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Introduction

La compréhension des mécanismes de transitions de pha&einevgrande importance dans
différents domaines des sciences physiques, que ce sailelaadre d’études fondamentales ou
dans un cadre plus technologique. Nous nous intéressorstiuper ici au changement de phase
liquide-vapeur qui met en jeu d'importants échanges d@giresous forme de chaleur. Cette pro-
priété peut étre employée pour extraire de I'énergie dasszdees a forte densité de puissance
dégagée, par exemple par des composants électroniquasgroicesseurs, électroniques embar-
guées dans les satellites ...). De tels dispositifs soatldéjement utilisés, d’autres sont en cours
de développement (caloducs, micro-caloducs, micro-lesutipbhasiques a pompage capillaire ...).
Sans entrer dans tous les détails, le principe de fonctinenede I'ensemble de ces dispositifs
de refroidissement a changement de phase peut se déconepogeatre étapes : extraction de
la chaleur par évaporation d’un fluide caloporteur au seim @échangeur au contact de I'objet
a refroidir (source chaude) - acheminement du fluide sousdorapeur vers une source froide
(air ambiant dans le cas d’applications terrestres ou Eanneayonnant dans le cas spatial) -
condensation du fluide au sein d’'un échangeur au contactstaulae froide - acheminement du
fluide sous forme liquide vers la source chaude. Bien queioeipe de fonctionnement semble
simple, la mise au point de ce type de dispositifs nécessgeampréhension fine des écoulements
avec changement de phase. Pour illustrer ces besoins, ooifgEd’exemple de la condensation
qui se produit dans un tube de diamétre inférieur au millimelans le cas des micro-boucles
diphasiques. Le fluide sous forme de vapeur pénétre danscte+cvndenseur (au contact de la
source froide) ou la condensation se produit par la créakominces films liquides le long de la
paroi dans lesquels d’'importants transferts de chaleenii@nnent (de I'ordre d@00 W.cm=2).
Cet exemple, bien que simplifié, met en évidence plusiewlages entre différentes physiques :
écoulements en micro-tube pour lesquels la capillarité jouréle, changement de phase liquide-
vapeur et transferts thermiques de forte densité de puiesan

Dans cette these nous nous intéressons également a I'agréde particules colloidales en
suspension. Le comportement des suspensions colloidaigseuvent se définir comme une dis-
persion dans un solvant de particules ou de macromolécuies thille inférieure au micrométre,
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2 Introduction

est un enjeu de I'industrie pharmaceutique et agroalinirentan peut citer I'exemple des procédés
d’ultrafiltration membranaire du lait qui est une suspemsiolloidale complexe dont le solvant est
de I'eau et qui contient principalement des globules gradadtose, des bactéries, des protéines
solubles et bien d’autres macromolécules. La filtrationadlt) ui se fait au travers de membranes
dont la taille des pores varie en fonction du composé a segaeanet d’épurer le lait de son
contenu bactérien ou bien d’ajuster le taux de chaque caanpa$in de fournir industriellement
un produit de qualité constante. Ce type de procédé menibegreut étre le siege d’agrégation
de particules colloidales lorsque la concentration ddquaess croit au niveau de la surface de la
membrane. Cette agrégation soudaine, qui peut étre coésidémme une transition de phase,
forme un gel a la surface de la membrane qui va modifier, entitonde la structure formée,
les conditions d’écoulements et les performances de latfdtr. Contrairement aux écoulements
liquide-vapeur, les effets énergétiques ne jouent pas léepdur ce type de transition de phase.
La complexité, dans ce cas, apparait par le nombre de phémesnpdysiques du méme niveau
d’'importance : couplage entre le transport des particul¢g@ulement du solvant, interactions
entre particules et interactions particules-membrane.

Ces deux exemples d’écoulements de “fluides complexestiéat les enjeux et les besoins
meéthodologiques associés a la compréhension et a I'anddylsgphysique des transitions de phase
gui se manifestent également dans d’autres disciplinesst@ cas notamment en physique des
plasmas hors d’équilibre ou de nombreuses guestions testeartes en ce qui concerne I'émer-
gence de structures spatiales a I'échelle du systeme & ganteractions électrons/ions/neutres
dans des conditions incompatibles avec I'utilisation deléds macroscopiques de type fluidique.
Un autre exemple est la biologie dont I'un des sujets d’éaaleel est 'analyse des phénomeénes
d’auto-organisation, de morphogénese et plus génératetheeromportements collectifs a diffé-
rentes échelles du vivant (vaisseaux sanguins, bactérsestes, bancs de poissons ...). Les ap-
plications plasma et biologie ne seront plus mentionnérs Baprésent document mais elles ont
fait partie de notre environnement de recherche et ont ddhgencé indirectement certaines des
exigences d’approfondissement théorique qui ont présadita thése.

Pour I'étude et la compréhension de tels “systémes comgleraractérisés par un grand
nombre de degrés de liberté, ou les transitions de phaskeritsd’effets collectifs, la modéli-
sation la plus naturelle est la description macroscopiQueelle-ci n’est pas toujours adaptée ou
suffisante. C’est le cas tres clairement pour des situatidmde I'équilibre, par exemple, en méca-
nique des fluides, pour les écoulements de gaz raréfiés ocagements dans des géométries de
faibles dimensions (micro ou nanofluidique). Cependanmersque les problématiques abor-
dées sont des situations proches de I'équilibre, la matiéis macroscopique peut étre difficile a
mener totalement car énormément de ce qui se passe a l&dueflystéme entier nécessite une



compréhension détaillée de ce qui se passe a petite égh@ledes parois, dans les interfaces etc
...). C’est le cas par exemple des transferts thermiques ldarfilms minces de liquides ou bien
les formes des structures résultant de I'agrégation ddagpias colloidales sur une membrane.
Ainsi, méme lorsque la description macroscopique estrparte dans la quasi-totalité du systeme,
on est communément amené a faire appel a des corrélationsgralie compte de phénomeénes
a petite échelle. Aujourd’hui, de plus en plus de travaux swenés pour aborder spécifiquement
cette question (en particulier avec la dynamique molém)laifin de comprendre les mécanismes
se produisant a petite échelle et d’alimenter ainsi les tesdgacroscopiques. D’autres difficultés
lies a la modélisation macroscopique concernent la miseewre en terme de simulations nu-
mériques. Ces difficultés se manifestent par exemple paigdeulements diphasiques ou il est
nécessaire de suivre les interfaces liquide-vapeur etrardique de la ligne triple.

Dans ce contexte ou les besoins concernant la compréheatigimyulements avec transitions
de phase sont importants et ou la modélisation macroscepitjeint des limites, il est intéressant
d’explorer les possibilités d’'une description mésoscogidPour les situations de hors d’équilibre
lointain de nombreux travaux ont été menés et ont permis @’@ma maturité un certain nombre
de techniques numériques. Au dela de ces aspects, le poimedmrrespondant nous parait sus-
ceptible d’éclairer des questions d’interprétations s, en particulier en ce qui concerne l'in-
fluence des phénoménes de petite échelle sur I'évolutiogstarse entier.

Trois compétences existantes ont permis d’effectuer gaitidans le cadre d’une collaboration
entre deux laboratoires. D’une part, I'ex-LaboratoirentEgyétiqgue composé d’une équipe ayant
acquis un savoir-faire sur la modélisation mésoscopique ges situations de hors d’équilibre
lointain dans le cadre de problématiques en transferttiidiaen biologie, et d’'une équipe me-
nant des études expérimentales et théoriques sur le changdm phase liquide-vapeur. D’autre
part, le Laboratoire de Génie Chimique ou M. Clifton a acauis expérience sur les méthodes
Boltzmann-sur-Réseau dans le cadre d’études d’écoulsreargéométrie complexe. C’est dans
ce contexte que ce travail a pris naissance et s’est naoretit orienté dans un premier temps vers
un objectif d’appropriation et de clarification des consepwec en particulier le besoin d’identi-
fier a toutes les étapes, la part de I'édifice théorique raterrgoureusement d’une description
mésoscopique et pouvant donc conserver une validité awddalamaine de validité des modéles
macroscopiques. En s’appuyant sur cette compréhensisrjéeloppements originaux ont pu
étre meneés allant jusqu’a des propositions effectives pendre compte de phénoménes de tran-
sition de phase avec prise en compte des effets thermiques.

Ce mémoire s’organise en cing chapitres. Les chapitresll sbht des chapitres de mise au

2aujourd’hui appartenant a I'équipe Groupe de Recherchenergétique, Plasma et Hors d’Equilibre du LAbora-
toire PLAsma et Conversion d’Energie
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point incluant a la fois un rappel des bases théoriques ebunt gee vue personnel sur les concepts
physiques employés dans ce travail. Les trois autres chagitésentent des travaux de modélisa-
tion originaux de cette these pour différents types d’éamants avec ou sans transferts thermiques
et avec ou sans changement de phase. Le découpage détadlsiegant :

e Le chapitre | rappelle les concepts et les hypotheses &esoaila modélisation cinétique
des fluides. Le termmésoscopiqueel qu’il est utilisé tout au long de ce travail ainsi que
tous les concepts liés a ce type de modélisation sont défin@@mentés dans ce chapitre.
Nous présentons une démonstration de I'équation de Bottaraapartir d’'un bilan dans
I'espace des phases. Les étapes de la démonstration adediéiquation de Liouville et de
la hiérarchie BBGKY sont également présentées. Enfin, Isgugesde la description méso-
scopique a la description macroscopique est exposeé er. d&tapassage est un élément
important de tout le travail de modélisation présenté dasshapitres suivants.

¢ Dans le deuxieme chapitre, aprés un historique de la métolttamann-sur-Réseau et une
revue non-exhaustive des modeles existants, nous refrandravail présenté par He et Luo
en 1997 aboutissant & la conclusion que certains schémas BoltzsarRéseau peuvent
étre rigoureusement regardés comme des discrétisatidigipares de I'équation de Boltz-
mann. Ce point de vue a joué un role essentiel dans notraltravaous a conduit a une
proposition originale concernant la simulation d’écoutens gazeux anisothermes (section
[1.3) et il a été la base de la méthodologie présentée en fiméde tpour la simulation d’écou-
lements diphasiques anisothermes.

e Le troisieme chapitre ouvre la question de la modélisaties ghénomeénes de transition
de phase. Nous rapellons tout d’abord les bases de I'émpuifitermodynamique d’'un mé-
lange liquide-vapeur. On introduit également le modélstdiiface liquide-vapeur de van der
Waals qui permet de faire une description thermodynamiquérmmue d’une interface. Dans
une deuxieme partie nous présentons un modele mésoscdpiguition de Boltzmann-
Enskog) pour les fluides non-idéaux ainsi que les équatiawsaacopiques relatives a ce
modele. Ce modéle mésoscopique, les équations macrosespgrrespondantes, ainsi que
le modéle thermodynamique d’interface de van der Waalssée bases physiques aux
travaux présentés dans les deux derniers chapitres.

e Le chapitre IV présente un travail de modélisation pour lesuements de suspensions
colloidales avec agrégation des particules colloidalesnbdele proposé repose sur le fait
gue le colloide peut étre considéré comme un fluide non-al&al une équation d’état reliant
la pression osmotique a la fraction volumique de colloidan®cette analogie la phase
“liquide” du colloide correspond aux domaines ou les paltis sont agrégées. Ainsi, pour
ce type d’écoulements ou les effets thermiques peuvennétgiigés, nous proposons un
modele a deux fluides pour lequel le fluide global est décriupamodéle Boltzmann-sur-



Réseau pour écoulements isothermes et incompressibledleidie colloide est décrit par
un schéma Boltzmann-sur-Réseau pour écoulement isotteratechangement de phase.
Compte tenue de I'absence d’effets thermiques, nousarnsigpour les deux fluides, des
modeles issus de la littérature.

Enfin le dernier chapitre présente un travail plus explam@tsur la modélisation et la si-
mulation d’écoulements liquide-vapeur avec changememhdse et prise en compte des
effets thermiques. Nous proposons un schéma BoltzmanRé&sgau qui est obtenu par dis-
crétisation de I'équation de Boltzmann-Enskog (modeleaséspique pour fluide non-idéal
présenté au chapitre Ill). Cette proposition découle deskenble des concepts mésoscopi-
gues présentés au chapitre |, de I'analyse physique dé&alks interfaces liquide-vapeur
présentée au chapitre Il et de la démarche méthodologioyrogée au chapitre Il pour
aborder les écoulements anisothermes.






Chapitre |

Modélisation cinétique des fluides, equation
de Boltzmann

Ce chapitre introductif a pour objectif de présenter lesamst essentielles de modélisation
cinétique des fluides que nous utiliserons tout au long de aeustrit. En aucun cas il ne pré-
tend a I'exhaustivité des démonstrations mais permet deetame vision générale de I'approche
cinétique pour la description des gaz dilués. Nous ess@atans un premier temps de présenter
I’équation de Boltzmann a partir de points de vue sensibhiéérents, de facon a éclairer d’'une
part le point de vue strictement mésoscopique et d'autitdgppassage de la vision microscopique
a la vision mésoscopique. Nous discuterons dans une septiade les propriétés d’évolution
vers I'équilibre relatif a cette description, ce qui nousara a présenter différents modeles pour
rendre compte des effets collisionnels. La derniere pauies’attache a décrire le passage des
éguations cinétiques aux équations macroscopiques esinirimpportant de I'édifice et sera pour
toute la suite un paragraphe de référence. Nous reportocisaguitre Ill la description cinétique
pour les fluides non-idéaux.

|.1 La description mésoscopique

L'équation de Boltzmann est I'équation d’évolution de lansiée monoparticulairg (r, v, t).
Cette équation a été dérivée par Ludwig Boltzmanri & pour décrire un gaz dilué classique
de particules identiques de masse Il est important de noter que cette équation qui s’attache
a décrire des situations de non-équilibre (y compris Iaita été établie alors que les théories
de la physique statistique de I'équilibre ne sont parveduesturité que dans la premiéere partie
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8 | Modélisation cinétique des fluides

du 20e siéecle. Le vocabulaire “mésoscopique” et “cinéfipega souvent utilisé et aucune diffé-
rence fondamentale n’est a considérer dans ce manuscrtodalisation mésoscopique est une
description statistique adaptée aux systemes complexepartant un grand nombre de degrés
de liberté comme les fluides, les photons, les plasmas ouebieore un gaz d’électrons dans les
conducteurs. La grandeur descriptive d’'un modéele mésapaepest la fonction de distribution
monoparticulairef (r, v, t). A une normalisation preg(r,v,t) est au temps la densité de pro-
babilité de particules dans I'espace des phd$gs(), }. Lespace des phases est un espaée a
dimensions 3 pour I'espace géométrique, et 3 pour I'espace des vitess€s. Ainsi de fagon
plus intuitive, la quantité (r,v, t) drdv représente, a 'instant dans I'élément de volumé& au-
tour de la positiorr, le nombre de particules se déplagant a la vitesaev prés. A partir de la
définition def(r, v, t), il est possible de retrouver les grandeurs descriptivaslles lorsqu’une
description macroscopique est employée : par exemple, $senalumique(r,t), la vitesse du
fluideu(r,t) ou la températuré(r,t). La masse volumiquge(r, ¢t) étant le produit de la masse
d’une particule, par le nombre de particules dans I'élérdentolumedr autour de la position, et
ceci indépendamment de leurs vitesses, elle se relie a¢ddorde distribution monoparticulaire
par la relation suivante :

p(r,t):m/dvf(r,v,t) (1.1)

La vitesse du fluidel(r, t) s'interpréte comme la vitesse moyenne des particuleshiises selon
la fonction f(r, v, t) et normalisée pai/p(r,t) :
m
u(r,t):p(“t) / avv f(r,v,t) (1.2)
De la méme facon la températufér, t) s’interpréte, en utilisant le théoréme d’équipartition de
I'énergie, comme la moyenne de I'énergie cinétique de taéins des particules dans le repére du
centre de masse :

31700 =~ [ v frve (1.3)

dans laquelle = k,/m est la constante massique des gaz parfaits est la constante de Boltz-
mann. Pour simplifier les écritures, dans le reste du maiukcmassen d’'une particule est
intégrée a la définition dé(r, v, t) de sorte que (r, v, t) remplacen f(r,v,t). A partir de main-
tenant, pour alléger les écritures, nous ne mentionnerosssystématiquement les dépendances
de f. Ainsi les relations précédentes deviennent :

p = /dvf (1.4)

pu = /dvvf (1.5)
1

—prT = /dvi(v—u)zf (1.6)
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[.1.1 Microscopigue/mésoscopique/Macroscopique

Dans ce paragraphe on va discuter qualitativement le peintid attaché aux passages entre
les différents niveaux de description.

La description microscopique consiste a conserver, a @éagtant, toute I'information atta-
chée a chaque individu composant le systeme. Par exempteupdluide constitué dev parti-
cules classiques identigues et supposées ponctuellatedespteurs microscopiques sont lés
positionsr;(¢) et lesN vitessesv;(t) des particules en fonction du tempsL'évolution de ces
descripteurs obéit, selon nos hypotheses, aux lois de lanmtgee newtonienne. La modélisation
et la simulation de I'évolution des systemes selon cettergesn sont souvent référencées sous
la dénomination ddynamique moléculaire

Contrairement a la description microscopique, la desonpgnacroscopique postule un conti-
nuum spatial et temporel et les descripteurs apparaissgatetiement comme des champs de
I'espace et du temps. Pour un fluide, les descripteurs usoalsla masse volumiqugr,¢), la
vitesse du fluidei(r, t) et la températuré'(r, t). Lathermodynamiquet lamécanique des fluides
sont les bases de la modélisation de I'évolution des syst@mmplexes sous I'angle macrosco-
pigue. Historiquement la mécanique des fluides et plus gésréent les méthodes ditigidiques
(pour décrire d’autres systemes complexes comme les ptasmkes photons) ont été construite
indépendamment de la nature corpusculaire de I'objet d&tues descripteurs macroscopiques
sont souvent reliés a des variables accessibles expéataamnt : il est plus facile de mesurer la
température d’un fluide que de mesurer les vitesses etqusities particules composant le fluide.

Le point de vue mésoscopique peut étre qualifié d’interniédéentre les descriptions micro-
scopique et macroscopique en terme de quantité d’infoomsapour la modélisation des systemes.
Dans la description microscopique, I'information sur Istgyne est maximale puisque toutes les
positions et les vitesses des particules sont connuesag@mirent a la description macroscopique
ou quelques champs spatio-temporg|su( 7') sont utilisés. Ces variables macroscopiques pouvant
s’interpréter comme des valeurs moyennes des variabl@ssn@piques, la description macrosco-
pique correspond a une information partielle du systemmr@e en macroscopique, le descripteur
mésoscopique est une grandeur continue et n’est pas direct@ssocié aux “individus” du sys-
teme. Cependant, les informations en termes de positiongesses des particules existent en
tant que variables indépendantes au travers d’'une dermspéothabilité de présence. Le caractere
déterministe de la description microscopique est perde pbint de vue devient statistique. La
fonction de distributiory (r, v, t) s'interpréte comme une densité de probabilité dans I'esgas
phases. L'approche mésoscopique est pleinement intégnsdeicadre des théories delaysique
statistique du hors d’équilibre
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Le schéma suivant résume les différents points de vue &ssachacune des descriptions.

Micro Méso Macro
équation de Liouvill¢ procédure de
Variables t — r,v,t — r,t
hiérarchie BBGKY Chapman—-Enskog
Descripteurs {ri, v;} f p,u,T

FiG. I.1: Positionement entre les différents points de vue, micnoist®, mésoscopique et ma-
croscopique.

Onretrouve sur le schémall.1 les descripteurs et les vasalskociés a chaque point de vue. On
note a nouveau que les positianst vitesses microscopiquegassent du statut de descripteurs
en microscopique au statut de variables indépendantes sosnabique. En macroscopique, la
vitesseu qui apparait n'a plus le méme sens que la vitesse microseepipuisqu’elle représente
la vitesse apparente du fluide, c’est-a-dire la vitesse muyeles particules au point. Ce tableau
indique également qu'il existe un lien formel entre lesétiénts niveaux de descriptions. Lintérét
de ces procédures réside principalement dans la mise eene@dles niveaux d’approximation et
d’'informations perdues au moment des passages :

— les équations cinétiques peuvent étre dérivées de lapsemicroscopique par une modéli-
sation simplifiée des corrélations de paires, pouvant piseu’a les négliger complétement
pour I'’équation de Boltzmann (chaos moléculaire ou “StaksAnsatz”). Techniquement il
s'agit de réécrire I'équation de Liouville correspondata aeformulation des équations de
la mécanique (en terme de fonction de distribution a N cosps} la forme d’'une succes-
sion d’équations couplées (hiérarchie BBGKY). L'approation consiste alors a tronquer
la hiérarchie en introduisant une relation de fermeture.

— pour obtenir un jeu d’équations macroscopiques sur lesdgias conservatives (masse,
quantité de mouvement, énergie) a partir d’'une prise de mayede I'équation cinétique il
est nécessaire, pour I'évaluation de certaines moyenadaird une hypothese sur la forme
de la fonction de distribution. En général I'’hypothese ¢stesa développer la fonction de
distribution autour de la distribution d’équilibre. Ceftecédure est connue en cinétique des
gaz sous le nom de “procédure de Chapman-Enskog”.

Ces procédures de passage seront rediscutées plus emdeasalid suite du chapitre. Il est impor-
tant de noter que les concepts et grandeurs manipulés syuehaeau de description sont totale-
ment différents et qu'il n’est en général pas nécessairedstire complétement les descriptions
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les plus élémentaires pour aller vers les descriptions ll&s ppacroscopiques. Ainsi, bien gu'il
soit possible de classer les trois descriptions par la g@atiinformations sur le systéme, cela ne
signifie pas qu’un point de vue soit plus intéressant qu’urea®n pourrait croire qu’'une modéli-
sation microscopique est plus performante puisque I'mtdion sur le systéme est maximale. Or
ce n'est généralement pas le cas pour au moins deux raisan@erhiere concerne les possibi-
lités de calcul pour la simulation de systemes complexegosés d’'un nombre de particules de
I'ordre du nombre d’Avogadro. La deuxiéme raison concemedmpréhension et I'analyse des
mécanismes physiques et des dynamiques a I'échelle dursysin effet, en imaginant qu’il n’y
ait pas de limites techniques sur les possibilités de cailcsiérait difficile d’analyser le nombre
fabuleux d’informations a disposition et donc trés dificd’appréhender la physique a I'échelle
du systeme. En ce sens, les approches macroscopiqueseapportpoint de vue a I'échelle du
systéeme en faisant apparaitre des concepts comme, par lexdéanpression, la viscosité ou la
conductivité thermique. Ces concepts, émergeant de phemescollectifs, rendent possible une
analyse et une compréhension d’un systéme complexe daemsemble.

La description mésoscopique apparait de ce point de vue eaagant aussi un intérét propre.
D’une part, elle bénéficie de la possibilité, comme en mimwpgjue, de construire des modeles en
intégrant la physique a I'échelle de la particule. Ceci ptrem particulier de considérer les forces
intermoléculaires intervenant dans les fluides non-idéBtautre part, la description mésoscopi-
que résultant d’une premiere prise en compte d’effets ciifde(point de vue statistique) laisse la
possibilité d’'un premier niveau d’analyse complémentdir@iveau macroscopique. Cette dualité
de la description mésoscopique sera présentée tout audaregtchvail de these. Une grande partie
du travail de modélisation a été réalisé a partir des pd#éibie la description mésoscopique sans
jamais se priver d’'un éclairage macroscopique pour I'as®ét la compréhension des mécanismes
et des dynamiques du systeme.

[.1.2 Approche heuristiqgue de I'équation de transport

Avant de présenter differentes “démonstrations” de I'éigmede Boltzmann, il est intéressant
de se familiariser avec les différents termes par des imalggsiques simples. Pour cela on consi-
dere un fluide constitué de particules identiques de masse

Isolons par la pensée les particules situées dans un élémgatlume autour de la positioret
se déplacant a la vitesse dv pres. Autrement dit, cela correspond au nombre de particldas
I'élément de volume de I'espace des phases autour du goint Par définition de la fonction de
distribution f, ce nombre de particules est égaf@, v, t) drdv. Si aucun événement ne change
le nombre de particules (réactions chimiques ...) ou negdémvitesse des particules (champ de
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FIG. 1.2: Représentation schématique de quelques particules dide fudeux instants proches.
Les particules de vitesse situées em a l'instantt, se retrouvent en + vét a l'instantt + 4t¢.

force, collision entre particules ...), toutes les patéside vitesses, situées em a I'instantt se
transportentdurant un intervalle de temps jusqu’au point +vdt. Ce transport de particules (cf.
Fig. 1.2) se traduit par I'égalité suivante :

f(r +vot,v,t+ t)drdv = f(r,v,t)drdv (1.7)

On admet sans démonstration (théoreme de Liouville) qus sesi conditions le volume de I'es-
pace des phases occupé par les particiriés est conservé. On peut noter que cette propriété reste
valable en présence de champs de forces conservativesidagpenous en restons pour I'instant

a I’hypothese d’une absence de force et il vient alors :

f(r+vot, v, t+0t) = f(r,v,t) (1.8)

En supposant petit, on peut faire un développement limité au premiereddif (r +-vit, v, t+4t)
autour de ett, etil vient :

f(r,v,t)+5t(g—{ +Vv-V.f)= f(r,v,t) (1.9)
soit encore : 3
a—{+v-vrf:0 (1.10)

Le termev - V f est appelé génériquement terme de transport pur. Ce teditgiénla variation
de la fonction de distribution du simple fait du déplacenidme des particules. L'équation (1.10)
est un modeéle d’équation cinétique d’'un systéme de paeicoli seul le terme de transport fait
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évoluer la fonction de distribution. Dans la méme logigliest aisé de montrer qu’en présence
d’'un champ de force, I'équation résultante s’ecrit :

g+v-v7«f+i~vvf:0 (1.11)

ot m

Dans le cas le plus général, il faut tenir compte d’autrexgssus physiques faisant varier la
fonction de distribution. Durant I'intervalle de temgis les particules de vitessggque I'on suit
peuvent “collisionner” avec d’autres particules de viessdifférentes (ou sur une matiere exté-
rieure) et acquérir ainsi une vitesgeapres la collision. Ce processus se traduit par un terme de
perte localeP(r, v, V') dans I'égalité (1.11). De fagon similaire, des particulgard une vitesse’

a l'instantt, peuvent apres collision, se retrouver a la vitesad'instantt + ¢t. Ceci correspond

a un terme de source locatr, V', v) :

0 F

—f+v-VTf+—~va:—P(r,v,v’)+S(r,v,v’) (1.12)
ot m

Ces termes de perte et de source ayant pour origine lesiaadlifnterparticulaires sont géné-

ralement regroupés dans le teroddlisionnelnotéC(f, f) :

g—{+v-vrf+£~vvf26(f,f) (1.13)

La double dépendance formelle ¢rdu terme collisionnel permet de signifier que ce terme est
non-linéaire ery dans le cas des fluides. Cette non-linéarité a pour origifagtlque les particules
collisionnent avec d’autres particules de méme natureitdégpar la méme fonction de distri-
bution f. Il existe d’autres situations pour lesquelles le termésiohnel du modéle cinétique est
linéaire. C’est le cas par exemple de I'équation de trahsddratif pour laquelle les photons ne col-
lisionnent pas avec d’autres photons, mais interagisseqtiement avec des particules du milieu
de propagation. On retrouve aussi cette logique de motiélisdans les descriptions cinétiques
des plasmas ou il est souvent raisonnable de négliger lesiaa$ électron-électron, I'essentiel
des événements collisionnels des électrons se produigantes atomes neutres du plasma.

Une des principales difficultés de la dérivation d’'une émgumatinétique est la modélisation
du terme collisionnef( f, f). Différentes propositions peuvent alors étre faites sinalse d’hy-
potheses plus ou moins avancées de la physique d’intemaetive molécules. Dans la section
suivante, on se propose de détailler le terme collisiontirieslactions entre particules tel qu'il a
été introduit originellement par Boltzmann sous I'hypathées gaz dilués [3, 4, 5].
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|.2 Démonstration de I’équation de Boltzmann

Nous proposons dans ce paragraphe de dériver I'équatiomiiiar&nn en raisonnant sur la
fonction de distribution monoparticulairg a partir d’'une formalisation statistique des différents
processus physiques faisant évolyfesiu cours du temps. Pour simplifier la présentation mathé-
matique on ne considérera pas les champs de forces ex&sisachant qu’il n’y aurait aucune
difficulté conceptuelle supplémentaire a leur prise en demp

[.2.1 Hypothéses

— Les particules du gaz se déplacent en ligne droite a vimssstante entre deux événements
d’interaction. Les particules sont toutes identiques atyila aucune autre matiére dans le
systéme, les seules interactions possibles sont lesion#lientre particules.

— Le gaz est dilué : les distances intermoléculaires moyesost grandes devant la distance
d’interaction entre particules. Autrement dit, les intgi@ns sont considérées comme quasi-
ponctuelles et quasi-instantannées aux échelles coésglét on peut négliger les collisions
autres que binaires.

— On peut toujours définir une échelle en dessous de laqeslikelux des interactions pos-
sibles sont distribués spatialement aléatoirement denfagdorme. L'importance de cette
hypothése sera explicitée plus tard.

[.2.2 Evolution du nombre de particules a la vitesse v

On considére un élément de volufe&’enveloppe:. Nq(v, t)dv est le nombre de particules a
l'instantt, situées dans I'élémefit avec la vitess& adv prés dans I'espace des vitesses. On peut
écrire simplement :

Nq(v,t)dv = / f(r,v, t) drdv (1.14)
Q
SiI'élément de volumé) ne se déforme pas, ona:
ONg of
— = | =d 1.15
ot Joor (115)

L'évolution du nombre de particule$,, peut varier de trois facons :

1. Alintérieur def) des particules a la vitessalisparaissent suite a un changement de vitesse
di aux collisions avec d’autres particules.
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2. Alintérieur def2 des particules a la vitesseapparaissent suite a un changement de vitesse
di aux collisions avec d’autres particules.

3. Des particules a la vitesgeentrent ou sortent d@ a travers la frontieréa.

L'hypothése de distribution aléatoire des lieux d’intéi@es se traduit statistiquement par une loi
de décroissance exponentielle pour les disparitions. ed&volution deNg di aux disparitions

par interactions s’écrit alors :
ONa\ _ / Zrar (1.16)
ot ) Ja A '

dans lequeh = \(r,v, t) est le libre parcours moyen des particules de vitegsgs a l'instantt
(dans le cas le plus général)et ||v||.

On noteS(r,v,t)dr le taux temporel d’apparition (Suite aux interactions) detipules a la
vitessevenr adr pres. Le taux d’évolution d&/, par apparition s’écrit :

ONo
(le/ﬂwr (1.17)

Le dernier terme correspond a I'évolution tig lié aux entrées-sorties a travers la fronti&xdl
s’exprime comme l'intégrale de la densité surfacique de dedparticules a la vitesseen tout
pointsde la frontiereX. Avecn le vecteur normal sortant exle taux d’évolution deVg, di aux
entrées-sorties s’écrit :

ONg\
(7)3 _/E—fv-nds (1.18)
Ce qui peut se réécrire, a partir du théoreme de Green-Qatisky, sous la forme :
<%) :/—Vr(fv) dr (1.19)
ot ), Q
v etr étant des variables indépendantes, on obtient :
ONgq
—2) = [ —v. d 1.2
<8t)3/gvvrfr (1.20)
En regroupant toutes les contributions, on obtient I'éiguad’évolution deN, :
8NQ . (%
W_/Q[—Xf+S—v-vrf] dr (1.21)
Ceci se réeécrit : of
v
Qadr—/ﬂ[—quLS—v-Vrf] dr (1.22)
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Cette relation étant vérifiee quel que soit I'élément de m@), on obtient I'équation locale
Suivante :
of

v
G PV Ve f == f S (1.23)

Pour retrouver I'équation de Boltzmann a partir de cettentbgénérale, nous devons d’une part
détailler les processus a I'origine de la disparitionfdet d’autre part expliciter le terme sourfe
Compte tenue des hypotheses retenues, les seules imtesgutissibles sont les collisions avec les
autres particules du gaz. Elles ont pour premiére conséguamfaire “disparaitre” des particules
de vitesser en les faisant apparaitre a la vitesseDe la méme fagon, suite a une collision, une
particule a vitess&' peut se retrouver a la vitesgece qui correspond a un terme source vis-a-vis
de la population des particules suivies.

On notelV (V/;r, v, t) la densité de probabilité pour que la vitesse de la parti@ptes la colli-
sion soitv’ sachant que la vitesse avant la collisionestlle vérifie la condition de normalisation
Suivante :

/W(v’; rov,t)dv =1 (1.24)
Le terme source peut alors s’écrire sous la forme :
S:/%W(v;r,v’,t) frov t)ydv (1.25)
De facon plus arbitraire, il est toujours possible de rééde terme de disparition sous la forme :
—%f(r,v, ) :/-% W V5TV, t) f(r,v,t) dv (1.26)

Ainsi, avec les notationg = f(r,v,t) et f' = f(r,V/,t), 'équation (1.23) peut se réécrire sous la
forme :

8f UI / !/ v / /

a+V-V,nf: XW(v;r,v,t)f — XW(v;r,v,t)f dv (1.27)

Pour fermer complétement la description, il reste a explides dépendances du libre parcours
moyenA\(r,v,t) a la fonction de distributiorf. On considére une particule erse déplacant a la
vitessev et on analyse les interactions possibles avec des pagieulenéme point a la vitesse
v”. Tout se passe alors comme si la molécule considérée étadfpag et soumise a un flux de
particules incidentes de vitessés— v (cf. Fig. |.3). La section efficace(v”, v) est la surface que
définit autour de la particule au repos (particule ciblendemble des points d’intersection corres-
pondant & des particules incidentes qui entrent en interaavec la particule cible. Le nombre
d’interactions par unité de temps est al§v§ — v|lo(V”,v) f(r,v" t). En considérant I'ensemble
des vitesses incidentes possibles, on peut ainsi détigiltarux de disparition par interaction (ce
qui correspond en fait a I'inverse du libre temps moyen désioh) :

ﬁ :/Hv”—v||a(v”,v)f(r,v”,t) v (1.28)
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On peut alors reprendre I'équation (1.27) en détaillanidésractions (en identifiant la vitesse
des particules avec lesquelles les particules suiviesigitsent) :

of B
E + V- vr(f) -
/d v’/d v’ [||v” —V||o (V' VYW (Vs 1,V e V)
— V" = a(v”,v)W(v’; r,v,t,v”)f”f] (1.29)

avecf” = f(r,v",t) et/W(v’; r,v,t,v") est la densité de probabilité qu’une particule a vitegse
subissant une interaction era I'instantt, avec une particule a vitesgé, se retrouve a la vitesse
V' apres l'interaction. Si on suppose de plus que la sectiocaeeti est indépendante des vitesses
des particules, alors on aboutitéquation de Boltzmanpour la cinétique des gaz dilués :

of B
a + V’Vr(f) -
a/dv’/dv” [||v”—v’||W(v;r,v’,t,v”)f”f’
o A AU VAREROV] (1.30)

Cette derniére équation correspond a I'équation de Bolimnem I'absence de champs de force
extérieure. Dans le cas le plus général, on peut démonimgesinent que les forces extérieures
qui s’appliquent sur les particules ajoutent un terme d&agihtion de transport qui devient :

of F B
5 T V-V (f)+ Vy (Ef)_

a/dv’/dv” [||v”—v’||W(v;r,v’,t,v”)f”f’
o A AU VAREROV] (1.31)

Notons que la forme du terme de “force” retenue ici n’est pasdard. Nous avons en effet écrit

Vy <Ef) plutot queE - Vy (f) comme précédemment (équation (1.13)). Cela corresponé a un
m m
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généralisation du terme de force au cas ou les forces axtésime sont pas forcément conserva-
tives.

|.3 Eléments de démonstration de I'équation de
Boltzmann a partir de I'équation de Liouville

Sans entrer dans tous les détails de la démonstration @di] jpour les détails), il est inté-
ressant de présenter les principales étapes de la déni\ddibéquation de Boltzmann a partir de
la description microscopique de systemes complexes cafsplEsparticules identiques obéissant
aux lois de la mécanique classique newtonienne. Cette démarpour objectif de faire sentir les
hypothéses qui conduisent de la description déterminiséersible a la description statistique et
irréversible que constitue I'équation cinétique.

[.3.1 Equation de Liouville

L'équation de Liouville dérive du formalisme hamiltonie@l mécanique classique. On consi-
dére un systeme d¥ particules identiques de masse Ce systéme peut étre entierement carac-
térisé par la densité de probabilité de présefiee ., p,;...;rn,Py;t) dans I'espace des phases
a6N dimensionsr; etp, représente respectivement la position et la quantité devement de
la i€ particule. Cette densité de probabilité se lit comme la @bdlié conjointe d’avoir une
particule de coordonnéé¢s,, p, ), une particule de coordonnégs, p,), ... et une particule de co-
ordonnéesr v, p, ) dans I'espace des phases (a l'intérieur du volume élénerdairespondant).
La conservation du flot hamiltonien se traduit par I'équatidévolution de Liouville [6] pour la

densité de probabilité :

agév +{fv, Hy} =0 (1.32)

avecH, I'hamiltonien du systeme & particules qui s’écrit (en I'absence de force magnétique)
comme la somme des énergies cinétiques des particules @iteexctionsu(r; — rj) que nous
supposons ici étre &corps.

Hy _Z b S ury - 1) (1.33)

<i,5>

Le crochet de Poissoffy, Hy } est défini par :

0 OH 0 OH
(v Mo} = Z I o O O (1:39)
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[.3.2 Densité de probabilité an particules

On notef, la densité de probabilité de trouver conjointement uneiqudet de coordonnées
(r1,p;), une deuxiéme efr,, p,), ... €t une n-ieme efr,,, p,,) quelles que soient les positions et
impulsions deV — n particules restantes :

fn(rh P1 ;---;rmpn;w = (|35)
1
m/fzv(rhpn ...irN,pN;t) dryyy -dp, ;... .dry -dpy

Le facteurﬁ est en lien direct avec I'hypothése d’indiscernabilité pagicules. Nous rappe-
lons que nous cherchons a dériver I'équation de Boltzmanasjwne équation d’évolution de la

densité monoparticulairg(r, p; t) = fi1(ry, py;t).

.3.3 Hiérarchie BBGKY

A partir de ce qui précéde, et en n’explicitant plus les déipenes, on peut écrire la fonction
de distribution &V — 1 corps :

Ino1= /drN‘defN (1.36)
en dérivant par rapport au temps on obtient sans difficultés :
Ofn_
fgt L — —/drN~de{fN,HN} (1.37)

En reportant I'expression du crochet de Poisson dans cafiée équation et en intégrant on peut
réécrire I'équation d’évolution déy_; sous la forme :

fn-1
ot

=y aui N afN

. l.
or;  op, (138)

+{fv-1, Hnoa} = /drNde

=1
On peut répéter 'ensemble de la démarche pour trouver lesgtiégs d’évolution dg; a partir de
leur définition en fonction d¢; ;. On obtient ainsi une reformulation du probleme sous la éorm
d’un systeme déV équations couplées [7] :

0

—gév +{fv,Hn} = 0 (1.39)
afn o - aui n+1 afn—|—1
U = [t 3T O (140
0 | )
% + {fl, Hl} = /dderg a—gi . Vrlul 2 (|41)
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Dans les cas non relativistes, en remplagaparmv, I'équation d’évolution def;(rq, v, t) peut
s’écrire en fonction de la fonction de distribution a 2 cofps

%—Fvl Vrlfl //dVerg VH ( —I'2> (|42)

L'équation (1.42) est similaire a I'équation de Boltzmaihe. terme de transport apparait dans le
membre de gauche et le membre de droite s’identifie au terdtisi@onel. Un des intéréts de
cette formulation réside dans la mise en évidence du liamdbentre le potentiel d’interaction
intermoléculaire et le terme collisionnel. Cependant, &at I'équation (1.42) n’est pas suffisante
puisqu’elle fait intervenirf,.Pour fermer le probléme a partir d’'une seule équationfsuil est
donc nécessaire de fixer un jeu d’hypothéses concernantodsléafforme def, et du potentiel
intermoléculaire. En fonction des besoins et des problérai#és, on pourra ainsi affiner les appro-
ximations (cf. chapitre 1ll). Pour retrouver I'équation Beltzmann traditionnelle il est nécessaire
de faire les hypothéses suivantes :

— Le chaos moléculaire qui consiste a négliger les coroflatet qui se traduit formellement
par I'approximation suivantef, ~ fi(ry, vy, t) fi(ra, Vo, t)

— Les particules sont considérées comme ponctuelles etteractions sont locales et instan-
tanées. Cela peut se faire en particulier en modélisanttEnpel d’interaction par des in-
teractions de types sphéres dures ou fortement répulsites @es particules sphériques
ponctuelles.

.4 ThéoremeH et équilibre

On peut noter que la description de Liouville (y compris larbichie BBGKY) est parfai-
tement réversible puisqu’appuyée sur une descriptionnpemé mécanique. L'équation de Boltz-
mann quant a elle n’est pas invariante par renversementaostdl est clair que I'apparition de
lirréversibilité est entierement liée aux hypothéses apti permis d’établir 'équation de Boltz-
mann. Ceci a été longuement discuté dans la littératuret Birgerpréte statistiquement en intro-
duisant la grandeur entropie qui permet une mesure devérsiilité et de la perte d’'information.
L'objet de ce paragraphe n’est pas de discuter a proprenaelet e I'entropie mais de faire res-
sortir certaines propriétés de I'’équation de Boltzmanmagticulier la mise évidence de la solution
d’équilibre. Pour cela on introduit la quantit&(définie en général comme 'opposée de I'entropie
statistique a une constante prés) définie par :

]HI:/ dr dvf(r,v,t)log f(r,v,t) (1.43)
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ainsi que la densité correspondante :

§s=—h= —/ dvf(r,v,t)log f(r,v,t) (1.44)

[.4.1 Evolution de s au cours du temps

En multipliant I'équation de Boltzmann pésg f et en intégrant selon, on obtient (on sup-
prime volontairement les dépendancesfjle

/dv logfg—{+/dv(v-Vf)logf:/ avlog fC(f, f) (1.45)

En introduisant la grandeur flux local d’entropie :

i =~ [ avtog v

on peut écrire sans difficulté une équation locale d’évotutie la densité d’entropie :

0s

a+v-13:—/ dvlog fC(f. f) (1.46)

On peut montrer assez simplement que le terme de droite gigaki®n précédente est toujours
positif ou nul. Ceci constitue la version locale du théoréind=n terme interprétatif on retrouve
les résultats de la thermodynamique axiomatique qui pesjué I'évolution de I'entropie est liée
a un terme d’échangd/-j,) et un terme de production positif ou nal(= — [ dvlog fC(f, f)).
Autrement dit, le théorém# est une formulation du second principe de la thermodynaeigui
dit en particulier que I'entropie d’'un systeme isolé ne ppuaugmenter.

[.4.2 Distribution d’équilibre

En s’appuyant sur ce qui précéde, il est aisé de voir queilibggiqui correspond a une situa-
tion stationnaire pour laquelle il 'y a pas de flux aux frendis se traduit mathématiquement par
'annulation du terme de production. Sans rentrer danséésild mathématiques, on trouve que
cette contrainte est obtenue lorsque la grandieyf est conservée localement au moment d’'une
collision. Or, lors d’une collision élastique entre deuxtigales,5 quantités sont conservées entre
I'état initial et I'état final : la masse, lescomposantes de I'impulsion et I'énergie cinétique. De ce
fait log f doit étre une combinaison linéaire de ces invariants cofiisels :

logf:A+Bv+C%v2 (1.47)
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avecA, B et C des constantes. Nous pouvons donc édgfiseus la forme suivante :

2
f=Al exp <BV — C’%Vz) = A2 exp [—g (V — g) ] (1.48)

Pour déterminer ces constantes, nous utilisons les netatiéja explicitées pour les grandeurs
macroscopiques :

p = / fdv (1.49)
pu = /vf dv (1.50)
3 1 9
EpTT = §(v —u)°fdv (1.51)
Ces définitions permettent de déterminer les constantes :
P
A2 = ———— (1.52)
(2mrT)*/*
u
B = — 1.53
rT ( )
1
- 1.54
T ( )
Finalement a I'équilibre la fonction de distribution s’é@ous la forme :
eq __ P N (V B U)2 |
Ty P ( 2rT (19

Ceci est la distribution de Maxwell-Boltzmann qui décréduilibre d’un gaz parfait. La distri-
bution de Maxwell est donc la solution d’équilibre de I'étjaa de Boltzmann. Il est normal de
trouver cette solution d’équilibre car les hypothéses dupgarfait sont compatibles avec les hypo-
theéses que nous avons utilisées pour dériver I'équatiorotterBann. Les particules sont considé-
rées comme ponctuelles et il N’y a pas d’interactions a nicgt@ntre celles-ci. Dans le modeéle de
Boltzmann, les collisions ont pour effet de redistribusrparticules. Et en I'absence de contraintes
extérieures, cette redistribution fait tendre la fonctlerdistribution vers la distribution d’équilibre
de Maxwell-Boltzmann.

.5 Modeles du terme collisionnel

L'équation de Boltzmann obtenue précédemment est uneiéqguatégro-differentielle non
linéaire qui permet de modéliser des situations de nonliborly compris lointain. En contrepar-
tie les analyses et résolutions (numériques pour I'essl@di I'équation sont délicates a mener en
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I'état. La principale difficulté provient du terme collisinel qui, incluant I'interaction a deux corps
avec une partie strictement collisionnelle, rend possities sauts discontinus dans le sous-espace
des vitesses. Il est toujours possible, mais souvent tr@gew, d'utiliser des techniques du type
DSMC (Direct Simulation Monte Carlo) [9] pour approcher renquement ses solutions. Dif-
férentes propositions ont été proposées dans la littérgour simplifier le terme collisionnel en
accord avec les caractéristiques particuliéres du prabteaité. Nous présentons dans ce qui suit
le modéle du temps de relaxation (modele BGK) et le model8E&-qui en est une extension
possible.

1.5.1 Modéle BGK

L'approximation BGK a été introduite par Bhatnagar, GrasKmok en1954 [10]. Le terme
collisionnel proposé n'a pas été originellement dérivéh@atatiquement a partir du terme colli-
sionnel de Boltzmann mais a partir d'arguments plus physigliidée principale est que le terme
collisionnel de Boltzmann est un rappel vers la distribuiikequilibre local de Maxwell. Si I'on
est dans une situation de lointain non-équilibre alorsr@éede rappel est tres fort sur des temps
caractéristiques de I'ordre du libre temps moyen de colisDés que la distribution s’est isotro-
pisée et régularisée autour de la la distribution d’éqrelibcal le terme collisionnel devient beau-
coup plus faible (on rappelle qu’il s’annule si on est sament a I'équilibre) et on rentre dans le
régime dit hydrodynamique pour lequel les temps caratiguiss d’évolution sont beaucoup plus
longs.

Pour comprendre la forme proposée pour ce terme collislpnegartons de I'équation ci-
nétique (1.23), pour laquelle le terme sourSen’est pas explicité et la non-linéarité du terme
collisionnel n’est pas encore apparente :

af

v

La premiére approximation consiste a simplifier singuhiggat le terme de disparition.

f

—f =t (1.57)

Cette approximation consiste a ne considérer qu’un seuéatartemps moyen de collisiarpour
toutes les particules quelles que soient leurs vitessesalear la plus pertinente pourest en
général le temps moyen entre deux collisions successigegilicest une caractéristique du gaz
dans les conditions d’étude. La difficulté est maintenanprgoser une approximation pour le
terme source. Nous avons indiqué précédemment que I'edietdllisions est de redistribuer les
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particules selon la distribution d’équilibre local de Maativf<?. Ainsi Bhatnagar, Gross et Krook,
ont proposé d’approximer le terme source par un terme ptiopoel a la distribution d’équilibre
feo

[
Ts
Par homogénéité de I'équation, un temps caractéristiquapparait. Or le terme collisionnel a
certaines contraintes a respecter. En effet, lors desiooll la masse, la quantité de mouvement
et I'énergie cinétique sont conserveées. Ceci, ce traduit pa

g~ (1.58)

/CBGK dv = 0 (|59)
/V CBGK dv = 0 (|60)
1
/ §mV2 Ceax dv = 0 (|61)
avecCpcr = —L + % le terme collisionnel BGK. Par définition deet f°¢, nous avons les
relations suivantes :
p = /f dv = /feq dv (1.62)
pu = /vf dv = /erq dv (1.63)
3 1 2 1 2 re
§pTT = i(v—u) fdv= §(v—u) fdv (1.64)

Nous en déduisons que le temps caractéristique du termeesestrle méme que celui du terme de

disparitionr, = 7. Ainsi, nous obtenons le terme collisionnel de BGK et I'étprade Boltzmann

sous I'approximation BGK ou I'équation Boltzmann-BGK :
of f—r

aﬂLV'V(f):— -

(1.65)

Contrairement aux apparences, I'équation de BoltzmanK-B®st pas linéarisée ; seul le terme
de disparition est linéaire. En revanche, le terme sourténtarvenir la distribution d’équilibre
f€? qui dépend des champs macroscopiques et7". Or ces champs macroscopiques sont des
intégrales def. Donc I'équation de Boltzmann-BGK est aussi une équatitégio-différentielle
dont une partie du terme collisionnel est non linéaire. Ma&ite “quasi-linéarisation” autorise
I'utilisation de techniques numériques plus classiques lguDSMC, et permet aussi de déduire
guelques résultats analytiques dans certains cas. |l estea aussi, que sous I'approximation
BGK, le gaz n’est caractérisé que par un seul paramétremmpdele relaxation. Ceci est une
trés grande simplification car si on devait résoudre I'éguatie Boltzmann, on aurait besoin de
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plus de données sur les particules du gaz, telles que la th particules et les caractéristi-
gues du potentiel intermoléculaire a courte portée nécessacaractériser la section efficace des
collisions.

1.5.2 Modéle ES-BGK

Parmi les inconvénients du modele BGK, le fluide est carséérar un seul parametre, le
temps de relaxation. Il est important de noter que ceci n’est pas intrinséquériau modele
BGK, et apparait de la méme facon dans le terme collisione@altzmann si on considere par
exemple une modélisation de type sphere dure pour l'intieraénterparticulaire. Ceci a pour
conséguence, qu’au niveau macroscopique, le nombre ddtPeahtoujours fixé quelle que soit
la valeur der. En effet, nous allons démontrer dans la section suivargéequiscosité du fluide et
la diffusivité thermiquex sont proportionnellesa C’est pourquoi le nombre de Prandtl qui est le
rapport entre ces deux coefficients de transport ~) estindépendant de Le calcul du nombre
de Prandtl a partir du terme collisionnel BGK donne une vatiil alors qu’a partir du terme
collisionnel complet de I'’équation de Boltzmann on obtiem valeurPr = 2/3. Ce qui esten tres
bon accord avec les données expérimentales de la plupagadek'air par exemple a un nombre
de Prandtl dé).7. De plus, comme nous l'avons dit précédemment, I'équateBoltzmann est
pertinente pour la description des liquides a la limite mmacopique. Mais les valeurs du nombre
de Prandtl pour les liquides sont bien différente2d@ Par exemple, le nombre de Prandtl de
'eau a pression atmosphérique€@C' a pour valeuf7 . Afin d’obtenir des valeurs souhaitées du
nombre de Prandtl , nous allons utiliser une autre apprax@mgour le terme collisionnel, le
modéle ES-BGK! [11, 12, 13]. Cette approximation a été introduite spécéigant pour pallier
les défauts de BGK par rapport au nombre de Prandtl. Sougrbapmation ES-BGK , le fluide
sera décrit par deux paramétres, le temps de relaxat&trun autre paramétre notélLe terme
collisionnel ES-BGK présente le méme terme de disparitiom BGK, —{. La différence se situe
au niveau du terme source.

Le terme collisionnel ES-BGK apparait comme une génétaisae BGK. En effet le terme
source de ES-BGK est une gaussienne anisotrope alors quB&y& le terme source est la fonc-
tion d’équilibre de Maxwell-BoltzmanA. De ce point de vue I'approximation BGK est un cas
particulier de I'approximation ES-BGK. L'expression degaussienne anisotrope est :

fo = Gy P |~ 5Oublt — ) 0 — ) (66)

pour Ellipsoidal Statistical BGK
2qui est une gaussienne isotrope
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avecO le tenseur de composarte,s; = (1 — b)rTd.s + %Paﬁ. b est le deuxiéme parametre qui
caractérise le fluide en plus du temps de relaxatioBontrairement au temps de relaxation, il est
difficile de donner une signification physiqué.d@n peut remarquer que lorsqe- 0 on retrouve
gue fg = f€I. Ainsi sous cette approximation, nous obtenons I'équat®Boltzmann-ES-BGK,
de forme similaire a I'équation de Boltzmann-BGK :

of - Je
E*'V'V(f)—— -

Nous montrerons quelques résultats de simulations inctete description dans le chapitre sui-
vant.

(1.67)

1.6 De I'équation de Boltzmann aux éguations macroscopiqse

Ce paragraphe s’appuie pour partie sur les notes de courEAal® Pottier [14], en reprenant
en particulier la plupart des notations. Nous allons priesda procédure permettant de retrouver
les équations macroscopiques ou hydrodynamiques quveétte fluide en fonction des variables
macroscopiques : la masse volumigue, ), la vitesse locale moyennsr,t¢) et la température
T(r,t). Ce développement porte le nom de procédure de Chapmamd;miknom des auteurs qui
I'ont proposé en 1916 et 1917. Tandis que I'équation de Bwtm décrit I'évolution de la fonction
de distributionf a des échelles de temps de I'ordre du temps entre deux coBidies équations
macroscopiques décrivent un gaz a des échelles de tempkapdeur bien supérieures. En effet,
nous avons vu précédemment que les collisions ont pour adfeedistribuer les particules dans
I'espace des vitesses selon la distribution d’équilibré&dewell. Cette relaxation vers I'équilibre
local alieu en un temps de relaxation que nous appellerddee fois que la relaxation vers I'équi-
libre local a eu lieu, et en I'absence de contraintes exiéeie le gaz relaxe vers I'équilibre global
du systeme avec des temps bien supérieursitte relaxation vers I'équilibre global ne nécessite
pas une description cinétique de type Boltzmann. Les épmtinacroscopiques permettent de
décrire correctement la relaxation vers I'équilibre globaxiste des situations ou une description
cinétique est indispensable. Par exemple, les écoulerdanssles microsystemes fluidiques dont
les tailles sont inférieures au libre parcours moyen descpies et les écoulements autour d’objets
entrant dans I'atmosphere (missiles ou vaisseaux spatidaur ces exemples, nous sommes dans
une situation hors d’équilibre. En effet, les collisionstspeu fréquentes. Pour les microsystémes
fluidiques les collisions particule-particule sont plusesaque les collisions particule-paroi car les
dimensions caractéristiques des canaux dans lesquetsiEde fluide sont inférieures au libre
parcours moyen des particules. Pour les objets entrant lddmsphére, la pression, et donc
la masse volumique, est trés faible, donc le libre parcourgem des particules est de I'ordre de
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longueur des objets. Ces deux exemples ont en commun leigléq collisions particule-particule
étant peu fréquentes aux échelles de temps d'observatioggime hydrodynamique n’est pas
établi car la relaxation vers I'équilibre local n’a pas lieu

[.6.1 Equations de bilan locales

La premiére étape de la procédure de Chapman-Enskog aoasistégrer sur I'espace des
vitesses le produit de I'équation de Boltzmann par les iavs collisionnels. Nous partons de
I'équation de Boltzmann avec un terme de force extéri€ure

of

ot
En multipliant cette équation par un des invariants caliisielsy € {1, vV, %vz} 3 et en intégrant
sur les vitesses nous obtenons :

/dvx (g{w Vf+E va) (1.69)

Commey se conserve lors des collisions nous avgn& x C(f, f) = 0. L'équation (1.69) peut
étre réécrite sous la forme suivante :

at/dvxf / f + V- /devf /dva Vy (1.70)
+ /dev(fo)—/dvfavX:o

Comme la fonction de distributiofis’annule lorsque — +o0 , le cinquiéme terme de la relation
précédente est nul. Ainsi en adoptant comme conventiomitliée [ dv O f = (O), nous pouvons
écrire le bilan général suivant pour un invariant collisieh:

%() <aa>t<>+v< V) — <v-Vx>—<£-va>=0 (1.71)

+V- Vf+— Vuf =C(f, f) (1.68)

[.6.1.1 Equation de bilan locale de la masse

Pour dériver une équation de bilan locale de la masse, nlans appliquer 'équation de bilan
générale (1.71) pouy = 1 “. Par définition def, seuls deux termes de (1.71) sont non nuls :

0 ap
§<1> = 3 (1.72)
Vo) = V-(pu) (1.73)

3normalement les invariants collisionnels S({m myv, mv2} mais ici dans la définition d¢ nous avons inclus

la masse des particules
4la masse étant intégréefalinvariant collisionnely = 1 correspond a la masse
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En additionnant ces deux termes, nous retrouvons I'équaten connue de continuité :

% - (ou) =0 (1.74)

1.6.1.2 Equation de bilan locale de la quantité de mouvement

Les composantes de la quantité de mouvement sont aussivdemits collisionnels. Si on
appligue la relation (1.71) pour chaque composante de |latggade mouvemeny = v, trois
termes sont non nuls :

Ot = Fpva) (1.75)

V- (vaV) = 05 (vavs) (1.76)

<E . Vvva> = p& (1.77)
m m

L'expressionv,vg) peut étre développée de la fagon suivante :

(Vavg) = ((Va —ua)(vg — up)) + (vaug) + (Vpua) — puaus (1.78)
= ((va — ua)(vs — up)) + puaug (1.79)

En appelant? le tenseur des pressions de composdite = ((v, — ua)(vs — ug)), on obtient
I’équation de bilan locale de quantité de mouvement sué/ant

0 F,
—(pvy) + Os(pugus + Pag) = p— 1.80
5 (Pla) + Os(puaus + Pag) = p— (1.80)
En présence d’'un champ de force (gravité par exemple), latf@ale mouvement n’est pas une
guantité conservée ; le terme source a pour expre$§§pnl_e flux de quantité de mouvement est
compose de deux termes, un terme convexetifuz et un terme non explicité pour le momeni;s.

En développant I'expression (1.80) et en utilisant I'égomatde continuité (1.74), nous pouvons
réécrire cette équation sous la forme :

0 F, 1

— +ugds)ug = — — ~0gP, 1.81

(5; + ua0s) m 08T (1.81)
Notons bien que dans cette equati@y; reste défini comme, s = ((vy, — ua)(vg — ug)) €t n'a
donc pas été exprimé en fonction des grandeurs macrosespiqu et 7.
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1.6.1.3 Equation de bilan locale de I'énergie interne

Enfin, nous allons appliquer I'équation de bilan génératl{lau dernier invariant collisionnel,
I'énergie®, y = %(v — u)?. Les termes non nuls de I'équation (1.71) sont :

%<%(v—u)2> = o (1.82)
V-<%(v—u)2v> = V. (eml) + V- Jo (1.83)
(v VG =up)) = § (sl - wal) (1.84)

Nous avons défini ici la densité d’énergie interne conampe= <%(v — u)2> et le flux de chaleur
commelg = (3(v —u)(v —u)?). Compte tenu de sa définition, I'énergie interne est la mogen
de I'énergie cinétique dans le centre de masse des pagtidig&ibuées seloif. Le deuxieme
terme s’interpréte comme le divergent du flux d’énergie. @ediénergie peut s’écrire comme la
somme de deux contributions, le flux conveetjf,u et le flux de chaleudy. Pour l'instant, on ne
peut pas dire a quoi correspond ce flux de chaleur si ce n'est’gst la partie du flux d’énergie
qui n’est pas convectif. On verra plus tard que ce flux cooedpa donc au flux conductif. Le
troisieme terme peut s’écrire ainsi :

5 (0603t~ ua)?) = (st — ) Dy (1:85)
= — ({05~ ug) (va — a)) Dyt (1:86)

En additionnant ces trois termes nous obtenons I'équatdrildn locale de I'énergie interne :

0€int
ot

En intégrant I'équation de Boltzmann sur I'espace des séesnous venons d’écrire trois équa-
tions de bilan locales pour les trois premiers moments deration de distribution, la masse
volumiquep, la vitesse macroscopiqueet la densité d’énergie intermg,;. Mais ces équations ne
sont pas encore utilisables car elles ne constituent pagstgnse fermé. En effet nous n’avons pas
encore d’expression macroscopique pour le tenseur desigme®’ et le flux de chaleud,. Nous
avons seulement des expressions en intégralgspaur ces deux grandeurs. Pour fermer ce jeu
d’équations il est alors nécessaire de proposer une appatioin def pour évaluer le tenseur des
pressions et le flux de chaleur.

+ ag(ethﬁ) -+ 8ﬁ(JQ75) = — aﬁﬁﬁua (|88)

°En fait le dernier invariant est = $v* mais 3 (v — u)? étant une combinaison linéaire de tout les invariants
collisionnels est aussi un invariant collisionnel
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[.6.2 Approximation d’ordre 0
Nous rappelons que nous voulons dériver les équations s@pmues dans des conditions ou

le gaz est proche de I'équilibre local. Ainsi naturellemlargremiere approximation pourest de
prendre la fonction d’équilibre de Maxweff? :

f=1r" (1.89)

Cette hypothése constitue I'ordre zéro de la procédure dggi@hn-Enskog. Ainsi nous allons
pouvoir évaluer, & I'ordre zéro, le tenseur des pressitfiset le flux de chaleuﬂg)

1.6.2.1 Tenseur des pressions a I'ordr@

Par définition nous avons :

Py = wa) (v — ug)),, (1.90)
= /d V (Vo — Uq)(vg — ug) f (1.92)
= p— T(Sa@ = pTT(;aﬁ =p 5(15 (|92)

Ainsi a I'ordre 0, nous trouvons que le tenseur des pressions est un scalagstgimplement la
pression du gaz parfait de constante massiqtte%.

[.6.2.2 Flux de chaleur al'ordre0

Par définition nous avons :

Jg]) = <%(v —u)(v— u)2> (1.93)
_ /d v %(v — UV —u)? e (1.94)
— 0 (1.95)

Al'ordre 0 le flux de chaleur est nul. A I'équilibre local, la seule cdmition au flux d’énergie est
le flux convectif.
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1.6.2.3 Hydrodynamique du fluide parfait

Avec les expressions que nous venons d’obtenir pour le tertes pressions et le flux de
chaleur a I'ordré), nous pouvons écrire les trois équations de I'hydrodynamdy fluide parfait :

dp

LV () = 0 (1.96)
0 F, 1
<§ +uglp)u = P ; D (1.97)
aeint
ot -+ 8@(6intu§) = —p 8gu5 (|98)

Plutét que de garder la troisieme équation décrivant I'évoh de la densité d’énergie interne,
nous pouvons utiliser le théoreme d’équipartition de li§ie afin d’avoir une équation portant
sur la température. Ainsi d’apres le théoreme d’équipartide I'énergie nous avons,; = png
(en supposant les trois degrés de liberté de translation¥i Aous avons le systéme d’équations
Suivant :

d

a—f+v(pu) ~ 0 (1.99)
0 F, 1

(57 +upds)ta = — = 50ap (1.100)
d p

(a—FUﬁ&ﬁ)T = _Eﬁﬁuﬁ (|101)

avecc, = 3/2r. Ces équations constituent les équations de I'hydrodymaendu fluide parfait,
appelées ainsi, car dans ces équations il n'y a pas de terismpatifs tels que la viscosité ou
la conductivité thermique. Les phénomenes de dissipatopeuvent pas apparaitre ici car pour
dériver ces équations nous avons supposé que nous somrégsifdtre local.

[.6.3 Approximation d’ordre 1

Dans la partie précédente, nous avons vu qu’en supposquotlitée local comme solution de
I'équation de Boltzmann, les termes dissipatifs n’apsseit pas. Une meilleure solution consiste
a prendre la fonction de distributighperturbée autour de I'équilibre local :

frfea g fO) (1.102)

avecf faible devantf°?. Cette hypothése sera d’autant plus pertinente que le reotiedtnudsen
sera petit devant. Comme pour I'ordré), pour fermer le systeme d’équations macroscopiques, il
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faut calculer le tenseur des pressions et le flux de chalearlawnouvelle expression de.

Pop = /d V (va = ) (vg = ug) (f0 + V) (1.103)
= P+ ((va — ta)(vs — up)) (1.104)
Jo = /dv%(v—u)(v—u)z (fe1 4 fM) (1.105)
1
= (Z(v—u)(v—u)? (1.106)
<2 >(1)

avec comme convention d’écritufedv O fM) = <(’)>(1). Mais pour l'instant nous n’avons pas
encore d’expression pouff).

1.6.3.1 Modéle def™"

Pour simplifier la présentation et accéder a une meilleungpcéhension, nous allons utiliser
I'’équation de Boltzmann-BGK pour dériver le modélefd€. Dans leurs travaux originaux, Chap-
man et Enskog ont fait leur développement directement a plart’équation de Boltzmanf En
remplacantf par son expression dans I'équation de Boltzmann-BGK, neoss:

M
%(f“’ + DYy pve V(e fO) % VW (fe 4+ ) = —fT (1.107)

A cette étape I'approximation de Chapman-Enskog consisie @onsidérer que les dérivées de
f(¢9) dans le membre de gauche. Ceci permet d’obtenir une expnggsur /() en fonction des
dérivées def (<9,

0 F
Y% —r(= +Vv-V+—.V,)f (1.108)
ot m
Compte tenue de I'expression @& , ses dérivées peuvent étre exprimées en fonction des égrivé
des variables macroscopiquesu et

(eq) (eq)
of _ (1.109)
dp p
ofed Vo — Ua) (e
gu - <7~7T)f( ) (1.110)
aftd 1 [(v=u? 3]
ar T [ T 2] (I111)

Sd’autant plus que I'approximation BGK n’existait pas erecor
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de plusona:
af(eq) _ (Ua — Ua) (eq)
e (1.112)
Ainsi (V) peut s'écrire :
10p 1
O - _~y22F 4 2y
f T{p BT + pv Vp
(Vo — Uq) OUy (Vg — ua)v Vu,
rT ot rT (.113)
Jrew sper upw—ue sy oo O
T 2rT 21 0ot T 2rT 2
Fata =) 1 e
m rT L

En définissant I'opérateur suivab{ X) = (2 + v - V)X , 'expression def() est :

B 1 (Vo — Uq)
fO =7 {;D(p) + TD(%) (1.114)
1 [(v—u)? 3 F, (Vo — uq) e
* ?{ 2rT _5} D(T)_ET}f( )

A cette étape du développement, il faut utiliser, les éguati1.99), (1.100) et (1.101) obtenues a
I'ordre 0 pour évaluer les termd3(p), D(u,,) et D(T'). Cette étape permet d’éliminer les dérivées
temporelles dans I'expression @é).

D(p) = —pV-u+(v—u)-Vp (1.115)
D(uy) = % WD + % +(V—u) - Vu, (1.116)
D(T) = —%TV-U+(V—U)-VT (1.117)

En reportant ces expressions et en utilisant le faitygaeprT’, nous trouvons :

PO {% {(V2;;)2 _ g} (v—u)- VT (1.118)
) Y
+ 5 (v = ua) (05 — up)Fpua — %(V TTU) V- U} A

Ainsi, nous trouvons quég qui est la partie hors d’équilibre dg¢ peut s’approximer par le
produit de la fonction d’équilibreg (9 par un terme comportant le gradient de la tempérafuee

les dérivées spatiales de la vitesse macroscopiqlest intéressant de constater que le gradient
de la masse volumiqueet le terme de forc& n’apparaissent pas dans I'expression de la partie
hors d’équilibre def a l'ordre]1.
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1.6.3.2 Tenseur des pressions a l'ordré

Maintenant que nous avons une expression Bty nous pouvons évaluer le tenseur des
pressions a I'ordre selon la définition donnée précédemment.

Pap = P + {(va — ua) (v — up)) )

= POus

_ _ Llv=uw? 51 (eq)
T/d" )05 = up) {T[ 2T 2} V- VT}f (.119)

_T/dv o) (Vg — up) {%(vk — ug) (v —ul)ﬁzuk}f(eq)

+7‘/dv )(vg — ug) {%(V;Tu)zv-u}f(eq)

La premiere intégrale ne contribue pas au tenseur des @nsssar elle ne comporte que des
moments impairs d¢<¢. La seconde intégrale donre)(0,ug + dgua — dusV - U) et la troisiéme
g&aﬁv - U. Nous avons définj = prT'7. Au final, nous trouvons pour le tenseur des pressions :

2
Pag = pdag — n(ﬁam + 85% — géa[gv . U) (|120)
En fait ce tenseur des pressions peut se décomposer en detikwtions bien connues, la pression
p qui est un scalaire et le tenseur des contraintes d’un éoemecompressiblg(d,us + dsua —
géaﬁv - u), ce qui signifie quey s’apparente a la viscosité dynamique.

[.6.3.3 Flux de chaleur al'ordre 1

Nous pouvons également calculer le flux de chaleur a I'ordre

Jo = (Gu—uv—up)

r/dv;(vu)(v()u)2 {%
- T/d v %(v —u)(v—u)? {%(vk — ) (v — ul)ﬁluk} fe0
+7‘/dV%(V—U)(V—U)2 {;(V;Tu) V- u}f(eq

(.121)
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Pour les mémes raisons que précédemment, seule la prenté&geale contribue au flux de chaleur
et nous trouvons :
Jo =—-AVT (1.122)

avec)\ = g,or2Tr. En fait, nous retrouvons la loi de Fourier qui dit que le fllxchaleur est
proportionnel au gradient de température et de sens oplpeséefficient\ s’apparente donc a la
conductivité thermique du fluide.

1.6.3.4 Hydrodynamique a l'ordre 1

Maintenant que nous avons évalué le tenseur des pred3iette flux de chaleud, a l'ordre
1, nous pouvons les insérer dans les équations de bilan so@aé) et (1.88).

dp

o +V-(pu) = 0 (1.123)
0 B 1 9 v
(a + Uﬁag)ua == E - ;80{]9 + vV Uq + g&a(v . U) (|124)
0 P 1
(a + u§ag)T = —Eagu[g + ocy 85()\85T) (|125)
2
+ g(ﬁauﬁ + 8gua — géagv : U)&ﬁua

avecr = % la viscosité cinématique et = gr la chaleur spécifique massique a volume constant.
L'équation de continuité reste bien sdr inchangée puisguiae approximation n’est nécessaire
pour son obtention. L'équation de bilan de la quantité devement au premier ordre n’est autre
que I'équation de Navier-Stokes contenant les termes dgpdison. Et la troisieme équation est
I'équation de la chaleur avec deux termes de dissipatiargiauction thermique et la dissipation
visqueuse. Ce systeme d’équations est parfois appelé@ugide Navier-Stokes-Fourier par réfe-
rence a I'équation de Navier-Stokes et a la loi de Fourietasare dans I'équation de la chaleur.

1.6.4 A propos def) ...

Comme nous venons de le voir, la procédure de Chapman-Enkkote une approximation
de la partie hors d’équilibre de la fonction de distributibnLe premier commentaire qui peut
étre fait surf(") est de constater que les situations hors d’équilibre ntexisju’en présence de
gradient de vitesse et/ou de gradient de température. loflaioe de cette remarque est qu'il peut
exister une situation d’équilibre thermodynamique engmés d’'un gradient de masse volumique
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et d’'un champ de force. C’est par exemple le cas du modeélendgihére isotherme. S'il n'y
a pas d’échange d’énergie avec l'extérieur, le systéemanibdynamique “atmosphere” évolue
vers une situation d’équilibre thermodynamique pour l#igueus les flux dissipatifs sont nuls :
isothermie de 'atmosphere et stratification a cause du pteepesanteur. La stratification et donc
la présence d’'un gradient de masse volumique n‘’empéchéepasence d’'une situation d’équi-
libre. Afin d’appréhender cette partie hors d’équilibrefJaous allons examiner deux situations
simples stationnaires hors d’équilibre : un écoulemersilidset une couche de gaz entre deux
parois de températures différentes.

[.6.4.1 Ecoulement cisaillé

Considérons une situation bi-dimensionnelle d’'un écoelenstationnaire dans la directian
cisaillée selony comme le montre la figure 1.4. Ceci est une situation horsudligge car du point
de vue macroscopique il existe un flux dissipatif constargquntité de mouvement, perpendicu-

Uy
dy . .
selon le développement de Chapman-Enskog a I'ardrexpression de I'écart a I'équilibre de la

fonction de distributiory (v) se réduit a :

laire a I'ecoulementP,, = —pr——. D’un point de vue mésoscopique, sous I'hypothése BGK et

Oy,
dy

FOW) =~ (0 — ), f9V)

= (1.126)

Pour simplifier les raisonnements, nous allons considéteforsqueu, = 0. La figure 1.5 repré-
sente cet écart a I'équilibrg dans le plar{v,, v,). La forme def") doit respecter les invariants
collisionnels.f(") correspond & une redistribution de particules qui ne dmumrini & la masse
volumique, ni a la quantité de mouvement et ni I'énergie tojpuee. Comme le montre la figure
1.5.a, les propriétés de symétrie d€) sont en accord avec ces contraintes d’'invariance. Il y a
autant de lobes positifs que négatifs, donc pas de contiibatla masse. Si on regarde de part et
d’autre de I'axer, il y a un lobe positif et un lobe négatif de part et d’autre 'ded, donc pas de
contribution a la composantede la quantité de mouvement. La méme chose pour liagtla
composante de la quantité de mouvement. Et pour fifiit) ne contribue pas a I'énergie cinétique
car compte tenue de sa formg!) est une redistribution angulaire ; la distribution en medueé
vitesse n'est pas modifiée. Donc comme I'énergie cinétiqudépend que de la distribution des
modules alors celle-ci n’est pas modifiée & .

En revanche cette redistribution des vitesses crée un fligudstité de mouvement dans la
directiony. En effet par définition la composangedu flux de quantité de mouvement selen
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+ UX

- UX

FIG. 1.4: Ecoulement cisaillé stationnaire entre deux plaques éépal'une distande La plaque
du haut a une vitesdé, et la plaque du bas a une vitessE,.. A I'état stationnaire la composante
de la vitesse du fluide selanest linéaire en fonction deentre—U, etU,,.

correspond au “transport” de parv,, ce qui se traduit par :

P,, = / AV v, f = / v v,v, fU (1.127)

car f°¢ étant isotrope pour un module de vitesse donné€, ne confpisia cette intégrale. On peut
définir P,,,(v) la contribution a7, des particules de vectewuytelle queP,, = [ dv P,,(v). Donc

par identification :
Ou,

1 (&
P,, (V) = v, fO) = T vivy fUV) e (1.128)
Lafigure 1.5.b représente dans le plan, v, ), cette contributior®,,(v) au flux de quantité de mou-
vement. Comme on peut le constater sur la figure ou par I'sspe deP,,(Vv), tous les vecteurs

vitesses contribuent au flux dans le sens opposé au cisaﬂle%. Le produitvgvge‘“/ (2rT) 7
donne la mesure de la contribution. Si on effectue le chaegede variablesv,, v,) — (v, ¢) tel
quev, = v cos(y) etv, = v sin(yp), alors le produit?v; e~v*/@rT) devientv* cos?(p) sin®(yp) e~/ D),
Ceci permet de dire que les vitesses qui contribuent le pinssituées autour des points de mo-
dulesv = 27T etd’anglep = 7 /4, 37/4, 57/4, Tn /4.

7e=v*/(2rT) provient def?
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3 -3
x 10 x 10

v T

y
v T

Fic. I.5: (a) : Représentation dans le planm,, v,) de la partie hors d’équilibre d¢ dans un
écoulement cisaillé stationnaire a I'endroit o1 = 0; (b) : Représentation d&,,(v) qui est la
contribution des particules de vectetau flux de quantité de mouvemery,. Toutes les particules
contribuent dans le sens opposé au cisaillement.

1.6.4.2 Couche de gaz entre deux parois de températures diffentes

De la méme fagon que précédemment, il est possible de redziliere de f) dans une
autre situation classique stationnaire hors d’équilibu@e couche de gaz entre deux parois de
températures différentes. La figure 1.6 illustre la sitoatque nous allons regarder. D’'un point

de vue macroscopique, a I'état stationnaire, il existe ux dle chaleur dissipatif constant dont

or .
seule la composante selgrest non nul .Jg, = —)\a— = —A(Ty — T1)/h. D’'un point de vue
Y
mésoscopique, sous I'hypotheése BGK et selon le developpasieeChapman-Enskog a I'ordie

I'expression de la partie hors d’équilibre de la fonctiordéstribution est :

2
Wy — T |V 5] OT e
fOw) =~ {2@ 2} s (1.129)

La figure 1.7 est une représentation g¢) dans le plan(v,,v,). Comme pour la situation
cisaillée les propriétés de symétrie &) sont telles quef(!) ne contribue pas aux invariants
collisionnels. Par définition la composante sejatu flux de chaleur est le “transport” de I'énergie
cinétiquev? paruv, :

1 1
Joy = / dv §v2vy f= / dv §v2vy fo (1.130)

Pour des raisons d’isotropi¢c? ne contribue pas a cette intégrale. Il est intéressant deiidéfi
Joy(v) la contribution aJ, des particules de vecteur vitessetelle queJg, = [ dv Jg, (V).
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T(y)a T,

T

>

0 h y

FiG. 1.6: Profil de température a I'état stationnaire entre deux pateitempératures; et 75,
séparées d’'une distankeAu stationnaire le profil de température du fluide est lireantrel; et
Ts.

Donc par identification :

flea) (1.131)

71 ,[ v 5] 0T
2r’ 2

JQy<V) = _T§U /Uyﬁ—y

La figure I1.7 illustre cette contribution de chaque vectétasse. Contrairement & la situation
cisaillée ou toutes les vitesses contribuaient au fMixdans le sens oppose au C|sa|IIem%qi,
o : L R Y
ici il existe des vecteurs vitesses dont la contribution aasdle méme sens que le gradient de

) aT . I A
température—. Mais bien entendu, la somme de toutes les contributioressumélux de chaleur

dy
dans le sens opposé au gradient de température.

[.6.5 Coefficients de transport pour le modele collisionneES-BGK

Comme pour I'équation de Boltzmann-BGK, nous pouvons teteoles équations macrosco-
piques a partir de I'équation de Boltzman-ES-BGK par la pdace de Chapman-Enskog (voir
[12] pour les détails). L'ordr® de la procédure est identique & BGK. La différence intetvéen
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v I(rT)"°

0
v I(rT)"?

FIG. I.7: Représentation dans le plan,, v,) de la partie hors d’équilibre d¢ dans le cas d'un
gradient de température dans I'axe

I'ordre 1 par un terme supplémentaire proportionnéldans la partie hors d’équilibrgd) :

£ :-T{l {(‘"“)2 _ 5] (V—u)-VT

T 2rT 2
1 L(v—-u? (eq)
_ _ _ - . e 1.132
+ o5 (Va — ua)(vs — up)Opua 3V U} f (1.132)
b
_ _ _ (eq)
+ 2p(rT)2 (Poéﬁ pé&ﬁ)(va ua)(vﬂ uﬁ)f

Ainsi la seule différence avec les équations macroscopidégvées pour Boltzmann-BGK, vient
de la contribution du terme supplémentairefde au tenseur des pressions et au flux de chaleur.
Compte tenue de la forme de ce terme supplémentaire, il relmesqu’au tenseur des pressions,
et nous trouvons que la viscosité cinématique est alors :

1
1-b

V=

rT'r (1.133)
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v 1T

0
1/2
vy I(rT)

(b)
FiG. 1.8: (a) : Représentation dans le plan, v,) de Jy,(v) qui est la contribution des particules
de vecteuw au fluxJy, ; (b) : Profil deJy,(v) en fonction de, pourv, = 0.

Pourb = 0 nous retrouvons, bien entendu, les résultats de BoltzrB&3ik- Ainsi pour I'approxi-
mation ES-BGK, le nombre de Prandtl vaut :

1
Pr

T 1-b

(1.134)
Le parametré de ES-BGK nous permet donc de choisir le nombre de Prandtligieftonsidéré.
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Chapitre |l

Boltzmann-sur-reseau (BsR)

Dans ce chapitre, nous commencons par une revue bibliogaptes modeles BsR existants
pour les écoulements isothermes (paragraphe 11.1). Cetteerest trés rapide et peut étre com-
plétée par la lecture des différents ouvrages de synthéperbles [15]. Le centre de ce chapitre
est plutét de montrer que certains schémas BsR parmi lexpluamment utilisés peuvent étre
vus, a strictement parler, comme des schémas de dicrétigdgiI'équation de Boltzmann. C’est
I'objectif du paragraphe 11.2 ou I'on montre comment le solaéde discrétisation est choisi de fa-
¢con a assurer un niveau de précision compatible avec lesxppations que nous avons utilisées
au chapitre | pour établir les équations de Navier-Stok&stélrét principal de ce point de vue
est qu’il permet de concevoir de nouveaux schémas BsR ensépodes exigeances de précision
accrues ou bien a une physique mésoscopique différenterdsnigr exemple est donné au pa-
ragraphe 1.3 ou I'on augemte le niveau de précision de facagssurer une bonne représentation
des effets thermiques. On aboutit ainsi a une propositiinale de schéma BsR pour les écou-
lements anisothermes. Un second exemple sera donné atrehapil I'on proposera un schéma
BsR pour les écoulements anisothermes avec transitionatepiguide-vapeur par discrétisation
de I'équation cinétique de Boltzmann-Enskog (présentéhapitre 1l1).

[I.1 Historique de BsR

Historiquement la méthode BsR dérive des automates cedlslat plus précisément des mé-
thodes Gaz-sur-Réseau (GsR). Ces méthodes GsR étaienst@iotement utilisées comme une
alternative a la résolution de Navier-Stokes et il n’étaitement question de leur associer une
interprétation réaliste en termes mésoscopiques.
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[1.1.1 Gaz sur Réseau

Les méthodes GsR sont basées sur I'image de particules mossvaléplacer, sur un réseau,
par saut d’un noeud a un autre. L'espace étant discrétisgnpamsemble de noeuds, les particules
ne peuvent se déplacer qu’avec un nombre restreint de estekscrétes. Lorsque plusieurs par-
ticules arrivent a un méme noeud, il y a collision. Ces callis doivent respecter des invariants
collisionnels qui sont bien sir le nombre de particules éomasse), la quantité de mouvement et
éventuellement I'énergie pour les fluides anisothermegr Mastrer ce type de méthodes, regar-
dons le “Lattice Gas Automaton” proposé par Frisch, Habglaet Pomeau [16] et par Wolfram
[17]. Dans ce modéle, des particules se délacent sur ururésmagulaire a deux dimensions (voir
Fig. 11.1).

FiG. Il.1: Evolution de particules sur un réseau. Les fleches noiregseptent les particules au
tempst et les fleches blanches au tenips 1. Ceci représente donc les configurations initiales et
finales aprés un cycle de collision et transport.

Chaque site du réseau peut contenifdes particules ayant un vecteur vitesse pointant vers
un site plus proche voisin. L'évolution de I'automate cetesien deux étapes : la collision et le
transport. La figure 11.2 montre quelques exemples de catigspossibles. Lorsqueou plusieurs
particules arrivent au méme noeud, elles collisionnergsa-dire que I'état de sortie est tel qu'il
respecte les invariants collisionnels : la masse et la g¢@ate¢ mouvement. Comme ce modéle ne
comporte qu’'un seul module de vitesse, la conservationétetyie est équivalente a la conser-
vation de la masse. Ensuite I'étape de transport est trqdesithaque particule se déplace vers
un site voisin en fonction de son vecteur vitesse. Si on &ppe(r,t) le nombre de particules
au noeud de coordonnéesiu tempg se déplacant a la vitessealors I'équation d’évolution de
'automate s’écrit simplement :
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Etat d'entrée Etat de sortie Etat d'entrée Etat de sortie
Y : 5 & s/ b & 5 ]

FiG. 11.2: Exemples de quelques collisions possibles.

ni(r + Vit + 1) = ng(r, ) + CG({ny}) (I.1)

ou C;({n;}) représente le changement du nombre de particulgst) par collision avec I'en-
semble des particulgs:; } au noeud. n;(r, t) ne peut prendre que les valelrsu 1. Connaissant
n;(r,t), les variables hydrodynamiques locales telles que la medgmiquep(r, t) et la quantité
de mouvemeni(r, t)u(r, t) peuvent étre évaluées par sommation du nombre de particyies) :

p(r.t) = mZni(r,t) (11.2)
p(r.tu(rt) = mY vn(r,t) (11.3)

oum est la masse d’'une particule. Bien que ces types de modé&et sminstruits de facon heu-
ristique, I'équation d’évolution (I1.1) ressemble beaupa ce que pourrait étre la discrétisation
d’'une équation cinétique de type Boltzmann puisque ce neatidrit I'évolution d’'un nombre de
particulesn; se déplacant a la vitessg et que I'équation contient un terme de transport et un
terme collisionnel devant respecter des invariants. Parpuacédure de prise de moyenne simi-
laire a la procédure de Chapmann-Enskog pour I'équationatiziBann, on peut démontrer que
les variables hydrodynamiques locales obéissent aux iégsatuivantes (voir [16, 17] pour les
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détalils) :
%+v_(pu) — 0 (11.4)
% +V-(g9(p)puu) = —Vp+vV3(pu)+nVV - (pu) (11.5)
9(p)

avecp = pc2(1— ?u2). Nous reconnaissons I'équation de continuité et une énuats proche
de I'équation de Navier-Stokes. Les automates cellulggeasrent donc étre utilisés comme une
alternative a la résolution de Navier-Stokes. Comme pagness ces méthodes sont discretes,
l'implémentation informatique est facile contrairemend @iscrétisation de I'équation de Navier-
Stokes. De plus, ce type de méthode se préte facilement adlétiaation. Il est aussi possible
de rendre compte d’écoulements plus complexes comme lesumporeux par exemple ou des
fluides binaires simplement en ajoutant une seconde équditoolution pour une autre espece
de particules. Cependant, bien que les automates ceflsilaffrent de nombreux avantages par
rapport a la résolution de Navier-Stokes, il y a aussi desnnénients. De par la nature booléenne
du nombre de particules, les simulations sont intrinsequement bruitées, ce qugeldl un lissage
des mesures par moyenne temporelle ou spatiale. Ensuiggtdiwfnombre fini de vitesses, les
automates souffrent d’'un manque d’invariance galilée@®sei se traduit par le fait qugp) #

1 dans I'équation de Navier-Stokes obtenue. Enfin, 'équati@tat n’est pas physique car elle
dépend des.

[1.1.2 De Gaz-sur-Réseau a Boltzmann-sur-réseau

Pour pallier les défauts des automates cellulaires, lehadés GsR ont évolué vers les mé-
thodes BsR au travers d’'une moyenne d’ensemble de I'équdtivolution (11.1). McNamara et
Zanetti [18] ont proposé de remplacer le nombre de parscujede nature booléenne, par une
variable réellef; = (n;). Cette nouvelle variablg; s’apparente de plus en plus a la fonction
de distribution monoparticulaire de I'équation de Boltzm4l1.30). L'équation d’évolution de ce
nouveau modele s’écrit :

fir + vyt +1) = fi(r, 1) + C:({f;}) (11.6)

De méme, qué¢; est introduit comme une moyenne d’ensemblexdd’opérateur de collision est
une moyenne de I'ancien opérateur de collision, §giff;}) = (C:({n;})) . Bien que palliant
certains inconvénients des premiers automates cellsjareparticulier le bruit statistique, le colt
de calcul de I'opérateur de collision est trés importantrtas applications pratiques. Par exemple
pour un modeél@D a6 vitesses discrétes, I'opérateur de collision est une ot taille2® x 26,



Historique de BsSR a7

Pour réduire ce colt de calcul, Higuera et Jiménez [19] copgsé de linéariser I'opérateur de
collision autour d@fi(o) qui s'apparente a la distribution d’équilibre de

Ctsh ~ 2 5 - 1] (1.7)

Cette linéarisation de I'opérateur de collision permeté&ttuire la taille de la matrice@x 6.

[1.1.2.1 Modeéle BGK sur réseau

La similarité entre ce que pourrait étre une discrétisatierféquation de Boltzmann et les
premiéres méthodes appelées Boltzmann-sur-réseau reatacellement conduit a utiliser I'appro-
ximation BGK [10] (voir 1.5.1) pour le terme collisionnel.igh et coll. [20] et Chenet coll. [21]
ont proposeé d’introduire un temps de relaxatioet de poser un terme collisionnel de la forme :

CtAY === [fi- 5] (118)
la fonction de distribution d'équilibréfeq) ayant la forme suivante :
FE9 = p 1+ AV - u) + B(v; - u,)? + CU?] (1.9)

ou A, B etC sont déterminés en accord avec les lois de conservatioref@arque que la tempé-
rature n'apparait pas dans cette fonction d’équilibresatpre la “vraie” fonction d’équilibre de

Maxwell-Boltzmann dépend de la température. Ceci prouienfait que I'essentiel des premiers
modeles BsR, tout comme les modeles GsR, était pensé poudd’@’écoulements de fluides
isothermes.

A la limite macroscopique, et la limite oz — 0 et 6t — 0, une procédure similaire a
Chapman-Enskog permet de retrouver les équations magigses suivantes :

dp
§+V (pu) = 0 (11.10)
p8t+puv (U = —=Vp+ prV3(u) (11.11)
avec
p = cp (1.12)

v = ¢ <F— %) ot (11.13)
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Léquation d’état est “plus physique” que dans le cas de GaRelte ne dépend pas dé mais
seulement de, ce qui semble pertinent sous I'hypothése d’un fluide isotiee Dans les expres-
sions de la pression et de la viscositéune constante qui dépend de la topologie du réseau et du
jeu de vitesses discrétes.est souvent interprétée comme la vitesse du son du fluideuetamt
celle-ci dépend directement des caractéristiques duuébkaus reviendrons sur cette ambiguité
au paragraphe 11.2.3.

Ce type de modéle, avec un terme collisionnel de type BGKstitore le point de départ des mé-
thodes BsR utilisées dans les année@st encore aujourd’hui. Ces modéles sont souvent présentés
avec la dénominatioP,;(),, oud est la dimension du problemerete nombre de vitesses discretes.
Les modeles les plus couramment utilisés 90269 en deux dimensions é23Q15 et D3Q19 en

trois dimensions. Pour exemple voici les détails du mod&e&9 de Qianet coll.[20] :

e L'équation d’évolution est :

F(r vt + 1) = fi(r, 1) —% [fz- — f}eﬂ (1.14)

e Ladistribution d’équilibre a pour expression :
icu (vieu)? o u?
2 2ct 2c2

e Les vitesses discreteset les poidg; sont :

v
fif=tip |1+

7

olic, = c¢/v/3 avecc = dx/dt.

(0,0) 4/9 =0
Vi=1{ (+¢,0)0,+c¢) ti=2 1/9 i=1—4 (11.15)
(e, £c) 1/36 i=5 — 8

e Les champs macroscopiquestu s’obtiennent par sommation de:

p = Z fi (1.16)
pu = szfz (1.17)

1I.2 Déerivation de Boltzmann-sur-réseau a partir de I'équation
de Boltzmann
Comme on vient de le voir précédemment, la méthode BsR a stériguement dérivée, a

partir de modéles heuristiques d’automates cellulaird’®, s s’inspirant de I'équation de Boltz-
mann et en particulier I'équation de Boltzmann-BGK. Et giant, il semble y avoir une parenté
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plus forte que la seule inspiration. L'équation de Boltzmast I'équation d’évolution de la fonc-
tion de distribution monoparticulairg(r, v, t) et BSR est un algorithme pour calculer I'évolution
de ce qu’'on a appelé la fonction de distributifir,t) de la vitesse discréte;. Tout comme
'équation de Boltzmann, les schémas BsR présentent uretdentollision devant respecter des
invariants collisionnels et un terme de transport. Comme péquation de Boltzmann, il existe
une procédure similaire a Chapman-Enskog permettantideivetr les équations macroscopigues.
Compte tenue de cette similarité apparente entre BsR etdtén de Boltzman, il était intéressant
de tenter d’établir un lien formel entre les deux. Cette déstration a été faite en 1997 par He and
Luo [22, 23] pour certains schémas BsR. Ces auteurs ont éengu& BsR peut étre vu comme une
discrétisation particuliére dans I'espace des phasegdedtion de Boltzmann. Précédemment les
valeurs calculées de la fonction de distribution discrééaient pas supposées avoir un sens phy-
sique direct, a I'échelle mésoscopique, comme mesure distiEbdtion des vitesses. Il apparait
au contraire avec le travail de He et Luo, pour un ensembleldénsas parmi les plus employés
dans la littérature BsR, qug(r,t) est directement exploitable. La démonstration corresaoted
donne une base théorique solide a BsR et en particulier dayressibilité de résoudre I'équa-
tion de Boltzmann elle-méme, a un ordre de précision dorlogs que précédemment ce type de
meéthodes était seulement utilisé comme une alternativeéstdution Navier-Stokes.

[1.2.1 Discrétisation spatio-temporelle

Le point de départ de cette démonstration est I'équation @&®Bann-BGK sans terme de
force extérieure : .
of f=r

7 v-Vf=—
ot + f T
(v—u)?

avecf®! = L= exp [— 5T ] , la fonction de distribution d’équilibre en deux dimensatr le

temps de relaxation. Formellement, la solution de cettatgupeut s’écrire sous forme intégrale :

(11.18)

1 ot
f(r 4ot v, t+6t) = e /7 f(r v, t) + —e—‘”/f/ el/mfear vt vt +t)dt’ (11.19)
T 0

Le premier terme de cette solution décrit tout simplemeaitdhuation exponentielle du nombre
de particules, de vitessg qui étaient em au tempg et qui arrivent au tempis+ 6t enr + vit. Ce
sont les particules qui ont échappé aux collisions et qupantonséquent leur vitesgele départ.
Le second terme est le terme source : durant le trajet erdte + vit, des particules de vitesse
V' 2 v acquiérent une vitessesuite & une collision.

En faisant un développement de Taylor au premier ordre adpdieentiellee™/7 ~ 1 — 6t/
et en faisant I'hnypothése qu&? ne varie pas trop entreett + 6t de fagcon & pouvoir approximer
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I'intégrale parfo‘” e!'/7 fea(r, v, t) dt’, nous obtenons :

f(r+vot, v, t+dt) = f(r,v,t) — % [f(rov,t) — f9(r,v,t)] (11.20)

Nous retrouvons ainsi, 'équation d’évolution du modél&Bavec le terme collisionnel BGK, en
identifiantT = £. Pour autant, 'espace des vitesses n’est pas encoretiscre

[1.2.2 Modeéle de vitesses discretes

Le fait de discrétiser I'espace des vitesses va nous paartrésoudre I'équation de Boltz-
mann, non-pas de fagcon exacte, mais a un ordre pres. La Héfest de savoir quantifier I'erreur,
et de déterminer a quel ordre il est pertinent de s’arréteforation des besoins affichés. Au
chapitre I, la procédure de Chapman-Enskog nous a montréegié/eloppement a I'ordre de
'équation de Boltzmann est équivalent a la résolution dstésye d’équations macroscopiques
Navier-Stokes-Fourier. Etant donné que les premieresorersle BsR étaient utilisées comme une
alternative a la résolution de Navier-Stokes pour un flusdéherme, on peut décider de déterminer
un jeu de vitesses discretes tel que la résolution de I'émude Boltzmann discrétisée corresponde
a un niveau de précision comparable a celui de I'approxondtiNavier-Stokes fluide isotherme
}. Nous partons donc sur la base d’'un fluide isotherme en rappgle sous cette hypotheése,
I'approximation conduisant & Navier-Stokes gst <+ f(1) avec (sous I'approximation BGK) :

70 = 7 [t = w3 by
soit
fO = Py(v) fleo (1.22)
avec
Py(v) = —7 {%(va — ) (05— 1) Dt — %%v - u} (11.23)

Le pointimportant & retenir est qué") s'écrit comme le produit d¢°? par un polyndme d’ordre
env, P»(v). Pour cette expression dgele jeu de vitesses discréteset les poids de quadratute
utilisés doivent donc assurer les deux premiers momenfs demasse volumiqug et la vitesse
macroscopique. Doivent aussi étre exacts, les flux de ces moments. Donodete des pressions
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P doit étre exact. Autrement dit, nous devons trouver une i@ace telle que :

p=[fav = Swrr £ = (11.24)
pu = /vf dv = Z“’i vi( e+ 19 = pu (11.25)
Pas = / vavsf AV = Y wiviaui(f 4+ £V) = P (1.26)

P, fait apparaitre le terme,v; qui est un carré de vitesse £t est le produit def*? par un
polyndme d’ordre env. Trouver une quadrature capable d'évaluer de fagon exagie et P, 3
revient donc a trouver une quadrature permettant d’évakeéacon exacte les moments d’ordre

de f°?. Une telle quadrature assurerait une résolution de I'éguae Boltzmann-BGK a un ordre
équivalent a la résolution de I'équation de Navier-Stokasrun fluide isotherme. Cependant, le
modeéle de vitesses discrétes qui serait ainsi obtenut tgyparaitre des vitesses discretes dépen-
dantes du champ de vitesse macroscopiguear f°? dépend dei. Pour simplifier I'algorithme,

on cherche a obtenir un jeu de vitesses discrétes uniquel’dapace et le temps. Pour cela on
effectue un développement supplémentaire.

Pour un écoulement a faible nombre de Mach, soit< +/rT, la fonction de distribution
d’équilibre f<? peut en effet se développer ainsi :

fe =~ P exp{ V—z} {1+v-u+(v-u)2_ U2} (11.27)

2mrT 2T v 2(rT)?2 20T
V2
“4 ~ P - 1.2
e Rl e |- (128)

% Ce développement permet d’écrire la distribution d’éfrel f¢¢ comme le produit d’un poly-
nome d’ordre2 env par une gaussienne centrég)eBi on récapitule, compte tenue de I'expression
de f et du développement a faible nombre de Mat®), peut s’écrire comme le produit d’une
gaussienne centrée e@mar un polyndme d’ordré env.

1 V2
fY = Py(v)exp {—ﬁ} (11.29)
Au final calculer de fagon exacte pu et P,; pour f = f¢ + £ revient & calculer de fagon
exacte les moments d’ordfed’'une gaussienne centrée @nToutefois, I'ordre peut étre abaissé
de6 a5 car, compte tenue de I'hypothése d’'un écoulement a faibiebne de Mach, nous avons
V -u = 0, ce qui a pour conséquence gti€ s’écrit non plus en fonction d’un polyndme d’ordre
2 env mais simplement d’un polynéme d’ordteNous devons donc trouver une quadrature pour
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évaluer ce type d’'intégrale :

2 2
I, _sz  ( exp[ QVT} :/Pn(v)exp [—J—T} v (11.30)

avecn < 5. Pour ceci nous disposons des quadratures de Gauss-HEt4jitBans cette famille
de quadratures, pour calculer les moments de facon exacpe'ful’'ordren, il faut une quadrature
d’ordre k telle quen = 2k — 1. C’est-a-dire que nous avons ici besoin d’une quadratuweld
k = 3. Ceci signifie qu’il suffit d’avoir en coordonnées cartésies, 3 valeurs discrétes pour
chaque coordonnée de vitesse, c’est-a-flikdtesses discretes en dimensinPour l'intégrale
Suivante :

/ Py(x)e™™ dz =" "W, P,(;) (11.31)

d’aprés la théorie de Gauss-Hermite, Jeabscisses discrétes sont les3 racines du polynéme
d’Hermite H3(x) et les poids correspondants ont pour expressions :

23+13!\/7_r
L= Ve .32
" [Hé(xz)] (132)

En identifiant, pour notre application, nous trouvons que3lgaleurs discretes de chaque coor-
donnée de vitesse sont, 0 etc, avecc = v/3rT. Ainsi, en dimensior2 v; = v;,€, + v;,€, etles
composantes;, etuv;, appartlennent a 'ensemble-c¢, 0, c}. Les poids de quadrature sont alors

simplementy; = WmewW ez . Ainsi les9 vecteurs vitesses discrétes (Fig. 11.3) et leurs poids
correspondants sont :

(0,0) wg oo i=0
Vi=1 (£¢,0)(0,%c) wi=4{ WeWyext i=1—4 (11.33)
(e, £c) W2 e3r i=5— 8

Cette procédure de discrétisation de I'équation de BoltevBGK aboutit exactement au mo-
dele Boltzmann-sur-résedi2(Q9 dérivé de facon plus heuristique auparavant (paragraph2.i)
a condition d’identifier la pseudo-fonction de distributtiy du modele heuristique au produit de

: o : Wi W,
la fonction de distribution par le poids de quadratuyé et en remarquant que = 272‘” avec
e
cs = Vrl.

L'intérét de cette démonstration n’est pas seulement detneroque certains modeles BsR
correspondent a une discrétisation particuliere de I'équale
Boltzmann. Il est intéressant de voir que la constructiorjedude vitesses discrétes s’est faite
en s’appuyant sur la procédure de Chapman-Enskog a I'ardee I'ordre 1 a été choisi, car le
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7 4 8

FiG. 11.3: Vitesses discretes du moddli2Q9.

but était d’atteindre le méme niveau de précision que cesiédjuations macroscopiques (Navier-
Stokes). Mais dans les cas ou il est nécessaire d’aller@itugdéns le développement de Chapman-
Enskog, il est possible d’appliquer la méme procédure péterchiner I'ordre de quadrature et le
nombre de vitesses discretes nécessaires. Par exemptedesarsituations hors d’équilibre ou
Navier-Stokes n’est plus valide mais ou I'équation de Btirest pertinente. L'équation de Burnett
correspond a I'ordreé du développement de Chapman-Enskog [12]. Alors il est ptesde dériver

un modele BsR qui sera au moins aussi précis que I'équatiBoghett. De facon plus générale, les
meéthodes BsSR obtenues par discrétisation de I'équatiorotterBann peuvent donc étre incluses
dans la littérature des “modéles a vitesses discretes” lpadsolution numérique des équations
cinétiques [25, 26, 27].

[1.2.3 Remarques concernant la mise en ceuvre

Une des spécificités de BsR est le lien entre le pas d'espaet le pas de tempé&t, soit
d0x = cdit. Ceci permet le “saut” des particules de noeud en noeud.r€sdp développement de
Chapman-Enskog pour I'équation de Boltzmann-BGK, la \8@éodu fluide est liée au temps de
relaxation par la relation = r7'7. Et pour le schéma BsR, le développement de Chapman-Enskog
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sur réseau (voir Appendice F) aboutit a la relatios »1'(7—1/20t), alors que nous venons de dé-
montrer que certains schémas BsR correspondent a une f@onétisée de I'équation Boltzmann-
BGK. En fait, le facteur correctif-1/24t vient de la discrétisation spatio-temporelle. On peut donc
parler de viscosité numeérique. Cette viscosité numériquaiaconséquence que pour des simula-
tions réalistes, le vrai temps de relaxation du fluide n@asigis utilisé directement. Il est ajusté, en
tenant compte du termel /24t, afin que la viscosité résultante corresponde a la viscositiélide
simulé. Le temps de relaxation ajusté est déne 7 + 1/24t soit également = LT + 1/26t.

Un point important également est que pour des raisons diitg&tabmérique, le pasrde temps doit
étre tel quedt < 27. Le plus courant est de prendie= 7 soitdt = 7 + 1/20t ce qui conduit &

dt = 27 ou encore en terme de viscosité= f—; Prenons I'exemple de I'air203 K de constante
massique: = R/M =~ 287 J.kg~'.K~! et de viscosité¢ ~ 107¢ m?.s~1. Cela conduit a un pas de
tempsdt = 2.38 107! s, ¢ = 502.3 m.s~! et donc un pas d’espade = cét = 1.2 1078 m. Ces
valeurs de pas de temps et d’espace sont nécessaires slibregoudre I'’équation de Boltzmann-
BGK sous-jacente au modeéle BsR. Cependant, elles sontrstone@propriées lorsque I'objectif
n'est pas la résolution du modéle mésoscopique mais landigtation des champs macroscopiques
p etu. Il est possible de mener de telles simulations avec des’papate et de temps plus ap-
propriés. En effet, il faut se rappeler que le modele BsRuémment dérivé correspond & une
résolution de I'équation Boltzmann-BGK compatible a I'ééé macroscopique avec la résolution
de I'équation de Navier-Stokes pour un écoulement isotee@®n pour un tel écoulement la seule
caractéristique du fluide est la viscosité. Dans ces camdifi’écoulement ne dépend pas de la
température ni de la constante massique du fluide. On peatjdoer librement sur ces grandeurs
de facon a modifier les contraintes de discrétisastionsaspait temporelle. Dans le cas = 7

. . R 2 . 102
les contraintes se résumenda = it = 3rTot etét = 27 = —; soit encorejt = éi et
T 14
1 622 R .
T = —% . Concretement, on choisi donc un pas d’espace, par exempte 10~2 m et on

détermirne la valeur de température et le pas de temps as$ataonne valeur de viscosité, ce
qui nous donne icl” = 4.18 10~% K etdt = 0.1667 s. On voit donc que lorsque I'objectif est
d’utiliser BsR comme une alternative a la résolution de Ba%tokes, il est possible d’augmenter
les pas de temps et d’espace par la résolution du modéle cogégse d’un autre fluide (temps de
relaxationr et température différents), ce fluide se traduisant par lmenécoulement a I'échelle
macroscopique (champs de masse volumjgde vitessau).

[1.2.4 lllustration de la méthode Boltzmann-sur-Réseau

Afin d'illustrer les possibilités de la méthode BsR pour lesidements isothermes, nous pré-
sentons des résultats de simulations numériques effecpaéd/. Clifton dans le cadre d’un projet
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de recherche sur I'évaluation de la résistance hydrauliguailieux poreux par la méthode BsR
[28]. Ces simulations ont permis d’évaluer numériguemamnésistance hydraulique d’un empile-
ment régulier de spheres de rayo(cf. Fig. 11.4).
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(a) (b)

Fic. Il.4: (a) Empilement de sphéres arrangées dans une configuratiogque face centrée. Le
cube représente le domaine de simulation . (b). lllustnadian écoulement obtenu par simulation
BsR dans un plan de I'empilement de spheres.

Les figures I1.5.a et I1.5.b présentent des résultats delatioos sous la forme d’un coefficient
K7y, introduit par Zick et Homsy [29], et qui représente le rapeotre la force de trainée subie
par une sphére au sein de I'empilement et la force exercéarsusphere isolée. Un premier
jeu de simulations a été effectué avec un modele BsR traditid’3()19, un terme collisionnel
BGK et des conditions aux limites de type rebond simple (SEBautres simulations ont été
effectuées avec un terme collisionnel & multiple temps @xation (MRT [30]) , des condtitions
aux limites SBB et avec des conditions aux limites plus éedudécrites par Bouzidi coll.[31]
(LIBB). Les conditions de simulations sont : un maillagel@&3, un pas d’espacé&r = 1, un
pas de tempst = 1 et un temps de collisionl = 1. Ces résultats ont été obtenus en mesurant la
vitesse de I'écoulement lorsqu’une différence de presdipest appliquée entre les deux faces de
'empilement séparées par une distanc€eci a permis de remonter au coefficiéfit;; par la loi
de Darcy qui peut s’exprimer sous la forme :

2 a® Ap
90Kz plL

ou 4 est la viscosité dynamique du fluidegeest la fraction volumique de solide.

u= (11.34)
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FiG. I1.5: (a) CoefficientK ;; en fonction de la fraction volumiqug Sont représentés les résul-
tats semi-analytiques de Zick et Homsy ainsi que les résud@asimulations BsR effectuées avec
les termes collisionnels BGK et MRT et avec les conditionslauites SBB ou LIBB. (b). Cette
figure représente les erreurs relatives du coefficiént; obtenu par les simulations par rapport
aux résultats de Zick et Homsy.

Ce type de configuration est typique de ce que nous cherchobgeair a terme en ce qui
concerne la complexité géométrique, mais cette fois-crésgnce de transitions de phase et d’ef-
fets thermiques.

1.3 BSsR pour les écoulements anisothermes

Jusqu’a présent, nous avons présenté la méthode BsR comamaéihode numérique pour
résoudre les écoulements de fluides considérés commerisaheNous allons maintenant faire
une breve présentation des modeéles BsR de la littératunegtant de résoudre les écoulements
de fluides anisothermes. Puis nous présenterons le modgdeggr dans ce travail de these qui
s’appuie sur une extension de la démonstration de He et Lasection 11.2, et qui est donc un
modéle BsR résultant d’'une stricte discrétisation de k&igun de Boltzmann.

[1.3.1 Modeéles existants

Plusieurs tentatives de modeéles BsR thermigues ont é&s fagtpuis les débuts de cette tech-
nigue. Ces différentes propositions peuvent étre classifi@ trois catégories :
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— 1 modéle BsR (pour la résolution des champgp ééu ) € 1 modéle macroscopique (pour
la résolution du champ dE)

— 2 modeéles BsR (1 modéle BsR pour la résolution des champsetie ¢ 1 modele BsR
pour la résolution du champ d@

— 1 modele BsR (pour la résolution simultanée des champs deet T")

Les modeles de la premiére catégorie sont dits hybridesd@?2ils font appel a un schéma
BsR traditionnel pour la résolution du champ de masse vajum{ou de pression) et du champ de
vitesse macroscopique auquel on ajoute une équation ncapigsie de conservation de I'énergie
résolue par des méthodes numériques classiques de typeeddés finies.

Les modeles de la seconde catégorie utilisent égalementodeleBsR traditionnel pour la
résolution du champ de masse volumique et du champ de vitess®scopique auquel on ajoute
un autre modele de type BsR. Ce second modéle est consttaltalgorte qu’a la limite macrosco-
pique, le premier moment de la nouvelle fonction de distrdrusoit la température et I'’équation
macroscopique correspondante soit I'équation de consenvde I'énergie. Dans cette catégorie,
on peut citer 'approche scalaire-passif proposée par $&in pour laquelle la seconde fonc-
tion de distribution est telle que son premier moment estoatage qui satisfait & une équation
macroscopique de type convection-diffusion. Dans le model Shan ce scalaire est la tempéra-
ture mais il est a noter qu’originairement les approchefaseapassif ont été développées pour
les écoulements a plusieurs phases pour lesquels le scatait la densité d’'une seconde es-
péce. Parmi les modéles a deux fonctions de distributidongiégalement la proposition de He
et coll. [34]. Cette approche donne une base physique a la seconct®ofode distribution. He
et coll. définissent la seconde fonction de distributiocomme la fonction de distribution d’éner-

gie interneg = Mf. Par définition, la température correspond au premier modesnette
nouvelle fonction de distribution. Ce modeéle n’est pas une simple reformulation de I'équation
de Boltzmann-BGK par un systeme équivalent de deux équsationplées car les auteurs attri-
buent un temps de collision différents aux deux équatioesteimps de collision de I'équation
d’évolution deg permet d’ajuster la conductivité thermique du fluide ind&@enment du temps
de collision de la premiére équation d’évolution qui esgli@ viscosité. Dans le cas ou les temps
de collision ont la méme valeur, ce modéle fait partie dedeigme catégorie parce que I'énergie
interne correspond bien au second moment de la fonctionstigudition f (ce qui n’est plus le cas
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lorsque les temps de collision sont différents).

La troisieme catégorie fait référence aux modéles consehémergie. On entend par la des
modeles a une seule fonction de distribution pour lesqadkmpérature et le flux de chaleur sont
respectivement les moments d’ordret 3 de la fonction de distribution. En général, ce type de
modele requiert un nombre de vitesses discréetes plus iafgdB5, 36, 37]. Pour des raisons pas
encore bien comprises, ce type de modeéles présente ddslitBstanumériques [35, 36].

Dans ce travail de these, nous proposons un modéle consééveargie a une seule fonction
de distribution. La construction du modele de vitessegéies peut étre vue comme une extension
possible du travail de He et Luo sur la démonstration du lbemél entre I'équation de Boltzmann
et la méthode BsR. A notre connaissance, cette démarchamaig été explorée auparavant. Le
modéle résultant ne présente pas de problemes particdliessabilités numériques. La descrip-
tion qui suit est reprise de l'article [38] “Energy-consiey lattice Boltzmann thermal model in
two dimensions”J. Stat. Physl121, 119 (2005)) qui est joint en annexe B. Comme pour He et Luo
[22, 23], le point de départ est I'équation de Boltzmann-BGK

of I A
aﬂLV'V(f)—— -

(11.35)

[1.3.2 Modeéle de vitesses discretes

Nous rappelons que la démonstration de He et Luo est basée digcrétisation de I'espace
des vitesses par la quadrature de Gauss-Hermite. Luidisde cette quadrature est adaptée car
différents développements et approximations (Chapmaskda I'ordrel, approximation faible
nombre de Mach) permettent d’écrire, a un ordre de précitomé, la fonction de distribution
f comme le produit d’'une gaussienne par un polynéme.d2ans le cas isotherme, I'ordre de la
guadrature requis était tel que la masse volumjgua vitesse macroscopiqueet le tenseur des
pressions soient évalués de fagon exacte pgue f°? + f(1). Reprenons ces étapes dans le cas
non-isotherme.

Dans le cas non-isotherme, la quadrature doit étre capahalder les moments dgjusqu’a
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I'ordre 3 qui correspond au flux de chaleur :

p=[fav = Sw i =
pu = /vf v = Z”i vz-(ffq+fi(l)) = pu
P = /vavgf dv = Zwi ViaVig(f{T+ fi(l)) = P.g
gprT:%/(v—u)zf v = %Zw (vz-—u)2(f;q+f,.(”)=9prT

Jo = %/(V — U)Sf v = %sz (v; — U)S(fieq + fz'(l)) =Jg

avecf = fe + f tel que :

+ %(va — ua) (Vg — up)Ogta — %(V;Tu)zv : u} fled (1.37)

soit f() = Py(v) f(9 avec :

(V) = -1 {% [<V2;T“) - g} (V—u) VT (11.38)
b — o) (0 — 05) Dot — %W ;T”)Qv : u} (11.39)

P; est un polynéme d’ordrg env et f(1) s’écrit comme le produit de la fonction d’équiliby&?

par un polynéme d’ordrg env. Comme précédemment il est possible d’arréter le développe

a cette étape et d'utiliser une quadrature de Gauss-Heas#arant une évaluation exacte des
moments dg“? jusqu’a I'ordre6. Comme pour le cas isotherme, les vitesses discretesaptast
seraient alors dépendantes du champ de vitesse macraseopioais elles seraient également
dépendantes du champ de tempéraiur f°? dépend a la fois da et deT'. Ainsi, pour rendre
unique le jeu de vitesses discrétes dans I'espace et daespst il faut développer la fonction
d’équilibre pour un faible nombre de Mach (comme au pardwdp2.2 ) et faire également un
développement autour d’une température de référence quenuierons, la notationd étant
utilisée pour représenter le champ- 7' — T}, des écarts a la référence.
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Ce développement permet d’écrire, dans le cas non-isothdanfionction d’équilibre comme le
produit d'une gaussienne centréelgmar un polynéme d’ordré env. En reportant ce développe-
ment dans I'expression gé') on obtient le produit d’une gaussienne centrée par un polynéme
env d’ordre 7. Donc au final, pour évaluer les moments flgisqu’a l'ordre3, an accord avec
I'ordre 1 du développement de Chapman-Enskog la quadrature de Gausste doit évaluer de
facon exacte les moments d’ordre d’'une gaussienne centrée @nCette exigence requiert une
quadrature d’ordré, c’est a dire6 abscisses discrétes par dimension, & compares abscisses
discrétes par dimension en isotherme. Gadscisses sont lésracines du polynéme de Hermite
Hg(v/\/2rTy). Les6 valeurs discretes de chaque coordonnée de vitesse-sont-c,, —cl, cl,

c2 etc3 avecel = 0.61670659+/rTp, c2 = 1.88917588+/rT, etc3 = 3.32425743+/rT,. Ainsi, en
dimensior, les36 vecteurs vitesses discretes et leur poids correspondaiiescsuivant :

( (£c1, £c1) (WP
(fcq, o) (£ea, £c1) Wi W,
v, — (fc1, £e3)(Fer, £e3) o — Wi Wy (11.41)
(£co, te3) W3
(fco, c3)(F£cs, £2) Wy W3
[ (£cs, £c3) | W2

avecW; = 1.23320599, Wy = 1.31647854 et W3 = 1.59977183.
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[1.3.3 Modele approché

En étendant la démarche de He et Luo, nous venons de moniitéaqu36 vitesses discretes
en2 dimensions e216 en3 dimensions. Il faut noter qu’une quadrature de Gauss-Hermordre
6 assure I'évaluation exacte des moments d’ordrel’une gaussienne, ce qui esbrdre sup-
plémentaire par rapport a I'ordre requis. Pour autant uregiiure d’ordres ne suffit pas car
elle n’assure pas I'exactitude des moments de la gaussgmeg@isqu’a I'ordred. Bien qu’une
quadrature d’ordré ne soit pas rigoureusement adéquate pour les applicatisitlaermes, nous
proposons de l'utiliser afin de réduire le nombre de vitedgasétes. Leur nombre est ainsi réduit
a25 en2 dimensions et25 en3 dimensions. Cette perte de précision (le calcul du 10 émeanbm
sera moins précis mais pas totalement erroné) s’accomjmégmedr d’un gain non-négligeable en
terme de taille mémoire. Ayant fait ce choix, nous avons olgsqu’il était possible d’améliorer
cette quadrature réduite en recalculant les poids de larguad en chaque noeud et a chaque
pas de temps en fonction de la température locale. Conceétame température de référenige
est choisie afin de déterminer un jeudealeurs discréte$v;(7y)} pour chaque coordonnée de
vitesse. Ce$ valeurs sont fixes et uniques pour tout I'espace et toute iéedde la simulation :
{—cy, —c1,0,c1, o} avece; = /(5 — V10)rT, ete, = 4/ (5 + +/10)rT,. Les poids de quadrature
ne sont par contre pas fixes mais sont recalculés en fonatide température localE & chaque
pas de temps. Pour chaque coordonnée de vitesses leslpgitls sont déterminés de fagon a
assurer le calcul des moments suivant :

/e—% v = S WD) (11.42)
/UQe_z’fT dv = ZVVZ(T) v (Tp) (1.43)
/ e i do = S WiT) v (Th) (11.44)

La solution de ce systeme conduit aux expressions des poifitsetion de la température locale
du noeud considéré :

1145
2a (11.45)
CQKQ_K4
Wy(T) = 2 11.46
M = agg—a (149
Ki— &K
Wy(T) = —4—ane (11.47)

avecK, = V2mrT, Ky = rTKoetK, =3 (rT)2 K,. Comme au paragraphe 11.2.2, on applique ce
schéma aux deux composanteset v;, et les poids de quadrature sont tout simpleme(if’) =
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2

Wi (T)ezrW,, (T)ezr . En résumé leg5 vecteurs vitesses discrétes et leurs poids correspondant
sont les suivant :

( [ Wo(T)?
(0,0) g
2rT
(£c1,0)(0, £¢1) of )2 126(% )e
(:l:ch:l:cl) Wl(T) earT ]
Vi=q (6,000, %00)  wilT) = Wo(T) Wa(T) exr (11.48)
c2
(e, o) Wo(T)? ezzr-tlr
o2 2
(£c1, £c2) WL (T) Wa(T) R
(:i:CQ, :*:Cl) C% C%
Wl(T) WZ(T) e2rT e2rT

Le niveau de précision assuré par cette quadrature réduitdgsimulation d’écoulements aniso-
thermes ne peut étre évalué que par des tests numeériquesigliasprocédure de discrétisation
employée (ordré de Chapman-Enskog, faible nombre de Mack < /7T et faible différence
de températurd’ = T, + ¢) n'est pas menée rigoureusement jusqu’a son terme. Deefsis t
numériques seront détaillés au paragraphe 11.3.6 aprédisogssion concernant la discrétisation
spatio-temporelle (paragraphe 11.3.4) et une analysatgtiaé de la pertinence de la répartition de
notre jeu de vitesses discretes dans I'espace des vitgssagi@aphe 11.3.5).

[1.3.4 Discrétisation spatio-temporelle

En ce qui concerne la discrétisation spatio-temporelleedyme de modele, dit “multispeed”,
il n'est pas possible d’appliquer les stratégies classiopré employées pour les schémas BsR
isothermes pour lesquels le pas d’espace et le pas de temiggs@ar le module de vitesse par
la relationdx = cdt. En effet, pour les modeles “multispeed” tel que celui quasnproposons,
il y a plusieurs modules de vitesses non-nuls et leur rapggxirhon-entier. Par exemple pour la
guadrature d’ordré que nous utilisons, si nous avioas= 2 ¢, il serait possible de faire sauter
les particules de noeud en noeud, mais ce n'est pas le cas. [om la discrétisation spatio-
temporelle de I'équation de Boltzmann, nous allons utilides schémas aux différences finies
[39, 37]. Nous rappelons que notre point de départ est lggude Boltzmann-BGK :

of S
a—‘—V'Vf—— —

(11.49)



BsR pour les écoulements anisothermes 63

11.3.4.1 Intégration temporelle

Pour I'intégration temporelle, il est possible d’utiliser schéma Euler au premier ordre :

filr,t+dt) = fi(r,t) = ot v, - Vfi(r,t) — ? [fi(r,t) — f9(r, t)] (11.50)

avecdt le pas de temps ¢ (r,t) = f(r,v;,t). Pour des raisons de stabilité, il faut bien sar avoir
0t < 7. Pour augmenter la précision du schéma numérique, on peaiafapel a des schémas au
second ordre, a point milieu ou encore de Runge-Kutta.

Point milieu :

filr,t+6t) = fi(r, ¢t — 6t) — 26t v; - Vfi(r, ¢) — 2? [fi(r,t) = f74(r,2)] (1.51)

Runge-Kutta :
ot
T

filr,t+6t) = fi(r,t) = ot v, - Vfi(r,t + dt/2) [fi(r,t+0t/2) — f{(r,t +6t/2)] (11.52)

11.3.4.2 Intégration spatiale

Pour évaluer le terme de transpest V f;, il existe également plusieurs possibilités au premier
ordre ou au second ordre. Comme I'’équation de Boltzmannresgéquation hyperbolique, nous
favoriserons plutdt les schémas dits “amont” pour prendreoenpte le fait que I'information vient
d’'une direction connue. Cela signifie que la discrétisatdartermeV f; dépendra de la vitesse
v; considérée. Si on passe en coordonnées cartésiennesqtell¢sr t) = fi(x,y,t) etv;, =
Vi€, + v;,€, alors le schéma au premier ordre amont s’écrit :

( filwy.t) _g;(x_éx’y’t) Si viy >0
W _ (11.53)
fz(x7y7t)_fl(x+5x7y7t) Si Via <0
\ —51’
( fl(x,y,t)—?(x,y—5$,t) Si Viy >0
filw,y,1) _ ’ (11.54)
dy _ _r .
fz(x7y7t) fl(x7y+5$’,t) Si Uiy <0
\ —(SZL'
et pour un schéma amont au second ordre :
Ofilw,y,t) _ v (11.55)
or |
3w p,t) — Afila 4 dr,y ) + file + Wy t) o

—20x
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si vy, >0
' 20w v
W _ (11.56)
Y 3fiw,y,t) = Afi(w,y +0x.t) + filz,y +o2,t) vy <0
—20x '

1.3.5 A propos de 1) et du modéle de vitesses discrétes

Comme nous venons de le voir, certains modéles Boltzmanrésaau peuvent étre vus comme
une discrétisation dans I'espace des phases de I'équation d
Boltzmann. Dans cette vision, le modeéle de vitesses dexedt ajusté en fonction d’un besoin
de précision donné dans la résolution de I'équation de Baltm. Dans ce travail, nous avons
choisi une précision qui correspond a I'ordreu développement de Chapman-Enskog car celui-
ci correspond au niveau d’approximation que représengnéguations macroscopiques. Il est
donc intéressant d’examiner en détail la fagcon dont notrdéieode vitesses discrétes assure la
représentation dg"), la partie hors d’équilibre de la fonction de distributibrPour cela, nous al-
lons visualiser les vitesses discrétes sur les reprégamdiaites au chapitre précédent (paragraphe
1.6.4), des contributions de chaque vecteur vitesse au #uyudntité de mouvement et au flux de
chaleur dans des configurations simples pour lesquell&isteeune solution analytique g,
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FiG. 11.6: Représentation dans le plan,, v,) de la contribution au flux de quantité de mouvement
P,,(v) de chaque vecteur vitesse. Les cercles blancs correspgandevecteurs vitesses discretes :
(a) modeleD2Q)9 et (b) modeleD2()25.

La figure 11.6 montre la pertinence du choix des vecteursssies par rapport a la contribution
au flux de quantité de mouvemeny, (v) de chaque vecteur vitesse, en présence d’un cisaillement.
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On remarque que tous les vecteurs vitesses contribuent>addlguantité de mouvement dans
le sens opposé au cisaillement et qu’il existe quatre zoagfcplieres ou cette contribution est
importante. Les deux modéles discrets considéréedi2()9 et D2()25, semblent pertinents car
ils contiennent des vitesses discrétes dans les zonés,ou) est important. De la méme fagon,
la figure 1.7 montre la pertinence du choix des vecteursssie par rapport a la contribution au
flux de chaleut/,(v) de chaque vecteur vitesse. Contrairement au flux de quaetitéouvement,
toutes les vitesses ne contribuent pas au flux de chaleulelaass opposé au gradient de tempé-
rature. Il existe une zone telle que< 2v/rT, pour laquelle les vecteurs vitesses contribuent au
flux de chaleur dans le méme sens que le gradient de temper@uire I'argument mathématique
de l'utilisation de la quadrature de Gauss-Hermite qui diégaluer le flux de chaleur néces-
site de monter plus haut dans I'ordre de quadrature, laseptation graphique dg,(v) indique
quels sont les vecteurs vitesses qui comptent le plus pdiuxele chaleur macroscopiqug.

On constate que le modele disci@2(9 n’est pas particulierement adapté pour évaluer les flux
de chaleur : les zones de plus forte contribution ne sont pagectes et la majorité des vitesses
discretes se situent dans la zone ou la contribution aufl(x) est du méme signe que le gradient
de température. Le modéle2()25 semble beaucoup mieux adapté de ces deux points de vue. A
partir de ces observations, il serait peut-étre intéressarplorer la possibilité de construire des
modeles discrets, sans utiliser la quadrature de Gausgitéequi est cartésienne mais en essayant
de construire une discrétisation en module et angulaingr. Raliscrétisation en module, on pour-
rait retenir deux modules qui seraient celui ou la contidbutiu flux de quantité de mouvement
P,,(v) est la plus importante, d’'une part, et celui ou la contritrugu flux de chaleuy,(v) est la
plus importante, d’autre part.

11.3.6 Validation du modéle proposé

Pour valider et tester le modéle BsR thermique propose, aomss effectué des simulations
numériques d’exemples académiques pour lesquels il exmesolution analytique. Concernant
les conditions aux limites, nous nous sommes inspirés daitide Watariet coll.[40]. Les détails
de I'implémentation de ces conditions aux limites sont regsoen annexe C. Les tests présentés
ici ont été effectués pour le modéle approchigvitesses discrétes par dimension. Un modéle a
vitesses sera utilisé au chapitre V pour la discrétisatmhiéluation de Boltzmann-Enskog dans
un contexte de simulation des transitions de phase liquageur.
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FiG. Il.7: Représentation dans le plan., v,) de la contribution au flux de chaleuy(v) de chaque
vecteur vitesse. Les cercles blancs correspondent auswrsadtitesses discrets : (2) modél2Q)9
et (b) modéleD2()25. Le cercle noir représente le lieu des points/p(v) change de signe.

11.3.6.1 Deécroissance d’un vortex

Le premier test concerne la décroissance d’un vortex. Gaiamgt de vérifier que le modele
rend compte précisément des effets visqueux. La condititinle du champ de vitesses du vortex
est la suivante :

PRY
do = (30— ywnexp (—%) (1157)

u, = (z—x0)wpexp (—T> (1.58)

avecr, = (xg,yo) le centre du vortex[. sa longueur caractéristique g la vorticité initiale au
centre du vortex. A cause des effets visqueux, la vortiditériie. L'expression de la vorticité au
centre du vortex en fonction du temps est :

mas(t) = 7 ull (11.59)

1+ 4¢)?
avect* = vt/L?, le temps adimensionnel. La figure 11.8 représente les tatsulle simulations
numériques indiquant une parfaite représentation detseffegqueux.

11.3.6.2 Propagation d’'onde acoustique

Le test précédent ne permettait pas d’apprécier I'aptitiidmodéle proposé a rendre compte
des effets thermiques. Il indiquait simplement que noth&st est capable de rendre compte des
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FiG. 11.8: (a) : Champs de vitesse d’un vortex; (b) : Comparaison etex@iession analytique
de la décroissance de la vorticité au centre du vortex gtpains) et les résultats de simulations
numeriques (cercles).

effets visqueux comme tous les modéles BsR utilisés commealiarnative a la résolution de
I'équation de Navier-Stokes. Ce second test montre un gféetmique que les schémas BsR iso-
thermes ne peuvent pas représenter. Ce test concerne ¢égptigm d’'une onde acoustique proposé
par Watari et Tsutahara [37]. En effet avec un modeéle de fligiotherme la vitesse théorique du
son serait;,,; = /T et non pas,/~rT. Le facteury vient du fait que la propagation d’une
onde acoustique n’est pas isotherme mais adiabatique. Afirédfier cet effet thermique sur la
propagation d’'une onde acoustique, nous prenons commaetiooniditiale un volume de gaz a
températurd’ et avec un profil de masse volumique en créneau (voir figudd€d)). Cet état étant
mécaniquement instable, des ondes acoustiques se propagsie milieu. Par suivi des fronts
d’ondes qui se forment, il est alors possible de remontercal&xité du son dans le gaz. La figure
11.9.(b) compare les résultats de simulations pour difiéege températures avec la célérité du son
annoncée théoriquement.

11.3.6.3 Stratification d’'une colonne de gaz isotherme

Le test suivant permet de vérifier que la prise en compte dhamp de force extérieure est
correcte dans le modele. En effet, en présence d’'un champrcke éxtérieurd, le terme supplé-
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Fic. 1.9: (a) : Configuration initiale pour créer des ondes acoustigue gaz est isotherme a
linstant initial et la masse volumique a un profil en créngéa) : Comparaison entre la célérité
du son théorique = /~rT (traits pleins) et les simulations numériques (cercles).

mentaire% -V f estintroduit dans I'équation de Boltzmann :

of F _
E—Fv‘vf“'g'vvf—c(f»f) (11.60)

Pour évaluer ce terme, la dérivée figar rapport & est approximée par la dérivée de& par
rapport av [41] :
F(v—u)

F F
TV R V=
m m

e (1.61)

Cette approximation est justifiée par le développement dgp@lan-Enskog qui montre que le
terme de forcé n’apparait pas dans I'expression fi&). L'ordre 0 de Chapman-Enskog est donc
équivalent a l'ordrel en ce qui concerne les forces extérieures. La figure II.18tik la strati-
fication d’'une colonne d’air isotherme dans un champ de pesaqg A I'équilibre, I'expression
analytique de la masse volumigpgy) en fonction de la hauteurestp(y) = po exp (%) avec
po = p(y = 0). Les résultats de simulations sont présentés pour ditiéseraleurs dex = %
avecH la hauteur de la colonne.
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Fic. 11.10: Masse volumique en fonction de l'altitudey d’une colonne de gaz isotherme de

hauteurH . En traits pleins, I'expression analytiquey) = po exp (%) les cercles représentent
. . L r
les résultats de simulations numeériques.

[1.3.6.4 Ecoulement de Couette

L'écoulement de Couette (voir fig. 11.11.(a) pour la destoip) permet de tester plusieurs effets
thermiques. L'écoulement étant cisaillé, cela produit smarce de chaleur dans I'écoulement par
dissipation visqueuse. De plus, cet écoulement correspamte situation hors d’équilibre ther-
mique, le profil de température au stationnaire résulte demauction de la chaleur au sein du
fluide. Le profil de température analytique au stationnaiteecles deux plaques obtenu a partir
des équations macroscopiques est :

Ty)-Ty, 'y , PrEcy ( Y
Wt _ Y Y (1 —) .62
T — 1Ty H + 2 H H ( )
v U? , .
avecPr = — le nombre de Prandtl éic = —————— le nombre d’Eckert. La figure 11.11.(b)

(8] Cy (Tl — To)
montre la comparaison entre les résultats de simulationgriques et le profil analytique de

température au stationnaire.
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Fig. Il.11: (a) : Configuration de I'écoulement de Couette qui est un léooent cisaillé entre
deux plaques séparées par une distdificea plaque du bas a une vitesse nulle et une température
Ty, la plaque du haut a une vitesEeet une températuré; ; (b) : Comparaison entre le profil

de température théorique adimensionnée au station@%?_ﬁ,%—o = L 4 Prled (1 1) (traits
pleins) et les simulations numériques (cercles). Les sitiaris ont été faites pour trois valeurs
différentes du nombre d’Eckefic.

[1.3.6.5 Conduction pure

Ce dernier test permet de quantifier le niveau de précisitoriagd par le modele BsR pro-
posé en ce qui concerne les effets purement thermiques. €dhamété vu précédemment, la
détermination du modéle de vitesses discretes est baskeqgiadrature de Gauss-Hermite. Cette
procédure conduit a un jeu de vitesses discrétes dont leslesodépendent de la température. Ce
qui signifie que le jeu de vitesses discrétes dépend du peirespace. Mais pour des raisons nu-
meériques, le choix a été fait de fixer un jeu de vitesses desgreorrespondant a une température
de référencdy, pour tout le champ et qui est conservé pour toute la durée simulation. L'ordre
de la quadrature étant déterminé pour assurer I'évaludésimoments de la fonction de distribu-
tion f, sous I'’hypothese du développement de Chapman-Enskaog, ausflux de la chaleur, le fait
de fixer un jeu de vitesses discrétes peut engendrer dessstad’évaluation du flux de chaleur si
la température est différente de la température de réféfen®e plus , nous nous sommes arrétés
a une quadrature d'ordfela ou une quadrature d’ordfeaurait été nécessaire a rigoureusement
parler. Cette perte d'un ordre de quadrature a été compgmasaa ajustement local des poids,
mais le niveau d’incertitude associé n'a pas pu étre quéankti@oriquement. Pour quantifier le ni-
veau d’incertitude résultant de ce choix numeérique, nousparons le flux de chaleur conductif
entre deux plaques de températures différentes au flux cohthéorique. Par définition, le flux
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conductif correspond au moment d'ordrele f, Jo = 3 [(v — u)®f dv. A partir des simulations
numériques, ce flux est évalué Egf™ = 13 wi (v; — u)?f;. D’'un point de vue macroscopique,
le flux conductif est lieé au gradient de températdige= —AVT avec la conductivité thermique
théorique donnée par la procédure de Chapman-Ens¥og- 2pr>T'7. La figure 11.12 illustre
I'écart relatif entre la conductivité thermique théorig\fé et la conductivité thermique observée

num

numeriguement, évaluée psir™ = —%.

100§ T T T T T T

1l

Ll -

10_5—
<

10 £ x 3
F x ]

Ea'e] ®* Erreur max
50 O Erreur moyenne |

10 ‘o
»)

-5 1 1 1

0O 005 01 O015_ 02 025 03 035
AT/T

10

FiG. Il.12: Ecart relatif entre la conductivité thermique observée @uguement et la conductivité
thermique théorique, obtenue par la procédure de ChapmskoeH, en fonction du rapport de la
différence de température entre les plaques sur la tenypéide référence choisie pour fixer le jeu
de vitesses discretes. La température de référence clovisg la moyenne des températures des
plagues. Les cercles représentent I'écart relatif moysonéut le champ. Les croix représentent
I'erreur maximale qui est obtenue lorsque la températurkagsus éloignée de la température de
référence, c’'est-a-dire au niveau des plaques.

La figure 11.12 montre que I'erreur sur I'évaluation du fluxncluctif tend vers zéro lorsque
le gaz est a la température de référence. Lorsque le gazpdes la température de référence,
une erreur est commise sur I'évaluation du flux conductiismabe reste relativement faible méme
pour de forts écarts de température. Par exemple lorsgeeaérature du gaz differe @&; par
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rapport a la température de référence, I'erreur sur le flude8.5% environ et lorsque la tempé-
rature differe ded 5% I'erreur sur le flux est alors d&% environ.

[1.3.6.6 Test avec le modeéle de collision ES-BGK

Pour pallier I'inconvénient du nombre de Prandtl non-ahkt associé au modele BGK, nous
avons mené des simulations numériques en utilisant le rm@ddisionnel ES-BGK ( paragraphe
1.5.2). Compte tenue de la forme de la partie hors d’équlftt (voir 1.132), le modéle de vitesses
discrétes est directement adapté £art s'écrit toujours sous la forme d’un produit ¢fé? par un
polynéme dev d’ordre 3. Lutilisation de ES-BGK par rapport a BGK n‘augmente pasdre de
ce polynéme et donc n'augmente pas I'ordre de la quadrature.

Des simulations ont été faites en faisant varier le paranede —1 a 0.9, ce qui, compte te-
nue des expressions des coefficients de transport, congspane variation du nombre de Prandtl
de0.25 a5. Le tenseur des contraintes visqueuses et le flux de chad¢ewept étre évalués par
le calcul des moments d& Ces “expériences numériques” permettent d’évaluer leogise ci-
nématique et la conductivité thermique par comparaison kgeexpressions macroscopiques de
IL;; = —2pv 2% etJ, = —AVT. Ces résultats sont en trés bon accord avec les valeursghésr

Ox;

données par la procédure de Chapman-Enskog (voir Fig 11.13)

1.4 Conclusions du chapitre

Avant le travail de He et Luo en 1997 [22], Boltzmann-suress était essentiellement une
méthode numérique vue comme une alternative aux schémels deurésolution de I'équation de
Navier-Stokes pour les fluides isothermes. He et Luo ont air@qgue certains schémas Boltzmann-
sur-réseau correspondaient a une discrétisation, a ue dadmeé, dans I'espace des phases, de
I'équation cinétique Boltzmann-BGK. Ainsi, plus qu’unéeahative numérique a la résolution de
I'équation de Navier-Stokes, Boltzmann-sur-réseau estrméthode numérique de résolution de
'équation de Boltzmann-BGK a un ordre donné. Cette noewalion de Boltzmann-sur-réseau
redonne un intérét supplémentaire a la méthode notammesteldomaines de la microfluidique
et des gaz raréfiés pour lesquels les équations macrosespiquelles perdent leurs validités.

Reprenant la procédure de He et Luo, basé sur la quadrat@auss-Hermite pour discrétiser
'espace des vitesses, dans ce travail de these, nous aepusp un modele Boltzmann-sur-réseau
pour les fluides anisothermes. Le modéle correspond a uoletiés de I'équation de Boltzmann-
BGK a un ordre donné qui correspond a 'ordrdu développement de Chapman-Enskog, c’est a
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Pr

FiG. 11.13: Nombre de Prandtl en fonction de b pour des simulations BglRya®s sur un modeéle
collisionnel ES-BGK. En trait plein, expression analyggqubtenue par la procédure de Chapman-
Enskog,Pr = ﬁ Les cercles représentent le Prandtl obtenu par les “expeEas numeériques”
en remontant a la conductivité et a la viscosité par le caleslflux.

dire au domaine de validité des équations macroscopiquedies. Mais I'ordre de résolution peut
étre amélioré en augmentant I'ordre de la quadrature degdemsmite si les applications visées
le nécessitent. Concernant les intégrations spatialesngtdrelles, nous avons utilisé des sché-
mas numériques simples respectivement d’opdeed’ordrel. Il est envisageable d’améliorer les
vitesses de calcul en utilisant des schémas numériquegyblises mais ce n’était pas le propos
de ce travail de thése.

Enfin, le modeéle proposé a été testé et validé sur des exemqgaegemiques pour lesquels il
existe une solution analytique : décroissance de vort@paggation d’onde acoustique, stratifica-
tion d’'une colonne isotherme, écoulement de Couette etumtinsh pure, pour quantifier les erreurs
obtenues sur le flux de chaleur. Ce dernier test montre lapade de la démarche puisque le flux
de chaleur est le moment d’ordre le plus élevé de la foncteodiskributionf. Le savoir-faire qui
vient d’étre détaillé ici concernant les écoulements mbiasfues anisothermes sera directement
exploité au chapitre V pour I'étude d’écoulements diphasganisothermes.






Chapitre Il

Modéelisation cinétique des fluides
non-idéaux, equation de Boltzmann-Enskog

Le premier chapitre a permis de présenter dans les détéilsblissement de I'équation de
Boltzmann. Nous nous sommes ensuite appuyé sur I'équagiddotizmann, au chapitre I, pour
établir un schéma Boltzmann-sur-Réseau, d’abord en éoemfeisotherme, puis en écoulement
anisotherme. Nous cherchons maintenant a étendre cetit®aoddgie aux écoulements en pre-
sence de transition de phase liquide-vapeur. Pour celas cmmmencons par une présentation
détaillée de la cinétigue et la thermodynamique des fluidesidéaux. Parmi les hypothéses né-
cessaires a la dérivation de I'équation de Boltzmann, il'ygpbthése de gaz dilué et I'hypothése
gue les interactions entre particules (supposées potetysbnt décrites par des collisions sup-
posées ponctuelles et instantanées et respectant legigacollisionnels (masse, quantité de
mouvement et énergie). Ces hypothéses correspondent pothieges du gaz parfait. Dans ce
cadre, seule I'énergie cinétique des particules contrébliénergie totale du systéme (I'énergie
d’interaction est nulle).

Pour les gaz moins dilués, la distance moyenne entre plaidiminue, de sorte que I'hypo-
these des collisions locales instantanées est moins @etginEn effet, les interactions entre parti-
cules sont de types répulsifs a courte portée, et attracdil@ngue portée en tendant asymptotique-
ment vers zéro quand la distance entre particules augnmini, le gaz dilué correspond a une
situation ou la distance moyenne entre particules estdekel’attraction est négligeable. En re-
vanche lorsque la densité du gaz est telle que la portée tiadtions devient de l'ordre de la
distance moyenne entre particules, alors ces interactienmeuvent plus étre négligées. Comme
nous allons le voir, ces interactions peuvent conduire asitaations de transitions de phase.
En préalable a la présentation de I'équation de Boltzmamsk&g qui est I'équation de Boltz-

75
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mann modifiée pour prendre en compte une interaction plugfitre particules, nous allons faire
guelques rappels sur la thermodynamique de I'équilibresgst®mes liquide-vapeur et en particu-
lier la modélisation thermodynamique de I'interface.

1.1 Thermodynamique de I'’équilibre des systemes
liquide-vapeur

Pour une bonne partie de ce qui suit nous allons utiliser cermmodele, le fluide de van der
Waals de facon a mettre évidence assez simplement la pldesreffets que nous souhaitons
étudier. Ceci peut bien s(r s’étendre sans probleme a desiéosid’état plus réalistes. L'équation
d’état, qui relie la pression, a la températuré’ et a la masse volumique du fluide, est :
prT 2

m —ap (1.2)

avecr = R/M la constante massique des gaz parfaitg et b des parametres caractérisant le
fluide. Cette équation s’écrit aussi classiquement en immclu volume du systeme :

pb(pv T) =

nRT n?
p(V,T) = ———rx —

T —n? a7 (111.2)

avecn le nombre molesy = bM eta’ = aM?. Pour dériver cette équation d’état, on considére en
général un potentiel intermoléculait€r) de type Lennard-Jones (voir figure 1ll.1). Ce potentiel
présente une forte répulsion lorsque la distance entredes particules est inférieurerg. Par
ailleurs, le potentiel présente une partie attractive guiltasymptotiguement vers zéro lorsque la
distance entre les particules croit. Les hypothéeseséggipar la physique statistique pour dériver
I'équation d’état de van der Waals a partir de ce potentiel ks suivantes :

— Les particules sont considérées comme des sphéres duagde,.

— La partie attractive est traitée en champ moyen.

L’hypothése sphére dure a pour conséquence qu'il existeolunme minimall;, occupé par
le fluide. Ce volume est approximativement donné en mutiplie volume d’une particule par le
nombre de particulesV, = N4/3xnr3. Ce qui se traduit par une masse volumique maximgle
N m/Vy = m/(4/37r3) avecm, la masse d'une particule. C'est ce que représente le parameé
b dans I'équation de van der Waals= 1/py. Concernant la partie attractive, si on considere une
particule située en; qui subit la somme de toutes interactions des particuleéesitdans I'espace,
le potentiel effectif s’écrit :

Uups(r2) = [ plr) utrs =y 11.3)
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L'hypothese champ moyen consiste a approxipief parp(r,). Cette hypothese repose sur le fait
que l'attraction tend tres vite vers zéro et de cette facaesdes particules situées a quelques
rayons de sphere dure contribuent au potentiel effectifside potentiel effectif s’approxime par :

Uesy(ri) = —2ap(r1) (11.4)
1 , L 2 .
aveca = —5 [ u(ry —r) dr. C'est ce que représente le paramét@ans I'équation de van der
Waals.
1.5
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FiG. lll.1: Potentiel intermoléculaire de Lennard-Jones. L'expoesdiu potentiel:(r) entre deux

. , , . To 12 To 6 .
particules séparées par une distanestu(r) = 4ug (—) - (—) . Ce potentiel est carac-
T r

térisé par deux parametresg qui est la profondeur du puits de potentielrgtle paramétre de
“sphere dure”rq correspond a la distance en dessous de laquelle les pastgeirepoussent.

La figure Ill.2 est un tracé des isothermes de van der Waadst-@-dire I'évolution de la
pressiorp, en fonction de la masse volumigueour différentes températures. Un fluide pouvant

étre décrit par une équation de van der Waals, présente umataoscopique particulier appelé

point critique, de coordonné€g, = %,pc = 1/(3b),p. = a/(27b%)). On peut noter que si

la température est inférieure a la température critiqiie<( 7,), il existe trois états de masse
volumique différente qui ont la méme pression et méme teatpér. Autrement dit, lorsqu’on
impose au systéme une température extériéyre 7. et une pression extérieupg, celui-ci peut

‘a priori’ exister a I'équilibre thermodynamique, sousisrétats de masse volumique différente.
La question qui se pose alors est : quel est I'état d’éqeilfde systeme évolue-t-il vers une masse
volumique en particulier ou existe-t-il la possibilité degistence de phases de masses volumiques
différentes ?
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FiG. 11l.2: Tracé de trois isothermes de I'équation d’état de van derdd\dens le plan(py, p)
(a) et dans le plafip,, V') (b). Trois isothermes particulieres sont représentéesponr laquelle
T < 1T.,une pourl’ =T, et une poufl’ > T..

Pour répondre a cette question, on considere une masde fluide obéissant a I'équation
d’état de van der Waals emprisonnée dans un cylindre fermé saut par un piston mobile sans
frottement. Le cylindre qui est perméable aux transfertshiddeur est placé dans une atmosphére
de températurd;, < T, et de pressiom, (voir figure II.3). Trois états différents du systeme
correspondant a trois volumes différents respectent lesaiates imposées par I'extéri€liyetpy.
Sans rentrer dans une démonstration compléte, il appéaaé@roent par des arguments physiques
gue I'état de volumé/, (tel gu’indiqué sur la figure 111.3) est instable a cause dynside la pente
% qui est positif. En effet si on déstabilise |égérement le&pe lorsque son volume gt en
appuyant légérement sur le piston, le volume va diminuea eréssion du systéme va diminuer
aussi. Ce qui a pour conséquence que le piston va contingsicarnidre, car la pression du systeme
est inférieure a la pression extérieyre Pour la suite nous raisonnons donc comme si cet état
n’existait pas. Pour aller un peu plus loin dans I'analysegeut écrire le premier et le deuxieme
principe de la thermodynamique dans le cas ou le systenedémitent mis dans un état d’équilibre
guelconqgue est mis au contact d’un milieu extérieily at p, :

AU = WH+Q=—pAV +Q (I11.5)
As = 2 g (111.6)
Ty

avecS? > (. Ce qui signifie qudyAS — Q = T,.SP > 0 et conduita :

AU + poAV — TyAS < 0 (111.7)
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Cela signifie que la fonctio&™* = U + p,V — T,S ne peut que décroitre au cours d’'une transfor-
mation pour laquelle la température et la pression extéisant imposées. L'équilibre stable du
systeme est par définition I'état dont la valeur(deest la plus petite, ce qui n’exclue pas que le
systeme se “coince” dans un puits de potentiel différentdstabilite). On exclut dans cette ana-
lyse les états métastables pour se concentrer uniquenrdes &ifats stables. Comme nous I'avons
montre, le systéme va dans ce cas chercher & minimiser ladomnthalpie libre. Or formellement
G peut s’écrire a partir de grandeurs massiques sous la forme :

G = mug; + myg, (111.8)

avecm; + m, = m (dans lequel et v désigne respectivement liquide et vapeur). On note que
le systeme trouvera son minimum en basculant compléetemenb® du potentiel massique le
plus faible. En revanche, si les potentiels massiques g@ut€(ce qui n’existe que pour une seule
pression si la température est fixée) tous les coupbesn,) assurent la méme valeur du potentiel
G et il existe une infinité d’'états qui assurent la contraifte.est en présence de deux phases et
le fluide est dans les conditions dites de saturation. Siiatésesse dans ce cas-la aux deux états
limites, a savoir I'état liquide saturant et I'état vapeatusante alors on peut écrire simplement :
AG, = AGY, = 0, ce qui se traduit par :

V'U
AG, = AGY, = /dG = /Vdpb =po(V, = V}) — / ppdV =0 (111.9)
v
Cette expression est vérifiée si la pression extérigyest telle quey(V, —V;) = fvl ppdV . Cette
condition qui correspond a la regle des aires des Maxwadufei 111.3), détermine la pression de
saturation du fluide qui ne dépend que de la tempérdiure

[1.L1.1 Energie d’'interface et la loi de Laplace

On ne cherche pas dans ce paragraphe a redémontrer riggmentd’ensemble des relations
thermodynamiques qui concernent le probléme de coexstaphases mais plus de faire sentir
que l'origine est toujours strictement la conséquence daesipes fondamentaux. Nous nous inté-
ressons en particulier ici a I'apparition de la loi de Laglaleour cela on ne redémontre pas qu’en
'absence de champ de force la coexistence de phases se faiégence d’interfaces sphériques.
On étudie donc la possibilité d’existence d’une bulle desua@ntourée de liquide dans un volume
V fixé (figure 111.4).

Partant d’'un état d’équilibre quelconque, on met le systémeontact avec un thermostat a la
températurel;,. Le premier principe s’écrifNlU = () et le deuxiéme princip& = ToAS — SP
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Fic. lll.3: A I'équilibre thermodynamique le fluide est a températiisest a pressiom,. Trois
états de volumes différent§, 1, etV (ou de masses volumiques différentes) respectent ces-condi
tions. Régle des aires de Maxwell : si la pression impggést telle que les surfaces hachurédes
et B ont la méme aire alors le systéme peut choisir indifférentieevolumeVl/, ou V;.

avecS? > 0 ce qui conduit AU — T,AS < 0. Autrement dit la fonctionF™ = U — T3S ne
peut que décroitre. Trouver le minimum Hé est équivalent a trouver le minimum d’énergie libre
= U — TS avec des contraintesl: = Ty, m, + m; = metV, +V, =V, avecm,, V,, m; et

V; étant les masses et volumes respectifs des phases vapieuids.| Afin de minimiserr” avec
ces contraintes, nous allons utiliser la méthode des ntigliteurs de Lagrange. Soit une nouvelle
fonctionL = F— A\ (T —Tp) — Aa(my, +my—m) — A3(V, +V, = Vp). Avec \; les multiplicateurs de
Lagrange associés aux contraintes. Ainsi le minimund @@rrespondra au minimum deé sous
contraintes. Exprimons la différentielle dé:

dF = dU — TdS — SdT (111.10)

Pour exprimer la différentielle de I'énergie interne, nposons que I'énergie interne est la somme
des énergies internes de chaque pHase- U;, additionnée d’'une énergie d’interaction propor-
tionnelle a la surface entre les phases$, avec A la surface etr la tension de surface qui est
caractéristique du fluide. Ainsi nous obtenons :

dF = dU, + dU, + 0dA — TdS — SdT (I1.11)
dF' = 6Q, — pudVy + pydmy, + 0Q; — pdVy + pudmy (1.12)
todA—TdS — SdT (I11.13)
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FiG. lll.4: Fluide de van der Waals enfermé dans une boite indéfornigbéd de températu-
reT, < T.. La masse de fluide est telle que I'existence du fluide soumsdat’'une seule phase
homogene est instable. Quelles sont les conditions desteexk a I'équilibre entre la bulle vapeur
de rayonr et le liquide qui I'entoure.

Comme chaque phase est un systeme ouvert, il faut tenir eodg#t potentiels chimiques de
chaque phasg, et y;. Ensuite nous utilisons le fait qu&), + 6Q; = 6Q = TdS, et que les
variations du volume de la bulle et de la surface sont fonctio rayonr : dV, = 4mridr et
dA = 8rrdr. Ce qui donne :

dF = (8nro — pyanr?)dr — pdV; + pedm, + pdmg — SdT (1n.14)

Le minimum de la fonctiord(r, V;, m,, my, T, A1, Ao, A3) etdonc le minimum dé’(r, Vi, m,,, m;, T)
sous contraintes sont donnés par la résolution du systémansu

0_L = —pydnr? + o8mr — \gdnr? =0
o
% =-p—A=0
My
oL
8— = U — )\2 - 0
or'
| o7 = P~ M=
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Les solutions de ce systeme imposent :

(po—p) = — (111.16)
Po = 4 (1N.17)

Cela signifie que dans I'expérience décrite ou on impose anassen de fluide, un volume
Vo et une températurg, telle que la phase homogene de masse volumiglaem /V; estinstable,
il existe une solution diphasique unique ou les masses \uqluesp, et p; de chaque phase sont
telles que les conditions (I11.16) et (l11.17) sont satitfa. On peut remarquer que dans le cas ou
l'interface est planer(= o), I'énergie d’'interface n’a pas de réle, on retroyye= p; = po qui
est la pression de saturation déterminée par la régle desdaerMaxwell. Le potentiel chimique
s’identifie a I'enthalpie libre massique généralisantidmsésultat du paragraphe précédent.

[11.1.2 Modele d’interface diffuse

Dans la section précédente, la prise en compte de l'inietiqaide-vapeur apparait par I'ajout
d’'une énergie de surface proportionnelle a l'aire de liifatee. Ce modéle rend bien compte d’un
saut de pression lorsque l'interface est courbée mais parecibsuppose une interface d’épaisseur
nulle (voir figure 111.5 (a)). Ce modeéle peut s’avérer nontpeent pour un fluide non-idéal et il peut
étre nécessaire de décrire la variation de masse volumagumament entre les deux phases (voir
figure 111.5(b)). L'épaisseur de l'interface peut méme tenders I'infini lorsque la température du
fluide s’approche de la température critique.

A pA
P ]

(@) (b)

Fic. ll.5: (a) profil d’'interface brusque entre les deux phases de madsmiquep, et p;. (b)
profil d’'interface réaliste entre les deux phases de madsmiquep, etp;. Dans cette description,
I'objet interface a une épaisseur non-nulle.
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[11.1.2.1 Théorie de van der Waals

Avant de présenter la théorie de I'interface de van der Waalgs devons introduire d’abord
la densité d’énergie libré définie telle que I'énergie libré” d’'un systéme est I'intégrale desur
tout le volume :

F:/¢ dr (I11.18)

Il est important de noter que est une fonction qui se définit en chaque point du systeme mais
qui dépend a priori de la configuration de tout le systemeaDiitement les effets d’interaction a
distance se traduise sur I'énergie par un terme potentielsjairectement lié a la fagon dont toute
les particules sont placées dans I'espace. Evidemmertt#llé macroscopique cette dépendance
sera souvent ramené a des termes qui rendent compte deriaudiish spatiale a proximité du
point considéré. Toute la subtilité de ce qui suit est raraelais la traduction de cette dépendance
a la distribution spatiale. Pour un systéeme homogene denely, si on néglige les effets de bord

on peut écrire 1) = F'/Vj.

Modele a l'ordre 0 dev) On suppose ici qué n’est fonction que des variables locales au point
considéré 1) = ¢,. Dans le cadre de ce modéle on peut écrife== [ ¢, dr. Si on suppose que
le fluide obéit a I'équation d’état de van der Waals et quer#pirature est uniforme et valy, il

est aisé de montrer que :

Uy =¥, (p) = priylog (ﬁ) — ap? (11.19)

Reprenons I'exemple d’un fluide de van der Waals enfermé danmgcipient de volumé}, avec
une température imposég < 7.. La massen de fluide est telle que I'état homogene de masse
volumiquep, = m/V, estinstable. L'état d’équilibre est une somme de domairetedx masses
volumiques différenteg, et p;. Pour trouver le bon couple de masses volumiques il fautmsar
I'énergie libre sous contrainte de conserver la masseetotalc’est & dire minimiser l'intégrale

F = [4,(p(r)) dr avec la contraintd (p(r) — po) dr = 0. Pour ceci, on utilise comme précé-
demment la méthode des multiplicateurs de Lagrange. Aamsihimisation d€’ sous contraintes
sera assurée par la minimisation de 'intégrale- [ [, (p(r)) — A(p(r) — po)] dr. Le minimum

.y oy o .
de cette intégrale est tel qugwu — A = 0. Ce qui signifie que le couple(, p;) qui assure le
p
minimum deF’ sous contraintes est tel que :

m(py) = po(p) (11.20)
N N
R 5‘_/),,l (111.21)

Pv
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ou p, est la pression donnée par I'équation d’état. Nous retnesidmnc le résultat précédent qui

correspond au cas ou I'énergie de surface est nulle, enifidabte potentiel chimique: a e
p

La figure 111.6 illustre une méthode graphique équivalenta &egle des aires de Maxwell pour
déterminer, a partir de la représentationyde), les deux masses volumiques et p; pouvant

exister sous les mémes conditions de température et dequreEs remarquant que la pression
. 0 . . .
peut s’écrirep,(p) = # —1(p). On note que pour un fluide de masse volumiguelle se lit
p
comme I'opposé de I'ordonnée a l'origine de la tangenteen p. Ainsi, s'il existe deux masses

volumiques telles que les tangenteswden ces points sont confondues, alors ces deux masses
volumiques ont la méme pression et le méme potentiel chieniqu

Fic. lll.6: Allure de ¢, en fonction dep pour un fluide de van der Waals. Les deux masses
volumiques coexistantgs et p; sont telles que les tangentes@den ces points sont confondues.
Cette construction graphique est équivalente a la reglaides de Maxwell.

Modele al'ordre 1 det) A partir du modéle de décrit dans le paragraphe précédent, il est clair
gu’aucun effet de distance lié aux variations spatiale d& été pris en compte. Ceci avait pour
conséqguence de ne faire apparaitre aucun terme spécifigaenam energétique lié a I'interface.
On retrouvait donc les résultats connus en I'absence deteds surface. Le modele que nous
présentons maintenant et qui a été introduit par van dersjNaalduit les effets a distance par
I'introduction d’un terme faisant intervenir le gradierd gl Nous ne discutons pas des arguments
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gui menent a la forme présentée et nous posons directement :
K 2
=1+ 5|V (111.22)

Ainsi il vient ;
_ Fig, 2
F= / (¢T+ 51Vl ) dr (11.23)

Le terme supplémentaire empéche les variations brusqueaske volumique sur une zone étroite.
En effet, une interface dont la taille tend vers zéro cowadma un gradient de masse volumique qui
tend vers l'infini et ne permettra pas de minimiser I'énetiee . La minimisation de I'énergie
libre ne peut se faire que par une variation continue de Isenaslumique entre les phasesest

un parametre caractérisant le fluide, dont on verra plusgibise relie au potentiel d’interaction
entre les particules. Cette théorie a été reprisd @1 par Cahn et Hilliard [42] pour décrire
des systémes nonuniformes tels que les mélanges bina#as.développement consiste a dire
gue pour un systéeme avec des interactions internes, laté@hénergie libre) est une fonction
du champ de concentratien. Dire quew’ au pointr dépend du champ entier de concentration
est équivalent a dire que au pointr dépend de toutes les dérivées de la concentratiemr :
p(r,[c(r)]) = ¥(r,c, Ve, Ve, ...). Donc I'idée de Cahn et Hilliard est de développeautour
dew, qui est la densité d’énergie libre lorsque la concentrafiosystéme est uniforme. Pour des
raisons de symétrie le premier terme non-nul du développeest proportionnel &c|?.

¥~y + 5| Vel (11.24)

Ceci est bien équivalent a la théorie de van der Waals. Padte i@son, nous emploierons dans
tout le reste du manuscrit alternativement les expressiefithéorie de van der Waals” ou “théorie
de Cahn-Hilliard” pour faire référence a ce modéle de démbsénergie libre.

[11.1.2.2 Profil d'interface et énergie d'interface

Le développement de introduit par van der Waals méne a une variation continue assm
volumique entre le liquide et la vapeur. La question qui seepest donc de trouver le profil de
masse volumique entre deux phases. Imaginons un équiidurielé-vapeur d’un fluide enfermé
dans un récipient de volumg et a températuré, en présence de gravité. La gravité implique que
la vapeur soit placée au-dessus du liquide, ce qui a pouégoesce que la masse volumique ne
dépend que de I'altitude (voir figure 111.7). Soit la fonctionV (p) = g|Vp|2 — W(p) aveclW (p)

1Cahn et Hilliard s'intéressaient a la concentratiatiune espéce dans une autre espée.p ont un role équi-
valent pouny.
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I'écart de la densité d’énergie libkg. & la double tangente définie pae= puo — Py (voir figure
111.8).

Za
h
% To
Vapeur P,
z+el2l |

Interface 7~ elz\ ,,,,,,,,

Liquide P

FiG. lIl.7: Allure du profil de masse volumiqued’un équilibre liquide-vapeur avec gravité.

La fonction U représente la densité d’énergie libre en “exces”. En eff@hs chaque phase,
il n'y pas d’excés d’'énergie libre car dans chaque pHage,) = W(p) = 0 et|Vp? = 0.
La seule zone ou il y a un excés d’énergie libre est au nivediintierface. Nous rappelons que
I'équilibre est tel que I'énergie libré’ soit minimum sous contraintes. Ceci a pour conséquence
gue le profil dep a linterface est tel que I'excés d’énergie libre soit minm Par définition
'exces d’énergie libre est l'intégrale sur tout I'espaae ld densité d’énergie libre en exces :
[ ¥(r)dr = A [U(r) dz avecA la section du récipient. Sans entrer dans les détails dulcalc
variationnel qui permet de minimiser cette intégrale, ontmmplement dire que le probleme
est2équivalent a trouver le profil qui est solution de I'égquadifférentielle d’Euler-Langrange :
m% = —%—f. Avec les conditions aux limites adéquates, on trouve dengrofil dep qui
minimise I'énergie libre. Techniquement il est plus simgliatégrerz en fonction dep quep en

fonction dez :
K

1/2 Pl
) = 0% (£) / =W ()] dp (I1.25)
avecz la position de l'interface op(z0) = (p, + p1)/2. Le signex signifie qu'ily a une branche
ascendante telle que la masse volumique tendpyeesune branche descendante telle que la masse
volumique tende verg;. Par définition I'énergie libre de I'interfacg; correspond a la différence
entre I'énergie libre de tout le systéemiemoins I'énergie libre de chaque phakeet F;.
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FiG. l11.8: Allure deW (p) = puo— Py —¥-(p). Cette fonction est nulle dans chaque ph&Eeép)
est non nulle uniguement a I'interface puisqu’a l'integfge passe par toutes les valeurs entye
etpl.

F, = F—F, —F (111.26)
h zo—e/2
Fo= A/z/)dz—A/ @bvdz—A/ by dz (111.27)
zo+e/2 0
zo+e/2
Fo= A/ (¥ — ) dz (111.28)
zo—e/2

avecy,;, = 1 Siz < 2 ety = 1, Si z > z,. Cette intégrale est uniquement non-nulle au niveau
de l'interface. Bien que) — v, soit different de la densité d’énergie libre en exgdeses deux
fonctions ont la méme intégraleF; = Af ¥ dz. Par définition la tension de surfasedéfinie
précédemment est la contribution de I'interface a I'éreetiire du systéme par unité de surface,
donc:

o= % = /\If dz (111.29)

Ainsi a I'équilibre, pour le profil d’'interface solution, k@nsion de surface peut s’écrire sous
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trois formes équivalentes :
o = //{|Vp|2dz (11.30)
= —2/W[p(z)] dz (1.31)
= /pl\/TVV(p)dp (11.32)
po

Les deux premiéres expressions nécessitent la connagsdarurofil solution a I'équilibre alors
que la derniere expression permet d’évaluer la tension idacgupar I'intégration dél’ (p) qui ne
dépend que de I'équation d’état et du parametneli est généralement choisi indépendamment de
p. Cette derniere expression permet donc de dire que la tedsisurface a un rapport d’échelle
en./k. Les figures II1.9 représentent la tension de surface ertifomde la température. La figure
111.9.(a) représente le rapport théorique de la tensionudiases sur la valeur dg/« en fonction

de la température réduite du fluide, évalué par I'expresgloB2). La figure 111.9.(b) permet de
comparer la tension de surface issue de corrélations padiai®te avec la tension de surface
obtenue a partir de I'expression (111.32) en ajustant leffadent « et utilisant 'équation d’état de
van der Waals.

/ K1/2

. . X 0 L L L L
o0 105 110 115 120 125 130
T/TC T (K)

(a) (b)
FiG. 1I1.9: (a) Rapport de la tension de surface gl en fonction de la température réduite pour

un fluide de van der Waals. (b) Comparaison entre la tensisndace du diazote et la tension de
surface obtenue selon la théorie de van der Waals en ajlistaartameétre:.

Ainsi dans la théorie de van der Waals de l'interface, I'§red’interface apparait naturel-
lement en méme temps que la variation continue de masse nplard’'une phase a l'autre. Si
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on reprend le cheminement : les interactions attractivér® grarticules induisent une variation
continue de la masse volumique entre les deux phases. giéraiinterface apparait de fait par la
présence dans l'interface d’un profil continu de masseswigjues entre, et p; ; ce profil d’in-
terface crée un “excés” d’énergie libre par rapport aux ehdmomogenes. Cet exces d’énergie
libre par unité de surface correspond donc par définitiontarision de surface. Et le profil so-
lution d’interface correspond au profil qui minimise cet @€xd’énergie libre. On remarque aussi
gu’au niveau de l'interface, la pression passe par un engedebvaleurs différentes de la pres-
sion d’équilibre de chaque phasgp,) = py(p:). L'équilibre mécanique est assuré a la traversée
de linterface sans I'égalité des pressions. L'équatiattat’ de van der Waals comme toutes les
éguations d’état a été dérivée pour des systemes thermodyunes infinis et uniformes. Pour des
systemes non-uniformes, comme un équilibre liquide-vapeec interface, le concept de pression
peut étre redéfini. Dans le cadre de la théorie de l'interticgan der Waals, on peut définir un
tenseur des pressions [43] :

B dp Op
Pag = P(D)dag + ti7y = 5 (111.33)
P() = py—rpVi = Z|Vpl* (111.34)

avecp, correspondant a I'équation d’état du fluide. Pour les systequi présentent un équili-
bre non-uniforme, la condition d’équilibre n’est p&g, = 0 mais se généralise p&gF.s = 0.
Pour I'exemple de la figure 11.7 la composante normale deecsdur des pressions €3t =

0 N> L s . . .

9 g 8_p . L'équilibre mécanique est assuré a la traversée de Ifaatercar le profil
Z Z

de masse volumique solution est tel g ait pour valeum,(p,) = ps»(p;) dans tout le fluide.

I11.2 Equation de Boltzmann-Enskog

Dans cette partie, nous allons présenter I'équation dezBalhn-Enskog qui peut étre vue
comme I'extension ou la modification de I'’équation de Bolézm pour les fluides non-idéaux. En
effet, comme il a été dit précédemment, les hypothéses gedt®n de Boltzmann correspondent
au modele du gaz parfait : gaz suffisamment dilué pour coresidés particules ponctuelles et
les collisions comme des chocs ponctuels instantanés. Smangravail original [44], Enskog a
proposé une modification du terme collisionnel de I'équatie Boltzmann en tenant compte de la
taille des particules. Autrement dit, si on considere gumltentiel de Lennard-Jones (figure 111.1)
est un bon modéle pour décrire les interactions entre pdgtiad’'un gaz non-idéal, 'équation de
Boltzman-Enskog originale traite uniqguement la partieutéipe de ce potentiel. L'équation de
Boltzmann-Enskog étendue qui va étre présentée ici, earsilavdémarche de He et Doolen [45],
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contient un terme collisionnel supplémentaire pour teoinpte de la partie attractive du potentiel
intermoléculaire.

Formellement, d’aprés la hiérarchie BBGKY, I'équationdiition de la fonction de distribu-
tion f(r, vy, t) (comme nous l'avons vu au chapitre I) est :

f

—|— V- vrlf —|— vVl Vrl 7’12) dvy dr; (“|35)

avec f® = f@(r; vy, ry, Vo, t) la fonction de distribution & deux corpg,un champ de force
extérieure el/(ry,) le potentiel entre deux particules séparées d'une distance |[ro — ry||.
Afin de modéliser ce terme collisionnel, nous séparonsdjrale sur 'espace en deux régions :

Vrl 7’12) dV2 drg = Vr1 7’12) dV2 drg

Dy

+

Vr1 7’12) dV2 drg

Do

Le domaineD, correspond &, < d, avecd, la distance a partir de laguelle la force intermolé-
culaire change de signe c’est-a-dire au minimum du poteVitie;,). Le domaineD, correspond
donc a la partie attractive du potentiel.

[1.2.1 Modélisation du terme collisionnel répulsif : terme d’Enskog

Regardons tout d’abord, le modéle du terme collisionners&nskog lorsque la taille des
particules est prise en compte. L'intégréjesur le domainé; est modélisée par des collisions de
sphéres dures de diameétig:

I = /duz {X(HﬂL%do K)f(ri, Vi) f(ra + do K, v5)
— X(rl — %do k)f(rl,vl)f<r1 — do k,Vg) (“|36)

avecyu, I'espace collisionnel de la seconde particule de vitessg est la fonction de corrélation
a deux corps telle quéE® (ry, vy, ry, Vo) = x(r1,r2) f(r1,vi)f(rs, vo). k est le vecteur unitaire
dirigé du centre de la seconde particule vers la premiererala montre la figure [11.10. Le terme
collisionnel de Boltzmann se traduit par la ponctualité piagicules et des collisiong{ = 0) et
par 'hypothése du chaos moléculaise£ 1).

Dans un deuxiéme temps, la modélisation d’Enskog consigtavalopperf(r; + dy k, V5),
f(ry — do k,vs) ety autour de la positiom;. En utilisant I'écriture condenség = f(ry,vi),
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Vs

FiG. 111.10: lllustration de la prise en compte de la taille des partisyleur le terme collisionnel
d’Enskog.

f1=f(ri,vy), fo = f(r1,vs) et fi = f(rq,V,), et sans entrer dans les calculs, on obtient :

L o= / dis [fLfs — fufo (111.37)
T / djiz dok - (1Y £+ £V £ (I11.38)
+ %/dﬂz dok - Vx [fifs + fifo] (111.39)

Ce développement permet de faire apparaitre, en premisitéopole terme collisionnel de I'équa-
tion de Boltzmann au facteur multiplicatif prés. Ce premier terme peut donc étre modélisé par
'approximation BGK, ES-BGK ou toute autre approximatiantdrme collisionnel de Boltzmann.
Concernant les deux autres termes, Enskog proposa de lesméea approximanf;, fi, f et f;

par f14, f1 ¢, f51 et f,°. Aufinal, le terme collisionnel d’Enskog s'écrit :
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L = x& (111.40)
— bpxfit(vi —u) - {v In(p*xT) + 2(02 — g)Vln T] (11.41)
- bprfqé [200 VU + (C* - g)v : u] (111.42)

avec(), le terme coIIisi(onneI (;rdinaire de Boltzmarm,u et 7' les champs macroscopiques au
Vi —u
VorT
s’apparente a un volume massique= ing. Ainsi le terme collisionnel d’Enskog peut étre vu
comme une extension du terme coIIisig}ﬂnel de Boltzmanmpeislans la limite ou les particules
sont ponctuelles(= 0) et 'hypothése de chaos moléculaisg=(L), on retrouvd; = ¢2,. Ce terme
d’Enskog fait apparaitre les dérivées spatiales des charapsoscopiques et nécessite un modele
pour la fonction de corrélatiog. Différents modeles dg sont proposés en physique statistique
de I'équilibre [46]. Dans ce travail, nous nous limiteronkua des modeles les plus simples qui
correspond au méme niveau d’approximation que celui qunped’obtenir I'équation d’état de

point considéré e€C = dont la norme est'. La taille des particules apparait Viajui

1
vander Waals y = —.
1—10bp

[1.2.2 Approximation de champ moyen du terme d’interactions attractives

En complément du travail d’Enskog, il est possible de maeéélie terme collisionnel dans le
domaineD,, c’est-a-dire le domaine ou les interactions entre pddgcgont attractives. Dans ce
domaine nous allons faire I'nypothése du chaos molécuylfiter ,, vi,ro, Vo) = f(r,vi)f(ra, Vo) =
f1 f2, ce qui permet d’écrire :

I, = / 88{/(2) . Vrl‘/(’f’lQ) dvy dr o (“|43)
1
= /D2 /fgg—\JZ . vr1V(T12) dvsy dr oy (|||44)
0
= Vrl |i/D2 p(rg)V(Tlg) dr2:| . a—\‘]z (“|45)
= Vo,V -Vy fi (111.46)

Le termeV,, = fD2 p(ra)V (r2) dro représente la somme de toutes les interactions attractéeves
toutes les particules agissantes sur la particule située €rest pourquol/,, est appelé potentiel
moyen subit par la particule située gn Le gradient de ce potenti®&lV,, est donc I'opposé de la
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résultante des forces des particules de tout le champ agissala particule em;. Ce potentiel
moyen peut étre approximé en faisant un développement andecdre dep(r;) autour der; :

1
p(ra) ~ p(ra) + o1 - Vot Sraufa1 - VVp (11.47)
Ce développement permet d’écrire :
Vi = —2ap — kV?p (111.48)

aveca etk des constantes du potentiel intermoléculaires :

a = —% /r>d0 V(r)dr (11.49)
K = 1 r?V(r
6[>d0 V(r) dr (111.50)

Il apparaitra apres la procédure de Chapman-Enskog quesaggpdrameétres correspondent bien
bien aux parametres et « introduits dans la théorie de van der Waals (équation d&ttaiter-
face diffuse). Ainsi le potentiel “ressenti” par la partiesituée err, peut étre approximé par
la connaissance en de la masse volumique et de son laplacien. Pour des raisons de symé-
trie l'intégrale contenant le gradient de masse volumicgienalle. Ce développement se justifie
par le fait que le potentiel intermoléculaire tend vers zéés vite a une distance de I'ordre de
guelques diametres de particule. Seul I'environnemerth@ale la particule considérée joue un
réle important.

[11.2.3 Equation cinétique pour les fluides non-idéaux

Le modele cinétique que nous allons considérer pour dégnirduide non-idéal est donc au
final :
of

a+v-vrf+(%—vrvm)-vvf=11 (11.51)
avec/; le terme collisionnel d’Enskog décrit précédemment. Lentercollisionnel d’attraction
V.V, - Vyf ale méme statut qu'une force extérieure; le traitement ghawoyen de la partie at-
tractive du potentiel d’'interaction permet de voir la sondedoutes les attractions agissant sur une
particule err comme une force extérieure. Par rapport a I'équation dezBalhn des gaz dilués,
ce modéle cinétique nécessite un modele d’interactiomgatéculaire qui apparait par I'intermeé-
diaire de la taille des particules dans le terme collisibditenskog/; et par I'intermédiaire (dans

le terme d’attractiorv,V,, - V. f) de deux constanteset x qui sont respectivement les moments
d’ordre zéro et d’ordre deux du potentiel interparticidait est nécessaire également d’avoir un
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modéle pour la fonction de corrélatiogn Nous pouvons remarquer aussi que le terme d’Enskog
I, qui représente la partie répulsive du potentiel d’inteécactiépend explicitement des gradients
des champs macroscopiques: et 7" alors que le terme qui représente la partie attractive du po-
tentiel dépend explicitement du gradient de la masse vajuenet du gradient de son laplacien :
ViV = —2aVp — kVV?p.

1.3 Passage au macroscopique a partir de I'equation de
Boltzmann-Enskog étendue

Comme pour I'équation de Boltzmann, il est possible de f@id@éveloppement de Chapman-
Enskog (chapitre 1) pour trouver les trois équations mampgjues de conservation de la masse,
de la quantité de mouvement et de I'énergie lorsque la fonate distributionf est proche de la
distribution d’équilibref?.

[11.3.1 Equation de conservation de la masse

L'équation de conservation de la masse n’est bien entenslunpaifiée puisque le nouveau
terme collisionnel ne crée ni ne détruit de masse :

%+V-(pu) ~0 (111.52)

[11.3.2 Equation de conservation de la quantité de mouvemein

Des termes supplémentaires apparaissent dans I'équaiaordervation de la quantité de
mouvement a cause des interactions entre particules.

(% + us03) Uy = % — 0uVin — % Wpap — éaa (p°orTx) + %aﬁnaﬁ (111.53)
Cette équation contient comme précédemment (1.124) leterdes contraintes visqueuses noté
0s1l,4 ici. Cette équation contient également le gradient de lagioe des gaz parfait$,pcp
avecpgp = pr quireprésente la variation de quantité de mouvement paspat des particules.
Par rapport a I'équation de conservation dérivée précédmm(hl24), celle-ci contient donc deux

termes supplémentaire8,;V;, etd, (p*borTy). Le termed, V;, a pour origine la partie attractive du
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potentiel interparticulaire, il représente un échangewdtjté de mouvement a distance entre les
particules. Le term@, (p*brTx) représente un échange de quantité de mouvement entreufestic
causé par la partie répulsive du potentiel interparticeldlous pouvons réécrire cette équation
sous la forme suivante :

Fy

0 1 1
(a + uﬁﬁg)ua = E — ;85Pag + ;8511&5 (|||54)

en définissant le tenseur des pressibng = Pd.sz + m%% etP = prT(1 + bpx) — ap? —

kpV?p — £|Vp|>. On retrouve ainsi le tenseur des pressions (111.33) dgiééédemment dans
la cadre de la théorie de van der Waals de l'interface liquageur a I'équilibre en identifiant
I'équation d'état du fluide a I'équilibre pag, = prT'(1 + bpx) — ap®. En prenant comme modéle
pour la fonction de corrélatiog = 1_—1bp on trouve que le fluide obéit a I'équation d’état de van
der Waals p, = {’jfp — ap?. Sion utilise 'approximatiol3G K pour le terme collisionnel,, le

coefficient de viscosité dynamique s’identifig a= ,OTTT(i + 2bp).

111.3.2.1 A propos de I'’équation de quantité de mouvement :

Le modéle collisionnel d’Enskog et le traitement champ nmogle la partie attractive permet
d’obtenir une équation de conservation de la quantité deveraant pour un fluide obéissant a
'équation de van der Waals c’est-a-dire un fluide qui pewxesier sous deux phases : vapeur
et liquide. Autrement dit, I'équation obtenue est ‘a priodlable et pertinente dans tout le fluide
guelle lgue soit sa forme liquide ou vapeur. De plus cettatgun contient le tenseur des pressions
de lathéorie de I'interface de van der Waals, ce qui signifeeaptte équation est capable de décrire
l'interface liquide-vapeur. On remarque qu’a I'équilibeeen I'absence de champ de force exté-
rieure, on obtientz P,z = 0. On retrouve ainsi la condition d’equilibre du fluide de ladhie de
I'interface de van der Waals. Cette propriété permet deifiprdléquation de Boltzmann-Enskog
avec champ moyen de “thermodynamiquement cohérente”[P4Gih point de vue macroscopique
'équation de conservation de la quantité de mouvementrestilan des forces sur la particule
fluide. Dans I'équation (111.54), il y a trois types de forcde champ de force extérieufg,, le gra-
dient du tenseur des pressiang’,s et le gradient du tenseur des contraintes visquedigés;.

La séparation entre le tenseur des pressions et le tensecouleaintes visqueuses permet de faire
la distinction entre la partie a I'équilibre et la partie fia’équilibre du tenseur des contraintes.
D’autres choix de distinction entre les forces agissaniesparticule fluide sont pertinents, comme

par exemple :

Ftot 1 1
e ; wPap + ;%Haﬁ (|||55)

(a + u58g)ua = m
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avecF!" = Fa—maavm—m%aa (p*brT). Cette “force totale” est la somme de la force extérieure
et des forces internes aux systemes ayant pour originedatpeltd’interactions interparticulaires.
Dans cette écriture, ni le tenseur des pressions, ni I'équdtétat n’apparaissent. La seule pres-
sion qui apparait est la pression cinétiguge = pr’1. Cette écriture est basée sur la distinction
entre les forces réellgs'** et une force “apparentel, p;p. En effet, la pression cinétique a pour
origine le transport pur de particules au niveau du mode@léticjue. Lorsqu’on examine la procé-
dure de Chapman-Enskog, on voit que la moyenne selon lébdititm d’équilibre du transport de
quantité de mouvemertdv v,V - V¢ = 5 <vavﬁ>eq se décompose en deux termes au niveau
macroscopique : le transport macroscopigyésu,, et le gradient de pression cinétigii@p qui
apparait donc comme une force “apparente” agissant surtigylea fluide contrairement &'

gui représente I'ensemble des forces réelles qu’ellesseidernes ou internes au fluide. L'écri-
ture (111.54) englobe dans le tenseur des pressiénsoutes les forces internes au fluide quelles
soient réelles ou apparentes.

[11.3.3 Equation de conservation de I'énergie

Dans le modeéle cinétigue de Boltzmann, il n’y avait pas demtx| d’interaction entre les
particules si bien que I'énergie était simplement la moysies énergies cinétiques des particules.
Maintenant I'énergie totale du fluide a deux contributiofignergie cinétique:;, qui représente
I'énergie cinétique des particules et qui sert de définiiola température pat, = 3/2prT,
et I'énergie potentielle d’interaction,, qui est la somme de toutes les interactions subies par
une particule, c’est a direy, = 1/2p [ p(r2)V (r12) dro = 1/2pV,, 2. L'équation de transport
macroscopique de I'énergie cinétique est tres semblabégjadtion de conservation de I'énergie
dérivée précédemment (1.125) :

)
% 4 9s(user) = —par(l+bpx)dus + 95(AIST) + Masdstia (111.56)
0 par(1+ bpy) 1 1
(g7 T us0s)T = _GPTaﬁuﬁ o 95(N0sT) + - 0510

La différence vient du travail des forces de pression. Cergggemble au travail de la pression
ne correspond ni au tenseur des pressi@nsni a la pression de I'équation d’état du fluigdg

La pression qui travaille correspond a la pression cinétigy par un facteur correctifl + bpy)

qui rend compte de la taille des particules. Si on utilisppi@ximation BGK pour le terme

collisionnelQ, le coefficient de conductivité thermique s'identifié & 3pr*T'7( + 2bp).

2Le facteurl /2 sert & ne pas compter deux fois la méme interaction pour uneerpéire de particules.
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Remarque La procédure de Chapman-Enskog nous a conduit, comme enpmasique, a un
systeme fermé de trois équations macroscopiqueg,sauet 7. Lorsque les champs de ces trois
grandeurs sont connus, il est facile de remonter aux champlegsité d’énergie cinétiqug =
3/2prT et de densité d’énergie potentielle = 1/2p [ p(r2)V (r12) dro = 1/2pV,,. La densité
d’énergie interne est alors simplement e, +e¢,. Il est néanmoins intéressant de prendre le temps
de dériver les équations d’évolution de ces trois dendité&git la d’un raisonnement purement
macroscopique qui est extérieure a la procédure de Chagmskog. En adoptant comme notation
réduite,p(r;) = p; etu(r;) = u;, et en utilisant le théoréme de Gauss et le fait quéd’ (r12) =
—0p1V (r12) nous obtenons :

e,

o T s (upie,) =

‘ Q
3~

+ (uﬁlaﬁl)vm} (111.57)

D
~~

—/ Op2 [PQUﬁz] V(ri) dris + Uﬁlaﬁl/ p2V (ri2) dru}
Do

Do

— — =

/ p2uge 02V (r12) dris + uﬁl/ p2 051V (r12) dr12}
D2 D2

SIS D 3 D

.?\

P2 [UQQ — u§1] 852V(r12) dr 12 (|||58)

En supposant que la vitesse macroscopique varie lentearepgut faire développement limité de
u(r,) autour derq, c’est-a-direugy = ug + r,0,ug. Ceci nous permet d'écrire :

de,
ot

+ 8ﬁ1(u5160) = %aA{Uﬁl/‘ pQT,YagQV(rH) drqs (|||59)
Do

Pour évaluer cette intégrale, nous pouvons utiliser les@sémpothéses que pour le champ moyen
et nous servir des expressions (111.47) et (111.48), ce quispermet d’écrire I'équation de transport
de la densité d’énergie potentiellg:
de,
ot

En combinant cette équation a I'équation de transport dethsité d’énergie cinétique (l11.56),
nous obtenons I'équation de transport de la densité d'@ntalec = ¢, + ¢, :

% + 0s(uge) = —PopOpua + 03(N0T) + l,p0suy (1n.el1)

+ 0s(uge,) = Oyug [(ap2 + g,o&mp)&m + /{p@g&,p] (111.60)

1
+ KOguq [aﬁ(/)@ap) - 562(/)5‘7/))%4

Cette équation fait apparaitre le travail du tenseur desspes— P, 3031, qui @ pour origines les
transports de;, et dee, alors que les termes de conducti®yi\ds1") et de dissipation visqueuse
ont une origine purement cinétique. Et le dernier termetwertransport de I'énergie potentielle.
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I1l.4 Point de vue mésoscopique sur I'équilibre liquide-vaeur
et conclusions

Comme nous venons de le voir le modele cinétique de BoltzAarskog avec traitement
champ moyen de la partie attractive des interactions iatéqulaires fait apparaitre dans les équa-
tions macroscopiques I'équation d’état de van der Waaks le tenseur des pressiofis; de la
théorie de l'interface de van der Waals. Il est d’abord ed¢éant et rassurant de constater que
les équations macroscopiqgues dérivées sont compatibdedathermodynamique de I'équilibre
d’une interface liquide-vapeur. En effet, en regardantigis équations macroscopiques (111.52),
(111.54) et (111.56), on en déduit que I'équilibre thermaalymique est atteint lorsque le fluide est
isothermeds T = 0, en absence de cisaillemedu, = 0 et lorsque le gradient du tenseur des
pressions nubs P,z = 0. Cela signifie que ce modele cinétique pour fluides non-xigaumet
d’observer la dynamique de changement de phase et la famdinterfaces d’un fluide de van
der Waals puisque ce modéle est compatible avec I'équitihre fluide de van der Waals et la
théorie thermodynamique de van der Waals pour les intesfhgeide-vapeur. Il est intéressant
maintenant d’examiner du point de vue mésoscopique deiliérliquide-vapeur et I'existence
d’une interface. Pour un état d’équilibre homogene d’'ur@udéal (décrit par I'équation de Boltz-
mann) ou non-idéal (décrit par I'équation de Boltzmannkeg3, I'équilibre se traduit par le fait
gue chaque terme de I'équation cinétique est nul. Dans clke tasme collisionnel est nul car par
définition il est nul a I'équilibre, le terme temporel est ar I'équilibre est bien sdr un état sta-
tionnaire et le terme de transport est nul car on regardeatia'&guilibre homogéne dans I'espace.
En revanche, pour un état d’équilibre liquide-vapeur anéerfaces, le terme de transpeortV, f
n’est pas nul au niveau de l'interface. Au niveau de l'irded il y a une compensation entre le
terme de transport, une partie du terme collisionnel d’Bgsk et le terme—V,V,, - V,f qui
contient la partie attractive des interactions et qui essamon-nul au niveau de l'interface.

V-V £~V Vi, - Vo f = —bpx f9v - Vn(p*xT) (111.62)

Compte tenue de I'expression de la distribution d’équdift?, chacun de ces termes peut s’écrire
en fonction des dérivées spatiales de la masse volumique.

V-V f = L v.Vp (11.63)
e 2a e K e 2
Vrvm‘vaq - _f qV‘Vrp"__f qV~VrVrp (“l.64)
rT rT

2 1
box [V - VIn(p’xT) = bpxf (; + ;g—;) V-Vp (11.65)
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Ainsi, a partir d’'une description mésoscopique, la conditil’équilibre d’'une interface liquide-
vapeur permet d’écrire une équation différentielle powprlefil de la masse volumique lorsque le
systéme passe d’'une phase a l'autre :

V;p - f—;v,p + %VrV?p} = —bpy (% + ig—;) Vp (111.66)
Il est intéressant de remarquer que la compensation awnileekinterface ne se fait pas entre des
populations de particules de vitesses difféerentes. Cettgensation s’effectue pour chaque popu-
lation de vitesse® entre les différents termes de I'équation de transporst@eurquoi, partant de
I'équation de transport, nous trouvons une équation difféelle surp indépendante de la vitesse
v. Cette propriété sera utilisé dans le chapitre V pour mettreeuvre une résolution numérique
appropriée. On note également que la résolution de cetieguavec comme conditions au li-
mite les masses volumiques et p; qui coexistent, donne comme profil d’'interface le méme que
celui obtenu au paragraphe 111.1.2.2 par minimisation éedrgie libre.

En résumé, dans ce chapitre, aprés avoir fait des rappelgeguilibre thermodynamique des
systémes liquide-vapeur et présenter le modeéle d'intedituse de van der Waals, a été présenté,
I'équation cinétiqgue de Boltzmann-Enskog avec traitensbamp moyen de la partie attractive du
potentiel intermoléculaire. Cette équation cinétique fatee suivante :

vV (v v = (111.67)

avecl/, le terme collisionnel d’Enskog qui peut étre vu comme uneresibn du terme collisionnel
de Boltzmann lorsque la taille des particules est consadélé terme devient le terme collisionnel
de Boltzmann lorsque la taille des particules est négligge= —2ap — kV?p est le potentiel
champ moyen. Ce terme rend compte de la partie attractiveotianiel interparticulairea et
sont des paramétres qui dépendent du potentiel choisioftecla forme du potentiel moyen ne
dépend pas du potentiel choisi mais dépend de la procédanegcimoyen elle méme. Cette équa-
tion qui est un modéle cinétique pour décrire les fluides idéaux est compatible, a I'équilibre,
avec la théorie de van der Waals des interfaces liquidetwajamns laquelle apparait le tenseur des
pressiond’,; qui est une géneéralisation du concept de pression pour $&msgs pour lesquels il
existe un équilibre non-homogeéne. Ce tenseur des predgohsompte des dérivées de la masse
volumiquep et est tel que son gradient est nul pour une interface difil'gguilibre contrairement
au gradient de la pression (équation d’état) qui ne tient pas compte des variationsapa de

p mais seulement de la valeur au point. Nous avons aussi vuequaitement champ moyen du
potentiel d’interaction contribue a I'équation d’étatpar I'intermédiaire du paramétre et est
aussi a l'origine de la tension de surface par I'intermédiadiu parameétre.. C’est pourquoi la
pressionp, 3 peut étre vue comme une approximation a 'ordre zéro (duldgpement champ

36té de la partie gaz parfait qui a une origine purement joéti
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moyen) de la somme de toutes les interactions et les effeterdgon de surface peuvent étre
interprétés comme le second ordre des interactions intenplaires.



Chapitre IV

Boltzmann-sur-Réseau pour les ecoulements
diphasiques : application a I'agregation de
particules colloidales

Dans le chapitre précédent, nous avons rappelé les basagtidmodynamique de I'équili-
bre des systémes liquide-vapeur (section 1ll.1) ainsi gumddele d’interface diffuse de van der
Waals (paragraphe 111.1.2). Ce modéle a mis en évidencensete des pressions (111.33) qui gé-
néralise le concept de pression au sein de tout le fluide €ghagpeur, phase liquide, interface).
Nous avons également présenté un modéle cinétique pouuigssinon-idéaux : I'équation de
Boltzmann-Enskog étendue (l11.2) qui peut étre vue commeeaxtension de I'équation de Boltz-
mann en incluant les interactions interparticulaires. t@ac@dure de Chapman-Enskog appliquée
a ce modele cinétique a abouti a un jeu d’équations macrapeegp (paragraphe 111.3) similaires
aux équations de Navier-Stokes-Fourier pour lesquellgddale la pression est attribué au tenseur
des pressions dérivé de la théorie de van der Waals. Aingg disposons de deux modeéles pour
les écoulements liquide-vapeur :

— un modéle macroscopique dont I'équilibiguide - interface - vapeuest compatible avec

la théorie de l'interface diffuse de van der Waals

— un modele mésoscopique compatible avec le modele magpigsecci-dessus des les situa-

tions proches de I'équilibre.

Ces deux types de descriptions d’écoulements diphasigisseht la possibilité de concevoir des
modeles BsR de deux fagons :

— la premiére est de dériver un modéle BsR heuristique defagetrouver apres la procédure

de Chapman-Enskog sur réseau un modéle macroscopiquelddmnts diphasiques. Cette

101
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démarche est équivalente a celle des premiers modeles BsfRepa&coulements monopha-
sigues. Elle sera retenue dans ce chapitre pour étudieédjation de particules colloidales
au voisinage d’une membrane d’ultrafiltration.

— la seconde fagon consiste a discrétiser le modéle mésqaeoiCette discrétisation peut
se mener en suivant la démarche de He et Luo [22, 23] qui a petendériver un modele
BsR pour les écoulements monophasiques isothermes et dostavons proposé une ex-
tension au chapitre Il pour concevoir un modéle BsR pourdesiiéments monophasiques
anisothermes. Cette derniére démarche sera exploréeraardgrapitre afin de proposer un
modele BsR pour écoulements diphasiques anisothermes.

IV.1 BsR pour écoulements diphasiques isothermes

Avant d’aborder les fluides colloidaux, nous présentons hmege revue des modeles BsR
diphasiques en détaillant plus particulierement celuirgues allons mettre en oeuvre. Les modeles
présentés ici, concernent uniqguement les écoulementseisoés. Ceux-ci peuvent étre classés
en trois grandes familles présentées successivemenssodie pour une revue plus détaillée, se
référer a [47, 48].

IV.1.1 Modele de Shan-Chen (SC)

L'un des premiers schémas BsR développés pour les écouiemiphasiques est le modéle
SC [49, 50, 51]. Ce modele repose sur I'ajout d’'une force dansnodéle BsR classique, afin
de reproduire le comportement d’un fluide non-idéal. Cedted n’est pas explicitement prise en
compte dans I'’équation d’évolution de la fonction de disttion discretef;. Elle est simplement
introduite, aprés chaque pas de temps, par une modificatichamp de vitesses macroscopiques
u:

u'(x,t) = u(x, t) + T(x, t) (IV.1)

T . . 2
avecl'(x,t) = ——v¥(X) >, G ¥(X + v;)v,. La grandeur) est la fonction “potentiel” ef repré-
sente l'intensité de l'interaction interparticulaire.tt@einteraction est équivalente a un potentiel
d’interactionV (x, x') entre des particules situées sur des noeuds premiersdesia forme :

V(% X) = G(x,X) (X)) (x) (IV.2)
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En choisissant une fonction potentielle de la forme= 1), exp(—@), il est possible d’obtenir
P

un équilibre liquide-vapeur dont les masses volumiquesgistantes peuvent étre déduites d’'une
construction du type égalité des aires de Maxwell.

IV.1.2 Modele de He-Shan-Doolen (HSD)

Le modele HSD [41] est beaucoup plus inspiré de I'équatiddalzmann-Enskog pour les gaz
non-idéaux (voir paragraphe 111.2.3). Le point de départelenodéle est I'équation de Boltzmann-
BGK :

8_f+v‘vf:_f—7feq+F-(v_u)

ot rT
ou F est un terme de force qui rend compte des effets d’'interaiitternes au fluide :

e (IV.3)

F=—VV, —bp(rT)*xV In(p*x) (IV.4)

Le premier terme de cette force représente I'effet de lagattractive des interactiong;, peut
étre obtenu par I'approximation de champ moyen comme altce@pecédent (paragraphe 111.2.2) :
Vi, = —2ap — kV?p (voir paragraphe 111.2.2). Le second terme correspond ameteollisionnel
d’Enskog lorsque I'écoulement est isotherme et lorsqueffess des dérivées de la vitesse sont né-
gligés. Cette proposition correspond, a I'échelle maapspie, a un fluide dont 'équation d’état
estp = prT'(1 + bpx) — ap?, ce qui correspond a un fluide de van der Waals avec comme enodél

pour la fonction de corrélatiog = T Un terme supplémentaire de “force diphasique” peut

L L P ) , . .
alors étre implémenté simplement dans un schéma BsR poule@oents isothermes. Ceci a été
mis en oeuvre, entre autres, par Sofoataoll. [52] avec un modéle de vitesses discrefex)9
et un schéma d’intégration spatio-temporelle aux difféesrfinies.

IV.1.3 Modele basé sur I'énergie libre (EL)

Le modéle que nous avons choisi pour I'application présedéds la suite du chapitre est le
modele basé sur I'énergie libre (EL). Celui-ci a été dévedpar Swiftet coll.[53, 54] en réaction
au mangue de cohérence thermodynamique du modele SC. Ipar&é comme une alternative a
la résolution des équations macroscopiques pour les éoeunts diphasiques isothermes, c’est-a-
dire que ce modele est compatible avec la thermodynamiqueedhterface liquide-vapeur diffuse
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suivant la théorie de Cahn-Hilliard. Le point de départ denceléle est I'équation d’évolution de
la fonction de distribution discretg sur réseau avec un terme collisionnel de type BGK :

B VOt £+ 6t) = Fi(r,1) — ;(fi(r, £ — F(r, 1) (IV.5)

La différence par rapport a un modele monophasique vierda éankction de distribution d’équili-
bre /77 qui n’est plus un développement polynomial de la fonctiordidéribution d’équilibre de
Maxwell-Boltzmann. La fonction de distributioff? de ce modele est un polyndme deformulé
de sorte qu'apres la procédure de Chapman-Enskog sur réseeaetrouve les équations macro-
scopiques d'un fluide non-idéal (équations (l11.52), 84) et (111.61)) avec comme tenseur des
pressions :

Pag = |po = 59V = S|VpP| bas + 1 0up Dap (IV.6)

ce qui assure une compatibilité avec la thermodynamiqueathm-Elilliard. Cela a pour consé-
quence que la fonction de distribution d’équilibf€ dépend de la position et du temps par I'in-
termédiaire des champs macroscopigues u (comme pour un modéle classique) mais dépend
également des dérivées de la masse volumiguet V2p. Pour ce type de modele, les interactions
interparticulaires sont donc “cachées” dans la fonctiodidibution d’équilibre.

Le modele (EL) a été développé pour différentes topologeagdeaux e et3 dimensions. Le
modéle choisi ici est employé avec une topolagia)15 [55, 1]. Le jeu de vitesses discretesest
composé des vecteursQ, 0,0), (+c, £c, £c), (£¢,0,0), (0,=£c,0), (0,0,+c) avece = dz/dt
(voir Fig. IV.1). La distribution d’équilibref? est un développement en série sur la vitesse locale :

fieq = AZ + Biviaua + Ciuaua + Diviavi,@uauﬁ (|V7)
+Gia5'Uian5 pouri 7é 0
14
0= o= S (IV.8)
=1

Les coefficients4;, B;, C;, D; etG,,3 (donnés en annexe D) sont déterminés de fagon a satisfaire
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FIG. IV.1: Jeu de vitesses discretBs()15 (extrait de [1])

les contraintes suivantes :

14
ST = p (IV.9)
i=1
14
> fWia = pua (IV.10)
i=1
14
foqvmvw = Pas + puqugs (IV.11)
i=1

+1 (ua0pp + Uslap + 1Uy0yp00p)

14 )
. c

E [ 0i00igU,, = ?'0 (Ua0py + Uglary + Uy0ap) (IV.12)

i—1

Les deux premiéres contraintes expriment les lois de ceatens de la masse et de la quantité de
mouvement. Les deux autres contraintes assurent que |deresté&ompatible aprés la procédure
de Chapman-Enskog sur réseau avec les équations macmsespiun écoulement diphasique
isotherme :
Op+ Oulpus) = 0 (IV.13)
1
8t(pua) + 8g(puau5) = —;(‘%Paﬁ (|Vl4)

+ 193 [p (Fptia + Outis + Sapdyu,)]
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. e . da?
avec comme viscosité cinématique= T3 (T—1/2)

IV.1.4 Quelques exemples ...

Pour montrer I'intérét de ce type de méthode, nous préssmégidement une série de simula-
tions effectuées pour un fluide de van der Waals, avec le radflelLa température critique et la
masse volumique critique du fluide de van der Waals utilisgant respectivemertt, = 4/7 K et
pe = 3.5 kg.m~3. La constante massique du fluide est 1 J. K~'.kg~! et le temps de collision
a pour valeurr = 1. Les simulations ont été faites pour une température tashprdu point cri-
tique a7’ = 0.98 T,.. L'ensemble de ces conditions correspond a un fluide modéesranément
employé dans la littérature [53, 54] mais qui ne prétend dag@présentation d’'une quelconque
configuration réaliste. Les parameétres de simulation &ont 1 m etdt = 1 s. Les figures 1V.2,
IV.3 et IV.4 montrent I'évolution d’une colonne de liquide équilibre avec sa vapeur, située entre
deux parois mouillantes et en absence de gravité. La mbilitéeest ajustée grace a 'introduction
d’'un modéle d’énergie libre a la paroi [56, 1, 57, 58]. Lesditinns aux limites selon les axes
x ety sont périodiques. Les figures de gauche montrent la pogigdiinterface liquide-vapeur.
Les figures de droite représentent le champ de masse volamigule champ de vitessedans
un plan de symétrie selonde la colonne de liquide initiale. Les figures IV.5 et IV.@strent la
méme simulation dans le cas de parois non-mouillantes¢ategtontact = 140°).
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t=1000

0

t=2000

FIG. IV.2: Les parois étant mouillantes, le liquide au départ commaéns@étaler. La courbure
ainsi obtenue engendre une différence de pression enttérlgéur de la colonne et I'extérieur qui
crée un écoulement du centre de la colonne vers les parasa@glifie le mouvement initial du
liquide qui est attiré par les parois mouillantes.
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t=2400

t=2600

t=3200

FiG. IV.3: La colonne de liquide finit par se rompre. Bien qu’il n’y aitspde gravité, les erreurs
numeériques d’arrondi suffisent a créer une dissymétries $efiet de la tension de surface, les
deux gouttes s’arrondissent et continuent de s’étaleresyparois.
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t=5000

FIG. IV.4: Les deux gouttes, n'ayant pas la méme taille et donc des emglifférentes, ont
une pression différente. Cette différence de pressionuibad’évaporation de la plus petite au
bénéfice de la plus grande.
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t=600

t=1000

FiG. IV.5: Le liquide a tendance a se courber de fagon a former un anglerdact del40 avec
les parois. Bien qu'il n’y ait pas de gravité ici non plus, ufissymétrie se crée et la goutte se
détache de la paroi du haut.
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t=4000
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FIG. IV.6: Les effets de la tension de surface, arrondissent la gouttingt par se détacher de la
paroi. L'angle de contact est tel que la configuration quiimise les énergies de surface est une
goutte sphérique loin des parois plutét qu'une goutte @ldgthent accrochée a une paroi.

Ces calculs illustrent bien I'un des aspects les plus intnets de la méthode BsR. Les métho-
des classiques (CFD) de simulation d’écoulements ave@emaent de phase exigent une certaine
forme de suivi de l'interface entre les phases avec un cdlctriansfert au travers de cette interface
de la matiére (masse et volume), de la quantité de mouverhdatla chaleur (pour les cas ou il
y a des effets thermiques). La méthode BsR élimine ou amibioes difficultés au prix d'un
recours a une formulation mésoscopique plus inhabitueiechangement de phase se signale
alors seulement par un basculement de la masse volumiqestél cependant un certain nombre
de limitations a la méthode BsR dans ce domaine : par ex. taseptation de fortes différences
de densité exige un traitement spécial. Mais nous verrons ldasuite de ce chapitre (et surtout
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dans le chapitre suivant) que I'approche BsR posséde dets atut a fait originaux.

V.2 Boltzmann sur Réseau pour les dispersions colloidalesec
changement de phase

Dans de nombreux procédés industriels, les particulesidales sont séparées de la suspen-
sion au moyen de membranes de filtration. La suspension pgasseers la membrane et les
particules colloidales sont accumulées a la surface de tabmae dans une couche visqueuse
et concentrée. Ce phénomeéne s’appelle “polarisation deecdration”. S’il y a un écoulement
parallele a la membrane (filtration tangentielle), cettacte atteint rapidement un état quasi-
stationnaire, mais dans le cas d’une filtration frontalg; & seulement un flux de perméation
perpendiculaire a la membrane et I'épaisseur de la couaitaontinlment avec le temps. En
fonction de la vitesse de perméation et des conditions lalyash@miques, la concentration de col-
loide peut devenir suffisamment élevée pour provoquer unggraent de phase, menant a la for-
mation d’'une couche de gel hautement visqueuse. La présiencette couche concentrée limite
la performance de 'opération de filtration. Ainsi il est daiimportance pratique d’avoir une com-
préhension claire de ce phénoméne. Le changement de pipéde carrespond habituellement
a une décomposition spinodale avec croissance de domagremia la formation de structures
poreuses. Il serait utile de savoir si ce phénomene joue lerdeins la filtration membranaire et
guelle sorte de rdle. La simulation numérique est paricainent attractive dans de tels cas ou
I'observation expérimentale est pratiguement impossibds modéles macroscopiques donnent
une description globale du comportement de cette couchis, poar obtenir plus de détails sur
son comportement il est intéressant de tenter d’exploreag@eroches difféerentes comme la mé-
thode BsR. Il est connu que les particules colloidales gpesisson montrent des analogies proches
avec des fluides non-idéaux pour lesquels des modéles BskRmixiLes fluides colloidaux sont
plus faciles d’acces que les systémes liquide-vapeur saffets thermiques y sont négligeables.
Cependant une difficulté supplémentaire apparait : pouunlseintécoulement d’une suspension
colloidale avec changement de phase, il est nécessairgptesdr d’'un modeéle pour le fluide por-
teur (essentiellement de I'eau) dont I'écoulement est iébaypec le fluide colloidal. Or la disper-
sion colloidale subissant le changement de phase peutdittales fractions volumiques élevées
et la densité de fluide porteur se trouve alors fortementte&dbe telles variations de densité étant
difficile & aborder, nous avons choisi de considérer le flgidbal (eau+ colloides) plutét que le
fluide porteur, car la densité du fluide global est quant apelsque constante, ce qui permet de le
traiter avec un modéle BsR traditionnel pour les fluidesimgessibles.
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Pour ce systeme a deux fluides couplés, de nhombreux phénsnmae/iennent et inter-
agissent : convection et diffusion de masse, séparatiorhdsepavec formation d’une interface
entre les phases, couplage entre le fluide porteur et ldsydag colloidales, écoulement visqueux
du fluide global avec une viscosité non-uniforme. Chacunedephénomenes a une échelle de
temps et d’espace caractéristique. Les contraintes inepqsar ces différentes échelles de temps
seront discutées en détail et différentes techniques tseris@s en oeuvre pour contourner les
difficultés associées aux temps caractéristiques les plussc

Dans ce travail, nous avons considéré une solution de ppot@mme milieu colloidal modéle.
La filtration membranaire de solutions de protéines estalgrande importance pour I'industrie
alimentaire et pharmaceutique et beaucoup de données isponibles concernant la pression
osmotique de ces solutions. Les protéines sont des maatouies portant une charge électrique
et les solutions de protéines sont stabilisées par lesgi@psl électrostatiques entre molécules,
alors que les interactions attractives a longue portéersspbnsables du changement de phase.

IV.2.1 Modele pour dispersion colloidale avec changemeniedpohase

Les particules colloidales de la suspension peuvent étsdérées comme un fluide avec une
équation d’état reliant la pression osmotique de la suspens(¢) a la fraction volumique de
colloide¢. Par exemple, I'équation d’état la plus simple pour desqaéds colloidales sans inter-
actions a distance est I'équation de van’t HofE= nk, T, avecn la concentration de particulég |a
température et, la constante de Boltzmann. L'équation de van't Hoff est ¢éajente a I'équation
d’état d’'un gaz parfait, un fluide dont les particules n’ontane interaction a longue distance.
Dans ce travail, nous considérons une suspension de pesticolloidales avec des interactions
attractives a longue distance qui autorisent la pos®hilé changement de phase. Linteraction
double-Yukawa-sphére-dure a été choisie parce que I'qudtat correspondante peut étre deé-
rivée analytiquement en utilisant I'approximation du “ofasphérique moyen” [2]. Le traitement
des colloides comme un fluide non-ideal permet d'utilisenteléle BsR EL [55, 1], qui est basé
sur la formulation de la fonctionnelle d’énergie libre déHarmodynamique des systemes liquide-
vapeur avec interfaces [59]. Nous devons aussi modéligkridie porteur qui est de I'eau dans la
plupart des cas. Cependant quand la fraction volumiquelt@ad® devient significative, la densité
du fluide porteur seul ne peut plus étre considérée commeéastaset ceci introduit des compli-
cations considérables. Plutét que de décrire le fluide podieectement par une seconde fonction
de distribution, nous avons modeélisé le fluide global (¢azolloide) comme un fluide incompres-

sible. Ce choix est raisonnable si les particules coll@glaint une masse volumique. (= =2

1
Up

avecm, la masse d’'une particule e} le volume d’'une particule) proche de celle de I'gauSi
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I'on considere le fluide global comme incompressible, oraesbrisé a appliquer un modele BsR
pour fluide incompressible. Les équations macroscopiqoesle fluide global correspondant a ce
modele a deux fluides sont :

Vou = 0 (IV.15)
ou

§+u~Vu = —p—IOVp+V~ (vVu) (IV.16)

Pour le fluide colloidal, nous avons I'équation de Navierk&t incompressible avec le tenseur des
pressions dérivé de la théorie de Cahn-Hilliard :

0+ Oa(u) = 0 (IV.17)

1
Oi(pug,) + Os(duguy) = —p—ﬁﬁﬂaﬁ (IV.18)
0

—+ 1/685 [gb (8gug -+ &ﬂL% -+ 5015872@)} + qua

I1,5 est le tenseur des pressions osmotiques qui est dérive delend@nergie libre pour une
interface :

.5 = <H0(¢) - g(ﬂoavqb)? _ /{pggbawgb) ap + £(P00a®)(p0Ds0) (IV.19)

Ici, ITy(¢) est I'équation d’état du fluide colloidal etest le parametre relié a la tension de surface,
qui est entierement déterminé par le potentiel d’'intecacéintre particules colloidales(cf. 111.50).

IV.2.1.1 Modele Boltzmann sur réseau pour le fluide global

La masse volumique du fluide global dépend de la fractionmaue de colloides p =
ope + (1 — ¢)p.. Mais sip. =~ p., la masse volumique du fluide global est quasiment constante.
Pour notre modele, nous supposgns= p. = p. = po. Nous choisissons donc de décrire le
fluide global par un modele BsR3Q15 pour écoulement incompressible [60]. Le jeu de vitesses
discrétesy; est composé des vecteur§); 0,0), (+c, ¢, +c¢), (¢, 0,0), (0,%c,0), (0,0, +c)
(voir Fig. IV.1). L'équation d’évolution de la fonction dedtribution des vitesses, f;(r,t) est:

S v 6t ¢+ 68) — filr,t) = —% (e 6) = f5(r, 1) (IV.20)

T N . . . . . 2 - .
avect = 5 ou T estle temps de relaxation £’ la fonction de distribution d’équilibre suivante :

ct

£ = w; {p +po [3 (Vic'z w g (vi-w)? ;(u)z] } (IV.21)
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w; étants les poids de quadrature;:= 2/9 pouri = 0, w; = 1/9 pouri = 1,...,6 etw; = 1/72
pouri =7,...,14.py = p0§ est la pression de référence. Les champs macroscopiqusergui
ici la pressiorp et la vitessal sont évaluées en sommant la fonction de distribugion

p = Zfi (IV.22)
pou = Y vifi (IV.23)

D’apreés la procédure de Chapman-Enskog sur réseau, liéguis Navier-Stokes incompressible
2

est retrouvée a partir du modele BsR avee 1/3(% — 1/2)5i, pour la viscosité cinématique
du fluide global. Dans ce travail, nous avons eu besoin deidénes |'effet des colloides sur la
viscosité du fluide global. La formule de Eilers-Chong [641 etilisée pour la dépendance de la
viscosité en fonction de la fraction volumique :

1.25 ¢

v(p) =1 [1 + 7} (IV.24)
1- Qb/QbCP

ou v, est la viscosité poup = 0 et ¢, est un parametre ajusté a partir de données expérimentales

disponibles. Pour introduire cette viscosité variabléetaps de relaxation est simplement rem-

placé parr(¢) = 3%1/@5) + % Cette méthode a été testée numériquement pour un écoulemen

de Poiseuille avec une viscosité variable dans I'espadedppendice E).

IV.2.1.2 Modele Boltzmann sur réseau pour les particules dlmidales en suspension

Pour modéliser la suspension de particules colloidalésesiuconsidérée comme un fluide
non-idéal, nous utilisons un modeéle BsR BBQ15 [55, 1] (présenté au paragraphe 1V.1.3) avec le
méme jeu de vitesses discretes que pour le fluide global étaedliscrétisation spatio-temporelle.
L'équation d’évolution de la fonction de distributigf(x, ¢) du colloide est :

gi(r 4+ vi 0t t + 0t) — g;(r,t) = —é [gi(r,t) — g (r,t)] + 3 p w;v; - F ot (IV.25)

[

tau,

avecT, = est le temps de relaxation des colloides, qui représentsiqaigment le temps
moyen entre deux collisions de particules colloidalg$.est la distribution d’équilibreF,, est

le terme de force extérieure qui sera explicité plus loirs tkamps macroscopiques qui sont la
fraction volumiquep et la vitesse d’ensemble des colloidgéssont évalués par sommation de la
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fonction de distributiory; :

¢ = }:% (IV.26)
pu® = > wvig (IV.27)

D’apreés la procédure de Chapman-Enskog sur réseau (vandpe F), les équations macrosco-
piques dérivées a partir de ce modéle sont :

Bidb + OulPus, + %¢Eg:0 (IV.28)

ot 1
@(gbug + Equa) + Bg(gbu;ug) = —p—agﬂag (IV.29)
0
+ 1 [¢ (O5US, + Outls + BapByty)] + G F

1, 7. 1 622 ) e . . . . ;
avecy, = §(E_§)6—¢ pour la viscosité cinématique du fluide colloidal qui reprée le transfert
visqueux de quantité de mouvement par collision entre Qdets colloidales. Cette quantité est
presque impossible a déterminer expérimentalement : daxasédul qui suit, elle recevra une valeur

arbitraire. Nous pouvons remarquer que ces équationsettfdes équations (I1V.17) et (1V.18) par

. Ot s .
un faux terme de wtess%nga. Dans la plupart des cas, ce terme est négligeable, mais eomm
nous le verrons plus tard, pour le régime diffusif, ce termoi &tre pris en compte.

Dans ce modéle a deux fluides, le couplage entre les deuxdle@it de deux fagons. Pre-
mierement, il y a une dépendance de la viscogitéu fluide global en fonction de la fraction
volumique du colloides. Le second couplage se fait par une force de tramésercée par le
fluide porteur sur le colloide. L'expression pduest la force de Stokes corrigé par Happel [62]
pour prendre en compte I'effet de la fraction volumigusur la force de trainée :

F = H(p)

(u® —u (IV.30)

my
avecy, la viscosité dynamique du fluide porteuf, sa vitesseq le rayon des particules colloi-

6+ 4 ¢°/3
dales, etH (¢) =
f¢) 6 — 9 ¢l/3 + 9 ¢5/% — 6 ¢ . :
étre réécrite en fonction de la viteaseu fluide global car la vitesa€ du fluide porteur n’est pas
calculée. La relation entre ces deux vitessesiest¢ u® + (1 — ¢) u®. Ainsi la force de trainée

s'écrit :

la fonction de Happel. Mais cette expression doit

(u—u)
F=H(¢) ——= (IV.31)
avecr, = 6m” un temps de relaxation qui peut s’interpréter physiquementme le temps
THa

caractéristique nécessaire a une particule colloidale gibeindre la méme vitesse que le fluide
porteur.
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IV.2.1.3 Régime diffusif

Pour les applications colloidales, d’'un point de vue mampgjue, une simplification impor-
tante peut étre faite dans I'’équation de quantité de mountefi¢29). Cette simplification est
I'approximation de diffusion qui consiste a ne garder qeatéemes qui comptent dans I'équation
(IV.29) et a la considérer comme stationnaire par rappdécgubtion de conservation de la masse
(IV.28). Les termes d’advection et les contraintes visgasusont négligés par de simples argu-
ments d’ordre de grandeur. Ainsi avec cette approximatidiexpression de la force de trainée
précédente, les équations macroscopique du fluide cdlidésaennent :

(ua - “3)

b
D6+ D | SuC + Etgb H(g) et | =0 (IV.32)
Ipllap = po ¢ H(9) % (IV.33)

Pour bien comprendre cette approximation de diffusionsici#rons un fluide colloidal idéal. Le
tenseur des pressions se réduit a la loi de van't Hoff = ngﬁ—ZT dop. Pour une solution diluee
(c.-a-d.¢p < 1 etH(¢) — 1), I'équation (1V.33) correspond a la premiére loi de Ficleawn
terme de dérive :

Qug, = Puo — Dy, Oath (IV.34)

kyT
avecD,, = -~
6mpa

tion de conservation de la masse (1V.32), nous retrouvossdande loi de Fick ou I'équation de
diffusion :

le coefficient de diffusion usuel, issu des travaux d’Eimsfg3]. Et pour I'équa-

0+ D [Ptia — D Dag] = 0 (IV.35)

mais avec un coefficient de diffusion différebt= Dy, (1 — 2%). Cette différence apparait dans
la procédure de Chapman-Enskog sur réseau lorsque le terfoecd n’est pas négligé dans I'ex-
pression de".

IV.2.2 Validations, implémentation numérique et résultas
IV.2.2.1 Validation du régime diffusif
Pour valider le modele et le régime diffusif de la suspensime série de simulations ont été

menées pour un profil gaussien de fraction volumiguans une solution diluée de fluide colloi-
dal idéal sans mouvement de fluide global (c’est-a-dire< 1, [1,5 = gﬁf—iT dop €U = 0). La
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(r —rgp)?
0-2
lytique de I'équation de diffusion (IV.35) montre que pour champ initial gaussien, le profil de

fraction volumiquey reste gaussien avec un écart-type qui croit'€net dont la valeur maximale
00

V4D, ymt + 02

ter numériquement au coefficient de diffusiby,,, et de le comparer au coefficient théorique de
kT

TUG
de diffusion par la premiere loi de Fick¢gu®, = —D,umo J.¢. Compte tenue de la procédure

de Chapman-Enskog numérique, le régime diffusif est pamtisi on retrouve),,,,,,0 = Dy, et
Dypum = Dy(1 — ;Tt). Les figures IV.7 montrent les coefficients de diffusion olote numéri-
quement pour différentes valeurs &@¢r, (les simulations ont été effectuées avee- 9,).

condition initiale est de la formeg(r,t = 0) = ¢¢ + Agexp [— . La résolution ana-

enr, en fonction du temps est(r =rg,t) = ¢¢ + . Ceci nous permet de remon-

diffusion D,;, = = TU%T. Il est aussi possible de retrouver numériquement le casdtic

0.88 : : : : 0.4 : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0

4 0.6 08 1
otht otlt
u u

(@) (b)

. - . . ky T
Fic. IV.7: (a) : Comparaison entre le coefficient théorique de diffudiy, = 5 b
TG

lution diluée de fluide colloidal idéal avee,,.., obtenu numériguement par la premiéere loi de
Fick (IV.34) pour une série de simulations de diffusion djuofil gaussien de pour différentes
valeurs devt/7, ; (b) : Les cercles représentent le rapport entre le coefticde diffusionD,,,,,
obtenu numériquement a partir 'équation de la diffusion3b) et D,,. La ligne représente le

d’'une so-

L o, . .
rapport théorique, ...,/ Dy, = 1 — o prédit par la procédure de Chapman-Enskog sur réseau et
Tu

I'approximation de diffusion.

Le coefficient de diffusion apparem?,..., évalué par la premiere loi de Fick tend vers la
valeur théoriqueD,, lorsque le pas de temps tend vers le temps caractéristique Ce résultat
montre que I'approximation de diffusion devient moins pemte lorsque le pas de temps décroit.
Ce résultat s’explique par le fait que dans I'approximatierdiffusion le tenseur des contraintes
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visqueuses (qui représente le transfert de quantité de enweivt par chocs entre colloides) est

négligé. Or l'effet de ce tenseur des contraintes augmensguies, diminue car la viscosité du
2

16
fluide colloidal a une valeur arbitraire = Eéi Les résultats de la figure IV.7.(b) montrent

I'importance de ne pas négliger le terme de force dans lesgion dey") dans la procédure de
Chapman-Enskog sur réseau. La dépendance en fonction die pesipsit du rapport entre les
deux coefficients de diffusion est bien reproduite par lesiations.

IV.2.2.2 Analyse linéaire de stabilité

Pour étudier la dynamique de croissance des domaines duraritempe de fluide colloidal,
nous avons effectué une analyse linéaire de stabilitédRjute de réaliser cette analyse sur le mo-
dele mésoscopique, elle a été effectuée sur le modéle ncapigse correspondant avec I'appro-
ximation de diffusion (1V.32), (IV.33) en une dimension ahs mouvement du fluide global.

9¢

6 c
o o - O | = o (=0)
oIl 52 0o , 0 [ 0*] u®
LT [(a_) ] ~wrig [058] = —eeH) s van)
Le systéme est perturbé autourdgleet uy = 0.
u(z,t) = u(xz,t) (IV.39)

¢o est la fraction volumique du point d’équilibre instable qomle montre la figure 1V.8. Le
systeme d’équations linéarisées associé pour les petiturbast :

8¢ _ OtH(¢o) ] Ou® _

1, 0 8% u®

%HO(QSO)% a 9.3 ¢OH(¢O)M (lV-41)

avecllj, = 88—13; Dans l'espace de Fourier nous obtenons :

09 0tH(¢o) | -, _

o — ik {gbo e %J u =0 (IV.42)
ke _ e

1) (0) — ikPrpod = — o H (o) —— (IV.43)

Po Tu(1 — o)
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FIG. IV.8: Equation d’état selon Guérin [2] pour un potentiel d’'intg¢iran double-Yukawa-sphére-
dure. D’aprés la construction de Maxwell, le systéeme peuntneo deux fractions volumiques
coexistantegg eto; . ¢, est la fraction volumique d’équilibre instable.

ou o(k, t) eti(k,t) sont les transformées de Fourier respectives(det) etw(z, t). Ainsi (k. t)
etu(k,t) sont des combinaisons linéaires«té avec la relation de dispersion suivante (voir Fig.
IV.9):

/
w(k) = + ¢0% - %} {WZO k2 + pomkﬂ (IV.44)
Pour illustrer les résultats de I'analyse linéaire de $§tébdes simulations BsR d’une trempe
de fluide colloidal ont été effectuées (voir Fig. IV.10). landition initiale de fraction volumique
est un champ perturbé aléatoirement autour du point diégeiinstablep,. Aprés quelques pas
de temps, les fluctuations aléatoires initiales dispagaisst seules quelques longueurs d’onde
caractéristiques persistent. Dans ces simulations, degides d’une taille d’environ8 nm ap-
paraissent tandis que I'analyse linéaire de stabilitéipféinergence de domaines de longueur
2030k
—1I1
3.44 nm nous pouvons remarquer que les agrégats colloidaux soné$ode quelques particules.
Ceci est en accord avec le fait que la tension de surface tinsgolloidal est faible. Une tension
de surface faible autorise la formation d’agrégats qui amapport volume/surface faible.

d’'onde),, = 27 ~ 20 nm. Comme la taille des particules colloidales considéréedees
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FiG. IV.9: Relation de dispersion. (k) pour plusieurs valeurs du pas de tenipsLes résultats
0tH (¢o)

2¢07,(1 — ¢o)

(c’est a direR = 0). La discrétisation temporelle change la valeur.d¢k) mais n’affecte pas la

sont montrés en fonction du rappéit= . Le résultat physique correspondta= 0

/
0

20500k

valeur dek,, pour laquellev, (k) est maximale. La valeur,, est

IV.2.2.3 Méthode de pénalisation

Pour la protéine considérée, la valeur du temps caradtgristie la force de trainée est trés
faible, 7, = T:”a = 2.63 10~'%5. Comme le schéma d’intégration temporelle est explicitea-
leur du pas de/ibemp% doit étre inférieure a la valeur de. Cela signifie, que pour des simulations
de situations réalistes, le nombre de pas de temps néeesshirop important. Ainsi pour réaliser
des simulations réalistes, nous proposons une méthodadbgadion. Cette méthode repose sur la
pertinence de I'approximation de diffusion c’est-a-dive Is validité de I'équation (1V.33). La mé-
thode que nous proposons consiste a diviser les deux mendbpette équation par un parameétre

E.
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FiG. IV.10: Profil de fraction volumiques. La condition initiale est un champ de fluctuations
aléatoires autour du point d’équilibre instable de frattimlumique¢,. Une longueur d’onde
caractéristique autour de8 nm apparait apres quelques pas de temps ce qui est en accord avec
I'analyse linéaire de stabilité.

6% = PO¢H(¢)% (IV.45)
ullyy = mo (o) et (v.46)

avecr, = e7,, * = /e etll = Ily /e (ce qui a pour conséquence dug; = I1,s/¢). Le systeme

(x) est différent du systéme original, mais dans la limite dumégdifffusif, nous retrouvons les
mémes équations macroscopiques (1V.32) et (1V.33). Le seoapactéristique’ peut étre choisi
par ajustement du parametre de pénalisatioa qui permet d’utiliser des pas de temps beaucoup
plus raisonnables pour effectuer des simulations réalifteur valider cette méthode, nous avons
effectué des simulations BsR de diffusion d’un profil gagissie fraction volumiqué pour une
large gamme de valeurs ddde 1 a10°) et le coefficient de diffusion observé numériquement ne
varie pas avec la valeuar
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IV.2.3 Premiers résultats

Une premiére série de résultats a été obtenue par simutiiditirations frontales d’'une so-
lution contenant une protéine (lysozyme) pour laquellglepriétés physico-chimiques sont dis-
ponibles, en particulier son équation d’état [2]. La foraeigque du fluide porteur a été choisie de
telle facon que le contraste des concentrations entre lesgieases en équilibre ne soit pas trop
important :10% et 18%. La taille du domaine es00 x 40 x 40 aveciz = 0.5 nm etdt = 10719,
avec des conditions aux limites périodiques sur les quatresfperpendiculaires a la membrane.
Sur la face d’entrée (opposée a la membrane), la vitesselldideoest prise égale a la vitesse du
fluide global et la fraction volumique est maintenue constdp;, = 0.145). Une différence de
pressionAp est appliquée entre les deux c6tés de la membrane, ce quiitanagne vitesse du
fluide a la membrane, d’expression,,, = L,(Ap — 11,,,), avecL, le coefficient de permeabilité
hydrauliqgue de la membrane Hit, la pression osmotique du colloide a la membrane. Dans les
tests présentés, une valeur moyennélgea été considérée a la membrane, ainsiest uniforme
dans ce plan. Si nous négligeons les effets de la variatiatiedp de la viscosité du fluide global
(dépendant de la fraction volumique de colloide), alorsaitides conditions aux limites pério-
diques sur les faces latérales, I'écoulement du fluide ¢lesiaspatialement uniforme dans tout
le domaine. Ceci implique que le seul effet du fluide globales force de trainée uniforme. Le
champ initial de fraction volumique est aléatoirementymdxé autour de la valeur, choisie dans
la zone instable (voir Fig. I1V.8) : 'amplitude des pertutibas est d&%.

Les calculs montrent que le changement de phase se prodsitusie couche proche de la
membrane, ou la séparation initiale crée des “gouttes” dsgdcondensées ou diluées. La mor-
phologie de ces zones est similaire a celles observéesekasisriulations de trempe et I'épaisseur
de la couche est également comparable en dimension aux mesrenergeant lors de la trempe.
Ceci est également en accord avec I'analyse linéaire déitgtaiméme si celle-ci n’a pas éte faite
en considérant un écoulement d’ensemble du fluide. La gtude la figure 1V.11)correspond a
5us apres le début de la séparation de phase : I'enveloppe estunfaee d’isoconcentration qui
permet de situer la phase dense. Quant au comportementedaamss, la concentration pres de
la membrane oscille : la couche condensée est instableuariagquantité de matiére accumulée
n’est pas suffisante pour former une interface completetébley. Ceci est illustré par la figure
IV.12 qui montre la concentration a la membrane en fonctiotednps.

Il est connu que la vitesse de perméation dans l'ultrafittrede solutions contenant des macro-
molécules (comme les protéines) est limitée par la présgamces couches de solution concentrée,
qui le plus souvent se solidifient par gélification. La stowetdétaillée de ces couches n’est pas ob-
servable expérimentalement, mais il est sir que cellese jo réle considérable pour la détermi-
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FIG. IV.11: Représentation de la fraction volumiquede colloides5us apres le début de la
séparation de phase. La taille du domaineléstx 40 x 40 aveciz = 0.5 nm etdt = 1070 s.
Un écoulement global d’envirord—*m.s~! est imposé dans la directianmais les colloides sont
bloqués a lamembrane. La condition initiale est un chamgi@il® autour de la fraction volumique
instablep, = 0.145.

nation des performances de filtration. Une question a léguelus souhaitons répondre concerne
la possibilité que cette décomposition spinodale puissgs sertaines conditions, mener & la for-
mation de structures poreuses. Les résultats présentsremggiue la cinétique de séparation de
phase soit en effet assez rapide pour permettre la formdéi@tructures prés de la membrane.

Pour capturer la cinétique de séparation de phase en atilis& approche BsR, il est néces-
saire d’atteindre de hautes résolutions spatiales et teips. L'épaisseur de l'interface “liquide-
vapeur” doit étre résolue, ce qui impose des pas d’espacaldarfaible & 0.5 nm) : ainsi la
taille totale du domaine de simulation ne peut pas étre tngeitante. Dans ce travail, I'effet de
cette limite a été minimisé en utilisant des conditions aomtés périodiques dans les directions
paralléles a la surface de la membrane, mais méme ainsllé&adaidomaine limite la taille et le
nombre de “gouttes” formées pendant la séparation de phase.
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FIG. IV.12: Représentation de la fraction volumique a la surface de lalmane en fonction
du temps. Du fait de I'écoulement global, il y a une accunaitatie colloides a la surface de
la membrane. Des oscillations sont observées car il n'y aapasz de matiére pour former une
interface stable.

IV.3 Conclusions du chapitre

Dans I'essai présenté ci-dessus, une difficulté a été éieném considérant une membrane de
perméabilité uniforme et en négligeant la variation de kcosité de sorte que I'effet du fluide
porteur a été remplacé par une force de trainée vers la mealvais ceci n’est pas réaliste car
a cette échelle, les membranes présentent une surfaceusggeieune permeéabilité non-uniforme
[64]. En principe, le modéle présenté ici est capable desssmter ces phénomeénes via la résolu-
tion BsR pour le fluide global. Cependant, pour implémengttecméthodologie dans I'exemple
présente, la faible valeur de: et la valeur physique de la viscosité du fluide porteur impbea
pas de temps tres petit (10~ !4s, c’est a dire quatre ordres de grandeur en dessous du pasie te
requis pour la résolution BsR du colloide). Ceci est palitcement pénalisant car un nombre ex-
tremement elevé de pas de temps serait alors nécessairatfgndre la zone de concentration
instable a la surface de la membrane en partant d'une caatentinitialement stable. Dans les
tests présentés ci-dessus nous rencontrions déja deslltBi@lors que nous n’étions pourtant
contraints que par le pas de temps de la résolution BsR : lzecdration initiale a du étre imposée
a une valeur instable des le début de la simulation et I'é&snaht vers la membrane a été fixé a
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une valeur environ dix fois trop importante par rapport atxagions rencontrées en pratique.

Cette difficulté pourrait étre partiellement levée en siilit un pas de temps plus élevé dans
les premiers instants ou le profil de concentration a la mangse développe puis en choisissant
un pas de temps adapté pour obtenir les calculs détailléguerla condition de séparation de
phase est atteinte. Quant a la vitesse élevée de I'écouleraenla membrane, il a été montré
par les calculd D que pour une vitesse plus faible, la durée de la phase adeikst plus longue
avant la formation compléete de l'interface. Ainsi dans uai procédeé de filtration, la cinétique de
séparation de phase serait favorisée par rapport auxatsdé# calculs présentés ici.

Evidemment un pas de temps de I'ordrelde!*s n’est pas utilisable en pratique pour ce type
d’applications. Un travail plus complet est nécessairefaitaau niveau strictement numérique et
au niveau de la formulation dans le style de la méthode ddipétian décrite a la section IV.2.2.
Des phénomenes physiques ont déja été implicitement @Sglhigpmme la relaxation de la double
couche électrique autour des particules colloidales nigsede relaxation de la double couche est
de 'ordre del0—2 s [65] , et notre équation d’état des colloides est dérivés $hypothése de
I'équilibre de la double couche. Il n’y a donc aucun sens fuesa analyser, avec ce modéle, des
échelles de temps d@®~'*s et des efforts seront fourni a la suite de ce travail pouetet¢ lever
ces contraintes.



Chapitre V

Boltzmann-sur-Réseau pour les écoulements
diphasiques avec transferts d’énergie

Nous avons été en mesure au chapitre Il de proposer un schémmetpant la simulation
d’écoulements de gaz anisothermes. La raison pour lagnells nous intéressons aux écoule-
ments anisothermes est que I'un de nos objectifs appkcasf le refroidissement de I'électro-
nigue. Cependant les dispositifs efficaces dans ce coritextappel aux phénomeénes de transition
de phase liquide-vapeur (évaporation au contact du compeésactronique et condensation a la
source froide). Notre travail ne peut donc avoir de consécggconcrétes dans ce domaine que Si
nous sommes en mesure d’étendre la proposition faite autd@ux écoulements diphasiques.
Nous essayons donc dans ce dernier chapitre d’amorcer, gense une synthese des éléments
théoriques présentés aux chapitres Il et lll. La matiéregnt&e est beaucoup moins aboutie que
celle des chapitres 1l et IV (monophasique anisothermepgtadiique isotherme), cependant :

— Nnous avons pu mettre en oeuvre une série de premieres sonsleulti-dimensionnelles
d’écoulements de diazote en présence de transition de phagsgsinage du point critique ;

— un cap important a été franchi en termes de stabilité ngmésur la base de I'analyse de
I'interface liquide-vapeur détaillée au chapitre Ill etltexpérience acquise au chapitre IV
sur les interfaces en écoulement isotherme.

Il est apparu dans ce travail (comme lors de I'extension amdecollisionnel ES-BGK du para-
graphe 11.3.6.6) que 'augmentation de complexité comesiant au passage du monophasique au
diphasique ne pose aucune difficulté particuliere en ceanderne le modéle de vitesses discretes.
La véritable difficulté s’est avérée étre liée a la discediim spatiale.

127
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V.1 Rappel du modéle cinétique

La plupart des modéles Boltzmann-sur-réseau existant giowler des écoulements aniso-
thermes de fluides diphasiques sont basés sur des modéhesiises (cf. Chapitre IV). A partir
de ces modéles les effets thermiques sont pris en comptéajartld’'un scalaire passif ou par
une résolution de I'’équation macroscopique de la chale®ir§8, 67, 68]. Martys [69] a égale-
ment proposé un modele Boltzmann discret pour fluide noatidénservant I'énergie sans tou-
tefois I'appliquer a des écoulements diphasiques. En ca@us concerne ici, nous repartons de
I'équation cinétique continue introduite au chapitre dlisavoir I'équation de Boltzmann-Enskog
(111.51) :

U ivvieE v =1, (V1)
ot m

Dans cette équation, le ternde représente le terme collisionnel qui tient compte de ldetaiés
particules et des répulsions intermoléculaires en coreidides particules comme des spheres
dures. Et le termé/,,, est le potentiel moyen obtenu par approximation de champemaol la
partie attractive des interactions intermoléculaires. @aix termeg,; etV,, s’écrivent en fonction
des dérivées spatiales des champs macroscopiguest 7" :

L = x&
— bpxf(v—u)- {V In(p*y) + g(C’2 — g)VIHT}
2 , 5
- bprqu 2CC:Vu+ (C* — §)V -u (V.2)
Vi, = —2ap — kV?p (V.3)

Le termel, nécessite un modele pofl, qui est le terme collisionnel de Boltzmann que nous
pouvons approximer par BGK ou ES-BGK. Il est nécessaireedgaht d’avoir un modele pour

la fonction de corrélation a deux corgs Dans ce travail nous nous limitons au modele relatif

a I'’équation d’état de van der Waals c’est-a-dire= ﬁ Nous rappelons également que les
—bp

parameétres et x rendent compte de la partie attractive du potentiel intéémdaire (paragraphe
11.2.2).
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V.2 Modeéle de vitesses discretes

Au chapitre I, la détermination du jeu de vitesses dissretéété pensée en vue d'une ré-
solution de I'équation de Boltzmann-BGK a un ordre de prénigorrespondant a I'ordré du
développement de Chapman-Enskog. Pour discrétiser tegpes vitesses dans le but de résoudre
I'équation de Boltzmann-Enskog, la méme démarche peupktager. Comme pour I'équation de
Boltzmann-BGK, nous choisissons de résoudre I'équatioBalezmann-Enskog a l'ordré de
Chapman-Enskog en incluant les effets thermiques (voagraphe 11.3.2).

Les termes d’interactions supplémentaires dans I'équagBoltzmann-Enskog ne posent pas
de difficultés particuliéres lors du développement de Clapfnskog. Pour ce qui nous intéresse
ici, il est juste important de remarquer que le termgeut s’écrire comme la somme du terme
collisionnel de I'équation de Boltzmann et du produit d'wlymome d’ordre3 env par f<.

]1 = XQO -+ Pg(V)feq (V4)

En retenant I'approximation BGK pour le terme de collisidg, nous pouvons trouver une ex-
pression pourf(Y) de la méme fagon que pour I'équation de Boltzmann-BGK au itteapen
remplacant les dérivées spatiales et temporellesuia les dérivees dg.,.

eq
of 4—wVfu45—vmyVJWz4Mm+%w) (V.5)
ot m T
eq
o~ Iy g (E gy v (V.6)
X | Ot m

+ %%Wﬁ”

Aux chapitres | et Il, nous avons montré en effectuant taufgdcédure de Chapman-Enskog que
le terme entre crochets s’écrivait également comme le jirddy“? par un polynéme d’ordrg en

v. Ce qu'il estimportant de retenir a cette étape, c’'est geitelenes supplémentaires d’interaction
n‘augmentent pas I'ordre du polynéme en (V) reste le produit dg°? et d’un polyndme e
d’ordre 3. Pour pouvoir utiliser la quadrature de Gauss-Hermitesramons ensuite utilisé le fait
gue f¢? pouvait se développer comme le produit d’'une gaussienneseean) par un polynéme
d’'ordre 4. Ceci est inchangé et, en reprenant toutes les étapes,adtaippgue la quadrature de
Gauss-Hermite doit comme précédemment, étre capableldédvas moments d’ordréd d’'une
gaussienne centrée énAutrement dit, pour résoudre I'équation de Boltzmannkegs a I'ordre

1 de Chapman-Enskog, il est possible de garder le méme jeuteleses discretes que pour la
résolution de I'équation de Boltzmann-BGK défini par 11.41.
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V.3 Discrétisation spatio-temporelle

Les mémes schémas d’intégration, que ceux présentés aitreligpeuvent étre utilisés dans
ce nouveau contexte : schéma de Euler au premier ordre potdégFation temporelle et schéma
amont au premier ou au second ordre pour le terme de transp&ftf. D’un point de vue nu-
mérique, la seule difficulté supplémentaire provient deidarédtisation des dérivées spatiales des
champs macroscopiques intervenant dans le terme de @olliset dans le potentiel moyewj,,.

Les premiers essais de résolutions numériques sans apgisgement particulier se sont montrés
totalement infructueux, conduisant a de fortes divergerca résolution divergeait encore, méme
lorsque les simulations étaient effectuées a partir d’ahigitial correspondant a un état d’éequili-
bre liguide-vapeur. Pour concevoir un schéma numériqugtadaous avons repris le point de vue
meésoscopique sur I'équilibre liquide-vapeur abordé endiclthpitre 1.

V.3.1 Point de vue mésoscopique sur I'équilibre liquide-vaeur

Comme il a été vu au chapitre Ill, au niveau mésoscopiqugyilére liquide-vapeur a l'inter-
face est obtenu par compensation entre les termes de trgréptiraction et de répulsion d’Ens-
kog.

VeV U= TV - Vo f = —bpy SV - V In(p*) (V.7)

Il est & remarquer que seules les dérivées spatiales de Eemakimiquey sont non-nulles a
I'équilibre puisque I'équilibre implique I'annulation dalérivées spatiales de la vitesset de la
températurd’. C’est pourquoi, dans un premier temps, nous regardonsadigation les dérivées
spatiales de qui interviennent dans le potentiel moygn et le terme de répulsion d’Enskog. En
développant le term¥, f? et en remplacanit,, par son expression, I'’équation précédente s’écrit :

V-V — [2aVp + kVV?p] Vi = —bpx [V - V In(p?y) (V-8)

Cette équation fait apparaitre le fait qu’'a I'équilibretteetgalité doit étre vérifiée pour chaque
vitessev indépendamment les unes des autres. Ainsi, il apparakisiant que pour pouvoir numeé-
riguement obtenir une interface a I'équilibre, le schénmsadiivées spatiales gae pas étre choisi
indépendamment du schéma utilisé pour le terme de trangp®tf. Pour illustrer la dépendance
entre ces schémas numériques, prenons I'exemple d’urilirguitjuide-vapeur emn D dans le cas
extréme o = 0. Physiquement cela correspond au cas ou l'interface s#éptisseur nulle

fe
T
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et d'un point de vue numérique cela correspond au cas ou laenasumiquep passerait d’'une
valeur a I'autre sur une maille comme le montre la figure V.1.

P

R,

o o o o ® ®
-1 I |+1

FiG. V.1: lllustration d’un équilibre liquide-vapeur lorsque= 0 c’est a dire lorsque la masse
volumique passe de, ap; d’'un nceud a l'autre .

Examinons les contributions de chacun des termes de I'equét.8) au noeud/. Pour les
vitesses positives (particules se déplacant de gaucheat@)ded pour un schéma amont au premier
ordre, le terme de transport s’écrit numériquement de larfagiivante :

eq €q

V‘erq|(1,v>o) _ V% (V.9)

=0 (V.10)

En revanche pour les vitesses négatives, |'évaluation mhoetele transport n’est pas nulle (nous
utilisons ci-dessous le fait que la distribution d’équidils’écrit /<9 = p pg?) :

eq flej-l B qu
V-V vy = VT (V.11)
— p\elqvp ! +g—x— P1 (V.12)
= peay 5;”” (V.13)

Le terme de transport étant différent en fonction de la siées est compréhensible que les termes
d’interaction doivent aussi étre évalués de facons diffi&®en fonction de la vitesse. Une question
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se pose alors : pour les vitesses positives, le terme deptrendtant nul, le terme d’attraction

(—2anfeq) se compense-t-il avec le terme de répulsiohdy f?V In(p*x)) ou bien ces termes
sont-ils guls tous les deux ? Pour répondre a cette questiemons a la signification physique de
ces termes. Formellement le terme d’attraction dépendutdeéachamp de mais le développe-
ment champ moyen permet de remplacer cette dépendancaisle tbamp par une dépendance
sur les dérivées spatiales deau point considéré. Ainsi, pour les particules au noevénant du
noeud/ — 1, le terme d’attraction doit étre nul car durant leur tragets particules n’ont pas “vu”
de variation de masse volumique. Les termes d’attractiale e€pulsion sont donc tous les deux
nuls. En revanche pour les vitesses négatives, les paioeinant du noeutl+ 1 pour aller au
noeud!, ont ressenti des forces du fait de la variation de masseniqlie et ce sont ces forces qui
compensent le terme de transport.

V.3.2 Reformulation des termes d’interaction pour une sitation d’équilibre
liquide-vapeur

Afin de concevoir une approximation numérique des termegeataction, nous allons com-
mencer par les reformuler. Reprenons encore I'exemple figuee V.1 d’'un équilibre liquide-
vapeur pour lequet = 0. L'équation (V.8) traduisant cet équilibre au niveau méspgjue peut
se réécrire sous la forme suivante :

eq
V-V = 2aVp- ViT — bpx fv - VIn(p’x) (V.14)
eq b
v-Vf = S V- [rT=V(p*x) — 2aVp (V.15)
rT P
eq
v-Vfe = —f lV -V [perbX — apz] (V.16)
T p
€eq 1
V-V = _iT ;v -V [prT(1+ bpx) — ap® — prT] (V.17)

Cette reformulation permet de faire apparaitre I'équatiétat de van der Waals, = pr7'(1 +
bpx) — ap® que nous avions identifiée au chapitre Ill en utilisant leedi@wpement de Chapman-
Enskog pour I'équation de Boltzmann-Enskog.

1
———Vv-V [p, — prT] (V.18)
rl p

D’un point de vue physique le termé [p, — prT] est proportionnel a la force totale exercée sur

les particules, intégrant les interactions attractivegtisives. Cette formulation est bien entendu

V-V =
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compatible avec le point de vue macroscopique d’un éqeililuide-vapeur. En remplacayfit?
parp p¢d, le terme de transport s’annule avec le term&¢ém-7’) du membre de droite et I'équilibre
se traduit par la continuité de la pressjgrd’'une phase a l'autre :

Vp, =0 (V.19)

La réécriture des termes d’interaction en fonction du gnaidde pressiom, permet d’obtenir
numériquement, a I'équilibre, les égalités suivantes audd :

€q

1
v-Vfe = L _v.Vp,— prT] (V.20)
rT p

pour les vitesses positives :

eq _ req eq 1 _ T — 4 - _rT
it ho LI = o) = ey = proard] (V.21)
dx T pr ox
et pour les vitesses négatives :
=i St e = prarT] = [per = prrT) (V.22)
dx T pr ox

Ce type de reformulation des forces d’interactions en fonadu gradient de la pression a déja été
utilisée pour des modeles BsR pour des fluides diphasiqateeisnes [70, 71, 52].

V.3.3 Reformulation des termes d’interaction pour une sit@tion hors d’équi-
libre en 1D

Dans la section précédente, nous avons raisonné sur un'édailithre liquide-vapeur avec
rk = 0 de fagon a appréhender le schéma de discrétisation desstdiimieraction dépendant des
dérivées de la masse volumique. A partir de ces contraintelésat d’équilibre, nous pouvons
proposer un schéma de discrétisation pour les termes digtien enl D avant de le généraliser.
Pour bien séparer les difficultés, I'équation cinétiqud ) aeut s’écrire de la fagon suivante :

9 F
a—{+v-Vf+E-va:XQO+J,,+Ju+JT (V.23)

ou J, regroupe les termes contenant les dérivées spatialesdedyst deV/,. Les termes/, et
Jr s'identifient respectivement aux regroupements des tecor@entant les dérivées spatiales de
u et deT issus del;. La discrétisation des termdg et Jr ne pose pas de probléme particulier car
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ceux-ci, disparaissant a I'’équilibre, ne sont pas critigaee qui concerne la stabilité numérique
d’un état d’équilibre liquide-vapeur. Le terme sur lequié&hut porter une attention particuliére est
J, car c’est celui-ci qui compense le terme de transport audselinterface. Les résultats obtenus
dans la section précédente, a I'équilibre et dans le cas-el), conduisent a I'expression suivante
deJ,:

1
-V -V [pp — prT] (V.24)
rT p
Le cas générall( non-uniforme et # 0) peut étre abordé simplement étant donné que seules les

dérivées de sont a prendre en compte. Cela conduit a I'expression sigiviy, :

eq __
=

I iy Y 9lpy — prT]

J, = er(V u)-Vp o (V.25)
_ _ Op
= 5 (V—u)-Vp pT‘T(V u)- Vp % (V.26)

Pour autant, la discrétisation de ce terme ne va pas se &itgp discrétisation directe 8ép,
car nous souhaitons retrouvéya I'equilibre les egalites (V.21) et (V.22). Cette conttainonduit
au schéma amont suivant :

€q

Tl = (v =P =t (V.27)
_ pIT;qT[(V — 2L it _552’1_1

ol gw —upHe— (V.28)
3 ,OITIE[ITIW 3 ul)pi,ngx— Po,1

avecp;; | = »o(pr—1, Tr) qui est différent de I'expression de la pressjgtp;_1,77-1) au noeud
I —1.De mémey; ;= py(pr41,17)
V.3.4 Généralisation

La démarche précédente peut se généraliser a la fois eeylsislimensions et lorsqueest
non-nul. Dans ce cas, les forces n’apparaissent plus paadkemt de la pression, mais par les
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dérivées du tenseur des pressidhg. En2D, I'équation cinétique differe par quelques coefficients
de I'équation (V.1).

aa—f+v-Vf + (E—VVm)-vazxﬁo (V.29)
t m
— bpxfev—u)- |Vin(p®y) + %(C2 —1)VInT (V.30)
- bpreq% [2CC: Vu+ (C* —2)V - u] (V.31)

En généralisant la stratégie précédente pour les term#edction, en explicitant tous les termes
tensoriels et en adoptant comme convention d’écritiyre- (v, —u,, ), I'équation ci-dessus s’écrit :

af

F
+ v-Vf+—-Vif =xQ
ot m

I
p (U 0up + Uy0yp)

fe
prT

U.U,
_ eq Ty
fbpx [ 50T (Optty + Oyuy)

U? U? U? U;
+ (W —1 + 27’T) 8xux + (W —1 + ﬁ) 8yuy]

o1 U2 1
— Joxg (7~ 5 ) V0T +U,0,7) (V.32)

(Us(0; Poa + 0y Poy) + Uy (0, Pyy + 03 Pya)]

4rT 2

La signification du symbolé dans les dérivées des composantes du tenseur des pressins s
explicitée plus loin. Dans cette nouvelle écriture le tediatractionV, et les termes de répulsion
relatifs aux dérivées de la masse volumiqueent inclus dans les dérivées du tenseur des pressions
et les dérivées de.

Voici I'algorithme que nous avons utilisé, e, avec une intégration temporelle Euler premier
ordre et un schéma de transport amont premier ordre :

1. & partir du champ d¢ initial, évaluation des champs macroscopiques et7" et calcul de
fe.

2. évaluation du terme de transpertV f au noeud/, J) par un schéma amont premier ordre
(voir chapitre 11).

, . .. F F
3. évaluation du terme de force extérieure - V, f ~ MEICA (ury —Vv)fi%
m m ’
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évaluation du terme collisionnel de Boltzmann (appration BGK par exemple) yQy =
_ 1 Jr.0— f;f]J
1 —bprs T

eq
. évaluation du termeL(Ux(?xp + U,0,p) avec un schéma amont premier ordre pour les

dérivées de en fonction de la vitesse
évaluation des dérivées degour calculer les composantes du tenseur des pressions :

K
P:B:p = pb(p7 ) - ’%pv2 - _‘vp|2 + R<8$p)2 = PIBIB(ﬂ? a’tp? 8yp7 v2p7 T)

Py, = po(p,T) — kpV p——\Vpler%( 0yp)? = Pyy(p, 0up, 0yp, V?p, T)
Poy = Py =r(0:p)(0yp) = ny(axpﬁyp) Py (0up, Oyp)

Nous rappelons que physiquement le tenseur des presstameagenéralisation du concept
de pression pour les systemes avec des interactions iaterigeie formellement ce tenseur
des pressions est une fonctionnelle du champ deais que dans le cadre de I'approximation
de champ moyen, cette dépendance sur le champedé approximée par une dépendance
sur les premiéres dérivées spatialep d€eci a pour conséquence que pour I'évaluation des
composantes du tenseur des pressions, il faut considé@rague pointy, d.p, 9,0 €tV?p
comme des variables indépendantes. D’un point de vue nqu@&rcela implique que pour

le tenseur des pressions, les dérivéeg de doivent pas étre évaluées par un schéma amont
en fonction de la vitesse. Nous avons utilisé ici, des schémas différences finies@est
deuxiéme ordre.

évaluation du termé[— (0 Py + 0, P,,)+U (8* wy + O yx)]. Formellement le ten-

seur des pressions dependp(HT Donc, les derlvees de ses composantes peuvent s'écrire
sous la forme 8, Py = Oy p L2 +
al ap = OafP—F— 8 « 8T

OPys
ap

. . OPF, . . e
est volontaire, car numériqguement ce n’est@gsﬁ—o‘ﬁ qui doit étre évalué. Si ce terme était

dance & doit étre considérée, autrement dif,P.s = Oup . Cependant, la notation

évalué cela conduirait a une solution d’équilibre physigaet non-pertinente. Par exemple,

pour la configuration D décrite précédemment (Fig. V.1), le profil a I'équilibreaetel
0 . : . L
que% 0 au lieu de la solution physiguép, = 0. Le calcul des dérivées du tenseur des

P ; , : : .
pressions est effectué par un schéma amont premier ord@netidn de la vitesse. Par
'exemple le terme); P, au noeud [, J) pour les vitesses positives selorst évalué par :

P..(1,J)— PI*Z,(I —1,J)
ox

0! Pyulry = (V.33)
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avecP; (I —1,J) # P,,(I —1,J) carP; (I —1,J) est évalué avec la températufe
du noeud, J) et non pas la températufé_, ; du noeud! — 1, J). Ceci permet d’évaluer

Tx

0P,
correctement le term&;P,, = 0,p 3
e

. Les autres dériveas; P, 3 sont calculées de la
méme fagon.

8. les autres termes, issus du terme collisionnel d’Enstmgtenant les dérivées deet deT’
ne présentent pas de difficultés particulieres car ceuxspadaissent a I'équilibre, dans le
sens ol, ne compensant pas le terme de transport commerkes t@ames d’interaction, ils
peuvent étre évalués indépendamment du schéma numériquandeort. Mais par simpli-
cité et cohérence, nous avons choisi d’évaluer les dértee®t deT’ par un schéma amont
premier ordre en fonction de la vitesse

9. intégration temporelle par un schéma Euler premier ardre

F
= fr0 =0tV f =6t — - Uy f + 6t x
eq
S
p

eq

. U,U

U? U2 U? U;
+ (M —1 + 27’T) &Eum + (W —1 + ﬁ) 8yuy]

Uz 1
o7~ 5 ) (U0:T +U,0,T) (V.34)

+ 6t L (U000 + U,0,p)

(Optiy + Oyuy)

1
— 0t fYbpx—

V.4 Validations et premiers résultats

Afin de valider et d'illustrer le modéle proposé, des simuola numériques d’écoulement ou
de situations d’équilibre liquide-vapeur ont été effeetiét com-pa-rées a des résultats analytiques
lorsque cela était possible.

V.4.1 Profil d'interface

Le modéle de densité d’énergie libre de van der Waals permetrd@voir le profil de masse
volumique solution d’'un équilibre liquide-vapeur. La mimigation de la fonctionnelle d’énergie
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libre conduit au profil de masse volumique suivant [59] :

p(z) = / \/de (V.35)

avec—W (p) = po — op + ¥ oU v est la densité d’énergie librg, la pression de saturation gt

le potentiel chimique d’équilibre entre la vapeur et le idgs Cette équation est implicite car elle
fait apparaitre le profil de masse volumique dans I'intégiabur lever cet implicite, il est possible
d’écrire la positionz(p) en fonction de la masse volumique :

2

La fonctionV est entierement déterminée par I'équation d’état du fluddé comme les bornes
d’intégration p, et p;. Le profil de masse volumique peut étre déterminé en évaluamteri-
guement cette intégrale pour plusieurs valeurs du parameédui controle la largeur d’interface
et la tension de surface. La figure V.2 illustre différentsfits d’interface obtenus par simulation
de Boltzmann-Enskog comparés a ceux obtenus par résollgidmtégrale (V.36). Il s’agit de
tests numériques pour un fluide modele éloigné de toute tond&aliste, mais communément
employé dans la littérature [53, 54].

o) = (5) [ 02 (V.36)

V.4.2 Condensation sur parois

L'exemple précédent concernait une situation d’équilibqeide-vapeur pour laquelle les ef-
fets thermiques n’interviennent pas. Ceux-ci jouent ue gliquement dans la dynamique vers
I'établissement de I'état d’équilibre. Afin de mettre end®rice les effets thermiques, il est néces-
saire d’examiner les dynamiques a partir de situationgleg hors d’équilibre. 1l est difficile de
valider notre modéle avec des exemples académiques d&uents avec changement de phase
et transfert d’énergie dont la dynamique est connue carldeexemples n’existent pas a notre
connaissance. Toutefois, il est possible de faire des atibnk ou le changement de phase et les
effets thermiques interviennent et analyser sila dynaméliétat d’équilibre semblent pertinents.

Des simulations de condensation sur paroi ont été effesto@ear un fluide de van der Waals.
Les caractéristiques du fluide sont proches du diazote ‘aimpérature critiqué,. = 126.2 K, une
masse volumique critique. = 314.02 kg.m 3, une constante massique= 296.69 J. K ! .kg~!

, un temps de collisionr = 1071° s et un parametre = 1.0~* m".kg~'.s72. La valeur de ce
dernier paramétre a été volontairement multipliée par eteta 100 de facon a permettre des
simulations avec des pas de temps et d’espace “raisonhabtaapte tenue de la relation entte
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FIG. V.2: Comparaison des profils d’interface liquide-vapeur obsgrar simulation avec les résul-
tats théoriques (traits pleins). Les simulations ont &&x&iées pour un fluide de van der Waals de
température critiqué, = 4/7 K et de masse volumique critique = 3.5 kg.m 3. Les paramétres
de simulation sont” = 0.987,, 7 = 0.1 s, dz = 1 m etdt = 0.01 s. Les trois profils correspondent
a trois valeurs de : 0.01 m”.kg=t.s72 (carrés),0.05 m".kg—'.s~2 (cercles) e0.1 m".kg=t.s72
(étoiles).

et la tension de surface (111.32), le fluide simulé a une mmsie surfacd0 fois plus importante
gue celle du diazote. Avec ces paramétres les pas d’espdederhps requis pour rendre compte
de l'interface et de la dynamique a cette échelle sdnt = 20 nm etdt = 107! s. Le champ

de masse volumique initial est aléatoirement perturbé ameamplitude de0 % autour dep, =

250 kg.m 3 a la températuré, = 126 K (ce qui correspond a une phase vapeur). Les simulations
ont été effectuées pour un domaine carré méaille 50 avec des conditions aux limites périodiques
selon I'axer et des conditions aux limites thermiques sur les cétes pdipglaires a I'axe; qui
représentent des parois thermostatées (températuré@jigestur les deux parois). Deux séries de
simulations ont été réalisées : une série avec une temp&idgLparoil'p; = 122 K et une série
avec une température de pailg, = 120 K. Pour ces deux situations, le fluide va évoluer vers
un état d’équilibre avec la température imposée par la testyre des parois. Comme le montre
la courbe de saturation V.3 dans le pl@h — p), I'état d’équilibre atteint par le fluide doit étre
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FiG. V.3: Courbe de saturation du diazote dans le pl&r- p). A l'instant initial, le fluide est sous
forme vapeur (représenté par la croix). Les cercles reptéstles masses volumiques du fluide
a I'état final qui est imposé par la température des pafiois & 122 K pour la simulationl et
Tpy = 120 K pour la simulatior).

diphasique. Les figures V.4 et V.5 représentent les champsadee volumique et de température
pour différents instants pour la premieére simulation aegempérature de pardiyp; = 122 K.

Pour cette premiere simulation, le fluide se condense awigpdans les premiers instants et
forme ainsi un film liquide qui s’épaissit au fur et a mesurdadeondensation. On remarque qu'a
t = 5000 ¢t le fluide au milieu du domaine atteint une température iatég a la température
des parois. Ce refroidissement est probablement di a latdéidiabatique qui se produit suite
a la condensation sur les parois. Les films liquides s’épaiast, les effets de tension de surface
courbent les films pour former des gouttes aux parbis-(22500 6t). Entret = 50000 6t et
t = 100000 dt, les deux gouttes du haut coalescent a cause des effetsamtda surface. Ensuite
la taille de la goutte du bas augmente au détriment de celleadtt L'état at = 1200000 ot
n’'est pas encore I'état d’équilibre final car la températuest pas tout a fait homogene et |l
reste un champ de vitesses non-nulles au sein du fluide, maigstéme semble se diriger vers
un état d’équilibre diphasique avec une goutte accrochéeparbi ce qui est compatible avec la
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thermodynamique de I'équilibre. La simulation n'a pas é@rpuivie jusqu’a son terme car la
dynamique est tres lente a partir detde 1200000 dt.

La figure V.6 représente les champs de masse volumique etngetature pour différents ins-
tants pour la seconde simulation avec la température déspigre = 120 K. Bien que les condi-
tions de cette deuxieme simulation soient relativemerthps de la premierd{p, trés proche de
Tp1), ladynamique observée et I'état final sont tres différddgss les premiers instants, des films
liquides se créent aux parois par condensation du fluide n@opour la premiére configuration, la
condensation engendre une détente adiabatique qui riéfeoftliide au milieu du domaine a une
température inférieure a celle des parois. Mais cette igfroidissement est tel que des gouttes
se forment au centre du domairte={ 10000 06t). Les gouttes ainsi formées ne peuvent croitre et
disparaissent au bénéfice des films liquides aux parois. Eéifit at = 150000 6t n’est pas un
état d’équilibre. L'état d’équilibre vers lequel le systmoit se diriger est un état avec un seul
film liquide en haut ou en bas afin de minimiser I'énergie @&ifdce. Compte tenue de la lente
évolution du systéme a partir de= 150000 6t la simulation n’a pas été poursuivie. Le champ de
vitesse représentéta= 150000 ot est dissymétrique ce qui montre bien que le systéme n’a pas
atteint son état 'équilibre mais il est difficile de prevaglel des deux films persistera.

Il est difficile d’analyser et d’interpréter plus avant legndmiques observées pour ces deux
configurations, mais cet exemple illustre le niveau de cewif@ de ce type d’écoulements ou le
changement de phase et les effets thermiques sont couplés.
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FiIG. V.4: Champs de masse volumique (colonne de gauche) et de teomgéfatdroite). Les
conditions de simulation sont : un maillage &ex 50, dz = 20 nm etdt = 107! s. Les parois
(en haut et en bas) ont une températiije = 122 K. Dans les premiers instants le fluide se
condense aux parois puis ces phases liquides forment désgaacrochées aux parois.
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FiG. V.5: La goutte du haut disparait au bénéfice de la goutte inf@i€tompte tenu du pas de
temps la durée totale de la simulation estde:s .
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FiG. V.6: Champs de masse volumique (colonne de gauche) et de teompéfatdroite). Les
conditions de simulation sont : un maillage lex 50, 5z = 20 nm etét = 10~ 5. Les parois
(en haut et en bas) ont une températlifjg = 120 K. La durée totale de la simulation est de
1.5 us. Le sous-refroidissement au sein du fluide permet la foonade gouttest(= 10000 dt)
mais ces gouttes disparaissent au bénéfice des films ligaudéss parois.



Conclusions et perspectives

Le modéle BsR proposé au dernier chapitre, qui est basé sudigarétisation de I'équation
de Boltzmann-Enskog étendue, a été numériquement mis eneo&lin de mener des simulations
d’un fluide réaliste (paramétres van der Waals du diazoted alhangement de phase et prise en
compte des effets thermiques. Nous avons uniquement éteaicia d’augmenter la tension de
surface de facon a épaissir les interfaces liquide-vapetalentir la dynamique. La taille des
domaines de simulation( 100 um x 100 um) et les temps d’intégrations( 10 us) sont certes
réduits mais bien plus étendus que ceux accessibles avgodmitjue moléculairex 10 ns). De
ce point de vue, la modélisation mésoscopique apparaittdéne un bon compromis entre les
descriptions macroscopique et microscopique car elle gatdtimtégrer des phénomeénes physiques
a petites échelles (interactions interparticulaireshenéme temps appréhender ce qui se passe a
I'échelle du systéme. La suite naturelle de ce travail exgbiire sera :

— d’afiner notre modéle d’interaction fluide-paroi (en pdsam modéle mésoscopique a la

paroi et non plus la simple satisfaction d’'une contraintenmscopique donnée) ;

— de tenter de réduire les contraintes numeériques (maigkidd quelques améliorations pou-
vant étre espérées en jouant sur le schéma d’intégratigpotetie, peu de pistes crédibles
émergent a ce jour).

Mais surtout, un premier outil de simulation étant disptsita communauté des spécialistes di-
phasiques est maintenant en mesure d’identifier précigdmptace que peut prendre ce type de
modeles dans le contexte actuel (couplage avec la difftseyrmique dans la paroi, transferts ther-
miques dans les films minces, dynamiques de croissandéas priorités dépendront directement
de cette identification.

Concernant notre modeéle a deux fluides pour la dispersidaidale (chapitre 1V), qui a été
pensé “macroscopiquement” et pour lequel nous avons e@pley schémas BsR de la littérature,
il pourrait étre intéressant de repartir d’'un modéle purgmeésoscopique de type Enskog a deux
especes (fluide porteur colloide). Ce choix semblait irréaliste au début de notagail, avant
I'obtention des résultats du chapitre V sur la modélisatiea dynamiques des interfaces a partir
d’'un modele cinétique. Aujourd’hui, compte tenue du safaiire acquis sur la discrétisation de

145
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I'équation de Boltzmann-Enskog, un modeéle cinétique a depeces pourrait étre implémenté
en faisant appel a des approximations et simplificatiomsduiites a I'échelle mésoscopique (col-
lisions entre particules colloidales négligées, massepdegules du fluide porteur négligeable
devant la masse des particules colloidales ...). Outrégaice conceptuelle de cette démarche,
on assurerait une continuité parfaite entre les deux pd@tgue sur le systeme (mésoscopique
et macroscopique), ce qui élargirait nos possibilités emas d’analyse et d’approximations. Par
exemple, en suivant cette démarche, ce qui correspond aitreh®/ a I'approximation de dif-
fusion et a la méthode de pénalisation (que nous avons didirite dans le but de négliger la
viscosité du fluide colloidal) se traduirait simplement,riveau du modele mésoscopique, par
la suppression du terme collisionnel colloide-colloida. @urrait ainsi explorer successivement
I'ensemble des temps caractéristiques qui nous limitgouad'hui en terme de champ d’applica-
tions.

Au-dela de ces deux domaines (systemes de refroidisselpbasiue et procédé de filtration
membranaire), un élément important de notre travail étaiedtifier dans la littérature BsR ce qui
relevait de schémas heuristiques, comme alternative &déutéon de Navier-Stokes (ou tout autre
modele macroscopique), en opposition a des schémas nwegpguvant étre considérés comme
une discrétisation rigoureuse de I'équation de Boltzm&uwtte clarification a été principalement
rendue possible grace au travail de He et Luo [22, 23]. Cesuasiiont démontré que certains
schémas BsR pour écoulements isothermes peuvent étreaigaunent interprétés comme des
discrétisations particulieres de I'équation de Boltzm&®K a un ordre de précision équivalent
a l'ordre 1 du développement de Chapman-Enskog. Nous nous sommesagpguyces travaux
pour aboutir aux principaux résultats des chapitres Il etivi :modéle BsR pour écoulements
anisothermes et une discrétisation de I'équation de BaltmyEnskog étendue pour modéliser les
ecoulements liquide-vapeur anisothermes. Outre ces pitapts, la vision de BsR comme une
discrétisation de I'’équation de Boltzmann ouvre des petsfs en terme de modélisation. Cela
nous a permis d’employer le modéle collisionnel ES-BGK, gid&e du traditionnel modéle BGK,
afin d’obtenir a I'échelle macroscopique le nombre de Piagulihaité. Cela nous a également
autorisé a discrétiser I'’équation de Boltzmann-Enskog é&¥enéme jeu de vitesses discrétes que
celui déterminé au chapitre Il pour le modéle BsR pour lesi&nents anisothermes. Parmi les
perpectives ouvertes par cette vision, il serait par exerapVisageable de concevoir un modele
BsR pour des situations de hors d’équilibre plus lointaiaggmentant I'ordre de la quadrature en
fonction des besoins, en particulier dans le contexte dedeoAfluidique diphasique.

Outre cette clarification quant a la place de la descriptiésascopique dans les schémas BsR
existants, ce travail s’est appuyé en permanence sur urfeodatbgie consistant & aborder les
“systéemes complexes” par la complémentarité des pointaidevors d’équilibre mésoscopique
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hors d’équilibre macroscopiquéquilibre mésoscopiqughermodynamique statistique de I'équi-
libre) etéquilibre macroscopiquéhermodynamique axiomatique). Cette diversité de regyaund

la complexité va au-dela des questions d’échelle et legpessentiels relevent plus souvent de
I'identification et de la compréhension des conceptqdilibre de proche équilibreet dehors
d’équilibre lointain, que de considérations strictement associées a la tailgstame. En ce sens,
les phénomeénes physiques a petite échelle (interactiade-fharoi, interface liquide-vapeur ...) ne
relévent pas forcément de situations loin de I'équilibres€Cle cas par exemple, du modéle d’'in-
terface liquide-vapeur de Cahn-Hilliard qui est un modeéinodynamique a I'’équilibre alors que
l'interface peut avoir une épaisseur constituée de quslpa#dicules.

En tout cas, c’est certainement I'imbrication et la claafion de 'ensemble de ces concepts et
points de vue qui nous ont permis de franchir les étapes lessddterminantes lors de la mise en
oeuvre des modeles proposés au cours de cette thése :

— le schéma BsR pour écoulements anisothermes du chapétidéldoulé directement de nos
efforts de clarification de ce qui pouvaient relever d’'unsatigption mésoscopique ou d’'une
description macroscopique dans la littérature BsR.

— l'approximation de diffusion et la méthode de pénaligatijoi en découle pour le modele
de fluide colloidal du chapitre IV a necessité d’apprendreaduire dans un formalisme
mésoscopique une hypothése de stationnarité ne portargugudeine des deux équations
macroscopiques.

— la proposition faite au chapitre V concernant les écoutgmeiphasiques anisothermes,
c’est-a-dire la représentation de phénomenes hors didmgjiin’a pu étre mise en oeuvre
numériguement que grace a lI'analyse détaillée d’une mterfiquide-vapeur a I'équilibre.






Annexe A

Procedure de Chapman-Enskog sur réseau

Nous appelons procédure de Chapman-Enskog sur réseatelepi@ment qui consiste a dé-
river les équations macroscopiques continues a partir giadéle Boltzmann-sur-Réseau. Cette
procédure fait intervenir une prise de moyenne similaie grocédure de Chapman-Enskog mais
tient compte des schémas numériques utilisés. La procédu@hapman-Enskog sur réseau pré-
sentée ici se décompose en deux étapes. La premiére cengestee I'équation cinétique continue
gue I'équation d’évolution discrete doit résoudre. Eresidtpartir de I'équation cinétique obtenue,
la procédure de Chapman-Enskog standard peut étre appliqué

A.1 Effets du schéma numeérique

Le point de départ est I'équation d’évolution sur réseau :

fi(r + Vot t+ 0t) = fi(r,t) — ? [fi(r,t) — f9(r, t)] (A1)

Pour prendre en compte les effets numériques, nous faisodéueloppement a I'ordrizendt de
fi(r +v;dt, t + 6t) :

0 o2 (0 ?
fi(r,t)+5t<a+vi-V) fi + 7<E+Vi-V) fi (A.2)
)
= R0 = LA - £ )
) 5t (0 ? it q
ot (5w v) fe G (e v) ho= =2 (A3)
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Cela signifie qu'a I'ordre en §t I'équation d’évolution discréte est une résolution de iétjon
cinétique suivante :
%) 5t (0 ? 1
= t Vi it |5 Vi i =—=fi = fi* A4
(5 +v9) s+ g (+w-v) fi=—20i- g1 (A4)
Cette équation correspond a I'équation de Boltzmann-BG&€ ales termes supplémentaires dans
le membre de gauche qui ont une origine purement numeérique.

A.2 Ordre 0 de la procédure de Chapman-Enskog

L'ordre de0 de la procédure de Chapman-Enskog consiste a moyenneatiéneinétique en
approximantyf; par /7. En remplacany; par f{? dans I'équation A.4, les termes provenant de la
prise de moyenne des dérivées secondeg isont négligeables par rapport aux autres termes.
Ainsi a I'ordre 0 de la procédure de Chapman-Enskog sur réseau, les effetxigues ne jouent
pas. Les équations macroscopiques dérivées sont les@mupidti fluide parfait :

dp

—+V-(pu) = 0 A5
5 TV (o) (A.5)
0 1
— o = ——0q A.6
(5 + us0s)u 0P (A.6)
2 , . s . " 1z
avecp = p c;. Dans le cas d’'un résed2()9, la “vitesse du son du réseau” est= 350

A.3 Ordre 1 de la procédure de Chapman-Enskog

L'ordre 1 de la procédure consiste a dévelopfiaautour def;” : f; ~ [+ fi(l). L'estimation

7

de fi(l) se fait a partir de I'équation A.4 en négligeant les dériwé@spar rapport aux dérivées de

£
0

a eq 5t ? €q 1 (1)
<§+V1'V)fi +5<E+Vi'v) fit = ;fi (A7)

Pour les mémes raisons qu’a I'ordreles dérivées secondes fl¢ sont négligeables. Ainsi I'es-
timation de la partie hors d’équilibrﬁl) n'est pas affectée par les effets numériques.

fz‘(l) ~ T (% + V- V) i (A.8)



Ordrel de la procédure de Chapman-Enskog 151

Les équations de I'hnydrodynamique a I'ordreorrespondent a la prise de moyenne de I'équation
A.4 par sommation sur les vitesses discréetes.

0

< v V)(feq+f(1)+5—<at+v v) (Fr+ M =0 (A9)

Zx

avecy les invariants collisionnels. Compte tenue de I'exprassief (!, nous pouvons écrire :

ZXK v V) (e f0y - & (; m) 7 (A.10)

5t 9, e

Les dérivées secondes flé) sont négligeables par rapport aux autres termes.

ZXK v - v)ﬁ%(uﬁ) (Sﬁ Z-v)f}”}:o (A.11)

Comme le montre cette derniere équation, les effets nunesigpparaissent au niveau de la contri-
bution de la partie hors d’équilibré?. Plutdt que de faire toute la procédure de Chapman-Enskog,
il est possible d'utiliser les résultats de la procédurs@née au chapitre |. La procédure est iden-

. . . . ot R
tique, il faut simplement remarquer qué€’ est remplacée pa€1 — 2—) @, commef'V est a
T

I'origine des flux dissipatifs, les équations macroscopgjobtenues sont les mémes que celles ob-
tenues au chapitre | avec un facteur correctif sur la viseagii est le seul coefficient de transport
dissipatif pour un écoulement isotherme.

dp

(a+ O)ta = ——Bap + vV uq + LOM(V - U) (A.13)

ot Up0og)u - P ap U 3 « .
(A.14)

ot
avec la viscosite = C T (1 — 2—)
-

Les effets numériques, qui se manifestent sur la valeur disdasité, ne proviennent pas de la
discrétisation de I'espace des vitesses. lls ont commeerigs schémas numériques utilisés pour
lintégration temporelle et I'évaluation du terme de taoit. Sofonea et Sekerka [39] ont effectué
la procédure de Chapman-Enskog pour différents schémasérigquas temporels et spatiaux.






Annexe B

Energy-conserving lattice Boltzmann
thermal model in two dimensions

abstract

A discrete velocity model is presented for Lattice Boltzmahermal fluid dynamics. This
model is implemented and tested in two dimensions with aefidifference scheme. Comparison
with analytical solutions shows an excellent agreemem éwewide temperature differences. An
alternative approximate approach is then presented fditivaal lattice transport schemes.

B.1 Introduction

Over the last decade, it has been demonstrated that thed 8tiltzmann Method (LBM) is
an effective approach method for simulating a wide varidtisothermal fluid flows [1]. In the
case of thermal fluid flows, LBM with a multi-speed approacterma single-relaxation-time BGK
approximation [2], suffers from numerical instabiliti€y.[ To avoid these instabilities, the passive
scalar approach [4] or introduction of a separate thernstidution [5] can be used. Vahadh al.

[7] have proposed a multi-speed model with a higher-orgetropy velocity model and multiple
relaxation times to stabilize the numerical scheme and ¥e havariable Prandtl number. In [7] a
model was suggested based on Gauss-Hermite quadratuigdrsttaightforward extension of the
‘a priori’ derivation of the Lattice Boltzmann equation byetdnd Luo [9, 10]. To include thermal
effects, heat conduction and viscous heat dissipatiomjulaelrature must be used to evaluate the
moments off to the eighth order. So the Lattice Boltzmann Thermal models 5 discrete velo-
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154 B Energy-conserving LB thermal model D

cities in one dimension and 25 discrete velocities in twoatsions.

In this work we test different ways of implementating thegwsed approach. The main diffi-
culty arises from the fact that the quadratures are baseldeoaduilibrium distribution function,
which introduces an explicit temperature dependence. 8seh of discrete velocities resulting
from the quadrature is spatially inhomogeneous. To oveectims difficulty several solutions can
be envisaged. As far as the macroscopic velocity is condetthés constraint is removed by a
‘low-Mach-number’ type of approximation. If a developmeugjuivalent to ‘low Mach number’ is
derived for small temperature differences, a formulateobtained that would require, to ensure
a precision equivalent to the Chapman-Enskog expansierexhct evaluation of moments up to
order 10 (cf Appendix B.6 ). We have not chosen this solutiather we propose adapting the qua-
dradrature to 25 discrete velocities by choosing a referéamperature for the evaluation of the
velocity modules and we take account of the temperaturatianis by systematically recalculating
the weight factors. This system was implemented using afutifference scheme and has been
validated for a series of academic examples that show teadheme performs very well even for
quite wide temperature differences. The second part ofvibik shows the difficulties involved
in the implementation of this velocity discretization witla traditional lattice-transport approach.
The various possibilities in this direction are explained a first series of tests is presented.

B.2 Discrete velocity model for thermal applications

In this section, a velocity space discretization is presgfior the Boltzmann equation under
the BGK approximation [2] :

of 1

- V . v = —— — B.l
5 TV Vf=——(f~9) (B.1)
wheref = f (r, v, t) is the single-particle distribution function at locatiormicroscopic velocity
v and timet, 7 is the relaxation time ang = ¢ (r, v, t) is the Boltzmann-Maxwell equilibrium

distribution function :

p (v—u)
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whereR is the ideal gas constant aidlis the dimension. The macroscopic variables (the density
p, the velocityu and the temperatufE) are the moments of the distribution function :

p:/fdv (B.3)
pu = /vf dv (B.4)
%pDRT = %/(v —u)’ fdv (B.5)

As proposed by He and Luo [9, 10], the set of discrete velxiselected in the present work
is the result of a direct dicretisation of the continuoustBolann equation. This requires that a
guadrature be used for the evaluation of the three precgéedeygrals that appear in the equilibrium
distribution function. Furthermore, the order of the quddre must suit the accuracy required.
For macroscopic applications, it is sufficient for the qudre to satisfy exactly the macroscopic
equations under the first-order Chapman-Enskog expandimater the low-Mach-number appro-

ximation, using a Gauss-Hermite quadrature [11], thisireguntegrals of the form

2
I, = / exp (— 22T)Pn(v)dv (B.6)

to be computed exactly, where, is any polynomial up to order six for isothermal applicaton
and up to order eight for thermal applications. Using a Gaatedecomposition, this procedure
leads, for thermal applications, to a set of five discreteaig} co-ordinates and five quadrature

weights for each dimension. These discrete velocitiesare 0, v, = —v, = \/(5 —V10) RT

anduvs = —vy = \/(5 +v/10) RT and the quadrature weights are

—2
w; = 295121 RT Hg (\/;}TT) (B.7)

where Hg is the 6th-order Hermite polynomial. In two dimensions festance, the moments of
the distribution function are evaluated as

wheree, ande, are the two unit vectors of the Cartesian co-ordinate systeim= v;ex + v;e,
andf; ; = f (r,vy;,t). As the quadrature order is high enough to ensure satisfactithe macro-
scopic equations under the first-order Chapman-Enskogsiqeg such a discrete-velocity model




156 B Energy-conserving LB thermal model D

should lead to exact simulations of macroscopic gas dyranmcluding energy conservation (but
with a fixed Prandtl number because of the BGK approximatiblowever, this model cannot
be implemented as is : the discrete velocities are functadribe local temperature and so are
variable in space. The corresponding discretized versidheoBoltzmann equation could there-
fore only be solved using cumbersome interpolation schaméise velocity space. A first ap-
proximate solution could be to make a Taylor expansion ofettpalibrium distribution function
around a reference temperatdfg,. This raises to order ten the polynomidts for which I,,
must be computed exactly. This requires seven discreteitie®for each dimension, thus seve-
rely increasing computation requirements. Another appraie solution was preferred, in which
the discrete velocities are fixed, corresponding to a gieéerence temperature, but the quadra-
ture weights are recomputed for an exponential ponderétioction depending on the local tem-
peratureT’. This local adjustment of the quadrature weights takes actmunt the fact that for
macroscopic applications the distribution function isseldo the equilibrium distribution at the
local temperature. For this approximate thermal modeldiberete velocities are thereforg = 0,

V] = —vy = \/(5 — V10) RT,.; andvs = —vy = \/(5 + v/10) RT,.; and the quadrature weights
are obtained locally as the solutions of the following linegstem [11] :

2
Ky, = /e—m dv="> w (B.9)

2

Ky, = /v%‘m dv = Zwi v2 (B.10)
,U2

Ky = /v4e_2RT dv = Zwi v} (B.11)

with Ky, = v27RT, K, = RTK, andK, = 3 (RT)? K,. The solution of this system leads to
following simple expressions for the local weights :

(’U% + ’Ug) K2 — K4

Wy = KO_ U%’Ug (812)
2
'U3K2—K4
w B e M S (B.13)
207 (v — vf)
2
wy = K —viky (B.14)

23 (v — )

B.3 Finite-difference implementation and testing

Numerical simulations were performed to test the validitytree above described discrete-
velocity model. A classical Euler scheme is used for tempotagration and a second upwind
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finite-difference scheme is used for transport [13]. Boupdanditions are those of [14]. A series
of academic simulation examples is presented below tatilites the ability of the model to deal
with compressibility and thermal effects. The first exangaacerns viscosity effects. We consider
the decay of a vortex as described in [15]. The initial vajoconditions are :

ERY

Uy = (Yo — y)woexp (—%) (B.15)
EPRY

uy, = (z—z0)wpexp (—%) (B.16)

wherer, = (xg,yo) is the center of the vortex, is the characteristic lenght of the initial vor-
tex andw is the vorticity at the center. Figure B.1 displays the atiedy and simulated vorticity
decays at vortex centev,,.,. The next two examples concern compressibility. Figuredh@ws
the vertical density profile corresponding to stratificatlwy gravity of an isothermal horizontal
gas layer. Figure B.3 shows the speed of sound evaluatedrwjating propagation of a density
wave. The last two examples concern thermal effects. FiButellustrates simulation results for
Couette flow and Figure B.5 shows estimated energy fluxes ureéxgnduction configuration. In
all cases, the accuracy levels obtained in terms of dengtgcity and temperature fields at the
stationary limit are quite satisfactory. The points remigirmore specific attention are the energy
flux estimations and the prediction of unstationary dynamilde fact that discrete velocities are
fixed at a reference temperatifg ; implies that, even though the quadrature weights are ajust
to the local temperaturg, the quadrature order is not high enough for rigorous maous simu-
lations. The associated biases are therefore direct ursctif the temperature differen¢e- 7, ;.
The simulation results reported in Figure B.5 indicate havéhat acceptable accuracy is obtained
even for strong deviations from the reference tempera@oefigurations with 10% temperature
differences could be simulated with a 0.5% accuracy on grferges at the stationary limit. Confi-
gurations with 30% temperature differences gave 5% acgumdiuix. The corresponding accuracy
levels in terms of characteristic times in the unstationqdrgses are very similar.

Note : In the applications tested and even for very large temperatififerences, the present
model showed no pathological numerical instabilities. ldo@r, strong instabilities appeared (in
accordance with the multi-speed thermal lattice Boltzmbtenature [3]) when the quadrature
weights were kept constant and spatially uniform at the eslcorresponding to the reference
temperature. So adjusting the quadrature weights to saitatal temperature seems useful in
terms of numerical stability independently of accuracysiderations.
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Analytical result
091 O LB simulation
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FiG. B.1: Vorticity as a function of the dimensionless tinte= vt/L? with v = RT't the ki-
nematic viscosity. The solid line represent the analytieault :w,,,.(t*) = (1:17‘;)2 The crosses
represent the LB simulations.

B.4 Implementation within the standard Lattice
Boltzmann algorithm

When attempting to implement the above discrete-velocibgleh in standard Lattice Boltz-
mann schemes, the first difficulty is thgt# 2 v, andv, # 2v,. Independently of the temperature,
we finduvs /v; = vy/ve & 2.1. Therefore, if the time stefy is adjusted so that information is exactly
transported from one node to an adjacent node at spegx v,) during dt, then the information
transported at speed (or v4) does not fall exactly on the lattice. In order to bypass this-
culty with an approximate approach, we suggest imposingrarity v3 = 2v; andv, = 2v,, and
making use of the same quadrature weight adjustment as irBS&dunction of the local tempe-
rature. This leads to the following discrete velocity sef = 0, v; = —vy = \/(5 — \/ﬁ) RT,
andvs = —v, = 2v;. The quadrature weights are those of Eq. B.12. As alreadyiom&d, such
a procedure of weight adjustment for a fixed set of velocdi@ss not ensure a high enough order
of quadrature. Furthermore, unlike the velocity set defiwéh the Gauss-Hermite procedure, this
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FiG. B.2: A gravity force is introduced in the model as proposed by\8ftical density profiles are
compared with analytical macroscopic solutions at themstaty limit for an isothermal gas layer
of thicknessH . Simulations are performed for three valueswof % whereg is the acceleration
due to gravity.

scheme will not be precise in the limit of small temperatufeetences. In order to test the level
of accuracy that can be achieved with such an approximateaghp, this new discrete-velocity
model is implemented in the following lattice Boltzmann egte [5] :

ot —

7 (r + Vi,j(sta Vi L+ 6t) = 7 (rvvi,jv t) - m [f (rvvi,jv t) -9 (rvvi,jv t)] (817)

with f = f+;s—i (f — g). When the resulting lattice Boltzmann model is tested ors#mee five test
cases as in the previous section, the accuracy achievatria t density, velocity and temperature
fields in the stationary limit are quite similar to those aéa with the more accurate quadrature
set and the finite-difference scheme. However the estimatedyy fluxes and the characteristic
times in the unstationary phases are much less accuratéggurefs the error on the energy flux

does not vanish in the quasi-isothermal limit : a residusdrenf more than 10% is observed and
similar biases are observed concerning temporal evolution
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Fic. B.3: The speed of sound was estimated for various temperatucesanpared with the
theoretical value: = v/2RT. Following the idea proposed by [13], the density distributwvas
initialized as a step profile with a small difference in dénsind the speed of sound is directly
estimated by simple front tracking.

B.5 Conclusions

For implementation in traditional lattice Boltzmann schemmna degraded “double-speed” ver-
sion of the proposed discrete velocity model can be useddproximate simulations. However,
results are unsatisfactory in simulating energy flux. Smiahave performed two complementary
test studies to try to bypass this flux-estimation difficultyboth cases, the idea was to go back
to the accurate discrete velocity model of Sec. B.2 usinghtarpolation procedure. In the first
study, we interpolated; ; outside the nodes in geometrical space. When a linear witgrpn was
used, strong numerical instabilities were observed. Radimulations could only be performed
with a quadratic interpolation [7, 8]. The correspondinguaacy for energy-flux estimation is grid
dependent and tends to that of the finite-difference schentieei limit of an infinite number of
nodes. We observed that residual errors lower than thosemfE54 could easily be reached with
reasonable spatial meshing. In the second test study,tdrpatation was performed in the velocity
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FIG. B.4: Heat dissipation is tested in traditional Couette flow witlemperature gradient [5] for
a gas layer of thicknesd. The wall at locationy = 0 is fixed and its temperature 1. The wall

located aty = H moves with a constant speed and its temperatufg.i$he simulation points are
in complete agreement with the analytical solution foretént Eckert numbers (Ec=[4 ;20 ;40]).

space so as to estimate the distribution function for thedumrble speed assuming thafollows
the Maxwellian form of the local equilibrium distributiomiiction (cf Appendix B.7). Here the
accuracy is not lattice dependent : there was a 3% residual fer energy flux which is signifi-
cantly better than the residual error of the above “douplksed” model. These last preliminary test
studies were only performed in one dimension. For extertsiawo dimensions, difficulties arise
in terms of boundary conditions.

On the whole it can be concluded that using a finite-diffeeelattice Boltzmann scheme, ex-
cellent accuracy levels can be obtained with the set of figerdte velocities corresponding to the
Gauss-Hermite quadrature, together with a local adjustifetihe quadrature weights as a func-
tion of temperature. This could be performed without greficdlty because the finite-difference
approach is not restricted to velocity sets that exactly lattice nodes in one time step.
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FiG. B.5: The relative error in thermal conductivity is shown for di#nt values oA7'/T". From
the Chapman-Enskog expansion, the thermal conductiviky4s %RQTT. The mean (circles)
and maximum (crosses) relative errors incurred using thiefdifference scheme tend asympto-
tically towards0 for quasi-isothermal situations. The sensitivity to thierence temperature is
indicated by the maximum error, as it occurs where the teatpes is minimum or maximum, i.e.
T — T,..; = AT/2. However the maximum relative error inherent in a tradiidattice scheme
(triangles) shows the presence of a residual error.

Appendix

B.6 Determination of quadrature order

For heat transfer applications, thermal fluxes must be ctiyrevaluated and therefore the
moments of the distribution function must be correctly easéd up to the third moment. Here the
first order Chapman-Enskog expansion is used to show tlsatdhistraint is equivalent to a correct
evaluation of the first six moments of the local equilibriurstdbution function (paragraph Al).
Under the low-Mach and lowAT approximations, the equilibrium distribution functionwsitten
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as the product of a centered Gaussian with a fourth ordaslynomial (paragraph A2), which
leads to the use of tenth order Gauss-Hermite quadraturagi@gh A3).

B.6.1 Chapman-Enskog procedure

The Chapman-Enskog procedure is used to recover the mapiosjuations. This consists
in expanding the distribution functiofi around the equilibrium functiop and in evaluating the
mean value of the product of the Boltzmann equation by alissohal invariants.

/x(?—{ +V~Vf) dv =0 (B.18)

with y a collisional invariantl,v and%vQ ) At zero order the integral (B.18) is evaluated wijth- ¢
leading to the hydrodynamic equations for perfect fluidgi{auit dissipative effects). To recover
the dissipative terms, the distribution functigns expanded around the equilibrium functign

frg+ Y (B.19)

Replacingf in the Boltzmann equation by+ f) leads to :

0 (g + f(l)) f®
T—FV'V(Q—O—JC(I)) = _T (BZO)
and neglecting™ on the left hand sidefY) may be writen :
1) dg
fY -1 5t +Vv-Vyg (B.21)

The temporal and spatial derivativesgére direct functions of the spatial derivativespof: and
T, which leads to :

FO —Tg{%[(V—U)-VT]

2

1 an aul- 1 2
v i (52 g ) (0= wdtes =) = sty -]}

So, in the general cas¢(”) can be written ag" ~ ¢ - P;(v), and for isothermal applications
O~ g Py(v).
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B.6.2 Equilibrium expansion

For thermal applications, the equilibrium distributiométion ¢ is expanded around = 0
(low-Mach-number approximation) and aroufid= 7, whereTy is a reference temperature.

0 v? v-u (v-u)
~ p 1+ + -
(27 RT)"" ORT RT " 2(RT)?  2RT
N P exp [ V2 v-u o (veu)r P

RT " 2(RT?  2RT

N P o +v~u+(v~u)2_ u?
S 2rrT)PR T RT ' 2(RT)? 2RT
~ #ex _V_2 14+ v? i 1+V-U+(V-u)2_ u?
~ rrm)P2 TP\ 2RT ORT, T RT ' 2(RT)?  2RT
V2
~ o - Py 8.23
p( 2RT0) (V) (B.23)

with 8 = T'—T,, andP,(v) is a fourth-order polynomial. So the equilibrium distribution function
g is approximated by the product of centered Gaussian fumetith a fourth-order polynomial.

B.6.3 Required quadrature orders

For thermal applications, moments ¢fare addressed up to the third/ P3(v) fdv. Then
V2

2RT,
moments of a Gaussian function up to order 10 :

f~g+fMH=g-Psv)andg = exp <— ) - P4(v). So the quadrature must evaluate the

2
/Pw(v) exp <_21\;’T0)dv' For isothermal applications, only the first two momentg @ire ad-

V2
dressed. Therf ~ g + f") = g- Py(v) andg ~ exp <—

2RTy

) - Py(v). So the quadrature must

: : V2
evaluate the moments of a Gaussian function up to ordef @ (v) exp <— SRT )dv.
0
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B.7 Extrapolation in velocity space

The discrete velocity set corresponding to the Gauss-Hermiadrature is such that # 2v,
andv, # 2v, (cf Figure B.6).

2\/2 \V/ Vo \l 2V1

< =
<% >

V4 V3

FiGc. B.6: Discrete velocities set.

So, in one dimension, for the traditional lattice Boltzmagorithm, we computd,, fi, fo,
fau, @nd f5,,. Thenf; and f, are extrapolated assumirfghas a Maxwellian form :

fi ~ Aexp (—@) (B.24)

To extrapolatefs, the coefficientsi, B andC' are determined witlfy, f; andf,,, and to extrapolate
f1 another set of coefficients is used correspondingytof, and f,,,. Finally the macroscopic
variablesp, v andT are calculated witlfy, f1, f, f3 and f,.
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Annexe C

Conditions aux limites thermiques

Pour les schémas Boltzmann-sur-réseau traditionnelslestiuides isothermes, il existe dif-
férents choix possibles de conditions aux limites commelend arriere (“bounce-back”) qui
assure la conservation de la masse et une vitesse de gligsauntie a la paroi. Ce type de condi-
tion aux limites est difficilement applicable aux schémd@dinces finies et multi-vitesses comme
le notre. De plus, nous souhaitons pouvoir imposer une teatyré de paroi. Les conditions aux
limites que nous avons utilisées peuvent étre qualifiéesadearcopiques dans le sens ou elles ne
sont pas dérivées d’'un modeéle physique des interactionieflaroi a I'échelle mésoscopique. Ces
conditions aux limites sont telles qu’elles reproduisestdonditions aux limites macroscopiques,
c’est a dire, imposer les grandeurs macroscopiques voallzegaroi (vitesse, température etc ...).
Pour décrire les conditions aux limites, prenons I'exentplme paroi (schématisée par la figure
(C.1)) pour laquelle sont imposées une vitesse de glissemet une températurg,.

Les conditions aux limites utilisées consistent a dire guiaeudn, la fonction de distribution
fi(no) est proche de I'équilibre défini par les variables macrosp®sp,, u, et7T,.

fi(no) = f*(no) + f*“(no) (C.1)

avec f;%(ng) la distribution d’équilibre au noeud, et f"“/(n,) la partie hors d’équilibre de la
fonction de distribution. Ceci permet d'imposer la vitesgeet la températuré, par I'intermé-
diaire de la fonction d’équilibre. Mais il est aussi néc@gsde connaitre la masse volumicuge
au noeudh,. Nous avons choisi d’extrapoler linéairemepten fonction des masses volumiques
p1 et p, respectivement aux noeugset p,. De la méme facon la partie hors d’équilibf&?(n,)

a été extrapolée linéairement avec les noeydst n,. L'ajout de cette partie hors d’équilibre est
nécessaire pour assurer la continuité des flux dissipatife@ux-ci ne sont bien sar pas pris en
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170 C Conditions aux limites thermiques

Fic. C.1: schéma d’'une paroi dont on veut imposer au nogudne vitesse de glissemeny et
une température de parpj.

compte dans la partie & I'équilibi&? (ny).



Annexe D

Coefficients de la distribution d’equilibre du
modele BsR (EL)D3Q15

La distribution d’équilibref;? est un développement en série sur la vitesse locale :

{9 = A+ Bivigug + Citqug + Divigigtiatg (D.1)
+Gm5viavi5 pouri >0
14
C= p= D> (D-2)
=1
Un jeu possible de valeurs pour les coefficieAtsB;, C;, D; etG,z est :
3w; K
A = 2 (py — 5(&;&)2 — £Oaap + ViaOap) (D.3)
3w;p 3w;p Yw;p
B = = — D; = .
‘ c? G 2c? C2ct (D-4)
1 )
Giyy = 50 (/-i(@p)2 + 21/u787,0) pourl <i<6 (D.5)
Giy = Opouri>7 (D.6)
1
Gis = 1ga (K(0yp)(05p) + v(uyOsp + usOyp)) (D.7)

ou p, est I'équation d’état du fluide; la viscosité cinématique @étle parametre relié a la tension
de surface. Les coefficients ont pour valeurs w; = 2/9 pouri = 0,w; = 1/9 pouri =1,...,6
etw; = 1/72pouri =7,...,14.
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Annexe E

Ecoulement de Poiseuille avec viscosité
non-uniforme

Pour tester la possibilité de faire varier la viscosité isg@nent, nous avons effectué des simu-
lations numeériques d’un écoulement de Poiseuille avec igmesité non-uniforme dans I'espace.
L'écoulement est engendré par une force extdinselon I'axex dans un canal de larged,. La
viscosité dépend linéairement de I'ordonnédans le canal z(y) = vy + ay. Le profil de vitesse
au stationnaire est tel que la force visqueuse égale la éxtegnerl’, :

0 Ou,
Fo=-r (u<y> " ) E.1)

Compte tenue de I'expression d@y) et d’'une vitesse de glissement nulle aux parois, I'intégnat
de cette équation conduit au profil de vitesse suivant :

(L, —y)In(y) + yIn(vy + oL,) — L, In(vy + ay)
2a [In(vy) — In(vy + aL,)]

ug(y) = F; (E.2)

La figure E.1 compare les résultats de simulations BsR epié&ssion analytique du profil de
vitesse dans le canal.
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FIG. E.1: Profil de vitesse pour un écoulement de Poiseuille avec woesité non-uniforme dans
le canal. L'expression de la viscosité es{y) = v, + ay. La ligne représente le profil analytique

et les cercles représentent les simulations BsR.



Annexe F

Procéedure de Chapman-Enskog sur réseau

Dans cet appendice, nous effectuons la procédure de Chapnskiog sur réseau sur le modeéle
BsR (EL) avec un terme de force extérieure. L'équation diéwon est de la forme :

t
gi(x 4+ v 0t t + 0t) — gi(x,t) = —f_— [gi(x,t) — g, (x,t)] + 3 ¢ wivi Fy Ot (F.1)

C

Cette équation est développée au second ordre du pas dedemps

ot 1
(8t + ’Um&l) g; + 5 (8t + Umaa)Q g, = —7_— [gz — gfq] + (b ’UJZ"UmFa (FZ)

[

L'ordre zéro de la procédure de Chapman-Enskog consistpraxdmery; parg;?. Et les dérivées
seconde de;? sont négligeables com-pa-rées aux dérivées premieres.

(at + 'Uiaaoc) gieq = ¢ wiviaFa (F3)

Ensuite pour retrouver les lois de conservation macroge@si, nous prenons les sommes des
équations (F.3) .(F.3) et) . v (F.3) et nous obtenons :

0 + 0n(Pus) =0 (F.4)

Oi(Pua) + 0pPup + Op(duaup) + ve03(ualsd + upla® + daptiy0yd) = OF, (F.5)

. 1, 7. 1. 022 . . ) . .
Ici v. = =(— — =)——— est la viscosité cinématique du fluide colloidal. Pour lepes ordre de

la procédurey; est approximée pay;? + gfl). En utilisant I'équation (F.2), nous pouvons obtenir
une expression pOLyfl) en considérant les dérivées premieregjdedu membre de gauche de
I'équation.
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176 F Procédure de Chapman-Enskog sur réseau

1
(0, + via0a) g5 = - oV + dwvia Fy (F.6)

C

9 = 5 (0, 11a0) 7+ eaF D)

Ainsi avec cette expression pogt I'équation (F.2) est équivalente a :

ot
) @ 50 7+ 5 00+ 1a00) (Guvin )

(O + via0a) g+ (1 - 2&

1
= —7_—91'(1) + owiviaFo

C

(F.8)

Aprés sommation de I'équation (F.8) et en négligeant lemasrqui sont en carré du nombre de
Mach, nous retrouvons les équations macroscopiques dervation de second ordre én

06 + Dol + G OF.) = 0 F9)

ot
8t(<bua + EgﬁFa) + 8ﬁ(¢UQUﬁ) = —8ﬁpaﬁ + Vcag [(b (8gua + &ﬂlﬁ + 5(1567117)] + oF, (F].O)

Nous remarquons qu’a cause du terme de force, il y a dans lesédgiations un terme de vitesse
parasiteu,q.rasite = 5 Fo, qui est négligeable dans la plupart des cas. Cette vitesasife apparait
également dans les modéles BsR traditionnels si le termerde f’est pas négligé dans I'expres-
sion deg'" (F.6).
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Résumé

MODELISATION MESOSCOPIQUE DES ECOULEMENTS AVEC CHANGEMEN T DE
PHASE A PARTIR DE LEQUATION DE BOLTZMANN-ENSKOG. INTRODUC TIONDES
EFFETS THERMIQUES.

Mots-clés: Transition de phase liquide-vapeur, modélisation cingtj equation de Boltzmann, agrégation
de particules colloidales.

Ce travail de these concerne la modélisation et la simulatés écoulements diphasiques avec changement
de phase par des équations cinétiques de type Boltzmanmavad st motivé par deux applications dis-
tinctes pour lesquelles la compréhension et I'analyse fsamcanismes et des dynamiques de changement
de phase sont nécessaires. Le premier theme concerne laumpgent de dispositifs passifs de refroidis-
sement diphasiques pour la micro-électronique. Le secthiatique concerne la formation de dépéts de
filtration résultant de I'agrégation de particules coliés a la surface d’'une membrane dans des procédés
de filtration membranaire. Pour les applications de typial, un modéle a deux fluides est proposé en
adaptant des méthodes Boltzmann-sur-Réseau de la lit@rabur la résolution de I'écoulement. Enfin,
dans une partie plus exploratoire, un méthode de résolotiginale de I'équation de Boltzmann-Enskog
est proposée afin de traiter des écoulements avec changeenghiase en incluant les effets thermiques.

Abstract

MESOSCOPIC MODELING OF TWO-PHASE FLOW WITH PHASE CHANGE USI NG
THE BOLTZMANN-ENSKOG EQUATION. INTRODUCTION OF THERMAL EF  FECTS.
keywords : liquid-vapor transition, kinetic modelisation, Boltznmaequation, aggregation of colloidal par-
ticles.

In this post-graduate research, kinetic equations of tHezBann type were used to model and simulate
two-phase flows with phase change. This work was aimed atiffeseht applications where it is important
to understand and finely analyze the mechanisms and dynamptsase change. The first topic is related
to the development of two-phase passive cooling devicemforo-electronics. The second application is
the aggregation of colloidal particles that results in therfation of deposits on the surface of a membrane
during the process of membrane filtration. For the colloigli@ption, a two-fluid model is proposed that
adapts existing Lattice-Boltzmann methods to solve the. fimally, in a more exploratory part, an original
method is proposed to solve the Boltzmann-Enskog equdtateal with flows with phase change including
thermal effects.



