des questions environnementales, une
bonne compréhension des transferts radiatifs est également essentielle pour un bon dimen-
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sionnement énergétique du système, que ce soit en terme de mâıtrise des flux énergétiques
pariétaux (dimensionnement des échangeurs par exemple), ou en terme de résistance des
matériaux face aux contraintes thermiques.

1.2 Rejets de la combustion

La combustion tient une place importante dans l’activité humaine et est à la base de la
révolution industrielle amorcée au XIX ième siècle. Mais le prix à payer pour la productivité
et le développement économique est le rejet en quantités importantes de polluants, variable
selon les conditions de combustion et la nature du combustible. Parmi les rejets reconnus
comme nocifs, et qui font l’objet d’une préoccupation toujours plus grande de la part de la
communauté scientifique et civile, on peut énumérer :

1. les poussières
Elles comprennent des particules solides non combustibles et des imbrûlés dûs à une
combustion incomplète. Elles entrâınent, pour les plus fines, des problèmes respiratoires
chez l’homme et sont à l’origine de pathologies cancéreuses.

2. le dioxyde de soufre (SO2)
Il est issu de la combustion de combustibles fossiles contenant du soufre, au premier
rang desquels on trouve les charbons et les fiouls. Des concentrations importantes en
dioxyde de soufre peuvent provoquer des troubles respiratoires, accentués chez l’asth-
matique. Les pollutions historiques de 1952 et 1956 à Londres ont provoqué des troubles
respiratoires et cardiaques avec une augmentation significative de la mortalité chez les
personnes les plus sensibles. Par ailleurs, le dioxyde de soufre peut se transformer par
oxydation en SO3 sous l’action du rayonnement ultra-violet solaire, puis en présence
d’eau, donner de l’acide sulfurique (H2SO4). Il contribue alors au phénomène des pluies
acides.

3. les composés organiques volatils (COV)
Ils proviennent de diverses molécules qui n’ont pas été totalement décomposées par la
combustion. Ce terme recouvre une grande diversité de polluants dont la toxicité varie
suivant la nature. Leur effet sur l’homme va de la simple gène olfactive à des effets
mutagènes et cancérigènes, en passant par l’irritation et la diminution des capacités
respiratoires. Ils sont en outre impliqués dans le processus de formation d’ozone dans
la basse atmosphère.

4. les hydrocarbures aromatiques polycycliques (HAP)
Les HAP sont une sous-famille des COV dont la formation est très sensible à la tem-
pérature [Khalfi, 2000]. Ils sont notoirement connus pour leur effet cancérigène.

5. le monoxyde de Carbone (CO)
Il provient de la combustion incomplète des combustibles et carburants. Au cours de
la combustion, le CO peut être formé soit directement à partir du carbone contenu
dans le déchet, soit à partir de produits de combustion intermédiaires. La combus-
tion incomplète peut être due à de mauvaises conditions de mélange, mais aussi à
une température insuffisante. Le monoxyde de carbone est un poison violent qui a la
propriété de se fixer sur l’hémoglobine du sang à la place de l’oxygène, entrâınant la



Chapitre 1 – Description du problème 17

mort à des concentrations élevées (mort en quelques minutes pour des concentrations
> 5500 mg/m3 [Bicocchi, 1998]). Il est également néfaste à l’environnement en tant
que précurseur à la formation d’ozone ou de PAN (Péroxyacétylnitrate).

6. les oxydes d’azote (NOx)
En France, ils proviennent surtout des moyens de transport et des installations de com-
bustion. Les efforts faits pour réduire les émissions dues aux véhicules sont largement
compensés par l’élargissement constant du parc automobile et les concentrations dans
l’air ne diminuent guère. Le terme de NOx recouvre tous les composés azotés gazeux :
NO, NO2, N2O3, N2O, et HNO3, les deux plus dangereux pour les voies respiratoires
étant le NO et le NO2 [Borghi and Destriau, 1995]. On a identifié trois mécanismes
de formation des NOx : la formation thermique, la formation du NO combustible, et la
formation du NO précoce. La formation des NOx thermiques obéit au mécanisme de
Zeldovitch :

O + N2 → NO + N

N + O2 → NO + O

La première réaction a une énergie d’activation élevée et n’intervient donc qu’à haute
température avec un seuil autour de 1700K ou 1800K [Borghi and Destriau, 1995,
Stansel et al., 1995, Costa et al., 1996, Warnatz et al., 1996], ce qui explique la déno-
mination de thermique. Une autre réaction dans laquelle le NO est formé à partir de
deux radicaux est possible :

N + OH → NO + H

Cette formation de NO dite combustible se fait à partir d’azote lié chimiquement au
combustible et pourra avoir une importance non négligeable lors de la combustion de
fiouls lourds ou de charbons. Enfin, les NO précoces sont formés à partir de radicaux
CH présents au début de la combustion.

En plus de leur effet sur les voies respiratoires, les NOx sont incriminés dans la dété-
rioration de la couche d’ozone, et demandent à être pris en compte lors de l’étude de
l’effet de serre, ou de la formation de pluies acides.

Cette liste n’est pas exhaustive (on pourrait notamment ajouter les dioxines et les mé-
taux lourds à la liste) mais montre bien la variété des polluants émis par les installations
de combustion et les effets néfastes de ces rejets. Les coûts générés par cette pollution sont
multiples : coûts de réduction des polluants en sortie d’installation, coûts de réparations de
dégâts (nettoyage des façades, réparation des bâtiments et remplacement de la flore attaquée
par les pluies acides), coûts de santé (asthme, insuffisance respiratoire, cancers) [Rabl et al.,
1998], sans compter les coûts dus à l’accroissement de l’effet de serre. Les réglementations sur
les rejets des systèmes industriels sont de plus en plus sévères et par conséquent, la demande
est de plus en plus forte pour des systèmes de combustion propres.

Dans cette optique, le dimensionnement des installations nécessite une compréhension fine
des phénomènes physiques couplés de la combustion, ainsi que des outils de simulation précis
et numériquement performants. D’autre part, de tels outils doivent être suffisamment flexibles
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pour accompagner l’ingénieur dans la succession des études nécessaires à un dimensionnement
optimal de systèmes.

1.3 Place du rayonnement dans les systèmes de com-

bustion

Il y a aujourd’hui deux questions pour lesquelles le rayonnement peut s’avérer essentiel
dans la prise en compte des bilans d’énergie dans les systèmes de combustion. D’une part, il
intervient dans le dimensionnement énergétique des procédés à haute température et d’autre
part, les nouvelles lois environnementales imposent des seuils de plus en plus sévères d’émis-
sion de polluants.

Pour illustrer ces deux aspects, nous allons considérer deux exemples dans lesquels nous
allons évaluer l’importance du rayonnement. Un premier exemple où l’on simule grossièrement
les phénomènes énergétiques mis en jeu aux parois d’une chambre de combustion permet
de montrer l’influence des effets d’échelle du système sur l’importance des flux radiatifs
par rapport aux autres modes de transfert. La deuxième application considère une flamme
monodimensionnelle à jets opposés de très faible dimension (quelques centimètres) pour
laquelle on observe que le flux rayonné est faible par rapport aux autres modes de transfert
de chaleur mais reste essentiel pour des questions de cinétique chimique.

1.3.1 Influence de la dimension du système sur les flux rayonnés

dans le cas d’une géométrie monodimensionnelle à plans pa-
rallèles infinis

Nous proposons de simplifier l’aspect géométrique en considérant un cas monodimen-
sionnel (deux plans parallèles infinis) pour estimer l’échange radiatif entre le cœur gazeux
(à température Tgaz = 1400K) et les parois (de température Tparoi = 400K) d’un système
combustif contenant 17% de H2O et 7% de CO2 à pression atmosphérique.

La densité de flux de chaleur convectée pour un coefficient d’échange h = 20W/m2/K
(ordre de grandeur correspondant à un écoulement convectif de l’ordre de la dizaine de mètres
par seconde) s’écrit :

qconv = h(Tgaz − Tparoi) = 2 × 104W/m2 (1.1)

Pour effectuer le bilan de densité de flux radiatif aux parois, nous écrivons la différence entre
les quantités émises et reçues (en considérant une paroi noire) :

qrad,absorbé − qrad,émis = εgazσT 4
gaz − σT 4

paroi (1.2)

où σ est la constante de Stefan-Boltzmann. Comme Tparoi = 400K et Tgaz = 1400K, nous
négligeons qrad,émis par rapport à qrad,absorbé. Pour calculer εgaz, nous allons utiliser la méthode
de l’hémisphère équivalent de Hottel pour un mélange isotherme et homogène (on ne tient
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donc pas compte de l’épaisseur optique d’une éventuelle couche limite). Cela met en œuvre
la notion de longueur équivalente le (dans le cas d’une couche de gaz d’épaisseur e entre deux
plans, le = 1.8 e). L’émissivité du mélange considéré est obtenue par :

εgaz = εH2O + εCO2
− ∆ε (1.3)

où ∆ε est un terme correctif introduit pour tenir compte du recouvrement des bandes de gaz
[Siegel and Howell, 1992].

Nous faisons crôıtre le et nous montrons sur la figure 1.1 comment le transfert radiatif
devient dominant par rapport au transfert convectif à partir de dimensions métriques.
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Fig. 1.1 – Comparaison entre flux convectif et radiatif pour le flux de chaleur à la paroi.

Cet exemple simple permet donc de montrer l’influence des effets d’échelles des systèmes
qui rendent rapidement prépondérant le phénomène de transfert radiatif par rapport aux
effets convectifs dans les dispositifs industriels de grande dimension.

1.3.2 Influence des flux radiatifs sur la production des NOx dans
le cas d’une flamme monodimensionnelle à jets opposés.

Les résultats présentés dans ce paragraphe sont issus des travaux de thèse d’Amaury de
Guilhem de Lataillade [de Guilhem de Lataillade, 2001]. Sans trop rentrer dans les détails
de description, le dispositif de combustion produisant cette flamme est composé, d’un côté
d’un injecteur pour le méthane, et de l’autre d’un injecteur pour l’air. Un front de flamme
de quelques millimètres se forme dans la zone de réaction chimique et les gaz brûlés sont
éjectés sur les bords (Fig. 1.2).



20 Calcul du transfert radiatif en géométrie complexe

Fig. 1.2 – Flamme de diffusion 1D.

De forts gradients de température apparaissent au front de flamme, les maxima de tem-
pérature se situant autour de 2400K. On peut observer sur la figure 1.3 que la perte de
chaleur par rayonnement est faible par rapport aux autres modes de transfert. Les termes
sources chimique et conductif sont dominants dans la zone de flamme, zone où la diffusion
des espèces s’effectue.
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Dans les figures 1.4 et 1.5, nous présentons respectivement la température maximale
de flamme et la fraction molaire de NO en fonction du taux d’étirement qui représente le
paramètre important pour le transfert radiatif. Ce terme dépend des vitesses d’injection
du combustible et de l’air, et représente un gradient de vitesses. Lorsqu’il est faible, le
rayonnement est plus important car le temps de séjour des espèces rayonnantes est plus long.
Ces figures montrent la différence entre deux calculs : un calcul effectué sans prise en compte
du rayonnement (légende “sans rad”), et un autre avec rayonnement (légende “rad”).

Fig. 1.4 – Influence du rayonnement sur la température de la flamme.

La figure 1.4 montre des différences de 100K sur les températures à faible taux d’étire-
ment, et la figure 1.5 des écarts de l’ordre de 80% sur les NO. On voit donc sur cet exemple
que, malgré la faible dimension des zones réactives, et malgré le fait que le rayonnement
apparâıt au premier abord comme minoritaire par rapport aux termes chimique, conductif
et convectif, il joue un rôle essentiel sur la production des espèces polluantes.

Pour compléter cette première estimation grossière de l’importance relative du rayon-
nement dans les transferts de chaleur à l’intérieur des systèmes de combustion, nous pou-
vons citer quelques travaux donnant des chiffres plus précis. Dans les fours industriels et
les chambres de combustion, le rayonnement peut représenter de 60% à 90% du transfert
de chaleur total suivant la géométrie de l’enceinte [Mbiock and Weber, 2000]. Il peut même
atteindre 95% de l’échange total de chaleur dans des fours d’incinération d’ordures [Olsom-
mer et al., 1997] dans une gamme de température allant de 800K à 1300K. Dans un moteur
diesel, aux dimensions plus modestes, mais où des températures plus élevées peuvent être
rencontrées, Abraham et Magi [Abraham and Magi, 1997] estiment la part du rayonnement
de 40% à 60% du transfert de chaleur, pour des températures allant de 1000K à 3000K.
Coelho et Carvalho [Coelho and Carvalho, 1996] soulignent également le rôle du rayonne-
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Fig. 1.5 – Influence de la température de la flamme sur la production d’oxydes d’azote.

ment dans les chaudières industrielles, la difficulté de modélisation de ce phénomène, et la
part prépondérante de la contribution des suies dans le transfert radiatif.

1.4 Sources de rayonnement et interaction matière rayon-

nement dans les systèmes de combustion

Que ce soit dans des brûleurs, un moteur, ou toute autre enceinte, les produits de la com-
bustion dépendent des solides ou des liquides brûlés. Le rayonnement provient à la fois du
gaz et des particules chauffées (suie, cendres volantes,. . . ), mais aussi des parois du système
dans des parts inégales, et avec des variations spectrales très différentes. Une fois émis, il
va être réabsorbé par ces mêmes composantes, après avoir été éventuellement réfléchi par
les parois, ou diffusé par les particules présentes dans le gaz. La difficulté pour un modèle à
rendre compte de la réalité des échanges radiatifs provient bien sûr de la compréhension du
phénomène à reproduire, des approximations qui sont faites, mais aussi de données de bases
du modèle qui seront pour nous les propriétés radiatives des différentes sources de rayonne-
ment. La précision des résultats obtenus par l’application de ce modèle sera donc au moins
limitée par la précision de ces données d’entrée pour chaque type de source de rayonnement.

En étudiant un four fonctionnant au gaz naturel, Liu et al. [Liu et al., 1998] retiennent
le CO2 et la vapeur d’eau (H2O) comme espèces gazeuses radiatives dominantes, car le CH4

et le CO restent concentrés près des brûleurs. Il ne faut cependant pas exclure de prendre en
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compte les effets radiatifs de ces deux dernières espèces car ils peuvent par exemple s’avérer
importants pour la compréhension détaillée des cinétiques d’espèces mineures lors d’un exer-
cice de dimensionnement et d’optimisation environnemental (voir paragraphe précédent). Il
arrive que la contribution des gaz aux échanges radiatifs soit négligée dans les milieux à
forte concentration de suie [Viskanta and Mengüc, 1987, Mengüc and Viskanta, 1987, Bress-
loff, 1999, Solovjov and Webb, 2001], en raison de la forte émission de celle-ci étendue sur
toutes les longueurs d’onde, alors que l’émission des gaz est restreinte à quelques intervalles
spectraux. Une telle démarche simplifie considérablement le problème radiatif du point de
vue de la complexité spectrale mais reste délicate car, étant donnée l’intensité des émissions
radiatives du CO2 dans ses bandes les plus intenses, il peut être parfois risqué d’étendre à
des cas réels des conclusions tirées à partir d’une sélection de configurations académiques.

Fig. 1.6 – Absorptivités d’un mélange H2O-CO2-air à partir d’un modèle à bandes étroites
(NB), d’un modèle à bandes larges (WB), absorption de la suie pour 2 fractions volumiques
(fv,1 = 10−7 et fv,2 = 10−6), et courbe de Planck normalisée. Température T=1000K, pres-
sion totale Pt=1 atm., pressions partielles de H2O et de CO2=0.1 atm, et longueur L=1m
[Viskanta and Mengüc, 1987]. Le spectre de la suie est relativement aisé à représenter, tandis
que le spectre des gaz présente de fortes discontinuités.

En ce qui nous concerne, une large gamme de configurations est considérée où les concen-
trations des particules de suie sont variables, et l’on peut envisager que leur contribution
aux échanges radiatifs sera supérieure, de même ordre ou inférieure à celle des gaz (Figs.
1.6, et 1.7) [Bressloff et al., 1997]. C’est pourquoi nous ne pouvons négliger ni la contri-
bution de la suie, ni une description fine de la contribution des gaz pour la production de
solutions radiatives de référence. De plus, même dans des situations où les productions de
suie sont importantes, les concentrations des éléments radiatifs dans l’ensemble du système
peuvent faire apparâıtre des zones où le rayonnement des gaz domine. Enfin, le gaz émet
et absorbe certes sur des intervalles spectraux restreints, mais de manière importante. Il se
peut alors qu’il y ait des phénomènes de transfert particuliers à certaines longueurs d’ondes
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Fig. 1.7 – Absorptivités d’un mélange H2O-CO2-air à partir d’un modèle à bandes étroites
(NB), d’un modèle à bandes larges (WB), absorption de la suie pour 2 fractions volumiques
(fv,1 = 10−7 et fv,2 = 10−6), et courbe de Planck normalisée. Température T=2000K, pression
totale Pt=1 atm., pressions partielles de H2O et de CO2=0.1 atm, et longueur L=0.5m
[Viskanta and Mengüc, 1987].

dont un modèle excluant les gaz ne peut rendre compte. Le problème que nous traitons dans
le milieu gazeux est donc celui d’un spectre continu combiné avec les spectres de raies des gaz.

Comme mentionné ci-dessus, les parois des systèmes de combustion peuvent également
rayonner. Leur pouvoir d’émission dépend bien sûr avant tout de la température, mais éga-
lement de la nature physico-chimique des matériaux, de leur état de surface (rugosité, oxy-
dation), et varie suivant la direction d’émission, et la longueur d’onde. Nous ne porterons
pas ici un effort particulier à la description des propriétés radiatives des parois. Mais nous
pouvons mentionner les travaux de Luc Claustre à l’Irit et à l’Onera de Toulouse [Claustres
et al., 2003] qui, dans un même esprit d’interaction entre les communautés physiciennes et
informaticiennes, portent sur ce thème autour des questions de représentation détaillée des
phénomènes directionnels et fréquentiels, et de mise en oeuvre dans des codes dédiés à la
synthèse d’image.

1.5 Des modèles de transfert radiatif aux questions de

simulation numérique

Ceci nous amène à évoquer l’étape de transition entre les modèles physiques que nous
sommes capables de concevoir et leur utilisation sous forme numérique au sein d’un pro-
gramme de simulation des transferts d’énergie par rayonnement. Précisons tout d’abord le
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type de modèle auquel nous nous intéressons.

Il reste de nombreuses inconnues quant aux propriétés optiques de la large gamme de
particules présentes dans les systèmes de combustion. Nous nous limiterons dans ce manus-
crit à la prise en compte de la présence éventuelle de particules de suie dans le milieu gazeux.
Leur introduction ne pose à priori pas de problème numérique dès lors qu’on laisse de côté
les phénomènes de diffusion du rayonnement qu’elles peuvent induire. Des travaux sur cet
aspect particulier sont en cours au laboratoire d’énergétique de Toulouse dans le cadre de la
thèse de Vincent Eymet, sur des problèmes monodimensionnels. L’intégration de la diffusion
dans une configuration de combustion réelle est envisagée dès maintenant comme une suite
logique de nos travaux et de ceux d’Eymet dans le cadre de la thèse de Maxime Roger qui
débute à l’école des mines d’Albi-Carmaux.

En ce qui concerne les propriétés de parois, nous nous placerons volontairement dans
des cas simples de parois noires ou grises. Les comportements de réflexions pris en compte
seront alors purement de nature, soit spéculaire, soit diffuse. Nous négligeons en particulier
la pénétration du rayonnement dans les matériaux constitutifs des systèmes de combustion.
Par cette approximation, nous sommes amenés à représenter des parois sans épaisseur sur
lesquelles nous posons les conditions aux limites pour le problème de transfert radiatif au
sein de l’enceinte combustive.

En ce qui concerne les propriétés des gaz, au contraire, nous souhaitons garder la pos-
sibilité d’une représentation très détaillée de leur physique spectrale. Nous utiliserons des
modèles statistiques à bandes étroites qui ont fait maintenant la preuve, sans ambiguı̈té,
d’un bon compromis en terme de complexité et de précision pour les applications en com-
bustion [Taine and Soufiani, 1999].

Lors de la traduction numérique de ce type de modèle, les difficultés principales sont
celles de l’approximation des intégrales volumiques angulaires et spectrales ; le verrou prin-
cipal étant sans ambigüıté celui de l’intégration spectrale. De ce point de vue nous nous
appuierons essentiellement sur le travail de thèse de de Lataillade [de Guilhem de Lataillade,
2001], qui a proposé des avancées significatives de la méthode de Monte Carlo dans ce contexte
avec à la fois un exercice rigoureux de reformulation des écritures intégrales, une optimisa-
tion systématique des lois de tirage, et la mise en œuvre de techniques d’analyse telles que
l’analyse en puissances nettes échangées et le calcul de sensibilités.

D’un point de vue algorithmique, la difficulté essentielle provient de la représentation
des conditions aux limites dont nous parlions précédemment à propos des modèles d’inter-
action entre le rayonnement et des parois opaques sans épaisseur. Ces parois définissent une
enveloppe dont la complexité peut être très élevée lorsqu’il s’agit d’étudier des systèmes
industriels avec l’ensemble des détails (tuyauteries, échangeurs) qui les composent. Le suivi
d’un chemin optique (trajectographie) au sein d’une telle géométrie peut se traduire par
des coûts informatiques très élevés si une forte attention n’est pas portée à l’optimisation
de la structure algorithmique correspondante. De ce point de vue, nous pouvons profiter du
très large panel des travaux de recherche effectués dans le domaine de la synthèse d’images,
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en particulier autour des concepts de droites discrètes, voxélisation, et grilles hiérarchiques.
Au delà de leur avantage numérique, ces concepts algorithmiques ont également de fortes
conséquences en termes de souplesse, de mise en œuvre et de programmation. Ce point
correspond manifestement à un bénéfice possible important dans le domaine du transfert
radiatif en génie des procédés, où la gestion de la géométrie se fait traditionnellement de
façon archäıque. Par archäıque j’entends ici que le codage est dédié à une géométrie donnée,
habituellement assez simple, et le passage au même problème avec une géométrie différente
demande la reécriture du code. Conscients de ce problème, on commence à voir apparâıtre
une réflexion sur ce thème et la souplesse et la généricité des codes évoluent régulièrement
vers des descriptions de plus en plus évoluées de l’environnement géométrique [Tessé, 2001,
Zeeb et al., 2001, Iacona et al., 2002].

1.6 Relation entre transfert radiatif en génie des pro-

cédés et synthèse d’images

Comme nous venons de le voir, le travail qui suit va faire appel au savoir-faire de deux
communautés scientifiques : celle de synthèse d’image (pour la prise en compte algorithmique
des effets de la géométrie et la souplesse de mise en œuvre informatique), et celle du transfert
radiatif en génie des procédés (principalement pour l’intégration de l’équation de transfert
radiatif en présence de spectres de gaz) (Fig. 1.8). C’est au passage l’occasion d’un rap-
prochement entre ces deux communautés, dont les démarches respectives (qui se traduisent
par une recherche commune de simulation précise du transfert radiatif dans une géométrie
complexe) sont motivées par des préoccupations d’apparence très différentes.

La communauté physicienne du génie des procédés désire appliquer les modèles de pro-
priétés infra-rouge des gaz qu’elle à établis pour offrir des simulations de référence du transfert
radiatif dans des enceintes de combustion industrielles. Elle est donc amenée à se confronter
à des solutions données comme exactes par des codes de références, des résultats expéri-
mentaux, ou des solutions analytiques dans quelques cas simples. Il est alors important de
connâıtre la précision des solutions proposées par rapport à ces références : elle a des critères
de jugement qui sont d’ordre quantitatifs. En parallèle, il s’agit également d’aller vers une
meilleure compréhension de la physique des phénomènes simulés. Et, dans ce but, elle déve-
loppe des outils d’analyse tels que des matrices d’échange, ou de sensibilités.

La communauté informaticienne de la synthèse d’images a pour soucis majeur de pro-
duire, par le calcul, des images les plus conformes possibles avec la réalité visuelle, ou avec
l’affichage d’une caméra infra-rouge par exemple (Fig. 1.9). Pour cela, finalement, le strict
respect des phénomènes physiques importerait peu si l’on était capable de calculer une image
d’apparence réaliste à partir d’un modèle même irréaliste. Les critères de jugement sont ici
purement qualitatifs (ou esthétiques). Cela est particulièrement vrai par exemple dans le cas
de l’animation où l’acuité de perception de l’oeil permet de faire une économie de réalisme
sur chaque image qui défile : quand on voit un film on ne distingue pas les détails de chaque
image. Malheureusement, sur une image fixe les détails sont examinables à loisir et on ne va
vers plus de réalisme qu’en simulant les phénomènes sous-jacents à la construction de l’image.
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Un autre point à souligner vient du caractère subjectif de l’appréciation par l’oeil humain.
En physique, l’écart numérique à une solution de référence ne va pas varier en fonction de
l’observateur. Alors qu’en synthèse d’images, chaque oeil étant différent, il n’y a pas de vé-
rité absolue dans l’obtention d’un résultat, dès lors qu’on s’est défait des défauts grossiers
de l’image comme la disparition d’objets, une mauvaise définition de contour des ombres, etc.

Synthèse
d’images

Développement 

Géométries simples
      spectral

récente
Évolution

récente
Évolution

Equation de 
   transfert
   radiatif

  Spectralement
      simple

Géométries complexes

Génie des procédés

Notre objectif
spectre complexe et
géométrie complexe

+ analyse

Fig. 1.8 – Démarche générale de la thèse.

En dehors de ces considérations sur les motivations des deux mondes qui se trouvent
reliés par le présent travail, il existe quelques autres différences fondamentales qu’on peut
dès maintenant énoncer :

– Les modélisations du transfert radiatif font intervenir les spectres infra-rouges des es-
pèces gazeuses présentes dans la scène ou le système alors que la synthèse d’image reste
généralement dans le domaine visible où le spectre est souvent plus simple. Cependant,
on peut facilement imaginer des applications nécessitant le calcul d’une image infra-
rouge (dans le domaine militaire notamment) et demandant donc la manipulation d’un
spectre de gaz.

– L’obtention d’une image suppose la présence d’un capteur optique, de type appareil
photographique numérique par exemple (ou tout simplement un œil humain), alors que
les besoins de simulations radiatives en génie des procédés n’ont pas nécessairement
un objet capteur comme point de départ (puissances radiatives volumiques, puissances
radiatives pariétales, etc).

– En synthèse d’image, les sources de rayonnement sont le plus souvent très localisées
alors que dans un système de combustion tous les éléments de la scène, y compris le
gaz, vont émettre dans l’infra-rouge, et bien sûr absorber et diffuser .

Ces différences, pour importantes qu’elles soient, ne doivent pas masquer les analogies
qui existent au premier rang desquelles la résolution de l’équation de transfert radiatif et le
souci de réduire le temps de calcul. De ce dernier point de vue, des techniques d’accélération
du calcul ont été développées de façon séparée et doivent être utilisées ensemble pour arri-
ver à une technique de résolution tirant profit des connaissances, du travail, mais aussi de
l’état d’esprit forcément différent au départ des deux communautés. Le calcul et l’utilisation
de sensibilités du résultat aux paramètres du problème sont une alternative intéressante au
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Plan de projection
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Position du capteur

Fig. 1.9 – Problématique en synthèse d’image. L’observateur voit la scène composée d’objets
sur le plan de l’écran et suivant un certain point de vue. L’écran est composé d’une matrice de
pixels qui sont des éléments de surface indivisibles. Les objets de la scène sont éclairés par une
source de lumière, et on cherche à déterminer comment les objets sont éclairés directement
par la source ou indirectement par les autres objets.

re-calcul systématique de la solution en entier lors de variations limitées de paramètres. Les
matrices d’échange développées en génie des procédés permettent d’autre part l’analyse d’un
bilan en termes d’importance relative des contributions des composantes du système. Ces
deux derniers outils sont particulièrement intéressants dans le domaine de l’inverse-design.
De ce point de vue, ils peuvent par exemple constituer une aide pour le positionnement des
brûleurs dans une chambre de combustion pour obtenir une température donnée dans une
zone définie. En retour, on peut bien sûr envisager leur utilisation pour résoudre le problème
tout à fait analogue du positionnement des sources de lumière dans une pièce pour obtenir
un éclairage donné en un endroit défini.



Chapitre 2

Modélisation physique des transferts
radiatifs

2.1 Physique du rayonnement

Cette partie a pour but de définir les notions fondamentales qui seront utilisées dans la
suite de l’exposé. Elle porte sur la physique du rayonnement, les modèles de représentation
du spectre des gaz, l’établissement de l’équation de transfert radiatif et les méthodes de
résolution communément employées en transfert radiatif. Elle ne constitue évidemment pas
un cours de rayonnement tant le sujet est vaste et complexe. Nous commençons par nous
intéresser à l’aspect quantique du rayonnement pour aller vers les grandeurs macroscopiques
telles que la luminance, le flux radiatif, etc.

On opère une distinction parmi les longueurs d’onde du spectre électromagnétique entre
rayonnement visible, rayonnement infra-rouge, ondes radio, rayonnement UV, X, ou γ (Fig.
2.1). Ces diverses zones spectrales de rayonnement sont arbitraires mais, au delà de la diver-
sité de leur source, elles s’imposent à nous parce qu’elles nécessitent des récepteurs de types
différents. Ainsi, l’œil humain est sensible au rayonnement visible, mais pas au domaine
infra-rouge auquel nous nous intéressons plus particulièrement dans le cadre de ce travail.

Lors de la caractérisation spectrale du rayonnement observé, on mentionne communément
trois types de spectres : les spectres continus, les spectres de raies d’émission, et les spectres
de raies d’absorption. Les lois empiriques qui décrivent les conditions de formation de ces
différents spectres portent le nom du physicien allemand G. Kirchhoff qui les publia en 1859
en collaboration avec R. Bunsen. Elles s’expriment de la manière suivante :

1. Un gaz à pression élevée, un liquide ou un solide, s’ils sont chauffés, émettent un
rayonnement continu qui contient toutes les couleurs.

2. Un gaz chaud, à basse pression, émet un rayonnement uniquement pour certaines cou-
leurs bien spécifiques : le spectre de ce gaz présente des raies d’émission (Fig. 2.2).

3. Un gaz froid, à basse pression, s’il est situé entre l’observateur et une source de rayon-
nement continu, absorbe certaines couleurs, produisant ainsi dans le spectre des raies
d’absorption. Ce gaz absorbe les mêmes couleurs qu’il émettrait s’il était chaud (Fig.

29
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Fig. 2.1 – Découpage du spectre suivant la longueur d’onde.

2.3).

Pour comprendre l’origine de ces lois, il a fallu attendre la révolution de la physique quan-
tique qui a permis de répondre à un des seuls problèmes résistant à l’édifice théorique bâti
jusqu’alors par la physique classique : la courbe d’émission du corps noir.

2.1.1 Processus d’émission et d’absorption

Nous nous limitons ici à évoquer brièvement l’origine de l’émission du rayonnement ther-
mique, sans aborder un éventail plus large de sources de rayonnement dans d’autres longueurs
d’onde comme par exemple les réactions de fusion thermonucléaire au sein des étoiles. Nous
présentons également la façon dont le rayonnement interagit avec le milieu gazeux par les
phénomènes d’émission et d’absorption et nous établirons l’équation décrivant la propagation
du rayonnement dans un milieu participant : l’équation de transfert radiatif.

L’émission ou l’absorption de photons dans un gaz moléculaire se fait par changement
d’état énergétique de la molécule. Les niveaux d’énergie sont séparés en niveaux électroniques,
niveaux vibrationnels, et niveaux rotationnels (Fig. 2.4). Les transitions électroniques cor-
respondent à des sauts d’énergie relativement importants, les transitions vibrationnelles à
des sauts d’énergie moins importants, et les transitions rotationnelles à des sauts d’énergie
encore plus faibles 1.

1En rayonnement thermique, le domaine spectral traité concerne les transitions vibrationnelles et rota-
tionnelles.
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Fig. 2.2 – Exemple de spectre de gaz en émission.
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Fig. 2.3 – Exemple de spectre de gaz en absorption.
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rotationnels
niveaux

rotationnels
niveaux

n=1

n=2
niveau électronique

niveau électronique

v=2

v=1

v=2

v=1

niveaux vibrationnels

niveaux vibrationnels

J=1

J=1

J=2

J=2

Fig. 2.4 – Quantification des niveaux d’énergie dans une molécule.

Considérons le cas simple d’une molécule fictive possédant deux niveaux d’énergie : un
niveau excité noté 2 d’énergie E2 et un niveau fondamental noté 1, d’énergie E1. Si une
molécule de ce type se trouve dans l’état fondamental, elle peut accéder à l’état excité en
absorbant un photon d’énergie E = E2 −E1. De même, si une molécule se trouve dans l’état
excité sur le niveau 2, elle peut se désexciter en libérant un photon d’énergie E. Absorption et
émission apparaissent alors comme deux phénomènes opposés, retirant du milieu ou libérant
des photons d’énergie donnée E. Autrement dit, une transition entre deux niveaux distincts
correspond à une énergie déterminée du photon émis ou absorbé, et donc à un rayonnement
à une fréquence donnée puisque l’énergie E d’un photon est reliée à la fréquence ν0 de l’onde
électromagnétique correspondante par la relation :

E = hν0

où h est la constante de Planck. Les transitions entre états moléculaires sont associées en
fait à trois phénomènes identifiés qu’on appelle émission spontanée, émission induite, ou ab-
sorption (d’un photon d’énergie E).

Sur une population de molécules identiques dont N2 sont dans l’état excité, et N1 dans
l’état fondamental, l’évolution du nombre de molécules dans le temps (et donc l’interaction
entre les molécules et le rayonnement) est décrite par les équations d’Einstein pour l’émission
spontanée, l’émission induite, et l’absorption.

Émission spontanée
Lorsqu’une molécule se trouve dans un état excité sur le niveau 2, elle va retourner sponta-
nément à l’état fondamental en émettant un photon d’énergie E, au bout d’un temps moyen
τ (avec une distribution des temps de retour traduisant l’absence de mémoire des molécules
pour ce phénomène). L’évolution des populations de molécules sur les deux états concernés
par la transition est alors donnée par la relation :

−∂N2

∂t
=

∂N1

∂t
= N2A21 (2.1)
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où A21 est le coefficient d’Einstein pour l’émission spontanée. Cette grandeur a la dimension
de l’inverse d’un temps, et représente en fait l’inverse du temps moyen de désexcitation τ
du niveau 2 vers le fondamental. La variation du nombre N2 de molécules sur le niveau 2
par le phénomène d’émission spontanée est proportionnelle à N2. On peut noter par ailleurs,
que l’émission des photons dans le milieu se fait dans ce processus de façon isotrope (sans
privilégier de directions particulières).

Émission induite
Une émission peut également être observée par suite d’un phénomène de résonance entre une
molécule occupant un état de niveau 2 et un photon d’énergie hν0 correspondant à l’écart
énergétique entre les niveaux 1 et 2. Cette émission se fait de façon cohérente : le photon émis
a les mêmes caractéristiques que le photon résonant. En particulier, il a la même fréquence,
la même quantité de mouvement, et donc la même direction 2. Comme précédemment nous
donnons l’équation d’évolution des populations N2 et N1 sous l’effet du phénomène considéré :

−∂N2

∂t
=

∂N1

∂t
= N2B21ρν (2.2)

où B21 est le coefficient d’Einstein pour l’émission induite, et ρν est la densité d’énergie radia-
tive. Nous faisons donc apparâıtre dans cette équation une grandeur donnant une description
du champ d’énergie de façon locale. L’interaction entre rayonnement et milieu gazeux dépend
clairement de ρν , ce qui est finalement assez intuitif. Toutefois cette grandeur ne donne pas
d’indication sur la propagation du rayonnement et ne permet donc pas d’établir une équation
de transfert. Nous y reviendrons plus tard dans ce document.

Absorption
C’est le phénomène inverse de l’émission et il conduit une molécule à passer à un état d’énergie
plus grand par absorption d’un photon correspondant à l’énergie de transition E. Il dépend
aussi de la densité d’énergie radiative ρν et l’équation d’Einstein correspondante est tout à
fait similaire à celle donnée pour l’émission induite :

+
∂N2

∂t
= −∂N1

∂t
= N2B12ρν (2.3)

Dans cette équation, B12 est le coefficient d’Einstein pour l’absorption.

Si maintenant, nous quittons la situation fictive d’une molécule à deux niveaux sur la-
quelle nous nous avons posé quelques bases simples, pour la situation réelle où la molécule
possède plusieurs niveaux d’énergie, il n’existe pas une seule, mais plutôt un ensemble de
transitions permises de la molécule qui forme un spectre de raies (en absorption ou en émis-
sion) dans l’espace des fréquences. A une transition donnée correspond une fréquence donnée
ν0. Dans la réalité, une transition n’est cependant pas associée à une fréquence unique, et des
photons de fréquence voisine de ν0 peuvent aussi être absorbés ou émis ; on parle d’élargis-
sement de raies. On associe donc à chaque transition une fonction de densité de probabilité

2 Cette propriété est à l’origine de l’effet laser.
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F (ν − ν0) de voir le photon libéré ou absorbé avec une fréquence ν autour de ν0. Cette fonc-
tion symétrique par rapport à ν0 (où elle présente un maximum) est communément appelée
profil de raie. Il est à noter, que pour une même molécule, les fréquences susceptibles d’être
absorbées sont les mêmes que celles susceptibles d’être émises.

Il existe plusieurs causes d’élargissement de raie, et la première cause que nous pouvons
citer est l’élargissement naturel dû à la durée de vie d’un niveau donné. Nous avons mentionné
qu’une molécule quitte spontanément un état excité au bout d’un temps caractéristique τ qui
est la durée de vie de ce niveau. Alors, l’inégalité d’Heisenberg reliant l’énergie et le temps
fait apparâıtre une largeur ∆E2 pour le niveau 2 (on pose ici τ = ∆t) :

∆E2∆t ≥ ~ → h∆ντ ≥ ~ d’où ∆ν ≈ 1

2πτ
(2.4)

où ~ est la constante de Planck réduite. Ce phénomène est caractérisé par un profil de raie
de type lorentzien :

FL(ν − ν0) =
γL

π[γ2
L + (ν − ν0)2]

(2.5)

où γL est la demi-largeur Lorentz à mi-hauteur.

Les niveaux d’énergie d’une molécule peuvent également être dépeuplés par les chocs avec
les autres molécules du milieu. On peut définir une durée de vie du niveau par collision et
il s’ensuit un élargissement de raie de même nature que l’élargissement naturel ; le profil de
raie est donc aussi de type lorentzien. Nous pouvons raisonner de la même façon que pour
le phénomène d’émission spontanée, en prenant cette fois comme temps caractéristique le
temps entre deux collisions ∆tcoll. Alors on peut poser :

h∆ν∆tcoll ≈ ~ (2.6)

De plus, on peut établir simplement en théorie statistique des gaz un premier modèle pour
∆tcoll :

∆tcoll ∝
√

T

p
(2.7)

dans lequel T est la température, et p la pression du milieu. Il s’ensuit :

∆ν ≈ α × p√
T

(2.8)

où α est une constante.

Enfin, on peut citer une troisième cause d’élargissement qui est le déplacement fréquentiel
que subit une onde émise par une source en mouvement. Comme il existe une distribution
de vitesse dans le gaz, tant en direction qu’en valeur absolue, une transition donnée se fera
pour une plage de fréquences d’autant plus grande que la distribution sera large. Le profil
de raie est ici de type Doppler :
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FD(ν − ν0) =

√

ln2

π

1

γD
exp

[

− (ν − ν0)
2ln2

γ2
D

]

où γD est la demi-largeur Doppler à mi-hauteur et est donnée par :

γD =
ν0

c

√

ln2
2kBT

m

pour une molécule de masse m dans un milieu de température thermodynamique T, ayant
une distribution de vitesse de type Maxwell-Boltzmann (kB est la constante de Boltzmann).

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

40

(η−η
0
) cm−1

F
(η

−
η 0)

Profil Lorentz
Profil Doppler

Fig. 2.5 – Profil de raie Doppler et Lorentz pour une même demi-largeur à mi-hauteur
γ = 0.0125cm−1.

La comparaison entre les profils de raie de type Doppler et de type Lorentz de même
demi-largeur à mi-hauteur (Fig. 2.5) montre que le premier domine au voisinage du centre
ν0 de la raie, mais qu’il s’atténue plus rapidement pour laisser le second dominer dans les
ailes de raies.

Quand on utilise les propriétés quantiques des gaz pour aboutir à des modèles de proprié-
tés radiatives, on est forcé de tenir compte de la forme des raies résultant des importances
relatives des phénomènes d’élargissement rencontrés. On peut être amené à choisir entre un
profil de raie de type Lorentz, Doppler ou Voigt, ce dernier étant une combinaison des deux
précédents. En pratique, dans les conditions de température et de pression communément
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rencontrées dans les applications en combustion, il parâıt raisonnable de considérer des profils
de raie de type Lorentz [Taine and Soufiani, 1999].

2.1.2 Grandeurs caractéristiques

2.1.2.1 Coefficient d’absorption

Nous avons énoncé les trois mécanismes d’interaction rayonnement matière d’émission
spontanée, induite, et d’absorption. Les équations d’Einstein (Eqs. 2.1, 2.2 et 2.3), nous
permettent d’écrire l’évolution d’une population de molécules dans un état énergétique donné
en connaissant la densité d’énergie radiative ρν. Dans ce qui suit, nous allons établir l’équation
de transfert radiatif qui permet de décrire l’évolution spatiale (et temporelle si besoin est)
de l’énergie transportée. Pour cela, nous commençons par considérer une situation où une
population de N photons de mêmes caractéristiques se propagent dans un cylindre de section
S où se trouve une distribution homogène de molécules dans un volume S.dl, chaque molécule
ayant le même effet que si elle était seule (Fig. 2.6).

S
Photons incidents

dl

Fig. 2.6 – Flux de photons incidents sur une distribution homogène de molécules.

On suppose que les molécules ont absorbé dNa photons, et on définit la section efficace
d’absorption :

σa =
dNa

N
S (2.9)

On peut également définir une section efficace d’absorption par unité de volume :

κa =
σa

Sdl
(2.10)

L’inverse de cette grandeur est homogène à une distance, représente le libre parcours moyen
d’un photon et sera désignée dans la suite du document par le terme de coefficient d’absorp-
tion 3. Le coefficient d’absorption décrit l’atténuation que subit une population de photons
de mêmes caractéristiques (rayon lumineux) le long d’un trajet optique. Dans un milieu réel,
le coefficient d’absorption sera bien sûr lié au type de molécules présentes dans le gaz, à leur
concentration, et également aux profils des raies associées à chaque molécule.

3De façon très similaire, on peut établir un coefficient de diffusion en considérant une distribution homo-
gène de centres diffuseurs, à la place d’une distribution d’absorbeurs
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Si on remplace σa par son expression de l’équation 2.9 dans l’équation 2.10, et en remar-
quant que le nombre de photons absorbés dNa représente une variation −dN sur l’intervalle
dl, alors on peut écrire :

κadl = −dN

N
(2.11)

Soit en intégrant cette équation sur une distance l et en posant comme condition initiale que
le nombre de photons avant absorption était N0 :

N = N0exp[−κal] (2.12)

Cette équation établit le nombre de photons qui n’ont pas été absorbés par le milieu gazeux.
L’expression exp[−κal] est appelée transmittivité et sera noté τ dans la suite du document
4, et le produit κal est l’épaisseur optique. Cette atténuation exponentielle est bien connue
sous le nom de loi de Beer-Lambert.

2.1.2.2 Luminance et grandeurs intégrées

Pour maintenant donner une information sur les photons présents dans le milieu, nous
passons par une description statistique des population de photons en introduisant la fonction
de distribution photonique f = fν(~r, ~p, t) (ici ~p est l’impulsion). Comme nous traitons des
photons, le module de l’impulsion est le même pour l’ensemble de la population et la fonction
de distribution photonique peut alors être écrite : f = fν(~r, ~p, t) = fν(~r, ~u, t) (où ~u est la
direction). Cette grandeur associée à un coefficient d’absorption monochromatique (noté
κν où ν est la fréquence associée aux photons absorbés, ou plus tard dans ce document
simplement κ quand une écriture statistique fait perdre la stricte correspondance entre ν et le
coefficient d’absorption) permet d’écrire une fonction de transfert des populations de photons.
Comme nous souhaitons plutôt établir une équation portant sur l’énergie transportée, nous
introduisons la luminance monochromatique 5 définie par :

Lν = f(ν, ~r, ~u, t)hνc (2.13)

où ~r est un point du milieu, ~u une direction de propagation, t le temps, et c la vitesse
de la lumière dans le milieu. Comme nous considèrerons des problèmes stationnaires, nous
n’écrirons plus la dépendance temporelle de la luminance à partir de maintenant.
Cette grandeur est l’équivalent pour les photons de la fonction de distribution des vitesses
des molécules d’un gaz. L’équation d’évolution de la luminance que nous serons amenés à
poser est alors l’équivalent de l’équation de Boltzmann pour les gaz. On peut faire le lien
avec la densité d’énergie ρν apparaissant dans les équations d’Einstein (Eqs. 2.2, et 2.3) en

4A ne pas confondre avec la durée de vie moyenne d’un niveau, notée également τ dans les paragraphes
précédents.

5 Dans les ouvrages de langue anglaise, la luminance est désignée par le terme d’“Intensity”, ce qui
occasionne parfois des confusions pour un lecteur débutant.
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intégrant la luminance monochromatique sur l’ensemble des directions (premier moment de
la fonction de distribution photonique) :

ρν =
1

c

∫

4π

LνdΩ (2.14)

La luminance monochromatique Lν est la description la plus détaillée que nous emploierons
pour le champ radiatif. On trouve aussi communément employées des valeurs intégrées de
cette variable comme la densité d’énergie avec laquelle nous venons de faire le lien. On
emploie ainsi souvent la luminance intégrée sur le domaine fréquentiel :

L = L(~r, ~u) =

∫
∞

0

Lνdν (2.15)

La luminance intégrée sur le domaine fréquentiel L(~r, ~u) nous permet d’introduire une nou-
velle grandeur fondamentale dans les développements ultérieurs de ce document. On définit
le vecteur flux radiatif en écrivant le deuxième moment de la fonction de distribution photo-
nique :

~qr(~r) =

∫

4π

L(~r, ~u) ~u dΩ (2.16)

Il a le même rôle que le vecteur flux conductif, qui gouverne le transport de l’énergie ciné-
tique de translation ou de l’énergie interne, et représente le transport de l’énergie radiative
au point repéré par le vecteur ~r.

Alors, le terme source radiatif est obtenu en écrivant la divergence du vecteur flux radiatif :

Sr(~r) = −~∇.~qr(~r)

Il représente simplement le bilan énergétique radiatif au point de coordonnée ~r. Le calcul du
terme source radiatif en chaque point d’une enceinte combustive permettra par conséquent
d’établir une cartographie des échanges radiatifs dans le système.

Dans le cas particulier d’un milieu à l’équilibre thermique, on peut définir la luminance de
Planck parfois appelée luminance du corps noir qui, pour une fréquence donnée, ne dépend
que de la température :

Lν,b(T ) =
2hν3

c2

[

exp

(
hν

kBT

)

− 1

]
−1

(2.17)

Si on dérive cette expression par rapport à la longueur d’onde et que l’on cherche pour quelle
valeur la dérivée s’annule, on retrouve la loi de Wien. De la même façon, on peut retrouver la
loi de Stefan-Boltzmann en multipliant Lν,b par π et en procédant cette fois à une intégration
sur la longueur d’onde.



Chapitre 2 – Modélisation physique des transferts radiatifs 39

Fig. 2.7 – Courbe du corps noir.

Si, on se place dans un cas monochromatique à la fréquence ν, l’émission d’une espèce
gazeuse au point P repéré par le vecteur ~r, dans la direction ~u est donnée par κν(~r)Lν,b(~r, ~u).
Par conséquent, nous pouvons reécrire dans ce cas le terme source radiatif comme :

Sr(~r) = −~∇.~qr(~r) =

∫

4π

κν(~r)
(
Lν,b(~r, ~u) − Lν(~r, ~u)

)
dΩ (2.18)

D’autre part, si on considère une interface dans le système (surface où nous pouvons
définir une normale ~n en tout point ~r), nous pouvons également calculer une densité de flux
net en chaque point de cette interface :

M(~r) = ~qr(~r).~n =

∫

4π

L(~r, ~u) ~u.~n dΩ (2.19)

La densité de flux M calculée est appelée émittance, et peut être décomposée en deux parties :
M(~r) = Me(~r) − Ms(~r), où Me est l’émittance entrante, et Ms est l’émittance sortante.
Avant d’énumérer d’autres grandeurs intégrées de la luminance monochromatique parmi les
plus utilisées d’entre elles nous souhaitons ajouter quelques mots concernant Lν. En effet,
nous en avons donnée une définition qui peut parâıtre quelque peu abstraite. Elle est en
général introduite comme le flux d’énergie rayonné au voisinage d’un point P , à travers une
surface fictive dS, dans un angle solide dΩ autour d’une direction ~u, et pour l’intervalle de
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fréquence dν autour de ν (et pendant l’intervalle de temps dt dans le cas de phénomènes non
stationnaires).

dΩθ

ϕ

y

z

u

x

dS
P

Fig. 2.8 – Définition de la luminance.

Ainsi le flux φ passant à travers la surface dS est relié à la luminance par :

dφ = Lν cos θdνdΩdS ou φ =

∫
∞

0

dν

∫

Ω

dΩ cos θdS (2.20)

Les grandeurs énergétiques que nous avons présentées sont celles que nous utiliserons couram-
ment. Nous souhaitons cependant ajouter quelques définitions sur des termes plus couram-
ment employés en synthèse d’images. Il nous a paru important de faire le lien entre celles-ci
et celles que nous venons d’établir, car la profusion des termes et la confusion des définitions
trouvées ont été pour nous une véritable difficulté dans l’établissement d’un langage commun.

Radiosité : Densité de flux sortante hémisphérique. C’est donc un autre nom pour l’émit-
tance sortante que nous avons déjà définie.

Eclairement : Densité de flux entrante (ou émittance entrante).

Radiance : Luminance sortante.

Irradiance : Luminance entrante.

Pour conclure sur ces questions de vocabulaire, le rapport entre la radiance et l’irradiance
est nommé BRDF ou réflectance bidirectionnelle, et le rapport de la radiosité sur l’éclaire-
ment est appelé réfléctance hémisphérique.
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2.2 Equation de transfert radiatif

Le problème que nous cherchons à résoudre est un problème de transport corpusculaire
dans lequel les particules sont des photons véhiculant une énergie hν. Nous allons alors être
amenés à suivre un rayon dans une direction ~u, dans un milieu caractérisé par un coeffi-
cient d’absorption κη, et un coefficient de diffusion ση. En préambule à l’établissement de
l’équation de transfert radiatif, nous souhaitons poser les hypothèses dans lesquelles nous
inscrivons notre étude :

– On ne prend pas en compte la polarisation éventuelle du rayonnement
– Les changements d’indice du milieu ne sont pas considérés, et le rayonnement se pro-

page donc en ligne droite (optique géométrique) entre deux réflexions ou diffusions
éventuelles

– On admet que localement la matière est dans un état proche d’un état d’équilibre
thermodynamique (hypothèse d’équilibre thermodynamique local)

– Le transfert de chaleur par rayonnement se fait de manière quasi-instantanée par com-
paraison avec les autres moyens de propagation, et on résout donc un problème station-
naire. Ceci ne veut pas dire que nous ne nous intéressons qu’à des problèmes thermiques
stationnaires, mais que la dépendance temporelle ne passe que par la dynamique des
champs de températures ou de concentrations qui constituent des paramètres d’entrée.

La loi de transport de la fonction fν(~r, ~u, t) à l’échelle mésoscopique est l’équation de Boltz-
mann appliquée à une population de photons. Nous faisons de plus les hypothèses suivantes :

– les photons n’interagissent pas entre eux
– les photons n’interagissent qu’avec des centres absorbeurs et/ou diffuseurs fixes distri-

bués aléatoirement (hypothèse de Lorentz).
La loi de transport utilisée est alors une forme particulière de l’équation de Boltzmann
appelée équation de Boltzmann-Lorentz :

1

c

∂fν

∂t
+ ~u.~∇fν = C(fν) (2.21)

Dans cette équation, le terme de gauche représente le transport pur, alors que le terme de
droite C(fν) est un terme de collision supposé instantané. Le problème de l’établissement
de l’équation de transport est donc maintenant ramené au problème de modélisation du
terme collisionnel. Dans notre cas, le terme de collision représente les interactions entre les
photons et le milieu gazeux (phénomènes d’absorption, d’émission, et de diffusion entrante
et sortante). D’autre part, comme nous considérons des problèmes stationnaires le terme
dépendant du temps sera nul ; l’équation de Boltzmann-Lorentz devient alors :

~u.~∇fν = C(fν) → ∂fν

∂l
= C(fν) (2.22)

dans lequel l est ici l’abscisse curviligne le long du trajet défini par la direction ~u. Comme
il existe une relation simple entre la fonction fν et la luminance, nous pouvons écrire cette
même équation pour la luminance (nous utilisons ici une notation en nombre d’onde η plutôt
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qu’en fréquence ν) :

∂Lη(~r, ~u)

∂l
= C(Lη(~r, ~u)) (2.23)

Pour établir l’équation de transfert radiatif nous cherchons, comme énoncé, à écrire l’évo-
lution spatiale de la luminance étant donnés les phénomènes d’absorption, d’émission, de
diffusion entrante et sortante (Fig. 2.9) qui constituent les phénomènes à modéliser dans le
terme de collision de l’équation de Boltzmann-Lorentz (Eq. 2.21). Ainsi, l’atténuation de la

uMilieu participantDiffusion entrante
Diffusion sortanteu’

Fig. 2.9 – Propagation d’un rayon lumineux dans un milieu participant.

luminance par absorption seule peut s’écrire :

∂Lη(~r, ~u)

∂l

∣
∣
∣
∣
absorption

= −κηLη(~r, ~u) (2.24)

Puisque le système est à l’équilibre thermodynamique local, on peut également écrire le terme
source dû à l’émission de la colonne de gaz :

∂Lη(~r, ~u)

∂l

∣
∣
∣
∣
émission

= κηLη,b(~r) (2.25)

L’écriture de la partie du rayonnement quittant la direction ~u par diffusion est similaire à
celle précédemment établie pour la perte par absorption :

∂Lη(~r, ~u)

∂l

∣
∣
∣
∣
diffusion sortante

= −σηLη(~r, ~u) (2.26)

Par contre, le terme source diffusif est une somme sur toutes les directions, car il faut prendre
en compte les rayons lumineux venant de l’ensemble des directions ~u′ et diffusés en ~r dans
la direction ~u :

∂Lη(~r, ~u)

∂l

∣
∣
∣
∣
diffusion entrante

=
ση

4π

∫

4π

Lη(~r, ~u′)Φ(η, ~u, ~u′)dΩ(~u′) (2.27)
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où Φ(η, ~u, ~u′)/4π représente la fonction de phase de diffusion (i.e. la densité de probabilité
qu’un photon se propageant dans la direction ~u′ soit diffusé dans la direction ~u) et dΩ(~u′)
représente l’angle solide élémentaire centré autour de ~u′.
En sommant les quatre contributions du terme collisionnel, on établit l’équation de transfert
radiatif (ETR) :

∂Lη(~r, ~u)

∂l
= −κηLη(~r, ~u) + κηLη,b(~r) − σηLη(~r, ~u) +

ση

4π

∫

4π

Lη(~r, ~u′)Φ(η, ~u, ~u′)dΩ(~u′) (2.28)

Ce n’est là qu’une manière parmi tant d’autres de parvenir à une forme de l’équation de
transfert radiatif qui, comme il a été dit précédemment, ne traduit qu’un problème général
de transport. Nous l’avons donc établie à partir de l’équation de Boltzmann pour les gaz en
considérant les photons comme les particules à traiter et en se plaçant sous l’hypothèse de
Lorentz (diffuseurs et absorbeurs fixes et distribués aléatoirement) [Vincenti and Jr., 1965,
Sampson, 1965].

Dans un problème où la diffusion peut être négligée, on obtient une forme très simple de
l’ETR tenant uniquement compte de l’atténuation d’un rayon le long d’un trajet optique et
de l’émission par le gaz traversé :

∂Lη(~r, ~u)

∂l
= κηLη,b(~r) − κη(~r)Lη(~r, ~u) (2.29)

La luminance est écrite en tout point du milieu en ne faisant intervenir que des grandeurs
locales. Dans ce cas, on voit que la grandeur fondamentale qui gouverne l’évolution de la
luminance, en dehors de la dépendance à la courbe d’émission du rayonnement d’équilibre
est le coefficient d’absorption κη. L’équation (2.29) est écrite sous sa forme différentielle,
et peut naturellement se mettre sous une forme intégrale comme nous le verrons dans les
chapitres suivants. Mais il apparâıt alors plutôt des termes en exp(−κη l) qui représentent la
transmittivité du gaz.

L’écriture elle-même n’est pas anodine et, outre le fait qu’on considère une écriture en
coefficient d’absorption ou en transmittivité, les méthodes de résolution associées ne seront
par exemple pas les mêmes pour une formulation intégrale ou une formulation différentielle.

Le passage à l’écriture de l’ETR sous sa forme intégrale en l’absence de diffusion se fait
simplement en intégrant l’équation précédente (Eq. 2.29) [Goody, 1989, Modest, 1993] :

Lη(~r, ~u) = Lη(~r0, ~u)τη(~r0 → ~r) +

∫ ~r

~r0

Lη,b(~r′)κη(~r′)τη(~r′ → ~r)d~r′ (2.30)

La luminance Lη(~r, ~u) est l’inconnue dans cette équation. Or, on exprime la solution en
fonction d’une autre inconnue, qui peut elle-même s’exprimer sous la forme de l’équation
2.30. En particulier, si ~r0 se trouve sur une paroi, Lη(~r0, ~u) est la somme de la luminance
émise et de la luminance réfléchie en ~r0. Le seul cas pour lequel on connâıt Lη(~r0, ~u) est celui
où le système est délimité par des parois noires, car alors Lη(~r0, ~u) = Lη,b(~r0). Quoi qu’il en
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soit, et la luminance dépendant de 6 variables (3 coordonnées pour la position, deux pour
la direction, et une variable pour la dimension spectrale), cette équation est d’une grande
complexité à résoudre, en particulier à cause du caractère fortement variable des spectres
de raies des gaz dans le domaine infrarouge avec les conditions extérieures. Il apparâıt donc
ici déjà important de choisir une méthode de résolution de l’ETR pour laquelle le caractère
multidimensionnel du problème ne soit pas un obstacle, notamment du point de vue des
temps de calcul.

2.3 Modèles spectraux représentant le rayonnement des

gaz

Dans notre contexte, la majeure difficulté de modélisation du transfert radiatif concerne
les propriétés spectrales du rayonnement des gaz. En effet, les molécules de gaz offrent un
spectre complexe de raies d’émission et d’absorption, dont l’intensité et la forme pour diffé-
rentes longueurs d’onde sont fonctions des paramètres macroscopiques que sont la pression
et la température du système. La représentation de ce spectre dans l’infra-rouge nécessite
donc un travail en amont de simulation et d’archivage des comportements et des formes des
raies des différents gaz selon les conditions extérieures. L’étape suivante est l’utilisation de
ces données dans les modèles de transferts radiatifs. Il existe différentes sortes de modèles qui
décrivent le comportement spectral des gaz, choisissant parfois de conserver la complexité
initiale du spectre au détriment du temps de calcul des codes numériques les utilisant, et
parfois d’utiliser des modèles simplifiés pour accélérer l’obtention de la solution numérique,
mais au détriment de sa précision. Comme souvent, on ne peut pas dire qu’un modèle est
meilleur qu’un autre, en dehors du contexte particulier dans lequel il est utilisé, et parfois
de la spécificité même du problème auquel on l’applique.

Nous allons commencer par présenter le modèle raie par raie, qui constitue la description
spectrale la plus détaillée que nous pouvons utiliser. Les autres modèles spectraux, plus
simples à manipuler, que nous décrirons ensuite dérivent des données du modèle raie par
raie.

2.3.1 Modèle raie par raie

Ce modèle spectral utilise des banques de données provenant soit de déterminations ex-
périmentales, soit de spectres synthétiques crées à partir de la connaissance des niveaux
d’énergie des molécules des gaz impliqués. Chaque raie est définie par la position de son
centre νi, son intensité Si(T0)

6 (avec T0 = 296K, température de référence), l’énergie totale
du niveau bas de la transition i (permettant de passer de l’expression de Si(T0) à Si(T ),
intensité de la raie à une température quelconque), et le profil de la raie Fi(ν − νi). L’incon-
vénient majeur du modèle raie par raie vient du fait qu’il faut sommer un grand nombre de

6L’intensité d’une raie dépend du peuplement des niveaux d’énergie entre lesquels se produit la transition.
Or ce peuplement est uniquement fonction de la température, suivant la statistique de Boltzmann à l’équilibre
thermodynamique local.
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raies pour calculer les propriétés radiatives d’une colonne de gaz.

Supposons que l’on veuille calculer un coefficient d’absorption κν à l’aide de ce modèle.
Alors, nous devons sommer la contribution de chacune des raies présentes dans l’intervalle
de fréquence considéré, pour chacune des espèces présentes dans le gaz :

κν =
∑

espèces

∑

i

SiF (ν − νi) (2.31)

On estime ainsi, qu’il faut prendre en compte à peu près 106 raies [Taine and Soufiani, 1999],
avec leur profil, dans ce type d’approche. De plus, de telles représentations de spectre seront
gardées sous une forme échantillonnée qui conduira à une contrainte élevée de stockage en
mémoire. Elles permettent d’avoir accès à tous les détails des spectres, mais leur emploi
est donc doublement coûteux : pour leur production d’abord, et leur stockage ensuite. Pour
cette raison, cette représentation spectrale est surtout appliquée comme modèle de référence
pour valider les résultats obtenus à partir de modèles dégradés. La construction de modèles
dégradés reste un projet ambitieux car il demande de représenter au mieux les propriétés
radiatives d’un spectre, sans en conserver toute la complexité. Le terme employé dans la
phrase précédente : “au mieux” reste volontairement assez flou, dans la mesure où c’est à
chaque utilisateur d’un modèle de définir la précision qu’il veut obtenir par rapport à un
modèle de référence, dans les configurations choisies.

2.3.2 Modèles simplifiés

Pour obtenir des modèles spectraux plus synthétiques et moins lourds en terme de volume
de données, on se place à un niveau spectral plus grossier. On va dans ce cas considérer des
intervalles spectraux plus larges, pour lesquels un ensemble de propriétés radiatives moyennes
sera représenté à l’aide d’un nombre réduit de paramètres. Nous allons maintenant présenter
les plus communs de ces modèles approchés en commençant par les modèles globaux, ainsi
nommés car ils représentent tout le comportement spectral par des coefficients d’absorption
globaux. Nous exposerons ensuite les modèles de bandes en nous concentrant sur les modèles
à bandes étroites qui sont maintenant largement utilisés et qui ont prouvé leur efficacité dans
une large gamme de configurations à pression atmosphérique.

2.3.2.1 Modèles globaux

Comme nous venons de le dire, la démarche est ici de représenter tout le comportement
spectral du rayonnement d’un gaz par un seul coefficient d’absorption ou d’émission. On
comprend aisément les restrictions imposées par le choix d’un modèle de ce genre en termes
de précision du calcul. En effet, suivant les situations de transfert auxquelles on s’intéresse, les
longueurs d’onde importantes ne sont pas du tout les mêmes, et par conséquent l’utilisation
dans tous les cas d’un coefficient d’absorption unique ne peut être satisfaisant. Ainsi, dans
les applications atmosphériques, on peut être amené à s’intéresser au rayonnement transmis
sur des distances de plusieurs kilomètres où presque seules les ailes de raies participent à
l’échange, alors qu’en combustion par exemple où les distances sont beaucoup plus courtes,
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l’essentiel de l’échange se fait au centres de raies.

Dans la pratique, ces modèles peuvent donner de bons résultats dans certaines configura-
tions, et en particulier quand les produits de combustion comportent une grande part de suie,
qui a tendance à masquer le caractère complexe des spectres de raies des gaz (précisément
donc quand un modèle spectral de rayonnement des gaz n’est pas nécessaire). De même,
ils peuvent se révéler valides pour estimer le transfert radiatif au sein de turbines d’avion
(turbines à gaz), où la forte pression conduit à un élargissement des raies spectrales, qui se
recouvrent alors fortement ; cela conduit à une uniformisation des propriétés sur le spectre.
Ces modèles sont désignés de manière générique dans la littérature sous l’acronyme SGG
(Simple Grey Gas model, ou modèle de gaz gris).

Le modèle WSGG (Weighted Sum of Grey Gases, ou somme de gaz gris) [Hottel and
Sarofim, 1967], a été imaginé pour tenter de résoudre les problèmes du modèle de gaz gris
tout en gardant sa simplicité. Il est basé sur l’utilisation de plusieurs gaz gris auxquels on
ajoute en général un gaz clair pour rendre compte de l’existence de fenêtres spectrales. Par
ce biais, on identifie plusieurs comportements possibles pour l’atténuation ou l’émission du
rayonnement par une colonne de gaz. Les paramètres intervenant dans ce modèle sont donc
le nombre de gaz gris, les émissivités choisies pour ces gaz gris, ainsi que les coefficients de
pondérations associés

L’utilisation des modèles SGG et WSGG a été comparée par Liu et al.[Liu et al., 1998]
pour deux configurations contenant un mélange gazeux H2O−CO2 à pression atmosphérique,
ainsi que pour un brûleur de gaz naturel. Les auteurs soulignent la difficulté de déterminer
le coefficient d’absorption utilisé dans le modèle SGG, ainsi que le gain en précision relatif à
l’utilisation du modèle WSGG.

En raison de sa grande simplicité, le modèle WSGG a été abondamment étudié et appli-
qué pour diverses configurations [Modest, 1991, Smith et al., 1982]. Par la suite, de notables
améliorations ont été apportées à ce modèle [Denison and Webb, 1993, Taine and Soufiani,
1999] à la fois en termes de simplicité de mise en œuvre, de rapidité de calcul, et de précision
du résultat. Cependant, il reste de gros problèmes pour les mélanges de gaz non homogènes
7 qui demandent le re-calcul systématique des coefficients de pondération en chaque point.

Les modèles de bandes représentent une alternative aux modèles globaux pour rendre
compte des propriétés radiatives variables des gaz suivant la région spectrale considérée.
Dans ces modèles de bandes, on regroupe les raies d’une même région spectrale. Le spectre
utile est ainsi découpé en bandes de largeurs variables suivant le modèle que l’on considère,
mais qui peuvent typiquement aller de quelques cm−1 à plusieurs centaines de cm−1.

Nous pouvons mentionner le modèle à bandes larges (modèle d’Edwards et Ménard,
1964), où une bande a une largeur suffisante pour regrouper un grand nombre de transitions

7On utilisera par la suite par le terme de “non homogène” pour désigner les situations dans lesquelles les
propriétés radiatives dépendent de la position dans le milieu.
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vibrationnelles. Toutefois, ce type de modèles de bandes n’est pas le plus répandu et nous
n’en dirons pas plus à ce sujet. Nous allons maintenant nous concentrer sur la description
des modèles à bandes étroites, qui sont largement utilisés pour leur efficacité.

2.3.2.2 Modèles de bandes étroites en transmittivité moyenne

Le modèle statistique à bandes étroites repose sur le découpage du spectre utile en ré-
gions sur lesquelles on fait des hypothèses sur la distribution des raies, leur forme, ainsi
que leur intensité. La bande est étroite au sens où l’évolution de la courbe de Planck dans
la bande est négligée. La luminance d’équilibre sera donc considérée comme constante sur
l’étendue de la bande et égale à la luminance au centre de la bande ou aux bornes suivant
les conventions qu’on se fixe. Le nombre de paramètres caractérisant une bande étroite est
réduit (typiquement deux décrivant un coefficient d’absorption moyen et un chevauchement
de raies). Le but de ces modèles est de permettre de calculer la transmittivité moyenne τ ∆ν(l)
d’une colonne homogène de gaz de longueur l sur la bande étroite de largeur ∆ν :

τ∆ν(l) =
1

∆ν

∫

∆ν

exp(−κν l)dν (2.32)

On a donc une grandeur radiative intégrée sur la bande étroite et on a perdu l’information
fréquentielle détaillée par rapport au modèle raie par raie. Les modèles à bandes étroites se
distinguent par les hypothèses qui sont faites sur la distribution et l’intensité des raies dans
chaque bande.

Le modèle d’Elsasser considère que les raies sont équidistantes sur une bande étroite avec
une intensité égale, un même profil de raie de largeur à mi-hauteur γ. Il utilise alors seulement
deux autres paramètres pour décrire chaque bande : le nombre de raies N, et leur intensité S.
Cependant, d’après la physique d’émission du rayonnement des gaz, ce modèle s’avère peu
réaliste car les raies sont d’intensité et d’espacement très différents dans la réalité. On est
donc amené à considérer un ensemble de raies dont la position est aléatoire, et pour chacune
indépendante des autres. Ces modèles statistiques à bandes étroites sont basés sur une série
d’hypothèses concernant les N raies sur chaque bande de largeur ∆ν et d’espacement moyen
δ = ∆ν

N
:

1. La bande spectrale de largeur ∆ν contient un grand nombre de raies N

2. Les positions des centres de raies, ainsi que leur intensité sont supposées statistiquement
indépendantes

3. Les intensités de raies suivent une loi probabiliste P (S)

4. Les N raies ont la même demi-largeur à mi-hauteur γ

Le paramètre gouvernant le comportement de cet ensemble de raies est la loi de répartition
des intensités P (S). A partir de ces hypothèses de base, plusieurs lois ont été proposées pour
la répartition des intensités de raies sur les bandes étroites :

– loi uniforme : toutes les intensités de raies sont identiques
– loi exponentielle (Goody, 1952)

P (S) =
1

σ
exp

(

− S

σ

)
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– loi de Godson (1954)

P (S) =
σ

SSm
, S < Sm

P (S) = 0, S ≥ Sm

– loi inverse exponentielle de Malkmus (1967)

P (S) =
1

S
exp

(

− S

σ

)

Pour ces quatre lois σ représente l’intensité moyenne des raies (à ne pas confondre ici avec
la constante de Stefan-Boltzmann) :

∫
∞

0

P (S)SdS = σ

Les deux dernières lois n’étant pas sommables, il faut les modifier en introduisant l’intensité
maximale des N raies Sm et le rapport R entre respectivement, l’intensité maximale et
minimale pour aboutir à :

– la loi inverse tronquée de Godson

P (S) = 0, 0 ≤ S ≤ Sm/R

P (S) =
1

SLn(R)
, Sm/R ≤ S ≤ Sm

P (S) = 0, Sm ≤ S

– la loi inverse exponentielle tronquée de Malkmus

P (S) =
1

SLn(R)

[

exp

(

− S

Sm

)

− exp

(

− R
S

Sm

)]

Ces distributions de raies permettent d’exprimer une transmittivité moyenne τ∆ν(l) dans
une bande étroite pour une colonne de gaz homogène de longueur l. On exige de plus que
les expressions obtenues soient exactes pour les limites d’absorption faible et forte. L’utili-
sation d’une distribution inverse-exponentielle de Malkmus aboutit alors à une expression
relativement simple (Eq. 2.33) 8 :

τ∆ν(l) = exp

[

− φ

π

(
√

1 +
2πxplk̄

φ
− 1

)]

(2.33)

où x est la fraction molaire du gaz considéré, et p est la pression totale. L’expression de la
transmittivité moyenne ne dépend alors que de deux paramètres :

φ = 2π
γ̄

δ
(2.34)

8Dans la mesure où nous choisirons cette distribution par la suite, nous ne donnons pas ici les expressions
obtenues pour les autres distributions données pour exemples.
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qui est un paramètre de forme décrivant le chevauchement des raies au moyen de leur demi-
largeur à mi-hauteur γ̄ et de leur espacement moyen δ, et :

k̄ =
1

δN

N∑

i=1

Si =
S̄

δ
(2.35)

qui représente un coefficient moyen d’absorption par unité de pression partielle de gaz ab-
sorbant (kxpl = κl ↔ kxpl = κl).

Pour une faible valeur de φ, les raies ne se chevauchent quasiment pas, alors que pour
les grandes valeurs, elles se recouvrent fortement et les variations du spectre tendent à dis-
parâıtre pour donner des propriétés radiatives indépendantes de la fréquence sur la bande
étroite, et donc tendre vers le comportement d’un gaz gris. Comme le recouvrement des
raies sur un intervalle de fréquence ∆ν est plus fort pour un φ élevé, la transmittivité d’une
couche de gaz de dimension fixée va diminuer quand φ augmente (Fig. 2.10). A l’inverse, à
la limite où le paramètre de forme est très petit, on tend vers une situation où les raies sont
complètement séparées dans la bande de largeur ∆ν.
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Fig. 2.10 – Rôle du paramètre de forme dans la transmittivité moyenne.

Dans un cas optiquement mince (courtes distances, i.e. l petit), le terme d’atténuation
exponentiel peut se développer au premier ordre pour toutes les valeurs de κ :

exp
[
− κl

]
≈ 1 − κl

Dans ce cas, l’atténuation moyenne sur la distance l est simplement (1 − κl) ; elle s’exprime
par un coefficient d’absorption moyen comme dans le cas d’un modèle de gaz gris.
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2.3.3 Modèle de bandes étroites en k-distribution

Les modèles de bandes étroites décrits au paragraphe précédent permettent de calculer la
transmittivité moyenne d’une colonne de gaz homogène, et l’on a vu que pour la distribution
inverse-exponentielle, chaque bande étroite est seulement caractérisée par deux paramètres.
Nous verrons plus tard comment le transfert radiatif peut s’écrire en fonction de cette seule
transmittivité moyenne τ∆ν(l).

Cependant, toujours sous l’hypothèse de bandes étroites et dans le cas simplifié de pro-
priétés radiatives homogènes, on préfère souvent une écriture en distribution de coefficients
d’absorption κ à une écriture en transmittivité moyenne. Cela signifie que, au lieu de passer
de l’information fréquentielle contenue dans κν à une information moyenne exprimée par
τ∆ν(l), on préfère transformer l’information κν en information sur la distribution statistique
de κ dans la bande : on peut alors rester avec des écritures monochromatiques, mais on a
perdu la correspondance stricte entre le coefficient d’absorption et les fréquences. La raison
pour laquelle ce passage de κν à une représentation statistique de κ a du sens, est que la
fréquence ν n’intervient dans le transfert radiatif qu’à travers κν et Lν,b. Or, sous l’hypothèse
de bandes étroites, Lν,b est une constante et donc à deux fréquences différentes ν1 et ν2 telles
que κν1

= κν2
dans la même bande, on retrouve le même problème de transfert radiatif. On

peut donc perdre l’information sur ν et ne retenir que la fréquence de rencontre de κ.

Si on pose f(κ)dκ comme la fraction de la bande étroite de largeur ∆ν pour laquelle le
coefficient d’absorption κν prend des valeurs comprises entre κ et κ + dκ (f(κ) densité de
probabilité de κ) (Fig. 2.11), alors la transmittivité moyenne d’une colonne de longueur l
s’écrit :

τ∆ν(l) =
1

∆ν

∫

∆ν

exp(−κν l)dν =

∫
∞

0

f(κ)exp(−κl)dκ (2.36)

Il en va de même pour toutes les grandeurs radiatives moyennes sur ∆ν qui peuvent s’écrire
de façon statistique sous cette forme :

G∆ν =
1

∆ν

∫

∆ν

G(κν)dν =

∫
∞

0

f(κ)G(κ)dκ (2.37)

La connaissance de f(κ) (de même que la connaissance de la fonction τ (l)) nous permet donc
de poser l’intégralité des problèmes de transfert radiatif sur la bande étroite sous la forme
d’une intégrale dans l’espace des κ 9.

Remarque : On peut voir la formulation en k-distributions comme un cas particulier du
modèle de somme pondérée de gaz gris à la limite d’un nombre N de gaz gris tendant vers
l’infini. En effet dans un modèle de somme pondérée de gaz gris f(κ) =

∑N
i=1 αiδ(κ−κi). Et

ainsi :

9On verra que ceci n’est plus vrai si le milieu est inhomogène, car pour un couple (P, Q) de points,
κν1

(P ) = κν2
(P ) ; κν1

(Q) = κν2
(Q). La déformation du spectre entre deux points n’est à priori pas la

même pour deux fréquences distinctes
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τ∆ν(l) =

∫
∞

0

f(κ)exp(−κl)dκ =

∫
∞

0

N∑

i=1

αiδ(κ − κi)exp(−κl)dκ

L’utilisation des modèles à bandes étroites associée à une distribution statistique des co-
efficients d’absorption a été proposée par Domoto en 1974 [Domoto, 1974]. La fonction de
distribution associée f(κ) (Fig. 2.12) peut être obtenue en divisant la bande étroite en inter-
valles sur lesquels κν est monotone. Sur chaque intervalle on a ainsi une expression simple
de f(κ) et la fonction de distribution totale est donnée par une sommation sur tous les N
intervalles spectraux définis :

f(κ) =
N∑

i=1

1

∆ν

∣
∣
∣
∣

dν

dκν

∣
∣
∣
∣
i

[H(κ − κmin,i) − H(κ − κmax,i)] (2.38)

où H est la fonction de Heaviside, κmin et κmax respectivement la valeur minimale et maxi-
male de κν dans un intervalle i où son évolution est monotone.

Il existe une autre manière de construire la fonction f(κ) en remarquant que l’équation
2.36 montre que τ∆ν(l) est la transformée de Laplace de f(κ) :

τ∆ν(l) = L(f(κ)) (2.39)

On peut donc aussi obtenir une relation mathématique simple entre la fonction de répartition
f(κ) et la transmittivité moyenne :

f(κ) = L−1(τ∆ν(l)) (2.40)

Notre capacité à établir une expression de f(κ) dépend par ce moyen de la forme obtenue
pour la transmittivité moyenne. Si on est capable d’en calculer la transformée inverse de
Laplace, alors on sait produire f(κ).

2.3.4 Mise en œuvre des modèles de bandes dans les milieux hé-
térogènes

Dans les deux paragraphes précédents, les hypothèses de départ sont les hypothèses de
bandes étroites (invariance de la luminance de Planck dans la bande) et les hypothèses de
propriétés radiatives homogènes dans le milieu. Ici nous gardons les hypothèses de bandes
étroites et nous discutons des options proposées pour lever la contrainte d’homogénéité.

Dans le cas inhomogène, l’équation 2.37 montre qu’on peut exprimer une grandeur moyen-
née sur le domaine spectral en utilisant la formulation en k-distribution. En particulier, on
peut appliquer cela à l’expression de la transmittivité moyenne (G ≡ τ) :

τ∆ν(l) =
1

∆ν

∫

∆ν

τν(l)dν =
1

∆ν

∫

∆ν

exp

(∫ l

0

−κν(x)dx

)

dν (2.41)

Et la connaissance de la transmittivité moyenne sur une bande étroite nous permet de for-
muler entièrement le problème du transfert radiatif. Si le milieu est homogène, alors κν ne
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dépend pas de la position x et on retrouve bien l’expression de τ∆ν(l). Le calcul de τ∆ν(l) sur
une colonne de longueur l demande de connâıtre la valeur du coefficient d’absorption pour
tout point x du trajet optique. Le coefficient d’absorption n’est plus seulement dépendant
de la fréquence (κ 6= κν), mais dépend aussi de la position (κ = κν(x)). Comme le coefficient
d’absorption est maintenant une fonction à deux variables, il n’existe plus sur le chemin
optique une seule distribution f(κ), mais une infinité de distributions indépendantes pour
chaque point du chemin. Les formulations présentées jusqu’ici ne sont donc pas applicables
pour un milieu inhomogène. Cependant, on continue à les utiliser sous certaines hypothèses
simplificatrices. Le bien fondé de leur emploi est ensuite validé de manière empirique dans
certaines plages de conditions physiques.

Ainsi, Pour contourner la difficulté, il existe deux méthodes principales : la méthode de
Curtis-Godson, et la méthode des coefficients d’absorption corrélés (correlated-k ou ck).

Dans la méthode de Curtis-Godson, on substitue la transmittivité moyenne d’une colonne
de gaz hétérogène par celle d’une colonne homogène équivalente. On écrit alors les coefficients
de bande équivalents κCG et φCG pour la pseudo-colonne homogène :

κCG =

∫ l

0
κ(s)ds
∫ l

0
ds

φCG =

∫ l

0
φκds

∫ l

0
κds

La méthode des k-corrélés adopte une approche différente, et fait l’hypothèse de transfor-
mations homothétiques du spectre sur une bande étroite : les raies se déforment de la même
manière sur l’ensemble de la bande, en fonction de la température, des concentrations et de
la pression le long du trajet optique (Fig. 2.13). C’est cette méthode qui sera utilisée dans
nos applications pour traiter les milieux inhomogènes.

Hypothèse sous-jacente à l’utilisation de la méthode ck

L’équation 2.41 peut se reécrire en fonction du coefficient d’absorption moyen dans une
bande étroite κ =< κ >=

∫
∞

0
κf(κ)dκ, en introduisant un coefficient d’absorption normalisé

aν(κ, φ) = κν

κ
10 :

τ(l) =
1

∆ν

∫

∆ν

exp

(∫ l

0

−κ(x)aν(x; κ, φ)dx

)

dν (2.42)

Dans un cas homogène, aν est indépendant de x ; on peut donc le sortir de l’intégrale sur la
position (Eq. 2.43) :

τ(l) =
1

∆ν

∫

∆ν

exp

(

− aν(κ, φ)

∫ l

0

κ(x)dx

︸ ︷︷ ︸

u

)

dν (2.43)

10Nous omettons désormais l’indice ∆ν dans la notation des quantités moyenne sur une bande.
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Fig. 2.13 – Validité de la méthode ck. Les raies évoluent de manière simultanée et identique
en fonctions des paramètres extérieurs.

Cette opération mathématique correcte pour des cas homogènes continue à être appliquée
pour des cas inhomogènes, ce qui constitue une hypothèse forte de la méthode ck. Cette
hypothèse signifie que le rapport κ/κ reste inchangé quelle que soit la position x sur le trajet
optique. Autrement dit, pour deux positions différentes, la forme du spectre ne change pas,
et la seule chose qui varie est la valeur moyenne du coefficient d’absorption (Fig 2.13). Ce
qui signifie que toutes les raies dans une bande étroite donnée évoluent de la même façon
le long d’un trajet optique. Cette hypothèse est validée a posteriori sur des cas concrets
d’application mais n’a, encore une fois, aucune justification physique.

A partir de là, on peut choisir une écriture statistique de la transmittivité moyenne en
fonction de a, c’est à dire en k-distribution normalisée :

τ(l) =

∫
∞

0

exp(−au)f(a)da (2.44)

On introduit ensuite la fonction de répartition notée g(κ), continuement croissante sur son
intervalle de définition [0, 1] (Fig. 2.14) :

g(κ) =

∫ κ

0

f(κ′)dκ′ (2.45)

Cette fonction de répartition représente la probabilité pour que le coefficient d’absorption
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ait une valeur inférieure à κ dans la bande de largeur ∆ν. Et l’équation 2.37 se reécrit :

G =

∫
∞

0

f(κ)G(κ)dκ =

∫ 1

0

G(κ(g))dg (2.46)

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

C
oe

ffi
ci

en
t d

’a
bs

or
pt

io
n 

k 
en

 m
-1

g

g

Fig. 2.14 – fonction de répartition de κ.

On peut ainsi donner une expression statistique de τ(l) analogue à celle d’une colonne
homogène :

τ (l) =

∫ 1

0

exp
(
− a(g; κ, φ)u

)
dg (2.47)

La fonction inverse de la cumulative κ(g) représente le coefficient d’absorption réordonné
de façon croissante. Dans le cadre de l’approximation ck, on considère que la valeur de la
fonction de répartition g(κ) est conservée le long du trajet optique, même dans le cas d’une
colonne de gaz inhomogène ; cette hypothèse permet de calculer la valeur du coefficient d’ab-
sorption en tout point du milieu à partir du coefficient d’absorption du point d’émission.

2.4 Propriétés spectrales de la suie

La détermination des propriétés optiques de la suie est un problème complexe, car il
faudrait connâıtre la distribution de taille et la forme des particules de suie ou des agrégats
qui peuvent se former lors de réactions de combustion. La suie joue un rôle important car
elle rend la flamme plus lumineuse et permet par rayonnement un refroidissement des zones
de réactivité chimique. On considère généralement pour les applications en combustion que
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les particules de suie ne sont pas agglomérées et les propriétés optiques de la suie peuvent
être déterminées en utilisant la théorie de Mie à la limite de Rayleigh (particules de faible
diamètre) [Modest, 1993] :

κη =
36πnχ

(n2 − χ2 + 2)2 + 4n2χ2
fvη

où n et χ sont respectivement les parties réelles et imaginaires de l’indice de réfraction
complexe de la suie, et fv la fraction volumique de suie. Une approximation simple a été
proposée par Hottel [Hottel and Sarofim, 1967] :

κη = αfvη

où α est une constante.

Nous utilisons cette corrélation simple faisant intervenir la fraction volumique de suie et
le nombre d’onde η au centre d’une bande étroite. Aux plages de fréquences où nous nous
trouvons, il est en effet raisonnable de négliger la variation de κη sur une bande étroite pour
la suie. De plus nous utilisons une valeur de la constante α (α = 5.5 ), qui a été déterminée
pour la combustion de flammes de méthane [Dalzell and Sarofim, 1969, Lee and Tien, 1981] :

κη,suie = ηfv × 5.5 (2.48)

Cette corrélation a été utilisée en particulier par Zhang et al. [Zhang et al., 1988].

On peut ajouter que pour des applications de combustion usuelles, les fractions volu-
miques de suie sont en général comprises entre 10−8 et 10−5 [Solovjov and Webb, 2001]. Par
ailleurs, nous considérons que les particules de suie sont petites (de diamètre ≈ 10nm), de
telle sorte que l’on puisse négliger leur effet diffusif sur le rayonnement. Cette approxima-
tion reste questionnée par certains auteurs, en particulier en présence d’aggrégats de suie de
grande taille [Eymet et al., 2002].

2.4.1 Corrélations spectrales

L’équation 2.29 fait apparâıtre des produits entre le coefficient d’absorption et la lu-
minance d’une part, la luminance noire d’autre part. Dans le cas d’une prise de moyenne
spectrale (exemple : écriture moyenne sur une bande étroite), le produit κηLη(~r, ~u) n’est
pas séparable, car la luminance en un point est liée aux propriétés radiatives du milieu. Par
contre, le produit κηLη,b(~r) peut être séparé sous l’hypothèse de bandes étroite (luminance
noire constante sur la bande) :

∂Lη(~r, ~u)

∂l
= −κηLη(~r, ~u) + κηLη,b(~r) et κηLη,b(~r) = κηLη,b(~r) (2.49)

Mais

κηLη(~r, ~u) 6= κηLη(~r, ~u)
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On ne peut donc établir une ETR moyenne sur une bande spectrale à moins de faire une
hypothèse de décorrélation qui n’a à priori aucune raison de se justifier, le coefficient d’ab-
sorption κν et la luminance Lν étant tous deux dépendants de la fréquence.

On peut aussi faire une écriture moyenne sur le spectre de la forme intégrale de l’ETR
(Eq. 2.30). Dans le cas de parois noires on a ainsi :

Lη(~r, ~u) = Lη,b(~r0)τη(~r0 → ~r) +

∫ ~r

~r0

Lη,b(~r′)

[

− ∂τη(~r′ → ~r)

∂l

]

d~r′ (2.50)

Sous cette forme, la corrélation spectrale est supportée uniquement par le terme de dérivée

première de la transmittivité moyenne ∂τη(~r′→~r)
∂l

.

2.5 Méthodes de résolution de l’équation de transfert

radiatif

En raison du degré de complexité élevé du problème, il existe peu de situations pour
lesquelles l’ETR peut être résolue de manière analytique [Modest, 1993, Siegel and Howell,
1992]. Mais elles sont précieuses pour la validation des codes de calcul. Pour toutes les autres
configurations, on est amené à utiliser des méthodes de résolution numériques, adaptées à
la forme différentielle ou intégrale de l’équation de transfert radiatif. De façon à mentionner
le vocabulaire que nous pourrons utiliser par la suite, nous allons décrire succintement dans
ce paragraphe les méthodes de résolution numérique les plus couramment rencontrées, en ne
prétendant nullement à l’exhaustivité.

2.5.1 Méthode des zones

La méthode des zones a été initialement introduite par Hottel [Hottel and Sarofim, 1967]
et a connu un grand succès pour le calcul du transfert radiatif en ingénierie. Le principe de
cette méthode repose sur le partitionnement du volume de gaz et des surfaces englobantes
en zones, chacune ayant une température et des propriétés radiatives uniformes. La résolu-
tion de l’ETR passe alors par l’évaluation des facteurs d’échange entre zones tenant compte
de l’atténuation par le milieu, d’expression différente suivant que l’on considère un échange
surface-surface, surface-volume, ou volume-volume. On fait un bilan énergétique sur chaque
zone, et on se ramène alors à la résolution d’un système algébrique d’équations linéaires en
fonction de la température. La résolution de ce système se fait classiquement par les mé-
thodes de calcul d’algèbre linéaire.

Cette méthode de résolution de l’ETR impose d’avoir des conditions homogènes en tem-
pérature et concentrations dans les éléments discrets (volumes et surfaces) définis comme
zones, mais permet sous ces conditions d’avoir des calculs d’une précision très satisfaisante
[Olsommer et al., 1997].
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2.5.2 Méthode des ordonnées discrètes

La méthode des ordonnées discrètes a été proposée pour la première fois par Chandrase-
khar [Chandrasekhar, 1950]. Elle a été très largement utilisée pour ses qualités de rapidité et
de précision satisfaisantes dans bon nombre de configurations [Thynell, 1998, Abraham and
Magi, 1997, Kim et al., 1991, Park et al., 1999, Sakami et al., 1998, Fiveland, 1984, 1987,
1988, Fiveland and Jamaluddin, 1991, Fiveland and Jessee, 1995, Selçuk and Kayakol, 1997,
Truelove, 1987, 1988]. Elle repose sur la discrétisation de l’angle solide total Ω = 4π en un
nombre fini de directions auxquelles sont associés des facteurs de quadrature. L’ETR sous
sa forme différentielle est alors résolue de façon approchée pour chaque direction, en chaque
point de discrétisation spatiale. La précision de la méthode est dépendante du nombre de
points de quadrature choisi, ainsi que des schémas numériques de discrétisation spatiale de
l’ETR.

2.5.3 Méthode des harmoniques sphériques

Cette méthode est aussi appelée approximation PN et repose sur la décomposition de la
luminance en chaque point de l’espace sur une base orthogonale d’harmoniques sphériques.
La forme mathématique de cette décomposition est bien connue et peut être trouvée dans
n’importe quel ouvrage de référence [Case and Zweifel, 1967].

Comme pour toute décomposition sur une base orthogonale, on tend vers l’exactitude
lorsque le nombre de termes tend vers l’infini. En pratique on utilise des séries tronquées
et le degré de précision dépend du nombre de coefficients retenus. Quand on se limite aux
premiers ordres, la méthode est surtout utilisable pour des milieux optiquement épais en
absorption ou diffusion. L’approximation P1 est aussi connue sous la dénomination d’ap-
proximation de diffusion.

On trouvera des exemples d’utilisation de la méthode pour des configurations multidi-
mensionnelles dans [Ratzell and Howell, 1983, Mengüc and Viskanta, 1987, Mengüç et al.,
1985, Mengüc and Viskanta, 1985]

2.5.4 Ray Tracing

Comme précédemment la méthode repose sur une discrétisation angulaire de l’espace de
propagation possible du rayonnement en tout point de calcul. Pour chaque direction résultant
de la discrétisation, on suit un rayon optique en découpant le trajet en segments supposés
isothermes et homogènes [Siegel and Howell, 1992]. La précision de calcul dépend de manière
directe du nombre d’angles de calculs choisi, ainsi que du nombre de segments. On peut
simplement mentionner que dans le cas de surfaces réfléchissantes, le suivi du rayon jusqu’à
son extinction augmente considérablement le temps de calcul.
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2.5.5 Méthode de Monte Carlo

La méthode de Monte Carlo est une méthode statistique qui permet d’évaluer le trans-
fert radiatif par la génération d’un grand nombre d’événements aléatoires. Elle consiste à
rechercher la solution du problème radiatif en recréant les phénomènes qui sont à la base des
transferts de chaleur par rayonnement. Le calcul de l’énergie transmise par un point P donné
au reste du système se fait en simulant la propagation à partir de P d’un grand nombre de
rayons dont les caractéristiques sont générés de manière aléatoire sur l’ensemble des valeurs
possibles. Chaque rayon est suivi le long de son trajet optique jusqu’à son extinction. Elle
reste donc très près de l’image physique qu’on peut se faire des échanges radiatifs dans le
milieu. On simule directement le phénomène physique à l’origine des grandeurs à déterminer
comme les termes sources volumiques ou les flux radiatifs aux parois. La méthode de Monte
Carlo est réputée comme nécessitant des temps de calcul importants mais, comme nous le
verrons dans les chapitres suivants, il existe plusieurs voies de recherche pour accélérer et
améliorer la convergence de ces calculs.

Par ailleurs, une des hypothèses fondamentales pour appliquer cette technique de simu-
lation étant l’indépendance des tirages aléatoires, elle semble se prêter particulièrement bien
à une parallélisation des calculs [Farmer, 1995].

La méthode de Monte Carlo étant une méthode de résolution d’intégrales multiples, une
reformulation intégrale du problème de transfert est souvent nécessaire pour accéder à la
possibilité d’une optimisation en termes de temps de calcul. Elle est particulièrement in-
téressante pour les problèmes d’intégration multiple de dimension élevée car c’est la plus
complexe des intégrales qui pilote la convergence du calcul, alors que pour les méthodes dé-
terministes le temps de calcul augmente communément à la puissance du nombre d’intégrales
(Fig. 2.15).
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Fig. 2.15 – Efficacité de la méthode d’intégration de Monte Carlo pour un problème com-
plexe.



Chapitre 3

Développements méthodologiques
dans le contexte de la synthèse
d’images

Les algorithmes de rendu en synthèse d’images ont pour objectif de générer des images
réalistes. Ils s’appuient sur les lois physiques de transfert du rayonnement posées au cha-
pitre précédent. En particulier, l’équation fondamentale de la synthèse d’images décrivant le
champ de luminance dans la scène n’est rien d’autre qu’une forme de l’équation de trans-
fert radiatif. Après une introduction concernant les problèmes spectraux liés au rendu d’une
scène, nous présentons les principaux modèles d’illumination utilisés en synthèse d’images,
ainsi que certains algorithmes proposés dans ce contexte en tenant compte de la présence
de sources et de capteurs 1. Enfin, nous terminerons en donnant les règles principales d’une
conception orientée objet.

Un premier point spécifique dans le contexte de la synthèse d’image est que le domaine
spectral considéré est en général restreint au visible, soit une plage de 380nm à 780nm (do-
maine indiqué par la Commission Internationale de l’Éclairage (CIE)). Le domaine spectral
donné comme étant celui du visible est sujet à quelques variations légères sur les bornes
suivant les ouvrages consultés.

3.1 De la représentation spectrale à la couleur

Si nous voulons calculer la couleur d’un point de la scène, nous devons d’abord établir
l’énergie provenant de ce point suivant les longueurs d’onde. L’aspect spectral est pris en
compte généralement en échantillonnant le domaine visible. Un échantillonnage fin tous les
5nm revient à considérer 80 longueurs d’ondes différentes. Or, le calcul de l’image étant re-
fait pour chaque longueur d’onde échantillonnée, cette représentation du spectre mène à des

1Nous présentons également sans insister les notations développées dans cette logique et qui conduisent
à des écritures en intégrales de chemin.

61
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temps de calcul importants dans le domaine de la synthèse d’images 2. Alors il est souvent
fait le choix de se restreindre à 3 longueurs d’onde correspondant au rouge, au vert, et au
bleu, afin d’accélérer les calculs 3. On peut également faire le choix d’une représentation en
ondelettes [Claustres et al., 2003].

Quel que soit le choix fait pour la description spectrale adoptée, l’information collectée
n’est pas utilisable de façon immédiate en termes de production d’images. Il existe une étape
supplémentaire, qui est celle de la conversion de l’information spectrale dont on dispose dans
un espace perceptuel de couleurs [CIE, 1971, 1978]. La conversion dans l’espace tri-stimulus
de couleurs nommé CIE-XYZ se fait par l’intermédiaire de fonctions de correspondance
couleur (color matching functions) (Fig 3.1).

Fig. 3.1 – Fonctions de correspondance des couleurs définies par la CIE. On voit notamment
que le rouge participe à la perception du bleu.

Elles ont été établies en tenant compte des spécificités physiologiques de l’œil humain
et du côté subjectif de la perception à travers leur définition par un large panel de sujets
humains confrontés à des expériences de colorimétrie. Il reste encore à exprimer les données
dont nous disposons maintenant en CIE-XYZ, en tenant compte du support d’affichage. On
fait alors un changement de repère dans l’espace des couleurs pour obtenir une information
dans des bases telles que les bases Rouge-Vert-Bleu (RVB) très utilisée, Teinte-Luminance-
Saturation, etc. Cependant, toutes les couleurs pouvant être perçues par l’œil humain, ne
peuvent être représentées dans l’espace RVB (Fig. 3.2).

Pour éviter la phase de conversion, il est souvent fait le choix de travailler directement en
représentation dans la base RVB, ce qui est une grosse approximation car on ne tient alors

2Il convient de rappeler qu’en thermique, un échantillonnage spectral fin revient à effectuer quelques 106

calculs.
3Avec les longueurs d’onde suivantes pour respectivement le rouge, le vert, et le bleu d’après la CIE

[Wyszecki and Stiles, 1982] : λrouge = 700 nm, λvert = 546.1 nm, λbleu = 435.8 nm
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(a) Espace de couleurs CIE-XYZ : couleurs
perceptibles par l’œil humain.

(b) Couleurs représentables dans un espace co-
lorimétrique Rouge-Vert-Bleu.

Fig. 3.2 – Différence entre couleurs perceptibles et couleurs représentables dans une base
RVB.

absolument pas compte, dans ce cas, de la participation d’une couleur à la perception d’une
autre. Toutefois, dans un soucis de minimiser le temps de calcul, l’adoption de la base RVB
comme base de travail peut être considérée comme un bon compromis temps de calcul-qualité
de l’image (Fig. 3.3).

Un autre point particulier à la synthèse d’images est la présence systématique d’un cap-
teur. Dans certaines applications des sciences pour l’ingénieur, il se peut cependant aussi
qu’on introduise un capteur de type caméra infra-rouge par exemple pour faire une image
des échanges thermiques dans un dispositif de combustion. Ainsi, la modification de la posi-
tion du capteur, modifie le résultat du calcul. Mais d’autre part, on localise également des
sources lumineuses distinctes, alors que l’ensemble du système est émissif pour les appli-
cations de combustion. Les algorithmes utilisés en synthèse d’images ont alors évolué pour
prendre en compte, et utiliser la présence de ces deux entités spécifiques : capteur et source.
Un algorithme satisfaisant de création d’une image de synthèse doit être capable de prendre
en compte tous les chemins optiques reliant le capteur aux sources lumineuses. Nous expo-
sons ici un descriptif des principaux modèles présents en synthèse d’images, en l’absence de
milieu participant.
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(a) Image de synthèse calculée dans une base
spectrale.

(b) Image de synthèse calculée en RVB.

Fig. 3.3 – Rendu d’une scène en utilisant soit des calculs spectraux, soit des calculs dans
une base RVB. Cette image a été produite par Luc Claustre de l’équipe synthèse d’images
de l’IRIT.

3.2 Modèles locaux

La création d’une image de synthèse réaliste sur un écran d’ordinateur demande de pou-
voir afficher sur chaque pixel d’un capteur le rayonnement reçu dans la partie visible du
spectre et se dirigeant suivant la direction d’observation (Fig. 1.9), après conversion dans
une bande de couleur adaptée à l’affichage de l’écran. Il faut alors pouvoir déterminer com-
ment tout point de la scène est éclairé pour pouvoir faire remonter à la fois les informations
d’intensité et de couleur vers l’écran. Comme expliqué au chapitre précédent, on est donc
confronté pour calculer l’éclairement de ce point, au fait qu’il dépend de l’ensemble des
points éclairés du système par réflexion ou transmission ; ceux-ci dépendent à leur tour de
l’éclairement provenant de tout le système. On a par conséquent un problème récursif au
niveau géométrique du fait des réflexions multiples, auquel il faut ajouter une dimension
spectrale. Nous n’avons ici fait que rappeler que les problématiques en synthèse d’images, et
en transfert radiatif sont très similaires.

Pour essayer de simplifier ce problème, Phong [Phong, 1975] propose un modèle local
d’illumination dans lequel on cherche à rendre uniquement compte de l’éclairement reçu
directement des sources lumineuses présentes dans la scène (Fig. 3.4). On ne tient pas compte
du rayonnement reçu indirectement des autres composantes de la scène. Le modèle de Phong
est très simple, mais ne respecte ni la loi physique de conservation de l’énergie, ni le principe
de réciprocité ; il est basé sur une hypothèse de séparabilité des contributions diffuses et
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spéculaires du rayonnement réfléchi. Un modèle d’illumination locale produit des images qui
ne peuvent être considérées comme réalistes à cause de cette hypothèse simplificatrice. On
cherche cependant parfois à rendre compte de l’éclairage indirect en introduisant un terme
d’éclairement ambiant, qui est considéré comme constant en tout point et en toute direction.
Il ne permet donc pas de créer les ombres venant des autres objets éclairés de la scène.
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Fig. 3.4 – Modèle d’illumination de Phong

Pour une seule source lumineuse considérée comme ponctuelle (cas d’une scène éclairée
par le soleil par exemple) on peut écrire l’intensité réfléchie de manière diffuse en un point
par une surface mate par le modèle de Lambert :

Iλ(P ) = kd,λ. cos θ.Isource,λ (3.1)

où kd,λ est un coefficient de réflexion diffuse au point P, Isource,λ est l’intensité de la source,
et θ est l’angle entre la direction de la source et la normale à la surface au point P.

Pour une surface brillante, on écrit l’intensité réfléchie de manière spéculaire :

Iλ(P ) = ks,λ(θ). cosn β.Isource,λ (3.2)

où ks,λ est un coefficient de réflexion spéculaire au point P (coefficient de Fresnel), β est
l’angle entre la direction de l’observateur et le rayon réfléchi, et n est l’exposant de Phong.
L’expression mathématique complète du modèle de Phong pour un nombre NSL de sources
lumineuses est obtenue en sommant les équations 3.1 et 3.2, et en y ajoutant le terme ambiant
kaIa :

Iλ(P ) = kaIa +

NSL∑

i=1

kd,λ cos θiIi,λ +

NSL∑

i=1

ks,λ cosn βiIi,λ

Le calcul de Iλ(P ) est identique pour chacune des composantes de la base spectrale choisie.

Le modèle de Phong pris en exemple est le plus simple utilisé en synthèse d’images. C’est
aussi celui qui est utilisé par les cartes graphiques (le matériel peut alors évaluer toutes
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les équations voulues) pour le rendu en temps réel dans les applications de jeux vidéos par
exemple. De très nombreux travaux ont été menés afin de définir des modèles de plus en plus
précis pour la réflectance ou la BRDF (bidirectional reflectance distribution function), pre-
nant en compte les phénomènes sub-surfaciques, les aspects spectraux, etc [He et al., 1991,
Hanrahan and Krueger, 1993, Lalonde and Fournier, 1997, Claustres et al., 2003].

Bien que donnant parfois des résultats visuellement satisfaisants, les modèles locaux ne
peuvent donner une simulation correcte de la scène du fait de la non représentation de l’éclai-
rage indirect. On est donc amené à définir des modèles d’illumination globale, où l’évaluation
du rayonnement partant d’un point tient compte du rayonnement réfléchi venant du reste
du système.

3.3 Modèles globaux

Les modèles d’illumination globale sont des réponses à la question de la résolution de
l’équation du rendu (Eq. 3.3), proposée sous sa forme la plus utilisée par Kajiya [Kajiya,
1986], qui s’inspire de l’équation de transfert radiatif et cite l’ouvrage sur le transfert radiatif
de Siegel et Howell [Siegel and Howell, 1992] (à l’époque, l’édition de 1981) comme référence
(où l’on se rend compte que le lien entre thermique et synthèse d’images n’est pas nouveau).

L(x, x′) = g(x, x′)

[

Le(x, x′) +

∫

Ω

ρ(x, x′, x′′)L(x′, x′′)dx′′

]

(3.3)

Ici L(x, x′) est la luminance totale passant en x′ et se dirigeant vers x, g(x, x′) est un
terme géométrique (rendant compte de la visibilité entre x et x′), Le(x, x′) est la luminance
émise en x′ vers x, ρ(x, x′, x′′) représente la partie de la luminance venant de x′′, réfléchie
en x′ et allant vers x, et Ω est le demi-espace dans lequel un rayon peut être réfléchi (angle
solide 2π), ou transmis (angle 4π). Cette fonction ρ(x, x′, x′′) est souvent appelée réflectance
bidirectionnelle ou BRDF. Elle peut être vue comme l’équivalent pour une surface de la
fonction de phase décrivant le diffusion dans les milieux participants.

La solution de l’équation du rendu peut être trouvée formellement. Ainsi, en posant :

(RL)(x, x′) =

∫

Γ

ρ(x, x′, x′′)L(x′, x′′)dx′′

où R est un opérateur de réflexion, l’équation 3.3 peut se reécrire sous la forme :

L = gLe + gRL

La solution de cette équation s’écrit sous forme de série de Neumann [Sillion and Puech,
1994] :

L =
∞∑

n=0

(gR)ngLe (3.4)
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L’interprétation de cette solution est assez simple. R étant un opérateur de réflexion, L est la
somme de la luminance émise gLe, de la luminance réfléchie une fois gRgLe, de la luminance
réfléchie deux fois (gR)2gLe, et ainsi de suite. La convergence de cette série est assurée par la
loi de conservation de l’énergie. On définit ainsi des familles de chemins optiques par nombre
de réflexions subies.

Il peut s’avérer nécessaire de distinguer les différents types de réflexions (diffuse ou spé-
culaire), et donc de ne pas se contenter d’un opérateur unique R. En l’absence de milieu
participant, les chemins lumineux utiles au calcul de l’image commencent à la source de
lumière et se terminent dans le capteur, après 0, 1, ou plusieurs réflexions. Heckbert [Heck-
bert, 1990] décrit ainsi les évènements possibles lors de la propagation d’un rayon lumineux.
L’espace des chemins lumineux peut être décrit grâce à la notation :

– L pour une source de lumière (Light)
– E pour le capteur (Eye)
– S pour une réflexion spéculaire (Specular)
– D pour une réflexion diffuse (Diffuse)

L et E sont alors les extrémités des chemins lumineux. De plus, pour pouvoir indiquer la suite
des évènements (réflexions sans milieu participant) subis par un rayon le long d’un chemin
lumineux, on ajoute la grammaire suivante (où k désigne un évènement pouvant être de type
S ou D) :

– (k)+ : cela signifie qu’un évènement k se produit une fois ou plus
– (k)∗ : cela signifie 0 évènement k ou plus
– (k) ? : cela signifie 0 ou 1 évènement k
– (k|k’) : cela 1 évènement k ou 1 évènement k’

Cette notation suffit à décrire l’espace des chemins possibles en l’absence de milieu partici-
pant. Par exemple la notation LD+E signifie qu’après émission (L), un rayon subit au moins
une réflexion diffuse (D+) avant d’atteindre le capteur (E). Cette notation permet de donner
le type de chemins lumineux pouvant être simulés par un algorithme, et de connâıtre finale-
ment les restrictions qu’il peut imposer.

Parmi les algorithmes proposés pour la résolution de l’équation du rendu, nous en évo-
quons deux qui sont les plus répandus : la méthode des radiosités et les méthodes de lancé de
rayons dont les méthodes de Monte Carlo font partie. Nous donnerons, dans le formalisme de
Heckbert, les types de chemins optiques pris en compte pour chacune de ces deux méthodes.

3.3.1 Méthodes des radiosités

La méthode des radiosités a été introduite à l’origine par des thermiciens [Hottel and
Sarofim, 1967, Eckert and Drake, 1959] et adaptée en synthèse d’images par Goral [Goral
et al., 1984]. Le système (ou la scène) est divisé(e) en un nombre fini de surfaces supposées
lambertiennes. La radiosité quittant la surface i est Mi = Li.π (où le terme Li désigne la
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luminance). Soient deux surfaces Si et Sj portant deux surfaces élémentaires dSi et dSj,
éloignées d’une distance lij (Fig. 3.5). Le flux d’énergie envoyée par Si vers Sj est :

φe(Si → Sj) = Li

∫

Si

∫

Sj

cos θi cos θj

l2ij
dSidSj

θ i

θ j

n i

n j

S i

S jj

idS

dS

Fig. 3.5 – Illustration du calcul de radiosité entre deux surfaces Si et Sj.

La solution de radiosité est obtenue en faisant le bilan pour chaque surface de toutes les
énergies reçues des autres surfaces du système. On obtient un système d’équations à résoudre
très similaire à celui de la méthode des zones (ce qui n’est pas étonnant car il s’agit en fait
de la même méthode), et dans lequel on peut faire apparâıtre des facteurs de forme. Limitée
aux réflexions diffuses, cette méthode peut s’écrire LD∗E suivant les conventions définies
au paragraphe précédent. Après émission (L), un rayon subit éventuellement des réflexions
diffuses (D∗), avant d’atteindre le capteur (E).

Des perfectionnements notables ont été apportés à la méthode des radiosités avec la prise
en compte des échanges avec les volumes dans le cas de milieux participants [Rushmeier and
Torrance, 1987, Arquès et al., 1996], pour retrouver la méthode des zones telle qu’elle est
utilisée en transfert radiatif. De plus, Arques a réalisé une extension de cette méthode aux
réflexions spéculaires [Arques et al., 1997] pour la rendre opérationnelle dans une très large
gamme de configurations.

Les hypothèses et limites de cette méthode ont déjà été évoquées dans le chapitre précé-
dent au paragraphe concernant la méthode des zones. Les limitations initiales de la méthode
des radiosités ont amené la recherche de méthodes alternatives permettant plus de souplesse,
telles que les méthodes de lancé de rayons.

3.3.2 Lancé de rayons

Le calcul de l’illumination globale par lancé de rayons est proposé en 1980 par Whitted
[Whitted, 1980] à partir de l’algorithme de Appel [Appel, 1968] servant à déterminer les
points visibles de la scène. Des rayons sont lancés depuis le capteur (par exemple l’œil de
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l’observateur) à travers chaque pixel du plan de projection (par exemple l’écran d’un ordi-
nateur) de la scène. Ces rayons sont appelés rayons primaires. Pour chaque rayon, on calcule
le point d’intersection avec la géométrie de la scène et on évalue l’illumination globale en
ce point. L’illumination directe par les sources est calculée par l’envoi de rayons vers les
sources de lumière, appelés rayons d’ombrage. Puis l’illumination indirecte est calculée à son
tour en lançant des rayons depuis le point d’intersection dans le reste de la scène (rayons
secondaires). Whitted ne lance qu’un rayon secondaire dans la direction de réflexion spécu-
laire, et éventuellement un dans la direction de transmission pour les objets translucides, ces
directions étant données par les lois de Descartes (Fig. 3.6).

OBSERVATEUR

objets

SOURCEECRAN
Rayon réfléchi

Rayon transmisn

Fig. 3.6 – Calcul de l’illumination globale par lancé de rayons.

Pour éviter les problèmes locaux d’aliassage (disparition d’objets résultant d’un sous-
échantillonnage de la scène par un nombre de rayons insuffisant), plusieurs rayons peuvent
être générés au lieu d’un seul par pixel. Ils peuvent alors être répartis soit de façon uniforme
dans l’image, soit de manière stochastique (lancé de rayons distribué [Cook et al., 1984]).

Dans le lancé de rayons classique, ou ray tracing, l’illumination indirecte est seulement
évaluée pour les surface spéculaires en lançant un rayon dans la direction réfléchie. Le ray
tracing peut donc décrire des trajets optiques de type : LD?S∗E. L’émission (L) est éventuel-
lement suivie d’une réflexion diffuse (D ?), et de réflexions spéculaires (S*), avant d’atteindre
le capteur (E).

Dans le cas d’un échantillonnage aléatoire de l’espace des chemins lumineux de la scène
(calcul de l’illumination par la méthode de Monte Carlo), on parle de tracé de chemins. Le
tracé de chemins direct se fait en générant des rayons à partir du capteur. Tous les types de
chemins peuvent alors être décrits (L(S|D)∗E). Cependant, même si tous les chemins sont
possibles, certains demeurent très improbables et, par exemple la réflexion de type miroir
peut s’avérer difficile à obtenir sans modification de l’algorithme.

D’autres approches ont été développées pour palier aux défauts manifestes de cette façon
de procéder. En particulier, il est difficile de représenter les caustiques (chemins de type
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LS+DE). Cela demande en effet qu’un rayon partant du capteur subisse une réflexion diffuse,
puis une ou plusieurs réflexions spéculaires pour aboutir à la source.

3.3.3 Tracé de chemin inverse

C’est un nom paradoxal puisqu’on suit alors les rayons lumineux depuis la source vers
le capteur. La source est échantillonnée et des rayons sont émis vers la scène. A chaque
intersection, la luminance est envoyée vers le capteur.

OBSERVATEUR

objets

SOURCEECRAN

Fig. 3.7 – Tracé de chemin inverse.

Cette façon de procéder représente une façon de régler le problème des caustiques, mais
représente très mal les effets de miroir.

3.3.4 Tracé bidirectionnel

Lafortune [Lafortune and Willems, 1993] a développé un modèle héritant des qualités des
deux précédents en générant une famille de chemins. Un chemin est généré à partir du cap-
teur et chaque événement (D|S) est stocké, jusqu’à un certain nombre d’évènements (nœuds
du chemin). En faisant la même chose à partir de la source, on obtient deux chemins séparés
incomplets. Les chemins sont ensuite reliés entre eux à chaque sommet.

Cette démarche contribue à faire baisser grandement le bruit sur l’image (l’incertitude
sur le résultat du calcul par la méthode de Monte Carlo), mais le temps de calcul reste tout
de même important.

3.3.5 Photon mapping

La technique du photon mapping [Jensen, 2001] conserve les qualités du tracé de chemins
bidirectionnel et se fait en deux temps. Dans un premier temps, des photons sont émis de la
source lumineuse et en chaque nœud du chemin, on stocke la position du nœud, la direction
incidente, et l’énergie du photon (on crée une table de données contenant la cartographie
des photons ou photon map). Dans un deuxième temps des chemins sont tracés à partir du
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capteur. En chaque point d’intersection avec la scène, on évalue l’illumination en recherchant
les N plus proches photons stockés dans la table. La luminance en ce point est calculée en
tenant compte de la BRDF en ce point et en utilisant un filtre (pondération sur les lumi-
nances des N plus proches voisins). Afin d’éviter de créer des défauts dans l’image au niveau
des zones de pénombre, on n’utilise pas en fait la photon map pour calculer l’illumination
directe, mais pour calculer l’illumination indirecte.

Nous évaluerons pour notre part l’illumination globale en un point de la scène par une mé-
thode de Monte Carlo car elle est particulièrement adaptée à la simulation de phénomènes
complexes [Pattanaik and Mudur, 1992, 1993], et donc en envoyant un grand nombre de
rayons secondaires (dans la mesure où nous n’avons pas vraiment de source localisée). Nous
souhaitons en effet non seulement pouvoir résoudre la complexité spectrale du problème,
mais aussi laisser la porte ouverte à l’introduction ultérieure d’autres phénomènes comme la
diffusion [Lafortune and Willems, 1996, Pérez et al., 1999, 2000], ou la variation de l’indice
optique du milieu [Stam and Languénou, 1996].

Une revue plus détaillée des techniques de résolution de l’illumination globale en pré-
sence de milieu participant est fournie par Pérez et al. [Pérez et al., 1997], et reprend bon
nombre de méthodes qui ont été exposées dans le chapitre précédent de ce manuscrit. Une
étude consacrée spécifiquement au lancé de rayons est proposée par Glassner [Glassner, 1989].

La mise en œuvre effective d’un modèle d’illumination globale requiert au minimum
comme données d’entrée une description de la géométrie, des propriétés des matériaux com-
posant la scène, et des sources lumineuses. Elle nécessite également une analyse complète
du phénomène à simuler afin de construire une solution qui offre une réutilisabilité intégrale
quelle que soit la scène fournie en entrée. Dans cette optique, il parâıt nécessaire de s’appuyer
sur une méthode de conception à la fois souple dans ses possibilités, et rigoureuse dans son
analyse.

3.4 Approche objet

Dans la conception de programmes, les problèmes de fiabilité, de souplesse, et de main-
tenance apparaissent clairement comme des soucis majeurs. Plus un code sera compliqué
et construit comme un bloc monolithique, plus les risques d’erreur seront grands. La sou-
plesse du code impose de pouvoir créer de nouvelles fonctionnalités sans devoir reécrire la
majeure partie du programme. Il faut donc pouvoir le modifier sans en toucher profondément
la structure. Enfin, la maintenance ne peut se faire sans une lisibilité et une structure claire
de construction qui permette de retrouver la logique de programmation. C’est pour toutes
ces raisons qu’on est amenés à se diriger vers une méthode de conception orientée objet.

Cette démarche doit toujours être présente à l’esprit pour ceux qui, ayant l’habitude
de concevoir des programmes de manière traditionnelle, se retrouvent confrontés à un code
orienté objet. Le passage par exemple du C au C++ se fait certes en termes de mots clés et
de grammaire en faisant quelques ajouts à une base déjà fournie. Mais la phase de conception
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est toute autre, et l’esprit qui anime l’analyste est différent.

L’approche objet n’est donc pas limitée à une technique de programmation, mais est
un véritable paradigme. Cela signifie qu’elle englobe un ensemble de théories, standards et
techniques qui représentent une méthode d’organisation de la connaissance. L’approche ob-
jet peut être considérée comme une extension de la programmation modulaire apparue dans
les années 1970. Dans la démarche objet, le concept fondamental est celui, par définition,
de l’objet. Ce dernier comprend à la fois des attributs (données) et des méthodes associées
qui agissent sur ces attributs. Cette notion est appelée encapsulation, et constitue un des
concepts de base de la programmation orientée objet. L’accès aux attributs d’un objet se
fait par l’intermédiaire d’une méthode interface : l’information est masquée et n’est acces-
sible que par des services fournis par l’objet lui-même (masquage des informations). L’objet
fournit des services en réponse à une requête venant d’un autre objet client. C’est donc un
sous-système indépendant, possédant ses propres données et ses traitements, qui fournit des
services au reste de l’application. Les objets communiquent entre eux par la transmission de
messages et chaque message est destiné à un objet particulier, à la différence d’un appel de
fonction pour un mode de conception traditionnel. Le même message adressé à deux objets
différent peut être interprété de manière différente (notion de surcharge). Dans un modèle
orienté objet, le récepteur spécifique d’un message donné n’est en général connu qu’au mo-
ment de l’exécution. La méthode à appeler est donc déterminée à ce moment là. L’édition
de liens entre le message et la méthode utilisée pour répondre à la requête se fait alors de
manière tardive (liaison tardive).

Un objet recevant une requête peut ne pas pouvoir répondre directement à la demande
de service qui lui est faite. Il est alors amené à déléguer le service à un autre objet. Du point
de vue du client, c’est toujours le premier objet qui fournit le service, mais il a utilisé le
principe de la délégation.

Tous les objets définis sont des instances d’une classe. Une classe est donc une sorte de
moule pour créer des objets conformes à la description de la classe. Ces instances sont créées
ou détruites au moment de l’exécution. Un objet fournit un service suivant le modèle de la
classe dont il est une instance. On peut aussi créer des sous-classes. Ces sous-classes peuvent
ensuite définir leurs propres méthodes et être capables de fournir les services définis dans
la classe dont ils sont issus (ou super-classe) par le mécanisme de l’héritage. Ils peuvent
cependant aussi redéfinir la méthode dont ils sont censés hériter de leur classe ancêtre. Une
sous-classe pourra donc substituer une méthode à celle de sa super-classe (polymorphisme).
Enfin, une classe peut avoir plusieurs super-classes et donc hériter des méthodes de plusieurs
classes (héritage multiple).

On ne parlera donc pas en conception orientée objet de variables, d’affectations, ou de
fonctions, mais d’objets, de messages, et de services. Nous cherchons à créer des objets dont
le comportement est bien défini et qui se rendent des services entre eux.

L’utilisation d’une conception orientée objet est, comme nous l’avons déjà mentionné,
essentielle dans la construction d’outils souples et complexes à la fois. Elle permet notamment
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de travailler sur des représentations de l’information qui vont nous permettre de concevoir
un outil indépendant des géométries traitées. Ainsi, quelle que soit la forme de l’enceinte
de combustion considérée, le fonctionnement de l’outil d’évaluation de bilan radiatif ne sera
aucunement altéré.





Chapitre 4

Développements de la méthode de
Monte Carlo : vers une simulation 3D
des transferts radiatifs infra-rouge en
milieu gazeux

Le choix de l’utilisation d’une méthode de simulation numérique des transferts radiatifs
dans le cas d’une enceinte réelle de combustion combinant une forte complexité géométrique
à la présence de spectres de gaz (et de particules) est une question délicate. Elle l’est d’autant
plus qu’interviennent des contraintes extérieures telles que celles de la dynamique des fluides
ou de la cinétique chimique : exigences de précision, finesse de maillage, fréquence de calcul,
etc. Pour choisir la méthode la plus adaptée, nous n’avons pas d’autre choix que de les tester
sur des solutions de références pour des conditions qui se rapprochent du problème à traiter.
Malheureusement, les solutions de référence dont nous disposons ne proposent en général
que des configurations simplifiées au niveau géométrique ou spectral (le développement de
solutions de référence a pour cette raison été identifié comme un élément majeur dans le
domaine du transfert radiatif [Gritzo et al., 1995]). L’application de la méthode retenue pour
la résolution de l’ETR au cas réel se fait alors seulement en supposant que l’augmentation
de la complexité géométrique et spectrale n’affecte pas le niveau de précision de manière
importante. Il n’existe pas à notre connaissance à l’heure actuelle de démarche efficace de
validation de ce type de choix dans un cas réel de procédé à haute température.

Dans cet esprit, nous nous fixons ici comme objectif le développement d’un outil per-
mettant la production rapide de solutions de référence en configuration réelle. Nos exigences
sont donc :

1. la possibilité de gestion efficace des géométries les plus complexes

2. un contrôle fiable et systématique du niveau de précision.

En contrepartie, nous laissons de côté certaines des contraintes les plus sévères associées
usuellement au calcul radiatif en combustion. En particulier, nous ne chercherons pas à pro-
duire des champs de termes sources radiatifs volumiques (tel que le demande le couplage
avec la CFD) : nous sommes prêts à nous limiter à la possibilité d’estimation de la source
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volumique (ou du flux radiatif pariétal) en quelques points de contrôle si l’estimation de l’en-
semble du champ s’avère numériquement trop exigeant. Nous ne nous fixons pas non plus les
critères de temps de calcul associés aux besoins d’itération de la CFD : nous nous limitons
aux contraintes de calcul typiques des phases de contrôle et de validation méthodologique
en milieu ingénieur, c’est à dire que nous pensons à des temps de calcul dans une plage
allant de quelques minutes à quelques heures. Nous pensons donc uniquement, à ce stade, à
un outil de contrôle de grande précision à utiliser en parallèle des outils numériques moins
précis mais beaucoup plus rapides tels qu’ils émergent en particulier dans le domaine de la
CFD aujourd’hui (typiquement une méthode S4 avec un modèle spectral en somme de gaz
gris).

Face à cet objectif de production de solutions de référence, nous nous orientons vers une
résolution de l’ETR sous sa forme intégrale par la méthode de Monte Carlo. Cette orientation
est justifiée par l’efficacité reconnue des méthodes statistiques par rapport aux méthodes dé-
terministes lorsque la complexité du domaine d’intégration est élevée, ce qui est le cas dans les
problèmes de combustion de par la combinaison des dimensions spectrales et géométriques.
Une première conséquence du choix d’une méthode statistique est la possibilité d’évaluer le
degré de confiance que nous pourrons avoir dans les résultats obtenus, ceci à travers le calcul
systématique de leur écart-type : nous satisfaisons donc ainsi à notre exigence de contrôle de
précision. D’autre part, des calculs de sensibilités aux paramètres du systèmes sont également
possibles avec la méthode de Monte Carlo sans effort de calcul supplémentaire. Il s’agit là
d’un produit dérivé de la méthodologie telle que nous l’envisageons, qui peut faire que notre
outil de production de solutions de référence puisse également s’avérer utile comme soutien
à l’analyse dans les phases de dimensionnement de systèmes telles qu’elles se présentent au-
jourd’hui en milieu ingénieur.

Notre choix de la méthode de Monte Carlo s’appuie aussi sur la possibilité d’intégrer des
développements récents sur la formulation de l’équation de transfert radiatif et l’optimisation
des tirages aléatoires. Une partie de ces travaux a été initiée dans notre groupe, notamment
par de Lataillade [de Lataillade et al., 2002b] qui a proposé une solution aux problèmes nu-
mériques de la méthode de Monte Carlo pour les milieux épais et a fait la démonstration de
la validité de ces avancées méthodologiques dans des géométries monodimensionnelles.

Après un bref exposé sur le principe de l’intégration par la méthode de Monte Carlo, et
l’introduction de fonctions de densité de probabilités servant à guider les tirages aléatoires,
nous retravaillerons l’équation de transfert radiatif, en incluant notamment le principe de
réciprocité des chemins lumineux. Nous exposerons ensuite les fonctions de densité de pro-
babilités que nous utilisons et qui ont été adaptées pour les géométries tridimensionnelles.
Enfin, nous finirons en donnant un exemple d’application sur une géométrie cylindrique
correspondant à un cas usuel en combustion.
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4.1 Intégration par la méthode de Monte Carlo

La méthode de Monte Carlo peut être vue de deux façons différentes : une reconstruction
statistique de phénomènes de transport particulaire (ici de photons) ou une méthode souple
pour le calcul numérique d’intégrales multiples [Hammersley and Handscomb, 1967]. Dans
les deux cas, la méthode consiste pour notre problème à simuler la propagation d’un grand
nombre de rayons dans le domaine de l’infra-rouge, et à comptabiliser les échanges entre
la maille où ils ont été produits et les mailles traversées. Si l’on choisit de mettre en avant
l’image d’un calcul d’intégrales multiples, alors nous pouvons dire que nous utilisons la
méthode de Monte Carlo pour résoudre l’ETR sous sa forme intégrale (Eq. 2.30). Avant de
détailler la procédure de résolution que nous avons choisie, nous faisons un bref rappel du
principe général d’intégration par la méthode de Monte Carlo, avec introduction de fonctions
de densité de probabilité permettant d’orienter les tirages aléatoires.

4.1.1 Principe de la méthode

Nous n’exposons ici que les bases de l’intégration par la méthode de Monte Carlo, sans
explorer sans doute tous les aspects nécessaires à un utilisateur débutant désirant s’appro-
prier cette technique. Elle est cependant exposée dans de nombreux ouvrages qui pourront
aider des lecteurs dans cet état d’esprit [Hammersley and Handscomb, 1967, Yang et al.,
1995, Farmer, 1995, Dutre, 1996, Veach, 1997].

Soit I l’intégrale d’une fonction f(x) définie sur un intervalle D :

I =

∫

D

f(x)dx

Nous introduisons une nouvelle fonction p(x) qui nous sert simultanément à multiplier
et à diviser f(x) ; nous avons toujours le droit d’effectuer cette opération qui ne change
fondamentalement rien, à condition que p(x) soit définie et non nulle sur D :

I =

∫

D

f(x)

p(x)
p(x)dx

Sans rien changer, on peut poser f(x)
p(x)

× p(x) = f(x) = g(x)p(x) :

I =

∫

D

g(x)p(x)dx

Cette fonction p(x) peut être considérée comme une fonction de densité de probabilité (que
nous noterons par la suite pdf, comme probability density function) s’il s’agit d’une fonction
positive et normalisée :

∫

D

p(x)dx = 1

Définissons maintenant une variable aléatoire Y = g(X), où X est une variable aléatoire sur
D distribuée selon p. Alors, I est l’espérance de la variable aléatoire Y :
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I =

∫

D

g(x)p(x)dx = E[Y ] = E[g(X)]

Soient maintenant x1, x2, . . ., xN , une série de réalisations indépendantes de X. L’intégrale
I est alors la limite de la moyenne des g(xi) lorsque N → ∞ :

I = lim
N→∞

1

N

N∑

i=1

g(xi)

On ne peut donc formellement calculer I qu’à partir d’un nombre infini de réalisations. A
partir d’un nombre fini, suffisamment élévé de réalisations, on peut seulement calculer un
estimateur de I :

I = E[g(X)] ≈ 1

N

N∑

i=1

g(xi) =< g(X) >N

où <>N symbolise une moyenne d’ensemble sur les N réalisations. A cette évaluation, on
peut associer une “incertitude statistique” qui correspond à l’écart-type de l’estimateur :

σ(< g(X) >N) =
1√
N

σ(g(X)) (4.1)

où σ symbolise l’écart type. De même que E[g(X)], σ(g(X)) n’est pas à priori accessible de
façon exacte. Mais on peut l’approximer à l’aide des N réalisations disponibles :

σ(g(X)) ≈
√

[< g(X)2 >N − < g(X) >2
N ] =

√
√
√
√ 1

N

N∑

i=1

[g(xi)2− < g(X) >2
N ] (4.2)

On retient donc :

σ(< g(X) >N) ≈ 1√
N

√

[< g(X)2 >N − < g(X) >2
N ] (4.3)

La première constatation est que la variance peut toujours être réduite par un tirage d’échan-
tillons plus important. Ceci assure une convergence certaine quel que soit le problème étudié,
pourvu que l’on dispose des ressources de calcul suffisantes pour le mener à bien dans un
temps donné. On voit aussi que la précision sur l’estimateur de I est dépendante de la fonc-
tion g(x) que nous avons introduite, et donc directement de p(x). Cela signifie que pour un
même nombre N de réalisations de xi, nous avons un moyen supplémentaire, et très impor-
tant, de jouer sur la qualité de l’estimateur de I. La différence vient de la variance de g(X),
donc de la manière dont les xi sont générés du fait de l’introduction de p(x).
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Création d’un générateur aléatoire Dans le cas d’une variable aléatoire de densité de
probabilité p sur un espace monodimensionnel, un générateur aléatoire correspondant peut
parfois être obtenu simplement à partir de la fonction de répartition ou cumulative c :

c(x) =

∫ x

borneinf

p(x′)dx′

où borneinf est la borne inférieure du domaine de définition. Les propriétés fondamentales de
la cumulative c sont que : c est monotone (donc inversible), et si une variable aléatoire X
est distribuée suivant p, alors Y = c(X) est une variable aléatoire distribuée uniformément
sur l’intervalle [0, 1]. Etant données ces propriétés, en supposant que nous disposons d’un
générateur aléatoire sur [0, 1], on peut réaliser une génération aléatoire yi de Y , et en déduire
une valeur xi = c−1(yi). Si nous voulons utiliser cette propriété (qui conduit généralement à
des générations aléatoires peu coûteuses), nous sommes donc contraints d’utiliser des densités
de probabilités dont nous savons simplement inverser la cumulative. Nous verrons, dans le
paragraphe dédié à la génération d’un coefficient d’absorption selon le modèle de Malkmus,
qu’il peut exister des moyens de contourner élégamment cet impératif [Michael et al., 1976].
Dans tous les cas de figure, il est nécessaire de disposer d’un générateur aléatoire sur [0, 1]
fiable [Press et al., 1992, James, 1994].

4.1.2 Exemple d’intégration par la méthode de Monte Carlo

Pour bien comprendre l’importance du choix d’une fonction de densité de probabilité,
nous avons choisi de prendre un exemple simple d’intégration d’une fonction f(θ). Elle corres-
pond à l’émission radiative monochromatique d’une couche monodimensionnelle d’épaisseur
e, avec un coefficient d’absorption κ :

I =

∫ π
2

0

f(θ)dθ =

∫ π
2

0

sin θ cos θ

[

1 − exp

(

− κe

cos θ

)]

dθ

θ est ici l’angle entre chaque rayon émis par la couche et la normale sortante à cette couche
de gaz.

Nous posons alors le problème de déterminer une loi p(θ) de tirage angulaire, conduisant
à de bonnes qualités de convergence pour différentes valeurs du coefficient d’absorption κ.
Le choix de p(θ) n’affectera en aucune manière la justesse du calcul, mais aura une incidence
sur l’incertitude pour un nombre de tirages fixé N 1.

Nous distinguons alors deux cas : un cas de faible épaisseur optique et un cas de forte
épaisseur optique :

– A la limite optiquement faible, κe � 1 et on peut alors utiliser un développement

1Nous utilisons ici une intégrale qui peut être résolue de façon analytique pour illustrer l’importance du
choix d’une pdf. En pratique, nous rencontrerons presque le même intégrale, mais nous ne pourrons pas la
résoudre analytiquement.
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limité de f(θ) pour rendre compte grossièrement de ces variations :

f(θ) = cos θ sin θ

[

1 − exp

(

− κe

cos θ

)]

≈ κe sin θ

Le but étant de faire apparâıtre une fonction g(θ) dont on fera la moyenne pour obtenir
une estimation de I, et pour laquelle les réalisations successives g(θi) présentent le
moins de dispersion possible, on peut choisir p(θ) = sin θ. L’intégrant exact conserve
une partie angulaire et n’est pas constant, mais le cos θ en facteur de l’exponentielle
vient compenser celui de son argument à la limte linéaire. Les variations de l’intégrant
g(θ) sont alors minimes et on obtient une variance faible :

I =

∫ π
2

0

g(θ)p(θ)dθ =

∫ π
2

0

sin θ cos θ

[

1 − exp

(

− κe

cos θ

)]

dθ (4.4)

avec :

p(θ) = sin θ

g(θ) = cos θ

[

1 − exp

(

− κe

cos θ

)]

I ≈
〈

g(θ)

〉

N

=

〈

cos θ

[

1 − exp

(

− κe

cos θ

)]〉

N

κe << 1 ⇒ g(θ) ≈ κe (faible variance) (4.5)

Il convient, encore une fois, de remarquer que le choix d’une fonction de densité de
probabilité adaptée à un cas optiquement mince ne signifie pas que l’on ne peut cal-
culer une valeur de I que pour de faibles épaisseurs optiques. Aux épaisseurs optiques
intermédiaires ou fortes, les qualités de convergence seront seulement moins bonnes,
mais l’exactitude du résultat restera assuré à la limite d’un grand nombre de tirages.

– Dans le cas où l’argument de l’exponentielle ne peut plus être considéré comme petit, le
cos θ en facteur va devenir une source de variation importante de la valeur de l’intégrant
si on le conserve dans l’expression de celui-ci. On choisit donc une pdf qui le prend en
compte, soit p(θ) proportionnel à sin θ cos θ 2.

p(θ) = 2 sin θ cos θ

g(θ) =

[

1 − exp

(

− κe

cos θ

)]

I ≈
〈

g(θ)

〉

N

=

〈

1 − exp

(

− κe

cos θ

)〉

N

κe >> 1 ⇒ g(θ) ≈ 1 (faible variance) (4.6)

2En fait, comme la pdf doit être normalisée sur le domaine d’intégration, on prend pdf(θ) = 2 sin θ cos θ.
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On a donc défini deux lois de tirage, dont la pertinence dépend de l’épaisseur optique κe. On
peut choisir indifféremment une de ces deux lois selon la valeur de l’épaisseur optique. On
peut par exemple choisir la première pour κe < 1, et la seconde sinon, ou encore chercher à
définir une pdf adaptée aux épaisseurs optiques intermédiaires.

Dans le cas d’une intégrale multiple où l’épaisseur optique peut être variable, par exemple
dans le cas où κ est aussi généré aléatoirement, cela suppose qu’il faut, soit estimer à priori une
valeur moyenne de κ, soit tirer κ avant θ. Le choix de l’ordre de tirage des variables aléatoires
pour la résolution numérique d’une intégrale multiple sera donc parfois une conséquence des
choix d’optimisation de pdf que nous serons amenés à faire.

4.2 Ecriture de l’ETR en puissances nettes échangées

(PNE)

Dans notre double démarche de résolution de l’ETR, et notre envie d’analyse et de dé-
composition des échanges du système (qui peut ensuite nous guider dans l’optimisation des
calculs), nous désirons distinguer les contributions spatiales au terme source calculé.

Ceci peut passer par l’inclusion d’un principe fondamental des échanges radiatifs : le prin-
cipe de réciprocité des chemins lumineux [Hottel and Sarofim, 1967, Green, 1967, Cherkaoui,
1993, Dufresne et al., 1998, 1999] dont une conséquence est que : sous nos hypothèses de
travail, si deux mailles (notées respectivement 1 et 2) sont à la même température, alors la
puissance nette échangée entre elles est nulle (ϕ1↔2 = −ϕ2↔1 = 0) 3. Or dans ce cas, quelle
que soit la méthode de résolution choisie de l’ETR dont la base est l’émission de rayons, ce
principe ne peut être satisfait qu’à la limite où le nombre de rayons tend vers l’infini. Dans le
cas contraire, et par exemple dans l’évaluation d’un échange entre deux surfaces de tempé-
ratures voisines, nous sommes toujours exposés à un risque numérique d’obtenir une valeur
de l’échange net radiatif dont le signe ne serait pas le bon, l’échange de chaleur pouvant
être orienté de la surface la plus froide vers la surface la plus chaude. Cela correspond à une
redistribution non physique de l’énergie au sein du système. Nous souhaitons donc parvenir
à une formulation satisfaisant de manière intrinsèque le principe de réciprocité des chemins
lumineux pour éviter de rencontrer ce type de problèmes numériques. Nous repartons pour
cela de la forme différentielle de l’ETR (Éq. 2.29) :

3En d’autres mots, il permet d’échanger les positions de la source et du récepteur sans modifier le résultat
d’une mesure.



82 Calcul du transfert radiatif en géométrie complexe

Sr(~ri) = −~∇.~qr(~ri)

= −~∇.

∫

4π

~uLη(~ri, ~u)dΩ

∫
∞

0

dη

= −
∫

∞

0

dη

∫

4π

dΩ
∂

∂l
Lη(~ri, ~u)
︸ ︷︷ ︸

Eq.(2.29)

=

∫
∞

0

dη

∫

4π

dΩ

[

κη(~ri)Lη(~ri, ~u) − κη(~ri)Lη,b(~ri)

]

(4.7)

Ce qui devient, en y réinjectant l’équation 2.30 donnant une expression de la luminance
Lη(~ri, ~u) :

Sr(~ri) =

∫
∞

0

dη

∫

4π

dΩ

(

κη(~ri)

[

Lη(~r0, ~u)τη(~r0 → ~ri) +

∫ ~ri

~r0

Lη,b(~r′)κη(~r′)τη(~r′ → ~ri)d~r′.~u

]

− κη(~ri)Lη,b(~ri)

)

(4.8)

En suivant la démonstration de Fournier [Fournier, 1994], on écrit cette équation pour
une cavité à l’équilibre radiatif à température T = T (~ri). Les luminances deviennent donc
toutes équivalentes à la luminance du rayonnement d’équilibre Lη,b(~ri), au nombre d’onde η :

Sr(~ri) = 0 =

∫
∞

0

dη

∫

4π

dΩ

(

κη(~ri)

[

Lη,b(~ri)τη(~r0 → ~ri) +

∫ ~ri

~r0

Lη,b(~ri)κη(~r′)τη(~r′ → ~ri)d~r′.~u

]

− κη(~ri)Lη,b(~ri)

)

(4.9)

Puisque ce terme source radiatif est nul, on peut retirer l’équation 4.9 à l’équation 4.8, pour
obtenir une nouvelle forme de l’ETR :

Sr(~ri) =

∫
∞

0

dη

∫

4π

dΩ

(

κη(~ri)
[
Lη(~r0, ~u) − Lη,b(~ri)

]
τη(~r0 → ~ri)

+

∫ ~ri

~r0

κη(~ri)
[
Lη,b(~r′) − Lη,b(~ri)

]
κη(~r′)τη(~r′ → ~ri)d~r′.~u

)

(4.10)

Les points ~r0 sont par définition les points d’origine (situés sur les parois du système) du
rayonnement parvenant au point ~ri. Pour plus de simplicité dans la poursuite de ce travail
de formulation, appliquons cette dernière équation dans le cas de parois noires où on peut
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écrire Lη(~r0, ~u) = Lη,b(~r0). L’équation 4.10 ne fait plus alors apparâıtre que des différences
de luminances noires :

Sr(~ri) =

∫
∞

0

dη

∫

4π

dΩ

(

κη(~ri)
[
Lη,b(~r0) − Lη,b(~ri)

]
τη(~r0 → ~ri)

+

∫ ~ri

~r0

κη(~ri)
[
Lη,b(~r′) − Lη,b(~ri)

]
κη(~r′)τη(~r′ → ~ri)d~r′.~u

)

(4.11)

Il est clair sous cette forme que nous avons identifié les contributions au bilan radiatif en un
point, d’une part des puissances nettes échangées avec les éléments de paroi (premier terme
du second membre), mais aussi avec tous les points du milieu gazeux (deuxième terme du
second membre). Il est aisé à partir de cette écriture de discerner la contribution particulière
associée à un élément de surface dSj ou à un élément de volume défini dVj. dSj est ici la

surface sur laquelle on peut choisir ~r0, et dVj le volume dans lequel on peut choisir ~r′. Cette
formulation fait donc apparâıtre individuellement les contributions d’un système maillé tel
qu’utilisé traditionnellement en mécanique des fluides par exemple (Fig 4.1).

dV i

dSi

Fig. 4.1 – Découpage du système en zones d’échanges : volumes et surfaces.

En suivant la démonstration de de Lataillade [de Guilhem de Lataillade, 2001], on effectue
ensuite un changement de variable qui permet de faire apparâıtre les volumes Vj et les surfaces
Sj composant le système au détriment de l’angle solide dΩ :

dΩdl =
1

l2ij
dVj

dΩ =
~u.~n

l2ij
dSj
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où lij = ||~ri − ~rj||, et ~ri est le point pour lequel on fait le bilan radiatif, ~rj = ~r0 pour les

contributions de la surface j, ~rj = ~r′ pour la contribution du volume j ; ~nj est la normale à
la surface Sj au point ~rj.

L’application de ce changement de variable à l’expression du terme source radiatif (Eq.
4.11) fait apparâıtre plus explicitement les contributions des éléments du système au terme
source radiatif en un point (Eq. 4.12) :

Sr(~ri) =

∫
∞

0

dη

(
∫

S

~u. ~nj

l2ij
κη(~ri)τη(lij)

[

Lη,b(~rj) − Lη,b(~ri)

]

dSj

+

∫

V

1

l2ij
κη(~ri)τη(lij)κη(~rj)

[

Lη,b(~rj) − Lη,b(~ri)

]

dVj

)

(4.12)

Nous avons donc écrit le bilan radiatif en un point quelconque du système repéré par le
vecteur ~ri dans l’espace. En génie des procédés, il est souvent utile de rechercher le terme
source d’un volume fini de gaz (ou d’une surface), en vue de coupler le rayonnement à la
mécanique des fluides. On peut facilement le déduire de l’équation précédente en intégrant
Sr(~ri) sur le volume Vi auquel il appartient :

Sr(Vi) =

∫
∞

0

dη

∫

Vi

dV (~ri)

(
∫

S

~u. ~nj

l2ij
κη(~ri)τη(lij)

[

Lη,b(~rj) − Lη,b(~ri)

]

dSj

+

∫

V

1

l2ij
κη(~ri)τη(lij)κη(~rj)

[

Lη,b(~rj) − Lη,b(~ri)

]

dVj

)

(4.13)

Nous pouvons alors décrire une matrice d’échange entre zones du système à étudier en calcu-
lant successivement tous les bilans radiatifs qui leur correspondent. Nous avons là un édifice
formel permettant de décomposer le bilan radiatif d’un volume ou d’une surface en somme
de puissances nettes échangées avec l’ensemble des éléments de volume et de surface du sys-
tème. De plus, l’écriture en différences de luminances noires, assure le respect du principe
de réciprocité des chemins lumineux quel que soit le type d’approximation apporté ultérieu-
rement aux intégrales géométriques (par exemple en utilisant un nombre fini de rayons).

Nous distinguons dans l’équation 4.13 les échanges avec les volumes et les surfaces sous
la forme :

ϕVi↔Vj
=

∫
∞

0

dη

∫

Vi

dV (~ri)

∫

Vj

dVj
1

l2ij
κη(~ri)τη(lij)κη(~rj)

[

Lη,b(~rj) − Lη,b(~ri)

]

(4.14)

ϕVi↔Sj
=

∫
∞

0

dη

∫

Vi

dV (~ri)

∫

Sj

dSj
~u. ~nj

l2ij
κη(~ri)τη(lij)

[

Lη,b(~rj) − Lη,b(~ri)

]

(4.15)

Alors, on peut simplement écrire le bilan radiatif d’un volume comme la somme des bilans
avec tous les autres volumes du système et toutes les surfaces du système. Ainsi, si on découpe
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le système en Nv volumes et Ns surfaces, on a :

Sr(Vi) =
Nv∑

j=1

ϕVi↔Vj
+

Ns∑

j=1

ϕVi→Sj
(4.16)

De manière similaire on peut définir l’échange radiatif net entre deux surfaces :

ϕSi↔Sj
=

∫
∞

0

dη

∫

Si

dS(~ri)

∫

Sj

dSj
(~u.~ni)(~u. ~nj)

l2ij
τη(lij)

[

Lη,b(~rj) − Lη,b(~ri)

]

(4.17)

Sur ces écritures concernant les échanges radiatifs nets entre éléments de volume, entre un
élément de volume et une surface, et entre éléments de surface, on distingue une structure
commune et ils se composent tous trois d’une partie énergétique (différence de luminances
noires), d’une partie partie géométrique, et d’une partie représentant la transmission entre
les deux éléments. On retrouve également la forme des terme optico-géométriques définis
dans la méthode des zones, employant la formulation de Hottel ([Siegel and Howell, 1992]).

Le terme de transmission τη(lij) entre le point ~ri et le point ~rj contient toute la physique
d’absorption du rayonnement entre les deux points. Il dépend bien sûr fortement de la lon-
gueur d’onde se propageant entre les deux points et demande une description spectrale fine.

Cette formulation en échanges nets assure bien que l’échange entre deux éléments de
même température sera nul, car on exprime directement la différence de température dans la
formulation. Ainsi, il est impossible d’aboutir lors d’un calcul numérique à une estimation de
puissance nette échangée négative alors qu’elle devrait être positive (ce qui correspondrait à
une situation non physique où une zone froide réchauffe une zone chaude). D’autre part la
conservation de l’énergie est satisfaite puisque par définition ϕ1↔2 = −ϕ2↔1.

Remarque : Si nous disposons de deux estimateurs séparés de ϕ1↔2 et ϕ2↔1, il suffit de
conserver le plus précis pour assurer la conservation de l’énergie sans perte de réciprocité.

Enfin, nous sommes capables de distinguer les contributions des différentes mailles. Cela
permet dans une situation physique connue (par exemple dans un four où l’on veut calculer
le bilan radiatif d’une paroi pour lequel seuls les échanges avec le front de flamme vont ef-
fectivement intervenir) de choisir de calculer seulement les contributions qui comptent pour
un bilan radiatif, et éviter des calculs entre mailles de même température dont l’échange net
(résultat des émissions et absorptions réciproques) est nul par définition.

Nous n’avons pas tenu compte des propriétés de réflexion des parois dans les développe-
ments mathématiques exposés dans ce chapitre. Cela demande un exercice de formulation
plus complexe (exactement dans le même esprit qui a mené à l’établissement de l’équation
3.4), mais qui ne change fondamentalement rien aux principes que nous avons exposés.
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4.3 Modèle en bandes étroites et modèle de Malkmus

Comme nous l’avons vu précédemment, les bandes étroites sont caractérisées pour un
modèle de répartition des raies de Malkmus par deux paramètres seulement : k (coefficient
d’absorption par unité de pression) et φ (paramètre de forme dépendant de la demi-largeur à
mi-hauteur des raies et de l’espacement moyen entre deux centres de raies) [Malkmus, 1967]
(cf. chapitre 2, Eq. 2.33).

Les espèces gazeuses rayonnantes pour lesquelles nous disposons des données nécessaires
à un modèle de bandes étroites 4 sont H2O, CO2, et CO.

Pour H20 les données sont présentes pour toutes les bandes, soit 367 bandes de largeur
25cm−1 correspondant à des centres de raies entre 150cm−1 et 9300cm−1. Pour les autres gaz,
les paramètres ne sont pas donnés dans les régions où ils ne présentent pas de raie d’absorp-
tion, c’est-à-dire pour les régions spectrales transparentes pour ces gaz. Ainsi pour le CO2,
nous avons seulement des données pour 96 bandes, et les données pour le CO représentent
48 bandes 5.

Pour chaque gaz, nous disposons des valeurs de δ et k pour 14 températures différentes,
de 300K à 2900K avec un pas de 200K. Les valeurs pour des températures intermédiaires
sont simplement calculées par interpolation linéaire.

De plus, le paramètre γ (en cm−1), représentant la demi-largeur moyenne à mi-hauteur
d’un ensemble de raies pour un élargissement collisionnel, est supposé indépendant de la
bande étroite, et son expression pour les trois gaz est donnée par :

γH20 =
P

PS

[0.462xH2O(
TS

T
) + (

TS

T
)0.5(0.079(1 − xCO2

− x02
) + 0.106xCO2

+ 0.036x02
]

γCO2
=

P

PS

(
TS

T
)0.7[0.07xCO2

+ 0.058(1 − xCO2
− xH2O) + 0.1xH2O]

γC0 =
P

PS

[0.075xCO2
(
TS

T
)0.6 + 0.12xH2O(

TS

T
)0.7(1 − xCO2

− xH2O)]

avec PS = 1 atm et TS = 296 K, pris comme valeurs de référence, où P est la pression totale,
et le terme xespèce représente la fraction molaire d’une espèce rayonnante.

L’expression de la transmittivité moyenne d’une colonne homogène de gaz de longueur
l pour une bande de largeur ∆ν en fonction de ces trois paramètres est ensuite facilement
écrite à partir de l’équation 2.33 :

4Les données nous ont été fournies par J. Taine et A. Soufiani du laboratoire EM2C [Soufiani and Taine,
1997].

5Pour le CO2 les zones spectrales non transparentes sont : 450cm−1 → 1200cm−1, 1950cm−1 →
2450cm−1, 3300cm−1 → 3800cm−1, et 4700cm−1 → 5250cm−1. Pour le CO, les bandes contenant des
données non nulles sont : 1750cm−1 → 2325cm−1, et 3775cm−1 → 4350cm−1
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τ(l) = exp

[

− 2
γ

δ

(
√

1 + xplk
δ

γ
− 1

)]

Et on se ramène au modèle à deux paramètres par :

κ = kxp

φ =
2γ

δ
(4.18)

la transmittivité moyenne d’une colonne homogène de longueur l pouvant s’exprimer à partir
de ces deux paramètres :

τ(l) =
1

∆ν

∫

∆ν

exp[−κν l]dν = exp[φ − φ∗(l)] = exp

[

− φ

(
√

1 +
2κl

φ
− 1

)]

(4.19)

avec

φ∗(l) = φ

√

1 +
2κl

φ

On reécrit alors les équations 4.14, 4.15, et 4.17 en tenant compte du découpage en bandes
étroites. Pour cela, on fait simplement apparâıtre le découpage du spectre en bandes. On n’a
donc plus une intégration continue sur le spectre, mais une somme d’intégrations continues (ce
qui revient à intégrer continuement sur le spectre puisque les bandes sont prises adjacentes) :

ϕVi↔Vj
=

nb∑

n=1

∫

∆ηn

dη

∫

Vi

dV (~ri)

∫

Vj

dVj
1

l2ij
κη(~ri)τη(lij)κη(~rj)

[

Lη,b(~rj) − Lη,b(~ri)

]

ϕVi↔Sj
=

nb∑

n=1

∫

∆ηn

dη

∫

Vi

dV (~ri)

∫

Sj

dSj
~u.~n

l2ij
κη(~ri)τη(lij)

[

Lη,b(~rj) − Lη,b(~ri)

]

ϕSi↔Sj
=

nb∑

n=1

∫

∆ηn

dη

∫

Si

dS(~ri)

∫

Sj

dSj
(~u.~ni)(~u. ~nj)

l2ij
τη(lij)

[

Lη,b(~rj) − Lη,b(~ri)

]

(4.20)

Ce qui peut se reécrire de la façon suivante dans le cas d’un milieu aux propriétés radiatives
homogènes en utilisant l’hypothèse de bandes spectrales étroites (Lη,b(~r) indépendant de η
sur chaque bande) :

ϕVi↔Vj
=

nb∑

n=1

∆ηn

∫

Vi

dV (~ri)

∫

Vj

dVj
1

l2ij

∂2τ(lij)

∂li∂lj

[

Lη,b(~rj) − Lη,b(~ri)

]

ϕVi↔Sj
=

nb∑

n=1

∆ηn

∫

Vi

dV (~ri)

∫

Sj

dSj
~u.~n

l2ij

(

− ∂τ (lij)

∂lj

)[

Lη,b(~rj) − Lη,b(~ri)

]

ϕSi↔Sj
=

nb∑

n=1

∆ηn

∫

Si

dS(~ri)

∫

Sj

dSj
(~u.~ni)(~u. ~nj)

l2ij
τ(lij)

[

Lη,b(~rj) − Lη,b(~ri)

]

(4.21)
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où li et lj sont les abscisses curvilignes repérant les extrémités du trajet lij. Cette formulation
permet de faire directement appel au modèle précédent en écrivant simplement que :

τ (l) = τH20(l) × τCO2
(l) × τC0(l) × exp[−κsuiel] (4.22)

où κsuie est le coefficient d’absorption de la suie, supposé gris par bande.

Remarque : L’intervalle spectral est ici restreint à celui pour lequel nous possédons les don-
nées caractérisant les bandes de gaz. Dans la pratique nous avons étendu notre intervalle
spectral de 0 à 20000cm−1 à la suite de comparaison avec d’autres codes pour tenir compte
de la partie rayonnée par la suie dans ces régions à haute température. Nous tenons donc
compte des propriétés spectrales des gaz et des suies jusqu’à 9300cm−1, et au delà nous ne
tenons compte que de l’émission et de l’absorption des suies.

4.4 Inclusion de la formulation en k-distribution

A ce stade, il est possible d’opter pour une formulation en k-distribution grâce aux trans-
formations suivantes :

∂2τ (lij)

∂li∂lj
=

∫
∞

0

f(κ)κ2exp[−κlij ]dκ

−∂τ (lij)

∂lj
=

∫
∞

0

f(κ)κexp[−κlij ]dκ

τ (lij) =

∫
∞

0

f(κ)exp[−κlij ]dκ

(4.23)

qui en inversant les intégrales sur la géométrie et sur le coefficient d’absorption κ conduisent
à :

ϕVi↔Vj
=

nb∑

n=1

∆ηn

∫
∞

0

f(κ)dκ

∫

Vi

dV (~ri)

∫

Vj

dVj
1

l2ij
κexp[−κlij ]κ

[

Lη,b(~rj) − Lη,b(~ri)

]

ϕVi↔Sj
=

nb∑

n=1

∆ηn

∫
∞

0

f(κ)dκ

∫

Vi

dV (~ri)

∫

Sj

dSj
~u.~n

l2ij
κexp[−κlij ]

[

Lη,b(~rj) − Lη,b(~ri)

]

ϕSi↔Sj
=

nb∑

n=1

∆ηn

∫
∞

0

f(κ)dκ

∫

Si

dS(~ri)

∫

Sj

dSj
(~u.~ni)(~u. ~nj)

l2ij
exp[−κlij ]

[

Lη,b(~rj) − Lη,b(~ri)

]

(4.24)

Nous retrouvons des expressions analogues à celles des équations 4.20 mais nous avons perdu
la relation entre la fréquence et le coefficient d’absorption. Les seules dépendances fréquen-
tielles de l’ETR écrite sous cette forme viennent alors du choix de la bande, et de la luminance
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noire associée.

Il reste que nous disposons d’une écriture en k-distribution valable uniquement sous
l’hypothèse d’un milieu aux propriétés radiatives homogènes. Pour étendre cette expression
en tenant compte des inhomogéné̈ıtés, nous faisons appel à l’approximation ck introduite au
chapitre 2 (remarque : pour simplifier les notations on posera a(g; κ(~r), φ(~r)) ≡ a(g;~r) ) :

ϕVi↔Vj
=

nb∑

n=1

∆ηn

∫ 1

0

dg

∫

Vi

dV (~ri)

∫

Vj

dVj
1

l2ij
κ(~ri)a

(
g; ~ri

)

× exp

[

−
∫ lj

li

κ(~r)a
(
g, ~r
)
dl

]

κ(~rj)a
(
g; ~rj

)
[

Lη,b(~rj) − Lη,b(~ri)

]

ϕVi↔Sj
=

nb∑

n=1

∆ηn

∫ 1

0

dg

∫

Vi

dV (~ri)

∫

Sj

dSj
~u.~n

l2ij
κ(~ri)a

(
g; ~ri

)

× exp

[

−
∫ lj

li

κ(~r)a
(
g, ~r
)
dl

] [

Lη,b(~rj) − Lη,b(~ri)

]

ϕSi↔Sj
=

nb∑

n=1

∆ηn

∫ 1

0

dg

∫

Si

dS(~ri)

∫

Sj

dSj
(~u.~ni)(~u. ~nj)

l2ij

× exp

[

−
∫ lj

li

κ(~r)a
(
g, ~r
)
dl

] [

Lη,b(~rj) − Lη,b(~ri)

]

(4.25)

Au total, nous avons donc reécrit l’équation de transfert radiatif en échanges nets, en in-
cluant une formulation en k-distribution étendue aux configurations inhomogènes. Grâce à
l’écriture en différence de luminances, quelles que soient les approximations faites sur les
intégrales spectrales ou géométriques, le signe des transferts sera toujours vérifié. Cette for-
mulation est similaire à la formulation de Hottel qui sert de base à la méthode des zones. De
ce fait, elle propose un découpage de l’espace (du système combustif) en zones ou mailles, le
bilan radiatif pour chaque zone étant calculé à partir des puissances nettes échangées avec les
autres zones (non isothermes) ; nous disposons pour ces puissances nettes d’une formulation
intégrale et nous pouvons donc les estimer par la méthode de Monte Carlo.

D’un point de vue algorithmique, cela reviendra à estimer l’échange radiatif net de chaque
maille avec l’ensemble des autres mailles du système au moyen de la génération aléatoire d’un
nombre fini de chemins optiques aux fréquences situées dans l’infra-rouge et ayant leur origine
dans cette maille.

4.5 Génération des rayons et choix des pdf adaptées

aux variables

Nous commençons ce paragraphe en faisant quelques remarques importantes sur le vo-
cabulaire employé. Tout d’abord, nous allons utiliser les termes de “rayons” (alors qu’il
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faudrait parler de chemins optiques) et d’“émission”, alors que l’on raisonne en puissances
nettes échangées : la logique algorithmique fera en effet apparâıtre un point d’origine pour
la construction du rayon, et par analogie avec la méthode de Monte Carlo analogue, nous
appellerons ce point “point d’émission”alors qu’il est autant le lieu d’absorptions que d’émis-
sion, le chemin optique correspondant étant balayé simultanément dans les deux sens, en
accord avec la formulation en puissances nettes échangées.

Par ailleurs, et toujours en guise de remarque, les équations 4.25 sont écrites sous une
forme symétrique pour des couples de points ~ri et ~rj, ce qui pédagogiquement permet de fixer
les images importantes associées aux formulations en échanges nets. Pourtant l’algorithmique
de construction du chemin optique va faire apparâıtre une dissymétrie. Ceci correspond à
une évolution de la formulation proche de celle de l’équation 4.10 et qui sera donnée au para-
graphe 4.5.5. de ce chapitre, lors d’une synthèse algorithmique sur la procédure de génération
des rayons.

Les équations 4.25 laissent apparâıtre un certain nombre de variables qui constituent les
paramètres caractéristiques des rayons. En particulier, pour définir complètement un rayon,
nous avons besoin de la position de son point d’émission ~ri, de sa direction et de son sens,
ainsi que de la longueur d’onde des photons transportés. En pratique, la direction et le sens
seront donnés par deux angles directeurs θ, et φ. La longueur d’onde du rayon ne sera pas la
grandeur effectivement utilisée puisque nous avons adopté une formulation en k-distribution,
et nous utiliserons le coefficient d’absorption κ choisi dans une bande étroite de centre η
comme variable d’intégration spectrale.

Chaque rayon émis depuis une maille sera ensuite suivi à travers le système jusqu’à son
extinction. Nous estimons alors l’échange avec la maille “d’émission” et chacune des mailles
traversées en choisissant pour chacune de celles-ci un point d’échange ~rj. Nous sommes donc
amenés finalement à tirer pour chaque rayon :

– une direction (i.e. 2 angles directeurs (θ, φ))
– un coefficient d’absorption (i.e. κ tiré dans une bande étroite de centre η, elle même

choisie auparavant)
– un point d’émission ~ri

– un point d’échange ~rj dans chaque maille traversée.

Chaque grandeur est générée aléatoirement en utilisant des fonctions de densités de pro-
babilités comme expliqué précédemment (cf. paragraphe 4.1). Nous commençons dans ce qui
suit par traiter les grandeurs reliées aux aspects géométriques, ce qui serait suffisant dans
le traitement d’un cas monochromatique. Nous verrons notamment que la génération des
positions d’émission des rayons peut se faire, selon les cas, avant ou après les tirages des
angles directeurs. Cette souplesse s’appuie sur des alternatives de formulation aux équations
4.25 qui ne sont pas mises pour l’instant au premier plan, mais qui ressortiront lors de la
synthèse du paragraphe 4.5.5.
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4.5.1 Tirage des positions et direction “d’émission”

4.5.1.1 Emission depuis une paroi

Position Pour un élément de paroi S, nous choisissons de considérer tous les points comme
ayant la même importance, y compris dans le cas où il existe un profil de température sur
cet élément. Encore une fois, il faut considérer que le choix d’une pdf n’intervient pas sur
la valeur de la solution convergée, mais uniquement sur la rapidité de la convergence. Ainsi,
on reconstruira bien l’émission d’une surface non isotherme en choisissant cette pdf. Nous
prenons donc un point d’émission P de façon uniforme sur la paroi de départ :

pdf(P ) =
1

S
(4.26)

Ceci est facilement réalisé pour des mailles de formes simples, mais demande plus de précau-
tions dès que l’on traite des surfaces de forme quelconque provenant par exemple de logiciels
de CAO. Nous allons donner l’exemple de la procédure d’échantillonnage régulier pour des
surfaces de forme rectangulaire, ainsi qu’en forme de disque. Ces 2 exercices très simples
permettront l’illustration de l’introduction et de l’utilisation de fonctions de densités de pro-
babilités dans le cadre de l’intégration par la méthode de Monte Carlo.

Surface rectangulaire Pour une surface rectangulaire dans un repère cartésien (x, y),
nous définissons un point i par le tirage d’un couple de coordonnées (xi, yi), avec xi ∈ [x1, x2]
et yi ∈ [y1, y2]. Nous pouvons tirer indépendamment xi et yi, et nous utilisons des fonctions
de densités de probabilités uniformes :

pdf(x) =
1

‖ x2 − x1 ‖

pdf(y) =
1

‖ y2 − y1 ‖

Nous tirons deux nombres Rx et Ry entre 0 et 1 représentant respectivement les cu-
mulatives cdf(x) =

∫ x

x1
pdf(x′)dx′ et cdf(y) =

∫ y

y1
pdf(y′)dy′. On les associe aux valeurs

respectivement de xi et yi par :

xi = x1 + (x2 − x1)Rx

yi = y1 + (y2 − y1)Ry

Surface en forme de couronne Parmi les éléments de géométrie rencontrés dans nos
exemples de mises en œuvre, nous trouverons notamment des surfaces en forme de couronne,
et nous retenons ce cas pour montrer un autre exemple de tirage de position uniforme sur
une surface.

Tirer un point de façon uniforme sur la surface veut dire que tous les points ont la
même probabilité d’être choisis. Or quand on se place dans le cas d’une surface en forme de
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Fig. 4.2 – Tirage d’un point d’émission sur une surface : cas du rectangle

couronne, la manière la plus naturelle de choisir un point est de se placer en coordonnées
cylindriques plutôt que de rester en coordonnées cartésiennes comme dans l’exemple précé-
dent. Un point est alors repéré par le couple (r, θ) au lieu de (x, y) précédemment. Le choix
de la coordonnée angulaire ne pose pas vraiment de problème dans la mesure où la symétrie
du système nous permet de faire un tirage uniforme sur les angles :

pdf(θ) =
1

2π

Par contre, si on considère une couronne de largeur dr autour de r ∈ [r1, r2], alors cette
couronne représente plus de points pour les fortes valeurs de r que pour les petites. On ne
peut donc tirer r de façon uniforme entre r1 et r2 pour obtenir une distribution de points
uniforme pdf(P ) = 1

S
dans la couronne cylindrique délimitée par r1 et r2.

θd

dr

Fig. 4.3 – Tirage d’un point d’émission sur une surface : cas d’une couronne.

Pour trouver pdf(r), nous écrivons alors :

pdf(P )dP = pdf(θ)dθ.pdf(r)dr
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Et comme :

dP = r.dr.dθ ⇒ pdf(r) =
2π

S
r

Tirer une valeur de r suivant pdf(r) demande de construire un générateur aléatoire à partir
de la fonction de répartition correspondante. On génère donc aléatoirement une valeur de
Rr = cdf(r) ∈ [0, 1] :

Rr = cdf(r) =

∫ r

r1

pdf(r′)dr′ =

∫ r

r1

2π

S
r′dr′ =

π

S
(r2 − r2

1)

r =

√

SRr

π
+ r2

1

A travers ces deux exemples, on voit qu’un tirage uniforme peut se traduire par un degré
de complexité différent suivant le cas auquel il s’applique et les grandeurs qui sont générées.
Nous avons pu dans chacun des deux exemples établir une relation entre une réalisation de
la variable aléatoire et la valeur de la cumulative tirée. Ce n’est pas toujours le cas, et il peut
arriver, comme nous le verrons pour la génération de coefficients d’absorption, qu’on sache
obtenir la cumulative mais pas établir cette relation.

Nous passons maintenant, toujours dans le cas d’une émission de paroi, à la génération
des angles directeurs donnant l’orientation et le sens du rayon.

Direction Pour une surface diffuse la luminance est constante et indépendante de la di-
rection. L’angle ϕ est tiré de façon uniforme sur [0, 2π], tandis que par respect de la loi en
cosinus de Lambert [Cherkaoui, 1993], la densité de probabilité de θ, p(θ) prend les valeurs
suivantes sur [0, π

2
] :

p(θ) = 2 sin θ cos θ

D’où :

Rθ =

∫ θ

0

2 sin θ′ cos θ′dθ′ = sin2 θ ⇒ θ = Arcsin(
√

Rθ)

4.5.1.2 Emission par le gaz

Nous ne reviendrons pas sur les difficultés éventuelles de génération des positions dans
une maille de forme quelconque. Nous pouvons juste mentionner que le problème ne va pas
en se simplifiant par rapport à une émission surfacique, puisque nous avons désormais une
dimension supplémentaire. En effet, à ce stade nous considérons des volumes délimités par
des enveloppes de forme quelconque, et la génération d’un point de façon uniforme à l’inté-
rieur de celui-ci est un problème complexe ; ce travail n’a pas été le nôtre.

Par contre, nous pouvons faire quelques constatations particulières liées à la présence
d’un milieu participant pour le choix d’un point d’émission dans un volume. Un rayon ser-
vira à estimer l’échange entre la maille d’émission et le reste du système uniquement si le
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n

u
ϕ

θ

Fig. 4.4 – Tirage d’une direction d’émission sur une surface quelconque.

rayonnement émis n’est pas entièrement réabsorbé avant de sortir de la maille d’émission.
A cause de ce phénomène de réabsorption, les algorithmes classiques de Monte Carlo ne
convergent pas en milieu optiquement épais. La génération du point d’émission doit donc
tenir compte de l’épaisseur optique de la maille, qui est la variable fondamentale dans ce cas.
Dans un cas monodimensionnel, de Lataillade [de Guilhem de Lataillade, 2001] a proposé
de générer le point d’émission à partir de l’enveloppe de maille. On commence dans ce cas
par définir un point sur l’enveloppe qui sera le point de sortie du rayon. L’orientation du
rayon est ensuite donnée par le tirage du couple d’angles directeurs (θ, φ). Cela définit un
segment l sur lequel peut se trouver le point d’émission dans la maille. Alors, tirer un point

Direction d’émission

l

Fig. 4.5 – Génération d’un rayon à partir de l’enveloppe de la maille dans un cas monodi-
mensionnel.

d’émission revient à tirer une abscisse curviligne σ sur l. La pdf employée dans ce cas tient
compte de l’atténuation exponentielle du rayonnement :

p(σ) =
κexp(−κσ)

1 − exp(−κl)
(4.27)

On peut remarquer que, à la limite mince, cette pdf distribue uniformément la position
d’émission sur le segment défini dans la maille d’émission par la direction du rayon sortant,
et qu’à la limite épaisse elle se traduit par l’émission d’une surface opaque.
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Dans cet algorithme proposé dans un cas monodimensionnel, le tirage du point d’émis-
sion est lié aux générations angulaires (en particulier de l’angle θ) par la longueur l (l est
déterminée dès que les angles ont été générés). De plus, on sait que dans le cas d’une épais-
seur optique forte, le comportement émissif d’une couche de gaz se rapproche de celui d’une
surface opaque. Une génération angulaire d’après la loi de Lambert est donc adaptée à partir
de la surface de la maille. D’autre part, dans le cas des faibles épaisseurs optiques, le tirage
des directions doit se faire de façon isotrope. L’algorithme proposé par de Lataillade utilise
une composition des tirages respectivement isotrope, et selon la loi de Lambert pour donner
une pdf de tirage angulaire qui peut passer continuement d’un de ces cas extrêmes à l’autre
[de Guilhem de Lataillade, 2001]. Cela n’a été possible que parce que la donnée du couple
angulaire (θ, φ) donne directement la longueur l.

Considérons maintenant un cas multidimensionnel. Alors, la figure 4.6 montre que pour
un couple donné (θ, φ), la longueur possible d’un rayon dans la maille n’est pas constante
suivant le point choisi sur l’enveloppe comme point de sortie du rayon de la maille.

Direction d’émission

Parois 

Fig. 4.6 – Inadéquation de l’algorithme 1D à un cas multi-D.

Cela nous amène à remettre en cause la génération systématique des positions d’émission
à partir de la surface de la maille. Cependant, dans le cas des fortes épaisseurs optiques,
les points d’émission sont localisés près de l’enveloppe de la maille, et nous pouvons donc
continuer à bénéficier de l’algorithme de de Lataillade qui permet de résoudre le problème
de la convergence de la méthode de Monte Carlo en milieu épais.

Pour déterminer une procédure de génération des points d’émission dans le cas de mailles
volumiques multidimensionnelles, nous faisons un exercice simple où nous étudions l’émis-
sion d’un parallélépipède isotherme (Fig. 4.7(a)) 6. Nous testons la génération des rayons
depuis les parois, d’une part avec un tirage directionnel en cosinus suivant la loi de Lambert
(légende Surface Lambert sur la figure 4.7), d’autre part avec un tirage isotrope (légende
Surface isotrope), testant ainsi les deux cas précédemment évoqués pour les mailles mono-
dimensionnelles. Nous ajoutons à cela une génération uniforme du point d’émission dans
le volume avec un tirage isotrope des directions des rayons sortants(légende volume). Nous
affichons pour les 3 cas l’écart relatif à la solution trouvée en fonction de l’épaisseur optique
7.

La figure 4.7(a) montre qu’il est plus avantageux pour cette géométrie de distribuer les
points d’absorption uniformément dans le volume pour une épaisseur optique inférieure à

6L’émission que nous calculons ici est le rayonnement sortant du cube isotherme.
7Nous prenons comme épaisseur optique κL, L étant la dimension du côté du cube
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(a) Emission d’un cube.
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(b) Emission d’un paraléllépipède aplati avec
un rapport 1/10 entre la dimension la plus pe-
tite et les autres.
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(c) Emission d’un paraléllépipède aplati avec
un rapport 1/100 entre la dimension la plus
petite et les autres.
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(d) Emission d’un paraléllépipède aplati avec
un rapport 1/1000 entre la dimension la plus
petite et les autres.

Fig. 4.7 – Influence de la procédure de génération d’un point d’émission en fonction de
l’épaisseur optique pour différentes géométries.
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≈ 1, et que la génération à partir des bords, avec un tirage des directions en cos θ suivant la
loi de Lambert converge plus rapidement dans le cas contraire.

Nous déformons maintenant notre cube en l’aplatissant progressivement dans une dimen-
sion. L’épaisseur optique est ici estimée par κLmin où Lmin est la plus petite dimension. On
observe l’évolution des précisions relatives pour chaque manière de tirer un point d’émission,
au fur et à mesure que le cube se déforme pour tendre vers une situation de plans parallèles 8.
Dans toutes les situations, il parâıt important de choisir un tirage uniforme en volume pour
les faibles épaisseurs optiques et un tirage à partir des bords pour les épaisseurs optiques
plus fortes. Bien que l’épaisseur optique intermédiaire soit fonction des dimensions relatives,
le point de croisement se situe toujours près de 1, et nous choisirons cette valeur comme seuil
pour basculer d’un mode de tirage à l’autre.

Position et direction Les deux façons de choisir la position d’émission que nous avons
retenues correspondent aussi à deux façons bien distinctes de choisir la direction.

– κLmin < 1 :
Dans le cas où l’épaisseur optique estimée est inférieure à l’unité, la position d’émission
est choisie uniformément dans le volume

pdf(P ) =
1

V

et on génère la direction ensuite. Cette direction est générée à partir des deux angles
directeurs θ et φ autour d’une normale ~n quelconque (Fig. 4.8(a)). φ est d’abord tiré
uniformément sur [0, 2π] :

pdf(φ) =
1

2π

Ensuite, une émission isotrope signifie que l’énergie rayonnée se distribue uniformément
sur la sphère unité. On en déduit :

pdf(θ)dθ =
2π sin θdθ

4π
=

1

2
sin θdθ

Soit :

pdf(θ) =
1

2
sin θ

L’angle θ prend ici des valeurs sur [0, π], et la génération aléatoire se fait classiquement
selon :

Rθ =

∫ θ

0

1

2
sin θdθ =

1

2
(1 − cos θ) ⇒ θ = arccos(1 − 2Rθ)

8Pour la dernière courbe 4.7(d), le rapport entre la plus petite dimension et les autres est de 1000. On
est donc quasiment en situation d’émission d’une couche monodimensionnelle, où le paramètre géométrique
important est bien l’épaisseur de la couche
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n

u

θ

σ
P

(a) Tirage d’une direction isotrope dans une maille
de volume V .

u

n

P
σ

l
Q θ

(b) Tirage d’une direction à partir du bord
pour une maille de volume V et d’enveloppe
SV .

Fig. 4.8 – Tirage d’une direction d’émission dans un volume.

– κLmin > 1 :
Si par contre, on fait le choix de l’algorithme associé à la pdf décrite par l’équation 4.27,
il faut d’abord choisir un point Q de façon uniforme sur l’enveloppe de la maille. Ce
point sera le point de sortie du rayon dans la maille et fixe donc une normale sortante ~n.
La direction est ensuite donnée par le tirage du couple d’angles directeurs (θ, φ) autour
de ~n (Fig. 4.8(b)) 9, avant de fixer la position P d’émission du rayon à travers l’abscisse
curviligne σ. On inverse donc les tirages angulaires et le tirage du point d’émission par
rapport au cas mince.

pdf(Q) =
1

SV

pdf(φ) =
1

2π
pdf(θ) = 2 sin θ cos θ

pdf(σ) =
κexp(−κσ)

1 − exp(−κl)

Cet algorithme a été choisi pour améliorer les qualités de convergence dans le cas où
l’on rencontre de fortes épaisseurs optiques. Le tirage de la direction se fait à partir du
point Q défini sur l’enveloppe, comme si on tirait depuis une surface noire, et donc en
respectant la loi de Lambert. De plus, à forte épaisseur optique pdf(σ) assure que la
majorité des rayons provient de la région frontalière de l’enveloppe de la maille et, au
total, le comportement émissif simulé tend bien vers celui d’une surface opaque noire.

9φ ∈ [0, 2π] et θ ∈ [0, π/2]
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4.5.2 Positions d’échange

Une fois le rayon orienté et le point d’émission choisi, nous le suivons jusqu’à son ex-
tinction à travers chaque maille traversée, et calculons l’échange de la maille d’émission avec
celle-ci. Le point d’échange pour chaque maille est défini sur le trajet optique du rayon dans
cette maille (en l’occurence juste un segment de droite en l’absence de diffusion). De la même
façon que pour la position d’émission, nous utilisons une pdf tenant compte de l’épaisseur
optique de la maille traversée (Eq. 4.27). En effet, si on traverse une maille de forte épaisseur
optique, l’essentiel des échanges se fait en bord de maille.

Nous passons à présent aux optimisations utilisées pour le tirage des grandeurs spec-
trales : la bande étroite et le coefficient d’absorption. Cependant, nous ne nous étendrons
par sur cette partie dans la mesure où nous reprenons les choix effectués dans la thèse de de
Lataillade[de Guilhem de Lataillade, 2001].

4.5.3 Bandes étroites

Le spectre étant découpé en bandes étroites de même largeur (pour nous 25cm−1), nous
devons pour chaque rayon définir dans quelle bande (i.e. dans quel intervalle spectral) nous
irons ensuite générer un coefficient d’absorption pour chaque espèce rayonnante. Le spectre
des gaz étant très complexe dans le domaine infra-rouge, il existe des bandes spectrales pour
lesquelles les espèces rayonnantes présentent un grand nombre de transitions, et d’autres
où il ne se produit aucune absorption ou émission. Un tirage uniforme de chaque bande
conduirait donc à effectuer des calculs pour des parties du spectre qui n’interviennent pas
dans l’estimation des échanges. Il faut par conséquent trouver un moyen d’évaluer la part de
chaque bande spectrale dans l’échange total de la maille d’émission avec le reste du système.

Le rayonnement émis depuis une maille de gaz va contribuer à l’échange de cette maille
avec les autres mailles de gaz, ainsi qu’avec les parois. Nous utilisons une pondération com-
posée par un terme représentatif de l’émission de la maille dans une bande étroite, et par
une partie énergétique :

F = [1 − τ (l)]max∆Lb (4.28)

où τ(l) est la transmittivité moyenne de la maille d’émission, pour une bande étroite, sur une
distance caractéristique l (dimension de la maille d’émission). La partie énergétique max∆Lb

est la différence maximum de luminance noire entre le point d’émission et le reste du système.
Une pondération différente a été utilisée par Cherkaoui [Cherkaoui et al., 1996] et Clergent
[Clergent, 2000] faisant intervenir la dérivée partielle de la luminance noire au point d’émis-
sion. En raison des différences de température importantes que l’on peut trouver dans les
systèmes de combustion, cette pondération n’est pas utilisable dans les configurations aux-
quelles nous pourrons être confrontés.

Le rayonnement émis depuis une paroi participe à l’échange entre cette paroi et le volume
de gaz confiné dans le système. Nous représentons alors l’absorption par le gaz du rayonne-
ment émis par [1 − τ (l)], où l est cette fois la dimension caractéristique du système entier.
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Nous conservons la même expression pour la partie énergétique, ce qui finalement laisse in-
changée la pondération d’une bande (Eq. 4.28), dans le cas d’une émission de paroi.

La pondération que nous avons choisie est ensuite utilisée pour définir une probabilité de
tirage pour chaque bande étroite n :

pn =
Fn

∑nb

n=1 Fn

(4.29)

Cette pondération optimise les tirages de bandes pour les échanges de type gaz-gaz ou gaz-
paroi. Par contre, elle n’est pas pensée pour l’optimisation des échanges de type paroi-paroi.
Cela ne représente pas une grosse limitation dans la mesure où l’on sait que dans les systèmes
de combustion, les parois sont approximativement à la même température. Elles n’échangent
donc pas entre elles de manière importante. Nous avons cependant toujours la possibilité
de changer cette pondération dans le cas où le système présenterait de fortes disparités au
niveau des températures de paroi.

4.5.4 Coefficients d’absorption

En appliquant une transformée inverse de Laplace à l’expression de la transmittivité
moyenne d’une colonne de gaz pour un modèle statistique à bandes étroites de Malkmus
(Eq. 4.19), on obtient la fonction de distribution des coefficients d’absorption f(κ) :

f(κ) = L−1[τ(l)] =

√

φκ

2πκ3
exp

[

− φ

2

(κ − κ)2

κκ

]

Cette distribution a la forme d’une distribution inverse gaussienne de moyenne κ et de pa-
ramètre de forme φ [Chhikara and Folks, 1989], dont nous pouvons utiliser les propriétés
mathématiques pour générer les coefficients d’absorption à partir des fonctions f(κ) [Du-
fresne et al., 1999].

Nous avons vu qu’il est important de pouvoir calculer la cumulative d’une distribution
pour pouvoir créer un générateur aléatoire à partir de celle-ci. La cumulative d’une inverse
gaussienne f(κ; κ, φ) 10 s’exprime par :

∫ κ

0

f(κ′; κ, φ)dκ′ = Γ

[

−
√

φ

κ/κ

(

1 − κ

κ

)]

+ e2φΓ

[

−
√

φ

κ/κ

(

1 +
κ

κ

)]

Comme on ne sait pas inverser analytiquement cette fonction pour extraire une valeur du
coefficient d’absorption κ on utilise un moyen détourné.

10f(κ; κ, φ) désigne une fonction de κ, de forme inverse gaussienne, de valeur moyenne κ, et de paramètre
de forme φ. La notation f(κ) pourra être considérée comme l’équivalent de f(κ; κ, φ) dans tout le document
du fait des conventions utilisées.



Chapitre 4 – Développements de la méthode de Monte Carlo : vers une simulation 3D des
transferts radiatifs infra-rouge en milieu gazeux 101

On se sert de l’algorithme de Michael [Michael et al., 1976] pour générer une variable
aléatoire X à partir d’une distribution inverse gaussienne de valeur moyenne κ, et de para-
mètre de forme φ. Cet algorithme à deux passes consiste d’abord à tirer une valeur x1 en
suivant une distribution du χ2 à un degré de liberté. Elle sert ensuite à établir une deuxième
valeur x2 :

x2 = a

(

1 +
x1

2φ
−
√

x1

φ
+
(x1

2φ

)2
)

On effectue alors un test de Bernouilli et on retient κ = x2 avec une probabilité P = κ
(κ+x2)

,

et κ = κ2

x2
avec une probabilité 1 − P .

En fait, le problème concret se traduit par l’utilisation, non pas de f(κ) comme densité
de probabilité, mais des fonctions f ss, f gs, et f gg qui apparaissent quand on écrit l’échange
entre respectivement deux surfaces, une maille de gaz et une surface, et entre deux mailles
de gaz. Ces trois pdf’s sont fonctions de la transmittivité moyenne, de sa dérivée première,
ou de sa dérivée seconde :

f ss(κ; l) =
1

τ(l)
exp(−κl)f(κ)

f gs(κ; l) =
−1

∂τ
∂l

(l)
κexp(−κl)f(κ)

f gg(κ; l) =
1

∂2τ
∂l2

(l)
κ2exp(−κl)f(κ)

L’utilisation de ces trois pdf’s se fait grâce aux propriétés de normalisation et de changement
de variable des distributions inverses gaussiennes, qui permettent justement de les ramener
à une forme d’inverse gaussienne. Si on sait exprimer la distribution d’une variable X au
moyen d’une inverse gaussienne de valeur moyenne κ, et de facteur de forme φ, alors on peut
donner la fonction de densité de probabilité R de Y = 1

X
:

pdf(y) = R(y; κ, φ) = κyF
(

y;
1

κ
, φ

)

Ce qui permet de reécrire f ss, f gs et f gg :

f ss(κ; l) = F(κ; κ∗(l), φ∗(l))

f gs(κ; l) = R
(

κ;
1

κ∗(l)
, φ∗(l)

)

f gg(κ; l) =
1

(κ∗)2

(

1 +
1

φ∗(l)

)
−1

κ2F(κ; κ∗(l), φ∗(l))

avec :
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κ∗(l) = κ

(

1 +
2κl

φ

)
−

1

2

φ∗(l) = φ

(

1 +
2κl

φ

) 1

2

Pour l’estimation de l’échange entre une maille de gaz (de dimension caractéristique L) et
une surface (située à une distance l), le volume de gaz émetteur peut être considéré comme
épais ou non. Dans le cas où l’épaisseur optique de la maille de gaz émettrice est grande, elle
tend vers le comportement en émission d’une surface. Pour cette raison, on utilise dans ce
cas une composition entre f ss et f gs pour guider le tirage du coefficient d’absorption :

pdf(κ) = αf gs(κ) + (1 − α)f ss(κ) (4.30)

où α est un coefficient de pondération mince/épais. Quand α = 1 on est à la limite mince
et quand α = 0 à la limite épaisse où le volume de gaz se comporte en émission comme une
surface. L’expression de α donnée ci-dessous a été établie dans le même esprit que celui qui
a mené à l’expression de la pondération des bandes, c’est à dire en considérant une couche
de gaz échangeant avec tout le système, et des parois échangeant essentiellement avec les
volumes de gaz :

α =
τ(l)gss(κc; l) − τ (l + L)gss(κc; l + L)

τ (l) − τ(l + L)
(4.31)

où κc est un coefficient d’absorption critique vérifiant κcL = 1.

Tous les détails pour le calcul de α peuvent être trouvées dans [de Guilhem de Lataillade,
2001].

4.5.5 Synthèse sur la procédure de génération des rayons

Après ces développements mathématiques, nous souhaitons donner une vision concrète
de l’utilisation de la démarche explicitée, en faisant apparâıtre les quantités numériquement
évaluées du fait de l’utilisation des pdf’s. Nous retenons pour cela le cas de la génération
d’un rayon dans l’évaluation de l’échange net entre un élément de volume et une paroi noire
(Fig. 4.9). En partant de l’ETR écrite en puissances nettes échangées, nous déterminons
les pdf’s utilisées pour générer chaque variable aléatoire. Nous avons établi une formulation
en échanges nets sous la forme d’intégrales multiples (Eqs. 4.24). Chaque intégrale de cette
formulation peut se mettre sous la forme :

Ix =

∫

Dx

pdf(x)ωxdx (4.32)

où Ix représente une intégrale sur la variable x définie dans le domaine Dx. Nous donnons
à chaque étape l’expression de ω =

∏

x ωx, que nous désignons par le terme d’intégrant et
dont nous ferons la moyenne sur un grand nombre de rayons pour estimer l’intégrale multiple
représentant cet échange radiatif (cf. paragraphe 4.1 concernant le principe de l’intégration
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σ i

li

Volume  i

Surface  j

θ

Fig. 4.9 – Echange entre un volume et une surface. Exemple d’évaluation d’un échange par
la méthode de Monte Carlo.

par la méthode de Monte Carlo).

Nous commençons par détailler l’ensemble de la démarche dans un milieu aux propriétés
homogènes, puis nous commenterons de façon séparée sa généralisation à des milieux inho-
mogènes et à des surfaces réfléchissantes.

Nous écrivons d’abord l’expression de l’intégrale que nous cherchons à évaluer et qui
constitue notre base de travail. Comme nous avons choisi un échange entre un volume et une
surface, nous prenons l’expression ϕVi↔Sj

:

ϕVi↔Sj
=

nb∑

n=1

∆ηn

∫
∞

0

f(κ)dκ

∫

Vi

dV (~ri)

∫

Sj

dSj
~u.~n

l2ij
κ exp[−κlij ]

[

Lη,b(~rj) − Lη,b(~ri)

]

(4.33)

Comme dans la suite de l’exemple nous faisons l’hypothèse que nous obtenons une épaisseur
optique entrâınant un choix de tirage à partir des bords de la maille d’émission, nous faisons
l’exercice supplémentaire de procéder à une modification de cette équation. Nous remplaçons
l’intégration sur le volume d’émission par une intégration sur la surface de celui-ci et sur la
direction du rayon.

ϕVi↔Sj
=

nb∑

n=1

∆ηn

∫
∞

0

f(κ)dκ

∫

SVi

dSVi

∫

2π

dΩ

∫

σi

dl cos θ κτiτi→j∆L V (i, j) (4.34)

Nous avons introduit de nouvelles notations pour cet exemple : SVi
désigne ici la surface en-

tourant le volume Vi, τi la transmittivité entre le point d’émission et le point de sortie dans
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Vi, τi→j la transmittivité entre le point de sortie de Vi et le point d’absorption sur la surface
Sj, et ∆L la différence de luminance noire entre le point d’émission et le point d’absorption.
V (i, j) est une fonction de visibilité qui vaut 1 si le rayon défini correspond effectivement à
un chemin optique reliant les mailles i et j, et 0 sinon.

Nous faisons ensuite apparâıtre dans cette équation une expression générale des fonctions
de densité de probabilité et de ω :

ϕVi↔Sj
=

nb∑

n=1

pn

∫
∞

0

pdf(κ)dκ

∫

SVi

pdf(SVi
)dSVi

cos θ

∫

2π

pdf(Ω)dΩ

∫

σi

pdf(li)dli × ω

avec

ω =
∆ηnκτiτi→j∆L cos θf(κ)

pnpdf(κ)pdf(SVi
)pdf(Ω)pdf(li)

V (i, j)

Cette expression sera toujours vraie dans ce contexte quelles que soient les pdf’s utilisées.
Nous passons maintenant aux expressions littérales utilisées.

Dans l’ordre des intégrales, nous résolvons d’abord celle liée à la dimension spectrale :
nous avons besoin d’une valeur de l’épaisseur optique pour choisir le mode de tirage de la
position d’émission dans le volume. Nous commençons donc par choisir pour le rayon courant
une bande étroite avec une probabilité discrète pn (équation 4.29).

Bande étroite Le tirage d’une bande étroite se fait par l’utilisation d’une probabilité
discrète pn, puisque les bandes sont dénombrables. Nous ne nous attardons par sur cette
première génération dans la mesure où elle ne présente aucune difficulté, et nous écrivons la
contribution ωn à ω venant du tirage de la bande

ωn =
1

pn
=

∑nb

n=1 Fn

Fn

Nous générons maintenant un coefficient d’absorption dans la bande n que nous venons de
choisir.

Coefficient d’absorption Nous utilisons la fonction de densité de probabilité définie dans
le paragraphe précédent (équation 4.30). En utilisant les expressions de f gs(κ) et de f ss(κ)
de [Dufresne et al., 1999], on aboutit à :

pdf(κ) = α
κexp[−κl]f(κ)

κ
(
1 + 2κl

φ

)
−1/2

τ(l)
+ (1 − α)

exp[−κl]f(κ)

τ (l)

la longueur l étant la distance entre le volume d’émission Vi et la paroi Sj. Nous utilisons
l’expression de α pour l = 0 car les rayons générés pour une maille servent à évaluer l’échange
net de la maille avec l’ensemble du reste du système (qui est au contact de la maille démission
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et donc l = 0) et ne sont pas dédiés à la seule évaluation de l’échange net avec une maille
distincte. Du reste, à ce stade de l’algorithme, nous ne savons pas encore dans quelle direction
et par où va passer le rayon. Avec ce choix, les termes en exponentielle dans l’expression de
pdf(κ) sont tous égaux à 1, et on obtient :

pdf(κ) = α
κf(κ)

κ
+ (1 − α)

f(κ)

1

et la contribution à ω associée au tirage de κ est :

ωκ =
1

[
ακ

κ
+ (1 − α)

]
f(κ)

=
1

pdf(κ)

Nous replaçons cette expression dans celle de l’intégrant ω, ce qui donne :

ω =

∑nb

n=1 Fn∆ηnκτiτi→j∆L cos θf(κ)

Fn

[
ακf(κ)

κ
+ (1 − α)f(κ)

]
pdf(SVi

)pdf(Ω)pdf(li)
V (i, j)

=

∑nb

n=1 Fn∆ηnκτiτi→j∆L cos θ

Fn

[
ακ

κ
+ (1 − α)

]
pdf(SVi

)pdf(Ω)pdf(li)
V (i, j)

Nous disposons maintenant de la valeur du coefficient d’absorption κ pour le rayon courant.
Comme κ est connu, nous pouvons aborder la partie géométrique de l’algorithme. En particu-
lier, la valeur de κL (L étant la dimension caractéristique de la maille d’émission) nous permet
de choisir l’algorithme de tirage des positions d’émission, ainsi que l’algorithme de génération
angulaire (cf. paragraphe 4.5.1.2). Comme annoncé précédemment, à titre d’exemple, nous
supposons dans ce qui suit que κL > 1 pour le rayon courant. Nous adoptons par conséquent
une procédure de génération de la position d’émission à partir de l’enveloppe de la maille, et
un tirage angulaire suivant la loi de Lambert.

Surface Nous choisissons un point de façon uniforme sur SVi
. Il se peut donc dans le

cas d’une maille délimitée par des plans (polyèdre) qu’on soit amené à faire un premier
tirage pour choisir sur lequel de ces plans nous tirons notre point de sortie. Ceci se fait
proportionnellement à la surface de chaque plan et n’intervient par dans le calcul de ω. Nous
écrivons donc directement :

pdf(SVi
) =

1

SVi

Et l’expression de ω à ce stade fait donc apparâıtre la surface enveloppant la maille émettrice :

ω =

∑nb

n=1 Fn∆ηnSVi
κτiτi→j∆L cos θ

Fn

[
ακ

κ
+ (1 − α)

]
pdf(Ω)pdf(li)

V (i, j)

Nous allons à présent définir la direction du rayon passant par ce point par rapport à la
normale à la surface de sortie en ce point.
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Angles Conformément au choix fait dans cet exemple (κL > 1), nous générons l’angle θ
suivant la loi de Lambert, et l’angle φ de façon uniforme.

pdf(Ω) =
cos θ

π

L’utilisation de cette pdf introduit un terme π dans ω, dans lequel nous retrouvons donc une
expression de la différence d’émittance π∆L = ∆M :

ω =

∑nb

n=1 Fn∆ηnSVi
κτiτi→jπ∆L

Fn

[
ακ

κ
+ (1 − α)

]
pdf(li)

V (i, j)

Le rayon est maintenant complètement défini à l’exception du point d’émission qui peut être
choisi le long du segment σi dans le volume Vi.

Point d’émission Nous utilisons une pdf tenant compte de l’atténuation exponentielle du
rayonnement (Eq. 4.27) :

pdf(li) =
κexp[−κli]

1 − exp[−κσi]

⇒ ω =

∑nb

n=1 Fn∆ηnSVi
(1 − exp[−κσi])τi→jπ∆L

Fn

[
ακ

κ
+ (1 − α)

] V (i, j)

Ce qui signifie que nous tirons la position d’émission uniquement pour pouvoir calculer la
valeur de la luminance en ce point, la longueur parcourue par le rayon dans le volume d’émis-
sion n’intervenant pas dans la grandeur calculée pour estimer l’échange ω. Par contre, les
longueurs dans les mailles traversées jusqu’à l’extinction du rayon interviennent directement
dans le calcul de ω par l’intermédiaire de τi→j =

∏

m exp[−κσm] 11.

A ce moment, nous avons complètement déterminé la valeur de l’intégrant ω pour un
rayon donné, et la fonction de visibilité V (i, j) assure que ω est nul pour un rayon donné
émis de la maille i s’il n’atteint pas la maille j. Tous les raisonnement ont été menés sur un
seul rayon. L’échange net ϕVi↔Sj

est estimé en faisant la moyenne de la valeur de l’intégrant
(recalculé à chaque fois) sur un grand nombre N de rayons :

ϕVi↔Sj
≈< ω >N=

1

N

N∑

m=1

ω

Et l’erreur statistique sur cette valeur est donnée par :

σ(< ω >N) ≈ 1√
N

√

[< ω2 >N − < ω >2
N ]

11Où m est un indice identifiant chaque maille traversée
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Généralisation En pratique, on ne calcule pas séparément un terme d’échange net ϕVi↔Sj
.

Un rayon sert à calculer l’échange net entre la maille i et toutes les autres mailles volumiques
et surfaciques du système. Pour un rayon donné partant de la maille i et atteignant une sur-
face noire j, l’intégrant ωi→j est calculé comme précédemment ; mais l’intégrant ωi→k servant
à évaluer l’échange net entre i et une autre surface noire k est aussi “calculé” au sens où il
est nul à cause de la fonction de visibilité entre i et k pour ce rayon. En généralisant, chaque
rayon sert à estimer un intégrant pour le calcul des échanges nets entre la maille d’émission
et toutes les autres mailles du système (volumes et surfaces). On comprend donc que tous les
termes d’échanges ϕVi↔Sj

ou ϕVi↔Vj
estimés à partir de rayons émis depuis Vi sont corrélés

statistiquement. Nous verrons dans la reconstruction des bilans que cela nous oblige à une
surestimation de l’erreur sur les termes d’échange.

Nous avons traité le cas du calcul de l’échange net avec une surface noire. Le calcul de
l’intégrant pour un échange avec une surface réfléchissante se déroule de la même façon jus-
qu’à la paroi, où l’intégrant est multiplié par l’émissivité de la paroi. Nous utilisons alors un
critère de troncature pour décider si nous continuons le suivi du rayon après tirage d’une
direction de réflexion conforme aux propriétés de la paroi (cf. Annexe B).

La prise en compte des inhomogénéités ne pose pas de difficulté majeure et modifie
l’expression de l’intégrant ω par l’intermédiaire de la transmittivite τi→j. Dans un premier
temps, le tirage du coefficient d’absorption κ dans la maille d’émission fixe une valeur de la
cumulative g. Nous suivons ensuite le rayon pour cette valeur de g fixée.

4.6 Reconstruction des bilans à partir des échanges

Pour chaque maille, nous calculons les échanges avec toutes les autres mailles du système.
En particulier pour un couple de mailles Vi et Sj nous avons calculé un estimateur pour ϕVi↔Sj

et pour ϕSj↔Vi
, ainsi que les variances associées à ces termes. Or la loi de conservation de

l’énergie impose que ϕVi↔Sj
= −ϕSj↔Vi

. Au final nous ne gardons qu’un seul de ces termes
et nous choisissons celui dont la variance est la plus petite pour reconstruire le bilan radiatif
de la maille Vi (Eq. 4.16 rappelée ci-dessous)

Sr(Vi) =

Nv∑

j=1

ϕVi↔Vj
+

Ns∑

j=1

ϕVi→Sj

Comme nous l’avons dit précédemment, deux termes ϕVi↔Sj
et ϕVi↔Vj

estimés à partir de
rayons émis depuis Vi sont corrélés statistiquement. On ne peut donc pas sommer directement
les variances pour calculer la variance sur l’estimateur de Sr(Vi). On somme alors les écarts
types, ce qui conduit à une surestimation de l’erreur sur le bilan radiatif calculé 12.

12Si on reconstruit Sr(Vi) uniquement à partir d’échanges nets calculés à partir de rayons émis depuis
le reste du système, alors il n’y a plus de corrélation statistique entre les termes d’échange net et on peut
sommer les variances directement.
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4.7 Application sur une géométrie axisymétrique

La validité et la pertinence de nos choix directement hérités des travaux de de Lataillade
[de Guilhem de Lataillade, 2001] ont été testées pour une géométrie cylindrique monodi-
mensionnelle infinie en hauteur, de laquelle nous partons. En ajoutant des conditions aux
limites sur la dimension infinie, nous passons en géométrie axisymétrique 2D qui présente un
confinement dans toutes les dimensions et permet de vérifier les optimisations de mailles de
taille finie.

r int

r ext

h

Fig. 4.10 – Système de mailles cylindriques imbriquées. Passage de la configuration monodi-
mensionnelle de de Lataillade [de Guilhem de Lataillade, 2001] à un système axisymétrique
à deux dimensions par ajout de conditions aux limites (parois) sur la coordonnée perpen-
diculaire à l’axe de révolution. Le système d’une hauteur h est confiné dans sa dimension
radiale par des parois en r = rint et r = rext.

Système de coordonnées Pour l’orientation et le suivi des rayons, nous utilisons un sys-
tème de coordonnées lié à la symétrie du système, mais qui est différent pour chaque rayon.
Nous avons à chaque fois besoin de définir les origines des angles d’orientation θ (écart à
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la normale) et φ. Dans le cas d’une émission à partir des parois de la maille, le point de
sortie du rayon définit un point sur la surface et donc une normale en ce point et à cette
surface. Comme une maille cylindrique comporte quatre parois délimitantes, la normale peut
être définie sur ces quatre surfaces. Fondamentalement, on n’a besoin de distinguer que deux
cas : la sortie par le côté externe de la maille ou par la surface du haut (Fig. 4.11). Les autres
cas (face interne et surface du bas) sont traités par symétrie des systèmes de coordonnées.

n
θ

φ

(a) Maille cylindrique. Système de co-
ordonnées pour un rayon sortant par le
coté externe de la maille.

n

θ

φ

(b) Maille cylindrique. Sys-
tème de coordonnée pour un
rayon sortant par le haut de
la maille.

Fig. 4.11 – Le système de coordonnée est attaché à chaque rayon et dépend de la surface
par laquelle il sort de la maille d’émission.

Dans le cas où le rayon sort par le côté externe de la maille, l’origine des angles φ est
prise suivant la direction de l’axe de symétrie, le 0 étant vers le bas. Si le rayon sort par
le haut de la maille, l’origine des φ est prise par rapport à la normale à l’axe de symétrie
passant par le point de sortie (le 0 étant vers l’extérieur de la maille).

Supposons maintenant qu’on génère le point d’émission, non plus à partir de la surface,
mais en échantillonnant directement le volume émetteur. Dans ce cas l’axe des θ est pris
parallèlement à l’axe de symétrie du cylindre au point d’émission. L’origine des φ est alors
la perpendiculaire à l’axe de symétrie au point d’émission.
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4.7.1 Tests de validation

La démarche de validation est la suivante : d’abord nous nous ramenons à un cas de
type plans parallèles traité par de Lataillade [de Guilhem de Lataillade, 2001]. Nous pouvons
traiter ce type de configuration en choisissant pour notre géométrie cylindrique une hauteur
grande devant son rayon. Nous approchons alors une symétrie cylindrique infinie en hauteur.
En imposant maintenant un rayon interne grand au cylindre nous approchons une confi-
guration de plans parallèles 13. C’est la géométrie la plus simple que nous pouvons traiter.
Nous poursuivrons notre démarche de simulation en levant le choix d’une hauteur grande
devant les dimensions du système pour obtenir un cas cartésien 2D 14, et nous comparons nos
résultats sur cette géométrie à ceux de Clergent [Clergent, 2000]. Les mailles définies dans
une enceinte cartésienne 2D sont encore de dimension infinie dans une dimension. L’étape
suivante est de repasser à un cas ou le rayon interne est nul pour obtenir une vraie géomé-
trie cylindrique, qui constitue un système fermé. Dans ce dernier cas, nous confrontons nos
résultats à ceux de Coelho et al. [Coelho et al., Submitted in 2002]. Nous procéderons donc
à la validation de nos résultats grâce à des codes existants déjà validés.

D’autre part, nous construisons un outil multidimensionnel qui doit aussi nous servir
ultérieurement à valider aussi notre code 3D complexe. En effet, la géométrie du code 3D
complexe étant traitée de façon totalement générique (le code 3D fonctionne de la même
façon quelle que soit la géométrie), nous pourrons essayer de retrouver les résultats obtenus
avec le code 2D pour valider la partie spectrale.

Enfin, la géométrie cylindrique 2D est souvent employée pour représenter des chambres
de combustion réelles et a été traitée par de nombreux auteurs [Hottel and Sarofim, 1965,
Steward and Cannon, 1971, Osuwan, 1972, Zhang et al., 1988, Soufiani and Taine, 1993,
Gogel et al., 1994]. Elle représente donc en soi une configuration d’étude intéressante pouvant
répondre à une demande industrielle, ou dans un autre contexte un cas académique sur lequel
nous pouvons produire des solutions de référence.

4.7.1.1 Configuration de plans parallèles

La première étape de validation consiste, comme nous l’avons annoncé, à comparer nos
résultats (avec une configuration de type : rint >> 1 et h >> |rext − rint|) à ceux du code
cylindrique monodimensionnel dont nous disposons dans une configuration de type plans
parallèles. Nous considérons un cas où les parois sont noires à 2500K. Le milieu gazeux est
constitué par un mélange 10% H2O-90% N2 à pression atmosphérique, et présente un profil
de température parabolique avec un minimum de 500K au centre de la configuration. La
distance entre les parois est de 20cm. Par ailleurs, nous disposons également de résultats
obtenus par une méthode raie par raie par L. Pierrot [Pierrot et al., 1999], qui nous ont été
fournis par J. Taine et A. Soufiani du laboratoire EM2C (Fig. 4.12).

13Les conditions pour traiter la configuration de type plans parallèles sont donc : rint >> 1 et h >>
|rext − rint|. On peut également se ramener à une telle configuration avec les conditions suivantes : rint = 0
et h << rext. Les deux possibilités ont été testées.

14La seule condition pour obtenir une configuration 2D cartésienne est donc : rint >> 1
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(a) Comparaison entre le code cylindrique 2D
et le code originel 1D. Les méthodes de trai-
tement des inhomogéné̈ıtés sont différentes.
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(b) Même comparaison mais avec le même
traitement des inhomogéné̈ıtés pour le code
1D et le code 2D.

Fig. 4.12 – Comparaison au code 1D d’origine en se ramenant à une configuration 1D. Terme
source radiatif d’une cavité remplie d’un mélange 10% H2O-90% N2 à pression atmosphérique
et délimitée par deux parois noires. Le profil de température est parabolique avec un minimum
de 500K au centre de la cavité. Les parois sont à 2500K. La référence indiquée est celle de
Pierrot [Pierrot et al., 1999] et utilise un modèle spectral raie par raie.

La figure 4.12(a) montre un écart léger entre les solution du code 1D et la référence de
Pierrot d’une part, et les résultats du code 2D d’autre part au voisinage de la zone d’in-
version de température. Le traitement des inhomogéné̈ıtés se faisant par l’intermédiaire de
l’hypothèse ck dans le cas 2D, et par l’intermédiaire de l’hypothèse de Curtis Godson dans
le cas 1D, nous vérifions sur la figure 4.12(b) qu’un recoupement intégral est retrouvé dans
le cas où on applique l’hypothèse ck au modèle 1D.

4.7.1.2 Configuration 2D cartésienne

La validation suivante que nous proposons nous confronte cette fois aux résultats d’un
code de résolution du transfert radiatif par la méthode de Monte Carlo, et adapté à des confi-
gurations cartésiennes 2D développé par Clergent [Clergent, 2000] au Laboratoire d’Énergé-
tique de Toulouse. Nous nous ramenons à cette configuration en imposant cette fois encore
un rayon interne grand devant les dimensions du système (rint >> 1). Nous considérons un
milieu gazeux composé de 10% de H2O, 1% de CO2, et 89% de N2 à pression atmosphérique
et à 300K. Le système est fermé par des parois noires à 0K (Fig. 4.13(a)). Nous présentons
le terme source volumique sur une ligne horizontale au centre de la configuration 4.13(b)).
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Fig. 4.13 – Comparaison avec un code Monte Carlo indépendant adapté à des géométries
cartésiennes [Clergent, 2000]. On se ramène à ce type de géométrie en imposant un rayon
interne grand devant les dimensions du cylindre. Le code de Clergent ne présente pas le
même niveau d’optimisation que celui que nous proposons ; cela se traduit sur le graphe par
des barres d’erreur remarquablement plus grandes en certains points.

Nous constatons la parfaite adéquation entre les résultats des deux codes de Monte Carlo
indépendants sur un système qui reste assez simple.

4.7.1.3 Configuration 2D cylindrique

Les deux cas que nous venons de traiter ne sont pas des systèmes fermés. Dans le premier
cas, nous étions en configuration plans parallèles (1D), et dans le deuxième cas en géométrie
cartésienne 2D dans laquelle un rayon peut avoir une longueur tendant vers l’infini. Si nous
voulons pouvoir traiter un système fermé, nous devons considérer une géométrie cylindrique
2D. Nous comparons alors nos résultats avec ceux obtenus par Pedro Coelho grâce à un
algorithme de Ray Tracing [Coelho et al., Submitted in 2002].

Les résultats du code de Monte Carlo et ceux du Ray Tracing considéré également comme
une méthode de référence ne présentent pas de différence pour cette configuration où le mi-
lieu est homogène en température et concentration d’espèces rayonnantes.

Nous nous intéressons à présent à un milieu anisotherme et non homogène où la tempé-
rature et les concentrations sont données par les équations 4.35 :
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Fig. 4.14 – Comparaison entre Monte Carlo et Ray Tracing. La configuration étudiée est un
cylindre de rayon R = 0.5m et de hauteur L = 3.0m. Les parois sont noires à 1800K. Le
milieu gazeux est à pression atmosphérique à une température de 300K. Il est composé d’un
mélange 20% H2O-10% CO2 -70% N2 avec une fraction volumique de suie fv = 10−7
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Les résultats sont là aussi complètement concordants avec ceux provenant du ray-tracing.
On remarque par contre un écart-type plus important pour les flux aux parois. Cela peut être
dû à la loi d’optimisation du tirage des bandes étroites. En effet, l’optimisation est orientée
pour les échanges gaz-gaz ou gaz-paroi, et peut ne pas être adéquate pour des échanges paroi-
paroi. Or dans le cas présenté sur la figure 4.7.1.3, une paroi n’est pas à la même température
que les autres, et échange avec celles-ci.

Les résultats que nous avons présentés ont balayé toutes les possibilités géométriques que
peut offrir un code cylindrique 2D. L’étude d’une autre géométrie par ce même code n’est
pas possible sans modification majeure de sa structure. Il nous a servi à tester la validité des
choix que nous avons fait, mais est maintenant limité du fait même de sa conception.
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Fig. 4.15 – Comparaison entre Monte Carlo et Ray Tracing. La configuration étudiée est
un cylindre de rayon R = 0.3m et de hauteur L = 1.2m. Les parois sont noires à 800K,
exceptée la paroi en l = L qui est à 300K. Le milieu gazeux est à pression atmosphérique
avec une fraction volumique de suie fv = 10−7. La composition et la température du milieu
sont données par les équations 4.35



Chapitre 5

Construction et optimisation de
l’outil 3D

Au chapitre précédent, nous avons mis en place une modélisation du transfert radiatif que
nous avons utilisée dans une géométrie bidimensionnelle cylindrique. Nous avons alors validé
notre outil de calcul bidimensionnel dans l’ensemble des configurations qu’il peut traiter :
plans parallèles, géométrie cylindrique infinie, et géométrie cylindrique 2D. Ces configura-
tions, bien que très souvent étudiées dans des applications de transfert radiatif pour leur
ressemblance avec des géométries réelles restent simples, et ne peuvent satisfaire entièrement
aux besoins de dimensionnement des procédés industriels. A ce stade, le passage à des confi-
gurations plus complexes n’est pas possible sans reécriture d’un nouveau code de calcul.

La construction d’un outil offrant la possibilité d’être réutilisé quelle que soit la géométrie
demande de se placer à un niveau d’abstraction supérieur dans la phase d’analyse du pro-
blème. Nous utilisons un langage orienté objet, dont le principe a été exposé au chapitre 3,
pour élaborer notre outil. Nous devons donc dans un premier temps déterminer quels sont les
objets (au sens de la programmation orientée objet) que nous utiliserons. Nous exposerons
ensuite les optimisations utilisées pour l’accélération du suivi des rayons dans une géométrie
complexe.

Des exemples d’applications ont été traités et viendront illustrer cette démarche. Ils pré-
sentent une exploration des possibilités offertes par l’outil de calcul que nous avons construit.
Nous devons souligner une différence notable par rapport aux résultats du chapitre précé-
dent : nous ne calculons pas le bilan radiatif des mailles du système, mais le terme source
radiatif en un point, que nous déplaçons dans le système comme une sonde. Cela ne remet
nullement en cause l’édifice méthodologique et théorique construit jusqu’ici puisqu’il s’agit
d’une application du travail précédent dans la limite où la taille d’une maille tend vers 0.
La question du calcul de l’ensemble des échanges entre mailles demande une réflexion plus
approfondie et fait partie des discussions actuelles au sein de notre groupe de travail 1.

1Ce travail est le fruit d’une collaboration entre l’Institut de Recherche en Informatique de Toulouse,
l’Ecole des Mines d’Albi-Carmaux, le Laboratoire d’Energétique de Toulouse, et l’Office National d’Etudes
et de Recherches Aérospatiales, à travers le cadre d’une ATIP sur les Algorithmes de Monte Carlo pour la

Simulation des Transferts Radiatifs en Combustion.
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5.1 Définition des objets

Pour un problème donné, il n’existe pas une représentation unique de la solution. Des
objets différents peuvent être définis par des concepteurs différents. La base du choix des
objets vient par contre uniquement de la définition du problème. Nous souhaitons pouvoir
faire un bilan radiatif en tout point d’un système de combustion par la méthode de Monte
Carlo. En première analyse, nous devons donc être capable de construire une application
qui prendra en compte une scène. Cette scène est construite à partir de ses constituants qui
seront à priori :

– d’une part des objets matériels définissant la géométrie
– d’autre part un milieu gazeux participant défini par une liste de profils de températures

et de concentrations d’espèces rayonnantes

Pour effectuer le lancé de rayons et calculer le terme source volumique en un point, nous
aurons par ailleurs besoin d’une entité que nous nommerons évaluateur, et bien sûr d’un
objet rayon.

La propagation des rayons se fera au travers d’une grille englobant la scène et composée de
sous-volumes correspondant à un découpage de l’espace. De plus la définition de la scène doit
se faire à partir de fichiers d’entrée et le passage au format interne du programme nécessite
donc la création d’un convertisseur de format. Dans un premier temps nous pouvons donc
donner une représentation simple des objets à définir et de leurs interactions à partir de ces
constats et en utilisant la syntaxe UML (Unified Modeling Language) (Fig. 5.1).

5.1.1 Définition de la scène

Plutôt que de travailler sur l’information elle-même comme en programmation tradition-
nelle (traditionnelle signifiant ici séquentielle, avec des appels de fonctions et hautement non
réutilisable), on portera nos efforts sur la modélisation de l’information. Des caractéristiques
communes à certains types sont alors définies, et l’utilisation d’un langage orienté objet
comme le C++ est particulièrement adapté à cette logique.

5.1.2 Primitives géométriques

Pour construire l’aspect géométrique d’une scène, nous utilisons des primitives simples
que nous combinons pour donner des objets complexes. Ces primitives sont des formes géo-
métriques pour lesquelles il est aisé de calculer l’intersection avec une droite, et donc avec un
rayon lumineux. Nous utilisons le format de définition V RML (Virtual Reality Modelling
Language) d’une scène. Ce format a l’avantage d’être standard et de pouvoir être généré di-
rectement par des modeleurs commerciaux comme AutoCad. Comme il s’agit d’un véritable
langage composé de mots clés et de règles syntaxiques, il est également possible à un utilisa-
teur de créer un fichier par lui-même. Les primitives que nous utilisons le plus couramment
sont :
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Fig. 5.1 – Diagramme schématique de construction de la solution.

– des facettes (pour lesqueslles le mot clé en VRML est : IndexedFaceSet) définies par
trois sommets ou plus. Ces facettes sont orientées suivant la règle du tire-bouchon.
L’ordre des sommets définit donc l’orientation de la normale, et elle est sortante lorsque
les points sont donnés dans le sens des aiguilles d’une montre.

– des cylindres (Cylinder) qui peuvent être fermés ou ouverts. Ils sont définis par leur
hauteur et leur rayon

– des sphères(Sphere) définies par leur rayon
– des cônes (Cone) définis par le rayon de leur base et leur hauteur
– de bôıtes définies par leur taille et la coordonnée de leur centre
– mais aussi par exemple du texte

On définit également des règles que doivent suivre les objets géométriques :

1. Une normale orientée peut être définie en tout point d’un objet géométrique
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2. Il faut également pouvoir définir une tangente en tout point

Pour construire la scène, il faut également disposer ces objets dans l’espace. Ceci se fait
au moyen des transformations géométriques de base que sont la translation, la rotation, et
l’homothétie. Le langage VRML permet également de définir certaines caractéristiques de la
forme créée comme la couleur en utilisant une base RGB (Red, Green, Blue).

De plus, ce langage offre la possibilité d’introduire de nouveaux objets qui ne sont pas
explicitement définis dans la version de base. Nous définissions ainsi deux nouveaux objets
pour définir les champs de température et de concentration tels qu’ils peuvent provenir d’un
code de mécanique des fluides :

– un objet Profile qui contient une liste de points avec une liste de valeurs associées.
– un objet ParticipatingMedia qui est une liste d’objets de type Profile

Nous sommes partis de l’hypothèse que le maillage de mécanique des fluides nous renverrait
pour chaque maille une valeur unique de la grandeur considérée. Ainsi, chaque champ est
défini comme une suite de coordonnées, et à chaque coordonnée est associée une valeur du
champ défini.

Une scène est donc ensuite définie comme une liste de primitives géométriques et une
liste de profils (de températures et de concentrations d’espèces rayonnantes) contenue dans
l’objet ParticipatingMedia.

5.1.3 Exemple : modélisation d’un four

Nous choisissons ici une configuration géométrique proche d’un four industriel et large-
ment inspirée de la forme qu’on peut trouver dans [Boineau et al., 2002]. La forme créée reste
géométriquement simple et ne comprend qu’une trentaine de facettes (Fig.5.2). Le code de
description de ce four est détaillé en annexe C. Des calculs de termes sources radiatifs et de
sensibilités dans ce four seront présentés dans la dernière partie de ce chapitre.

5.2 Trajectographie et calcul des intersections

Dans les techniques de lancé de rayons, la majeure partie du temps de calcul est passée
à l’évaluation des intersections entre les rayons et la géométrie en l’absence de milieu par-
ticipant (de 75% à 95% du temps de calcul [Fujimoto et al., 1986]). Il parâıt donc essentiel
d’essayer de limiter ce temps de calcul en limitant le nombre d’intersections évaluées.

En préliminaire à la présentation des techniques envisageables pour accélérer le suivi des
rayons, nous souhaitons introduire la notion de voxel (Fig. 5.3), qui a donné lieu à bien des
discussions lors de ce travail de thèse. Formellement, le voxel est l’extension directe de la
notion de pixel (structure planaire 2D) à la dimension supérieure (3D). C’est donc le plus
petit élément de volume, résultant du découpage d’une scène selon des critères définis par
l’utilisateur. Par extension de langage, on continue à appeler voxel, une zone de volume à
laquelle on associe des propriétés pour en faire un objet au sens de la programmation objet.
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Fig. 5.2 – Géométrie représentant un four de type industriel. Les brûleurs sont représentés
par les zones en rouge sur la figure. La partie la plus à droite de l’image est une cheminée
d’évacuation des fumées.

X

Y

X

Y

Z

Fig. 5.3 – Voxel : extension de la notion de pixel en 3D. Comme le pixel est la plus petite
unité de surface (composant en général une image sur un écran), le voxel est un volume
indivisible dans une scène discrétisée.
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Ainsi, pour nous, un voxel est une zone de volume contenant des éléments géométriques,
ainsi que des profils de températures et de concentrations. Le voxel est une notion que l’on
retrouve dans un grand nombre de techniques d’accélération du calcul de l’illumination glo-
bale par lancé de rayons.

Ces techniques peuvent être grossièrement classées en deux catégories : celles réalisant
un abaissement du temps de calcul par la diminution du nombre de rayons nécessaires à un
niveau de précision donné (telles que l’introduction des fonctions de densités de probabilités
présentées au chapitre 4), et celles portant un effort sur la diminution du coût directement
dû au calcul des intersections (nombre d’intersections calculées par rayon, ainsi que temps
d’évaluation de chaque intersection) (Fig. 5.4).

Intersections Rayon−Objets
          plus rapides

Moins de Rayons

Techniques d’accélération pour le Ray Tracing

Calcul d’intersections plus rapide

d’intersections
       Moins

Volumes englobants

Algorithme d’intersection
efficaces

Hiérarchie de volumes
englobants

Subdivision
spatiale

Techniques
directionnelles

Arbre adaptatif

Optimisations 
statistiques

Fig. 5.4 – Techniques d’accélération pour le lancé de rayons [Arvo and Kirk, 1989]

5.3 Structures de données

Une façon efficace de limiter le temps de calcul venant du nombre d’intersections à éva-
luer est donc de diminuer ce nombre d’évaluations. Ceci ne peut se faire qu’en sélectionnant
les objets qui doivent être testés pour rechercher une éventuelle intersection. Le classement
des objets géographiquement proches en groupes revient à essayer de ne tester que ceux
susceptibles d’appartenir à la zone de propagation d’un rayon.

D’autre part, une partition de l’espace dans une structure de données a pour effet de
classer les objets le long du trajet d’un rayon. On va d’abord tester l’intersection avec les
objets qui sont les plus proches du point d’émission et continuer jusqu’à ceux qui sont les
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plus éloignés On réalise ainsi une économie de temps de calcul en arrêtant le suivi d’un rayon
relativement tôt, quand on détecte effectivement une intersection.

5.3.1 Volumes englobants

Un moyen simple de délimiter une région autour d’un objet géométrique est d’inclure
celui-ci dans une forme géométrique simple. Si un objet est composé d’un grand nombre de
primitives géométriques (facettes, cônes, cylindres,. . . ), l’évaluation de son intersection est
coûteuse en temps de calcul, puisqu’il faut tester chacun de ses constituants. Dès lors, si cet
objet est englobé dans (délimité par) un volume plus simple comme une sphère ou un cube,
on ne testera son éventuelle intersection avec un rayon, que si celui-ci pénètre d’abord le
volume englobant [Rubin and Whitted, 1980]. Comme la géométrie du volume englobant est
simple, on peut évaluer son intersection avec le rayon de façon très simple. Par contre, on
fait autant de tests sur les volumes englobants qu’il y a d’objets.

Pour pallier à cet inconvénient, on peut également envisager d’embôıter plusieurs niveaux
de volumes englobants pour regrouper des objets et de créer ainsi une hiérarchie [Arvo and
Kirk, 1989] (Fig. 5.5).

A
B

Volume englobant A
Volume enblobant B

Volume englobant C

Fig. 5.5 – Volumes englobants. Un objet géométriquement complexe est délimité par une
forme plus simple. On peut définir plusieurs niveaux de volumes englobants.

On teste alors successivement des volumes imbriqués et on réduit aussi le nombre de
tests pratiqués sur des objets eux-mêmes. L’importance de la forme des volumes englobants
est discutée dans [Weghorts et al.]. Si un volume englobant est mal adapté à la forme de
l’objet qu’il contient, alors un grand nombre de rayons qui traversent ce volume n’ont aucune
chance de rencontrer l’objet, ce qui entrâıne un grand nombre de tests d’intersection inutiles.
A l’inverse, si le volume englobant épouse parfaitement l’objet qu’il contient, il peut avoir
une forme complexe pour laquelle le test d’entrée est presque aussi coûteux que le test
d’intersection avec l’objet contenu.
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5.3.2 Grilles régulières

Un autre moyen de délimiter l’espace est de créer un maillage régulier de celui-ci, et
d’affecter dans chaque zone ainsi créée les objets qui sont entièrement ou même partiellement
à l’intérieur. Le suivi de rayon se fait alors en déterminant la suite de volumes traversés et
en testant pour chaque volume les éventuelles intersections avec la liste d’objets associée.
Ce maillage n’est pas optimal, surtout en cas de fortes disparités géographiques des objets
dans la scène. Si les objets sont tous regroupés, la majorité des voxels créés seront vides, et
on aura un grand nombre d’intersections à calculer quand on traversera un voxel non vide.
Une solution adaptée à ce type de problème parâıt donc être une subdivision plus grande
de l’espace aux endroits de forte complexité géométrique. Les grilles régulières sont parfois
désignées par l’acronyme SEADS (Spatially Enumerated Auxiliary Data Structure) et ont
été introduites par Fujimoto et al. [Fujimoto et al., 1986].

5.3.3 Octrees et n-trees

Pour limiter le nombre de volumes créés par la division de l’espaces en zones indépen-
dantes, on a recours à une subdivision récursive en fonction d’une complexité locale donnée.
Comme précédemment la scène est d’abord englobée dans un cube. On divise ensuite celui-ci
de manière régulière en sous-espaces fils de forme cubique [Maeda and Ogawa, 1995]. Ces
sous-espaces peuvent eux-mêmes être subdivisés de la même manière. Lorsqu’un volume est
divisé par deux sur chaque axe, on obtient huit sous-volumes. La structure récursive asso-
ciée est alors appelée octree (Fig 5.6). Le nombre de subdivisions sur chaque axe peut être
différent de deux, et on parlera alors de n-trees ou de grilles récursive multi-niveaux.

Fig. 5.6 – Exemple de subdivision récursive de l’espace dans un cas à 2 dimensions : le
quadtree (qui est l’équivalent d’un octree, mais limité à deux dimensions). La subdivision
découpe à chaque fois une surface en 4 nouvelles surfaces de même dimension.

A chaque division, on affecte dans les nouveaux volumes, les caractéristiques de la scène
relatives à ces zones (par exemple la liste des objets et des profils contenus dans chacun des
sous-volumes).
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En synthèse d’images, le critère de subdivision (aussi appelé oracle de subdivision) est en
général purement lié à la compléxité géométrique de chaque zone de volume ainsi créée. Il est
également important de limiter la profondeur de subdivision (i.e. le nombre de subdivisions
successives) pour ne pas passer trop de temps à accéder aux informations liées à chaque zone
de volume, dans la structure de données résultant de ce découpage recursif de l’espace [Stolte
and Caubet, 1995a,b].

Cette structure récursive peut aussi être représentée par la figure arborescente 5.7. La
forme géométrique englobant la scène constitue le sommet de l’arbre, et les subdivisions
éventuelles sont représentées sous forme de noeuds vers les volumes inclus. Les volumes qui
ne sont plus subdivisés, et qui correspondent à des voxels, représentent les feuilles de l’arbre.
C’est une structure descendante, mais dans le cas de représentation multi-échelles, on peut
également trouver des liens bidirectionnels qui permettent de remonter des feuilles vers les
racines.

Feuilles

Noeuds

Fig. 5.7 – Arborescence représentant la structure d’un quadtree .

Les difficultés sur ce type de structure apparaissent pour des scènes de grande précision
sur plusieurs échelles de grandeurs. Si la scène complète est de grande dimension, mais com-
porte des détails de petite dimension, alors on est obligé de prendre un arbre très profond,
et dont le parcours est par conséquent coûteux .

On peut remarquer que cette structure représente finalement une hiérarchie récursive de
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volumes englobants et contient donc les propriétés de ce type d’organisation.

5.3.4 BSP Tree

Un autre algorithme de subdivision s’appuyant sur une subdivision régulière a été proposé
par Kaplan [Kaplan, 1985] sous le nom de BSP (Binary Space Partitioning) Tree. L’espace
est divisé en deux par un plan, puis chaque sous-espace peut l’être à son tour jusqu’à une
profondeur maximale définie par l’utilisateur. Chaque plan de subdivision est disposé de telle
manière qu’il y ait le même nombre d’objets de part et d’autre du plan. Cela assure donc une
répartition plus homogène des objets dans chaque zone d’espace créée dans la scène (Fig.
5.8).

Fig. 5.8 – Découpage de l’espace suivant un BSP tree.

5.3.5 Géométrie discrète

Une tentation très grande pour minimiser le temps de calcul est de passer à une repré-
sentation discrète de la scène. Pour cela, on subdivise la scène finement, soit par une grille
régulière, soit par une grille hiérarchique, et on affecte une valeur à chaque voxel obtenu :
“plein” si le voxel contient de la matière (un objet et présent), et “vide” sinon. Bien sûr,
on peut utiliser un critère moins simple, basé sur le taux d’occupation d’un voxel par de la
matière. Il en résulte une scène discrétisée dans laquelle on génère aussi des rayons discrets.
Ce type d’approche amène cependant à des problèmes topologiques typiques [Delfosse, 1996].

Un calcul d’intersection entre un rayon et la géométrie se fait alors simplement par un
test booléen de rencontre avec un voxel plein : soit le voxel rencontré est “plein” et une
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Droite discrète Intersection

Fig. 5.9 – Discrétisation (ou rasterisation) d’une scène 2D. La scène est représentée par des
pixels vides ou pleins. Le suivi de rayons se fait en utilisant les propriétés des droites discrètes
dans un espace 2D. La généralisation à n dimensions ne pose aucune difficulté.

intersection est trouvée, soit il est vide et le suivi du rayon continue. Le temps de calcul
devient par conséquent indépendant du nombre d’objets contenu dans la scène

5.3.6 Classification 5D des rayons

Arvo et Kirk [Arvo and Kirk, 1987] proposent de créer des structures communes pour les
rayons venant de la même zone de volume (3D) et se propageant dans le même angle solide
(2D). Ils se servent de volumes englobants 5D (hyper-cubes) comprenant chacun une liste
d’objets candidats à une éventuelle intersection pour tout rayon compris dans cet hyper-
volume. Cette idée de classification est reprise par Lafortune et Willems [Lafortune and
Willems, 1995] pour stocker des valeurs radiatives et améliorer la convergence d’un calcul
par la méthode de Monte Carlo.

5.3.7 Choix de la structure accélératrice du suivi des rayons

Que ce soit pour une grille régulière, un octree, ou une grille récursive, la complexité
reste linéaire. En théorie, ces trois approches sont donc valables. Mais en pratique, pour le
genre de scène que nous souhaitons traiter, on observe qu’une grille récursive est plus adaptée
[Havran and Purgathofer, 2000, Havran and Bittner, Szirmay-Kalos et al., 2002].
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5.4 Suivi des rayons

Notre principal souci est le suivi des rayons dans la géométrie définissant la scène. Suivi
des rayon voulant dire“détermination de sa trajectoire géométrique”, ainsi que“évaluation des
intersections avec les objets où les parois de la scène”. Nous commençons donc par expliquer
par quelle méthode nous déterminons le parcours d’un rayon dans une grille composée de
voxels de taille régulière.

5.4.1 Parcours de la grille

L’algorithme de suivi de rayons proposé par Amanatides et Woo [Amanatides and Woo,
1987] concerne la traversée rapide de grilles et est une variante de l’algorithme DDA (Digital
Differential Analyser). Il ne nécessite pas d’axe préférentiel à la différence de celui de Fujimoto
et al. [Fujimoto et al., 1986], basé sur un DDA simple. Le principe est expliqué dans un espace
2D, et l’extension en 3D ne nécessite aucun apport supplémentaire (Fig. 5.10).

x

y

a b

c
d

e
f

g h

Rayon

Fig. 5.10 – Algorithme de traversée de grille rapide.

L’équation du rayon est donnée par ~u + t~v où ~u est la coordonnée du point d’émission,
~v le vecteur directeur, et avec t ≥ 0. Nous nous appuyons sur cette représentation pour
déterminer la suite de voxels traversés (ici : a, b, c, d, e, f, g, h), et la longueur du rayon
dans chaque voxel (qui peut être traduite en valeurs de t).

La phase d’initialisation consiste à trouver dans quel voxel de la grille est situé le point
d’origine ~u. Si ce point n’est pas dans la grille, on détermine par quel point le rayon pénètre
dans la grille et on sélectionne le voxel adjacent. En affectant les coordonnées X, Y au voxel
de départ, nous changeons de voxel uniquement par pas de 1, ou −1 sur les dimensions x et
y. Les variables X et Y représentant le sens de propagation pour les deux axes x et y sont
donc initialisées à 1 ou −1 suivant les valeurs de ~v.

Ensuite, la distance à laquelle le rayon rencontre la première paroi délimitant le voxel
dans lequel il se trouve sur l’axe x est évaluée, et la variable tMaxX est initialisée à cette
valeur. Le même traitement est appliqué pour la variable tMaxY sur l’axe y. La plus petite
des deux valeurs donne la distance à franchir avant de sortir du voxel courant.
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Enfin, les quantités tDeltaX et tDeltaY qui indiquent (en unité de t) les distances à
parcourir pour couvrir la largeur d’un voxel sur chaque axe sont calculées. L’algorithme de
parcours de la grille se résume alors à une série de comparaisons pour savoir quel est le
prochain voxel atteint.

Dans le cas où la scène est entièrement discrétisée, le calcul des intersections entre la
scène et le rayon revient à évaluer si le rayon discrétisé (la suite des voxels par lesquels le
rayon passe) et la scène discrétisée ont des voxels en commun.

L’extension de cet algorithme à des grilles multi-niveaux se fait simplement de manière
récursive en modifiant les dimensions employées suivant la taille des voxels.

5.4.2 Evaluation des intersections

A chaque voxel traversé correspond une liste d’objets que le rayon peut éventuellement
rencontrer. Mais un objet n’est pas confiné à un voxel, et on peut donc trouver une intersec-
tion entre le rayon et un objet de la liste, mais en dehors du voxel.

a b c d

A

B

Rayon

Fig. 5.11 – Evaluation des intersections.

Sur la figure 5.11, le voxel b contient l’objet B, mais l’intersection entre le rayon et B
n’est pas dans b. Par conséquent, on ne doit pas la retenir, et continuer l’algorithme par le
parcours dans le voxel c. Le voxel c contient deux objets, et l’intersection retenue doit être
celle avec l’objet A qui correspond à une plus faible valeur de t.

Pour pouvoir estimer comment le point d’intersection est lui-même éclairé par les sources
de lumière, des rayons sont à nouveau générés à partir de celui-ci. En même temps que les
coordonnées du point d’intersection, on récupère la normale à l’objet rencontré en ce point,
la longueur du rayon entre le point d’émission et le point d’intersection, ainsi qu’un pointeur
sur l’objet intercepté de façon à pouvoir accéder à ses caractéristiques physiques.

5.4.3 Exemple d’intersection avec un cylindre

Si on veut calculer l’intersection d’un cylindre orienté sur l’axe y et centré en 0, on utilise
la position ~O du point d’émission, ~D la direction du rayon, et le rayon du cylindre r. Nous



128 Calcul du transfert radiatif en géométrie complexe

n’évaluons ici que l’intersection avec les côtés du cylindre et pas avec la base et le haut de
celui-ci. La condition d’intersection entre le rayon et l’objet s’écrit :

( ~O(x) + ~D(x).t)2 + ( ~O(z) + ~D(z).t) = r2

Ce qui peut se ramener à une équation du second degré en t qui est, nous le rappelons, la
longueur du rayon exprimée en unité du vecteur directeur du rayon :

t2
[
~D(x)2 + ~D(z)2

]
+ t
[
2( ~O(x))( ~D(x)) + 2( ~O(z))( ~D(z))

]
+
[
( ~O(x))2 + ( ~O(z))2 − r2

]
= 0

La résolution de cette équation donne, en cas d’intersection, deux racines réelles. Si les deux
sont négatives, les intersections trouvées ne sont pas dans le sens de propagation du rayon
et aucune ne doit être retenue. Dans le cas où les deux solutions sont positives, cela signifie
qu’elles sont dans le sens de propagation du rayon. La solution la plus proche est celle qui
sera retenue, à moins que le rayon puisse traverser l’interface et se propager dans l’objet
sans déviation 2(auquel cas on peut garder les deux). Enfin dans le cas où on a une solution
positive et une négative, le rayon a été émis de l’intérieur du cylindre et seule la solution
positive doit être gardée.

5.5 Oracle de subdivision adapté à un milieu partici-

pant

Nous utilisons une grille multi-niveaux pour réduire la complexité locale du milieu. Habi-
tuellement en synthèse d’image, sans milieu participant, la complexité se définit uniquement
par le nombre de primitives géométriques présentes dans une zone de volume ou dans un
voxel. Nous ajoutons ici une complexité liée à la présence de champs de température et de
concentration traduisant la présence de gaz rayonnant dans le volume. Il nous faut donc te-
nir compte aussi de cette complexité pour évaluer le besoin d’une subdivision supplémentaire.

Il se pose la question de choisir entre le découplage des deux complexités que nous nom-
merons respectivement géométrique et physique, par la construction de deux structures de
données ou de n’en garder une seule. Dans la mesure où nous évaluons la complexité globale
du milieu, nous avons choisi de n’en garder qu’une. De toute façon la subdivision physique
ne peut être négligée dans la mesure où c’est elle qui commande la précision du calcul, alors
que la subdivision géométrique est faite pour des besoins d’accélération du calcul. Nous ef-
fectuons donc en même temps la subdivision physique et la subdivision géométrique pour
éventuellement accélérer le suivi des rayons dans les zones créées.

Dans la mesure où nous avons choisi de décrire les champs physiques par une série de
coordonnées associées chacune à une valeur (donnant la valeur d’un champ en un point),
un premier critère de subdivision peut être d’imposer une valeur unique d’un champ dans
chaque voxel. Ceci n’est pas aberrant car, si ces données représentent les sorties d’un code

2Dans la cas d’un tube en verre par exemple
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de mécanique des fluides, elles correspondent chacune à une valeur associée à une maille.
En première approximation, nous remaillons donc l’espace en respectant grossièrement le
découpage de mécanique des fluides. La correspondance exacte, qui peut être un objectif
ultérieur, est un sujet sur lequel nous n’avons pas pour l’instant travaillé.

Un critère moins sévère peut être mis en place en laissant une marge m de variation
pour une grandeur dans un voxel. Cette marge m est laissée à la discrétion et à l’expérience
de l’utilisateur ; il est difficile de définir un critère général car cela dépend des applications
étudiées. Cela revient à permettre la présence de plusieurs points de mesure dans chaque
voxel, chacun ne devant pas être plus éloigné de la moyenne M de plus d’une valeur m.

5.6 Exemples d’application

5.6.1 Validation dans le cas d’un cylindre

Dans un souci de validation de notre outil de calcul, nous souhaitons pouvoir confronter
ses résultats à des résultats de référence dans un cas présentant un mélange de spectres de
gaz et de particules. Nous reprenons notre code cylindrique 2D (basé sur une programmation
classique et présenté au chapitre précédent), dans lequel nous effectuons un calcul de terme
source radiatif sur l’axe de symétrie. Le milieu participant est un mélange de gaz (10% H20-
90% N2) et de suie (fraction volumique fv = 10−7) à 1200K et à pression atmosphérique.
Les parois sont noires à une température de 300K. Nous définissons ensuite un cylindre cor-
respondant, décrit au format VRML, comme scène dans le code 3D, en donnant les mêmes
conditions de température, pression et concentration que dans le code 2D.

La figure 5.12 présente les résultats des codes 2D et 3D sur une moitié du cylindre (le
résultat sur l’autre partie étant totalement symétrique).

La correspondance totale des deux résultats assure la validation de la partie spectrale du
code sur des configurations homogènes et isothermes. De plus, le traitement de la géométrie
se faisant de la même façon quels que soients les éléments qui la composent, la validation
du code 3D en géométrie cylindrique assure la validité du code pour toute autre configuration.

5.6.2 Four schématique

Maintenant que nous avons effectué la validation spectrale du code 3D, nous souhai-
tons pouvoir aborder une géométrie plus élaborée qu’un simple cylindre et nous reprenons
l’exemple du four présenté précédemment (Fig. 5.2) dans lequel nous imposons une tem-
pérature constante de 1400K. Dans la mesure où le champ de température est ici réduit
à une température uniforme dans l’ensemble du système de combustion, la voxélisation se
fait uniquement sur le caractère de la complexité géométrique (Fig. 5.13). La grille récur-
sive d’accélération de suivi des rayons se met d’abord en place autour de la scène sous la
forme d’un cube englobant. Puis en fonctions des complexités (trop grand nombre de faces
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Fig. 5.12 – Validation du code 3D en spectral par la comparaison avec le code cylindrique
2D.

dans une zone de volume, trop grands gradients de température ou de concentrations), la
grille se raffine localement jusqu’à ce que la complexité soit en dessous du seuil fixé par
l’utilisateur, ou que la profondeur maximum de récursivité soit atteinte (à la fin de la subdi-
vision, la grille est composée de voxels de différentes tailles). Ainsi, la grille s’étant raffinée le
plus aux endroits les plus complexes, on peut reconnâıtre la forme du four sur la figure 5.13,
et on peut voir que la plus grande partie (en volume) de la grille accélératrice est en fait vide.

A ce stade, nous voudrions bien préciser que les voxels obtenus, ne représentent en au-
cune manière une approximation de la géométrie, à la différence d’un maillage de mécanique
des fluides où mailles et géométrie sont totalement confondues. Les voxels ne représentent
qu’un découpage de l’espace en zones homogènes (les critères d’homogénéité étant définis par
l’utilisateur 3) et peuvent contenir des éléments de description géométriques (par exemple
un ensemble de facettes).

Nous effectuons le calcul du bilan monochromatique dans le four à une longueur d’onde
de 10µm en déplaçant un point de mesure le long de l’axe x (Fig. 5.14). Les températures de
parois sont uniformes pour chaque paroi, mais différentes d’une paroi à l’autre et peuvent être
consultées dans le fichier de description du four au format VRML (annexe C). Nous indiquons
sur la figure 5.14 les températures des parois sur lesquelles nous faisons en même temps
un calcul de sensibilité du bilan monochromatique aux températures de parois (le principe
général du calcul de sensibilités aux paramètres du système par la méthode de Monte Carlo

3En combustion on utilisera des critères sur les gradients de température et de concentrations d’espèces.
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Fig. 5.13 – Découpage de l’espace de manière récursive. Application à une géométrie simpli-
fiée de four (Fig. 5.2). Le nombre de subdivisions sur chaque axe est ici fixée à deux comme
pour un octree, mais ce chiffre est laissé à la discrétion de l’utilisateur lors de la construction
de la grille.

est exposé en annexe A). En particulier, on peut voir deux parois pour lesquelles nous avons
indiqué une température de 1900K. Elles correspondent dans notre modélisation grossière
aux positions des brûleurs dans le modèle de four dont il est inspiré [Boineau et al., 2002].

Le bilan monochromatique (Fig. 5.15) est dominé par l’échange avec la paroi basse plus
froide à 1100K du four. Lors du déplacement du point de mesure, il est modulé par la proxi-
mité de parois plus chaudes, et parfois plus proches. On voit ainsi que l’échange entre le point
et le système est plus faible dans les zones des brûleurs. Par contre, dans la zone d’étrangle-
ment intermédiaire l’échange est maximum non seulement car les parois environnantes sont
alors plus froides, mais également plus proches. Ce comportement se reproduit dans la zone
d’évacuation des fumées (côté des x grands, paroi jaune sur la figure 5.14).

Les sensibilités aux températures de parois (Fig. 5.16) dans ce cas monochromatique sont
uniquement fonction de l’angle solide sous lequel le point de mesure voit chaque paroi. En
particulier, la sensibilité à la température d’une paroi diminue de manière générale quand on
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Fig. 5.14 – Application de l’algorithme de suivi de rayon à un cas monochromatique :
évaluation du bilan monochromatique le long de l’axe x d’un four. On évalue en même
temps les sensibilités aux parois du four dont les températures sont indiquées sur la figure.

Fig. 5.15 – Bilan le long de l’axe du four.

s’éloigne de cette paroi pour devenir quasiment nulle quand le point de mesure est loin. Elle
ne s’annule vraiment dans un cas sans diffusion, ni réflexion que si la paroi n’est plus visible
directement du point de mesure, c’est à dire si aucun rayon tiré depuis le point de mesure
ne peut atteindre directement la paroi à la température de laquelle on évalue la sensibilité.
Nous avons introduit un motif répétitif dans la scène sous la forme des parois représentant
les deux brûleurs. Il est ainsi intéressant de constater que les sensibilités aux températures
de ces deux parois sont complètement similaires (Fig. 5.16), mais simplement décalées sur
l’axe des mesures.
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Fig. 5.16 – Sensibilités du bilan aux températures de parois.

5.6.3 Traitement d’un four issu d’une modélisation par AutoCad

Le four que nous représentons a été conçu pendant le travail de thèse de Yilmaz Kara
[Kara, 2003] à l’école des mines d’Albi-Carmaux. Ce travail permet de mettre en œuvre une
géométrie plus élaborée par rapport à l’exemple présenté précédemment. La représentation
du four sous AutoCad a été réalisée à partir des plans de conception originaux. Il est composé
d’une gaine qui a la forme d’un parallélépipède rectangle de dimensions suivantes :

– 2.9m sur l’axe x
– 0.36m sur l’axe y
– 0.294m sur l’axe z

ainsi que d’un brûleur dont la géométrie est complexe (Fig 5.17(a)). Le brûleur comprend une
partie cylindrique à laquelle sont rattachées deux plaques percées (Figs 5.17(b), et 5.17(c)).
C’est le brûleur qui fait toute la complexité géométrique de la scène, car il est formé par
100352 des 100376 polygones décrivant la géométrie de la gaine après conversion du fichier
AutoCad au format VRML. La partie cylindrique injecte du méthane dans la gaine. Un mé-
lange d’air et de COV provenant de la zone située à gauche du brûleur sur la figure 5.17, est
dirigé sur le brûleur par des plaques perpendiculaires à l’axe x faisant office de diaphragme
(la vitesse du mélange est alors accélérée). Il rencontre le méthane après être éventuellement
passé par les trous des plaques percées du brûleur (ceci permet d’étager la combustion et de
produire moins de NOx).

La figure 5.17(d) représente la grille que nous utilisons (5 subdivisions sur chaque axe,
et récursivité de profondeur 3) pour le calcul du terme source radiatif dans ce four. Nous
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sommes donc confrontés à un système dont la géométrie est très simple dans la plus grande
partie, mais présente une forte complexité en terme de nombre de facettes dans une zone de
volume réduite devant l’échelle du four.

De plus, nous avons introduit les paramètres physiques résultant de mesures sur le four
réel en conditions de fonctionnement. La figure 5.18 montre les profils de température intro-
duits comme paramètres d’entrée du calcul. Ils sont considérés comme ne présentant pas de
variation suivant l’axe z. Les profils de concentrations ne sont pas indiqués ici car nous ne
disposons par pour l’instant de données précises dans ce domaine. Nous pouvons néanmoins
indiquer que les espèces rayonnantes considérées ici sont H2O et CO2 en concentrations rela-
tivement homogènes sur des échelles de 30cm à 40cm et de l’ordre de 1% à 3% pour chacune
d’elles. Nous calculons alors le terme source radiatif volumique pour une série de points cen-
trés en z dans le système. Une première série montre l’évolution du terme source radiatif le
long de l’axe x pour y = 0.18m (centré en y) (Fig 5.19(a)). Le terme source radiatif volu-
mique diminue quand on s’éloigne de la zone du brûleur, qui est aussi la zone de formation
de la flamme et réchauffe donc le reste du milieu.

La deuxième série est faite suivant l’axe y pour x = 0.24m (proche du brûleur) (Fig
5.19(b)). Là encore, le terme source est plus fort quand le point de mesure est situé le plus
près du brûleur. Un fort échange net se produit également dans une zone située entre le
brûleur et les parois, où il y a une circulation de gaz frais (mélange air + COV).

Le nombre de rayons utilisés pour les calculs des termes sources de long de l’axe y est
de 100000 par point, pour un écart type allant de 0.5% à 2.4%. Les temps de calcul asso-
ciés varient entre 30s et 50s sur un pentium 4, 1.7GHz. Un calcul fait sur une maille avec
notre code 2D cylindrique (basé sur une programmation classique) pour le même nombre
de rayons, conduit à des temps de calcul de l’ordre de 20s sur la même machine. A titre de
comparaison, le cylindre utilisé dans ce cas par le code 2D est composé de 18 éléments de
surface, alors que la gaine du four d’incinération de COV traitée par le code 3D contient
plus de 100000 éléments géométriques. Cela peut donner une idée des bénéfices, en termes de
temps de calcul, d’une approche de synthèse d’images pour l’évaluation des termes sources
radiatifs dans des systèmes de combustion réels.

Pour les calculs de termes sources le long de l’axe x, nous gardons le même nombre de
tirages. Les écart types associés restent faibles tant que le point de calcul est situé près du
brûleur (ils sont inférieurs à 1% jusqu’à x = 1.125m). Puis ils augmentent progressivement
jusqu’à atteindre 27% pour le dernier point de calcul (x = 2.71m). Ceci peut être expliqué
par le fait que toute la complexité géométrique est très localisée, et se trouve dans la zone du
brûleur. Alors, pour un point de calcul éloigné de cette zone (ce qui a été le cas des points
représentés sur la figure 5.19(a) aux valeurs de x les plus élevées), la plus grande partie
des rayons est dirigée vers les zones les plus simples au point de vue géométrique de cette
gaine d’incinération de COV de forme alongée. A l’inverse, relativement peu de rayons ont
atteint la zone du brûleur. Ainsi, la zone la plus complexe est mal échantillonnée pour des
points de calcul éloignés. Un meilleur échantillonnage de cette zone pourrait résulter, sans
augmentation du nombre de tirages (et donc sans augmentation du temps de calcul), d’un
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choix directionnel d’émission des rayons, au moyen par exemple d’une fonction de phase du
type de celles utilisées dans les problèmes de diffusion.
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x

y

(a) Modélisation d’un four d’incinération de
COV (représentation filaire de l’ensemble de
l’ensemble de la gaine).

(b) Zoom sur la zone du brûleur du four d’in-
cinération de COV.

(c) Zoom sur la zone du brûleur du four d’in-
cinération de COV. Il est constitué par un
élément cylindrique et deux plaques percées
de trous.

(d) Construction de la grille d’accélération du
suivi des rayons.

Fig. 5.17 – Modélisation d’un four d’incinération de COV et construction de la grille d’ac-
célération de suivi des rayons. Le maillage se raffine dans les zones de forte complexité géo-
métrique et de forts gradients de températures et de concentrations. Ces zones sont situées
à proximité du brûleur.
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Fig. 5.18 – Champ de températures du four d’incinération de COV .
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(a) Termes sources radiatifs suivant l’axe x
du four. Résultats de simulation avec 100000
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(b) Termes sources radiatifs suivant l’axe y
du four. Résultats de simulation avec 100000
rayons lancés par point de calcul.

Fig. 5.19 – Exemple de calculs de termes sources radiatifs dans un four issu d’une modéli-
sation par AutoCad.
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Conclusion

Il existe pour le transfert radiatif des solutions de références auxquelles on peut confron-
ter les différents modèles utilisés pour résoudre les problèmes de transfert de chaleur par
rayonnement. Ces solutions de référence sont calculées pour des configurations simples sur
le plan géométrique et/ou spectral. Lorsqu’on est confronté au choix d’une méthode pour
l’appliquer à une enceinte de combustion réelle, la démarche usuelle consiste à déterminer
d’abord quelle est la configuration la plus proche des conditions de l’enceinte réelle, et pour
laquelle on possède (ou pour laquelle on peut produire) une solution de référence. Alors les
différents modèles et méthodes sont testés sur cette solution de référence. Celui qui donne les
meilleurs résultats est appliqué directement au cas réel plus complexe. Il y a pourtant une
grosse inconnue sur les effets de l’augmentation de la complexité sur la validité des résultats
ainsi obtenus, mais il n’existe pas pour l’heure, à notre connaissance, d’outil capable de ré-
pondre efficacement au problème de la production de solutions de contrôle sur des géométries
telles que celles auquel l’ingénieur est aujourd’hui confronté en phase de dimensionnement,
ne serait-ce qu’en quelques points du système.

Face à ce constat, lié à la combinaison de complexités géométriques et spectrales nous
avons retenu l’option suivante : celle d’une méthode statistique comme la méthode de Monte
Carlo dont l’efficacité relative croit avec la complexité par rapport aux solutions détermi-
nistes. Sur cette base nous avons conçu un outil en intégrant, d’une part des développements
récents sur la formulation de l’équation de transfert radiatif et l’optimisation des tirages
aléatoires, et d’autre part des techniques inspirées des recherches en synthèse d’images en
ce qui concerne la représentation de la géométrie et l’optimisation du suivi des rayons lumi-
neux. Cet outil a pour but de répondre au problème précédemment évoqué : la production de
solutions de référence en quelques points d’un système réel faisant intervenir une géométrie
complexe et des spectres de gaz. Ses performances lui permettent d’être utilisé en parallèle
des solveurs radiatifs usuels plus rapides. Il s’agit au final d’aller vers une alternative à la
démarche usuelle de validation des méthodes approchées sur des configurations académiques
seulement, suivie d’une mise en œuvre immédiate en situation réelle.

Dans cette logique, nous n’avons pas pour l’instant porté notre effort sur les phénomènes
de diffusion du rayonnement, dont la prise en compte est sans doute nécessaire pour de
nombreux procédés à haute température (présence de grosses particules volantes dans des

139
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incinérateurs, synthèse de nano-particules, etc), mais des travaux sont en cours sur l’étude
de ces phénomènes au sein de nos équipes de recherches (thèse de Vincent Eymet sur les
phénomènes de diffusions atmosphériques, thèse de Maxime Roger sur la diffusion dans les
géométries complexes et le développement des sensibilités à la géométries, thèse de Cyril
Caliot sur les phénomènes de diffusion par des particules métalliques).

Nous avons évoqué à plusieurs reprises les possibilités offertes par le choix de la méthode
de Monte Carlo en termes d’analyse et de dimensionnement à travers le calcul systématique
de matrices de sensibilités. Ce point a été illustré sur un modèle de four, sans insister sur les
possibilités d’exploitation de ce potentiel dans une démarche d’optimisation des systèmes.
C’est un domaine d’exploitation de la méthode de Monte Carlo qui présente un intérêt réel
et constitue un apport supplémentaire à la production de points de contrôle. Il reste sans
doute beaucoup de travail à fournir dans ce domaine, notamment dans la détermination des
sensibilités pertinentes à calculer et dans l’interprétation de celles-ci. Cette voie ouvre des
questions pour l’instant à l’état embryonnaire sur l’estimation des sensibilités à la géométrie,
dont on voit aisément les intérêts ; par exemple : comment déplacer une paroi pour obtenir
un flux pariétal donné, ou comment déplacer une source de lumière pour avoir un éclairement
donné en un point précis ? Ce type de démarche est prometteur et pourrait constituer une
étape consécutive à mon travail de thèse.

De plus, une question logique s’impose maintenant : celle d’utiliser les mêmes techniques
d’optimisation pour aborder directement le problème du couplage du transfert radiatif à la
mécanique des fluides, ainsi qu’aux autres phénomènes présents dans les enceintes de com-
bustion. Le pas à franchir est important entre le calcul de solutions en quelques points, et
l’évaluation du terme source radiatif en chaque nœud d’un maillage de mécanique des fluides.
La solution se trouve certainement dans la possibilité de calculs de sensibilités (voire de déri-
vées aux ordres supérieurs), ainsi que dans le découplage des grilles de calcul pour la CFD et
pour le rayonnement, ce second point posant malheureusement des questions d’interpolations
qui restent difficiles à aborder. Ce travail ne pourra s’effectuer qu’en collaboration étroite
avec des spécialistes de mécanique des fluides.

Enfin, et par manque de temps, nous n’avons pas réalisé d’images de synthèse infra-
rouge incluant des spectres de gaz. C’est pourtant une possibilité quasi-immédiate de notre
outil dans la mesure où il reprend des algorithmes de synthèse d’images. Cela sera fait
prochainement, peut-être en testant les possibilités de parallélisation du calcul. Cela offrira
en particulier la possibilité d’obtenir un résultat de type caméra infra-rouge tel que ceux
utilisés dans certaines méthodes de diagnostic et de contrôle automatique de procédés.
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1.8 Démarche générale de la thèse. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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dans une base RVB. Cette image a été produite par Luc Claustre de l’équipe
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4.2 Tirage d’un point d’émission sur une surface : cas du rectangle . . . . . . . . 92
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computer graphics. PhD thesis, Université Catholique de Louvin - Belgique, 1996.

E.R.G. Eckert and R.M. Drake. Heat and Mass Transfer. McGraw-Hill, New York, 1959.

V. Eymet, A.M. Brasil, M ElHafi, T.L. Farias, and P.J. Coelho. Numerical investigation
of the effect of soot aggregation on the radiative properties in the infrared region and
radiative heat transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 74 :
697–718, 2002.

J.T. Farmer. Improved Algorithms for Monte Carlo Analysis of Radiative Heat Transfer in
Complex Participating Media. PhD thesis, The University of Texas at Austin, 1995.

W.A. Fiveland. Discrete-ordinates solutions of the radiative transport equation for rectan-
gular enclosures. Journal of Heat Transfer, 106 :699–706, 1984.

W.A. Fiveland. D.o.m.for radiative heat transferin isotropicallyand anisotropically scattering
media. Journal of Heat Transfer, 109 :809–812, 1987.

W.A. Fiveland. Three-dimensional radiative heat transfer solutions by the discrete-ordinates
method. J. Thermophysics, 2(4) :309–316, 1988.

W.A. Fiveland and A.S. Jamaluddin. Three-dimensional spectral radiative heat transfer
solutionsby the discrete-ordinates method. J.Thermophysics, 5(3) :335–339, 1991.

W.A. Fiveland and J.P. Jessee. Comparison of dom formulations for radiative heat transfer
in multidimensional geometries. Journal of Thermophysics and Heat Transfer, 9(1) :47–54,
1995.



148 Calcul du transfert radiatif en géométrie complexe
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F. Pérez, I. Martin, and X. Pueyo. Acceleration of monte carlo path tracing in the presence of
anisotropic scattering media. Technical report, Institut d’informàtica i aplicacions, Girona,
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Annexe A

Sensibilités

Nous voudrions ici souligner une conséquence heureuse du choix d’intégration de l’équa-
tion de transfert radiatif par la méthode de Monte Carlo : la possibilité de calculer sans
tirage supplémentaire les sensibilités des grandeurs obtenues aux paramètres physiques ca-
ractérisant le système [de Lataillade et al., 2002a]. Dans le cas où la densité de probabilité
p(x) utilisée est indépendante de la variable de dérivation y, le résultat est immédiat :

I =

∫

D

f(x; y)p(x)dx ⇒ ∂I

∂y
=

∂

∂y

∫

D

f(x; y)p(x)dx

∂I

∂y
=

∫

D

(
∂f(x; y)

∂y
p(x) + f(x; y)

∂p(x)

∂y
︸ ︷︷ ︸

0

)

dx

On a alors simplement :

∂I

∂y
≈ 1

N

N∑

i=1

∂ωi

∂y

où ωi = f(xi, y).

La dérivée de la somme des intégrants est la somme des dérivées des intégrants. Le cas
n’est plus aussi simple si la fonction de densité de probabilité dépend aussi du paramètre de
dérivation p(x) = p(x; y). Dans ce cas il faut faire intervenir un terme correctif sous la forme
suivante :

∂I

∂y
=

∫

D

(
∂f(x; y)

∂y
p(x) + f(x; y)

∂p(x)

∂y

)

dx =

∫

D

(

∂yf(x; y) + f(x; y)
∂yp(x; y)

p(x; y)

)

p(x; y)dx

∂I

∂y
≈ 1

N

N∑

i=1

(
∂ωi

∂y
+ ωi

∂yp(xi; y)

p(xi; y)

)

Dans le type de configuration que nous traitons, et dans la mesure où nous ne considérons
pas de milieu diffusant dans le cadre de ce travail, nous nous intéressons principalement aux
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sensibilités aux paramètres physiques d’entrée : la température des mailles, et les concentra-
tions d’espèces rayonnantes.

Sensibilité à la température

En première approximation, nous considérons que toute la dépendance en température
des termes d’échanges nets vient de celle de la luminance noire. Cela signifie en particulier
que nous négligeons les effets des variations de température sur les paramètre κ et φ du
modèle de bandes étroites. Lors de chaque échange, le calcul de la sensibilité à la tempéra-
ture ne coûte alors pas cher en terme de temps de calcul. En effet, les termes d’échange (éq.
4.24) comportent tous une partie énergétique. Celle-ci est seulement la diffférence de lumi-
nance noire ∆L entre les points d’échange. Calculer la sensibilité à la température revient à
remplacer ∆L par ∂T ∆L.



Annexe B

Réflexions aux parois

La prise en compte des réflexions aux parois dans le cas d’un suivi de rayon par la
méthode de Monte Carlo se fait simplement en prenant le symétrique du rayon arrivant dans
le cas d’une surface spéculaire, et en retirant une direction sinon [Dutre, 1996]. Il est alors
nécessaire d’introduire un critère d’arrêt du suivi des rayons. On commence fixer une précision
E(W/m3) sur le résultat pour l’ensemble des mailles. Puis nous calculons la précision sur
l’échange dans chaque maille i :

εi = E.Vi

Si on isole la partie énergétique, on peut écrire l’échange entre les mailles i et j comme :

ϕVi↔Vj
= ξij.

[
Lη,b(~rj) − Lη,b(~ri)

]

Comme ϕVi↔Vj
est le résultat de N tirages, un critère d’arrêt est :

ξij.
∣
∣
[
Lη,b(~rj) − Lη,b(~ri)

]∣
∣ <

εi

N

Ceci n’est vrai qu’en considérant l’échange entre les mailles i et j. Alors que l’objectif
est d’obtenir un critère pour les rayons de toutes les mailles, quels que soientt les échanges
calculés. On considère donc les conditions les plus strictes :

ξij <
εmin

N.∆Lmax

Où ∆Lmax est la différence maximum de luminance noire dans le système, et εmin est le
plus petit des εi, soit εmin = E.Vmin avec Vmin qui est le plus petit volume entre toutes les
mailles.
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Annexe C

Description d’un four de type
industriel

#VRML V2 . 0 ut f 8
# Desc r ip t i on d ’ un four de type i n d u s t r i e l

PMShape {
p r o f i l e PMProfile {

po in t s [ 1 . 1 . 1 . ]
va lue s [ 1500 . 0 ]
name ” temperature ”

}
}
PMShape {

p r o f i l e PMProfile {
po in t s [ 1 . 1 . 1 .
]
va lue s [ 0 . 1
]
name ”fmh2o ”

}
}

Viewpoint {
# po s i t i o n 11 −8 −12.5

p o s i t i o n 5 −8 −12.5
o r i e n t a t i o n 0 . 9 88323 0 . 0 642171 0 . 1 38182 2 . 3 8433
f i e ldOfView 0 .785398

}
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#TOUR
#Face du bas
DEF F0 T1100 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 0 . 0 0 . 0 0 . 0 , 1 6 . 0 0 . 0 0 . 0 , 1 6 . 0 2 . 0 0 . 0 , 0 . 0 2 . 0 0 . 0 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face a r r i e r e bas
DEF F1 T1400 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 0 . 0 0 . 0 0 . 0 , 0 . 0 0 . 0 1 . 2 , 0 . 0 2 . 0 1 . 2 , 0 . 0 2 . 0 0 . 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face a r r i e r e haut
DEF F29 T1900 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 0 . 0 0 . 0 1 . 2 , 0 . 0 0 . 0 1 . 8 , 0 . 0 2 . 0 1 . 8 , 0 . 0 2 . 0 1 . 2 ]
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}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 0 0
}

}
}

#1ere f a c e du haut
DEF F2 T1900 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 0 . 0 0 . 0 1 . 8 0 , 2 . 0 0 . 0 1 . 8 0 , 2 . 0 2 . 0 1 . 8 0 , 0 . 0 2 . 0 1 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#1ere f a c e descendante
DEF F3 T1500 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 2 . 0 0 . 0 1 . 8 0 , 4 . 0 0 . 0 0 . 8 0 , 4 . 0 2 . 0 0 . 8 0 , 2 . 0 2 . 0 1 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
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appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Part i e de l i a i s o n , f a c e du haut
DEF F4 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 4 . 0 0 . 0 0 . 8 0 , 6 . 2 5 0 . 0 0 . 8 0 , 6 . 2 5 2 . 0 0 . 8 0 , 4 . 0 2 . 0 0 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face a r r i e r e deuxieme pa r t i e /bas
DEF F5 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 6 . 2 5 0 . 0 0 . 8 0 , 6 . 2 5 0 . 0 1 . 2 0 , 6 . 2 5 2 . 0 1 . 2 0 , 6 . 2 5 2 . 0 0 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance

{
mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}



Annexe C – Description d’un four de type industriel 165

}
}

#Face a r r i e r e deuxieme pa r t i e /haut
DEF F30 T1900 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 6 . 2 5 0 . 0 1 . 2 0 , 6 . 2 5 0 . 0 1 . 8 0 , 6 . 2 5 2 . 0 1 . 8 0 , 6 . 2 5 2 . 0 1 . 2 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance

{
mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 0 0
}

}
}

#deuxieme pa r t i e f a c e du haut
DEF F6 T1900 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 6 . 2 5 0 . 0 1 . 8 0 , 9 . 2 5 0 . 0 1 . 8 0 , 9 . 2 5 2 . 0 1 . 8 0 , 6 . 2 5 2 . 0 1 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#deuxieme f a c e descendante
DEF F7 T1600 E0 . 5 Shape {

geometry IndexedFaceSet {
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coord Coordinate {
po int [ 9 . 2 5 0 . 0 1 . 8 0 , 1 1 . 2 5 0 . 0 0 . 8 0 , 1 1 . 2 5 2 . 0 0 . 8 0 , 9 . 2 5 2 . 0 1 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#deuxieme pa r t i e de l i a i s o n
DEF F8 T1500 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 1 . 2 5 0 . 0 0 . 8 0 , 1 3 . 7 5 0 . 0 0 . 8 0 , 1 3 . 7 5 2 . 0 0 . 8 0 , 1 1 . 2 5 2 . 0 0 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance

{
mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face montante cheminee
DEF F9 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 3 . 7 5 0 . 0 0 . 8 0 , 1 5 0 . 0 2 . 8 0 , 1 5 2 . 0 2 . 8 0 , 1 3 . 7 5 2 . 0 0 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE
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}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face a r r i e r e cheminee
DEF F10 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 5 0 . 0 2 . 8 0 , 1 5 0 . 0 5 . 0 , 1 5 2 . 0 5 . 0 , 1 5 2 . 0 2 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face du haut cheminee
DEF F11 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 5 0 . 0 5 . 0 , 1 6 0 . 0 5 . 0 , 1 6 2 . 0 5 . 0 , 1 5 2 . 0 5 . 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
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}
}

}

#Face avant cheminee
DEF F12 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 6 0 . 0 5 . 0 , 1 6 0 . 0 0 . 0 , 1 6 2 . 0 0 . 0 , 1 6 2 . 0 5 . 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#FACE ARRIERE
#Face opposee 1 e r e p a r t i e
DEF F13 T1400 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 0 . 0 2 . 0 0 . 0 , 2 . 0 2 . 0 0 . 0 , 2 . 0 2 . 0 1 . 8 , 0 . 0 2 . 0 1 . 8 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face opposee descendante 1 e r e p a r t i e
DEF F14 T1400 E0 . 5 Shape {
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geometry IndexedFaceSet {
coord Coordinate {
po int [ 2 . 0 2 . 0 0 . 0 , 4 . 0 2 . 0 0 . 0 , 4 . 0 2 . 0 0 . 8 , 2 . 0 2 . 0 1 . 8 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face opposee 1 e r e l i a i s o n
DEF F15 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 4 . 0 2 . 0 0 . 0 , 6 . 2 5 2 . 0 0 . 0 , 6 . 2 5 2 . 0 0 . 8 , 4 . 0 2 . 0 0 . 8 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face opposee 2 eme pa r t i e
DEF F16 T1400 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 6 . 2 5 2 . 0 0 . 0 , 9 . 2 5 2 . 0 0 . 0 , 9 . 2 5 2 . 0 1 . 8 0 , 6 . 2 5 2 . 0 1 . 8 0 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE
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}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face descendante 2 eme pa r t i e
DEF F17 T1500 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 9 . 2 5 2 . 0 0 . 0 , 1 1 . 2 5 2 . 0 0 . 0 , 1 1 . 2 5 2 . 0 0 . 8 0 , 9 . 2 5 2 . 0 1 . 8 0 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face opposee 2 eme l i a i s o n
DEF F18 T1500 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 1 . 2 5 2 . 0 0 . 0 , 1 3 . 7 5 2 . 0 0 . 0 , 1 3 . 7 5 2 . 0 0 . 8 0 , 1 1 . 2 5 2 . 0 0 . 8 0 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}
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}
}

#Face opposee montante cheminee
DEF F19 T1400 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 3 . 7 5 2 . 0 0 . 0 , 1 5 . 0 2 . 0 0 . 0 , 1 5 . 0 2 . 0 2 . 8 0 , 1 3 . 7 5 2 . 0 0 . 8 0 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face opposee cheminee
DEF F20 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 5 . 0 2 . 0 0 . 0 , 1 6 . 0 2 . 0 0 . 0 , 1 6 . 0 2 . 0 5 . 0 , 1 5 . 0 2 . 0 5 . 0 ]
}
coordIndex [ 0 1 2 3 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#FACES AVANT
#Face avant 1 e r e p a r t i e
DEF F21 T1400 E0 . 5 Shape {
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geometry IndexedFaceSet {
coord Coordinate {
po int [ 0 . 0 0 . 0 0 . 0 , 2 . 0 0 . 0 0 . 0 , 2 . 0 0 . 0 1 . 8 , 0 . 0 0 . 0 1 . 8 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face avant descendante 1 e r e p a r t i e
DEF F22 T1400 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 2 . 0 0 . 0 0 . 0 , 4 . 0 0 . 0 0 . 0 , 4 . 0 0 . 0 0 . 8 , 2 . 0 0 . 0 1 . 8 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}

}

#Face avant 1 e r e l i a i s o n
DEF F23 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 4 . 0 0 . 0 0 . 0 , 6 . 2 5 0 . 0 0 . 0 , 6 . 2 5 0 . 0 0 . 8 , 4 . 0 0 . 0 0 . 8 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
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s o l i d FALSE
}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face avant 2 eme pa r t i e
DEF F24 T1400 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 6 . 2 5 0 . 0 0 . 0 , 9 . 2 5 0 . 0 0 . 0 , 9 . 2 5 0 . 0 1 . 8 0 , 6 . 2 5 0 . 0 1 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face avant descendante 2 eme pa r t i e
DEF F25 T1500 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 9 . 2 5 0 . 0 0 . 0 , 1 1 . 2 5 0 . 0 0 . 0 , 1 1 . 2 5 0 . 0 0 . 8 0 , 9 . 2 5 0 . 0 1 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
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}
}

}

#Face avant 2 eme l i a i s o n
DEF F26 T1500 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 1 . 2 5 0 . 0 0 . 0 , 1 3 . 7 5 0 . 0 0 . 0 , 1 3 . 7 5 0 . 0 0 . 8 0 , 1 1 . 2 5 0 . 0 0 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face avant montante cheminee
DEF F27 T1400 E0 . 5 Shape {

geometry IndexedFaceSet {
coord Coordinate {
po int [ 1 3 . 7 5 0 . 0 0 . 0 , 1 5 . 0 0 . 0 0 . 0 , 1 5 . 0 0 . 0 2 . 8 0 , 1 3 . 7 5 0 . 0 0 . 8 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}

#Face avant cheminee
DEF F28 T1300 E0 . 5 Shape {

geometry IndexedFaceSet {
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coord Coordinate {
po int [ 1 5 . 0 0 . 0 0 . 0 , 1 6 . 0 0 . 0 0 . 0 , 1 6 . 0 0 . 0 5 . 0 , 1 5 . 0 0 . 0 5 . 0 ]
}
coordIndex [ 0 3 2 1 − 1 ]
ccw TRUE
s o l i d FALSE

}
appearance Appearance
{

mate r i a l Mater ia l
{

d i f f u s eCo l o r 1 1 1
}

}
}


