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Introduction

La compréhension des mécanismes de transitions de phase revêt une grande importance dans

différents domaines des sciences physiques, que ce soit dans le cadre d’études fondamentales ou

dans un cadre plus technologique. Nous nous intéressons en particulier ici au changement de phase

liquide-vapeur qui met en jeu d’importants échanges d’énergie sous forme de chaleur. Cette pro-

priété peut être employée pour extraire de l’énergie dans des zones à forte densité de puissance

dégagée, par exemple par des composants électroniques (microprocesseurs, électroniques embar-

quées dans les satellites ...). De tels dispositifs sont déjà largement utilisés, d’autres sont en cours

de développement (caloducs, micro-caloducs, micro-boucles diphasiques à pompage capillaire ...).

Sans entrer dans tous les détails, le principe de fonctionnement de l’ensemble de ces dispositifs

de refroidissement à changement de phase peut se décomposeren quatre étapes : extraction de

la chaleur par évaporation d’un fluide caloporteur au sein d’un échangeur au contact de l’objet

à refroidir (source chaude) - acheminement du fluide sous forme vapeur vers une source froide

(air ambiant dans le cas d’applications terrestres ou panneaux rayonnant dans le cas spatial) -

condensation du fluide au sein d’un échangeur au contact de lasource froide - acheminement du

fluide sous forme liquide vers la source chaude. Bien que ce principe de fonctionnement semble

simple, la mise au point de ce type de dispositifs nécessite une compréhension fine des écoulements

avec changement de phase. Pour illustrer ces besoins, on peut citer l’exemple de la condensation

qui se produit dans un tube de diamètre inférieur au millimètre dans le cas des micro-boucles

diphasiques. Le fluide sous forme de vapeur pénètre dans le micro-condenseur (au contact de la

source froide) où la condensation se produit par la créationde minces films liquides le long de la

paroi dans lesquels d’importants transferts de chaleur interviennent (de l’ordre de100 W.cm−2).

Cet exemple, bien que simplifié, met en évidence plusieurs couplages entre différentes physiques :

écoulements en micro-tube pour lesquels la capillarité joue un rôle, changement de phase liquide-

vapeur et transferts thermiques de forte densité de puissance.

Dans cette thèse nous nous intéressons également à l’agrégation de particules colloïdales en

suspension. Le comportement des suspensions colloïdales,qui peuvent se définir comme une dis-

persion dans un solvant de particules ou de macromolécules d’une taille inférieure au micromètre,

1
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est un enjeu de l’industrie pharmaceutique et agroalimentaire. On peut citer l’exemple des procédés

d’ultrafiltration membranaire du lait qui est une suspension colloïdale complexe dont le solvant est

de l’eau et qui contient principalement des globules gras, du lactose, des bactéries, des protéines

solubles et bien d’autres macromolécules. La filtration du lait, qui se fait au travers de membranes

dont la taille des pores varie en fonction du composé à séparer, permet d’épurer le lait de son

contenu bactérien ou bien d’ajuster le taux de chaque composant afin de fournir industriellement

un produit de qualité constante. Ce type de procédé membranaire peut être le siège d’agrégation

de particules colloïdales lorsque la concentration de particules croît au niveau de la surface de la

membrane. Cette agrégation soudaine, qui peut être considérée comme une transition de phase,

forme un gel à la surface de la membrane qui va modifier, en fonction de la structure formée,

les conditions d’écoulements et les performances de la filtration. Contrairement aux écoulements

liquide-vapeur, les effets énergétiques ne jouent pas de rôle pour ce type de transition de phase.

La complexité, dans ce cas, apparaît par le nombre de phénomènes physiques du même niveau

d’importance : couplage entre le transport des particules et l’écoulement du solvant, interactions

entre particules et interactions particules-membrane.

Ces deux exemples d’écoulements de “fluides complexes” illustrent les enjeux et les besoins

méthodologiques associés à la compréhension et à l’analysede la physique des transitions de phase

qui se manifestent également dans d’autres disciplines. C’est le cas notamment en physique des

plasmas hors d’équilibre où de nombreuses questions restent ouvertes en ce qui concerne l’émer-

gence de structures spatiales à l’échelle du système à partir d’interactions électrons/ions/neutres

dans des conditions incompatibles avec l’utilisation de modèles macroscopiques de type fluidique.

Un autre exemple est la biologie dont l’un des sujets d’étudeactuel est l’analyse des phénomènes

d’auto-organisation, de morphogénèse et plus généralement de comportements collectifs à diffé-

rentes échelles du vivant (vaisseaux sanguins, bactéries,insectes, bancs de poissons ...). Les ap-

plications plasma et biologie ne seront plus mentionnées dans le présent document mais elles ont

fait partie de notre environnement de recherche et ont donc influencé indirectement certaines des

exigences d’approfondissement théorique qui ont présidé àcette thèse.

Pour l’étude et la compréhension de tels “systèmes complexes”, caractérisés par un grand

nombre de degrés de liberté, où les transitions de phase résultent d’effets collectifs, la modéli-

sation la plus naturelle est la description macroscopique.Or celle-ci n’est pas toujours adaptée ou

suffisante. C’est le cas très clairement pour des situationsloin de l’équilibre, par exemple, en méca-

nique des fluides, pour les écoulements de gaz raréfiés ou des écoulements dans des géométries de

faibles dimensions (micro ou nanofluidique). Cependant, même lorsque les problématiques abor-

dées sont des situations proches de l’équilibre, la modélisation macroscopique peut être difficile à

mener totalement car énormément de ce qui se passe à l’échelle du système entier nécessite une
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compréhension détaillée de ce qui se passe à petite échelle (près des parois, dans les interfaces etc

...). C’est le cas par exemple des transferts thermiques dans les films minces de liquides ou bien

les formes des structures résultant de l’agrégation des particules colloïdales sur une membrane.

Ainsi, même lorsque la description macroscopique est pertinente dans la quasi-totalité du système,

on est communément amené à faire appel à des corrélations pour rendre compte de phénomènes

à petite échelle. Aujourd’hui, de plus en plus de travaux sont menés pour aborder spécifiquement

cette question (en particulier avec la dynamique moléculaire) afin de comprendre les mécanismes

se produisant à petite échelle et d’alimenter ainsi les modèles macroscopiques. D’autres difficultés

liées à la modélisation macroscopique concernent la mise enoeuvre en terme de simulations nu-

mériques. Ces difficultés se manifestent par exemple pour des écoulements diphasiques où il est

nécessaire de suivre les interfaces liquide-vapeur et la dynamique de la ligne triple.

Dans ce contexte où les besoins concernant la compréhensiond’écoulements avec transitions

de phase sont importants et où la modélisation macroscopique atteint des limites, il est intéressant

d’explorer les possibilités d’une description mésoscopique. Pour les situations de hors d’équilibre

lointain de nombreux travaux ont été menés et ont permis d’amener à maturité un certain nombre

de techniques numériques. Au delà de ces aspects, le point devue correspondant nous paraît sus-

ceptible d’éclairer des questions d’interprétations physiques, en particulier en ce qui concerne l’in-

fluence des phénomènes de petite échelle sur l’évolution du système entier.

Trois compétences existantes ont permis d’effectuer ce travail dans le cadre d’une collaboration

entre deux laboratoires. D’une part, l’ex-Laboratoire d’Energétique2 composé d’une équipe ayant

acquis un savoir-faire sur la modélisation mésoscopique pour des situations de hors d’équilibre

lointain dans le cadre de problématiques en transfert radiatif et en biologie, et d’une équipe me-

nant des études expérimentales et théoriques sur le changement de phase liquide-vapeur. D’autre

part, le Laboratoire de Génie Chimique où M. Clifton a acquisune expérience sur les méthodes

Boltzmann-sur-Réseau dans le cadre d’études d’écoulements en géométrie complexe. C’est dans

ce contexte que ce travail a pris naissance et s’est naturellement orienté dans un premier temps vers

un objectif d’appropriation et de clarification des concepts, avec en particulier le besoin d’identi-

fier à toutes les étapes, la part de l’édifice théorique relevant rigoureusement d’une description

mésoscopique et pouvant donc conserver une validité au delàdu domaine de validité des modèles

macroscopiques. En s’appuyant sur cette compréhension, des développements originaux ont pu

être menés allant jusqu’à des propositions effectives pourrendre compte de phénomènes de tran-

sition de phase avec prise en compte des effets thermiques.

Ce mémoire s’organise en cinq chapitres. Les chapitres I et III sont des chapitres de mise au

2aujourd’hui appartenant à l’équipe Groupe de Recherche en Energétique, Plasma et Hors d’Equilibre du LAbora-

toire PLAsma et Conversion d’Energie
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point incluant à la fois un rappel des bases théoriques et un point de vue personnel sur les concepts

physiques employés dans ce travail. Les trois autres chapitres présentent des travaux de modélisa-

tion originaux de cette thèse pour différents types d’écoulements avec ou sans transferts thermiques

et avec ou sans changement de phase. Le découpage détaillé est le suivant :

• Le chapitre I rappelle les concepts et les hypothèses associées à la modélisation cinétique

des fluides. Le termemésoscopiquetel qu’il est utilisé tout au long de ce travail ainsi que

tous les concepts liés à ce type de modélisation sont définis et commentés dans ce chapitre.

Nous présentons une démonstration de l’équation de Boltzmann à partir d’un bilan dans

l’espace des phases. Les étapes de la démonstration à partirde l’équation de Liouville et de

la hiérarchie BBGKY sont également présentées. Enfin, le passage de la description méso-

scopique à la description macroscopique est exposé en détail. Ce passage est un élément

important de tout le travail de modélisation présenté dans les chapitres suivants.

• Dans le deuxième chapitre, après un historique de la méthodeBoltzmann-sur-Réseau et une

revue non-exhaustive des modèles existants, nous reprenons un travail présenté par He et Luo

en 1997 aboutissant à la conclusion que certains schémas Boltzmann-sur-Réseau peuvent

être rigoureusement regardés comme des discrétisations particulières de l’équation de Boltz-

mann. Ce point de vue a joué un rôle essentiel dans notre travail : il nous a conduit à une

proposition originale concernant la simulation d’écoulements gazeux anisothermes (section

II.3) et il a été la base de la méthodologie présentée en fin de thèse pour la simulation d’écou-

lements diphasiques anisothermes.

• Le troisième chapitre ouvre la question de la modélisation des phénomènes de transition

de phase. Nous rapellons tout d’abord les bases de l’équilibre thermodynamique d’un mé-

lange liquide-vapeur. On introduit également le modèle d’interface liquide-vapeur de van der

Waals qui permet de faire une description thermodynamique continue d’une interface. Dans

une deuxième partie nous présentons un modèle mésoscopique(équation de Boltzmann-

Enskog) pour les fluides non-idéaux ainsi que les équations macroscopiques relatives à ce

modèle. Ce modèle mésoscopique, les équations macroscopiques correspondantes, ainsi que

le modèle thermodynamique d’interface de van der Waals servent de bases physiques aux

travaux présentés dans les deux derniers chapitres.

• Le chapitre IV présente un travail de modélisation pour les écoulements de suspensions

colloïdales avec agrégation des particules colloïdales. Le modèle proposé repose sur le fait

que le colloïde peut être considéré comme un fluide non-idéalavec une équation d’état reliant

la pression osmotique à la fraction volumique de colloïde. Dans cette analogie la phase

“liquide” du colloïde correspond aux domaines où les particules sont agrégées. Ainsi, pour

ce type d’écoulements où les effets thermiques peuvent êtrenégligés, nous proposons un

modèle à deux fluides pour lequel le fluide global est décrit par un modèle Boltzmann-sur-
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Réseau pour écoulements isothermes et incompressibles et le fluide colloïde est décrit par

un schéma Boltzmann-sur-Réseau pour écoulement isothermeavec changement de phase.

Compte tenue de l’absence d’effets thermiques, nous utilisons pour les deux fluides, des

modèles issus de la littérature.

• Enfin le dernier chapitre présente un travail plus exploratoire sur la modélisation et la si-

mulation d’écoulements liquide-vapeur avec changement dephase et prise en compte des

effets thermiques. Nous proposons un schéma Boltzmann-sur-Réseau qui est obtenu par dis-

crétisation de l’équation de Boltzmann-Enskog (modèle mésoscopique pour fluide non-idéal

présenté au chapitre III). Cette proposition découle de l’ensemble des concepts mésoscopi-

ques présentés au chapitre I, de l’analyse physique détaillée des interfaces liquide-vapeur

présentée au chapitre III et de la démarche méthodologique employée au chapitre II pour

aborder les écoulements anisothermes.





Chapitre I

Modélisation cinétique des fluides, équation

de Boltzmann

Ce chapitre introductif a pour objectif de présenter les notions essentielles de modélisation

cinétique des fluides que nous utiliserons tout au long de ce manuscrit. En aucun cas il ne pré-

tend à l’exhaustivité des démonstrations mais permet de donner une vision générale de l’approche

cinétique pour la description des gaz dilués. Nous essaierons dans un premier temps de présenter

l’équation de Boltzmann à partir de points de vue sensiblement différents, de façon à éclairer d’une

part le point de vue strictement mésoscopique et d’autre part le passage de la vision microscopique

à la vision mésoscopique. Nous discuterons dans une secondephase les propriétés d’évolution

vers l’équilibre relatif à cette description, ce qui nous amènera à présenter différents modèles pour

rendre compte des effets collisionnels. La dernière partiequi s’attache à décrire le passage des

équations cinétiques aux équations macroscopiques est un point important de l’édifice et sera pour

toute la suite un paragraphe de référence. Nous reportons auchapitre III la description cinétique

pour les fluides non-idéaux.

I.1 La description mésoscopique

L’équation de Boltzmann est l’équation d’évolution de la densité monoparticulairef(r , v, t).

Cette équation a été dérivée par Ludwig Boltzmann en1872 pour décrire un gaz dilué classique

de particules identiques de massem. Il est important de noter que cette équation qui s’attache

à décrire des situations de non-équilibre (y compris lointain) a été établie alors que les théories

de la physique statistique de l’équilibre ne sont parvenuesà maturité que dans la première partie

7
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du 20e siècle. Le vocabulaire “mésoscopique” et “cinétique” sera souvent utilisé et aucune diffé-

rence fondamentale n’est à considérer dans ce manuscrit. Lamodélisation mésoscopique est une

description statistique adaptée aux systèmes complexes comportant un grand nombre de degrés

de liberté comme les fluides, les photons, les plasmas ou bienencore un gaz d’électrons dans les

conducteurs. La grandeur descriptive d’un modèle mésoscopique est la fonction de distribution

monoparticulairef(r , v, t). A une normalisation près,f(r , v, t) est au tempst la densité de pro-

babilité de particules dans l’espace des phases{Ωr ,Ωv}. L’espace des phases est un espace à6

dimensions :3 pour l’espace géométriqueΩr et 3 pour l’espace des vitessesΩv. Ainsi de façon

plus intuitive, la quantitéf(r , v, t) drdv représente, à l’instantt, dans l’élément de volumedr au-

tour de la positionr , le nombre de particules se déplaçant à la vitessev à dv près. A partir de la

définition def(r , v, t), il est possible de retrouver les grandeurs descriptives usuelles lorsqu’une

description macroscopique est employée : par exemple, la masse volumiqueρ(r , t), la vitesse du

fluideu(r , t) ou la températureT (r , t). La masse volumiqueρ(r , t) étant le produit de la massem

d’une particule, par le nombre de particules dans l’élémentde volumedr autour de la positionr , et

ceci indépendamment de leurs vitesses, elle se relie à la fonction de distribution monoparticulaire

par la relation suivante :

ρ(r , t) = m

∫
dv f(r , v, t) (I.1)

La vitesse du fluideu(r , t) s’interprète comme la vitesse moyenne des particules distribuées selon

la fonctionf(r , v, t) et normalisée parm/ρ(r , t) :

u(r , t) =
m

ρ(r , t)

∫
dv v f(r , v, t) (I.2)

De la même façon la températureT (r , t) s’interprète, en utilisant le théorème d’équipartition de

l’énergie, comme la moyenne de l’énergie cinétique de translation des particules dans le repère du

centre de masse :
3

2
rT (r , t) =

m

ρ(r , t)

∫
dv

1

2
(v − u)2 f(r , v, t) (I.3)

dans laqueller = kb/m est la constante massique des gaz parfaits etkb est la constante de Boltz-

mann. Pour simplifier les écritures, dans le reste du manuscrit, la massem d’une particule est

intégrée à la définition def(r , v, t) de sorte quef(r , v, t) remplacem f(r , v, t). A partir de main-

tenant, pour alléger les écritures, nous ne mentionnerons plus systématiquement les dépendances

def . Ainsi les relations précédentes deviennent :

ρ =

∫
dv f (I.4)

ρu =

∫
dv v f (I.5)

3

2
ρrT =

∫
dv

1

2
(v − u)2 f (I.6)



La description mésoscopique 9

I.1.1 Microscopique/mésoscopique/Macroscopique

Dans ce paragraphe on va discuter qualitativement le point de vue attaché aux passages entre

les différents niveaux de description.

La description microscopique consiste à conserver, à chaque instant, toute l’information atta-

chée à chaque individu composant le système. Par exemple pour un fluide constitué deN parti-

cules classiques identiques et supposées ponctuelles, lesdescripteurs microscopiques sont lesN

positionsr i(t) et lesN vitessesvi(t) des particules en fonction du tempst. L’évolution de ces

descripteurs obéit, selon nos hypothèses, aux lois de la mécanique newtonienne. La modélisation

et la simulation de l’évolution des systèmes selon cette description sont souvent référencées sous

la dénomination dedynamique moléculaire.

Contrairement à la description microscopique, la description macroscopique postule un conti-

nuum spatial et temporel et les descripteurs apparaissent naturellement comme des champs de

l’espace et du temps. Pour un fluide, les descripteurs usuelssont la masse volumiqueρ(r , t), la

vitesse du fluideu(r , t) et la températureT (r , t). La thermodynamiqueet lamécanique des fluides

sont les bases de la modélisation de l’évolution des systèmes complexes sous l’angle macrosco-

pique. Historiquement la mécanique des fluides et plus généralement les méthodes ditesfluidiques

(pour décrire d’autres systèmes complexes comme les plasmas ou les photons) ont été construite

indépendamment de la nature corpusculaire de l’objet d’étude. Les descripteurs macroscopiques

sont souvent reliés à des variables accessibles expérimentalement : il est plus facile de mesurer la

température d’un fluide que de mesurer les vitesses et positions des particules composant le fluide.

Le point de vue mésoscopique peut être qualifié d’intermédiaire entre les descriptions micro-

scopique et macroscopique en terme de quantité d’informations pour la modélisation des systèmes.

Dans la description microscopique, l’information sur le système est maximale puisque toutes les

positions et les vitesses des particules sont connues contrairement à la description macroscopique

où quelques champs spatio-temporels (ρ, u, T ) sont utilisés. Ces variables macroscopiques pouvant

s’interpréter comme des valeurs moyennes des variables microscopiques, la description macrosco-

pique correspond à une information partielle du système. Comme en macroscopique, le descripteur

mésoscopique est une grandeur continue et n’est pas directement associé aux “individus” du sys-

tème. Cependant, les informations en termes de positions etvitesses des particules existent en

tant que variables indépendantes au travers d’une densité de probabilité de présence. Le caractère

déterministe de la description microscopique est perdu et le point de vue devient statistique. La

fonction de distributionf(r , v, t) s’interprète comme une densité de probabilité dans l’espace des

phases. L’approche mésoscopique est pleinement intégrée dans le cadre des théories de laphysique

statistique du hors d’équilibre.
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Le schéma suivant résume les différents points de vue associés à chacune des descriptions.

Variables

Descripteurs {r , v }i i

Micro

t r , v , t

f

Méso

tr , 

ρ, u ,T

Macro

équation de Liouville

hiérarchie BBGKY

procédure de 

Chapman−Enskog

FIG . I.1: Positionement entre les différents points de vue, microscopique, mésoscopique et ma-

croscopique.

On retrouve sur le schéma I.1 les descripteurs et les variables associés à chaque point de vue. On

note à nouveau que les positionsr et vitesses microscopiquesv passent du statut de descripteurs

en microscopique au statut de variables indépendantes en mésoscopique. En macroscopique, la

vitesseu qui apparaît n’a plus le même sens que la vitesse microscopiquev puisqu’elle représente

la vitesse apparente du fluide, c’est-à-dire la vitesse moyenne des particules au point. Ce tableau

indique également qu’il existe un lien formel entre les différents niveaux de descriptions. L’intérêt

de ces procédures réside principalement dans la mise en évidence des niveaux d’approximation et

d’informations perdues au moment des passages :

– les équations cinétiques peuvent être dérivées de la description microscopique par une modéli-

sation simplifiée des corrélations de paires, pouvant allerjusqu’à les négliger complètement

pour l’équation de Boltzmann (chaos moléculaire ou “Stosszahl Ansatz”). Techniquement il

s’agit de réécrire l’équation de Liouville correspondant àla reformulation des équations de

la mécanique (en terme de fonction de distribution à N corps)sous la forme d’une succes-

sion d’équations couplées (hiérarchie BBGKY). L’approximation consiste alors à tronquer

la hiérarchie en introduisant une relation de fermeture.

– pour obtenir un jeu d’équations macroscopiques sur les grandeurs conservatives (masse,

quantité de mouvement, énergie) à partir d’une prise de moyenne de l’équation cinétique il

est nécessaire, pour l’évaluation de certaines moyennes, de faire une hypothèse sur la forme

de la fonction de distribution. En général l’hypothèse consiste à développer la fonction de

distribution autour de la distribution d’équilibre. Cetteprocédure est connue en cinétique des

gaz sous le nom de “procédure de Chapman-Enskog”.

Ces procédures de passage seront rediscutées plus en détaildans la suite du chapitre. Il est impor-

tant de noter que les concepts et grandeurs manipulés sur chaque niveau de description sont totale-

ment différents et qu’il n’est en général pas nécessaire de construire complètement les descriptions
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les plus élémentaires pour aller vers les descriptions les plus macroscopiques. Ainsi, bien qu’il

soit possible de classer les trois descriptions par la quantité d’informations sur le système, cela ne

signifie pas qu’un point de vue soit plus intéressant qu’un autre. On pourrait croire qu’une modéli-

sation microscopique est plus performante puisque l’information sur le système est maximale. Or

ce n’est généralement pas le cas pour au moins deux raisons : la première concerne les possibi-

lités de calcul pour la simulation de systèmes complexes composés d’un nombre de particules de

l’ordre du nombre d’Avogadro. La deuxième raison concerne la compréhension et l’analyse des

mécanismes physiques et des dynamiques à l’échelle du système. En effet, en imaginant qu’il n’y

ait pas de limites techniques sur les possibilités de calcul, il serait difficile d’analyser le nombre

fabuleux d’informations à disposition et donc très difficile d’appréhender la physique à l’échelle

du système. En ce sens, les approches macroscopiques apportent un point de vue à l’échelle du

système en faisant apparaître des concepts comme, par exemple, la pression, la viscosité ou la

conductivité thermique. Ces concepts, émergeant de phénomènes collectifs, rendent possible une

analyse et une compréhension d’un système complexe dans sonensemble.

La description mésoscopique apparaît de ce point de vue comme ayant aussi un intérêt propre.

D’une part, elle bénéficie de la possibilité, comme en microscopique, de construire des modèles en

intégrant la physique à l’échelle de la particule. Ceci permet en particulier de considérer les forces

intermoléculaires intervenant dans les fluides non-idéaux. D’autre part, la description mésoscopi-

que résultant d’une première prise en compte d’effets collectifs (point de vue statistique) laisse la

possibilité d’un premier niveau d’analyse complémentairedu niveau macroscopique. Cette dualité

de la description mésoscopique sera présentée tout au long de ce travail de thèse. Une grande partie

du travail de modélisation a été réalisé à partir des possibilités de la description mésoscopique sans

jamais se priver d’un éclairage macroscopique pour l’analyse et la compréhension des mécanismes

et des dynamiques du système.

I.1.2 Approche heuristique de l’équation de transport

Avant de présenter differentes “démonstrations” de l’équation de Boltzmann, il est intéressant

de se familiariser avec les différents termes par des imagesphysiques simples. Pour cela on consi-

dère un fluide constitué de particules identiques de massem.

Isolons par la pensée les particules situées dans un élémentde volume autour de la positionr et

se déplaçant à la vitessev à dv près. Autrement dit, cela correspond au nombre de particules dans

l’élément de volume de l’espace des phases autour du point(r , v). Par définition de la fonction de

distributionf , ce nombre de particules est égal àf(r , v, t) drdv. Si aucun événement ne change

le nombre de particules (réactions chimiques ...) ou ne change la vitesse des particules (champ de
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v   tδ

t t+   tδ

v

v

FIG . I.2: Représentation schématique de quelques particules d’un fluide à deux instants proches.

Les particules de vitessev, situées enr à l’instantt, se retrouvent enr + vδt à l’instantt+ δt.

force, collision entre particules ...), toutes les particules de vitessesv, situées enr à l’instantt se

transportent, durant un intervalle de tempsδt jusqu’au pointr +vδt. Ce transport de particules (cf.

Fig. I.2) se traduit par l’égalité suivante :

f(r + vδt, v, t+ δt)drdv = f(r , v, t)drdv (I.7)

On admet sans démonstration (théorème de Liouville) que sous ces conditions le volume de l’es-

pace des phases occupé par les particulesdrdv est conservé. On peut noter que cette propriété reste

valable en présence de champs de forces conservatives. Cependant, nous en restons pour l’instant

à l’hypothèse d’une absence de force et il vient alors :

f(r + vδt, v, t+ δt) = f(r , v, t) (I.8)

En supposantδt petit, on peut faire un développement limité au premier ordre def(r+vδt, v, t+δt)

autour der et t, et il vient :

f(r , v, t) + δt(
∂f

∂t
+ v · ∇rf) = f(r , v, t) (I.9)

soit encore :
∂f

∂t
+ v · ∇rf = 0 (I.10)

Le termev · ∇f est appelé génériquement terme de transport pur. Ce terme indique la variation

de la fonction de distribution du simple fait du déplacementlibre des particules. L’équation (I.10)

est un modèle d’équation cinétique d’un système de particules où seul le terme de transport fait
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évoluer la fonction de distribution. Dans la même logique, il est aisé de montrer qu’en présence

d’un champ de force, l’équation résultante s’ecrit :

∂f

∂t
+ v · ∇rf +

F
m

· ∇vf = 0 (I.11)

Dans le cas le plus général, il faut tenir compte d’autres processus physiques faisant varier la

fonction de distribution. Durant l’intervalle de tempsδt, les particules de vitessesv que l’on suit

peuvent “collisionner” avec d’autres particules de vitesses différentes (ou sur une matière exté-

rieure) et acquérir ainsi une vitessev′ après la collision. Ce processus se traduit par un terme de

perte localeP (r , v, v′) dans l’égalité (I.11). De façon similaire, des particules ayant une vitessev′

à l’instantt, peuvent après collision, se retrouver à la vitessev à l’instantt + δt. Ceci correspond

à un terme de source localeS(r , v′, v) :

∂f

∂t
+ v · ∇rf +

F
m

· ∇vf = −P (r , v, v′) + S(r , v, v′) (I.12)

Ces termes de perte et de source ayant pour origine les collisions interparticulaires sont géné-

ralement regroupés dans le termecollisionnelnotéC(f, f) :

∂f

∂t
+ v · ∇rf +

F
m

· ∇vf = C(f, f) (I.13)

La double dépendance formelle enf du terme collisionnel permet de signifier que ce terme est

non-linéaire enf dans le cas des fluides. Cette non-linéarité a pour origine lefait que les particules

collisionnent avec d’autres particules de même nature décrites par la même fonction de distri-

butionf . Il existe d’autres situations pour lesquelles le terme collisionnel du modèle cinétique est

linéaire. C’est le cas par exemple de l’équation de transfert radiatif pour laquelle les photons ne col-

lisionnent pas avec d’autres photons, mais interagissent uniquement avec des particules du milieu

de propagation. On retrouve aussi cette logique de modélisation dans les descriptions cinétiques

des plasmas où il est souvent raisonnable de négliger les collisions électron-électron, l’essentiel

des événements collisionnels des électrons se produisant avec les atomes neutres du plasma.

Une des principales difficultés de la dérivation d’une équation cinétique est la modélisation

du terme collisionnelC(f, f). Différentes propositions peuvent alors être faites sur labase d’hy-

pothèses plus ou moins avancées de la physique d’interaction entre molécules. Dans la section

suivante, on se propose de détailler le terme collisionnel d’interactions entre particules tel qu’il a

été introduit originellement par Boltzmann sous l’hypothèse des gaz dilués [3, 4, 5].
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I.2 Démonstration de l’équation de Boltzmann

Nous proposons dans ce paragraphe de dériver l’équation de Boltzmann en raisonnant sur la

fonction de distribution monoparticulairef , à partir d’une formalisation statistique des différents

processus physiques faisant évoluerf au cours du temps. Pour simplifier la présentation mathé-

matique on ne considérera pas les champs de forces extérieures, sachant qu’il n’y aurait aucune

difficulté conceptuelle supplémentaire à leur prise en compte.

I.2.1 Hypothèses

– Les particules du gaz se déplacent en ligne droite à vitesseconstante entre deux événements

d’interaction. Les particules sont toutes identiques et iln’y a aucune autre matière dans le

système, les seules interactions possibles sont les collisions entre particules.

– Le gaz est dilué : les distances intermoléculaires moyennes sont grandes devant la distance

d’interaction entre particules. Autrement dit, les interactions sont considérées comme quasi-

ponctuelles et quasi-instantannées aux échelles considérées et on peut négliger les collisions

autres que binaires.

– On peut toujours définir une échelle en dessous de laquelle les lieux des interactions pos-

sibles sont distribués spatialement aléatoirement de façon uniforme. L’importance de cette

hypothèse sera explicitée plus tard.

I.2.2 Evolution du nombre de particules à la vitesse v

On considère un élément de volumeΩ d’enveloppeΣ.NΩ(v, t)dv est le nombre de particules à

l’instant t, situées dans l’élémentΩ avec la vitessev àdv près dans l’espace des vitesses. On peut

écrire simplement :

NΩ(v, t)dv =

∫

Ω

f(r , v, t) drdv (I.14)

Si l’élément de volumeΩ ne se déforme pas, on a :

∂NΩ

∂t
=

∫

Ω

∂f

∂t
dr (I.15)

L’évolution du nombre de particulesNΩ peut varier de trois façons :

1. A l’intérieur deΩ des particules à la vitessev disparaissent suite à un changement de vitesse

dû aux collisions avec d’autres particules.
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2. A l’intérieur deΩ des particules à la vitessev apparaissent suite à un changement de vitesse

dû aux collisions avec d’autres particules.

3. Des particules à la vitessev entrent ou sortent deΩ à travers la frontièreΣ.

L’hypothèse de distribution aléatoire des lieux d’interactions se traduit statistiquement par une loi

de décroissance exponentielle pour les disparitions. Le taux d’évolution deNΩ dû aux disparitions

par interactions s’écrit alors : (
∂NΩ

∂t

)

1

=

∫

Ω

−v
λ
f dr (I.16)

dans lequelλ = λ(r , v, t) est le libre parcours moyen des particules de vitessesv enr à l’instantt

(dans le cas le plus général) etv = ‖v‖.

On noteS(r , v, t)dr le taux temporel d’apparition (suite aux interactions) de particules à la

vitessevenr àdr près. Le taux d’évolution deNΩ par apparition s’écrit :

(
∂NΩ

∂t

)

2

=

∫

Ω

S dr (I.17)

Le dernier terme correspond à l’évolution deNΩ lié aux entrées-sorties à travers la frontièreΣ. Il

s’exprime comme l’intégrale de la densité surfacique de fluxde particules à la vitessev en tout

point s de la frontièreΣ. Avecn le vecteur normal sortant ens, le taux d’évolution deNΩ dû aux

entrées-sorties s’écrit : (
∂NΩ

∂t

)

3

=

∫

Σ

−fv · n ds (I.18)

Ce qui peut se réécrire, à partir du théorème de Green-Ostrogradsky, sous la forme :

(
∂NΩ

∂t

)

3

=

∫

Ω

−∇r(fv) dr (I.19)

v et r étant des variables indépendantes, on obtient :

(
∂NΩ

∂t

)

3

=

∫

Ω

−v · ∇rf dr (I.20)

En regroupant toutes les contributions, on obtient l’équation d’évolution deNΩ :

∂NΩ

∂t
=

∫

Ω

[
−v
λ
f + S − v · ∇rf

]
dr (I.21)

Ceci se réécrit : ∫

Ω

∂f

∂t
dr =

∫

Ω

[
−v
λ
f + S − v · ∇rf

]
dr (I.22)
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Cette relation étant vérifiée quel que soit l’élément de volume Ω, on obtient l’équation locale

suivante :
∂f

∂t
+ v · ∇rf = −v

λ
f + S (I.23)

Pour retrouver l’équation de Boltzmann à partir de cette forme générale, nous devons d’une part

détailler les processus à l’origine de la disparition def et d’autre part expliciter le terme sourceS.

Compte tenue des hypothèses retenues, les seules interactions possibles sont les collisions avec les

autres particules du gaz. Elles ont pour première conséquence de faire “disparaître” des particules

de vitessev en les faisant apparaître à la vitessev′. De la même façon, suite à une collision, une

particule à vitessev′ peut se retrouver à la vitessev, ce qui correspond à un terme source vis-à-vis

de la population des particules suivies.

On noteW (v′; r , v, t) la densité de probabilité pour que la vitesse de la particuleaprès la colli-

sion soitv′ sachant que la vitesse avant la collision estv ; elle vérifie la condition de normalisation

suivante : ∫
W (v′; r , v, t) d v′ = 1 (I.24)

Le terme source peut alors s’écrire sous la forme :

S =

∫
v′

λ
W (v; r , v′, t) f(r , v′, t) d v′ (I.25)

De façon plus arbitraire, il est toujours possible de réécrire le terme de disparition sous la forme :

−v
λ
f(r , v, t) =

∫
−v
λ
W (v′; r , v, t) f(r , v, t) dv′ (I.26)

Ainsi, avec les notationsf = f(r , v, t) etf ′ = f(r , v′, t), l’équation (I.23) peut se réécrire sous la

forme :
∂f

∂t
+ v · ∇rf =

∫ [
v′

λ
W (v; r , v′, t) f ′ − v

λ
W (v′; r , v, t) f

]
dv′ (I.27)

Pour fermer complètement la description, il reste à expliciter les dépendances du libre parcours

moyenλ(r , v, t) à la fonction de distributionf . On considère une particule enr se déplaçant à la

vitessev et on analyse les interactions possibles avec des particules au même point à la vitesse

v′′. Tout se passe alors comme si la molécule considérée était aurepos et soumise à un flux de

particules incidentes de vitessesv′′ − v (cf. Fig. I.3). La section efficaceσ(v′′, v) est la surface que

définit autour de la particule au repos (particule cible) l’ensemble des points d’intersection corres-

pondant à des particules incidentes qui entrent en interaction avec la particule cible. Le nombre

d’interactions par unité de temps est alors‖v′′ − v‖σ(v′′, v)f(r , v′′, t). En considérant l’ensemble

des vitesses incidentes possibles, on peut ainsi détaillerle taux de disparition par interaction (ce

qui correspond en fait à l’inverse du libre temps moyen de collision) :

v

λ(r , v, t)
=

∫
‖v′′ − v‖σ(v′′, v)f(r , v′′, t) dv′′ (I.28)
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On peut alors reprendre l’équation (I.27) en détaillant lesinteractions (en identifiant la vitesse

des particules avec lesquelles les particules suivies interagissent) :

∂f

∂t
+ v · ∇r(f) =

∫
d v′

∫
d v′′

[
‖v′′ − v′‖σ(v′′, v′)Ŵ (v; r , v′, t, v′′)f ′′f ′

− ‖v′′ − v‖ σ(v′′, v)Ŵ (v′; r , v, t, v′′)f ′′f
]

(I.29)

avecf ′′ ≡ f(r , v′′, t) et Ŵ (v′; r , v, t, v′′) est la densité de probabilité qu’une particule à vitessev,

subissant une interaction enr à l’instantt, avec une particule à vitessev′′, se retrouve à la vitesse

v′ après l’interaction. Si on suppose de plus que la section efficace est indépendante des vitesses

des particules, alors on aboutit àl’équation de Boltzmannpour la cinétique des gaz dilués :

∂f

∂t
+ v · ∇r(f) =

σ

∫
d v′

∫
d v′′

[
‖v′′ − v′‖Ŵ (v; r , v′, t, v′′)f ′′f ′

− ‖v′′ − v‖ Ŵ (v′; r , v, t, v′′)f ′′f
]

(I.30)

Cette dernière équation correspond à l’équation de Boltzmann en l’absence de champs de force

extérieure. Dans le cas le plus général, on peut démontrer simplement que les forces extérieures

qui s’appliquent sur les particules ajoutent un terme dans l’équation de transport qui devient :

∂f

∂t
+ v · ∇r(f) + ∇v

(
F
m
f

)
=

σ

∫
d v′

∫
d v′′

[
‖v′′ − v′‖Ŵ (v; r , v′, t, v′′)f ′′f ′

− ‖v′′ − v‖ Ŵ (v′; r , v, t, v′′)f ′′f
]

(I.31)

Notons que la forme du terme de “force” retenue ici n’est pas standard. Nous avons en effet écrit

∇v

(
F
m
f

)
plutôt que

F
m

· ∇v (f) comme précédemment (équation (I.13)). Cela correspond à une
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généralisation du terme de force au cas ou les forces extérieures ne sont pas forcément conserva-

tives.

I.3 Eléments de démonstration de l’équation de

Boltzmann à partir de l’équation de Liouville

Sans entrer dans tous les détails de la démonstration (voir [4, 5] pour les détails), il est inté-

ressant de présenter les principales étapes de la dérivation de l’équation de Boltzmann à partir de

la description microscopique de systèmes complexes composés de particules identiques obéissant

aux lois de la mécanique classique newtonienne. Cette démarche a pour objectif de faire sentir les

hypothèses qui conduisent de la description déterministe et réversible à la description statistique et

irréversible que constitue l’équation cinétique.

I.3.1 Equation de Liouville

L’équation de Liouville dérive du formalisme hamiltonien de la mécanique classique. On consi-

dère un système deN particules identiques de massem. Ce système peut être entièrement carac-

térisé par la densité de probabilité de présencefN(r 1, p1; . . . ; rN , pN ; t) dans l’espace des phases

à 6N dimensions.r i et pi représente respectivement la position et la quantité de mouvement de

la ieme particule. Cette densité de probabilité se lit comme la probabilité conjointe d’avoir une

particule de coordonnées(r 1, p1), une particule de coordonnées(r 2, p2), ... et une particule de co-

ordonnées(rN , pN) dans l’espace des phases (à l’intérieur du volume élémentaire correspondant).

La conservation du flot hamiltonien se traduit par l’équation d’évolution de Liouville [6] pour la

densité de probabilité :
∂fN

∂t
+ {fN ,HN} = 0 (I.32)

avecHN l’hamiltonien du système àN particules qui s’écrit (en l’absence de force magnétique)

comme la somme des énergies cinétiques des particules et desinteractionsu(ri − rj) que nous

supposons ici être à2 corps.

HN =
N∑

i=1

p2
i

2m
+
∑

<i,j>

u(ri − rj) (I.33)

Le crochet de Poisson{fN ,HN} est défini par :

{fN ,HN} =

N∑

i=1

∂fN

∂ri

· ∂HN

∂pi

− ∂fN

∂pi

· ∂HN

∂ri

(I.34)
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I.3.2 Densité de probabilité àn particules

On notefn la densité de probabilité de trouver conjointement une particule de coordonnées

(r 1, p1), une deuxième en(r 2, p2), ... et une n-ième en(rn, pn) quelles que soient les positions et

impulsions deN − n particules restantes :

fn(r1, p1 ; . . . ; rn,pn; t) = (I.35)
1

(N − n)!

∫
fN(r1,p1; . . . ; rN ,pN ; t) drn+1 · dpn+1 . . .drN · dpN

Le facteur 1
(N−n)!

est en lien direct avec l’hypothèse d’indiscernabilité desparticules. Nous rappe-

lons que nous cherchons à dériver l’équation de Boltzmann qui est une équation d’évolution de la

densité monoparticulairef(r , p; t) = f1(r 1, p1; t).

I.3.3 Hiérarchie BBGKY

A partir de ce qui précède, et en n’explicitant plus les dépendances, on peut écrire la fonction

de distribution àN − 1 corps :

fN−1 =

∫
drN · dpNfN (I.36)

en dérivant par rapport au temps on obtient sans difficultés :

∂fN−1

∂t
= −

∫
drN · dpN {fN ,HN} (I.37)

En reportant l’expression du crochet de Poisson dans cette derrière équation et en intégrant on peut

réécrire l’équation d’évolution defN−1 sous la forme :

∂fN−1

∂t
+ {fN−1,HN−1} =

∫
drNdpN

N−1∑

i=1

∂ui N

∂r i

· ∂fN

∂pi

(I.38)

On peut répéter l’ensemble de la démarche pour trouver les équations d’évolution defi à partir de

leur définition en fonction defi+1. On obtient ainsi une reformulation du problème sous la forme

d’un système deN équations couplées [7] :

∂fN

∂t
+ {fN ,HN} = 0 (I.39)

...
∂fn

∂t
+ {fn,Hn} =

∫
drn+1dpn+1

n∑

i=1

∂ui n+1

∂r i
· ∂fn+1

∂pi

(I.40)

...
∂f1

∂t
+ {f1,H1} =

∫
dp2dr 2

∂f2

∂p1

· ∇r1u1 2 (I.41)
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Dans les cas non relativistes, en remplaçantp parmv, l’équation d’évolution def1(r 1, v1, t) peut

s’écrire en fonction de la fonction de distribution à 2 corpsf2 :

∂f1

∂t
+ v1 · ∇r1f1 =

∫ ∫
dv2dr 2

∂f2

∂v1
· ∇r1u(r1 − r2) (I.42)

L’équation (I.42) est similaire à l’équation de Boltzmann.Le terme de transport apparaît dans le

membre de gauche et le membre de droite s’identifie au terme collisionnel. Un des intérêts de

cette formulation réside dans la mise en évidence du lien formel entre le potentiel d’interaction

intermoléculaire et le terme collisionnel. Cependant, en l’état l’équation (I.42) n’est pas suffisante

puisqu’elle fait intervenirf2.Pour fermer le problème à partir d’une seule équation surf1, il est

donc nécessaire de fixer un jeu d’hypothèses concernant à la fois la forme def2 et du potentiel

intermoléculaire. En fonction des besoins et des problèmestraités, on pourra ainsi affiner les appro-

ximations (cf. chapitre III). Pour retrouver l’équation deBoltzmann traditionnelle il est nécessaire

de faire les hypothèses suivantes :

– Le chaos moléculaire qui consiste à négliger les corrélations et qui se traduit formellement

par l’approximation suivante :f2 ≈ f1(r 1, v1, t) f1(r 2, v2, t)

– Les particules sont considérées comme ponctuelles et les interactions sont locales et instan-

tanées. Cela peut se faire en particulier en modélisant le potentiel d’interaction par des in-

teractions de types sphères dures ou fortement répulsives entre des particules sphériques

ponctuelles.

I.4 ThéorèmeH et équilibre

On peut noter que la description de Liouville (y compris la hiérarchie BBGKY) est parfai-

tement réversible puisqu’appuyée sur une description purement mécanique. L’équation de Boltz-

mann quant à elle n’est pas invariante par renversement du temps. Il est clair que l’apparition de

l’irréversibilité est entièrement liée aux hypothèses quiont permis d’établir l’équation de Boltz-

mann. Ceci a été longuement discuté dans la littérature [8] et s’interprète statistiquement en intro-

duisant la grandeur entropie qui permet une mesure de l’irréversibilité et de la perte d’information.

L’objet de ce paragraphe n’est pas de discuter à proprement parler de l’entropie mais de faire res-

sortir certaines propriétés de l’équation de Boltzmann, enparticulier la mise évidence de la solution

d’équilibre. Pour cela on introduit la quantitéH (définie en général comme l’opposée de l’entropie

statistique à une constante près) définie par :

H =

∫
dr dvf(r , v, t) log f(r , v, t) (I.43)
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ainsi que la densité correspondante :

s = −h = −
∫

dvf(r , v, t) log f(r , v, t) (I.44)

I.4.1 Evolution de s au cours du temps

En multipliant l’équation de Boltzmann parlog f et en intégrant selonv, on obtient (on sup-

prime volontairement les dépendances def ) :
∫

dv log f
∂f

∂t
+

∫
dv (v · ∇f) log f =

∫
dv log fC(f, f) (I.45)

En introduisant la grandeur flux local d’entropie :

j s = −
∫
dvf log fv

on peut écrire sans difficulté une équation locale d’évolution de la densité d’entropie :

∂s

∂t
+ ∇ · j s = −

∫
dv log fC(f, f) (I.46)

On peut montrer assez simplement que le terme de droite de l’équation précédente est toujours

positif ou nul. Ceci constitue la version locale du théorèmeH. En terme interprétatif on retrouve

les résultats de la thermodynamique axiomatique qui postule que l’évolution de l’entropie est liée

à un terme d’échange (∇ · j s) et un terme de production positif ou nul (σs = −
∫
dv log fC(f, f)).

Autrement dit, le théorèmeH est une formulation du second principe de la thermodynamique, qui

dit en particulier que l’entropie d’un système isolé ne peutqu’augmenter.

I.4.2 Distribution d’équilibre

En s’appuyant sur ce qui précède, il est aisé de voir que l’équilibre qui correspond à une situa-

tion stationnaire pour laquelle il n’y a pas de flux aux frontières se traduit mathématiquement par

l’annulation du terme de production. Sans rentrer dans les détails mathématiques, on trouve que

cette contrainte est obtenue lorsque la grandeurlog f est conservée localement au moment d’une

collision. Or, lors d’une collision élastique entre deux particules,5 quantités sont conservées entre

l’état initial et l’état final : la masse, les3 composantes de l’impulsion et l’énergie cinétique. De ce

fait log f doit être une combinaison linéaire de ces invariants collisionnels :

log f = A+ B v + C
1

2
v2 (I.47)
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avecA, B etC des constantes. Nous pouvons donc écriref sous la forme suivante :

f = A1 exp

(
Bv − C

1

2
v2

)
= A2 exp

[
−C

2

(
v − B

C

)2
]

(I.48)

Pour déterminer ces constantes, nous utilisons les relations déjà explicitées pour les grandeurs

macroscopiques :

ρ =

∫
f dv (I.49)

ρu =

∫
vf dv (I.50)

3

2
ρrT =

∫
1

2
(v − u)2f dv (I.51)

Ces définitions permettent de déterminer les constantes :

A2 =
ρ

(2πrT )3/2
(I.52)

B =
u
rT

(I.53)

C =
1

rT
(I.54)

Finalement à l’équilibre la fonction de distribution s’écrit sous la forme :

f eq =
ρ

(2πrT )3/2
exp

(
−(v − u)2

2rT

)
(I.55)

Ceci est la distribution de Maxwell-Boltzmann qui décrit l’équilibre d’un gaz parfait. La distri-

bution de Maxwell est donc la solution d’équilibre de l’équation de Boltzmann. Il est normal de

trouver cette solution d’équilibre car les hypothèses du gaz parfait sont compatibles avec les hypo-

thèses que nous avons utilisées pour dériver l’équation de Boltzmann. Les particules sont considé-

rées comme ponctuelles et il n’y a pas d’interactions à distance entre celles-ci. Dans le modèle de

Boltzmann, les collisions ont pour effet de redistribuer les particules. Et en l’absence de contraintes

extérieures, cette redistribution fait tendre la fonctionde distribution vers la distribution d’équilibre

de Maxwell-Boltzmann.

I.5 Modèles du terme collisionnel

L’équation de Boltzmann obtenue précédemment est une équation intégro-differentielle non

linéaire qui permet de modéliser des situations de non-équilibre y compris lointain. En contrepar-

tie les analyses et résolutions (numériques pour l’essentiel) de l’équation sont délicates à mener en
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l’état. La principale difficulté provient du terme collisionnel qui, incluant l’interaction à deux corps

avec une partie strictement collisionnelle, rend possibles des sauts discontinus dans le sous-espace

des vitesses. Il est toujours possible, mais souvent très coûteux, d’utiliser des techniques du type

DSMC (Direct Simulation Monte Carlo) [9] pour approcher numériquement ses solutions. Dif-

férentes propositions ont été proposées dans la littérature pour simplifier le terme collisionnel en

accord avec les caractéristiques particulières du problème traité. Nous présentons dans ce qui suit

le modèle du temps de relaxation (modèle BGK) et le modèle ES-BGK qui en est une extension

possible.

I.5.1 Modèle BGK

L’approximation BGK a été introduite par Bhatnagar, Gross et Krook en1954 [10]. Le terme

collisionnel proposé n’a pas été originellement dérivé mathématiquement à partir du terme colli-

sionnel de Boltzmann mais à partir d’arguments plus physiques. L’idée principale est que le terme

collisionnel de Boltzmann est un rappel vers la distribution d’équilibre local de Maxwell. Si l’on

est dans une situation de lointain non-équilibre alors le terme de rappel est très fort sur des temps

caractéristiques de l’ordre du libre temps moyen de collision. Dès que la distribution s’est isotro-

pisée et régularisée autour de la la distribution d’équilibre local le terme collisionnel devient beau-

coup plus faible (on rappelle qu’il s’annule si on est strictement à l’équilibre) et on rentre dans le

régime dit hydrodynamique pour lequel les temps caractéristiques d’évolution sont beaucoup plus

longs.

Pour comprendre la forme proposée pour ce terme collisionnel, repartons de l’équation ci-

nétique (I.23), pour laquelle le terme sourceS n’est pas explicité et la non-linéarité du terme

collisionnel n’est pas encore apparente :

∂f

∂t
+ v · ∇(f) = −v

λ
f + S (I.56)

La première approximation consiste à simplifier singulièrement le terme de disparition.

−v
λ
f ≃ −f

τ
(I.57)

Cette approximation consiste à ne considérer qu’un seul et même temps moyen de collisionτ pour

toutes les particules quelles que soient leurs vitesses. Lavaleur la plus pertinente pourτ est en

général le temps moyen entre deux collisions successives, ce qui est une caractéristique du gaz

dans les conditions d’étude. La difficulté est maintenant deproposer une approximation pour le

terme source. Nous avons indiqué précédemment que l’effet des collisions est de redistribuer les
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particules selon la distribution d’équilibre local de Maxwell f eq. Ainsi Bhatnagar, Gross et Krook,

ont proposé d’approximer le terme source par un terme proportionnel à la distribution d’équilibre

f eq :

S ≃ f eq

τs
(I.58)

Par homogénéité de l’équation, un temps caractéristiqueτs apparaît. Or le terme collisionnel a

certaines contraintes à respecter. En effet, lors des collisions la masse, la quantité de mouvement

et l’énergie cinétique sont conservées. Ceci, ce traduit par :
∫

CBGK dv = 0 (I.59)
∫

v CBGK dv = 0 (I.60)
∫

1

2
mv2 CBGK dv = 0 (I.61)

avecCBGK = −f
τ

+ feq

τs
, le terme collisionnel BGK. Par définition def et f eq, nous avons les

relations suivantes :

ρ =

∫
f dv =

∫
f eq dv (I.62)

ρu =

∫
vf dv =

∫
vf eq dv (I.63)

3

2
ρrT =

∫
1

2
(v − u)2f dv =

∫
1

2
(v − u)2f eq dv (I.64)

Nous en déduisons que le temps caractéristique du terme source est le même que celui du terme de

disparitionτs = τ . Ainsi, nous obtenons le terme collisionnel de BGK et l’équation de Boltzmann

sous l’approximation BGK ou l’équation Boltzmann-BGK :

∂f

∂t
+ v · ∇(f) = −f − f eq

τ
(I.65)

Contrairement aux apparences, l’équation de Boltzmann-BGK n’est pas linéarisée ; seul le terme

de disparition est linéaire. En revanche, le terme source fait intervenir la distribution d’équilibre

f eq qui dépend des champs macroscopiquesρ, u et T . Or ces champs macroscopiques sont des

intégrales def . Donc l’équation de Boltzmann-BGK est aussi une équation intégro-différentielle

dont une partie du terme collisionnel est non linéaire. Maiscette “quasi-linéarisation” autorise

l’utilisation de techniques numériques plus classiques que la DSMC, et permet aussi de déduire

quelques résultats analytiques dans certains cas. Il est à noter aussi, que sous l’approximation

BGK, le gaz n’est caractérisé que par un seul paramètre, le temps de relaxationτ . Ceci est une

très grande simplification car si on devait résoudre l’équation de Boltzmann, on aurait besoin de
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plus de données sur les particules du gaz, telles que la taille des particules et les caractéristi-

ques du potentiel intermoléculaire à courte portée nécessaires à caractériser la section efficace des

collisions.

I.5.2 Modèle ES-BGK

Parmi les inconvénients du modèle BGK, le fluide est caractérisé par un seul paramètre, le

temps de relaxationτ . Il est important de noter que ceci n’est pas intrinsèquement lié au modèle

BGK, et apparaît de la même façon dans le terme collisionnel de Boltzmann si on considère par

exemple une modélisation de type sphère dure pour l’interaction interparticulaire. Ceci a pour

conséquence, qu’au niveau macroscopique, le nombre de Prandtl est toujours fixé quelle que soit

la valeur deτ . En effet, nous allons démontrer dans la section suivante que la viscositéν du fluide et

la diffusivité thermiqueα sont proportionnelles àτ . C’est pourquoi le nombre de Prandtl qui est le

rapport entre ces deux coefficients de transport (Pr = ν
α
) est indépendant deτ . Le calcul du nombre

de Prandtl à partir du terme collisionnel BGK donne une valeur de 1 alors qu’à partir du terme

collisionnel complet de l’équation de Boltzmann on obtientune valeurPr = 2/3. Ce qui est en très

bon accord avec les données expérimentales de la plupart desgaz. L’air par exemple a un nombre

de Prandtl de0.7. De plus, comme nous l’avons dit précédemment, l’équation de Boltzmann est

pertinente pour la description des liquides à la limite macroscopique. Mais les valeurs du nombre

de Prandtl pour les liquides sont bien différentes de2/3. Par exemple, le nombre de Prandtl de

l’eau à pression atmosphérique à20◦C a pour valeur7 . Afin d’obtenir des valeurs souhaitées du

nombre de Prandtl , nous allons utiliser une autre approximation pour le terme collisionnel, le

modèle ES-BGK1 [11, 12, 13]. Cette approximation a été introduite spécifiquement pour pallier

les défauts de BGK par rapport au nombre de Prandtl. Sous l’approximation ES-BGK , le fluide

sera décrit par deux paramètres, le temps de relaxationτ et un autre paramètre notéb. Le terme

collisionnel ES-BGK présente le même terme de disparition que BGK,−f
τ
. La différence se situe

au niveau du terme source.

Le terme collisionnel ES-BGK apparaît comme une généralisation de BGK. En effet le terme

source de ES-BGK est une gaussienne anisotrope alors qu’avec BGK le terme source est la fonc-

tion d’équilibre de Maxwell-Boltzmann2. De ce point de vue l’approximation BGK est un cas

particulier de l’approximation ES-BGK. L’expression de lagaussienne anisotrope est :

fG =
ρ

(2πdet[Θ])3/2
exp

[
−1

2
Θ−1

αβ(vα − uα)(vα − uα)

]
(I.66)

1pour Ellipsoidal Statistical BGK
2qui est une gaussienne isotrope
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avecΘ le tenseur de composanteΘαβ = (1 − b)rTδαβ + b
ρ
Pαβ. b est le deuxième paramètre qui

caractérise le fluide en plus du temps de relaxationτ . Contrairement au temps de relaxation, il est

difficile de donner une signification physique àb. On peut remarquer que lorsqueb = 0 on retrouve

quefG = f eq. Ainsi sous cette approximation, nous obtenons l’équationde Boltzmann-ES-BGK,

de forme similaire à l’équation de Boltzmann-BGK :

∂f

∂t
+ v · ∇(f) = −f − fG

τ
(I.67)

Nous montrerons quelques résultats de simulations incluant cette description dans le chapitre sui-

vant.

I.6 De l’équation de Boltzmann aux équations macroscopiques

Ce paragraphe s’appuie pour partie sur les notes de cours de DEA de Pottier [14], en reprenant

en particulier la plupart des notations. Nous allons présenter la procédure permettant de retrouver

les équations macroscopiques ou hydrodynamiques qui décrivent le fluide en fonction des variables

macroscopiques : la masse volumiqueρ(r , t), la vitesse locale moyenneu(r , t) et la température

T (r , t). Ce développement porte le nom de procédure de Chapman-Enskog, du nom des auteurs qui

l’ont proposé en 1916 et 1917. Tandis que l’équation de Boltzmann décrit l’évolution de la fonction

de distributionf à des échelles de temps de l’ordre du temps entre deux collisions, les équations

macroscopiques décrivent un gaz à des échelles de temps et delongueur bien supérieures. En effet,

nous avons vu précédemment que les collisions ont pour effetde redistribuer les particules dans

l’espace des vitesses selon la distribution d’équilibre deMaxwell. Cette relaxation vers l’équilibre

local a lieu en un temps de relaxation que nous appelleronsτ . Une fois que la relaxation vers l’équi-

libre local a eu lieu, et en l’absence de contraintes extérieures, le gaz relaxe vers l’équilibre global

du système avec des temps bien supérieurs àτ . Cette relaxation vers l’équilibre global ne nécessite

pas une description cinétique de type Boltzmann. Les équations macroscopiques permettent de

décrire correctement la relaxation vers l’équilibre global. Il existe des situations où une description

cinétique est indispensable. Par exemple, les écoulementsdans les microsystèmes fluidiques dont

les tailles sont inférieures au libre parcours moyen des particules et les écoulements autour d’objets

entrant dans l’atmosphère (missiles ou vaisseaux spatiaux). Pour ces exemples, nous sommes dans

une situation hors d’équilibre. En effet, les collisions sont peu fréquentes. Pour les microsystèmes

fluidiques les collisions particule-particule sont plus rares que les collisions particule-paroi car les

dimensions caractéristiques des canaux dans lesquels s’écoule le fluide sont inférieures au libre

parcours moyen des particules. Pour les objets entrant dansl’atmosphère, la pression, et donc

la masse volumique, est très faible, donc le libre parcours moyen des particules est de l’ordre de
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longueur des objets. Ces deux exemples ont en commun le fait que les collisions particule-particule

étant peu fréquentes aux échelles de temps d’observation, le régime hydrodynamique n’est pas

établi car la relaxation vers l’équilibre local n’a pas lieu.

I.6.1 Equations de bilan locales

La première étape de la procédure de Chapman-Enskog consiste à intégrer sur l’espace des

vitesses le produit de l’équation de Boltzmann par les invariants collisionnels. Nous partons de

l’équation de Boltzmann avec un terme de force extérieureF :

∂f

∂t
+ v · ∇f +

F
m

· ∇vf = C(f, f) (I.68)

En multipliant cette équation par un des invariants collisionnelsχ ∈
{
1, v, 1

2
v2
}

3 et en intégrant

sur les vitesses nous obtenons :∫
dv χ

(
∂f

∂t
+ v · ∇f +

F
m

· ∇vf

)
= 0 (I.69)

Commeχ se conserve lors des collisions nous avons
∫
dv χ C(f, f) = 0. L’équation (I.69) peut

être réécrite sous la forme suivante :
∂

∂t

∫
dv χf −

∫
dv

∂χ

∂t
f + ∇ ·

∫
dv χvf −

∫
dv fv · ∇χ (I.70)

+

∫
dv ∇v(χ

F
m
f) −

∫
dv f

F
m
∇χ = 0

Comme la fonction de distributionf s’annule lorsquev → ±∞ , le cinquième terme de la relation

précédente est nul. Ainsi en adoptant comme convention d’écriture
∫
dv Of = 〈O〉, nous pouvons

écrire le bilan général suivant pour un invariant collisionnel :

∂

∂t
〈χ〉 −

〈
∂χ

∂t

〉
+ ∇ · 〈χv〉 − 〈v · ∇χ〉 −

〈
F
m

· ∇vχ

〉
= 0 (I.71)

I.6.1.1 Equation de bilan locale de la masse

Pour dériver une équation de bilan locale de la masse, nous allons appliquer l’équation de bilan

générale (I.71) pourχ = 1 4. Par définition def , seuls deux termes de (I.71) sont non nuls :

∂

∂t
〈1〉 =

∂ρ

∂t
(I.72)

∇ · 〈v〉 = ∇ · (ρu) (I.73)

3normalement les invariants collisionnels sont
{
m,mv, 1

2mv2
}

mais ici dans la définition def nous avons inclus

la masse des particulesm
4la masse étant intégrée àf , l’invariant collisionnelχ = 1 correspond à la masse
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En additionnant ces deux termes, nous retrouvons l’équation bien connue de continuité :

∂ρ

∂t
+ ∇ · (ρu) = 0 (I.74)

I.6.1.2 Equation de bilan locale de la quantité de mouvement

Les composantes de la quantité de mouvement sont aussi des invariants collisionnels. Si on

applique la relation (I.71) pour chaque composante de la quantité de mouvementχ = vα, trois

termes sont non nuls :

∂

∂t
〈vα〉 =

∂

∂t
(ρvα) (I.75)

∇ · 〈vαv〉 = ∂β 〈vαvβ〉 (I.76)〈
F
m

· ∇vvα

〉
= ρ

Fα

m
(I.77)

L’expression〈vαvβ〉 peut être développée de la façon suivante :

〈vαvβ〉 = 〈(vα − uα)(vβ − uβ)〉 + 〈vαuβ〉 + 〈vβuα〉 − ρuαuβ (I.78)

= 〈(vα − uα)(vβ − uβ)〉 + ρuαuβ (I.79)

En appelantP le tenseur des pressions de composantePαβ = 〈(vα − uα)(vβ − uβ)〉, on obtient

l’équation de bilan locale de quantité de mouvement suivante :

∂

∂t
(ρvα) + ∂β(ρuαuβ + Pαβ) = ρ

Fα

m
(I.80)

En présence d’un champ de force (gravité par exemple), la quantité de mouvement n’est pas une

quantité conservée ; le terme source a pour expressionρFα

m
. Le flux de quantité de mouvement est

composé de deux termes, un terme convectifρuαuβ et un terme non explicité pour le momentPαβ.

En développant l’expression (I.80) et en utilisant l’équation de continuité (I.74), nous pouvons

réécrire cette équation sous la forme :

(
∂

∂t
+ uβ∂β)uα =

Fα

m
− 1

ρ
∂βPαβ (I.81)

Notons bien que dans cette équationPαβ reste défini commePαβ = 〈(vα − uα)(vβ − uβ)〉 et n’a

donc pas été exprimé en fonction des grandeurs macroscopiquesρ, u etT .
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I.6.1.3 Equation de bilan locale de l’énergie interne

Enfin, nous allons appliquer l’équation de bilan général (I.71) au dernier invariant collisionnel,

l’énergie5, χ = 1
2
(v − u)2. Les termes non nuls de l’équation (I.71) sont :

∂

∂t

〈
1

2
(v − u)2

〉
=

∂eint

∂t
(I.82)

∇ ·
〈

1

2
(v − u)2v

〉
= ∇ · (eintu) + ∇ · JQ (I.83)

〈
v · ∇(

1

2
(v − u)2)

〉
=

1

2

〈
vβ∂β(vα − uα)2

〉
(I.84)

Nous avons défini ici la densité d’énergie interne commeeint =
〈

1
2
(v − u)2

〉
et le flux de chaleur

commeJQ =
〈

1
2
(v − u)(v − u)2

〉
. Compte tenu de sa définition, l’énergie interne est la moyenne

de l’énergie cinétique dans le centre de masse des particules distribuées selonf . Le deuxième

terme s’interprète comme le divergent du flux d’énergie. Ce flux d’énergie peut s’écrire comme la

somme de deux contributions, le flux convectifeintu et le flux de chaleurJQ. Pour l’instant, on ne

peut pas dire à quoi correspond ce flux de chaleur si ce n’est que c’est la partie du flux d’énergie

qui n’est pas convectif. On verra plus tard que ce flux correspondra donc au flux conductif. Le

troisième terme peut s’écrire ainsi :

1

2

〈
vβ∂β(vα − uα)2

〉
= 〈vβ(uα − vα)〉 ∂βuα (I.85)

= −〈(vβ − uβ)(vα − uα)〉 ∂βuα (I.86)

= −Pαβ∂βuα (I.87)

En additionnant ces trois termes nous obtenons l’équation de bilan locale de l’énergie interne :

∂eint

∂t
+ ∂β(eintuβ) + ∂β(JQ,β) = −Pαβ∂βuα (I.88)

En intégrant l’équation de Boltzmann sur l’espace des vitesses, nous venons d’écrire trois équa-

tions de bilan locales pour les trois premiers moments de la fonction de distribution, la masse

volumiqueρ, la vitesse macroscopiqueu et la densité d’énergie interneeint. Mais ces équations ne

sont pas encore utilisables car elles ne constituent pas un système fermé. En effet nous n’avons pas

encore d’expression macroscopique pour le tenseur des pressionsP et le flux de chaleurJQ. Nous

avons seulement des expressions en intégrales def pour ces deux grandeurs. Pour fermer ce jeu

d’équations il est alors nécessaire de proposer une approximation def pour évaluer le tenseur des

pressions et le flux de chaleur.

5En fait le dernier invariant estχ = 1
2v2 mais 1

2 (v − u)2 étant une combinaison linéaire de tout les invariants

collisionnels est aussi un invariant collisionnel
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I.6.2 Approximation d’ordre 0

Nous rappelons que nous voulons dériver les équations macroscopiques dans des conditions où

le gaz est proche de l’équilibre local. Ainsi naturellementla première approximation pourf est de

prendre la fonction d’équilibre de Maxwellf eq :

f = f eq (I.89)

Cette hypothèse constitue l’ordre zéro de la procédure de Chapman-Enskog. Ainsi nous allons

pouvoir évaluer, à l’ordre zéro, le tenseur des pressionsP (0) et le flux de chaleurJ(0)
Q .

I.6.2.1 Tenseur des pressions à l’ordre0

Par définition nous avons :

P
(0)
αβ = 〈(vα − uα)(vβ − uβ)〉eq (I.90)

=

∫
d v (vα − uα)(vβ − uβ) f eq (I.91)

= ρ
k

m
Tδαβ = ρrTδαβ = p δαβ (I.92)

Ainsi à l’ordre0, nous trouvons que le tenseur des pressions est un scalaire qui est simplement la

pression du gaz parfait de constante massiquer = k
m

.

I.6.2.2 Flux de chaleur à l’ordre 0

Par définition nous avons :

J(0)
Q =

〈
1

2
(v − u)(v − u)2

〉

eq

(I.93)

=

∫
d v

1

2
(v − u)(v − u)2 f eq (I.94)

= 0 (I.95)

A l’ordre 0 le flux de chaleur est nul. A l’équilibre local, la seule contribution au flux d’énergie est

le flux convectif.
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I.6.2.3 Hydrodynamique du fluide parfait

Avec les expressions que nous venons d’obtenir pour le tenseur des pressions et le flux de

chaleur à l’ordre0, nous pouvons écrire les trois équations de l’hydrodynamique du fluide parfait :

∂ρ

∂t
+ ∇ · (ρu) = 0 (I.96)

(
∂

∂t
+ uβ∂β)uα =

Fα

m
− 1

ρ
∂αp (I.97)

∂eint

∂t
+ ∂β(eintuβ) = −p ∂βuβ (I.98)

Plutôt que de garder la troisième équation décrivant l’évolution de la densité d’énergie interne,

nous pouvons utiliser le théorème d’équipartition de l’énergie afin d’avoir une équation portant

sur la température. Ainsi d’après le théorème d’équipartition de l’énergie nous avonseint = ρ3
2
rT

(en supposant les trois degrés de liberté de translation). Ainsi nous avons le système d’équations

suivant :

∂ρ

∂t
+ ∇ · (ρu) = 0 (I.99)

(
∂

∂t
+ uβ∂β)uα =

Fα

m
− 1

ρ
∂αp (I.100)

(
∂

∂t
+ uβ∂β)T = − p

ρcv
∂βuβ (I.101)

aveccv = 3/2r. Ces équations constituent les équations de l’hydrodynamique du fluide parfait,

appelées ainsi, car dans ces équations il n’y a pas de termes dissipatifs tels que la viscosité ou

la conductivité thermique. Les phénomènes de dissipation ne peuvent pas apparaître ici car pour

dériver ces équations nous avons supposé que nous sommes à l’équilibre local.

I.6.3 Approximation d’ordre 1

Dans la partie précédente, nous avons vu qu’en supposant l’équilibre local comme solution de

l’équation de Boltzmann, les termes dissipatifs n’apparaissent pas. Une meilleure solution consiste

à prendre la fonction de distributionf perturbée autour de l’équilibre local :

f ≈ f eq + f (1) (I.102)

avecf (1) faible devantf eq. Cette hypothèse sera d’autant plus pertinente que le nombre de Knudsen

sera petit devant1. Comme pour l’ordre0, pour fermer le système d’équations macroscopiques, il
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faut calculer le tenseur des pressions et le flux de chaleur avec la nouvelle expression def .

Pαβ =

∫
d v (vα − uα)(vβ − uβ) (f eq + f (1)) (I.103)

= P
(0)
αβ + 〈(vα − uα)(vβ − uβ)〉(1) (I.104)

JQ =

∫
d v

1

2
(v − u)(v − u)2 (f eq + f (1)) (I.105)

=

〈
1

2
(v − u)(v − u)2

〉

(1)

(I.106)

avec comme convention d’écriture
∫
dv Of (1) = 〈O〉(1). Mais pour l’instant nous n’avons pas

encore d’expression pourf (1).

I.6.3.1 Modèle def (1)

Pour simplifier la présentation et accéder à une meilleure compréhension, nous allons utiliser

l’équation de Boltzmann-BGK pour dériver le modèle def (1). Dans leurs travaux originaux, Chap-

man et Enskog ont fait leur développement directement à partir de l’équation de Boltzmann6. En

remplaçantf par son expression dans l’équation de Boltzmann-BGK, nous avons :

∂

∂t
(f eq + f (1)) + v · ∇(f eq + f (1)) +

F
m

· ∇v(f
eq + f (1)) = −f

(1)

τ
(I.107)

A cette étape l’approximation de Chapman-Enskog consiste àne considérer que les dérivées de

f (eq) dans le membre de gauche. Ceci permet d’obtenir une expression pourf (1) en fonction des

dérivées def (eq).

f (1) ≈ −τ( ∂
∂t

+ v · ∇ +
F
m

· ∇v)f
eq (I.108)

Compte tenue de l’expression def eq , ses dérivées peuvent être exprimées en fonction des dérivées

des variables macroscopiquesρ , u etT .

∂f (eq)

∂ρ
=

f (eq)

ρ
(I.109)

∂f (eq)

∂uα
=

(vα − uα)

rT
f (eq) (I.110)

∂f (eq)

∂T
=

1

T

[
(v − u)2

2rT
− 3

2

]
f (eq) (I.111)

6d’autant plus que l’approximation BGK n’existait pas encore
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de plus on a :
∂f (eq)

∂vα
= −(vα − uα)

rT
f (eq) (I.112)

Ainsi f (1) peut s’écrire :

f (1) = −τ { 1

ρ

∂ρ

∂t
+

1

ρ
v · ∇ρ

+
(vα − uα)

rT

∂uα

∂t
+

(vα − uα)

rT
v · ∇uα

+
1

T

[
(v − u)2

2rT
− 3

2

]
∂T

∂t
+

1

T

[
(v − u)2

2rT
− 3

2

]
v · ∇T

− Fα

m

(vα − uα)

rT
} f (eq)

(I.113)

En définissant l’opérateur suivantD(X) = ( ∂
∂t

+ v · ∇)X , l’expression def (1) est :

f (1) = −τ
{

1

ρ
D(ρ) +

(vα − uα)

rT
D(uα) (I.114)

+
1

T

[
(v − u)2

2rT
− 3

2

]
D(T ) − Fα

m

(vα − uα)

rT

}
f (eq)

A cette étape du développement, il faut utiliser, les équations (I.99), (I.100) et (I.101) obtenues à

l’ordre 0 pour évaluer les termesD(ρ),D(uα) etD(T ). Cette étape permet d’éliminer les dérivées

temporelles dans l’expression def (1).

D(ρ) = −ρ∇ · u + (v − u) · ∇ρ (I.115)

D(uα) =
1

ρ
∂αp+

Fα

m
+ (v − u) · ∇uα (I.116)

D(T ) = −2

3
T∇ · u + (v − u) · ∇T (I.117)

En reportant ces expressions et en utilisant le fait quep = ρrT , nous trouvons :

f (1) = −τ
{

1

T

[
(v − u)2

2rT
− 5

2

]
(v − u) · ∇T (I.118)

+
1

rT
(vα − uα)(vβ − uβ)∂βuα − 1

3

(v − u)2

rT
∇ · u

}
f (eq)

Ainsi, nous trouvons quef (1) qui est la partie hors d’équilibre def peut s’approximer par le

produit de la fonction d’équilibref (eq) par un terme comportant le gradient de la températureT et

les dérivées spatiales de la vitesse macroscopiqueu. Il est intéressant de constater que le gradient

de la masse volumiqueρ et le terme de forceF n’apparaissent pas dans l’expression de la partie

hors d’équilibre def à l’ordre1.
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I.6.3.2 Tenseur des pressions à l’ordre1

Maintenant que nous avons une expression pourf (1), nous pouvons évaluer le tenseur des

pressions à l’ordre1 selon la définition donnée précédemment.

Pαβ = P
(0)
αβ + 〈(vα − uα)(vβ − uβ)〉(1)

= pδαβ

− τ

∫
d v (vα − uα)(vβ − uβ)

{
1

T

[
(v − u)2

2rT
− 5

2

]
(v − u) · ∇T

}
f (eq)

− τ

∫
d v (vα − uα)(vβ − uβ)

{
1

rT
(vk − uk)(vl − ul)∂luk

}
f (eq)

+ τ

∫
d v (vα − uα)(vβ − uβ)

{
1

3

(v − u)2

rT
∇ · u

}
f (eq)

(I.119)

La première intégrale ne contribue pas au tenseur des pressions car elle ne comporte que des

moments impairs def eq. La seconde intégrale donne−η(∂αuβ + ∂βuα − δαβ∇ · u) et la troisième
5
3
δαβ∇ · u. Nous avons définiη = ρrTτ . Au final, nous trouvons pour le tenseur des pressions :

Pαβ = pδαβ − η(∂αuβ + ∂βuα − 2

3
δαβ∇ · u) (I.120)

En fait ce tenseur des pressions peut se décomposer en deux contributions bien connues, la pression

p qui est un scalaire et le tenseur des contraintes d’un écoulement compressibleη(∂αuβ + ∂βuα −
2
3
δαβ∇ · u), ce qui signifie queη s’apparente à la viscosité dynamique.

I.6.3.3 Flux de chaleur à l’ordre 1

Nous pouvons également calculer le flux de chaleur à l’ordre1.

JQ =

〈
1

2
(v − u)(v − u)2

〉

(1)

= −τ
∫

d v
1

2
(v − u)(v − u)2

{
1

T

[
(v − u)2

2rT
− 5

2

]
(v − u) · ∇T

}
f (eq)

− τ

∫
d v

1

2
(v − u)(v − u)2

{
1

rT
(vk − uk)(vl − ul)∂luk

}
f (eq)

+ τ

∫
d v

1

2
(v − u)(v − u)2

{
1

3

(v − u)2

rT
∇ · u

}
f (eq)

(I.121)
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Pour les mêmes raisons que précédemment, seule la première intégrale contribue au flux de chaleur

et nous trouvons :

JQ = −λ∇T (I.122)

avecλ = 5
2
ρr2Tτ . En fait, nous retrouvons la loi de Fourier qui dit que le flux de chaleur est

proportionnel au gradient de température et de sens opposé.Le coefficientλ s’apparente donc à la

conductivité thermique du fluide.

I.6.3.4 Hydrodynamique à l’ordre 1

Maintenant que nous avons évalué le tenseur des pressionsP et le flux de chaleurJQ à l’ordre

1, nous pouvons les insérer dans les équations de bilan locales (I.81) et (I.88).

∂ρ

∂t
+ ∇ · (ρu) = 0 (I.123)

(
∂

∂t
+ uβ∂β)uα =

Fα

m
− 1

ρ
∂αp+ ν∇2uα +

ν

3
∂α(∇ · u) (I.124)

(
∂

∂t
+ uβ∂β)T = − p

ρcv
∂βuβ +

1

ρcv
∂β(λ∂βT ) (I.125)

+
ν

cv
(∂αuβ + ∂βuα − 2

3
δαβ∇ · u)∂βuα

avecν = η
ρ

la viscosité cinématique etcv = 3
2
r la chaleur spécifique massique à volume constant.

L’équation de continuité reste bien sûr inchangée puisqu’aucune approximation n’est nécessaire

pour son obtention. L’équation de bilan de la quantité de mouvement au premier ordre n’est autre

que l’équation de Navier-Stokes contenant les termes de dissipation. Et la troisième équation est

l’équation de la chaleur avec deux termes de dissipation, laconduction thermique et la dissipation

visqueuse. Ce système d’équations est parfois appelé équations de Navier-Stokes-Fourier par réfé-

rence à l’équation de Navier-Stokes et à la loi de Fourier contenue dans l’équation de la chaleur.

I.6.4 A propos def (1) ...

Comme nous venons de le voir, la procédure de Chapman-Enskogdonne une approximation

de la partie hors d’équilibre de la fonction de distributionf . Le premier commentaire qui peut

être fait surf (1) est de constater que les situations hors d’équilibre n’existent qu’en présence de

gradient de vitesse et/ou de gradient de température. Le corollaire de cette remarque est qu’il peut

exister une situation d’équilibre thermodynamique en présence d’un gradient de masse volumique
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et d’un champ de force. C’est par exemple le cas du modèle d’atmosphère isotherme. S’il n’y

a pas d’échange d’énergie avec l’extérieur, le système thermodynamique “atmosphère” évolue

vers une situation d’équilibre thermodynamique pour laquelle tous les flux dissipatifs sont nuls :

isothermie de l’atmosphère et stratification à cause du champ de pesanteur. La stratification et donc

la présence d’un gradient de masse volumique n’empêche pas l’existence d’une situation d’équi-

libre. Afin d’appréhender cette partie hors d’équilibre def , nous allons examiner deux situations

simples stationnaires hors d’équilibre : un écoulement cisaillé et une couche de gaz entre deux

parois de températures différentes.

I.6.4.1 Ecoulement cisaillé

Considérons une situation bi-dimensionnelle d’un écoulement stationnaire dans la directionx

cisaillée selony comme le montre la figure I.4. Ceci est une situation hors d’équilibre car du point

de vue macroscopique il existe un flux dissipatif constant dequantité de mouvement, perpendicu-

laire à l’écoulement,Pxy = −ρν ∂ux

∂y
. D’un point de vue mésoscopique, sous l’hypothèse BGK et

selon le développement de Chapman-Enskog à l’ordre1, l’expression de l’écart à l’équilibre de la

fonction de distributionf(v) se réduit à :

f (1)(v) = −τ 1

rT
(vx − ux)vy f

eq(v)
∂ux

∂y
(I.126)

Pour simplifier les raisonnements, nous allons considérerf (1) lorsqueux = 0. La figure I.5 repré-

sente cet écart à l’équilibref (1) dans le plan(vx, vy). La forme def (1) doit respecter les invariants

collisionnels.f (1) correspond à une redistribution de particules qui ne contribue ni à la masse

volumique, ni à la quantité de mouvement et ni l’énergie cinétique. Comme le montre la figure

I.5.a, les propriétés de symétrie def (1) sont en accord avec ces contraintes d’invariance. Il y a

autant de lobes positifs que négatifs, donc pas de contribution à la masse. Si on regarde de part et

d’autre de l’axex, il y a un lobe positif et un lobe négatif de part et d’autre de l’axe, donc pas de

contribution à la composantey de la quantité de mouvement. La même chose pour l’axey et la

composantex de la quantité de mouvement. Et pour finirf (1) ne contribue pas à l’énergie cinétique

car compte tenue de sa forme,f (1) est une redistribution angulaire ; la distribution en module de

vitesse n’est pas modifiée. Donc comme l’énergie cinétique ne dépend que de la distribution des

modules alors celle-ci n’est pas modifiée parf (1).

En revanche cette redistribution des vitesses crée un flux dequantité de mouvement dans la

directiony. En effet par définition la composantey du flux de quantité de mouvement selonx
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x
y

− Ux

+ Ux

h

FIG . I.4: Ecoulement cisaillé stationnaire entre deux plaques séparées d’une distanceh. La plaque

du haut a une vitesseUx et la plaque du bas a une vitesse−Ux. A l’état stationnaire la composante

de la vitesse du fluide selonx est linéaire en fonction dey entre−Ux etUx.

correspond au “transport” devx parvy, ce qui se traduit par :

Pxy =

∫
dv vxvy f =

∫
dv vxvy f

(1) (I.127)

carf eq étant isotrope pour un module de vitesse donné, ne contribuepas à cette intégrale. On peut

définirPxy(v) la contribution àPxy, des particules de vecteurv, telle quePxy =
∫
dv Pxy(v). Donc

par identification :

Pxy(v) = vxvy f
(1) = −τ 1

rT
v2

xv
2
y f

eq(v)
∂ux

∂y
(I.128)

La figure I.5.b représente dans le plan(vx, vy), cette contributionPxy(v) au flux de quantité de mou-

vement. Comme on peut le constater sur la figure ou par l’expression dePxy(v), tous les vecteurs

vitesses contribuent au flux dans le sens opposé au cisaillement
∂ux

∂y
. Le produitv2

xv
2
ye

−v2/(2rT ) 7

donne la mesure de la contribution. Si on effectue le changement de variables(vx, vy) → (v, ϕ) tel

quevx = v cos(ϕ) etvy = v sin(ϕ), alors le produitv2
xv

2
y e

−v2/(2rT ) devientv4 cos2(ϕ) sin2(ϕ) e−v2/(2rT ).

Ceci permet de dire que les vitesses qui contribuent le plus sont situées autour des points de mo-

dulesv = 2
√
rT et d’angleϕ = π/4, 3π/4, 5π/4, 7π/4.

7e−v2/(2rT ) provient defeq
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(a) (b)

FIG . I.5: (a) : Représentation dans le plan(vx, vy) de la partie hors d’équilibre def dans un

écoulement cisaillé stationnaire à l’endroit oùux = 0 ; (b) : Représentation dePxy(v) qui est la

contribution des particules de vecteurv au flux de quantité de mouvementPxy. Toutes les particules

contribuent dans le sens opposé au cisaillement.

I.6.4.2 Couche de gaz entre deux parois de températures différentes

De la même façon que précédemment, il est possible de regarder l’allure de f (1) dans une

autre situation classique stationnaire hors d’équilibre :une couche de gaz entre deux parois de

températures différentes. La figure I.6 illustre la situation que nous allons regarder. D’un point

de vue macroscopique, à l’état stationnaire, il existe un flux de chaleur dissipatif constant dont

seule la composante selony est non nul :JQy = −λ∂T
∂y

= −λ(T2 − T1)/h. D’un point de vue

mésoscopique, sous l’hypothèse BGK et selon le développement de Chapman-Enskog à l’ordre1,

l’expression de la partie hors d’équilibre de la fonction dedistribution est :

f (1)(v) = − τ

T

[
v2

2rT
− 5

2

]
vy
∂T

∂y
f (eq) (I.129)

La figure I.7 est une représentation def (1) dans le plan(vx, vy). Comme pour la situation

cisaillée les propriétés de symétrie def (1) sont telles quef (1) ne contribue pas aux invariants

collisionnels. Par définition la composante selony du flux de chaleur est le “transport” de l’énergie

cinétiquev2 parvy :

JQy =

∫
dv

1

2
v2vy f =

∫
dv

1

2
v2vy f

(1) (I.130)

Pour des raisons d’isotropie,f eq ne contribue pas à cette intégrale. Il est intéressant de définir

JQy(v) la contribution àJQy des particules de vecteur vitessev, telle queJQy =
∫
dv JQy(v).
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T

1

2

h0

FIG . I.6: Profil de température à l’état stationnaire entre deux parois de températuresT1 et T2,

séparées d’une distanceh. Au stationnaire le profil de température du fluide est linéaire entreT1 et

T2.

Donc par identification :

JQy(v) = − τ

T

1

2
v2

[
v2

2rT
− 5

2

]
v2

y

∂T

∂y
f (eq) (I.131)

La figure II.7 illustre cette contribution de chaque vecteurvitesse. Contrairement à la situation

cisaillée où toutes les vitesses contribuaient au fluxPxy dans le sens opposé au cisaillement
∂ux

∂y
,

ici il existe des vecteurs vitesses dont la contribution va dans le même sens que le gradient de

température
∂T

∂y
. Mais bien entendu, la somme de toutes les contributions crée un flux de chaleur

dans le sens opposé au gradient de température.

I.6.5 Coefficients de transport pour le modèle collisionnelES-BGK

Comme pour l’équation de Boltzmann-BGK, nous pouvons retrouver les équations macrosco-

piques à partir de l’équation de Boltzman-ES-BGK par la procédure de Chapman-Enskog (voir

[12] pour les détails). L’ordre0 de la procédure est identique à BGK. La différence intervient à
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FIG . I.7: Représentation dans le plan(vx, vy) de la partie hors d’équilibre def dans le cas d’un

gradient de température dans l’axey.

l’ordre 1 par un terme supplémentaire proportionnel àb dans la partie hors d’équilibref (1) :

f (1) = −τ
{

1

T

[
(v − u)2

2rT
− 5

2

]
(v − u) · ∇T

+
1

rT
(vα − uα)(vβ − uβ)∂βuα − 1

3

(v − u)2

rT
∇ · u

}
f (eq)

+
b

2ρ(rT )2
(Pαβ − pδαβ)(vα − uα)(vβ − uβ)f (eq)

(I.132)

Ainsi la seule différence avec les équations macroscopiques dérivées pour Boltzmann-BGK, vient

de la contribution du terme supplémentaire def (1) au tenseur des pressions et au flux de chaleur.

Compte tenue de la forme de ce terme supplémentaire, il ne contribue qu’au tenseur des pressions,

et nous trouvons que la viscosité cinématique est alors :

ν =
1

1 − b
rTτ (I.133)
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FIG . I.8: (a) : Représentation dans le plan(vx, vy) deJQy(v) qui est la contribution des particules

de vecteurv au fluxJQy ; (b) : Profil deJQy(v) en fonction devy pourvx = 0.

Pourb = 0 nous retrouvons, bien entendu, les résultats de Boltzmann-BGK. Ainsi pour l’approxi-

mation ES-BGK, le nombre de Prandtl vaut :

Pr =
1

1 − b
(I.134)

Le paramètreb de ES-BGK nous permet donc de choisir le nombre de Prandtl du fluide considéré.





Chapitre II

Boltzmann-sur-réseau (BsR)

Dans ce chapitre, nous commençons par une revue bibliographique des modèles BsR existants

pour les écoulements isothermes (paragraphe II.1). Cette revue est très rapide et peut être com-

plétée par la lecture des différents ouvrages de synthèse disponibles [15]. Le centre de ce chapitre

est plutôt de montrer que certains schémas BsR parmi les pluscouramment utilisés peuvent être

vus, à strictement parler, comme des schémas de dicrétisation de l’équation de Boltzmann. C’est

l’objectif du paragraphe II.2 où l’on montre comment le schéma de discrétisation est choisi de fa-

çon à assurer un niveau de précision compatible avec les approximations que nous avons utilisées

au chapitre I pour établir les équations de Navier-Stokes. L’intérêt principal de ce point de vue

est qu’il permet de concevoir de nouveaux schémas BsR en réponse à des exigeances de précision

accrues ou bien à une physique mésoscopique différente. Un premier exemple est donné au pa-

ragraphe II.3 où l’on augemte le niveau de précision de façonà assurer une bonne représentation

des effets thermiques. On aboutit ainsi à une proposition originale de schéma BsR pour les écou-

lements anisothermes. Un second exemple sera donné au chapitre V où l’on proposera un schéma

BsR pour les écoulements anisothermes avec transition de phase liquide-vapeur par discrétisation

de l’équation cinétique de Boltzmann-Enskog (présentée auchapitre III).

II.1 Historique de BsR

Historiquement la méthode BsR dérive des automates cellulaires et plus précisément des mé-

thodes Gaz-sur-Réseau (GsR). Ces méthodes GsR étaient alors strictement utilisées comme une

alternative à la résolution de Navier-Stokes et il n’était aucunement question de leur associer une

interprétation réaliste en termes mésoscopiques.

43
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II.1.1 Gaz sur Réseau

Les méthodes GsR sont basées sur l’image de particules pouvant se déplacer, sur un réseau,

par saut d’un noeud à un autre. L’espace étant discrétisé parun ensemble de noeuds, les particules

ne peuvent se déplacer qu’avec un nombre restreint de vitesses discrètes. Lorsque plusieurs par-

ticules arrivent à un même noeud, il y a collision. Ces collisions doivent respecter des invariants

collisionnels qui sont bien sûr le nombre de particules (ou la masse), la quantité de mouvement et

éventuellement l’énergie pour les fluides anisothermes. Pour illustrer ce type de méthodes, regar-

dons le “Lattice Gas Automaton” proposé par Frisch, Hasslacher et Pomeau [16] et par Wolfram

[17]. Dans ce modèle, des particules se délacent sur un réseau triangulaire à deux dimensions (voir

Fig. II.1).

FIG . II.1: Evolution de particules sur un réseau. Les flèches noires représentent les particules au

tempst et les flèches blanches au tempst + 1. Ceci représente donc les configurations initiales et

finales après un cycle de collision et transport.

Chaque site du réseau peut contenir de0 à 6 particules ayant un vecteur vitesse pointant vers

un site plus proche voisin. L’évolution de l’automate consiste en deux étapes : la collision et le

transport. La figure II.2 montre quelques exemples de collisions possibles. Lorsque2 ou plusieurs

particules arrivent au même noeud, elles collisionnent. C’est-à-dire que l’état de sortie est tel qu’il

respecte les invariants collisionnels : la masse et la quantité de mouvement. Comme ce modèle ne

comporte qu’un seul module de vitesse, la conservation de l’énergie est équivalente à la conser-

vation de la masse. Ensuite l’étape de transport est très simple, chaque particule se déplace vers

un site voisin en fonction de son vecteur vitesse. Si on appelle ni(r , t) le nombre de particules

au noeud de coordonnéesr au tempst se déplaçant à la vitessevi alors l’équation d’évolution de

l’automate s’écrit simplement :
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FIG . II.2: Exemples de quelques collisions possibles.

ni(r + vi, t+ 1) = ni(r , t) + Ci({nj}) (II.1)

où Ci({nj}) représente le changement du nombre de particulesni(r , t) par collision avec l’en-

semble des particules{nj} au noeudr . ni(r , t) ne peut prendre que les valeurs0 ou1. Connaissant

ni(r , t), les variables hydrodynamiques locales telles que la massevolumiqueρ(r , t) et la quantité

de mouvementρ(r , t)u(r , t) peuvent être évaluées par sommation du nombre de particulesni(r , t) :

ρ(r , t) = m
∑

i

ni(r , t) (II.2)

ρ(r , t)u(r , t) = m
∑

i

vini(r , t) (II.3)

oùm est la masse d’une particule. Bien que ces types de modèle soient construits de façon heu-

ristique, l’équation d’évolution (II.1) ressemble beaucoup à ce que pourrait être la discrétisation

d’une équation cinétique de type Boltzmann puisque ce modèle décrit l’évolution d’un nombre de

particulesni se déplaçant à la vitessevi, et que l’équation contient un terme de transport et un

terme collisionnel devant respecter des invariants. Par une procédure de prise de moyenne simi-

laire à la procédure de Chapmann-Enskog pour l’équation de Boltzmann, on peut démontrer que

les variables hydrodynamiques locales obéissent aux équations suivantes (voir [16, 17] pour les



46 II Boltzmann-sur-réseau (BsR)

détails) :

∂ρ

∂t
+ ∇ · (ρu) = 0 (II.4)

∂ρu
∂t

+ ∇ · (g(ρ)ρuu) = −∇p+ ν∇2(ρu) + η∇∇ · (ρu) (II.5)

avecp = ρc2s(1−
g(ρ)

δx2
u2). Nous reconnaissons l’équation de continuité et une équation très proche

de l’équation de Navier-Stokes. Les automates cellulairespeuvent donc être utilisés comme une

alternative à la résolution de Navier-Stokes. Comme par essence, ces méthodes sont discrètes,

l’implémentation informatique est facile contrairement àla discrétisation de l’équation de Navier-

Stokes. De plus, ce type de méthode se prête facilement à la parallélisation. Il est aussi possible

de rendre compte d’écoulements plus complexes comme les milieux poreux par exemple ou des

fluides binaires simplement en ajoutant une seconde équation d’évolution pour une autre espèce

de particules. Cependant, bien que les automates cellulaires offrent de nombreux avantages par

rapport à la résolution de Navier-Stokes, il y a aussi des inconvénients. De par la nature booléenne

du nombre de particulesni, les simulations sont intrinsèquement bruitées, ce qui oblige à un lissage

des mesures par moyenne temporelle ou spatiale. Ensuite du fait du nombre fini de vitessesvi, les

automates souffrent d’un manque d’invariance galiléenne.Ceci se traduit par le fait queg(ρ) 6=
1 dans l’équation de Navier-Stokes obtenue. Enfin, l’équation d’état n’est pas physique car elle

dépend deu2.

II.1.2 De Gaz-sur-Réseau à Boltzmann-sur-réseau

Pour pallier les défauts des automates cellulaires, les méthodes GsR ont évolué vers les mé-

thodes BsR au travers d’une moyenne d’ensemble de l’équation d’évolution (II.1). McNamara et

Zanetti [18] ont proposé de remplacer le nombre de particules ni, de nature booléenne, par une

variable réellefi = 〈ni〉. Cette nouvelle variablefi s’apparente de plus en plus à la fonction

de distribution monoparticulaire de l’équation de Boltzmann (I.30). L’équation d’évolution de ce

nouveau modèle s’écrit :

fi(r + vi, t+ 1) = fi(r , t) + Ci({fj}) (II.6)

De même, quefi est introduit comme une moyenne d’ensemble deni, l’opérateur de collision est

une moyenne de l’ancien opérateur de collision, soitCi({fj}) = 〈Ci({nj})〉 . Bien que palliant

certains inconvénients des premiers automates cellulaires, en particulier le bruit statistique, le coût

de calcul de l’opérateur de collision est très important pour des applications pratiques. Par exemple

pour un modèle2D à6 vitesses discrètes, l’opérateur de collision est une matrice de taille26 × 26.
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Pour réduire ce coût de calcul, Higuera et Jiménez [19] ont proposé de linéariser l’opérateur de

collision autour def (0)
i qui s’apparente à la distribution d’équilibre defi.

Ci({fj}) ≈
∂Ci({fj}
∂fi

|
f
(0)
i

[
fi − f

(0)
i

]
(II.7)

Cette linéarisation de l’opérateur de collision permet de réduire la taille de la matrice à6 × 6.

II.1.2.1 Modèle BGK sur réseau

La similarité entre ce que pourrait être une discrétisationde l’équation de Boltzmann et les

premières méthodes appelées Boltzmann-sur-réseau, a toutnaturellement conduit à utiliser l’appro-

ximation BGK [10] (voir I.5.1) pour le terme collisionnel. Qian et coll. [20] et Chenet coll. [21]

ont proposé d’introduire un temps de relaxationτ et de poser un terme collisionnel de la forme :

Ci({fj}) = −1

τ

[
fi − f

(eq)
i

]
(II.8)

la fonction de distribution d’équilibref (eq)
i ayant la forme suivante :

f
(eq)
i = ρ

[
1 + A(vi · ui) +B(vi · ui)

2 + Cu2
i

]
(II.9)

oùA, B etC sont déterminés en accord avec les lois de conservation. On remarque que la tempé-

rature n’apparaît pas dans cette fonction d’équilibre alors que la “vraie” fonction d’équilibre de

Maxwell-Boltzmann dépend de la température. Ceci provientdu fait que l’essentiel des premiers

modèles BsR, tout comme les modèles GsR, était pensé pour l’étude d’écoulements de fluides

isothermes.

A la limite macroscopique, et la limite oùδx → 0 et δt → 0, une procédure similaire à

Chapman-Enskog permet de retrouver les équations macroscopiques suivantes :

∂ρ

∂t
+ ∇ · (ρu) = 0 (II.10)

ρ
∂u
∂t

+ ρu∇ · (u) = −∇p + ρν∇2(u) (II.11)

avec

p = c2sρ (II.12)

ν = c2s

(
τ − 1

2

)
δt (II.13)
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L’équation d’état est “plus physique” que dans le cas de GsR car elle ne dépend pas deu2 mais

seulement deρ, ce qui semble pertinent sous l’hypothèse d’un fluide isotherme. Dans les expres-

sions de la pression et de la viscosité,cs une constante qui dépend de la topologie du réseau et du

jeu de vitesses discrètes.cs est souvent interprétée comme la vitesse du son du fluide, et pourtant

celle-ci dépend directement des caractéristiques du réseau. Nous reviendrons sur cette ambiguïté

au paragraphe II.2.3.

Ce type de modèle, avec un terme collisionnel de type BGK, constitue le point de départ des mé-

thodes BsR utilisées dans les années90 et encore aujourd’hui. Ces modèles sont souvent présentés

avec la dénominationDdQn oùd est la dimension du problème etn le nombre de vitesses discrètes.

Les modèles les plus couramment utilisés sontD2Q9 en deux dimensions etD3Q15 etD3Q19 en

trois dimensions. Pour exemple voici les détails du modèleD2Q9 de Qianet coll. [20] :

• L’équation d’évolution est :

fi(r + vi, t+ 1) = fi(r , t) −
1

τ

[
fi − f

(eq)
i

]
(II.14)

• La distribution d’équilibre a pour expression :

f eq
i = ti ρ

[
1 +

vi · u
c2s

+
(vi · u)2

2c4s
− u2

2c2s

]
où cs = c/

√
3 avecc = δx/δt.

• Les vitesses discrètesvi et les poidsti sont :

vi =






(0, 0)

(±c, 0)(0,±c)
(±c,±c)

ti =






4/9

1/9

1/36

i = 0

i = 1 − 4

i = 5 − 8

(II.15)

• Les champs macroscopiquesρ et u s’obtiennent par sommation defi :

ρ =
∑

i

fi (II.16)

ρu =
∑

i

vifi (II.17)

II.2 Dérivation de Boltzmann-sur-réseau à partir de l’équation

de Boltzmann

Comme on vient de le voir précédemment, la méthode BsR a été historiquement dérivée, à

partir de modèles heuristiques d’automates cellulaires GsR, en s’inspirant de l’équation de Boltz-

mann et en particulier l’équation de Boltzmann-BGK. Et pourtant, il semble y avoir une parenté
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plus forte que la seule inspiration. L’équation de Boltzmann est l’équation d’évolution de la fonc-

tion de distribution monoparticulairef(r , v, t) et BsR est un algorithme pour calculer l’évolution

de ce qu’on a appelé la fonction de distributionfi(r , t) de la vitesse discrètevi. Tout comme

l’équation de Boltzmann, les schémas BsR présentent un terme de collision devant respecter des

invariants collisionnels et un terme de transport. Comme pour l’équation de Boltzmann, il existe

une procédure similaire à Chapman-Enskog permettant de retrouver les équations macroscopiques.

Compte tenue de cette similarité apparente entre BsR et l’équation de Boltzman, il était intéressant

de tenter d’établir un lien formel entre les deux. Cette démonstration a été faite en 1997 par He and

Luo [22, 23] pour certains schémas BsR. Ces auteurs ont montré que BsR peut être vu comme une

discrétisation particulière dans l’espace des phases de l’équation de Boltzmann. Précédemment les

valeurs calculées de la fonction de distribution discrète n’étaient pas supposées avoir un sens phy-

sique direct, à l’échelle mésoscopique, comme mesure de la distribution des vitesses. Il apparaît

au contraire avec le travail de He et Luo, pour un ensemble de schémas parmi les plus employés

dans la littérature BsR, quefi(r , t) est directement exploitable. La démonstration correspondante

donne une base théorique solide à BsR et en particulier ouvrela possibilité de résoudre l’équa-

tion de Boltzmann elle-même, à un ordre de précision donné, alors que précédemment ce type de

méthodes était seulement utilisé comme une alternative à larésolution Navier-Stokes.

II.2.1 Discrétisation spatio-temporelle

Le point de départ de cette démonstration est l’équation de Boltzmann-BGK sans terme de

force extérieure :
∂f

∂t
+ v · ∇f = −f − f eq

τ
(II.18)

avecf eq = ρ
2πrT

exp
[
− (v−u)2

2rT

]
, la fonction de distribution d’équilibre en deux dimensions etτ le

temps de relaxation. Formellement, la solution de cette équation peut s’écrire sous forme intégrale :

f(r + vδt, v, t+ δt) = e−δt/τf(r , v, t) +
1

τ
e−δt/τ

∫ δt

0

et′/τf eq(r + vt′, v, t+ t′) dt′ (II.19)

Le premier terme de cette solution décrit tout simplement l’atténuation exponentielle du nombre

de particules, de vitessev, qui étaient enr au tempst et qui arrivent au tempst+ δt enr + vδt. Ce

sont les particules qui ont échappé aux collisions et qui ontpar conséquent leur vitessev de départ.

Le second terme est le terme source : durant le trajet entrer et r + vδt, des particules de vitesse

v′ 6= v acquièrent une vitessev suite à une collision.

En faisant un développement de Taylor au premier ordre de l’exponentiellee−δt/τ ≈ 1 − δt/τ

et en faisant l’hypothèse quef eq ne varie pas trop entret et t + δt de façon à pouvoir approximer
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l’intégrale par
∫ δt

0
et′/τf eq(r , v, t) dt′, nous obtenons :

f(r + vδt, v, t+ δt) = f(r , v, t) − δt

τ
[f(r , v, t) − f eq(r , v, t)] (II.20)

Nous retrouvons ainsi, l’équation d’évolution du modèle BsR, avec le terme collisionnel BGK, en

identifiantτ = τ
δt

. Pour autant, l’espace des vitesses n’est pas encore discrétisé.

II.2.2 Modèle de vitesses discrètes

Le fait de discrétiser l’espace des vitesses va nous permettre de résoudre l’équation de Boltz-

mann, non-pas de façon exacte, mais à un ordre près. La difficulté est de savoir quantifier l’erreur,

et de déterminer à quel ordre il est pertinent de s’arrêter enfonction des besoins affichés. Au

chapitre I, la procédure de Chapman-Enskog nous a montré quele développement à l’ordre1 de

l’équation de Boltzmann est équivalent à la résolution du système d’équations macroscopiques

Navier-Stokes-Fourier. Etant donné que les premières versions de BsR étaient utilisées comme une

alternative à la résolution de Navier-Stokes pour un fluide isotherme, on peut décider de déterminer

un jeu de vitesses discrètes tel que la résolution de l’équation de Boltzmann discrétisée corresponde

à un niveau de précision comparable à celui de l’approximation{ Navier-Stokes fluide isotherme

}. Nous partons donc sur la base d’un fluide isotherme en rappelant que sous cette hypothèse,

l’approximation conduisant à Navier-Stokes estf = f eq +f (1) avec (sous l’approximation BGK) :

f (1) = −τ
{

1

rT
(vα − uα)(vβ − uβ)∂βuα − 1

3

(v − u)2

rT
∇ · u

}
f (eq) (II.21)

soit

f (1) = P2(v)f (eq) (II.22)

avec

P2(v) = −τ
{

1

rT
(vα − uα)(vβ − uβ)∂βuα − 1

3

(v − u)2

rT
∇ · u

}
(II.23)

Le point important à retenir est quef (1) s’écrit comme le produit def eq par un polynôme d’ordre2

env, P2(v). Pour cette expression def , le jeu de vitesses discrètesvi et les poids de quadratureωi

utilisés doivent donc assurer les deux premiers moments def , la masse volumiqueρ et la vitesse

macroscopiqueu. Doivent aussi être exacts, les flux de ces moments. Donc le tenseur des pressions
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P doit être exact. Autrement dit, nous devons trouver une quadrature telle que :

ρ =

∫
f dv ⇒

∑

i

ωi (f eq
i + f

(1)
i ) = ρ (II.24)

ρu =

∫
vf dv ⇒

∑

i

ωi vi(f
eq
i + f

(1)
i ) = ρu (II.25)

Pαβ =

∫
vαvβf dv ⇒

∑

i

ωi viαviβ(f eq
i + f

(1)
i ) = Pαβ (II.26)

Pαβ fait apparaître le termevαvβ qui est un carré de vitesse etf (1) est le produit def eq par un

polynôme d’ordre2 env. Trouver une quadrature capable d’évaluer de façon exacteρ, ρu etPαβ

revient donc à trouver une quadrature permettant d’évaluerde façon exacte les moments d’ordre4

def eq. Une telle quadrature assurerait une résolution de l’équation de Boltzmann-BGK à un ordre

équivalent à la résolution de l’équation de Navier-Stokes pour un fluide isotherme. Cependant, le

modèle de vitesses discrètes qui serait ainsi obtenu, ferait apparaître des vitesses discrètes dépen-

dantes du champ de vitesse macroscopiqueu car f eq dépend deu. Pour simplifier l’algorithme,

on cherche à obtenir un jeu de vitesses discrètes unique dansl’espace et le temps. Pour cela on

effectue un développement supplémentaire.

Pour un écoulement à faible nombre de Mach, soitu <<
√
rT , la fonction de distribution

d’équilibref eq peut en effet se développer ainsi :

f eq ≈ ρ

2πrT
exp

[
− v2

2rT

]{
1 +

v · u
rT

+
(v · u)2

2(rT )2
− u2

2rT

}
(II.27)

f eq ≈ P2(v) exp

[
− v2

2rT

]
(II.28)

% Ce développement permet d’écrire la distribution d’équilibre f eq comme le produit d’un poly-

nôme d’ordre2 env par une gaussienne centrée en0. Si on récapitule, compte tenue de l’expression

def (1) et du développement à faible nombre de Mach,f (1) peut s’écrire comme le produit d’une

gaussienne centrée en0 par un polynôme d’ordre4 env.

f (1) = P4(v) exp

[
− v2

2rT

]
(II.29)

Au final calculer de façon exacteρ, ρu et Pαβ pour f = f eq + f (1), revient à calculer de façon

exacte les moments d’ordre6 d’une gaussienne centrée en0. Toutefois, l’ordre peut être abaissé

de6 à 5 car, compte tenue de l’hypothèse d’un écoulement à faible nombre de Mach, nous avons

∇ · u = 0, ce qui a pour conséquence quef (1) s’écrit non plus en fonction d’un polynôme d’ordre

2 env mais simplement d’un polynôme d’ordre1. Nous devons donc trouver une quadrature pour
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évaluer ce type d’intégrale :

In =
∑

i

ωi Pn(vi) exp

[
− v2

2rT

]
=

∫
Pn(v) exp

[
− v2

2rT

]
dv (II.30)

avecn ≤ 5. Pour ceci nous disposons des quadratures de Gauss-Hermite[24]. Dans cette famille

de quadratures, pour calculer les moments de façon exacte jusqu’à l’ordren, il faut une quadrature

d’ordrek telle quen = 2k − 1. C’est-à-dire que nous avons ici besoin d’une quadrature d’ordre

k = 3. Ceci signifie qu’il suffit d’avoir en coordonnées cartésiennes,3 valeurs discrètes pour

chaque coordonnée de vitesse, c’est-à-dire9 vitesses discrètes en dimension2. Pour l’intégrale

suivante : ∫
Pn(x)e

−x2

dx =
∑

i

Wi Pn(xi) (II.31)

d’après la théorie de Gauss-Hermite, les3 abscisses discrètesxi sont les3 racines du polynôme

d’HermiteH3(x) et les poids correspondants ont pour expressions :

Wi =
23+13!

√
π

[H ′
3(xi)]

(II.32)

En identifiant, pour notre application, nous trouvons que les 3 valeurs discrètes de chaque coor-

donnée de vitesse sont−c, 0 et c, avecc =
√

3rT . Ainsi, en dimension2 vi = vixex + viyey et les

composantesvix et viy appartiennent à l’ensemble{−c, 0, c}. Les poids de quadrature sont alors

simplementωi = Wixe
v2
ix

2rT Wiye
v2
iy

2rT . Ainsi les9 vecteurs vitesses discrètes (Fig. II.3) et leurs poids

correspondants sont :

vi =






(0, 0)

(±c, 0)(0,±c)
(±c,±c)

ωi =






W 2
0

W0W1 e
c2

2rT

W 2
1 e

2c2

2rT

i = 0

i = 1 − 4

i = 5 − 8

(II.33)

Cette procédure de discrétisation de l’équation de Boltzmann-BGK aboutit exactement au mo-

dèle Boltzmann-sur-réseauD2Q9 dérivé de façon plus heuristique auparavant (paragraphe II.1.2.1)

à condition d’identifier la pseudo-fonction de distribution fi du modèle heuristique au produit de

la fonction de distribution par le poids de quadratureωifi et en remarquant queti =
WixWiy

2πc2s
avec

cs =
√
rT .

L’intérêt de cette démonstration n’est pas seulement de montrer que certains modèles BsR

correspondent à une discrétisation particulière de l’équation de

Boltzmann. Il est intéressant de voir que la construction dujeu de vitesses discrètes s’est faite

en s’appuyant sur la procédure de Chapman-Enskog à l’ordre1. Ici l’ordre 1 a été choisi, car le
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FIG . II.3: Vitesses discrètes du modèleD2Q9.

but était d’atteindre le même niveau de précision que celui des équations macroscopiques (Navier-

Stokes). Mais dans les cas où il est nécessaire d’aller plus loin dans le développement de Chapman-

Enskog, il est possible d’appliquer la même procédure pour déterminer l’ordre de quadrature et le

nombre de vitesses discrètes nécessaires. Par exemple, dans des situations hors d’équilibre où

Navier-Stokes n’est plus valide mais où l’équation de Burnett est pertinente. L’équation de Burnett

correspond à l’ordre2 du développement de Chapman-Enskog [12]. Alors il est possible de dériver

un modèle BsR qui sera au moins aussi précis que l’équation deBurnett. De façon plus générale, les

méthodes BsR obtenues par discrétisation de l’équation de Boltzmann peuvent donc être incluses

dans la littérature des “modèles à vitesses discrètes” pourla résolution numérique des équations

cinétiques [25, 26, 27].

II.2.3 Remarques concernant la mise en œuvre

Une des spécificités de BsR est le lien entre le pas d’espaceδx et le pas de tempsδt, soit

δx = cδt. Ceci permet le “saut” des particules de noeud en noeud. D’après le développement de

Chapman-Enskog pour l’équation de Boltzmann-BGK, la viscosité du fluide est liée au temps de

relaxation par la relationν = rTτ . Et pour le schéma BsR, le développement de Chapman-Enskog
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sur réseau (voir Appendice F) aboutit à la relationν = rT (τ−1/2δt), alors que nous venons de dé-

montrer que certains schémas BsR correspondent à une forme discrétisée de l’équation Boltzmann-

BGK. En fait, le facteur correctif−1/2δt vient de la discrétisation spatio-temporelle. On peut donc

parler de viscosité numérique. Cette viscosité numérique apour conséquence que pour des simula-

tions réalistes, le vrai temps de relaxation du fluide n’est jamais utilisé directement. Il est ajusté, en

tenant compte du terme−1/2δt, afin que la viscosité résultante corresponde à la viscositédu fluide

simulé. Le temps de relaxation ajusté est doncτ̃ = τ + 1/2δt soit également̃τ =
ν

rT
+ 1/2δt.

Un point important également est que pour des raisons de stabilité numérique, le pas de temps doit

être tel queδt < 2τ . Le plus courant est de prendreδt = τ̃ soit δt = τ + 1/2δt ce qui conduit à

δt = 2τ ou encore en terme de viscositéδt =
2ν

rT
. Prenons l’exemple de l’air à293K de constante

massiquer = R/M ≈ 287 J.kg−1.K−1 et de viscositéν ≈ 10−6 m2.s−1. Cela conduit à un pas de

tempsδt = 2.38 10−11 s, c = 502.3 m.s−1 et donc un pas d’espaceδx = cδt = 1.2 10−8 m. Ces

valeurs de pas de temps et d’espace sont nécessaires si l’on veut résoudre l’équation de Boltzmann-

BGK sous-jacente au modèle BsR. Cependant, elles sont souvent inappropriées lorsque l’objectif

n’est pas la résolution du modèle mésoscopique mais la détermination des champs macroscopiques

ρ et u. Il est possible de mener de telles simulations avec des pas d’espace et de temps plus ap-

propriés. En effet, il faut se rappeler que le modèle BsR précédemment dérivé correspond à une

résolution de l’équation Boltzmann-BGK compatible à l’échelle macroscopique avec la résolution

de l’équation de Navier-Stokes pour un écoulement isotherme. Or pour un tel écoulement la seule

caractéristique du fluide est la viscosité. Dans ces conditions, l’écoulement ne dépend pas de la

température ni de la constante massique du fluide. On peut donc jouer librement sur ces grandeurs

de façon à modifier les contraintes de discrétisastions spatiale et temporelle. Dans le casδt = τ̃

les contraintes se résument àδx = cδt =
√

3rTδt et δt = 2τ =
2ν

rT
soit encoreδt =

1

6

δx2

ν
et

T =
1

3

δx2

rδt2
. Concrètement, on choisi donc un pas d’espace, par exempleδx = 10−3 m et on

détermine la valeur de température et le pas de temps assurant la bonne valeur de viscosité, ce

qui nous donne iciT = 4.18 10−8 K et δt = 0.1667 s. On voit donc que lorsque l’objectif est

d’utiliser BsR comme une alternative à la résolution de Navier-Stokes, il est possible d’augmenter

les pas de temps et d’espace par la résolution du modèle mésoscopique d’un autre fluide (temps de

relaxationτ et température différents), ce fluide se traduisant par le même écoulement à l’échelle

macroscopique (champs de masse volumiqueρ de vitesseu).

II.2.4 Illustration de la méthode Boltzmann-sur-Réseau

Afin d’illustrer les possibilités de la méthode BsR pour les écoulements isothermes, nous pré-

sentons des résultats de simulations numériques effectuées par M. Clifton dans le cadre d’un projet



Dérivation de BsR à partir de l’équation de Boltzmann 55

de recherche sur l’évaluation de la résistance hydrauliquede milieux poreux par la méthode BsR

[28]. Ces simulations ont permis d’évaluer numériquement la résistance hydraulique d’un empile-

ment régulier de sphères de rayona (cf. Fig. II.4).

(a) (b)

FIG . II.4: (a) Empilement de sphères arrangées dans une configuration cubique face centrée. Le

cube représente le domaine de simulation . (b). Illustration d’un écoulement obtenu par simulation

BsR dans un plan de l’empilement de sphères.

Les figures II.5.a et II.5.b présentent des résultats de simulations sous la forme d’un coefficient

KZH , introduit par Zick et Homsy [29], et qui représente le rapport entre la force de traînée subie

par une sphère au sein de l’empilement et la force exercée surune sphère isolée. Un premier

jeu de simulations a été effectué avec un modèle BsR traditionnelD3Q19, un terme collisionnel

BGK et des conditions aux limites de type rebond simple (SBB). D’autres simulations ont été

effectuées avec un terme collisionnel à multiple temps de relaxation (MRT [30]) , des condtitions

aux limites SBB et avec des conditions aux limites plus évoluées décrites par Bouzidiet coll. [31]

(LIBB). Les conditions de simulations sont : un maillage de1283, un pas d’espaceδx = 1, un

pas de tempsδt = 1 et un temps de collisionτ = 1. Ces résultats ont été obtenus en mesurant la

vitesse de l’écoulement lorsqu’une différence de pression∆p est appliquée entre les deux faces de

l’empilement séparées par une distanceL. Ceci a permis de remonter au coefficientKZH par la loi

de Darcy qui peut s’exprimer sous la forme :

u = −2

9

a2

φKZH

∆p

µL
(II.34)

oùµ est la viscosité dynamique du fluide etφ est la fraction volumique de solide.
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FIG . II.5: (a) CoefficientKZH en fonction de la fraction volumiqueφ. Sont représentés les résul-

tats semi-analytiques de Zick et Homsy ainsi que les résultats de simulations BsR effectuées avec

les termes collisionnels BGK et MRT et avec les conditions aux limites SBB ou LIBB. (b). Cette

figure représente les erreurs relatives du coefficientKZH obtenu par les simulations par rapport

aux résultats de Zick et Homsy.

Ce type de configuration est typique de ce que nous cherchons àobtenir à terme en ce qui

concerne la complexité géométrique, mais cette fois-ci en présence de transitions de phase et d’ef-

fets thermiques.

II.3 BsR pour les écoulements anisothermes

Jusqu’à présent, nous avons présenté la méthode BsR comme une méthode numérique pour

résoudre les écoulements de fluides considérés comme isothermes. Nous allons maintenant faire

une brève présentation des modèles BsR de la littérature permettant de résoudre les écoulements

de fluides anisothermes. Puis nous présenterons le modèle proposé dans ce travail de thèse qui

s’appuie sur une extension de la démonstration de He et Luo à la section II.2, et qui est donc un

modèle BsR résultant d’une stricte discrétisation de l’équation de Boltzmann.

II.3.1 Modèles existants

Plusieurs tentatives de modèles BsR thermiques ont été faites depuis les débuts de cette tech-

nique. Ces différentes propositions peuvent être classifiées en trois catégories :
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– 1 modèle BsR (pour la résolution des champs deρ et u )
⊕

1 modèle macroscopique (pour

la résolution du champ deT )

– 2 modèles BsR (1 modèle BsR pour la résolution des champs deρ et u
⊕

1 modèle BsR

pour la résolution du champ deT )

– 1 modèle BsR (pour la résolution simultanée des champs deρ , u etT )

Les modèles de la première catégorie sont dits hybrides [32]car ils font appel à un schéma

BsR traditionnel pour la résolution du champ de masse volumique (ou de pression) et du champ de

vitesse macroscopique auquel on ajoute une équation macroscopique de conservation de l’énergie

résolue par des méthodes numériques classiques de type différences finies.

Les modèles de la seconde catégorie utilisent également un modèle BsR traditionnel pour la

résolution du champ de masse volumique et du champ de vitessemacroscopique auquel on ajoute

un autre modèle de type BsR. Ce second modèle est construit detelle sorte qu’à la limite macrosco-

pique, le premier moment de la nouvelle fonction de distribution soit la température et l’équation

macroscopique correspondante soit l’équation de conservation de l’énergie. Dans cette catégorie,

on peut citer l’approche scalaire-passif proposée par Shan[33], pour laquelle la seconde fonc-

tion de distribution est telle que son premier moment est un scalaire qui satisfait à une équation

macroscopique de type convection-diffusion. Dans le modèle de Shan ce scalaire est la tempéra-

ture mais il est à noter qu’originairement les approches scalaire-passif ont été développées pour

les écoulements à plusieurs phases pour lesquels le scalaire était la densité d’une seconde es-

pèce. Parmi les modèles à deux fonctions de distribution, citons également la proposition de He

et coll. [34]. Cette approche donne une base physique à la seconde fonction de distribution. He

et coll.définissent la seconde fonction de distributiong comme la fonction de distribution d’éner-

gie interneg =
(v − u)2

2
f . Par définition, la température correspond au premier moment de cette

nouvelle fonction de distributiong. Ce modèle n’est pas une simple reformulation de l’équation

de Boltzmann-BGK par un système équivalent de deux équations couplées car les auteurs attri-

buent un temps de collision différents aux deux équations. Le temps de collision de l’équation

d’évolution deg permet d’ajuster la conductivité thermique du fluide indépendamment du temps

de collision de la première équation d’évolution qui est liéà la viscosité. Dans le cas où les temps

de collision ont la même valeur, ce modèle fait partie de la troisième catégorie parce que l’énergie

interne correspond bien au second moment de la fonction de distributionf (ce qui n’est plus le cas
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lorsque les temps de collision sont différents).

La troisième catégorie fait référence aux modèles conservant l’énergie. On entend par là des

modèles à une seule fonction de distribution pour lesquels la température et le flux de chaleur sont

respectivement les moments d’ordre2 et 3 de la fonction de distribution. En général, ce type de

modèle requiert un nombre de vitesses discrètes plus important [35, 36, 37]. Pour des raisons pas

encore bien comprises, ce type de modèles présente des instabilités numériques [35, 36].

Dans ce travail de thèse, nous proposons un modèle conservant l’énergie à une seule fonction

de distribution. La construction du modèle de vitesses discrètes peut être vue comme une extension

possible du travail de He et Luo sur la démonstration du lien formel entre l’équation de Boltzmann

et la méthode BsR. A notre connaissance, cette démarche n’a jamais été explorée auparavant. Le

modèle résultant ne présente pas de problèmes particuliersd’instabilités numériques. La descrip-

tion qui suit est reprise de l’article [38] “Energy-conserving lattice Boltzmann thermal model in

two dimensions” (J. Stat. Phys.121, 119 (2005)) qui est joint en annexe B. Comme pour He et Luo

[22, 23], le point de départ est l’équation de Boltzmann-BGK:

∂f

∂t
+ v · ∇(f) = −f − f eq

τ
(II.35)

II.3.2 Modèle de vitesses discrètes

Nous rappelons que la démonstration de He et Luo est basée surla discrétisation de l’espace

des vitesses par la quadrature de Gauss-Hermite. L’utilisation de cette quadrature est adaptée car

différents développements et approximations (Chapman-Enskog à l’ordre1, approximation faible

nombre de Mach) permettent d’écrire, à un ordre de précisiondonné, la fonction de distribution

f comme le produit d’une gaussienne par un polynôme dev. Dans le cas isotherme, l’ordre de la

quadrature requis était tel que la masse volumiqueρ, la vitesse macroscopiqueu et le tenseur des

pressionsP soient évalués de façon exacte pourf = f eq + f (1). Reprenons ces étapes dans le cas

non-isotherme.

Dans le cas non-isotherme, la quadrature doit être capable d’évaluer les moments def jusqu’à
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l’ordre 3 qui correspond au flux de chaleur :

ρ =

∫
f dv ⇒

∑

i

ωi (f eq
i + f

(1)
i ) = ρ

ρu =

∫
vf dv ⇒

∑

i

ωi vi(f
eq
i + f

(1)
i ) = ρu

Pαβ =

∫
vαvβf dv ⇒

∑

i

ωi viαviβ(f eq
i + f

(1)
i ) = Pαβ

D

2
ρrT =

1

2

∫
(v − u)2f dv ⇒ 1

2

∑

i

ωi (vi − u)2(f eq
i + f

(1)
i ) =

D

2
ρrT

JQ =
1

2

∫
(v − u)3f dv ⇒ 1

2

∑

i

ωi (vi − u)3(f eq
i + f

(1)
i ) = JQ

avecf = f eq + f (1) tel que :

f (1) = −τ
{

1

T

[
(v − u)2

2rT
− 3

2

]
(v − u) · ∇T (II.36)

+
1

rT
(vα − uα)(vβ − uβ)∂βuα − 1

3

(v − u)2

rT
∇ · u

}
f (eq) (II.37)

soitf (1) = P3(v)f (eq) avec :

P3(v) = −τ
{

1

T

[
(v − u)2

2rT
− 3

2

]
(v − u) · ∇T (II.38)

+
1

rT
(vα − uα)(vβ − uβ)∂βuα − 1

3

(v − u)2

rT
∇ · u

}
(II.39)

P3 est un polynôme d’ordre3 env et f (1) s’écrit comme le produit de la fonction d’équilibref eq

par un polynôme d’ordre3 env. Comme précédemment il est possible d’arrêter le développement

à cette étape et d’utiliser une quadrature de Gauss-Hermiteassurant une évaluation exacte des

moments def eq jusqu’à l’ordre6. Comme pour le cas isotherme, les vitesses discrètes résultantes

seraient alors dépendantes du champ de vitesse macroscopique u, mais elles seraient également

dépendantes du champ de températureT carf eq dépend à la fois deu et deT . Ainsi, pour rendre

unique le jeu de vitesses discrètes dans l’espace et dans le temps, il faut développer la fonction

d’équilibre pour un faible nombre de Mach (comme au paragraphe II.2.2 ) et faire également un

développement autour d’une température de référence que nous noteronsT0, la notationθ étant

utilisée pour représenter le champθ = T − T0 des écarts à la référence.
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f eq =
ρ

(2πrT )D/2
exp

(
−(v − u)2

2rT

)

≈ ρ

(2πrT )D/2
exp

(
− v2

2rT

)
·
[
1 +

v · u
rT

+
(v · u)2

2(rT )2
− u2

2rT

]

≈ ρ

(2πrT )D/2
exp

(
− v2

2r(T0 + θ)

)
·
[
1 +

v · u
rT

+
(v · u)2

2(rT )2
− u2

2rT

]

≈ ρ

(2πrT )D/2
exp

(
− v2

2rT0

)
exp

(
v2

2rT0

θ

T0

)
·
[
1 +

v · u
rT

+
(v · u)2

2(rT )2
− u2

2rT

]

≈ ρ

(2πrT )D/2
exp

(
− v2

2rT0

)
·
(

1 +
v2

2rT0

θ

T0

)
·
[
1 +

v · u
rT

+
(v · u)2

2(rT )2
− u2

2rT

]

≈ exp

(
− v2

2rT0

)
· P4(v) (II.40)

Ce développement permet d’écrire, dans le cas non-isotherme, la fonction d’équilibre comme le

produit d’une gaussienne centrée en0 par un polynôme d’ordre4 env. En reportant ce développe-

ment dans l’expression def (1) on obtient le produit d’une gaussienne centrée en0 par un polynôme

en v d’ordre 7. Donc au final, pour évaluer les moments def jusqu’à l’ordre3, an accord avec

l’ordre 1 du développement de Chapman-Enskog la quadrature de Gauss-Hermite doit évaluer de

façon exacte les moments d’ordre10 d’une gaussienne centrée en0. Cette exigence requiert une

quadrature d’ordre6, c’est à dire6 abscisses discrètes par dimension, à comparer aux3 abscisses

discrètes par dimension en isotherme. Ces6 abscisses sont les6 racines du polynôme de Hermite

H6(v/
√

2rT0). Les6 valeurs discrètes de chaque coordonnée de vitesse sont−c3, −c2, −c1, c1,

c2 et c3 avecc1 = 0.61670659
√
rT0, c2 = 1.88917588

√
rT0 et c3 = 3.32425743

√
rT0. Ainsi, en

dimension2, les36 vecteurs vitesses discrètes et leur poids correspondant sont les suivant :

vi =






(±c1,±c1)
(±c1,±c2)(±c2,±c1)
(±c1,±c3)(±c1,±c3)
(±c2,±c2)
(±c2,±c3)(±c3,±c2)
(±c3,±c3)

ωi =






W 2
1

W1 W2

W1 W3

W 2
2

W2 W3

W 2
3

(II.41)

avecW1 = 1.23320599,W2 = 1.31647854 etW3 = 1.59977183.
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II.3.3 Modèle approché

En étendant la démarche de He et Luo, nous venons de montrer qu’il faut 36 vitesses discrètes

en2 dimensions et216 en3 dimensions. Il faut noter qu’une quadrature de Gauss-Hermite d’ordre

6 assure l’évaluation exacte des moments d’ordre11 d’une gaussienne, ce qui est1 ordre sup-

plémentaire par rapport à l’ordre requis. Pour autant une quadrature d’ordre5 ne suffit pas car

elle n’assure pas l’exactitude des moments de la gaussienneque jusqu’à l’ordre9. Bien qu’une

quadrature d’ordre5 ne soit pas rigoureusement adéquate pour les applications anisothermes, nous

proposons de l’utiliser afin de réduire le nombre de vitessesdiscrètes. Leur nombre est ainsi réduit

à25 en2 dimensions et125 en3 dimensions. Cette perte de précision (le calcul du 10 ème moment

sera moins précis mais pas totalement erroné) s’accompagnebien sûr d’un gain non-négligeable en

terme de taille mémoire. Ayant fait ce choix, nous avons observé qu’il était possible d’améliorer

cette quadrature réduite en recalculant les poids de la quadrature en chaque noeud et à chaque

pas de temps en fonction de la température locale. Concrètement une température de référenceT0

est choisie afin de déterminer un jeu de5 valeurs discrètes{vi(T0)} pour chaque coordonnée de

vitesse. Ces5 valeurs sont fixes et uniques pour tout l’espace et toute la durée de la simulation :

{−c2,−c1, 0, c1, c2} avecc1 =
√

(5 −
√

10)rT0 etc2 =
√

(5 +
√

10)rT0. Les poids de quadrature

ne sont par contre pas fixes mais sont recalculés en fonction de la température localeT à chaque

pas de temps. Pour chaque coordonnée de vitesses les poidsWi(T ) sont déterminés de façon à

assurer le calcul des moments suivant :
∫
e−

v2

2rT dv =
∑

Wi(T ) (II.42)
∫
v2e−

v2

2rT dv =
∑

Wi(T ) v2
i (T0) (II.43)

∫
v4e−

v2

2rT dv =
∑

Wi(T ) v4
i (T0) (II.44)

La solution de ce système conduit aux expressions des poids en fonction de la température locale

du noeud considéré :

W0(T ) = K0 −
(c21 + c22)K2 −K4

c21c
2
2

(II.45)

W1(T ) =
c22K2 −K4

2c21 (c22 − c21)
(II.46)

W2(T ) =
K4 − c21K2

2c22 (c22 − c21)
(II.47)

avecK0 =
√

2πrT ,K2 = rTK0 etK4 = 3 (rT )2K0. Comme au paragraphe II.2.2, on applique ce

schéma aux deux composantesvix et viy et les poids de quadrature sont tout simplementωi(T ) =
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Wix(T )e
v2
ix

2rT Wiy(T )e
v2
iy

2rT . En résumé les25 vecteurs vitesses discrètes et leurs poids correspondant

sont les suivant :

vi =






(0, 0)

(±c1, 0)(0,±c1)
(±c1,±c1)
(±c2, 0)(0,±c2)
(±c2,±c2)
(±c1,±c2)
(±c2,±c1)

ωi(T ) =






W0(T )2

W0(T ) W1(T ) e
c21

2rT

W1(T )2 e
2c21
2rT

W0(T ) W2(T ) e
c22

2rT

W2(T )2 e
2c21
2rT

W1(T ) W2(T ) e
c21

2rT e
c22

2rT

W1(T ) W2(T ) e
c21

2rT e
c22

2rT

(II.48)

Le niveau de précision assuré par cette quadrature réduite pour la simulation d’écoulements aniso-

thermes ne peut être évalué que par des tests numériques puisque la procédure de discrétisation

employée (ordre1 de Chapman-Enskog, faible nombre de Machu <<
√
rT et faible différence

de températureT = T0 + θ) n’est pas menée rigoureusement jusqu’à son terme. De tels tests

numériques seront détaillés au paragraphe II.3.6 après unediscussion concernant la discrétisation

spatio-temporelle (paragraphe II.3.4) et une analyse qualitative de la pertinence de la répartition de

notre jeu de vitesses discrètes dans l’espace des vitesses (paragraphe II.3.5).

II.3.4 Discrétisation spatio-temporelle

En ce qui concerne la discrétisation spatio-temporelle de ce type de modèle, dit “multispeed”,

il n’est pas possible d’appliquer les stratégies classiquement employées pour les schémas BsR

isothermes pour lesquels le pas d’espace et le pas de temps sont liés par le module de vitesse par

la relationδx = cδt. En effet, pour les modèles “multispeed” tel que celui que nous proposons,

il y a plusieurs modules de vitesses non-nuls et leur rapportest non-entier. Par exemple pour la

quadrature d’ordre5 que nous utilisons, si nous avionsc2 = 2 c1, il serait possible de faire sauter

les particules de noeud en noeud, mais ce n’est pas le cas. Donc pour la discrétisation spatio-

temporelle de l’équation de Boltzmann, nous allons utiliser des schémas aux différences finies

[39, 37]. Nous rappelons que notre point de départ est l’équation de Boltzmann-BGK :

∂f

∂t
+ v · ∇f = −f − f eq

τ
(II.49)
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II.3.4.1 Intégration temporelle

Pour l’intégration temporelle, il est possible d’utiliserun schéma Euler au premier ordre :

fi(r , t+ δt) = fi(r , t) − δt vi · ∇fi(r , t) −
δt

τ
[fi(r , t) − f eq

i (r , t)] (II.50)

avecδt le pas de temps etfi(r , t) ≡ f(r , vi, t). Pour des raisons de stabilité, il faut bien sûr avoir

δt < τ . Pour augmenter la précision du schéma numérique, on peut faire appel à des schémas au

second ordre, à point milieu ou encore de Runge-Kutta.

Point milieu :

fi(r , t+ δt) = fi(r , t− δt) − 2δt vi · ∇fi(r , t) − 2
δt

τ
[fi(r , t) − f eq

i (r , t)] (II.51)

Runge-Kutta :

fi(r , t+ δt) = fi(r , t) − δt vi · ∇fi(r , t+ δt/2) − δt

τ
[fi(r , t+ δt/2) − f eq

i (r , t+ δt/2)] (II.52)

II.3.4.2 Intégration spatiale

Pour évaluer le terme de transportvi ·∇fi, il existe également plusieurs possibilités au premier

ordre ou au second ordre. Comme l’équation de Boltzmann est une équation hyperbolique, nous

favoriserons plutôt les schémas dits “amont” pour prendre en compte le fait que l’information vient

d’une direction connue. Cela signifie que la discrétisationdu terme∇fi dépendra de la vitesse

vi considérée. Si on passe en coordonnées cartésiennes tellesquefi(r , t) = fi(x, y, t) et vi =

vixex + viyey alors le schéma au premier ordre amont s’écrit :

∂fi(x, y, t)

∂x
=






fi(x, y, t) − fi(x− δx, y, t)

δx
si vix ≥ 0

fi(x, y, t) − fi(x+ δx, y, t)

−δx si vix < 0

(II.53)

∂fi(x, y, t)

∂y
=






fi(x, y, t) − fi(x, y − δx, t)

δx
si viy ≥ 0

fi(x, y, t) − fi(x, y + δx, t)

−δx si viy < 0

(II.54)

et pour un schéma amont au second ordre :

∂fi(x, y, t)

∂x
=






3fi(x, y, t) − 4fi(x− δx, y, t) + fi(x− 2δx, y, t)

2δx
si vix ≥ 0

3fi(x, y, t) − 4fi(x+ δx, y, t) + fi(x+ 2δx, y, t)

−2δx
si vix < 0

(II.55)
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∂fi(x, y, t)

∂y
=






3fi(x, y, t) − 4fi(x, y − δx, t) + fi(x, y − 2δx, t)

2δx
si viy ≥ 0

3fi(x, y, t) − 4fi(x, y + δx, t) + fi(x, y + δx, t)

−2δx
si viy < 0

(II.56)

II.3.5 A propos def (1) et du modèle de vitesses discrètes

Comme nous venons de le voir, certains modèles Boltzmann-sur-réseau peuvent être vus comme

une discrétisation dans l’espace des phases de l’équation de

Boltzmann. Dans cette vision, le modèle de vitesses discrètes est ajusté en fonction d’un besoin

de précision donné dans la résolution de l’équation de Boltzmann. Dans ce travail, nous avons

choisi une précision qui correspond à l’ordre1 du développement de Chapman-Enskog car celui-

ci correspond au niveau d’approximation que représentent les équations macroscopiques. Il est

donc intéressant d’examiner en détail la façon dont notre modèle de vitesses discrètes assure la

représentation def (1), la partie hors d’équilibre de la fonction de distributionf . Pour cela, nous al-

lons visualiser les vitesses discrètes sur les représentations faites au chapitre précédent (paragraphe

I.6.4), des contributions de chaque vecteur vitesse au flux de quantité de mouvement et au flux de

chaleur dans des configurations simples pour lesquelles il existe une solution analytique def (1).

(a) (b)

FIG . II.6: Représentation dans le plan(vx, vy) de la contribution au flux de quantité de mouvement

Pxy(v) de chaque vecteur vitesse. Les cercles blancs correspondent aux vecteurs vitesses discrètes :

(a) modèleD2Q9 et (b) modèleD2Q25.

La figure II.6 montre la pertinence du choix des vecteurs vitesses par rapport à la contribution

au flux de quantité de mouvementPxy(v) de chaque vecteur vitesse, en présence d’un cisaillement.
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On remarque que tous les vecteurs vitesses contribuent au flux de quantité de mouvement dans

le sens opposé au cisaillement et qu’il existe quatre zones particulières où cette contribution est

importante. Les deux modèles discrets considérés ici,D2Q9 etD2Q25, semblent pertinents car

ils contiennent des vitesses discrètes dans les zones oùPxy(v) est important. De la même façon,

la figure II.7 montre la pertinence du choix des vecteurs vitesses par rapport à la contribution au

flux de chaleurJy(v) de chaque vecteur vitesse. Contrairement au flux de quantitéde mouvement,

toutes les vitesses ne contribuent pas au flux de chaleur dansle sens opposé au gradient de tempé-

rature. Il existe une zone telle quev < 2
√
rT , pour laquelle les vecteurs vitesses contribuent au

flux de chaleur dans le même sens que le gradient de température. Outre l’argument mathématique

de l’utilisation de la quadrature de Gauss-Hermite qui dit qu’évaluer le flux de chaleur néces-

site de monter plus haut dans l’ordre de quadrature, la représentation graphique deJy(v) indique

quels sont les vecteurs vitesses qui comptent le plus pour leflux de chaleur macroscopiqueJy.

On constate que le modèle discretD2Q9 n’est pas particulièrement adapté pour évaluer les flux

de chaleur : les zones de plus forte contribution ne sont pas couvertes et la majorité des vitesses

discrètes se situent dans la zone où la contribution au fluxJy(v) est du même signe que le gradient

de température. Le modèleD2Q25 semble beaucoup mieux adapté de ces deux points de vue. A

partir de ces observations, il serait peut-être intéressant d’explorer la possibilité de construire des

modèles discrets, sans utiliser la quadrature de Gauss-Hermite, qui est cartésienne mais en essayant

de construire une discrétisation en module et angulaire. Pour la discrétisation en module, on pour-

rait retenir deux modules qui seraient celui où la contribution au flux de quantité de mouvement

Pxy(v) est la plus importante, d’une part, et celui où la contribution au flux de chaleurJy(v) est la

plus importante, d’autre part.

II.3.6 Validation du modèle proposé

Pour valider et tester le modèle BsR thermique proposé, nousavons effectué des simulations

numériques d’exemples académiques pour lesquels il existeune solution analytique. Concernant

les conditions aux limites, nous nous sommes inspirés du travail de Watariet coll.[40]. Les détails

de l’implémentation de ces conditions aux limites sont reportés en annexe C. Les tests présentés

ici ont été effectués pour le modèle approché à5 vitesses discrètes par dimension. Un modèle à6

vitesses sera utilisé au chapitre V pour la discrétisation de l’équation de Boltzmann-Enskog dans

un contexte de simulation des transitions de phase liquide-vapeur.
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(a) (b)

FIG . II.7: Représentation dans le plan(vx, vy) de la contribution au flux de chaleurJy(v) de chaque

vecteur vitesse. Les cercles blancs correspondent aux vecteurs vitesses discrets : (a) modèleD2Q9

et (b) modèleD2Q25. Le cercle noir représente le lieu des points oùJy(v) change de signe.

II.3.6.1 Décroissance d’un vortex

Le premier test concerne la décroissance d’un vortex. Cela permet de vérifier que le modèle

rend compte précisément des effets visqueux. La condition initiale du champ de vitesses du vortex

est la suivante :

ux = (y0 − y)ω0 exp

(
−(r − r 0)

2

L2

)
(II.57)

uy = (x− x0)ω0 exp

(
−(r − r 0)

2

L2

)
(II.58)

avecr 0 = (x0, y0) le centre du vortex,L sa longueur caractéristique etω0 la vorticité initiale au

centre du vortex. A cause des effets visqueux, la vorticité diminue. L’expression de la vorticité au

centre du vortex en fonction du temps est :

ωmax(t
∗) =

ω0

(1 + 4t∗)2
(II.59)

avect∗ = νt/L2, le temps adimensionnel. La figure II.8 représente les résultats de simulations

numériques indiquant une parfaite représentation des effets visqueux.

II.3.6.2 Propagation d’onde acoustique

Le test précédent ne permettait pas d’apprécier l’aptitudedu modèle proposé à rendre compte

des effets thermiques. Il indiquait simplement que notre schéma est capable de rendre compte des
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FIG . II.8: (a) : Champs de vitesse d’un vortex ; (b) : Comparaison entre l’expression analytique

de la décroissance de la vorticité au centre du vortex (traits pleins) et les résultats de simulations

numériques (cercles).

effets visqueux comme tous les modèles BsR utilisés comme une alternative à la résolution de

l’équation de Navier-Stokes. Ce second test montre un effetthermique que les schémas BsR iso-

thermes ne peuvent pas représenter. Ce test concerne la propagation d’une onde acoustique proposé

par Watari et Tsutahara [37]. En effet avec un modèle de fluideisotherme la vitesse théorique du

son seraitcisoT =
√
rT et non pas

√
γrT . Le facteurγ vient du fait que la propagation d’une

onde acoustique n’est pas isotherme mais adiabatique. Afin de vérifier cet effet thermique sur la

propagation d’une onde acoustique, nous prenons comme condition initiale un volume de gaz à

températureT et avec un profil de masse volumique en créneau (voir figure II.9.(a)). Cet état étant

mécaniquement instable, des ondes acoustiques se propagent dans le milieu. Par suivi des fronts

d’ondes qui se forment, il est alors possible de remonter à lacélérité du son dans le gaz. La figure

II.9.(b) compare les résultats de simulations pour différentes températures avec la célérité du son

annoncée théoriquement.

II.3.6.3 Stratification d’une colonne de gaz isotherme

Le test suivant permet de vérifier que la prise en compte d’un champ de force extérieure est

correcte dans le modèle. En effet, en présence d’un champ de force extérieureF, le terme supplé-
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FIG . II.9: (a) : Configuration initiale pour créer des ondes acoustiques. Le gaz est isotherme à

l’instant initial et la masse volumique a un profil en créneau; (b) : Comparaison entre la célérité

du son théoriquec =
√
γrT (traits pleins) et les simulations numériques (cercles).

mentaireF
m
· ∇vf est introduit dans l’équation de Boltzmann :

∂f

∂t
+ v · ∇f +

F
m

· ∇vf = C(f, f) (II.60)

Pour évaluer ce terme, la dérivée def par rapport àv est approximée par la dérivée def eq par

rapport àv [41] :

F
m
∇vf ≈ F

m
∇vf

eq = − F
m

(v − u)

rT
f eq (II.61)

Cette approximation est justifiée par le développement de Chapman-Enskog qui montre que le

terme de forceF n’apparaît pas dans l’expression def (1). L’ordre 0 de Chapman-Enskog est donc

équivalent à l’ordre1 en ce qui concerne les forces extérieures. La figure II.10 illustre la strati-

fication d’une colonne d’air isotherme dans un champ de pesanteurg. A l’équilibre, l’expression

analytique de la masse volumiqueρ(y) en fonction de la hauteury estρ(y) = ρ0 exp
( gy
rT

)
, avec

ρ0 = ρ(y = 0). Les résultats de simulations sont présentés pour différentes valeurs deα =
gH

rT
avecH la hauteur de la colonne.
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FIG . II.10: Masse volumiqueρ en fonction de l’altitudey d’une colonne de gaz isotherme de

hauteurH. En traits pleins, l’expression analytiqueρ(y) = ρ0 exp
( gy
rT

)
, les cercles représentent

les résultats de simulations numériques.

II.3.6.4 Ecoulement de Couette

L’écoulement de Couette (voir fig. II.11.(a) pour la description) permet de tester plusieurs effets

thermiques. L’écoulement étant cisaillé, cela produit unesource de chaleur dans l’écoulement par

dissipation visqueuse. De plus, cet écoulement correspondà une situation hors d’équilibre ther-

mique, le profil de température au stationnaire résulte de laconduction de la chaleur au sein du

fluide. Le profil de température analytique au stationnaire entre les deux plaques obtenu à partir

des équations macroscopiques est :

T (y)− T0

T1 − T0

=
y

H
+
Pr Ec

2

y

H

(
1 − y

H

)
(II.62)

avecPr =
ν

α
le nombre de Prandtl etEc =

U2

cv(T1 − T0)
le nombre d’Eckert. La figure II.11.(b)

montre la comparaison entre les résultats de simulations numériques et le profil analytique de

température au stationnaire.
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FIG . II.11: (a) : Configuration de l’écoulement de Couette qui est un écoulement cisaillé entre

deux plaques séparées par une distanceH. La plaque du bas a une vitesse nulle et une température

T0, la plaque du haut a une vitesseU et une températureT1 ; (b) : Comparaison entre le profil

de température théorique adimensionnée au stationnaireT (y)−T0

T1−T0
= y

H
+ Pr Ec

2
y
H

(
1 − y

H

)
(traits

pleins) et les simulations numériques (cercles). Les simulations ont été faites pour trois valeurs

différentes du nombre d’EckertEc.

II.3.6.5 Conduction pure

Ce dernier test permet de quantifier le niveau de précision autorisé par le modèle BsR pro-

posé en ce qui concerne les effets purement thermiques. Comme il a été vu précédemment, la

détermination du modèle de vitesses discrètes est basée surla quadrature de Gauss-Hermite. Cette

procédure conduit à un jeu de vitesses discrètes dont les modules dépendent de la température. Ce

qui signifie que le jeu de vitesses discrètes dépend du point de l’espace. Mais pour des raisons nu-

mériques, le choix a été fait de fixer un jeu de vitesses discrètes, correspondant à une température

de référenceT0, pour tout le champ et qui est conservé pour toute la durée de la simulation. L’ordre

de la quadrature étant déterminé pour assurer l’évaluationdes moments de la fonction de distribu-

tion f , sous l’hypothèse du développement de Chapman-Enskog, jusqu’au flux de la chaleur, le fait

de fixer un jeu de vitesses discrètes peut engendrer des erreurs sur l’évaluation du flux de chaleur si

la température est différente de la température de référenceT0. De plus , nous nous sommes arrêtés

à une quadrature d’ordre5 là où une quadrature d’ordre6 aurait été nécessaire à rigoureusement

parler. Cette perte d’un ordre de quadrature a été compenséepar un ajustement local des poids,

mais le niveau d’incertitude associé n’a pas pu être quantifié théoriquement. Pour quantifier le ni-

veau d’incertitude résultant de ce choix numérique, nous comparons le flux de chaleur conductif

entre deux plaques de températures différentes au flux conductif théorique. Par définition, le flux
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conductif correspond au moment d’ordre3 def , JQ = 1
2

∫
(v − u)3f dv. A partir des simulations

numériques, ce flux est évalué parJnum
Q = 1

2

∑
i ωi (vi − u)3fi. D’un point de vue macroscopique,

le flux conductif est lié au gradient de températureJQ = −λ∇T avec la conductivité thermique

théorique donnée par la procédure de Chapman-Enskogλth = 2ρr2Tτ . La figure II.12 illustre

l’écart relatif entre la conductivité thermique théoriqueλth et la conductivité thermique observée

numériquement, évaluée parλnum = −
Jnum

Q

∇T .

FIG . II.12: Ecart relatif entre la conductivité thermique observée numériquement et la conductivité

thermique théorique, obtenue par la procédure de Chapman-Enskog, en fonction du rapport de la

différence de température entre les plaques sur la température de référence choisie pour fixer le jeu

de vitesses discrètes. La température de référence choisieici est la moyenne des températures des

plaques. Les cercles représentent l’écart relatif moyennésur tout le champ. Les croix représentent

l’erreur maximale qui est obtenue lorsque la température est la plus éloignée de la température de

référence, c’est-à-dire au niveau des plaques.

La figure II.12 montre que l’erreur sur l’évaluation du flux conductif tend vers zéro lorsque

le gaz est à la température de référence. Lorsque le gaz n’estpas à la température de référence,

une erreur est commise sur l’évaluation du flux conductif, mais elle reste relativement faible même

pour de forts écarts de température. Par exemple lorsque la température du gaz diffère de5% par
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rapport à la température de référence, l’erreur sur le flux est de0.5% environ et lorsque la tempé-

rature diffère de15% l’erreur sur le flux est alors de5% environ.

II.3.6.6 Test avec le modèle de collision ES-BGK

Pour pallier l’inconvénient du nombre de Prandtl non-ajustable associé au modèle BGK, nous

avons mené des simulations numériques en utilisant le modèle collisionnel ES-BGK ( paragraphe

I.5.2). Compte tenue de la forme de la partie hors d’équilibref (1) (voir I.132), le modèle de vitesses

discrètes est directement adapté carf (1) s’écrit toujours sous la forme d’un produit def eq par un

polynôme dev d’ordre3. L’utilisation de ES-BGK par rapport à BGK n’augmente pas l’ordre de

ce polynôme et donc n’augmente pas l’ordre de la quadrature.

Des simulations ont été faites en faisant varier le paramètre b de−1 à 0.9, ce qui, compte te-

nue des expressions des coefficients de transport, correspond à une variation du nombre de Prandtl

de 0.25 à 5. Le tenseur des contraintes visqueuses et le flux de chaleur peuvent être évalués par

le calcul des moments def . Ces “expériences numériques” permettent d’évaluer la viscosité ci-

nématique et la conductivité thermique par comparaison avec les expressions macroscopiques de

Πij = −2ρν ∂ui

∂xj
et Jq = −λ∇T . Ces résultats sont en très bon accord avec les valeurs théoriques

données par la procédure de Chapman-Enskog (voir Fig II.13).

II.4 Conclusions du chapitre

Avant le travail de He et Luo en 1997 [22], Boltzmann-sur-réseau était essentiellement une

méthode numérique vue comme une alternative aux schémas usuels de résolution de l’équation de

Navier-Stokes pour les fluides isothermes. He et Luo ont démontré que certains schémas Boltzmann-

sur-réseau correspondaient à une discrétisation, à un ordre donné, dans l’espace des phases, de

l’équation cinétique Boltzmann-BGK. Ainsi, plus qu’une alternative numérique à la résolution de

l’équation de Navier-Stokes, Boltzmann-sur-réseau est une méthode numérique de résolution de

l’équation de Boltzmann-BGK à un ordre donné. Cette nouvelle vision de Boltzmann-sur-réseau

redonne un intérêt supplémentaire à la méthode notamment dans les domaines de la microfluidique

et des gaz raréfiés pour lesquels les équations macroscopiques usuelles perdent leurs validités.

Reprenant la procédure de He et Luo, basé sur la quadrature deGauss-Hermite pour discrétiser

l’espace des vitesses, dans ce travail de thèse, nous avons proposé un modèle Boltzmann-sur-réseau

pour les fluides anisothermes. Le modèle correspond à une résolution de l’équation de Boltzmann-

BGK à un ordre donné qui correspond à l’ordre1 du développement de Chapman-Enskog, c’est à
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FIG . II.13: Nombre de Prandtl en fonction de b pour des simulations BsR appuyées sur un modèle

collisionnel ES-BGK. En trait plein, expression analytique obtenue par la procédure de Chapman-

Enskog,Pr = 1
2(1−b)

. Les cercles représentent le Prandtl obtenu par les “expériences numériques”

en remontant à la conductivité et à la viscosité par le calculdes flux.

dire au domaine de validité des équations macroscopiques usuelles. Mais l’ordre de résolution peut

être amélioré en augmentant l’ordre de la quadrature de Gauss-Hermite si les applications visées

le nécessitent. Concernant les intégrations spatiales et temporelles, nous avons utilisé des sché-

mas numériques simples respectivement d’ordre2 et d’ordre1. Il est envisageable d’améliorer les

vitesses de calcul en utilisant des schémas numériques plusévolués mais ce n’était pas le propos

de ce travail de thèse.

Enfin, le modèle proposé a été testé et validé sur des exemplesacadémiques pour lesquels il

existe une solution analytique : décroissance de vortex, propagation d’onde acoustique, stratifica-

tion d’une colonne isotherme, écoulement de Couette et conduction pure, pour quantifier les erreurs

obtenues sur le flux de chaleur. Ce dernier test montre la pertinence de la démarche puisque le flux

de chaleur est le moment d’ordre le plus élevé de la fonction de distributionf . Le savoir-faire qui

vient d’être détaillé ici concernant les écoulements monophasiques anisothermes sera directement

exploité au chapitre V pour l’étude d’écoulements diphasiques anisothermes.





Chapitre III

Modélisation cinétique des fluides

non-idéaux, équation de Boltzmann-Enskog

Le premier chapitre a permis de présenter dans les détails l’établissement de l’équation de

Boltzmann. Nous nous sommes ensuite appuyé sur l’équation de Boltzmann, au chapitre II, pour

établir un schéma Boltzmann-sur-Réseau, d’abord en écoulement isotherme, puis en écoulement

anisotherme. Nous cherchons maintenant à étendre cette méthodologie aux écoulements en pré-

sence de transition de phase liquide-vapeur. Pour cela, nous commençons par une présentation

détaillée de la cinétique et la thermodynamique des fluides non-idéaux. Parmi les hypothèses né-

cessaires à la dérivation de l’équation de Boltzmann, il y a l’hypothèse de gaz dilué et l’hypothèse

que les interactions entre particules (supposées ponctuelles) sont décrites par des collisions sup-

posées ponctuelles et instantanées et respectant les invariants collisionnels (masse, quantité de

mouvement et énergie). Ces hypothèses correspondent aux hypothèses du gaz parfait. Dans ce

cadre, seule l’énergie cinétique des particules contribueà l’énergie totale du système (l’énergie

d’interaction est nulle).

Pour les gaz moins dilués, la distance moyenne entre particules diminue, de sorte que l’hypo-

thèse des collisions locales instantanées est moins pertinente. En effet, les interactions entre parti-

cules sont de types répulsifs à courte portée, et attractives à longue portée en tendant asymptotique-

ment vers zéro quand la distance entre particules augmente.Ainsi, le gaz dilué correspond à une

situation où la distance moyenne entre particules est telleque l’attraction est négligeable. En re-

vanche lorsque la densité du gaz est telle que la portée des interactions devient de l’ordre de la

distance moyenne entre particules, alors ces interactionsne peuvent plus être négligées. Comme

nous allons le voir, ces interactions peuvent conduire à dessituations de transitions de phase.

En préalable à la présentation de l’équation de Boltzmann-Enskog qui est l’équation de Boltz-

75



76 III Modélisation cinétique des fluides non-idéaux

mann modifiée pour prendre en compte une interaction plus fineentre particules, nous allons faire

quelques rappels sur la thermodynamique de l’équilibre dessystèmes liquide-vapeur et en particu-

lier la modélisation thermodynamique de l’interface.

III.1 Thermodynamique de l’équilibre des systèmes

liquide-vapeur

Pour une bonne partie de ce qui suit nous allons utiliser comme modèle, le fluide de van der

Waals de façon à mettre évidence assez simplement la plupartdes effets que nous souhaitons

étudier. Ceci peut bien sûr s’étendre sans problème à des équations d’état plus réalistes. L’équation

d’état, qui relie la pressionpb à la températureT et à la masse volumique du fluide, est :

pb(ρ, T ) =
ρrT

(1 − bρ)
− aρ2 (III.1)

avecr = R/M la constante massique des gaz parfaits eta et b des paramètres caractérisant le

fluide. Cette équation s’écrit aussi classiquement en fonction du volume du système :

pb(V, T ) =
nRT

(V − n b′)
− a′

n2

V 2
(III.2)

avecn le nombre moles,b′ = bM eta′ = aM2. Pour dériver cette équation d’état, on considère en

général un potentiel intermoléculaireu(r) de type Lennard-Jones (voir figure III.1). Ce potentiel

présente une forte répulsion lorsque la distance entre les deux particules est inférieure àr0. Par

ailleurs, le potentiel présente une partie attractive qui tend asymptotiquement vers zéro lorsque la

distance entre les particules croît. Les hypothèses utilisées par la physique statistique pour dériver

l’équation d’état de van der Waals à partir de ce potentiel sont les suivantes :

– Les particules sont considérées comme des sphères dures derayonr0.

– La partie attractive est traitée en champ moyen.

L’hypothèse sphère dure a pour conséquence qu’il existe un volume minimalV0 occupé par

le fluide. Ce volume est approximativement donné en multipliant le volume d’une particule par le

nombre de particules :V0 = N4/3πr3
0. Ce qui se traduit par une masse volumique maximaleρ0 =

N m/V0 = m/(4/3πr3
0) avecm, la masse d’une particule. C’est ce que représente le paramètre

b dans l’équation de van der Waals,b = 1/ρ0. Concernant la partie attractive, si on considère une

particule située enr 1 qui subit la somme de toutes interactions des particules situées dans l’espace,

le potentiel effectif s’écrit :

Ueff (r 1) =

∫
ρ(r) u(r 1 − r) dr (III.3)
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L’hypothèse champ moyen consiste à approximerρ(r) parρ(r 1). Cette hypothèse repose sur le fait

que l’attraction tend très vite vers zéro et de cette façon seules les particules situées à quelques

rayons de sphère dure contribuent au potentiel effectif. Ainsi le potentiel effectif s’approxime par :

Ueff (r 1) ≈ −2aρ(r 1) (III.4)

aveca = −1

2

∫
u(r1 − r ) dr . C’est ce que représente le paramètrea dans l’équation de van der

Waals.
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FIG . III.1: Potentiel intermoléculaire de Lennard-Jones. L’expression du potentielu(r) entre deux

particules séparées par une distancer estu(r) = 4u0

[(r0
r

)12

−
(r0
r

)6
]
. Ce potentiel est carac-

térisé par deux paramètres :u0 qui est la profondeur du puits de potentiel etr0 le paramètre de

“sphère dure”.r0 correspond à la distance en dessous de laquelle les particules se repoussent.

La figure III.2 est un tracé des isothermes de van der Waals, c’est-à-dire l’évolution de la

pressionpb en fonction de la masse volumiqueρ pour différentes températures. Un fluide pouvant

être décrit par une équation de van der Waals, présente un état macroscopique particulier appelé

point critique, de coordonnées(Tc =
8a

27rb
, ρc = 1/(3b), pc = a/(27b2)). On peut noter que si

la température est inférieure à la température critique (T < Tc), il existe trois états de masse

volumique différente qui ont la même pression et même température. Autrement dit, lorsqu’on

impose au système une température extérieureT0 < Tc et une pression extérieurep0, celui-ci peut

‘a priori’ exister à l’équilibre thermodynamique, sous trois états de masse volumique différente.

La question qui se pose alors est : quel est l’état d’équilibre ? le système évolue-t-il vers une masse

volumique en particulier ou existe-t-il la possibilité de coexistence de phases de masses volumiques

différentes ?
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FIG . III.2: Tracé de trois isothermes de l’équation d’état de van der Waals dans le plan(pb, ρ)

(a) et dans le plan(pb, V ) (b). Trois isothermes particulières sont représentées, une pour laquelle

T < Tc, une pourT = Tc et une pourT > Tc.

Pour répondre à cette question, on considère une massem de fluide obéissant à l’équation

d’état de van der Waals emprisonnée dans un cylindre fermé sur le haut par un piston mobile sans

frottement. Le cylindre qui est perméable aux transferts dechaleur est placé dans une atmosphère

de températureT0 < Tc et de pressionp0 (voir figure III.3). Trois états différents du système

correspondant à trois volumes différents respectent les contraintes imposées par l’extérieurT0 etp0.

Sans rentrer dans une démonstration complète, il apparaît clairement par des arguments physiques

que l’état de volumeV0 (tel qu’indiqué sur la figure III.3) est instable à cause du signe de la pente
∂pb

∂V
qui est positif. En effet si on déstabilise légèrement le système lorsque son volume estV0 en

appuyant légèrement sur le piston, le volume va diminuer et la pression du système va diminuer

aussi. Ce qui a pour conséquence que le piston va continuer à descendre, car la pression du système

est inférieure à la pression extérieurep0. Pour la suite nous raisonnons donc comme si cet état

n’existait pas. Pour aller un peu plus loin dans l’analyse onpeut écrire le premier et le deuxième

principe de la thermodynamique dans le cas où le système initialement mis dans un état d’équilibre

quelconque est mis au contact d’un milieu extérieur àT0 etp0 :

∆U = W +Q = −p0∆V +Q (III.5)

∆S =
Q

T0
+ Sp (III.6)

avecSp ≥ 0. Ce qui signifie queT0∆S −Q = T0S
p ≥ 0 et conduit à :

∆U + p0∆V − T0∆S ≤ 0 (III.7)
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Cela signifie que la fonctionG∗ = U + p0V − T0S ne peut que décroître au cours d’une transfor-

mation pour laquelle la température et la pression extérieure sont imposées. L’équilibre stable du

système est par définition l’état dont la valeur deG∗ est la plus petite, ce qui n’exclue pas que le

système se “coince” dans un puits de potentiel différent (métastabilité). On exclut dans cette ana-

lyse les états métastables pour se concentrer uniquement sur les états stables. Comme nous l’avons

montré, le système va dans ce cas chercher à minimiser la fonction enthalpie libre. Or formellement

G peut s’écrire à partir de grandeurs massiques sous la forme :

G = mlgl +mvgv (III.8)

avecml + mv = m (dans lequell et v désigne respectivement liquide et vapeur). On note que

le système trouvera son minimum en basculant complètement du côté du potentiel massique le

plus faible. En revanche, si les potentiels massiques sont égaux (ce qui n’existe que pour une seule

pression si la température est fixée) tous les couples(ml, mv) assurent la même valeur du potentiel

G et il existe une infinité d’états qui assurent la contrainte.On est en présence de deux phases et

le fluide est dans les conditions dites de saturation. Si on s’intéresse dans ce cas-là aux deux états

limites, à savoir l’état liquide saturant et l’état vapeur saturante alors on peut écrire simplement :

∆Gl,v = ∆G∗
l,v = 0, ce qui se traduit par :

∆Gl,v = ∆G∗
l,v =

∫
dG =

∫
V dpb = p0(Vv − Vl) −

∫ Vv

Vl

pbdV = 0 (III.9)

Cette expression est vérifiée si la pression extérieurep0 est telle quep0(Vv−Vl) =
∫ Vv

Vl
pbdV . Cette

condition qui correspond à la règle des aires des Maxwell (Figure III.3), détermine la pression de

saturation du fluide qui ne dépend que de la températureT0.

III.1.1 Energie d’interface et la loi de Laplace

On ne cherche pas dans ce paragraphe à redémontrer rigoureusement l’ensemble des relations

thermodynamiques qui concernent le problème de coexistence de phases mais plus de faire sentir

que l’origine est toujours strictement la conséquence des principes fondamentaux. Nous nous inté-

ressons en particulier ici à l’apparition de la loi de Laplace. Pour cela on ne redémontre pas qu’en

l’absence de champ de force la coexistence de phases se fait en présence d’interfaces sphériques.

On étudie donc la possibilité d’existence d’une bulle de vapeur entourée de liquide dans un volume

V fixé (figure III.4).

Partant d’un état d’équilibre quelconque, on met le systèmeen contact avec un thermostat à la

températureT0. Le premier principe s’écrit∆U = Q et le deuxième principeQ = T0∆S − Sp
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FIG . III.3: A l’équilibre thermodynamique le fluide est à températureT0 et à pressionp0. Trois

états de volumes différentsVv, V0 etVl (ou de masses volumiques différentes) respectent ces condi-

tions. Règle des aires de Maxwell : si la pression imposéep0 est telle que les surfaces hachuréesA

etB ont la même aire alors le système peut choisir indifféremment le volumeVv ouVl.

avecSp > 0 ce qui conduit à∆U − T0∆S ≤ 0. Autrement dit la fonctionF ∗ = U − T0S ne

peut que décroître. Trouver le minimum deF ∗ est équivalent à trouver le minimum d’énergie libre

F = U − TS avec des contraintes :T = T0, mv + ml = m et Vv + Vl = V0, avecmv, Vv, ml et

Vl étant les masses et volumes respectifs des phases vapeur et liquide. Afin de minimiserF avec

ces contraintes, nous allons utiliser la méthode des multiplicateurs de Lagrange. Soit une nouvelle

fonctionL = F−λ1(T −T0)−λ2(mv +ml−m)−λ3(Vv +Vl−V0). Avecλi les multiplicateurs de

Lagrange associés aux contraintes. Ainsi le minimum deL correspondra au minimum deF sous

contraintes. Exprimons la différentielle deF :

dF = dU − TdS − SdT (III.10)

Pour exprimer la différentielle de l’énergie interne, nousposons que l’énergie interne est la somme

des énergies internes de chaque phaseUv + Ul, additionnée d’une énergie d’interaction propor-

tionnelle à la surface entre les phasesσA, avecA la surface etσ la tension de surface qui est

caractéristique du fluide. Ainsi nous obtenons :

dF = dUv + dUl + σdA− TdS − SdT (III.11)

dF = δQv − pvdVv + µvdmv + δQl − pldVl + µldml (III.12)

+σdA− TdS − SdT (III.13)
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FIG . III.4: Fluide de van der Waals enfermé dans une boîte indéformableV0 et de températu-

re T0 < Tc. La masse de fluide est telle que l’existence du fluide sous forme d’une seule phase

homogène est instable. Quelles sont les conditions de coexistence à l’équilibre entre la bulle vapeur

de rayonr et le liquide qui l’entoure.

Comme chaque phase est un système ouvert, il faut tenir compte des potentiels chimiques de

chaque phaseµv et µl. Ensuite nous utilisons le fait queδQv + δQl = δQ = TdS, et que les

variations du volume de la bulle et de la surface sont fonction du rayonr : dVv = 4πr2dr et

dA = 8πrdr. Ce qui donne :

dF = (8πrσ − pv4πr
2)dr − pldVl + µvdmv + µldml − SdT (III.14)

Le minimum de la fonctionL(r, Vl, mv, ml, T, λ1, λ2, λ3) et donc le minimum deF (r, Vl, mv, ml, T )

sous contraintes sont donnés par la résolution du système suivant :






∂L

∂r
= −pv4πr

2 + σ8πr − λ34πr
2 = 0

∂L

∂Vl
= −pl − λ3 = 0

∂L

∂mv

= µv − λ2 = 0

∂L

∂ml

= µl − λ2 = 0

∂L

∂T
= −S − λ1 = 0

(III.15)
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Les solutions de ce système imposent :

(pv − pl) =
2σ

r
(III.16)

µv = µl (III.17)

Cela signifie que dans l’expérience décrite où on impose à unemassem de fluide, un volume

V0 et une températureT0 telle que la phase homogène de masse volumiqueρ0 = m/V0 est instable,

il existe une solution diphasique unique où les masses volumiquesρv et ρl de chaque phase sont

telles que les conditions (III.16) et (III.17) sont satisfaites. On peut remarquer que dans le cas où

l’interface est plane (r = ∞), l’énergie d’interface n’a pas de rôle, on retrouvepv = pl = p0 qui

est la pression de saturation déterminée par la règle des aires de Maxwell. Le potentiel chimique

s’identifie à l’enthalpie libre massique généralisant ainsi le résultat du paragraphe précédent.

III.1.2 Modèle d’interface diffuse

Dans la section précédente, la prise en compte de l’interface liquide-vapeur apparaît par l’ajout

d’une énergie de surface proportionnelle à l’aire de l’interface. Ce modèle rend bien compte d’un

saut de pression lorsque l’interface est courbée mais par contre il suppose une interface d’épaisseur

nulle (voir figure III.5 (a)). Ce modèle peut s’avérer non-pertinent pour un fluide non-idéal et il peut

être nécessaire de décrire la variation de masse volumique continûment entre les deux phases (voir

figure III.5(b)). L’épaisseur de l’interface peut même tendre vers l’infini lorsque la température du

fluide s’approche de la température critique.

ρv

l
ρ

ρ

x

(a)

ρv

l
ρ

x

ρ

(b)

FIG . III.5: (a) profil d’interface brusque entre les deux phases de massevolumiqueρv et ρl. (b)

profil d’interface réaliste entre les deux phases de masse volumiqueρv etρl. Dans cette description,

l’objet interface a une épaisseur non-nulle.
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III.1.2.1 Théorie de van der Waals

Avant de présenter la théorie de l’interface de van der Waals, nous devons introduire d’abord

la densité d’énergie libreψ définie telle que l’énergie libreF d’un système est l’intégrale deψ sur

tout le volume :

F =

∫
ψ dr (III.18)

Il est important de noter queψ est une fonction qui se définit en chaque point du système mais

qui dépend a priori de la configuration de tout le système. Ditautrement les effets d’interaction à

distance se traduise sur l’énergie par un terme potentiel qui est directement lié à la façon dont toute

les particules sont placées dans l’espace. Evidemment à l’échelle macroscopique cette dépendance

sera souvent ramené à des termes qui rendent compte de la distribution spatiale à proximité du

point considéré. Toute la subtilité de ce qui suit est ramenée dans la traduction de cette dépendance

à la distribution spatiale. Pour un système homogène de volumeV0, si on néglige les effets de bord

on peut écrire :ψ = F/V0.

Modèle à l’ordre 0 deψ On suppose ici queψ n’est fonction que des variables locales au point

considéré :ψ = ψr. Dans le cadre de ce modèle on peut écrire :F =
∫
ψr dr . Si on suppose que

le fluide obéit à l’équation d’état de van der Waals et que la température est uniforme et vautT0, il

est aisé de montrer que :

ψr = ψr(ρ) = ρrT0 log

(
ρ

1 − bρ

)
− aρ2 (III.19)

Reprenons l’exemple d’un fluide de van der Waals enfermé dansun récipient de volumeV0 avec

une température imposéeT0 < Tc. La massem de fluide est telle que l’état homogène de masse

volumiqueρ0 = m/V0 est instable. L’état d’équilibre est une somme de domaines de deux masses

volumiques différentesρv etρl. Pour trouver le bon couple de masses volumiques il faut minimiser

l’énergie libre sous contrainte de conserver la masse totalem, c’est à dire minimiser l’intégrale

F =
∫
ψr(ρ(r)) dr avec la contrainte

∫
(ρ(r) − ρ0) dr = 0. Pour ceci, on utilise comme précé-

demment la méthode des multiplicateurs de Lagrange. Ainsi la minimisation deF sous contraintes

sera assurée par la minimisation de l’intégraleL =
∫

[ψr(ρ(r )) − λ(ρ(r) − ρ0)] dr . Le minimum

de cette intégrale est tel que
∂ψr

∂ρ
− λ = 0. Ce qui signifie que le couple (ρv, ρl) qui assure le

minimum deF sous contraintes est tel que :

pb(ρv) = pb(ρl) (III.20)
∂ψ

∂ρ

∣∣∣∣
ρv

=
∂ψ

∂ρ

∣∣∣∣
ρl

(III.21)
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où pb est la pression donnée par l’équation d’état. Nous retrouvons donc le résultat précédent qui

correspond au cas où l’énergie de surface est nulle, en identifiant le potentiel chimiqueµ à
∂ψ

∂ρ
.

La figure III.6 illustre une méthode graphique équivalente àla règle des aires de Maxwell pour

déterminer, à partir de la représentation deψ(ρ), les deux masses volumiquesρv et ρl pouvant

exister sous les mêmes conditions de température et de pression. En remarquant que la pression

peut s’écrirepb(ρ) = ρ
∂ψ(ρ)

∂ρ
−ψ(ρ). On note que pour un fluide de masse volumiqueρ, elle se lit

comme l’opposé de l’ordonnée à l’origine de la tangente àψ enρ. Ainsi, s’il existe deux masses

volumiques telles que les tangentes deψ en ces points sont confondues, alors ces deux masses

volumiques ont la même pression et le même potentiel chimique.

FIG . III.6: Allure de ψr en fonction deρ pour un fluide de van der Waals. Les deux masses

volumiques coexistantesρv et ρl sont telles que les tangentes deψ en ces points sont confondues.

Cette construction graphique est équivalente à la règle desaires de Maxwell.

Modèle à l’ordre 1 deψ A partir du modèle deψ décrit dans le paragraphe précédent, il est clair

qu’aucun effet de distance lié aux variations spatiale deρ n’a été pris en compte. Ceci avait pour

conséquence de ne faire apparaître aucun terme spécifique enterme énergétique lié à l’interface.

On retrouvait donc les résultats connus en l’absence de tension de surface. Le modèle que nous

présentons maintenant et qui a été introduit par van der Waals, traduit les effets à distance par

l’introduction d’un terme faisant intervenir le gradient deρ. Nous ne discutons pas des arguments
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qui mènent à la forme présentée et nous posons directement :

ψ = ψr +
κ

2
|∇ρ|2 (III.22)

Ainsi il vient :

F =

∫ (
ψr +

κ

2
|∇ρ|2

)
dr (III.23)

Le terme supplémentaire empêche les variations brusques demasse volumique sur une zone étroite.

En effet, une interface dont la taille tend vers zéro correspond à un gradient de masse volumique qui

tend vers l’infini et ne permettra pas de minimiser l’énergielibre F . La minimisation de l’énergie

libre ne peut se faire que par une variation continue de la masse volumique entre les phases.κ est

un paramètre caractérisant le fluide, dont on verra plus tardqu’il se relie au potentiel d’interaction

entre les particules. Cette théorie a été reprise en1957 par Cahn et Hilliard [42] pour décrire

des systèmes nonuniformes tels que les mélanges binaires. Leur développement consiste à dire

que pour un système avec des interactions internes, la densité d’énergie libreψ est une fonction

du champ de concentrationc 1. Dire queψ au pointr dépend du champ entier de concentration

est équivalent à dire queψ au pointr dépend de toutes les dérivées de la concentrationc en r :

ψ(r , [c(r)]) = ψ(r , c,∇c,∇2c, . . .). Donc l’idée de Cahn et Hilliard est de développerψ autour

deψr qui est la densité d’énergie libre lorsque la concentrationdu système est uniforme. Pour des

raisons de symétrie le premier terme non-nul du développement est proportionnel à|∇c|2.

ψ ≈ ψr +
κ

2
|∇c|2 (III.24)

Ceci est bien équivalent à la théorie de van der Waals. Pour cette raison, nous emploierons dans

tout le reste du manuscrit alternativement les expressionsde “théorie de van der Waals” ou “théorie

de Cahn-Hilliard” pour faire référence à ce modèle de densité d’énergie libre.

III.1.2.2 Profil d’interface et énergie d’interface

Le développement deψ introduit par van der Waals mène à une variation continue de masse

volumique entre le liquide et la vapeur. La question qui se pose est donc de trouver le profil de

masse volumique entre deux phases. Imaginons un équilibre liquide-vapeur d’un fluide enfermé

dans un récipient de volumeV0 et à températureT0 en présence de gravité. La gravité implique que

la vapeur soit placée au-dessus du liquide, ce qui a pour conséquence que la masse volumique ne

dépend que de l’altitudez (voir figure III.7). Soit la fonctionΨ(ρ) =
κ

2
|∇ρ|2 −W (ρ) avecW (ρ)

1Cahn et Hilliard s’intéressaient à la concentrationc d’une espèce dans une autre espèce.c et ρ ont un rôle équi-

valent pourψ.
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l’écart de la densité d’énergie libreψr à la double tangente définie pary = ρµ0 − P0 (voir figure

III.8).
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FIG . III.7: Allure du profil de masse volumiqueρ d’un équilibre liquide-vapeur avec gravité.

La fonctionΨ représente la densité d’énergie libre en “excès”. En effet,dans chaque phase,

il n’y pas d’excès d’énergie libre car dans chaque phaseW (ρv) = W (ρl) = 0 et |∇ρ|2 = 0.

La seule zone où il y a un excès d’énergie libre est au niveau del’interface. Nous rappelons que

l’équilibre est tel que l’énergie libreF soit minimum sous contraintes. Ceci a pour conséquence

que le profil deρ à l’interface est tel que l’excès d’énergie libre soit minimum. Par définition

l’excès d’énergie libre est l’intégrale sur tout l’espace de la densité d’énergie libre en excès :∫
Ψ(r) dr = A

∫
Ψ(r) dz avecA la section du récipient. Sans entrer dans les détails du calcul

variationnel qui permet de minimiser cette intégrale, on peut simplement dire que le problème

est équivalent à trouver le profil qui est solution de l’équation différentielle d’Euler-Langrange :

κ
∂2ρ

∂z2
= −∂W

∂ρ
. Avec les conditions aux limites adéquates, on trouve donc le profil deρ qui

minimise l’énergie libre. Techniquement il est plus simpled’intégrerz en fonction deρ queρ en

fonction dez :

z(ρ) = z0 ±
(κ

2

)1/2
∫ ρl

ρv

[−W (ρ)]−1/2 dρ (III.25)

avecz0 la position de l’interface oùρ(z0) = (ρv + ρl)/2. Le signe± signifie qu’il y a une branche

ascendante telle que la masse volumique tend versρv et une branche descendante telle que la masse

volumique tende versρl. Par définition l’énergie libre de l’interfaceFI correspond à la différence

entre l’énergie libre de tout le systèmeF moins l’énergie libre de chaque phaseFv etFl.
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FIG . III.8: Allure deW (ρ) = ρµ0−P0−ψr(ρ). Cette fonction est nulle dans chaque phase.W (ρ)

est non nulle uniquement à l’interface puisqu’à l’interface, ρ passe par toutes les valeurs entreρv

etρl.

FI = F − Fv − Fl (III.26)

FI = A

∫
ψ dz − A

∫ h

z0+e/2

ψv dz − A

∫ z0−e/2

0

ψl dz (III.27)

FI = A

∫ z0+e/2

z0−e/2

(ψ − ψl,v) dz (III.28)

avecψl,v = ψl si z < z0 etψl,v = ψv si z > z0. Cette intégrale est uniquement non-nulle au niveau

de l’interface. Bien queψ − ψl,v soit différent de la densité d’énergie libre en excèsΨ, ces deux

fonctions ont la même intégrale :FI = A
∫

Ψ dz. Par définition la tension de surfaceσ définie

précédemment est la contribution de l’interface à l’énergie libre du système par unité de surface,

donc :

σ =
FI

A
=

∫
Ψ dz (III.29)

Ainsi à l’équilibre, pour le profil d’interface solution, latension de surfaceσ peut s’écrire sous
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trois formes équivalentes :

σ =

∫
κ|∇ρ|2 dz (III.30)

= −2

∫
W [ρ(z)] dz (III.31)

=

∫ ρl

ρv

√
−2κW (ρ) dρ (III.32)

Les deux premières expressions nécessitent la connaissance du profil solution à l’équilibre alors

que la dernière expression permet d’évaluer la tension de surface par l’intégration deW (ρ) qui ne

dépend que de l’équation d’état et du paramètreκ qui est généralement choisi indépendamment de

ρ. Cette dernière expression permet donc de dire que la tension de surface a un rapport d’échelle

en
√
κ. Les figures III.9 représentent la tension de surface en fonction de la température. La figure

III.9.(a) représente le rapport théorique de la tension de surfaceσ sur la valeur de
√
κ en fonction

de la température réduite du fluide, évalué par l’expression(III.32). La figure III.9.(b) permet de

comparer la tension de surface issue de corrélations pour lediazote avec la tension de surface

obtenue à partir de l’expression (III.32) en ajustant le coefficient κ et utilisant l’équation d’état de

van der Waals.
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FIG . III.9: (a) Rapport de la tension de surface sur
√
κ en fonction de la température réduite pour

un fluide de van der Waals. (b) Comparaison entre la tension desurface du diazote et la tension de

surface obtenue selon la théorie de van der Waals en ajustantle paramètreκ.

Ainsi dans la théorie de van der Waals de l’interface, l’énergie d’interface apparaît naturel-

lement en même temps que la variation continue de masse volumique d’une phase à l’autre. Si
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on reprend le cheminement : les interactions attractives entre particules induisent une variation

continue de la masse volumique entre les deux phases. L’énergie d’interface apparaît de fait par la

présence dans l’interface d’un profil continu de masses volumiques entreρv et ρl ; ce profil d’in-

terface crée un “excès” d’énergie libre par rapport aux phases homogènes. Cet excès d’énergie

libre par unité de surface correspond donc par définition à latension de surfaceσ. Et le profil so-

lution d’interface correspond au profil qui minimise cet excès d’énergie libre. On remarque aussi

qu’au niveau de l’interface, la pression passe par un ensemble de valeurs différentes de la pres-

sion d’équilibre de chaque phasepb(ρv) = pb(ρl). L’équilibre mécanique est assuré à la traversée

de l’interface sans l’égalité des pressions. L’équation d’état de van der Waals comme toutes les

équations d’état a été dérivée pour des systèmes thermodynamiques infinis et uniformes. Pour des

systèmes non-uniformes, comme un équilibre liquide-vapeur avec interface, le concept de pression

peut être redéfini. Dans le cadre de la théorie de l’interfacede van der Waals, on peut définir un

tenseur des pressions [43] :

Pαβ = P (r)δαβ + κ
∂ρ

∂xα

∂ρ

∂xβ
(III.33)

P (r) = pb − κρ∇2ρ− κ

2
|∇ρ|2 (III.34)

avecpb correspondant à l’équation d’état du fluide. Pour les systèmes qui présentent un équili-

bre non-uniforme, la condition d’équilibre n’est pas∇pb = 0 mais se généralise par∂βPαβ = 0.

Pour l’exemple de la figure III.7 la composante normale de ce tenseur des pressions estPzz =

pb − κ
∂2ρ

∂z2
+ κ

(
∂ρ

∂z

)2

. L’équilibre mécanique est assuré à la traversée de l’interface car le profil

de masse volumique solution est tel quePzz ait pour valeurpb(ρv) = pb(ρl) dans tout le fluide.

III.2 Equation de Boltzmann-Enskog

Dans cette partie, nous allons présenter l’équation de Boltzmann-Enskog qui peut être vue

comme l’extension ou la modification de l’équation de Boltzmann pour les fluides non-idéaux. En

effet, comme il a été dit précédemment, les hypothèses de l’équation de Boltzmann correspondent

au modèle du gaz parfait : gaz suffisamment dilué pour considérer les particules ponctuelles et

les collisions comme des chocs ponctuels instantanés. Dansson travail original [44], Enskog a

proposé une modification du terme collisionnel de l’équation de Boltzmann en tenant compte de la

taille des particules. Autrement dit, si on considère que lepotentiel de Lennard-Jones (figure III.1)

est un bon modèle pour décrire les interactions entre particules d’un gaz non-idéal, l’équation de

Boltzman-Enskog originale traite uniquement la partie répulsive de ce potentiel. L’équation de

Boltzmann-Enskog étendue qui va être présentée ici, en suivant la démarche de He et Doolen [45],
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contient un terme collisionnel supplémentaire pour tenir compte de la partie attractive du potentiel

intermoléculaire.

Formellement, d’après la hiérarchie BBGKY, l’équation d’évolution de la fonction de distribu-

tion f(r 1, v1, t) (comme nous l’avons vu au chapitre I) est :

∂f

∂t
+ v · ∇r1f +

F
m

· ∇v1
f =

∫ ∫
∂f (2)

∂v1

· ∇r1V (r12) dv2 dr 2 (III.35)

avecf (2) = f (2)(r 1, v1, r 2, v2, t) la fonction de distribution à deux corps,F un champ de force

extérieure etV (r12) le potentiel entre deux particules séparées d’une distancer12 = ‖r 2 − r 1‖.

Afin de modéliser ce terme collisionnel, nous séparons l’intégrale sur l’espace en deux régions :

∫ ∫
∂f (2)

∂v1
· ∇r1V (r12) dv2 dr 2 =

∫

D1

∫
∂f (2)

∂v1
· ∇r1V (r12) dv2 dr 2

+

∫

D2

∫
∂f (2)

∂v1
· ∇r1V (r12) dv2 dr 2

Le domaineD1 correspond àr12 < d0 avecd0 la distance à partir de laquelle la force intermolé-

culaire change de signe c’est-à-dire au minimum du potentiel V (r12). Le domaineD2 correspond

donc à la partie attractive du potentiel.

III.2.1 Modélisation du terme collisionnel répulsif : terme d’Enskog

Regardons tout d’abord, le modèle du terme collisionnel selon Enskog lorsque la taille des

particules est prise en compte. L’intégraleI1 sur le domaineD1 est modélisée par des collisions de

sphères dures de diamètred0 :

I1 =

∫
dµ2

[
χ(r 1 +

1

2
d0 k)f(r1, v′

1)f(r 1 + d0 k, v′
2)

− χ(r 1 −
1

2
d0 k)f(r 1, v1)f(r 1 − d0 k, v2)

]
(III.36)

avecµ2 l’espace collisionnel de la seconde particule de vitessev2. χ est la fonction de corrélation

à deux corps telle quef (2)(r 1, v1, r 2, v2) = χ(r 1, r 2)f(r 1, v1)f(r 2, v2). k est le vecteur unitaire

dirigé du centre de la seconde particule vers la première comme le montre la figure III.10. Le terme

collisionnel de Boltzmann se traduit par la ponctualité desparticules et des collisions (d0 = 0) et

par l’hypothèse du chaos moléculaire (χ = 1).

Dans un deuxième temps, la modélisation d’Enskog consiste àdévelopperf(r1 + d0 k, v′
2),

f(r 1 − d0 k, v2) et χ autour de la positionr 1. En utilisant l’écriture condenséef1 = f(r 1, v1),
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v

v

1

2

r1

k

1r − d  k0

FIG . III.10: Illustration de la prise en compte de la taille des particules pour le terme collisionnel

d’Enskog.

f ′
1 = f(r 1, v′

1), f2 = f(r1, v2) etf ′
2 = f(r 1, v′

2), et sans entrer dans les calculs, on obtient :

I1 = χ

∫
dµ2 [f ′

1f
′
2 − f1f2] (III.37)

+ χ

∫
dµ2 d0k · [f ′

1∇f ′
2 + f1∇f2] (III.38)

+
1

2

∫
dµ2 d0k · ∇χ [f ′

1f
′
2 + f1f2] (III.39)

Ce développement permet de faire apparaître, en première position, le terme collisionnel de l’équa-

tion de Boltzmann au facteur multiplicatifχ près. Ce premier terme peut donc être modélisé par

l’approximation BGK, ES-BGK ou toute autre approximation du terme collisionnel de Boltzmann.

Concernant les deux autres termes, Enskog proposa de les évaluer en approximantf1, f ′
1, f2 et f ′

2

parf eq
1 , f ′ eq

1 , f eq
2 etf ′ eq

2 . Au final, le terme collisionnel d’Enskog s’écrit :



92 III Modélisation cinétique des fluides non-idéaux

I1 = χΩ0 (III.40)

− bρχf eq
1 (v1 − u) ·

[
∇ ln(ρ2χT ) +

3

5
(C2 − 5

2
)∇ lnT

]
(III.41)

− bρχf eq
1

2

5

[
2CC : ∇u + (C2 − 5

2
)∇ · u

]
(III.42)

avecΩ0 le terme collisionnel ordinaire de Boltzmann,ρ, u et T les champs macroscopiques au

point considéré etC =
(v1 − u)√

2rT
dont la norme estC. La taille des particules apparaît viab qui

s’apparente à un volume massique :b =
2

3m
πd3

0. Ainsi le terme collisionnel d’Enskog peut être vu

comme une extension du terme collisionnel de Boltzmann puisque dans la limite où les particules

sont ponctuelles (b = 0) et l’hypothèse de chaos moléculaire (χ=1), on retrouveI1 = Ω0. Ce terme

d’Enskog fait apparaître les dérivées spatiales des champsmacroscopiques et nécessite un modèle

pour la fonction de corrélationχ. Différents modèles deχ sont proposés en physique statistique

de l’équilibre [46]. Dans ce travail, nous nous limiterons àl’un des modèles les plus simples qui

correspond au même niveau d’approximation que celui qui permet d’obtenir l’équation d’état de

van der Waals :χ =
1

1 − bρ
.

III.2.2 Approximation de champ moyen du terme d’interactions attractives

En complément du travail d’Enskog, il est possible de modéliser le terme collisionnel dans le

domaineD2, c’est-à-dire le domaine où les interactions entre particules sont attractives. Dans ce

domaine nous allons faire l’hypothèse du chaos moléculaire, f (2)(r 1, v1, r 2, v2) = f(r 1, v1)f(r 2, v2) =

f1 f2, ce qui permet d’écrire :

I2 =

∫

D2

∫
∂f (2)

∂v1
· ∇r1V (r12) dv2 dr 2 (III.43)

=

∫

D2

∫
f2
∂f1

∂v1
· ∇r1V (r12) dv2 dr 2 (III.44)

= ∇r1

[∫

D2

ρ(r 2)V (r12) dr 2

]
· ∂f1

∂v1
(III.45)

= ∇r1Vm · ∇v1f1 (III.46)

Le termeVm =
∫
D2
ρ(r 2)V (r12) dr 2 représente la somme de toutes les interactions attractivesde

toutes les particules agissantes sur la particule située enr 1. C’est pourquoiVm est appelé potentiel

moyen subit par la particule située enr 1. Le gradient de ce potentiel∇Vm est donc l’opposé de la
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résultante des forces des particules de tout le champ agissant sur la particule enr 1. Ce potentiel

moyen peut être approximé en faisant un développement au second ordre deρ(r 1) autour der 1 :

ρ(r 2) ≈ ρ(r 1) + r 21 · ∇ρ+
1

2
r 21r 21 : ∇∇ρ (III.47)

Ce développement permet d’écrire :

Vm = −2aρ− κ∇2ρ (III.48)

aveca etκ des constantes du potentiel intermoléculaires :

a = −1

2

∫

r>d0

V (r) dr (III.49)

κ = −1

6

∫

r>d0

r2 V (r) dr (III.50)

Il apparaîtra après la procédure de Chapman-Enskog que ces deux paramètres correspondent bien

bien aux paramètresa et κ introduits dans la théorie de van der Waals (équation d’étatet inter-

face diffuse). Ainsi le potentiel “ressenti” par la particule située enr 1 peut être approximé par

la connaissance enr 1 de la masse volumiqueρ et de son laplacien. Pour des raisons de symé-

trie l’intégrale contenant le gradient de masse volumique est nulle. Ce développement se justifie

par le fait que le potentiel intermoléculaire tend vers zérotrès vite à une distance de l’ordre de

quelques diamètres de particule. Seul l’environnement proche de la particule considérée joue un

rôle important.

III.2.3 Equation cinétique pour les fluides non-idéaux

Le modèle cinétique que nous allons considérer pour décrireun fluide non-idéal est donc au

final :
∂f

∂t
+ v · ∇rf + (

F
m

−∇rVm) · ∇vf = I1 (III.51)

avecI1 le terme collisionnel d’Enskog décrit précédemment. Le terme collisionnel d’attraction

∇rVm · ∇vf a le même statut qu’une force extérieure ; le traitement champ moyen de la partie at-

tractive du potentiel d’interaction permet de voir la sommede toutes les attractions agissant sur une

particule enr comme une force extérieure. Par rapport à l’équation de Boltzmann des gaz dilués,

ce modèle cinétique nécessite un modèle d’interaction interparticulaire qui apparaît par l’intermé-

diaire de la taille des particules dans le terme collisionnel d’EnskogI1 et par l’intermédiaire (dans

le terme d’attraction∇rVm · ∇vf ) de deux constantesa etκ qui sont respectivement les moments

d’ordre zéro et d’ordre deux du potentiel interparticulaire. Il est nécessaire également d’avoir un
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modèle pour la fonction de corrélationχ. Nous pouvons remarquer aussi que le terme d’Enskog

I1 qui représente la partie répulsive du potentiel d’interaction dépend explicitement des gradients

des champs macroscopiquesρ, u etT alors que le terme qui représente la partie attractive du po-

tentiel dépend explicitement du gradient de la masse volumique et du gradient de son laplacien :

∇rVm = −2a∇ρ− κ∇∇2ρ.

III.3 Passage au macroscopique à partir de l’équation de

Boltzmann-Enskog étendue

Comme pour l’équation de Boltzmann, il est possible de fairele développement de Chapman-

Enskog (chapitre I) pour trouver les trois équations macroscopiques de conservation de la masse,

de la quantité de mouvement et de l’énergie lorsque la fonction de distributionf est proche de la

distribution d’équilibref eq.

III.3.1 Equation de conservation de la masse

L’équation de conservation de la masse n’est bien entendu pas modifiée puisque le nouveau

terme collisionnel ne crée ni ne détruit de masse :

∂ρ

∂t
+ ∇ · (ρu) = 0 (III.52)

III.3.2 Equation de conservation de la quantité de mouvement

Des termes supplémentaires apparaissent dans l’équation de conservation de la quantité de

mouvement à cause des interactions entre particules.

(
∂

∂t
+ uβ∂β)uα =

Fα

m
− ∂αVm − 1

ρ
∂αpGP − 1

ρ
∂α

(
ρ2brTχ

)
+

1

ρ
∂βΠαβ (III.53)

Cette équation contient comme précédemment (I.124) le tenseur des contraintes visqueuses noté

∂βΠαβ ici. Cette équation contient également le gradient de la pression des gaz parfaits∂αpGP

avecpGP = ρrT qui représente la variation de quantité de mouvement par transport des particules.

Par rapport à l’équation de conservation dérivée précédemment (I.124), celle-ci contient donc deux

termes supplémentaires :∂αVm et∂α (ρ2brTχ). Le terme∂αVm a pour origine la partie attractive du
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potentiel interparticulaire, il représente un échange de quantité de mouvement à distance entre les

particules. Le terme∂α (ρ2brTχ) représente un échange de quantité de mouvement entre particules

causé par la partie répulsive du potentiel interparticulaire. Nous pouvons réécrire cette équation

sous la forme suivante :

(
∂

∂t
+ uβ∂β)uα =

Fα

m
− 1

ρ
∂βPαβ +

1

ρ
∂βΠαβ (III.54)

en définissant le tenseur des pressionsPαβ = Pδαβ + κ ∂ρ
∂xα

∂ρ
∂xβ

et P = ρrT (1 + bρχ) − aρ2 −
κρ∇2ρ − κ

2
|∇ρ|2. On retrouve ainsi le tenseur des pressions (III.33) dérivéprécédemment dans

la cadre de la théorie de van der Waals de l’interface liquide-vapeur à l’équilibre en identifiant

l’équation d’état du fluide à l’équilibre parpb = ρrT (1 + bρχ) − aρ2. En prenant comme modèle

pour la fonction de corrélationχ = 1
1−bρ

, on trouve que le fluide obéit à l’équation d’état de van

der Waals :pb = ρrT
1−bρ

− aρ2. Si on utilise l’approximationBGK pour le terme collisionnelΩ0, le

coefficient de viscosité dynamique s’identifie àµ = ρrTτ( 1
χ

+ 2
5
bρ).

III.3.2.1 A propos de l’équation de quantité de mouvement :

Le modèle collisionnel d’Enskog et le traitement champ moyen de la partie attractive permet

d’obtenir une équation de conservation de la quantité de mouvement pour un fluide obéissant à

l’équation de van der Waals c’est-à-dire un fluide qui peut coexister sous deux phases : vapeur

et liquide. Autrement dit, l’équation obtenue est ‘a priori’ valable et pertinente dans tout le fluide

quelle lque soit sa forme liquide ou vapeur. De plus cette équation contient le tenseur des pressions

de la théorie de l’interface de van der Waals, ce qui signifie que cette équation est capable de décrire

l’interface liquide-vapeur. On remarque qu’à l’équilibreet en l’absence de champ de force exté-

rieure, on obtient∂βPαβ = 0. On retrouve ainsi la condition d’équilibre du fluide de la théorie de

l’interface de van der Waals. Cette propriété permet de qualifier l’équation de Boltzmann-Enskog

avec champ moyen de “thermodynamiquement cohérente” [45].D’un point de vue macroscopique

l’équation de conservation de la quantité de mouvement est un bilan des forces sur la particule

fluide. Dans l’équation (III.54), il y a trois types de forces: le champ de force extérieureFα, le gra-

dient du tenseur des pressions∂βPαβ et le gradient du tenseur des contraintes visqueuses∂βΠαβ .

La séparation entre le tenseur des pressions et le tenseur des contraintes visqueuses permet de faire

la distinction entre la partie à l’équilibre et la partie hors d’équilibre du tenseur des contraintes.

D’autres choix de distinction entre les forces agissant surla particule fluide sont pertinents, comme

par exemple :

(
∂

∂t
+ uβ∂β)uα =

F tot
α

m
− 1

ρ
∂αpGP +

1

ρ
∂βΠαβ (III.55)
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avecF tot
α = Fα−m∂αVm−m1

ρ
∂α (ρ2brTχ). Cette “force totale” est la somme de la force extérieure

et des forces internes aux systèmes ayant pour origine le potentiel d’interactions interparticulaires.

Dans cette écriture, ni le tenseur des pressions, ni l’équation d’état n’apparaissent. La seule pres-

sion qui apparaît est la pression cinétiquepGP = ρrT . Cette écriture est basée sur la distinction

entre les forces réellesF tot
α et une force “apparente”∂αpGP . En effet, la pression cinétique a pour

origine le transport pur de particules au niveau du modèle cinétique. Lorsqu’on examine la procé-

dure de Chapman-Enskog, on voit que la moyenne selon la distribution d’équilibre du transport de

quantité de mouvement
∫
dv vαv · ∇f eq = ∂β 〈vαvβ〉eq se décompose en deux termes au niveau

macroscopique : le transport macroscopiqueuβ∂βuα et le gradient de pression cinétique∂αpGP qui

apparaît donc comme une force “apparente” agissant sur la particule fluide contrairement àF tot
α

qui représente l’ensemble des forces réelles qu’elles soient externes ou internes au fluide. L’écri-

ture (III.54) englobe dans le tenseur des pressionsPαβ toutes les forces internes au fluide qu’elles

soient réelles ou apparentes.

III.3.3 Equation de conservation de l’énergie

Dans le modèle cinétique de Boltzmann, il n’y avait pas de potentiel d’interaction entre les

particules si bien que l’énergie était simplement la moyenne des énergies cinétiques des particules.

Maintenant l’énergie totale du fluide a deux contributions :l’énergie cinétiqueek qui représente

l’énergie cinétique des particules et qui sert de définitionà la température parek = 3/2ρrT ,

et l’énergie potentielle d’interactioneV qui est la somme de toutes les interactions subies par

une particule, c’est à direeV = 1/2ρ
∫
ρ(r 2)V (r12) dr 2 = 1/2ρVm

2. L’équation de transport

macroscopique de l’énergie cinétique est très semblable à l’équation de conservation de l’énergie

dérivée précédemment (I.125) :

∂ek

∂t
+ ∂β(uβek) = −pGP (1 + bρχ)∂βuβ + ∂β(λ∂βT ) + Παβ∂βuα (III.56)

(
∂

∂t
+ uβ∂β)T = −pGP (1 + bρχ)

ρcv
∂βuβ +

1

ρcv
∂β(λ∂βT ) +

1

ρcv
Παβ∂βuα

La différence vient du travail des forces de pression. Ce quiressemble au travail de la pression

ne correspond ni au tenseur des pressionsPαβ ni à la pression de l’équation d’état du fluidepb.

La pression qui travaille correspond à la pression cinétiquepGP par un facteur correctif(1 + bρχ)

qui rend compte de la taille des particules. Si on utilise l’approximationBGK pour le terme

collisionnelΩ0, le coefficient de conductivité thermique s’identifie àλ = 5
2
ρr2Tτ( 1

χ
+ 3

5
bρ).

2Le facteur1/2 sert à ne pas compter deux fois la même interaction pour une même paire de particules.
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Remarque La procédure de Chapman-Enskog nous a conduit, comme en monophasique, à un

système fermé de trois équations macroscopiques surρ, u et T . Lorsque les champs de ces trois

grandeurs sont connus, il est facile de remonter aux champs de densité d’énergie cinétiqueek =

3/2ρrT et de densité d’énergie potentielleeV = 1/2ρ
∫
ρ(r 2)V (r12) dr 2 = 1/2ρVm. La densité

d’énergie interne est alors simplemente = ek +ev. Il est néanmoins intéressant de prendre le temps

de dériver les équations d’évolution de ces trois densités.Il s’agit là d’un raisonnement purement

macroscopique qui est extérieure à la procédure de Chapman-Enskog. En adoptant comme notation

réduite,ρ(r i) = ρi et u(r i) = ui, et en utilisant le théorème de Gauss et le fait que∂β2V (r 12) =

−∂β1V (r 12) nous obtenons :

∂ev

∂t
+ ∂β1(uβ1ev) =

ρ1

2

{
∂Vm

∂t
+ (uβ1∂β1)Vm

}
(III.57)

=
ρ1

2

{
−
∫

D2

∂β2 [ρ2uβ2]V (r 12) dr 12 + uβ1∂β1

∫

D2

ρ2V (r 12) dr 12

}

=
ρ1

2

{∫

D2

ρ2uβ2 ∂β2V (r 12) dr 12 + uβ1

∫

D2

ρ2 ∂β1V (r 12) dr 12

}

=
ρ1

2

∫

D2

ρ2 [uβ2 − uβ1] ∂β2V (r 12) dr 12 (III.58)

En supposant que la vitesse macroscopique varie lentement,on peut faire développement limité de

u(r 2) autour der 1, c’est-à-direuβ2 = uβ1 + rγ∂γuβ. Ceci nous permet d’écrire :

∂ev

∂t
+ ∂β1(uβ1ev) =

ρ1

2
∂γuβ1

∫

D2

ρ2rγ∂β2V (r 12) dr 12 (III.59)

Pour évaluer cette intégrale, nous pouvons utiliser les mêmes hypothèses que pour le champ moyen

et nous servir des expressions (III.47) et (III.48), ce qui nous permet d’écrire l’équation de transport

de la densité d’énergie potentielleev :

∂ev

∂t
+ ∂β(uβev) = ∂γuβ

[
(aρ2 +

κ

2
ρ∂ααρ)δβγ + κρ∂β∂γρ

]
(III.60)

En combinant cette équation à l’équation de transport de la densité d’énergie cinétique (III.56),

nous obtenons l’équation de transport de la densité d’énergie totalee = ek + ev :

∂e

∂t
+ ∂β(uβe) = −Pαβ∂βuα + ∂β(λ∂βT ) + Παβ∂βuα (III.61)

+ κ∂βuα

[
∂β(ρ∂αρ) −

1

2
∂γ(ρ∂γρ)δαβ

]

Cette équation fait apparaître le travail du tenseur des pressions−Pαβ∂βuα qui a pour origines les

transports deek et deev alors que les termes de conduction∂β(λ∂βT ) et de dissipation visqueuse

ont une origine purement cinétique. Et le dernier terme vient du transport de l’énergie potentielle.
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III.4 Point de vue mésoscopique sur l’équilibre liquide-vapeur

et conclusions

Comme nous venons de le voir le modèle cinétique de Boltzmann-Enskog avec traitement

champ moyen de la partie attractive des interactions interparticulaires fait apparaître dans les équa-

tions macroscopiques l’équation d’état de van der Waalspb et le tenseur des pressionsPαβ de la

théorie de l’interface de van der Waals. Il est d’abord intéressant et rassurant de constater que

les équations macroscopiques dérivées sont compatibles avec la thermodynamique de l’équilibre

d’une interface liquide-vapeur. En effet, en regardant lestrois équations macroscopiques (III.52),

(III.54) et (III.56), on en déduit que l’équilibre thermodynamique est atteint lorsque le fluide est

isotherme∂βT = 0, en absence de cisaillement∂βuα = 0 et lorsque le gradient du tenseur des

pressions nul∂βPαβ = 0. Cela signifie que ce modèle cinétique pour fluides non-idéaux permet

d’observer la dynamique de changement de phase et la formation d’interfaces d’un fluide de van

der Waals puisque ce modèle est compatible avec l’équilibred’un fluide de van der Waals et la

théorie thermodynamique de van der Waals pour les interfaces liquide-vapeur. Il est intéressant

maintenant d’examiner du point de vue mésoscopique de l’équilibre liquide-vapeur et l’existence

d’une interface. Pour un état d’équilibre homogène d’un fluide idéal (décrit par l’équation de Boltz-

mann) ou non-idéal (décrit par l’équation de Boltzmann-Enskog), l’équilibre se traduit par le fait

que chaque terme de l’équation cinétique est nul. Dans ce casle terme collisionnel est nul car par

définition il est nul à l’équilibre, le terme temporel est nulcar l’équilibre est bien sûr un état sta-

tionnaire et le terme de transport est nul car on regarde un état d’équilibre homogène dans l’espace.

En revanche, pour un état d’équilibre liquide-vapeur avec interfaces, le terme de transportv · ∇rf

n’est pas nul au niveau de l’interface. Au niveau de l’interface il y a une compensation entre le

terme de transport, une partie du terme collisionnel d’Enskog I1 et le terme−∇rVm · ∇vf qui

contient la partie attractive des interactions et qui est aussi non-nul au niveau de l’interface.

v · ∇rf
eq −∇rVm · ∇vf

eq = −bρχf eqv · ∇ ln(ρ2χT ) (III.62)

Compte tenue de l’expression de la distribution d’équilibref eq, chacun de ces termes peut s’écrire

en fonction des dérivées spatiales de la masse volumique.

v · ∇rf
eq =

f eq

ρ
v · ∇rρ (III.63)

∇rVm · ∇vf
eq =

2a

rT
f eqv · ∇rρ+

κ

rT
f eqv · ∇r∇2

r ρ (III.64)

bρχf eqv · ∇ ln(ρ2χT ) = bρχf eq

(
2

ρ
+

1

χ

∂χ

∂ρ

)
v · ∇rρ (III.65)
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Ainsi, à partir d’une description mésoscopique, la condition d’équilibre d’une interface liquide-

vapeur permet d’écrire une équation différentielle pour leprofil de la masse volumique lorsque le

système passe d’une phase à l’autre :

∇rρ

ρ
−
[

2a

rT
∇rρ+

κ

rT
∇r∇2

r ρ

]
= −bρχ

(
2

ρ
+

1

χ

∂χ

∂ρ

)
∇rρ (III.66)

Il est intéressant de remarquer que la compensation au niveau de l’interface ne se fait pas entre des

populations de particules de vitesses différentes. Cette compensation s’effectue pour chaque popu-

lation de vitessev entre les différents termes de l’équation de transport. C’est pourquoi, partant de

l’équation de transport, nous trouvons une équation différentielle surρ indépendante de la vitesse

v. Cette propriété sera utilisé dans le chapitre V pour mettreen oeuvre une résolution numérique

appropriée. On note également que la résolution de cette equation, avec comme conditions au li-

mite les masses volumiquesρv et ρl qui coexistent, donne comme profil d’interface le même que

celui obtenu au paragraphe III.1.2.2 par minimisation de l’énergie libre.

En résumé, dans ce chapitre, après avoir fait des rappels surl’équilibre thermodynamique des

systèmes liquide-vapeur et présenter le modèle d’interface diffuse de van der Waals, a été présenté,

l’équation cinétique de Boltzmann-Enskog avec traitementchamp moyen de la partie attractive du

potentiel intermoléculaire. Cette équation cinétique à laforme suivante :

∂f

∂t
+ v · ∇rf + (

F
m

−∇rVm) · ∇vf = I1 (III.67)

avecI1 le terme collisionnel d’Enskog qui peut être vu comme une extension du terme collisionnel

de Boltzmann lorsque la taille des particules est considérée. Ce terme devient le terme collisionnel

de Boltzmann lorsque la taille des particules est négligée.Vm = −2aρ − κ∇2ρ est le potentiel

champ moyen. Ce terme rend compte de la partie attractive du potentiel interparticulaire.a et κ

sont des paramètres qui dépendent du potentiel choisi. Par contre, la forme du potentiel moyen ne

dépend pas du potentiel choisi mais dépend de la procédure champ moyen elle même. Cette équa-

tion qui est un modèle cinétique pour décrire les fluides non-idéaux est compatible, à l’équilibre,

avec la théorie de van der Waals des interfaces liquide-vapeur dans laquelle apparaît le tenseur des

pressionsPαβ qui est une généralisation du concept de pression pour les systèmes pour lesquels il

existe un équilibre non-homogène. Ce tenseur des pressionstient compte des dérivées de la masse

volumiqueρ et est tel que son gradient est nul pour une interface diffuseà l’équilibre contrairement

au gradient de la pressionpb (équation d’état) qui ne tient pas compte des variations spatiales de

ρ mais seulement de la valeur au point. Nous avons aussi vu que le traitement champ moyen du

potentiel d’interaction contribue à l’équation d’étatpb par l’intermédiaire du paramètrea et est

aussi à l’origine de la tension de surface par l’intermédiaire du paramètreκ. C’est pourquoi la

pressionpb
3 peut être vue comme une approximation à l’ordre zéro (du développement champ

3ôté de la partie gaz parfait qui a une origine purement cinétique
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moyen) de la somme de toutes les interactions et les effets detension de surface peuvent être

interprétés comme le second ordre des interactions interparticulaires.



Chapitre IV

Boltzmann-sur-Réseau pour les écoulements

diphasiques : application à l’agrégation de

particules colloïdales

Dans le chapitre précédent, nous avons rappelé les bases de la thermodynamique de l’équili-

bre des systèmes liquide-vapeur (section III.1) ainsi que le modèle d’interface diffuse de van der

Waals (paragraphe III.1.2). Ce modèle a mis en évidence un tenseur des pressions (III.33) qui gé-

néralise le concept de pression au sein de tout le fluide (phases vapeur, phase liquide, interface).

Nous avons également présenté un modèle cinétique pour les fluides non-idéaux : l’équation de

Boltzmann-Enskog étendue (III.2) qui peut être vue comme une extension de l’équation de Boltz-

mann en incluant les interactions interparticulaires. La procédure de Chapman-Enskog appliquée

à ce modèle cinétique a abouti à un jeu d’équations macroscopiques (paragraphe III.3) similaires

aux équations de Navier-Stokes-Fourier pour lesquelles lerôle de la pression est attribué au tenseur

des pressions dérivé de la théorie de van der Waals. Ainsi, nous disposons de deux modèles pour

les écoulements liquide-vapeur :

– un modèle macroscopique dont l’équilibreliquide - interface - vapeurest compatible avec

la théorie de l’interface diffuse de van der Waals

– un modèle mésoscopique compatible avec le modèle macroscopique ci-dessus des les situa-

tions proches de l’équilibre.

Ces deux types de descriptions d’écoulements diphasiques laissent la possibilité de concevoir des

modèles BsR de deux façons :

– la première est de dériver un modèle BsR heuristique de façon à retrouver après la procédure

de Chapman-Enskog sur réseau un modèle macroscopique d’écoulements diphasiques. Cette

101
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démarche est équivalente à celle des premiers modèles BsR pour les écoulements monopha-

siques. Elle sera retenue dans ce chapitre pour étudier l’agrégation de particules colloïdales

au voisinage d’une membrane d’ultrafiltration.

– la seconde façon consiste à discrétiser le modèle mésoscopique. Cette discrétisation peut

se mener en suivant la démarche de He et Luo [22, 23] qui a permis de dériver un modèle

BsR pour les écoulements monophasiques isothermes et dont nous avons proposé une ex-

tension au chapitre II pour concevoir un modèle BsR pour les écoulements monophasiques

anisothermes. Cette dernière démarche sera explorée au dernier chapitre afin de proposer un

modèle BsR pour écoulements diphasiques anisothermes.

IV.1 BsR pour écoulements diphasiques isothermes

Avant d’aborder les fluides colloïdaux, nous présentons unebrève revue des modèles BsR

diphasiques en détaillant plus particulièrement celui quenous allons mettre en oeuvre. Les modèles

présentés ici, concernent uniquement les écoulements isothermes. Ceux-ci peuvent être classés

en trois grandes familles présentées successivement ci-dessous, pour une revue plus détaillée, se

référer à [47, 48].

IV.1.1 Modèle de Shan-Chen (SC)

L’un des premiers schémas BsR développés pour les écoulements diphasiques est le modèle

SC [49, 50, 51]. Ce modèle repose sur l’ajout d’une force dansun modèle BsR classique, afin

de reproduire le comportement d’un fluide non-idéal. Cette force n’est pas explicitement prise en

compte dans l’équation d’évolution de la fonction de distribution discrètefi. Elle est simplement

introduite, après chaque pas de temps, par une modification du champ de vitesses macroscopiques

u :

u′(x, t) = u(x, t) + Γ(x, t) (IV.1)

avecΓ(x, t) = −τ
ρ
ψ(x)

∑
i G ψ(x + vi)vi. La grandeurψ est la fonction “potentiel” etG repré-

sente l’intensité de l’interaction interparticulaire. Cette interaction est équivalente à un potentiel

d’interactionV (x, x′) entre des particules situées sur des noeuds premiers voisins de la forme :

V (x, x′) = G(x, x′)ψ(x)ψ(x′) (IV.2)
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En choisissant une fonction potentielle de la formeψ = ψ0 exp(−ρ0

ρ
), il est possible d’obtenir

un équilibre liquide-vapeur dont les masses volumiques coexistantes peuvent être déduites d’une

construction du type égalité des aires de Maxwell.

IV.1.2 Modèle de He-Shan-Doolen (HSD)

Le modèle HSD [41] est beaucoup plus inspiré de l’équation deBoltzmann-Enskog pour les gaz

non-idéaux (voir paragraphe III.2.3). Le point de départ dece modèle est l’équation de Boltzmann-

BGK :

∂f

∂t
+ v · ∇f = −f − f eq

τ
+

F · (v − u)

rT
f eq (IV.3)

où F est un terme de force qui rend compte des effets d’interactions internes au fluide :

F = −∇Vm − bρ(rT )2χ∇ ln(ρ2χ) (IV.4)

Le premier terme de cette force représente l’effet de la partie attractive des interactions.Vm peut

être obtenu par l’approximation de champ moyen comme au chapitre précédent (paragraphe III.2.2) :

Vm = −2aρ − κ∇2ρ (voir paragraphe III.2.2). Le second terme correspond au terme collisionnel

d’Enskog lorsque l’écoulement est isotherme et lorsque leseffets des dérivées de la vitesse sont né-

gligés. Cette proposition correspond, à l’échelle macroscopique, à un fluide dont l’équation d’état

estp = ρrT (1 + bρχ) − aρ2, ce qui correspond à un fluide de van der Waals avec comme modèle

pour la fonction de corrélationχ =
1

1 − bρ
. Un terme supplémentaire de “force diphasique” peut

alors être implémenté simplement dans un schéma BsR pour écoulements isothermes. Ceci a été

mis en oeuvre, entre autres, par Sofoneaet coll. [52] avec un modèle de vitesses discrètesD2Q9

et un schéma d’intégration spatio-temporelle aux différences finies.

IV.1.3 Modèle basé sur l’énergie libre (EL)

Le modèle que nous avons choisi pour l’application présentée dans la suite du chapitre est le

modèle basé sur l’énergie libre (EL). Celui-ci a été développé par Swiftet coll.[53, 54] en réaction

au manque de cohérence thermodynamique du modèle SC. Il a étépensé comme une alternative à

la résolution des équations macroscopiques pour les écoulements diphasiques isothermes, c’est-à-

dire que ce modèle est compatible avec la thermodynamique d’une interface liquide-vapeur diffuse



104 IV BsR pour les écoulement diphasiques

suivant la théorie de Cahn-Hilliard. Le point de départ de cemodèle est l’équation d’évolution de

la fonction de distribution discrètefi sur réseau avec un terme collisionnel de type BGK :

fi(r + viδt, t+ δt) = fi(r , t) −
1

τ
(fi(r , t) − f eq

i (r , t)) (IV.5)

La différence par rapport à un modèle monophasique vient de la fonction de distribution d’équili-

bref eq
i qui n’est plus un développement polynomial de la fonction dedistribution d’équilibre de

Maxwell-Boltzmann. La fonction de distributionf eq
i de ce modèle est un polynôme devi formulé

de sorte qu’après la procédure de Chapman-Enskog sur réseau, on retrouve les équations macro-

scopiques d’un fluide non-idéal (équations (III.52), (III.54) et (III.61)) avec comme tenseur des

pressions :

Pαβ =
[
pb − κρ∇2ρ− κ

2
|∇ρ|2

]
δαβ + κ ∂αρ ∂αρ (IV.6)

ce qui assure une compatibilité avec la thermodynamique de Cahn-Hilliard. Cela a pour consé-

quence que la fonction de distribution d’équilibref eq
i dépend de la position et du temps par l’in-

termédiaire des champs macroscopiquesρ et u (comme pour un modèle classique) mais dépend

également des dérivées de la masse volumique∂αρ et∇2ρ. Pour ce type de modèle, les interactions

interparticulaires sont donc “cachées” dans la fonction dedistribution d’équilibre.

Le modèle (EL) a été développé pour différentes topologies de réseaux en2 et3 dimensions. Le

modèle choisi ici est employé avec une topologieD3Q15 [55, 1]. Le jeu de vitesses discrètesvi est

composé des vecteurs :(0, 0, 0), (±c,±c,±c), (±c, 0, 0), (0,±c, 0), (0, 0,±c) avecc = δx/δt

(voir Fig. IV.1). La distribution d’équilibref eq
i est un développement en série sur la vitesse locale :

f eq
i = Ai +Biviαuα + Ciuαuα +Diviαviβuαuβ (IV.7)

+Giαβviαviβ pouri 6= 0

f eq
0 = ρ−

14∑

i=1

f eq
i (IV.8)

Les coefficientsAi, Bi, Ci, Di etGiαβ (donnés en annexe D) sont déterminés de façon à satisfaire



BsR pour écoulements diphasiques isothermes 105

FIG . IV.1: Jeu de vitesses discrètesD3Q15 (extrait de [1])

les contraintes suivantes :

14∑

i=1

f eq
i = ρ (IV.9)

14∑

i=1

f eq
i viα = ρuα (IV.10)

14∑

i=1

f eq
i viαviβ = Pαβ + ρuαuβ (IV.11)

+ν (uα∂βρ+ uβ∂αρ+ uγ∂γρδαβ)
14∑

i=1

f eq
i viαviβviγ =

c2ρ

3
(uαδβγ + uβδαγ + uγδαβ) (IV.12)

Les deux premières contraintes expriment les lois de conservations de la masse et de la quantité de

mouvement. Les deux autres contraintes assurent que le modèle est compatible après la procédure

de Chapman-Enskog sur réseau avec les équations macroscopiques d’un écoulement diphasique

isotherme :

∂tρ+ ∂α(ρuα) = 0 (IV.13)

∂t(ρuα) + ∂β(ρuαuβ) = −1

ρ
∂βPαβ (IV.14)

+ ν∂β [ρ (∂βuα + ∂αuβ + δαβ∂γuγ)]
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avec comme viscosité cinématiqueν =
δx2

δt
(τ − 1/2)

IV.1.4 Quelques exemples ...

Pour montrer l’intérêt de ce type de méthode, nous présentons rapidement une série de simula-

tions effectuées pour un fluide de van der Waals, avec le modèle EL. La température critique et la

masse volumique critique du fluide de van der Waals utilisé ici sont respectivementTc = 4/7K et

ρc = 3.5 kg.m−3. La constante massique du fluide estr = 1 J.K−1.kg−1 et le temps de collision

a pour valeurτ = 1. Les simulations ont été faites pour une température très proche du point cri-

tique àT = 0.98 Tc. L’ensemble de ces conditions correspond à un fluide modèle communément

employé dans la littérature [53, 54] mais qui ne prétend pas àla représentation d’une quelconque

configuration réaliste. Les paramètres de simulation sontδx = 1 m et δt = 1 s. Les figures IV.2,

IV.3 et IV.4 montrent l’évolution d’une colonne de liquide,en équilibre avec sa vapeur, située entre

deux parois mouillantes et en absence de gravité. La mouillabilité est ajustée grace à l’introduction

d’un modèle d’énergie libre à la paroi [56, 1, 57, 58]. Les conditions aux limites selon les axes

x et y sont périodiques. Les figures de gauche montrent la positionde l’interface liquide-vapeur.

Les figures de droite représentent le champ de masse volumique ρ et le champ de vitesseu dans

un plan de symétrie selonz de la colonne de liquide initiale. Les figures IV.5 et IV.6 illustrent la

même simulation dans le cas de parois non-mouillantes (angle de contactθ = 140˚).



BsR pour écoulements diphasiques isothermes 107

FIG . IV.2: Les parois étant mouillantes, le liquide au départ commenceà s’étaler. La courbure

ainsi obtenue engendre une différence de pression entre l’intérieur de la colonne et l’extérieur qui

crée un écoulement du centre de la colonne vers les parois. Ceci amplifie le mouvement initial du

liquide qui est attiré par les parois mouillantes.
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FIG . IV.3: La colonne de liquide finit par se rompre. Bien qu’il n’y ait pas de gravité, les erreurs

numériques d’arrondi suffisent à créer une dissymétrie. Sous l’effet de la tension de surface, les

deux gouttes s’arrondissent et continuent de s’étaler sur les parois.
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FIG . IV.4: Les deux gouttes, n’ayant pas la même taille et donc des courbures différentes, ont

une pression différente. Cette différence de pression conduit à l’évaporation de la plus petite au

bénéfice de la plus grande.
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FIG . IV.5: Le liquide a tendance à se courber de façon à former un angle decontact de140˚ avec

les parois. Bien qu’il n’y ait pas de gravité ici non plus, unedissymétrie se crée et la goutte se

détache de la paroi du haut.
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FIG . IV.6: Les effets de la tension de surface, arrondissent la goutte qui finit par se détacher de la

paroi. L’angle de contact est tel que la configuration qui minimise les énergies de surface est une

goutte sphérique loin des parois plutôt qu’une goutte partiellement accrochée à une paroi.

Ces calculs illustrent bien l’un des aspects les plus intéressants de la méthode BsR. Les métho-

des classiques (CFD) de simulation d’écoulements avec changement de phase exigent une certaine

forme de suivi de l’interface entre les phases avec un calculdu transfert au travers de cette interface

de la matière (masse et volume), de la quantité de mouvement et de la chaleur (pour les cas où il

y a des effets thermiques). La méthode BsR élimine ou amoindrit ces difficultés au prix d’un

recours à une formulation mésoscopique plus inhabituelle.Le changement de phase se signale

alors seulement par un basculement de la masse volumique. Ilreste cependant un certain nombre

de limitations à la méthode BsR dans ce domaine : par ex. la représentation de fortes différences

de densité exige un traitement spécial. Mais nous verrons dans la suite de ce chapitre (et surtout



112 IV BsR pour les écoulement diphasiques

dans le chapitre suivant) que l’approche BsR possède des atouts tout à fait originaux.

IV.2 Boltzmann sur Réseau pour les dispersions colloïdalesavec

changement de phase

Dans de nombreux procédés industriels, les particules colloïdales sont séparées de la suspen-

sion au moyen de membranes de filtration. La suspension passeà travers la membrane et les

particules colloïdales sont accumulées à la surface de la membrane dans une couche visqueuse

et concentrée. Ce phénomène s’appelle “polarisation de concentration”. S’il y a un écoulement

parallèle à la membrane (filtration tangentielle), cette couche atteint rapidement un état quasi-

stationnaire, mais dans le cas d’une filtration frontale, ily a seulement un flux de perméation

perpendiculaire à la membrane et l’épaisseur de la couche croît continûment avec le temps. En

fonction de la vitesse de perméation et des conditions hydrodynamiques, la concentration de col-

loïde peut devenir suffisamment élevée pour provoquer un changement de phase, menant à la for-

mation d’une couche de gel hautement visqueuse. La présencede cette couche concentrée limite

la performance de l’opération de filtration. Ainsi il est d’une importance pratique d’avoir une com-

préhension claire de ce phénomène. Le changement de phase rapide correspond habituellement

à une décomposition spinodale avec croissance de domaines menant à la formation de structures

poreuses. Il serait utile de savoir si ce phénomène joue un rôle dans la filtration membranaire et

quelle sorte de rôle. La simulation numérique est particulièrement attractive dans de tels cas où

l’observation expérimentale est pratiquement impossible. Les modèles macroscopiques donnent

une description globale du comportement de cette couche, mais pour obtenir plus de détails sur

son comportement il est intéressant de tenter d’explorer des approches différentes comme la mé-

thode BsR. Il est connu que les particules colloïdales en suspension montrent des analogies proches

avec des fluides non-idéaux pour lesquels des modèles BsR existent. Les fluides colloïdaux sont

plus faciles d’accès que les systèmes liquide-vapeur car les effets thermiques y sont négligeables.

Cependant une difficulté supplémentaire apparaît : pour simuler l’écoulement d’une suspension

colloïdale avec changement de phase, il est nécessaire de disposer d’un modèle pour le fluide por-

teur (essentiellement de l’eau) dont l’écoulement est couplé avec le fluide colloïdal. Or la disper-

sion colloïdale subissant le changement de phase peut atteindre des fractions volumiques élevées

et la densité de fluide porteur se trouve alors fortement réduite. De telles variations de densité étant

difficile à aborder, nous avons choisi de considérer le fluideglobal (eau+ colloïdes) plutôt que le

fluide porteur, car la densité du fluide global est quant à ellepresque constante, ce qui permet de le

traiter avec un modèle BsR traditionnel pour les fluides incompressibles.
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Pour ce système à deux fluides couplés, de nombreux phénomènes interviennent et inter-

agissent : convection et diffusion de masse, séparation de phase avec formation d’une interface

entre les phases, couplage entre le fluide porteur et les particules colloïdales, écoulement visqueux

du fluide global avec une viscosité non-uniforme. Chacun de ces phénomènes a une échelle de

temps et d’espace caractéristique. Les contraintes imposées par ces différentes échelles de temps

seront discutées en détail et différentes techniques seront mises en oeuvre pour contourner les

difficultés associées aux temps caractéristiques les plus courts.

Dans ce travail, nous avons considéré une solution de protéine comme milieu colloïdal modèle.

La filtration membranaire de solutions de protéines est d’une grande importance pour l’industrie

alimentaire et pharmaceutique et beaucoup de données sont disponibles concernant la pression

osmotique de ces solutions. Les protéines sont des macromolécules portant une charge électrique

et les solutions de protéines sont stabilisées par les répulsions électrostatiques entre molécules,

alors que les interactions attractives à longue portée sontresponsables du changement de phase.

IV.2.1 Modèle pour dispersion colloïdale avec changement de phase

Les particules colloïdales de la suspension peuvent être considérées comme un fluide avec une

équation d’état reliant la pression osmotique de la suspension Π(φ) à la fraction volumique de

colloïdeφ. Par exemple, l’équation d’état la plus simple pour des particules colloïdales sans inter-

actions à distance est l’équation de van’t HoffΠ = nkbT , avecn la concentration de particules,T la

température etkb la constante de Boltzmann. L’équation de van’t Hoff est équivalente à l’équation

d’état d’un gaz parfait, un fluide dont les particules n’ont aucune interaction à longue distance.

Dans ce travail, nous considérons une suspension de particules colloïdales avec des interactions

attractives à longue distance qui autorisent la possibilité de changement de phase. L’interaction

double-Yukawa-sphère-dure a été choisie parce que l’équation d’état correspondante peut être dé-

rivée analytiquement en utilisant l’approximation du “champ sphèrique moyen” [2]. Le traitement

des colloïdes comme un fluide non-ideal permet d’utiliser lemodèle BsR EL [55, 1], qui est basé

sur la formulation de la fonctionnelle d’énergie libre de lathermodynamique des systèmes liquide-

vapeur avec interfaces [59]. Nous devons aussi modéliser lefluide porteur qui est de l’eau dans la

plupart des cas. Cependant quand la fraction volumique de colloïde devient significative, la densité

du fluide porteur seul ne peut plus être considérée comme constante et ceci introduit des compli-

cations considérables. Plutôt que de décrire le fluide porteur directement par une seconde fonction

de distribution, nous avons modélisé le fluide global (eau+ colloïde) comme un fluide incompres-

sible. Ce choix est raisonnable si les particules colloïdales ont une masse volumique (ρc = mp

vp
,

avecmp la masse d’une particule etvp le volume d’une particule) proche de celle de l’eauρe. Si
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l’on considère le fluide global comme incompressible, on estautorisé à appliquer un modèle BsR

pour fluide incompressible. Les équations macroscopiques pour le fluide global correspondant à ce

modèle à deux fluides sont :

∇ · u = 0 (IV.15)
∂u

∂t
+ u · ∇u = − 1

ρ0

∇p+ ∇ · (ν∇u) (IV.16)

Pour le fluide colloïdal, nous avons l’équation de Navier-Stokes incompressible avec le tenseur des

pressions dérivé de la théorie de Cahn-Hilliard :

∂tφ+ ∂α(φuc
α) = 0 (IV.17)

∂t(φu
c
α) + ∂β(φuc

αu
c
β) = − 1

ρ0
∂βΠαβ (IV.18)

+ νc∂β

[
φ
(
∂βu

c
α + ∂αu

c
β + δαβ∂γuγ

)]
+ φFα

Παβ est le tenseur des pressions osmotiques qui est dérivé du modèle d’énergie libre pour une

interface :

Παβ =
(
Π0(φ) − κ

2
(ρ0∂γφ)2 − κρ2

0φ∂γγφ
)
δαβ + κ(ρ0∂αφ)(ρ0∂βφ) (IV.19)

Ici, Π0(φ) est l’équation d’état du fluide colloïdal etκ est le paramètre relié à la tension de surface,

qui est entièrement déterminé par le potentiel d’interaction entre particules colloïdales(cf. III.50).

IV.2.1.1 Modèle Boltzmann sur réseau pour le fluide global

La masse volumique du fluide global dépend de la fraction volumique de colloïdes :ρ =

φρc + (1 − φ)ρe. Mais siρc ≈ ρe, la masse volumiqueρ du fluide global est quasiment constante.

Pour notre modèle, nous supposonsρ = ρc = ρe = ρ0. Nous choisissons donc de décrire le

fluide global par un modèle BsRD3Q15 pour écoulement incompressible [60]. Le jeu de vitesses

discrètesvi est composé des vecteurs :(0, 0, 0), (±c,±c,±c), (±c, 0, 0), (0,±c, 0), (0, 0,±c)
(voir Fig. IV.1). L’équation d’évolution de la fonction de distribution des vitessesvi, fi(r , t) est :

fi(r + vi δt, t+ δt) − fi(r, t) = −1

τ
[fi(r, t) − f eq

i (r, t)] (IV.20)

avecτ =
τ

δt
où τ est le temps de relaxation etf eq

i la fonction de distribution d’équilibre suivante :

f eq
i = wi

{
p+ p0

[
3
(vi · u)

c2
+

9

2

(vi · u)2

c4
− 3

2
(u)2

]}
(IV.21)
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wi étants les poids de quadrature :wi = 2/9 pouri = 0, wi = 1/9 pouri = 1, . . . , 6 etwi = 1/72

pour i = 7, . . . , 14. p0 = ρ0
c2

3
est la pression de référence. Les champs macroscopiques quisont

ici la pressionp et la vitesseu sont évaluées en sommant la fonction de distributionfi.

p =
∑

i

fi (IV.22)

p0 u =
∑

i

vi fi (IV.23)

D’après la procédure de Chapman-Enskog sur réseau, l’équation de Navier-Stokes incompressible

est retrouvée à partir du modèle BsR avecν = 1/3(
τ

δt
− 1/2)

δx2

δt
, pour la viscosité cinématique

du fluide global. Dans ce travail, nous avons eu besoin de considérer l’effet des colloïdes sur la

viscosité du fluide global. La formule de Eilers-Chong [61] est utilisée pour la dépendance de la

viscosité en fonction de la fraction volumique :

ν(φ) = ν0

[
1 +

1.25 φ

1 − φ/φcp

]
(IV.24)

oùν0 est la viscosité pourφ = 0 etφcp est un paramètre ajusté à partir de données expérimentales

disponibles. Pour introduire cette viscosité variable, letemps de relaxationτ est simplement rem-

placé parτ(φ) = 3 δt2

δx2 ν(φ) + δt
2

. Cette méthode a été testée numériquement pour un écoulement

de Poiseuille avec une viscosité variable dans l’espace (voir appendice E).

IV.2.1.2 Modèle Boltzmann sur réseau pour les particules colloïdales en suspension

Pour modéliser la suspension de particules colloïdales, qui est considérée comme un fluide

non-idéal, nous utilisons un modèle BsR ELD3Q15 [55, 1] (présenté au paragraphe IV.1.3) avec le

même jeu de vitesses discrètes que pour le fluide global et la même discrétisation spatio-temporelle.

L’équation d’évolution de la fonction de distributiongi(x, t) du colloïde est :

gi(r + vi δt, t+ δt) − gi(r, t) = − 1

τc
[gi(r, t) − geq

i (r, t)] + 3 φ wivi · F δt (IV.25)

avecτc =
tauc

δt
est le temps de relaxation des colloïdes, qui représente physiquement le temps

moyen entre deux collisions de particules colloïdales.geq
i est la distribution d’équilibre.Fα est

le terme de force extérieure qui sera explicité plus loin. Les champs macroscopiques qui sont la

fraction volumiqueφ et la vitesse d’ensemble des colloïdesuc sont évalués par sommation de la
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fonction de distributiongi :

φ =
∑

i

gi (IV.26)

φ uc =
∑

i

vi gi (IV.27)

D’après la procédure de Chapman-Enskog sur réseau (voir appendice F), les équations macrosco-

piques dérivées à partir de ce modèle sont :

∂tφ+ ∂α(φuc
α +

δt

2
φFα) = 0 (IV.28)

∂t(φu
c
α +

δt

2
φFα) + ∂β(φuc

αu
c
β) = − 1

ρ0

∂βΠαβ (IV.29)

+ νc∂β

[
φ
(
∂βu

c
α + ∂αu

c
β + δαβ∂γuγ

)]
+ φFα

avecνc =
1

3
(
τc
δt
−1

2
)
δx2

δt
pour la viscosité cinématique du fluide colloïdal qui représente le transfert

visqueux de quantité de mouvement par collision entre particules colloïdales. Cette quantité est

presque impossible à déterminer expérimentalement : dans le calcul qui suit, elle recevra une valeur

arbitraire. Nous pouvons remarquer que ces équations diffèrent des équations (IV.17) et (IV.18) par

un faux terme de vitesse
δt

2
φFα. Dans la plupart des cas, ce terme est négligeable, mais comme

nous le verrons plus tard, pour le régime diffusif, ce terme doit être pris en compte.

Dans ce modèle à deux fluides, le couplage entre les deux fluides se fait de deux façons. Pre-

mièrement, il y a une dépendance de la viscositéν du fluide global en fonction de la fraction

volumique du colloïdeφ. Le second couplage se fait par une force de traînéeF exercée par le

fluide porteur sur le colloïde. L’expression pourF est la force de Stokes corrigé par Happel [62]

pour prendre en compte l’effet de la fraction volumiqueφ sur la force de traînée :

F = H(φ)
6πµa

mp
(ue − uc) (IV.30)

avecµ, la viscosité dynamique du fluide porteur,ue sa vitesse,a le rayon des particules colloï-

dales, etH(φ) =
6 + 4 φ5/3

6 − 9 φ1/3 + 9 φ5/3 − 6 φ2
la fonction de Happel. Mais cette expression doit

être réécrite en fonction de la vitesseu du fluide global car la vitesseue du fluide porteur n’est pas

calculée. La relation entre ces deux vitesses estu = φ uc + (1 − φ) ue. Ainsi la force de traînée

s’écrit :

F = H(φ)
(u− uc)

τu(1 − φ)
(IV.31)

avecτu =
mp

6πµa
un temps de relaxation qui peut s’interpréter physiquementcomme le temps

caractéristique nécessaire à une particule colloïdale pour atteindre la même vitesse que le fluide

porteur.
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IV.2.1.3 Régime diffusif

Pour les applications colloïdales, d’un point de vue macroscopique, une simplification impor-

tante peut être faite dans l’équation de quantité de mouvement (IV.29). Cette simplification est

l’approximation de diffusion qui consiste à ne garder que les termes qui comptent dans l’équation

(IV.29) et à la considérer comme stationnaire par rapport à l’équation de conservation de la masse

(IV.28). Les termes d’advection et les contraintes visqueuses sont négligés par de simples argu-

ments d’ordre de grandeur. Ainsi avec cette approximation et l’expression de la force de traînée

précédente, les équations macroscopique du fluide colloïdal deviennent :

∂tφ+ ∂α

[
φuc

α +
δt

2
φ H(φ)

(uα − uc
α)

τu(1 − φ)

]
= 0 (IV.32)

∂βΠαβ = ρ0 φ H(φ)
(uα − uc

α)

τu(1 − φ)
(IV.33)

Pour bien comprendre cette approximation de diffusion, considérons un fluide colloïdal idéal. Le

tenseur des pressions se réduit à la loi de van’t HoffΠαβ = φ kb

vp
T δαβ. Pour une solution diluée

(c.-à-d.φ ≪ 1 et H(φ) → 1), l’équation (IV.33) correspond à la première loi de Fick avec un

terme de dérive :

φuc
α = φuα −Dth ∂αφ (IV.34)

avecDth =
kbT

6πµa
le coefficient de diffusion usuel, issu des travaux d’Einstein [63]. Et pour l’équa-

tion de conservation de la masse (IV.32), nous retrouvons laseconde loi de Fick ou l’équation de

diffusion :

∂tφ+ ∂α [φuα −D ∂αφ] = 0 (IV.35)

mais avec un coefficient de diffusion différentD = Dth(1 − δt
2τu

). Cette différence apparaît dans

la procédure de Chapman-Enskog sur réseau lorsque le terme de force n’est pas négligé dans l’ex-

pression deg(1)
i .

IV.2.2 Validations, implémentation numérique et résultats

IV.2.2.1 Validation du régime diffusif

Pour valider le modèle et le régime diffusif de la suspension, une série de simulations ont été

menées pour un profil gaussien de fraction volumiqueφ dans une solution diluée de fluide colloï-

dal idéal sans mouvement de fluide global (c’est-à-direφ << 1, Παβ = φ kb

vp
T δαβ et u = 0). La
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condition initiale est de la forme :φ(r , t = 0) = φ0 + A0 exp

[
−(r − r 0)

2

σ2

]
. La résolution ana-

lytique de l’équation de diffusion (IV.35) montre que pour un champ initial gaussien, le profil de

fraction volumiqueφ reste gaussien avec un écart-type qui croît ent1/2 et dont la valeur maximale

enr 0 en fonction du temps est :φ(r = r 0, t) = φ0 +
A0 σ√

4Dnumt+ σ2
. Ceci nous permet de remon-

ter numériquement au coefficient de diffusionDnum et de le comparer au coefficient théorique de

diffusionDth =
kbT

6πµa
= τu

kb

mp
T . Il est aussi possible de retrouver numériquement le coefficient

de diffusion par la première loi de Fick :φuc
α = −Dnum0 ∂αφ. Compte tenue de la procédure

de Chapman-Enskog numérique, le régime diffusif est pertinent si on retrouveDnum0 = Dth et

Dnum = Dth(1 − δt
2τu

). Les figures IV.7 montrent les coefficients de diffusion obtenus numéri-

quement pour différentes valeurs deδt/τu (les simulations ont été effectuées avecτc = δt).
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FIG . IV.7: (a) : Comparaison entre le coefficient théorique de diffusion Dth =
kbT

6πµa
d’une so-

lution diluée de fluide colloïdal idéal avecDnum0 obtenu numériquement par la première loi de

Fick (IV.34) pour une série de simulations de diffusion d’unprofil gaussien deφ pour différentes

valeurs deδt/τu ; (b) : Les cercles représentent le rapport entre le coefficient de diffusionDnum

obtenu numériquement à partir l’équation de la diffusion (IV.35) etDth. La ligne représente le

rapport théoriqueDnum/Dth = 1− δt

2τu
prédit par la procédure de Chapman-Enskog sur réseau et

l’approximation de diffusion.

Le coefficient de diffusion apparentDnum0 évalué par la première loi de Fick tend vers la

valeur théoriqueDth lorsque le pas de tempsδt tend vers le temps caractéristiqueτu. Ce résultat

montre que l’approximation de diffusion devient moins pertinente lorsque le pas de temps décroît.

Ce résultat s’explique par le fait que dans l’approximationde diffusion le tenseur des contraintes
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visqueuses (qui représente le transfert de quantité de mouvement par chocs entre colloïdes) est

négligé. Or l’effet de ce tenseur des contraintes augmente lorsqueδt diminue car la viscosité du

fluide colloïdal a une valeur arbitraireνc =
1

6

δx2

δt
. Les résultats de la figure IV.7.(b) montrent

l’importance de ne pas négliger le terme de force dans l’expression deg(1) dans la procédure de

Chapman-Enskog sur réseau. La dépendance en fonction du pasde tempsδt du rapport entre les

deux coefficients de diffusion est bien reproduite par les simulations.

IV.2.2.2 Analyse linéaire de stabilité

Pour étudier la dynamique de croissance des domaines durantune trempe de fluide colloïdal,

nous avons effectué une analyse linéaire de stabilité. Plutôt que de réaliser cette analyse sur le mo-

dèle mésoscopique, elle a été effectuée sur le modèle macroscopique correspondant avec l’appro-

ximation de diffusion (IV.32), (IV.33) en une dimension et sans mouvement du fluide global.

∂φ

∂t
+

∂

∂x

[
φuc − δt

2
H(φ)

uc

τu(1 − φ)

]
= 0 (IV.36)

∂Π0

∂x
+
κ

2
ρ2

0

∂

∂x

[(
∂φ

∂x

)2
]
− κρ2

0

∂

∂x

[
φ
∂2φ

∂x2

]
= −ρ0φH(φ)

uc

τu(1 − φ)
(IV.37)

Le système est perturbé autour deφ0 etu0 = 0.

φ(x, t) = φ0 + φ(x, t) (IV.38)

uc(x, t) = uc(x, t) (IV.39)

φ0 est la fraction volumique du point d’équilibre instable comme le montre la figure IV.8. Le

système d’équations linéarisées associé pour les perturbations est :

∂φ

∂t
+

[
φ0 −

δtH(φ0)

2τu(1 − φ0)

]
∂uc

∂x
= 0 (IV.40)

1

ρ0

Π′
0(φ0)

∂φ

∂x
− κρ0

∂3φ

∂x3
= −φ0H(φ0)

uc

τu(1 − φ0)
(IV.41)

avecΠ′
0 =

∂Π0

∂φ
. Dans l’espace de Fourier nous obtenons :

∂φ̃

∂t
− ik

[
φ0 −

δtH(φ0)

2τu(1 − φ0)

]
ũc = 0 (IV.42)

−ik
ρ0

Π′
0(φ0)φ̃− ik3κρ0φ̃ = −φ0H(φ0)

ũc

τu(1 − φ0)
(IV.43)



120 IV BsR pour les écoulement diphasiques

0.1 0.12 0.14 0.16 0.18 0.2
8800

9000

9200

9400

9600

9800

φ

Π
0  (

P
a)

0.1 0.12 0.14 0.16 0.18 0.2
8800

9000

9200

9400

9600

9800

φ

Π
0  (

P
a) φ

G
 ≈ 0.1

φ
0
 ≈ 0.145

φ
L
 ≈ 0.18

FIG . IV.8: Equation d’état selon Guérin [2] pour un potentiel d’interaction double-Yukawa-sphère-

dure. D’après la construction de Maxwell, le système peut montrer deux fractions volumiques

coexistantesφG etφL. φ0 est la fraction volumique d’équilibre instable.

où φ̃(k, t) et ũ(k, t) sont les transformées de Fourier respectives deφ(x, t) etu(x, t). Ainsi φ̃(k, t)

et ũ(k, t) sont des combinaisons linéaires deeωt avec la relation de dispersion suivante (voir Fig.

IV.9 ) :

ω(k) = ±
[
φ0
τu(1 − φ0)

H(φ0)
− δt

2

] [
Π′

0

ρ0φ0
k2 + ρ0κk

4

]
(IV.44)

Pour illustrer les résultats de l’analyse linéaire de stabilité, des simulations BsR d’une trempe

de fluide colloïdal ont été effectuées (voir Fig. IV.10). La condition initiale de fraction volumique

est un champ perturbé aléatoirement autour du point d’équilibre instableφ0. Après quelques pas

de temps, les fluctuations aléatoires initiales disparaissent et seules quelques longueurs d’onde

caractéristiques persistent. Dans ces simulations, des domaines d’une taille d’environ18 nm ap-

paraissent tandis que l’analyse linéaire de stabilité prédit l’émergence de domaines de longueur

d’ondeλm = 2π

√
2ρ2

0φ0κ

−Π′
0

≈ 20 nm. Comme la taille des particules colloïdales considérées est de

3.44 nm nous pouvons remarquer que les agrégats colloïdaux sont formés de quelques particules.

Ceci est en accord avec le fait que la tension de surface du système colloïdal est faible. Une tension

de surface faible autorise la formation d’agrégats qui ont un rapport volume/surface faible.
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FIG . IV.9: Relation de dispersionω+(k) pour plusieurs valeurs du pas de tempsδt. Les résultats
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2φ0τu(1 − φ0)
. Le résultat physique correspond àδt = 0
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IV.2.2.3 Méthode de pénalisation

Pour la protéine considérée, la valeur du temps caractéristique de la force de traînée est très

faible,τu =
mp

6πµa
= 2.63 10−12s. Comme le schéma d’intégration temporelle est explicite, la va-

leur du pas de tempsδt doit être inférieure à la valeur deτu. Cela signifie, que pour des simulations

de situations réalistes, le nombre de pas de temps nécessaire est trop important. Ainsi pour réaliser

des simulations réalistes, nous proposons une méthode de pénalisation. Cette méthode repose sur la

pertinence de l’approximation de diffusion c’est-à-dire sur la validité de l’équation (IV.33). La mé-

thode que nous proposons consiste à diviser les deux membresde cette équation par un paramètre

ε.



122 IV BsR pour les écoulement diphasiques

0 0.2 0.4 0.6 0.8 1

x 10
−7

0.1444

0.1449

0.1454

0.146

x (m)

φ

≈ 1.8 .10−8

FIG . IV.10: Profil de fraction volumiqueφ. La condition initiale est un champ de fluctuations

aléatoires autour du point d’équilibre instable de fraction volumiqueφ0. Une longueur d’onde

caractéristique autour de18 nm apparaît après quelques pas de temps ce qui est en accord avec

l’analyse linéaire de stabilité.

∂β
Παβ

ε
= ρ0 φ H(φ)

(uα − uc
α)

ετu(1 − φ)
(IV.45)

∂βΠ∗
αβ = ρ0 φ H(φ)

(uα − uc
α)

τ ∗u(1 − φ)
(IV.46)

avecτ ∗u = ετu, κ∗ = κ/ε etΠ∗
0 = Π0/ε (ce qui a pour conséquence queΠ∗

αβ = Παβ/ε). Le système

(∗) est différent du système original, mais dans la limite du régime difffusif, nous retrouvons les

mêmes équations macroscopiques (IV.32) et (IV.33). Le temps caractéristiqueτ ∗u peut être choisi

par ajustement du paramètre de pénalisationε ce qui permet d’utiliser des pas de temps beaucoup

plus raisonnables pour effectuer des simulations réalistes. Pour valider cette méthode, nous avons

effectué des simulations BsR de diffusion d’un profil gaussien de fraction volumiqueφ pour une

large gamme de valeurs deε (de1 à 106) et le coefficient de diffusion observé numériquement ne

varie pas avec la valeurε.
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IV.2.3 Premiers résultats

Une première série de résultats a été obtenue par simulationde filtrations frontales d’une so-

lution contenant une protéine (lysozyme) pour laquelle lespropriétés physico-chimiques sont dis-

ponibles, en particulier son équation d’état [2]. La force ionique du fluide porteur a été choisie de

telle façon que le contraste des concentrations entre les deux phases en équilibre ne soit pas trop

important :10% et18%. La taille du domaine est100× 40× 40 avecδx = 0.5 nm et δt = 10−10s,

avec des conditions aux limites périodiques sur les quatre faces perpendiculaires à la membrane.

Sur la face d’entrée (opposée à la membrane), la vitesse du colloïde est prise égale à la vitesse du

fluide global et la fraction volumique est maintenue constante (φin = 0.145). Une différence de

pression∆p est appliquée entre les deux côtés de la membrane, ce qui conduit à une vitesse du

fluide à la membrane, d’expression :um = Lp(∆p − Πm), avecLp le coefficient de perméabilité

hydraulique de la membrane etΠm la pression osmotique du colloïde à la membrane. Dans les

tests présentés, une valeur moyenne deΠm a été considérée à la membrane, ainsium est uniforme

dans ce plan. Si nous négligeons les effets de la variation spatiale de la viscosité du fluide global

(dépendant de la fraction volumique de colloïde), alors du fait des conditions aux limites pério-

diques sur les faces latérales, l’écoulement du fluide global est spatialement uniforme dans tout

le domaine. Ceci implique que le seul effet du fluide global est une force de traînée uniforme. Le

champ initial de fraction volumique est aléatoirement perturbé autour de la valeurφ0 choisie dans

la zone instable (voir Fig. IV.8) : l’amplitude des perturbations est de5%.

Les calculs montrent que le changement de phase se produit dans une couche proche de la

membrane, où la séparation initiale crée des “gouttes” de phases condensées ou diluées. La mor-

phologie de ces zones est similaire à celles observées dans les simulations de trempe et l’épaisseur

de la couche est également comparable en dimension aux domaines émergeant lors de la trempe.

Ceci est également en accord avec l’analyse linéaire de stabilité, même si celle-ci n’a pas été faite

en considérant un écoulement d’ensemble du fluide. La situation de la figure IV.11)correspond à

5µs après le début de la séparation de phase : l’enveloppe est unesurface d’isoconcentration qui

permet de situer la phase dense. Quant au comportement dans le temps, la concentration près de

la membrane oscille : la couche condensée est instable tant que la quantité de matière accumulée

n’est pas suffisante pour former une interface complète (et stable). Ceci est illustré par la figure

IV.12 qui montre la concentration à la membrane en fonction du temps.

Il est connu que la vitesse de perméation dans l’ultrafiltration de solutions contenant des macro-

molécules (comme les protéines) est limitée par la présencede ces couches de solution concentrée,

qui le plus souvent se solidifient par gélification. La structure détaillée de ces couches n’est pas ob-

servable expérimentalement, mais il est sûr que celle-ci joue un rôle considérable pour la détermi-
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FIG . IV.11: Représentation de la fraction volumiqueφ de colloïdes,5µs après le début de la

séparation de phase. La taille du domaine est100 × 40 × 40 avecδx = 0.5 nm et δt = 10−10 s.

Un écoulement global d’environ10−4m.s−1 est imposé dans la directionx mais les colloïdes sont

bloqués à la membrane. La condition initiale est un champ aléatoire autour de la fraction volumique

instableφ0 = 0.145.

nation des performances de filtration. Une question à laquelle nous souhaitons répondre concerne

la possibilité que cette décomposition spinodale puisse, sous certaines conditions, mener à la for-

mation de structures poreuses. Les résultats présents suggèrent que la cinétique de séparation de

phase soit en effet assez rapide pour permettre la formationde structures près de la membrane.

Pour capturer la cinétique de séparation de phase en utilisant une approche BsR, il est néces-

saire d’atteindre de hautes résolutions spatiales et temporelles. L’épaisseur de l’interface “liquide-

vapeur” doit être résolue, ce qui impose des pas d’espace de valeur faible (≈ 0.5 nm) : ainsi la

taille totale du domaine de simulation ne peut pas être très importante. Dans ce travail, l’effet de

cette limite a été minimisé en utilisant des conditions aux limites périodiques dans les directions

parallèles à la surface de la membrane, mais même ainsi la taille du domaine limite la taille et le

nombre de “gouttes” formées pendant la séparation de phase.
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FIG . IV.12: Représentation de la fraction volumique à la surface de la membrane en fonction

du temps. Du fait de l’écoulement global, il y a une accumulation de colloïdes à la surface de

la membrane. Des oscillations sont observées car il n’y a pasassez de matière pour former une

interface stable.

IV.3 Conclusions du chapitre

Dans l’essai présenté ci-dessus, une difficulté a été éliminée en considérant une membrane de

perméabilité uniforme et en négligeant la variation de la viscosité de sorte que l’effet du fluide

porteur a été remplacé par une force de traînée vers la membrane. Mais ceci n’est pas réaliste car

à cette échelle, les membranes présentent une surface rugueuse et une perméabilité non-uniforme

[64]. En principe, le modèle présenté ici est capable de représenter ces phénomènes via la résolu-

tion BsR pour le fluide global. Cependant, pour implémenter cette méthodologie dans l’exemple

présenté, la faible valeur deδx et la valeur physique de la viscosité du fluide porteur imposent un

pas de temps très petit (∼ 10−14s, c’est à dire quatre ordres de grandeur en dessous du pas de temps

requis pour la résolution BsR du colloïde). Ceci est particulièrement pénalisant car un nombre ex-

tremement elevé de pas de temps serait alors nécessaire pouratteindre la zone de concentration

instable à la surface de la membrane en partant d’une concentration initialement stable. Dans les

tests présentés ci-dessus nous rencontrions déjà des difficultés alors que nous n’étions pourtant

contraints que par le pas de temps de la résolution BsR : la concentration initiale a du être imposée

à une valeur instable dès le début de la simulation et l’écoulement vers la membrane a été fixé à
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une valeur environ dix fois trop importante par rapport aux situations rencontrées en pratique.

Cette difficulté pourrait être partiellement levée en utilisant un pas de temps plus élevé dans

les premiers instants où le profil de concentration à la membrane se développe puis en choisissant

un pas de temps adapté pour obtenir les calculs détaillés lorsque la condition de séparation de

phase est atteinte. Quant à la vitesse élevée de l’écoulement vers la membrane, il a été montré

par les calculs1D que pour une vitesse plus faible, la durée de la phase oscillante est plus longue

avant la formation complète de l’interface. Ainsi dans un vrai procédé de filtration, la cinétique de

séparation de phase serait favorisée par rapport aux résultats de calculs présentés ici.

Evidemment un pas de temps de l’ordre de10−14s n’est pas utilisable en pratique pour ce type

d’applications. Un travail plus complet est nécessaire à lafois au niveau strictement numérique et

au niveau de la formulation dans le style de la méthode de pénalisation décrite à la section IV.2.2.

Des phénomènes physiques ont déjà été implicitement négligés, comme la relaxation de la double

couche électrique autour des particules colloïdales : le temps de relaxation de la double couche est

de l’ordre de10−3 s [65] , et notre équation d’état des colloïdes est dérivée sous l’hypothèse de

l’équilibre de la double couche. Il n’y a donc aucun sens physique à analyser, avec ce modèle, des

échelles de temps de10−14s et des efforts seront fourni à la suite de ce travail pour tenter de lever

ces contraintes.



Chapitre V

Boltzmann-sur-Réseau pour les écoulements

diphasiques avec transferts d’énergie

Nous avons été en mesure au chapitre II de proposer un schéma permettant la simulation

d’écoulements de gaz anisothermes. La raison pour laquellenous nous intéressons aux écoule-

ments anisothermes est que l’un de nos objectifs applicatifs est le refroidissement de l’électro-

nique. Cependant les dispositifs efficaces dans ce contextefont appel aux phénomènes de transition

de phase liquide-vapeur (évaporation au contact du composant électronique et condensation à la

source froide). Notre travail ne peut donc avoir de conséquences concrètes dans ce domaine que si

nous sommes en mesure d’étendre la proposition faite au chapitre II aux écoulements diphasiques.

Nous essayons donc dans ce dernier chapitre d’amorcer, en cesens, une synthèse des éléments

théoriques présentés aux chapitres II et III. La matière présentée est beaucoup moins aboutie que

celle des chapitres II et IV (monophasique anisotherme et diphasique isotherme), cependant :

– nous avons pu mettre en oeuvre une série de premières simulations multi-dimensionnelles

d’écoulements de diazote en présence de transition de phaseau voisinage du point critique ;

– un cap important a été franchi en termes de stabilité numérique sur la base de l’analyse de

l’interface liquide-vapeur détaillée au chapitre III et del’expérience acquise au chapitre IV

sur les interfaces en écoulement isotherme.

Il est apparu dans ce travail (comme lors de l’extension au terme collisionnel ES-BGK du para-

graphe II.3.6.6) que l’augmentation de complexité correspondant au passage du monophasique au

diphasique ne pose aucune difficulté particulière en ce qui concerne le modèle de vitesses discrètes.

La véritable difficulté s’est avérée être liée à la discrétisation spatiale.

127



128 V BsR diphasique avec transferts d’énergie

V.1 Rappel du modèle cinétique

La plupart des modèles Boltzmann-sur-réseau existant poursimuler des écoulements aniso-

thermes de fluides diphasiques sont basés sur des modèles isothermes (cf. Chapitre IV). A partir

de ces modèles les effets thermiques sont pris en compte par l’ajout d’un scalaire passif ou par

une résolution de l’équation macroscopique de la chaleur [48, 66, 67, 68]. Martys [69] a égale-

ment proposé un modèle Boltzmann discret pour fluide non-idéal conservant l’énergie sans tou-

tefois l’appliquer à des écoulements diphasiques. En ce quinous concerne ici, nous repartons de

l’équation cinétique continue introduite au chapitre III,à savoir l’équation de Boltzmann-Enskog

(III.51) :

∂f

∂t
+ v · ∇f + (

F
m

−∇Vm) · ∇vf = I1 (V.1)

Dans cette équation, le termeI1 représente le terme collisionnel qui tient compte de la taille des

particules et des répulsions intermoléculaires en considérant les particules comme des sphères

dures. Et le termeVm est le potentiel moyen obtenu par approximation de champ moyen de la

partie attractive des interactions intermoléculaires. Ces deux termesI1 etVm s’écrivent en fonction

des dérivées spatiales des champs macroscopiquesρ, u etT :

I1 = χΩ0

− bρχf eq(v − u) ·
[
∇ ln(ρ2χ) +

3

5
(C2 − 5

6
)∇ lnT

]

− bρχf eq 2

5

[
2CC : ∇u + (C2 − 5

2
)∇ · u

]
(V.2)

Vm = −2aρ− κ∇2ρ (V.3)

Le termeI1 nécessite un modèle pourΩ0 qui est le terme collisionnel de Boltzmann que nous

pouvons approximer par BGK ou ES-BGK. Il est nécessaire également d’avoir un modèle pour

la fonction de corrélation à deux corpsχ. Dans ce travail nous nous limitons au modèle relatif

à l’équation d’état de van der Waals c’est-à-direχ = 1
1−bρ

. Nous rappelons également que les

paramètresa etκ rendent compte de la partie attractive du potentiel intermoléculaire (paragraphe

III.2.2).
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V.2 Modèle de vitesses discrètes

Au chapitre II, la détermination du jeu de vitesses discrètes a été pensée en vue d’une ré-

solution de l’équation de Boltzmann-BGK à un ordre de précision correspondant à l’ordre1 du

développement de Chapman-Enskog. Pour discrétiser l’espace des vitesses dans le but de résoudre

l’équation de Boltzmann-Enskog, la même démarche peut s’appliquer. Comme pour l’équation de

Boltzmann-BGK, nous choisissons de résoudre l’équation deBoltzmann-Enskog à l’ordre1 de

Chapman-Enskog en incluant les effets thermiques (voir paragraphe II.3.2).

Les termes d’interactions supplémentaires dans l’équation de Boltzmann-Enskog ne posent pas

de difficultés particulières lors du développement de Chapman-Enskog. Pour ce qui nous intéresse

ici, il est juste important de remarquer que le termeI1 peut s’écrire comme la somme du terme

collisionnel de l’équation de Boltzmann et du produit d’un polynôme d’ordre3 env parf eq.

I1 = χΩ0 + P3(v)f eq (V.4)

En retenant l’approximation BGK pour le terme de collisionΩ0, nous pouvons trouver une ex-

pression pourf (1) de la même façon que pour l’équation de Boltzmann-BGK au chapitre I en

remplaçant les dérivées spatiales et temporelles def par les dérivées defeq.

∂f eq

∂t
+ v · ∇f eq + (

F
m

−∇Vm) · ∇vf
eq ≈ −χ

τ
f (1) + P3(v) (V.5)

f (1) ≈ − τ
χ

[
∂f eq

∂t
+ v · ∇f eq + (

F
m

−∇Vm) · ∇vf
eq

]
(V.6)

+
τ

χ
P3(v)f eq

Aux chapitres I et II, nous avons montré en effectuant toute la procédure de Chapman-Enskog que

le terme entre crochets s’écrivait également comme le produit def eq par un polynôme d’ordre3 en

v. Ce qu’il est important de retenir à cette étape, c’est que les termes supplémentaires d’interaction

n’augmentent pas l’ordre du polynôme env : f (1) reste le produit def eq et d’un polynôme env

d’ordre3. Pour pouvoir utiliser la quadrature de Gauss-Hermite, nous avons ensuite utilisé le fait

quef eq pouvait se développer comme le produit d’une gaussienne centrée en0 par un polynôme

d’ordre 4. Ceci est inchangé et, en reprenant toutes les étapes, il apparaît que la quadrature de

Gauss-Hermite doit comme précédemment, être capable d’évaluer les moments d’ordre10 d’une

gaussienne centrée en0. Autrement dit, pour résoudre l’équation de Boltzmann-Enskog, à l’ordre

1 de Chapman-Enskog, il est possible de garder le même jeu de vitesses discrètes que pour la

résolution de l’équation de Boltzmann-BGK défini par II.41.
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V.3 Discrétisation spatio-temporelle

Les mêmes schémas d’intégration, que ceux présentés au chapitre II, peuvent être utilisés dans

ce nouveau contexte : schéma de Euler au premier ordre pour l’intégration temporelle et schéma

amont au premier ou au second ordre pour le terme de transportv · ∇f . D’un point de vue nu-

mérique, la seule difficulté supplémentaire provient de la discrétisation des dérivées spatiales des

champs macroscopiques intervenant dans le terme de collision I1 et dans le potentiel moyenVm.

Les premiers essais de résolutions numériques sans approfondissement particulier se sont montrés

totalement infructueux, conduisant à de fortes divergences. La résolution divergeait encore, même

lorsque les simulations étaient effectuées à partir d’un état initial correspondant à un état d’équili-

bre liquide-vapeur. Pour concevoir un schéma numérique adapté, nous avons repris le point de vue

mésoscopique sur l’équilibre liquide-vapeur abordé en fin de chapitre III.

V.3.1 Point de vue mésoscopique sur l’équilibre liquide-vapeur

Comme il a été vu au chapitre III, au niveau mésoscopique, l’équilibre liquide-vapeur à l’inter-

face est obtenu par compensation entre les termes de transport, d’attraction et de répulsion d’Ens-

kog.

v · ∇f eq −∇Vm · ∇vf
eq = −bρχf eqv · ∇ ln(ρ2χ) (V.7)

Il est à remarquer que seules les dérivées spatiales de la masse volumiqueρ sont non-nulles à

l’équilibre puisque l’équilibre implique l’annulation des dérivées spatiales de la vitesseu et de la

températureT . C’est pourquoi, dans un premier temps, nous regardons avecattention les dérivées

spatiales deρ qui interviennent dans le potentiel moyenVm et le terme de répulsion d’Enskog. En

développant le terme∇vf
eq et en remplaçantVm par son expression, l’équation précédente s’écrit :

v · ∇f eq −
[
2a∇ρ+ κ∇∇2ρ

]
· v
f eq

rT
= −bρχf eqv · ∇ ln(ρ2χ) (V.8)

Cette équation fait apparaître le fait qu’à l’équilibre, cette égalité doit être vérifiée pour chaque

vitessev indépendamment les unes des autres. Ainsi, il apparaît clairement que pour pouvoir numé-

riquement obtenir une interface à l’équilibre, le schéma des dérivées spatiales deρ ne pas être choisi

indépendamment du schéma utilisé pour le terme de transportv · ∇f . Pour illustrer la dépendance

entre ces schémas numériques, prenons l’exemple d’un équilibre liquide-vapeur en1D dans le cas

extrême oùκ = 0. Physiquement cela correspond au cas où l’interface seraitd’épaisseur nulle
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et d’un point de vue numérique cela correspond au cas où la masse volumiqueρ passerait d’une

valeur à l’autre sur une maille comme le montre la figure V.1.

ρ

ρ

v

l

I−1 I+1I
FIG . V.1: Illustration d’un équilibre liquide-vapeur lorsqueκ = 0 c’est à dire lorsque la masse

volumique passe deρv àρl d’un nœud à l’autre .

Examinons les contributions de chacun des termes de l’équation (V.8) au noeudI. Pour les

vitesses positives (particules se déplaçant de gauche à droite), et pour un schéma amont au premier

ordre, le terme de transport s’écrit numériquement de la façon suivante :

v · ∇f eq|(I,v>0) = v
f eq

I − f eq
I−1

δx
(V.9)

= 0 (V.10)

En revanche pour les vitesses négatives, l’évaluation du terme de transport n’est pas nulle (nous

utilisons ci-dessous le fait que la distribution d’équilibre s’écritf eq = ρ peq
v ) :

v · ∇f eq|(I,v<0) = v
f eq

I+1 − f eq
I

δx
(V.11)

= peq
v v

ρI+1 − ρI

δx
(V.12)

= peq
v v

ρl − ρv

δx
(V.13)

Le terme de transport étant différent en fonction de la vitesse, il est compréhensible que les termes

d’interaction doivent aussi être évalués de façons différentes en fonction de la vitesse. Une question
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se pose alors : pour les vitesses positives, le terme de transport étant nul, le terme d’attraction

(−2a∇ρf
eq

rT
) se compense-t-il avec le terme de répulsion (−bρχf eq∇ ln(ρ2χ)) ou bien ces termes

sont-ils nuls tous les deux ? Pour répondre à cette question,revenons à la signification physique de

ces termes. Formellement le terme d’attraction dépend de tout le champ deρ mais le développe-

ment champ moyen permet de remplacer cette dépendance sur tout le champ par une dépendance

sur les dérivées spatiales deρ au point considéré. Ainsi, pour les particules au noeudI venant du

noeudI − 1, le terme d’attraction doit être nul car durant leur trajet,ces particules n’ont pas “vu”

de variation de masse volumique. Les termes d’attraction etde répulsion sont donc tous les deux

nuls. En revanche pour les vitesses négatives, les particules venant du noeudI + 1 pour aller au

noeudI, ont ressenti des forces du fait de la variation de masse volumique et ce sont ces forces qui

compensent le terme de transport.

V.3.2 Reformulation des termes d’interaction pour une situation d’équilibre

liquide-vapeur

Afin de concevoir une approximation numérique des termes d’interaction, nous allons com-

mencer par les reformuler. Reprenons encore l’exemple de lafigure V.1 d’un équilibre liquide-

vapeur pour lequelκ = 0. L’équation (V.8) traduisant cet équilibre au niveau mésoscopique peut

se réécrire sous la forme suivante :

v · ∇f eq = 2a∇ρ · v
f eq

rT
− bρχf eqv · ∇ ln(ρ2χ) (V.14)

v · ∇f eq = −f
eq

rT
v ·
[
rT

b

ρ
∇(ρ2χ) − 2a∇ρ

]
(V.15)

v · ∇f eq = −f
eq

rT

1

ρ
v · ∇

[
ρ2rT bχ− aρ2

]
(V.16)

v · ∇f eq = −f
eq

rT

1

ρ
v · ∇

[
ρrT (1 + bρχ) − aρ2 − ρrT

]
(V.17)

Cette reformulation permet de faire apparaître l’équationd’état de van der Waalspb = ρrT (1 +

bρχ) − aρ2 que nous avions identifiée au chapitre III en utilisant le développement de Chapman-

Enskog pour l’équation de Boltzmann-Enskog.

v · ∇f eq = −f
eq

rT

1

ρ
v · ∇ [pb − ρrT ] (V.18)

D’un point de vue physique le terme∇ [pb − ρrT ] est proportionnel à la force totale exercée sur

les particules, intégrant les interactions attractives etrépulsives. Cette formulation est bien entendu
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compatible avec le point de vue macroscopique d’un équilibre liquide-vapeur. En remplaçantf eq

parρ peq
v , le terme de transport s’annule avec le terme en∇(ρrT ) du membre de droite et l’équilibre

se traduit par la continuité de la pressionpb d’une phase à l’autre :

∇pb = 0 (V.19)

La réécriture des termes d’interaction en fonction du gradient de pressionpb permet d’obtenir

numériquement, à l’équilibre, les égalités suivantes au noeudI :

v · ∇f eq = −f
eq
I

rT

1

ρ
v · ∇ [pb − ρrT ] (V.20)

pour les vitesses positives :

v
f eq

I − f eq
I−1

δx
= −f

eq
I

rT

1

ρI
v
[pb,I − ρIrT ] − [pb,I−1 − ρI−1rT ]

δx
(V.21)

et pour les vitesses négatives :

v
f eq

I+1 − f eq
I

δx
= −f

eq
I

rT

1

ρI

v
[pb,I+1 − ρI+1rT ] − [pb,I − ρIrT ]

δx
(V.22)

Ce type de reformulation des forces d’interactions en fonction du gradient de la pression a déjà été

utilisée pour des modèles BsR pour des fluides diphasiques isothermes [70, 71, 52].

V.3.3 Reformulation des termes d’interaction pour une situation hors d’équi-

libre en 1D

Dans la section précédente, nous avons raisonné sur un état d’équilibre liquide-vapeur avec

κ = 0 de façon à appréhender le schéma de discrétisation des termes d’interaction dépendant des

dérivées de la masse volumique. A partir de ces contraintes sur l’état d’équilibre, nous pouvons

proposer un schéma de discrétisation pour les termes d’interaction en1D avant de le généraliser.

Pour bien séparer les difficultés, l’équation cinétique (V.1) peut s’écrire de la façon suivante :

∂f

∂t
+ v · ∇f +

F
m

· ∇vf = χΩ0 + Jρ + Ju + JT (V.23)

où Jρ regroupe les termes contenant les dérivées spatiales issusde I1 et deVm. Les termesJu et

JT s’identifient respectivement aux regroupements des termescontentant les dérivées spatiales de

u et deT issus deI1. La discrétisation des termesJu etJT ne pose pas de problème particulier car
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ceux-ci, disparaissant à l’équilibre, ne sont pas critiqueen ce qui concerne la stabilité numérique

d’un état d’équilibre liquide-vapeur. Le terme sur lequel il faut porter une attention particulière est

Jρ car c’est celui-ci qui compense le terme de transport au seinde l’interface. Les résultats obtenus

dans la section précédente, à l’équilibre et dans le cas oùκ = 0, conduisent à l’expression suivante

deJρ :

Jeq
ρ = −f

eq

rT

1

ρ
v · ∇ [pb − ρrT ] (V.24)

Le cas général (T non-uniforme etu 6= 0) peut être abordé simplement étant donné que seules les

dérivées deρ sont à prendre en compte. Cela conduit à l’expression suivante deJρ :

Jρ = −f
eq

rT

1

ρ
(v − u) · ∇ρ∂ [pb − ρrT ]

∂ρ
(V.25)

=
f eq

ρ
(v − u) · ∇ρ− f eq

ρrT
(v − u) · ∇ρ∂pb

∂ρ
(V.26)

Pour autant, la discrétisation de ce terme ne va pas se faire par une discrétisation directe de∇ρ,
car nous souhaitons retrouverJρ à l’équilibre les égalités (V.21) et (V.22). Cette contrainte conduit

au schéma amont suivant :

Jρ||(I,v>0)
=

f eq
I

ρI
(v − uI)

ρI − ρI−1

δx
(V.27)

− f eq
I

ρIrTI
(v − uI)

pb,I − p∗b,I−1

δx

Jρ||(I,v<0)
=

f eq
I

ρI
(v − uI)

ρI+1 − ρI

δx
(V.28)

− f eq
I

ρIrTI

(v − uI)
p∗b,I+1 − pb,I

δx

avecp∗b,I−1 = pb(ρI−1, TI) qui est différent de l’expression de la pressionpb(ρI−1, TI−1) au noeud

I − 1. De mêmep∗b,I+1 = pb(ρI+1, TI)

V.3.4 Généralisation

La démarche précédente peut se généraliser à la fois en plusieurs dimensions et lorsqueκ est

non-nul. Dans ce cas, les forces n’apparaissent plus par le gradient de la pressionpb mais par les
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dérivées du tenseur des pressionsPαβ. En2D, l’équation cinétique diffère par quelques coefficients

de l’équation (V.1).

∂f

∂t
+ v · ∇f + (

F
m

−∇Vm) · ∇vf = χΩ0 (V.29)

− bρχf eq(v − u) ·
[
∇ ln(ρ2χ) +

1

2
(C2 − 1)∇ lnT

]
(V.30)

− bρχf eq 1

2

[
2CC : ∇u + (C2 − 2)∇ · u

]
(V.31)

En généralisant la stratégie précédente pour les termes d’interaction, en explicitant tous les termes

tensoriels et en adoptant comme convention d’écritureUα = (vα−uα), l’équation ci-dessus s’écrit :

∂f

∂t
+ v · ∇f +

F
m

· ∇vf = χΩ0

+
f eq

ρ
(Ux∂xρ+ Uy∂yρ)

− f eq

ρrT

[
Ux(∂

∗
xPxx + ∂∗yPxy) + Uy(∂

∗
yPyy + ∂∗xPyx)

]

− f eqbρχ

[
UxUy

2rT
(∂xuy + ∂yux)

+

(
U2

4rT
− 1 +

U2
x

2rT

)
∂xux +

(
U2

4rT
− 1 +

U2
y

2rT

)
∂yuy

]

− f eqbρχ
1

T

(
U2

4rT
− 1

2

)
(Ux∂xT + Uy∂yT ) (V.32)

La signification du symbole∗ dans les dérivées des composantes du tenseur des pressions sera

explicitée plus loin. Dans cette nouvelle écriture le termed’attractionVm et les termes de répulsion

relatifs aux dérivées de la masse volumiquesρ sont inclus dans les dérivées du tenseur des pressions

et les dérivées deρ.

Voici l’algorithme que nous avons utilisé, en2D, avec une intégration temporelle Euler premier

ordre et un schéma de transport amont premier ordre :

1. à partir du champ def initial, évaluation des champs macroscopiquesρ, u etT et calcul de

f eq.

2. évaluation du terme de transportv · ∇f au noeud(I, J) par un schéma amont premier ordre

(voir chapitre II).

3. évaluation du terme de force extérieure :
F
m

· ∇vf ≈ FI,J

m
· (uI,J − v)f eq

I,J
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4. évaluation du terme collisionnel de Boltzmann (approximationBGK par exemple) :χΩ0 =

− 1

1 − bρI,J

fI,J − f eq
I,J

τ

5. évaluation du terme
f eq

ρ
(Ux∂xρ + Uy∂yρ) avec un schéma amont premier ordre pour les

dérivées deρ en fonction de la vitessev.

6. évaluation des dérivées deρ pour calculer les composantes du tenseur des pressions :

Pxx = pb(ρ, T ) − κρ∇2ρ− κ

2
|∇ρ|2 + κ(∂xρ)

2 = Pxx(ρ, ∂xρ, ∂yρ,∇2ρ, T )

Pyy = pb(ρ, T ) − κρ∇2ρ− κ

2
|∇ρ|2 + κ(∂yρ)

2 = Pyy(ρ, ∂xρ, ∂yρ,∇2ρ, T )

Pxy = Pyx = κ(∂xρ)(∂yρ) = Pxy(∂xρ, ∂yρ) = Pyx(∂xρ, ∂yρ)

Nous rappelons que physiquement le tenseur des pressions est une généralisation du concept

de pression pour les systèmes avec des interactions internes et que formellement ce tenseur

des pressions est une fonctionnelle du champ deρ, mais que dans le cadre de l’approximation

de champ moyen, cette dépendance sur le champ deρ est approximée par une dépendance

sur les premières dérivées spatiales deρ. Ceci a pour conséquence que pour l’évaluation des

composantes du tenseur des pressions, il faut considérer, en chaque point,ρ, ∂xρ, ∂yρ et∇2ρ

comme des variables indépendantes. D’un point de vue numérique, cela implique que pour

le tenseur des pressions, les dérivées deρ ne doivent pas être évaluées par un schéma amont

en fonction de la vitessev. Nous avons utilisé ici, des schémas différences finies centrées

deuxième ordre.

7. évaluation du terme
f eq

ρrT

[
Ux(∂

∗
xPxx + ∂∗yPxy) + Uy(∂

∗
yPyy + ∂∗xPyx)

]
. Formellement le ten-

seur des pressions dépend deρ etT . Donc, les dérivées de ses composantes peuvent s’écrire

sous la forme :∂αPαβ = ∂αρ
∂Pαβ

∂ρ
+ ∂αT

∂Pαβ

∂T
. Le symbole∗ indique que seule la dépen-

dance àρ doit être considérée, autrement dit,∂∗αPαβ = ∂αρ
∂Pαβ

∂ρ
. Cependant, la notation∗

est volontaire, car numériquement ce n’est pas∂αρ
∂Pαβ

∂ρ
qui doit être évalué. Si ce terme était

évalué cela conduirait à une solution d’équilibre physiquement non-pertinente. Par exemple,

pour la configuration1D décrite précédemment (Fig. V.1), le profil à l’équilibre serait tel

que
∂pb

∂ρ
= 0 au lieu de la solution physique∇pb = 0. Le calcul des dérivées du tenseur des

pressions est effectué par un schéma amont premier ordre en fonction de la vitessev. Par

l’exemple le terme∂∗xPxx au noeud(I, J) pour les vitesses positives selonx est évalué par :

∂∗xPxx|I,J =
Pxx(I, J) − P ∗

xx(I − 1, J)

δx
(V.33)
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avecP ∗
xx(I − 1, J) 6= Pxx(I − 1, J) carP ∗

xx(I − 1, J) est évalué avec la températureTI,J

du noeud(I, J) et non pas la températureTI−1,J du noeud(I − 1, J). Ceci permet d’évaluer

correctement le terme∂∗xPxx = ∂xρ
∂Pxx

∂ρ
. Les autres dérivées∂∗αPαβ sont calculées de la

même façon.

8. les autres termes, issus du terme collisionnel d’Enskog,contenant les dérivées deu et deT

ne présentent pas de difficultés particulières car ceux-ci disparaissent à l’équilibre, dans le

sens où, ne compensant pas le terme de transport comme les autres termes d’interaction, ils

peuvent être évalués indépendamment du schéma numérique detransport. Mais par simpli-

cité et cohérence, nous avons choisi d’évaluer les dérivéesdeu et deT par un schéma amont

premier ordre en fonction de la vitessev.

9. intégration temporelle par un schéma Euler premier ordre:

f t+1
I,J = fI,J − δt v · ∇f − δt

F
m

· ∇vf + δt χΩ0

+ δt
f eq

ρ
(Ux∂xρ+ Uy∂yρ)

− δt
f eq

ρrT

[
Ux(∂

∗
xPxx + ∂∗yPxy) + Uy(∂

∗
yPyy + ∂∗xPyx)

]

− δt f eqbρχ

[
UxUy

2rT
(∂xuy + ∂yux)

+

(
U2

4rT
− 1 +

U2
x

2rT

)
∂xux +

(
U2

4rT
− 1 +

U2
y

2rT

)
∂yuy

]

− δt f eqbρχ
1

T

(
U2

4rT
− 1

2

)
(Ux∂xT + Uy∂yT ) (V.34)

V.4 Validations et premiers résultats

Afin de valider et d’illustrer le modèle proposé, des simulations numériques d’écoulement ou

de situations d’équilibre liquide-vapeur ont été effectuées et com-pa-rées à des résultats analytiques

lorsque cela était possible.

V.4.1 Profil d’interface

Le modèle de densité d’énergie libre de van der Waals permet de prévoir le profil de masse

volumique solution d’un équilibre liquide-vapeur. La minimisation de la fonctionnelle d’énergie
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libre conduit au profil de masse volumique suivant [59] :

ρ(x) =

∫ √−2W [ρ(x)]

κ
dx (V.35)

avec−W (ρ) = p0 − µ0ρ+ ψ oùψ est la densité d’énergie libre,p0 la pression de saturation etµ0

le potentiel chimique d’équilibre entre la vapeur et le liquide. Cette équation est implicite car elle

fait apparaître le profil de masse volumique dans l’intégrale. Pour lever cet implicite, il est possible

d’écrire la positionx(ρ) en fonction de la masse volumique :

x(ρ) = x0 ±
(κ

2

)1/2
∫ ρl

ρv

[W (ρ)]−1/2 dρ (V.36)

La fonctionW est entièrement déterminée par l’équation d’état du fluide tout comme les bornes

d’intégrationρv et ρl. Le profil de masse volumique peut être déterminé en évaluantnuméri-

quement cette intégrale pour plusieurs valeurs du paramètre κ qui contrôle la largeur d’interface

et la tension de surface. La figure V.2 illustre différents profils d’interface obtenus par simulation

de Boltzmann-Enskog comparés à ceux obtenus par résolutionde l’intégrale (V.36). Il s’agit de

tests numériques pour un fluide modèle éloigné de toute condition réaliste, mais communément

employé dans la littérature [53, 54].

V.4.2 Condensation sur parois

L’exemple précédent concernait une situation d’équilibreliquide-vapeur pour laquelle les ef-

fets thermiques n’interviennent pas. Ceux-ci jouent un rôle uniquement dans la dynamique vers

l’établissement de l’état d’équilibre. Afin de mettre en évidence les effets thermiques, il est néces-

saire d’examiner les dynamiques à partir de situations initiales hors d’équilibre. Il est difficile de

valider notre modèle avec des exemples académiques d’écoulements avec changement de phase

et transfert d’énergie dont la dynamique est connue car de tels exemples n’existent pas à notre

connaissance. Toutefois, il est possible de faire des simulations où le changement de phase et les

effets thermiques interviennent et analyser si la dynamique et l’état d’équilibre semblent pertinents.

Des simulations de condensation sur paroi ont été effectuées pour un fluide de van der Waals.

Les caractéristiques du fluide sont proches du diazote : une température critiqueTc = 126.2K, une

masse volumique critiqueρc = 314.02 kg.m−3, une constante massiquer = 296.69 J.K−1.kg−1

, un temps de collisionτ = 10−10 s et un paramètreκ = 1.0−14 m7.kg−1.s−2. La valeur de ce

dernier paramètre a été volontairement multipliée par un facteur 100 de façon à permettre des

simulations avec des pas de temps et d’espace “raisonnables”. Compte tenue de la relation entreκ
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FIG . V.2: Comparaison des profils d’interface liquide-vapeur obtenus par simulation avec les résul-

tats théoriques (traits pleins). Les simulations ont été effectuées pour un fluide de van der Waals de

température critiqueTc = 4/7K et de masse volumique critiqueρc = 3.5 kg.m−3. Les paramètres

de simulation sontT = 0.98Tc, τ = 0.1 s, δx = 1m etδt = 0.01 s. Les trois profils correspondent

à trois valeurs deκ : 0.01 m7.kg−1.s−2 (carrés),0.05 m7.kg−1.s−2 (cercles) et0.1 m7.kg−1.s−2

(étoiles).

et la tension de surface (III.32), le fluide simulé à une tension de surface10 fois plus importante

que celle du diazote. Avec ces paramètres les pas d’espace etde temps requis pour rendre compte

de l’interface et de la dynamique à cette échelle sont :δx = 20 nm et δt = 10−11 s. Le champ

de masse volumique initial est aléatoirement perturbé avecune amplitude de10 % autour deρ0 =

250 kg.m−3 à la températureT0 = 126K (ce qui correspond à une phase vapeur). Les simulations

ont été effectuées pour un domaine carré maillé50×50 avec des conditions aux limites périodiques

selon l’axex et des conditions aux limites thermiques sur les côtes perpendiculaires à l’axey qui

représentent des parois thermostatées (température identique sur les deux parois). Deux séries de

simulations ont été réalisées : une série avec une température de paroiTp1 = 122 K et une série

avec une température de paroiTp2 = 120 K. Pour ces deux situations, le fluide va évoluer vers

un état d’équilibre avec la température imposée par la température des parois. Comme le montre

la courbe de saturation V.3 dans le plan(T − ρ), l’état d’équilibre atteint par le fluide doit être
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FIG . V.3: Courbe de saturation du diazote dans le plan(T −ρ). A l’instant initial, le fluide est sous

forme vapeur (représenté par la croix). Les cercles représentent les masses volumiques du fluide

à l’état final qui est imposé par la température des parois (Tp1 = 122 K pour la simulation1 et

Tp2 = 120 K pour la simulation2).

diphasique. Les figures V.4 et V.5 représentent les champs demasse volumique et de température

pour différents instants pour la première simulation avec la température de paroisTp1 = 122 K.

Pour cette première simulation, le fluide se condense aux parois dans les premiers instants et

forme ainsi un film liquide qui s’épaissit au fur et à mesure dela condensation. On remarque qu’à

t = 5000 δt le fluide au milieu du domaine atteint une température inférieure à la température

des parois. Ce refroidissement est probablement dû à la détente adiabatique qui se produit suite

à la condensation sur les parois. Les films liquides s’épaississant, les effets de tension de surface

courbent les films pour former des gouttes aux parois (t = 22500 δt). Entre t = 50000 δt et

t = 100000 δt, les deux gouttes du haut coalescent à cause des effets de tension de surface. Ensuite

la taille de la goutte du bas augmente au détriment de celle duhaut. L’état àt = 1200000 δt

n’est pas encore l’état d’équilibre final car la températuren’est pas tout à fait homogène et il

reste un champ de vitesses non-nulles au sein du fluide, mais le système semble se diriger vers

un état d’équilibre diphasique avec une goutte accrochée à la paroi ce qui est compatible avec la
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thermodynamique de l’équilibre. La simulation n’a pas été poursuivie jusqu’à son terme car la

dynamique est très lente à partir de det = 1200000 δt.

La figure V.6 représente les champs de masse volumique et de température pour différents ins-

tants pour la seconde simulation avec la température de parois Tp2 = 120 K. Bien que les condi-

tions de cette deuxième simulation soient relativement proches de la première (Tp2 très proche de

Tp1), la dynamique observée et l’état final sont très différents. Dans les premiers instants, des films

liquides se créent aux parois par condensation du fluide. Comme pour la première configuration, la

condensation engendre une détente adiabatique qui refroidit le fluide au milieu du domaine à une

température inférieure à celle des parois. Mais cette fois,le refroidissement est tel que des gouttes

se forment au centre du domaine (t = 10000 δt). Les gouttes ainsi formées ne peuvent croître et

disparaissent au bénéfice des films liquides aux parois. Enfinl’état à t = 150000 δt n’est pas un

état d’équilibre. L’état d’équilibre vers lequel le système doit se diriger est un état avec un seul

film liquide en haut ou en bas afin de minimiser l’énergie d’interface. Compte tenue de la lente

évolution du système à partir det = 150000 δt la simulation n’a pas été poursuivie. Le champ de

vitesse représenté àt = 150000 δt est dissymétrique ce qui montre bien que le système n’a pas

atteint son état ’équilibre mais il est difficile de prevoir lequel des deux films persistera.

Il est difficile d’analyser et d’interpréter plus avant les dynamiques observées pour ces deux

configurations, mais cet exemple illustre le niveau de complexité de ce type d’écoulements où le

changement de phase et les effets thermiques sont couplés.
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FIG . V.4: Champs de masse volumique (colonne de gauche) et de température (à droite). Les

conditions de simulation sont : un maillage de50 × 50, δx = 20 nm et δt = 10−11 s. Les parois

(en haut et en bas) ont une températureTp1 = 122 K. Dans les premiers instants le fluide se

condense aux parois puis ces phases liquides forment des gouttes accrochées aux parois.
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FIG . V.5: La goutte du haut disparaît au bénéfice de la goutte inférieure. Compte tenu du pas de

temps la durée totale de la simulation est de12 µs .
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FIG . V.6: Champs de masse volumique (colonne de gauche) et de température (à droite). Les

conditions de simulation sont : un maillage de50 × 50, δx = 20 nm et δt = 10−11 s. Les parois

(en haut et en bas) ont une températureTp1 = 120 K. La durée totale de la simulation est de

1.5 µs. Le sous-refroidissement au sein du fluide permet la formation de gouttes (t = 10000 δt)

mais ces gouttes disparaissent au bénéfice des films liquidessur les parois.



Conclusions et perspectives

Le modèle BsR proposé au dernier chapitre, qui est basé sur une discrétisation de l’équation

de Boltzmann-Enskog étendue, a été numériquement mis en oeuvre afin de mener des simulations

d’un fluide réaliste (paramètres van der Waals du diazote) avec changement de phase et prise en

compte des effets thermiques. Nous avons uniquement été contraints d’augmenter la tension de

surface de façon à épaissir les interfaces liquide-vapeur et ralentir la dynamique. La taille des

domaines de simulation (≈ 100 µm × 100 µm) et les temps d’intégrations (≈ 10 µs) sont certes

réduits mais bien plus étendus que ceux accessibles avec la dynamique moléculaire (≈ 10 ns). De

ce point de vue, la modélisation mésoscopique apparaît déjàcomme un bon compromis entre les

descriptions macroscopique et microscopique car elle permet d’intégrer des phénomènes physiques

à petites échelles (interactions interparticulaires) et en même temps appréhender ce qui se passe à

l’échelle du système. La suite naturelle de ce travail exploratoire sera :

– d’afiner notre modèle d’interaction fluide-paroi (en posant un modèle mésoscopique à la

paroi et non plus la simple satisfaction d’une contrainte macroscopique donnée) ;

– de tenter de réduire les contraintes numériques (mais au-delà de quelques améliorations pou-

vant être espérées en jouant sur le schéma d’intégration temporelle, peu de pistes crédibles

émergent à ce jour).

Mais surtout, un premier outil de simulation étant disponible, la communauté des spécialistes di-

phasiques est maintenant en mesure d’identifier précisément la place que peut prendre ce type de

modèles dans le contexte actuel (couplage avec la diffusionthermique dans la paroi, transferts ther-

miques dans les films minces, dynamiques de croissance ...).Nos priorités dépendront directement

de cette identification.

Concernant notre modèle à deux fluides pour la dispersion colloïdale (chapitre IV), qui a été

pensé “macroscopiquement” et pour lequel nous avons employé des schémas BsR de la littérature,

il pourrait être intéressant de repartir d’un modèle purement mésoscopique de type Enskog à deux

espèces (fluide porteur+ colloïde). Ce choix semblait irréaliste au début de notre travail, avant

l’obtention des résultats du chapitre V sur la modélisationdes dynamiques des interfaces à partir

d’un modèle cinétique. Aujourd’hui, compte tenue du savoir-faire acquis sur la discrétisation de

145
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l’équation de Boltzmann-Enskog, un modèle cinétique à deuxespèces pourrait être implémenté

en faisant appel à des approximations et simplifications introduites à l’échelle mésoscopique (col-

lisions entre particules colloïdales négligées, masse desparticules du fluide porteur négligeable

devant la masse des particules colloïdales ...). Outre l’élégance conceptuelle de cette démarche,

on assurerait une continuité parfaite entre les deux pointsde vue sur le système (mésoscopique

et macroscopique), ce qui élargirait nos possibilités en termes d’analyse et d’approximations. Par

exemple, en suivant cette démarche, ce qui correspond au chapitre IV à l’approximation de dif-

fusion et à la méthode de pénalisation (que nous avons dû introduire dans le but de négliger la

viscosité du fluide colloïdal) se traduirait simplement, auniveau du modèle mésoscopique, par

la suppression du terme collisionnel colloïde-colloïde. On pourrait ainsi explorer successivement

l’ensemble des temps caractéristiques qui nous limitent aujourd’hui en terme de champ d’applica-

tions.

Au-delà de ces deux domaines (systèmes de refroidissement diphasique et procédé de filtration

membranaire), un élément important de notre travail était d’identifier dans la littérature BsR ce qui

relevait de schémas heuristiques, comme alternative à la résolution de Navier-Stokes (ou tout autre

modèle macroscopique), en opposition à des schémas numériques pouvant être considérés comme

une discrétisation rigoureuse de l’équation de Boltzmann.Cette clarification a été principalement

rendue possible grâce au travail de He et Luo [22, 23]. Ces auteurs ont démontré que certains

schémas BsR pour écoulements isothermes peuvent être rigoureusement interprétés comme des

discrétisations particulières de l’équation de Boltzmann-BGK à un ordre de précision équivalent

à l’ordre1 du développement de Chapman-Enskog. Nous nous sommes appuyés sur ces travaux

pour aboutir aux principaux résultats des chapitres II et V :un modèle BsR pour écoulements

anisothermes et une discrétisation de l’équation de Boltzmann-Enskog étendue pour modéliser les

écoulements liquide-vapeur anisothermes. Outre ces propositions, la vision de BsR comme une

discrétisation de l’équation de Boltzmann ouvre des perspectives en terme de modélisation. Cela

nous a permis d’employer le modèle collisionnel ES-BGK, à laplace du traditionnel modèle BGK,

afin d’obtenir à l’échelle macroscopique le nombre de Prandtl souhaité. Cela nous a également

autorisé à discrétiser l’équation de Boltzmann-Enskog avec le même jeu de vitesses discrètes que

celui déterminé au chapitre II pour le modèle BsR pour les écoulements anisothermes. Parmi les

perpectives ouvertes par cette vision, il serait par exemple envisageable de concevoir un modèle

BsR pour des situations de hors d’équilibre plus lointain enaugmentant l’ordre de la quadrature en

fonction des besoins, en particulier dans le contexte de la micro-fluidique diphasique.

Outre cette clarification quant à la place de la description mésoscopique dans les schémas BsR

existants, ce travail s’est appuyé en permanence sur une méthodologie consistant à aborder les

“systèmes complexes” par la complémentarité des points de vue :hors d’équilibre mésoscopique,
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hors d’équilibre macroscopique, équilibre mésoscopique(thermodynamique statistique de l’équi-

libre) etéquilibre macroscopique(thermodynamique axiomatique). Cette diversité de regards sur

la complexité va au-delà des questions d’échelle et les points essentiels relèvent plus souvent de

l’identification et de la compréhension des concepts d’équilibre, de proche équilibreet dehors

d’équilibre lointain, que de considérations strictement associées à la taille dusystème. En ce sens,

les phénomènes physiques à petite échelle (interactions fluide-paroi, interface liquide-vapeur ...) ne

relèvent pas forcément de situations loin de l’équilibre. C’est le cas par exemple, du modèle d’in-

terface liquide-vapeur de Cahn-Hilliard qui est un modèle thermodynamique à l’équilibre alors que

l’interface peut avoir une épaisseur constituée de quelques particules.

En tout cas, c’est certainement l’imbrication et la clarification de l’ensemble de ces concepts et

points de vue qui nous ont permis de franchir les étapes les plus déterminantes lors de la mise en

oeuvre des modèles proposés au cours de cette thèse :

– le schéma BsR pour écoulements anisothermes du chapitre IIa découlé directement de nos

efforts de clarification de ce qui pouvaient relever d’une description mésoscopique ou d’une

description macroscopique dans la littérature BsR.

– l’approximation de diffusion et la méthode de pénalisation qui en découle pour le modèle

de fluide colloïdal du chapitre IV a necessité d’apprendre à traduire dans un formalisme

mésoscopique une hypothèse de stationnarité ne portant quesur l’une des deux équations

macroscopiques.

– la proposition faite au chapitre V concernant les écoulements diphasiques anisothermes,

c’est-à-dire la représentation de phénomènes hors d’équilibre, n’a pu être mise en oeuvre

numériquement que grâce à l’analyse détaillée d’une interface liquide-vapeur à l’équilibre.





Annexe A

Procédure de Chapman-Enskog sur réseau

Nous appelons procédure de Chapman-Enskog sur réseau le développement qui consiste à dé-

river les équations macroscopiques continues à partir d’unmodèle Boltzmann-sur-Réseau. Cette

procédure fait intervenir une prise de moyenne similaire à la procédure de Chapman-Enskog mais

tient compte des schémas numériques utilisés. La procédurede Chapman-Enskog sur réseau pré-

sentée ici se décompose en deux étapes. La première consisteà écrire l’équation cinétique continue

que l’équation d’évolution discrète doit résoudre. Ensuite, à partir de l’équation cinétique obtenue,

la procédure de Chapman-Enskog standard peut être appliquée.

A.1 Effets du schéma numérique

Le point de départ est l’équation d’évolution sur réseau :

fi(r + viδt, t+ δt) = fi(r , t) −
δt

τ
[fi(r , t) − f eq

i (r , t)] (A.1)

Pour prendre en compte les effets numériques, nous faisons un développement à l’ordre2 enδt de

fi(r + viδt, t+ δt) :

fi(r , t) + δt

(
∂

∂t
+ vi · ∇

)
fi +

δt2

2

(
∂

∂t
+ vi · ∇

)2

fi (A.2)

= fi(r , t) −
δt

τ
[fi(r , t) − f eq

i (r , t)]

δt

(
∂

∂t
+ vi · ∇

)
fi +

δt2

2

(
∂

∂t
+ vi · ∇

)2

fi = −δt
τ

[fi − f eq
i ] (A.3)
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Cela signifie qu’à l’ordre2 en δt l’équation d’évolution discrète est une résolution de l’équation

cinétique suivante :

(
∂

∂t
+ vi · ∇

)
fi +

δt

2

(
∂

∂t
+ vi · ∇

)2

fi = −1

τ
[fi − f eq

i ] (A.4)

Cette équation correspond à l’équation de Boltzmann-BGK avec des termes supplémentaires dans

le membre de gauche qui ont une origine purement numérique.

A.2 Ordre 0 de la procédure de Chapman-Enskog

L’ordre de0 de la procédure de Chapman-Enskog consiste à moyenner l’équation cinétique en

approximantfi parf eq
i . En remplaçantfi parf eq

i dans l’équation A.4, les termes provenant de la

prise de moyenne des dérivées secondes def eq
i sont négligeables par rapport aux autres termes.

Ainsi à l’ordre0 de la procédure de Chapman-Enskog sur réseau, les effets numériques ne jouent

pas. Les équations macroscopiques dérivées sont les équations du fluide parfait :

∂ρ

∂t
+ ∇ · (ρu) = 0 (A.5)

(
∂

∂t
+ uβ∂β)uα = −1

ρ
∂αp (A.6)

avecp = ρ c2s. Dans le cas d’un réseauD2Q9, la “vitesse du son du réseau” estcs =
1

3

δx

δt
.

A.3 Ordre 1 de la procédure de Chapman-Enskog

L’ordre 1 de la procédure consiste à développerfi autour def eq
i : fi ≈ f eq

i + f
(1)
i . L’estimation

def (1)
i se fait à partir de l’équation A.4 en négligeant les dérivéesf

(1)
i par rapport aux dérivées de

f eq
i : (

∂

∂t
+ vi · ∇

)
f eq

i +
δt

2

(
∂

∂t
+ vi · ∇

)2

f eq
i ≈ −1

τ
f

(1)
i (A.7)

Pour les mêmes raisons qu’à l’ordre0, les dérivées secondes def eq
i sont négligeables. Ainsi l’es-

timation de la partie hors d’équilibref (1)
i n’est pas affectée par les effets numériques.

f
(1)
i ≈ −τ

(
∂

∂t
+ vi · ∇

)
f eq

i (A.8)
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Les équations de l’hydrodynamique à l’ordre1 correspondent à la prise de moyenne de l’équation

A.4 par sommation sur les vitesses discrètes.

∑

i

χ

[(
∂

∂t
+ vi · ∇

)
(f eq

i + f
(1)
i ) +

δt

2

(
∂

∂t
+ vi · ∇

)2

(f eq
i + f

(1)
i )

]
= 0 (A.9)

avecχ les invariants collisionnels. Compte tenue de l’expression def (1), nous pouvons écrire :

∑

i

χ

[(
∂

∂t
+ vi · ∇

)
(f eq

i + f
(1)
i ) − δt

2τ

(
∂

∂t
+ vi · ∇

)
f

(1)
i (A.10)

+
δt

2

(
∂

∂t
+ vi · ∇

)2

f
(1)
i

]
= 0

Les dérivées secondes def (1) sont négligeables par rapport aux autres termes.

∑

i

χ

[(
∂

∂t
+ vi · ∇

)
f eq

i +

(
1 − δt

2τ

)(
∂

∂t
+ vi · ∇

)
f

(1)
i

]
= 0 (A.11)

Comme le montre cette dernière équation, les effets numériques apparaissent au niveau de la contri-

bution de la partie hors d’équilibref (1). Plutôt que de faire toute la procédure de Chapman-Enskog,

il est possible d’utiliser les résultats de la procédure présentée au chapitre I. La procédure est iden-

tique, il faut simplement remarquer quef (1) est remplacée par

(
1 − δt

2τ

)
f (1). Commef

(1) est à

l’origine des flux dissipatifs, les équations macroscopiques obtenues sont les mêmes que celles ob-

tenues au chapitre I avec un facteur correctif sur la viscosité qui est le seul coefficient de transport

dissipatif pour un écoulement isotherme.

∂ρ

∂t
+ ∇ · (ρu) = 0 (A.12)

(
∂

∂t
+ uβ∂β)uα = −1

ρ
∂αp+ ν∇2uα +

ν

3
∂α(∇ · u) (A.13)

(A.14)

avec la viscositéν = c2sτ

(
1 − δt

2τ

)
.

Les effets numériques, qui se manifestent sur la valeur de laviscosité, ne proviennent pas de la

discrétisation de l’espace des vitesses. Ils ont comme origine les schémas numériques utilisés pour

l’intégration temporelle et l’évaluation du terme de transport. Sofonea et Sekerka [39] ont effectué

la procédure de Chapman-Enskog pour différents schémas numériques temporels et spatiaux.





Annexe B

Energy-conserving lattice Boltzmann

thermal model in two dimensions

abstract

A discrete velocity model is presented for Lattice Boltzmann thermal fluid dynamics. This

model is implemented and tested in two dimensions with a finite difference scheme. Comparison

with analytical solutions shows an excellent agreement even for wide temperature differences. An

alternative approximate approach is then presented for traditional lattice transport schemes.

B.1 Introduction

Over the last decade, it has been demonstrated that the Lattice Boltzmann Method (LBM) is

an effective approach method for simulating a wide variety of isothermal fluid flows [1]. In the

case of thermal fluid flows, LBM with a multi-speed approach under a single-relaxation-time BGK

approximation [2], suffers from numerical instabilities [3]. To avoid these instabilities, the passive

scalar approach [4] or introduction of a separate thermal distribution [5] can be used. Vahalaet al.

[7] have proposed a multi-speed model with a higher-order-isotropy velocity model and multiple

relaxation times to stabilize the numerical scheme and to have a variable Prandtl number. In [7] a

model was suggested based on Gauss-Hermite quadrature thatis a straightforward extension of the

‘a priori’ derivation of the Lattice Boltzmann equation by He and Luo [9, 10]. To include thermal

effects, heat conduction and viscous heat dissipation, thequadrature must be used to evaluate the

moments off to the eighth order. So the Lattice Boltzmann Thermal model needs 5 discrete velo-
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cities in one dimension and 25 discrete velocities in two dimensions.

In this work we test different ways of implementating the proposed approach. The main diffi-

culty arises from the fact that the quadratures are based on the equilibrium distribution function,

which introduces an explicit temperature dependence. So the set of discrete velocities resulting

from the quadrature is spatially inhomogeneous. To overcome this difficulty several solutions can

be envisaged. As far as the macroscopic velocity is concerned, this constraint is removed by a

‘low-Mach-number’ type of approximation. If a developmentequivalent to ‘low Mach number’ is

derived for small temperature differences, a formulation is obtained that would require, to ensure

a precision equivalent to the Chapman-Enskog expansion, the exact evaluation of moments up to

order 10 (cf Appendix B.6 ). We have not chosen this solution,rather we propose adapting the qua-

dradrature to 25 discrete velocities by choosing a reference temperature for the evaluation of the

velocity modules and we take account of the temperature variations by systematically recalculating

the weight factors. This system was implemented using a finite-difference scheme and has been

validated for a series of academic examples that show that the scheme performs very well even for

quite wide temperature differences. The second part of thiswork shows the difficulties involved

in the implementation of this velocity discretization within a traditional lattice-transport approach.

The various possibilities in this direction are explained and a first series of tests is presented.

B.2 Discrete velocity model for thermal applications

In this section, a velocity space discretization is presented for the Boltzmann equation under

the BGK approximation [2] :

∂f

∂t
+ v · ∇f = −1

τ
(f − g) (B.1)

wheref ≡ f (r , v, t) is the single-particle distribution function at locationr , microscopic velocity

v and timet, τ is the relaxation time andg ≡ g (r , v, t) is the Boltzmann-Maxwell equilibrium

distribution function :

g =
ρ

(2πRT )D/2
exp

(
−(v − u)2

2RT

)
(B.2)
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whereR is the ideal gas constant andD is the dimension. The macroscopic variables (the density

ρ, the velocityu and the temperatureT ) are the moments of the distribution function :

ρ =

∫
f dv (B.3)

ρu =

∫
vf dv (B.4)

1

2
ρDRT =

1

2

∫
(v − u)2 f dv (B.5)

As proposed by He and Luo [9, 10], the set of discrete velocities selected in the present work

is the result of a direct dicretisation of the continuous Boltzmann equation. This requires that a

quadrature be used for the evaluation of the three preceeding integrals that appear in the equilibrium

distribution function. Furthermore, the order of the quadrature must suit the accuracy required.

For macroscopic applications, it is sufficient for the quadrature to satisfy exactly the macroscopic

equations under the first-order Chapman-Enskog expansion.Under the low-Mach-number appro-

ximation, using a Gauss-Hermite quadrature [11], this requires integrals of the form

In =

∫
exp

(
− v2

2RT

)
Pn(v)dv (B.6)

to be computed exactly, wherePn is any polynomial up to order six for isothermal applications

and up to order eight for thermal applications. Using a Cartesian decomposition, this procedure

leads, for thermal applications, to a set of five discrete velocity co-ordinates and five quadrature

weights for each dimension. These discrete velocities arev0 = 0, v1 = −v2 =
√(

5 −
√

10
)
RT

andv3 = −v4 =
√(

5 +
√

10
)
RT and the quadrature weights are

wi = 265!
√

2πRTH6

(
vi√
2RT

)−2

(B.7)

whereH6 is the 6th-order Hermite polynomial. In two dimensions for instance, the moments of

the distribution function are evaluated as
∫

vnf dv =

∫
exp

(
− v2

2RT

)
vnf

exp
(
− v2

2RT

)dv ≈
∑

i

∑

j

wiwj
vi,j

nfi,j

exp
(
−vi,j

2

2RT

) (B.8)

whereex andey are the two unit vectors of the Cartesian co-ordinate system, vi,j = viex + vjey

andfi,j ≡ f (r ,vi,j, t). As the quadrature order is high enough to ensure satisfaction of the macro-

scopic equations under the first-order Chapman-Enskog expansion, such a discrete-velocity model
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should lead to exact simulations of macroscopic gas dynamics, including energy conservation (but

with a fixed Prandtl number because of the BGK approximation). However, this model cannot

be implemented as is : the discrete velocities are functionsof the local temperature and so are

variable in space. The corresponding discretized version of the Boltzmann equation could there-

fore only be solved using cumbersome interpolation schemesin the velocity space. A first ap-

proximate solution could be to make a Taylor expansion of theequilibrium distribution function

around a reference temperatureTref . This raises to order ten the polynomialsPn for which In
must be computed exactly. This requires seven discrete velocities for each dimension, thus seve-

rely increasing computation requirements. Another approximate solution was preferred, in which

the discrete velocities are fixed, corresponding to a given reference temperature, but the quadra-

ture weights are recomputed for an exponential ponderationfunction depending on the local tem-

peratureT . This local adjustment of the quadrature weights takes intoaccount the fact that for

macroscopic applications the distribution function is close to the equilibrium distribution at the

local temperature. For this approximate thermal model, thediscrete velocities are thereforev0 = 0,

v1 = −v2 =
√(

5 −
√

10
)
RTref andv3 = −v4 =

√(
5 +

√
10
)
RTref and the quadrature weights

are obtained locally as the solutions of the following linear system [11] :

K0 =

∫
e−

v2

2RT dv =
∑

wi (B.9)

K2 =

∫
v2e−

v2

2RT dv =
∑

wi v
2
i (B.10)

K4 =

∫
v4e−

v2

2RT dv =
∑

wi v
4
i (B.11)

with K0 =
√

2πRT , K2 = RTK0 andK4 = 3 (RT )2K0. The solution of this system leads to

following simple expressions for the local weights :

w0 = K0 −
(v2

1 + v2
3)K2 −K4

v2
1v

2
3

(B.12)

w1 =
v2
3K2 −K4

2v2
1 (v2

3 − v2
1)

(B.13)

w3 =
K4 − v2

1K2

2v2
3 (v2

3 − v2
1)

(B.14)

B.3 Finite-difference implementation and testing

Numerical simulations were performed to test the validity of the above described discrete-

velocity model. A classical Euler scheme is used for temporal integration and a second upwind
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finite-difference scheme is used for transport [13]. Boundary conditions are those of [14]. A series

of academic simulation examples is presented below to illustrate the ability of the model to deal

with compressibility and thermal effects. The first exampleconcerns viscosity effects. We consider

the decay of a vortex as described in [15]. The initial velocity conditions are :

ux = (y0 − y)ω0 exp

(
−(r − r 0)

2

L2

)
(B.15)

uy = (x− x0)ω0 exp

(
−(r − r 0)

2

L2

)
(B.16)

wherer0 = (x0, y0) is the center of the vortex,L is the characteristic lenght of the initial vor-

tex andω0 is the vorticity at the center. Figure B.1 displays the analytical and simulated vorticity

decays at vortex center,ωmax. The next two examples concern compressibility. Figure B.2shows

the vertical density profile corresponding to stratification by gravity of an isothermal horizontal

gas layer. Figure B.3 shows the speed of sound evaluated by simulating propagation of a density

wave. The last two examples concern thermal effects. FigureB.4 illustrates simulation results for

Couette flow and Figure B.5 shows estimated energy fluxes in a pure-conduction configuration. In

all cases, the accuracy levels obtained in terms of density,velocity and temperature fields at the

stationary limit are quite satisfactory. The points requiring more specific attention are the energy

flux estimations and the prediction of unstationary dynamics. The fact that discrete velocities are

fixed at a reference temperatureTref implies that, even though the quadrature weights are adjusted

to the local temperatureT , the quadrature order is not high enough for rigorous macroscopic simu-

lations. The associated biases are therefore direct functions of the temperature differenceT −Tref .

The simulation results reported in Figure B.5 indicate however that acceptable accuracy is obtained

even for strong deviations from the reference temperature.Configurations with 10% temperature

differences could be simulated with a 0.5% accuracy on energy fluxes at the stationary limit. Confi-

gurations with 30% temperature differences gave 5% accuracy in flux. The corresponding accuracy

levels in terms of characteristic times in the unstationaryphases are very similar.

Note : In the applications tested and even for very large temperature differences, the present

model showed no pathological numerical instabilities. However, strong instabilities appeared (in

accordance with the multi-speed thermal lattice Boltzmannliterature [3]) when the quadrature

weights were kept constant and spatially uniform at the values corresponding to the reference

temperature. So adjusting the quadrature weights to suit the local temperature seems useful in

terms of numerical stability independently of accuracy considerations.



158 B Energy-conserving LB thermal model in2D

0 0.05 0.1 0.15 0.2 0.25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t*

ω
m

ax
Analytical result	
LB simulation

FIG . B.1: Vorticity as a function of the dimensionless timet∗ = νt/L2 with ν = RTτ the ki-

nematic viscosity. The solid line represent the analyticalresult :ωmax(t
∗) = ω0

(1+4t∗)2
. The crosses

represent the LB simulations.

B.4 Implementation within the standard Lattice

Boltzmann algorithm

When attempting to implement the above discrete-velocity model in standard Lattice Boltz-

mann schemes, the first difficulty is thatv3 6= 2v1 andv4 6= 2v2. Independently of the temperature,

we findv3/v1 = v4/v2 ≈ 2.1. Therefore, if the time stepδt is adjusted so that information is exactly

transported from one node to an adjacent node at speedv1 (or v2) duringδt, then the information

transported at speedv3 (or v4) does not fall exactly on the lattice. In order to bypass thisdiffi-

culty with an approximate approach, we suggest imposing arbitrarily v3 = 2v1 andv4 = 2v2, and

making use of the same quadrature weight adjustment as in Sec. B.2, function of the local tempe-

rature. This leads to the following discrete velocity set :v0 = 0, v1 = −v2 =
√(

5 −
√

10
)
RTref

andv3 = −v4 = 2v1. The quadrature weights are those of Eq. B.12. As already mentioned, such

a procedure of weight adjustment for a fixed set of velocitiesdoes not ensure a high enough order

of quadrature. Furthermore, unlike the velocity set derived with the Gauss-Hermite procedure, this
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FIG . B.2:A gravity force is introduced in the model as proposed by [6].Vertical density profiles are

compared with analytical macroscopic solutions at the stationary limit for an isothermal gas layer

of thicknessH. Simulations are performed for three values ofα = gH
RT

whereg is the acceleration

due to gravity.

scheme will not be precise in the limit of small temperature differences. In order to test the level

of accuracy that can be achieved with such an approximate approach, this new discrete-velocity

model is implemented in the following lattice Boltzmann scheme [5] :

f (r + vi,jδt, vi,j, t+ δt) = f (r , vi,j, t) −
δt

τ + 0.5 δt

[
f (r , vi,j, t) − g (r , vi,j , t)

]
(B.17)

with f = f+
δt

2τ
(f − g). When the resulting lattice Boltzmann model is tested on thesame five test

cases as in the previous section, the accuracy achieved in terms of density, velocity and temperature

fields in the stationary limit are quite similar to those obtained with the more accurate quadrature

set and the finite-difference scheme. However the estimatedenergy fluxes and the characteristic

times in the unstationary phases are much less accurate. In Figure 5 the error on the energy flux

does not vanish in the quasi-isothermal limit : a residual error of more than 10% is observed and

similar biases are observed concerning temporal evolution.
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FIG . B.3: The speed of sound was estimated for various temperatures and compared with the

theoretical valuec =
√

2RT . Following the idea proposed by [13], the density distribution was

initialized as a step profile with a small difference in density and the speed of sound is directly

estimated by simple front tracking.

B.5 Conclusions

For implementation in traditional lattice Boltzmann schemes, a degraded “double-speed” ver-

sion of the proposed discrete velocity model can be used for approximate simulations. However,

results are unsatisfactory in simulating energy flux. So farwe have performed two complementary

test studies to try to bypass this flux-estimation difficulty. In both cases, the idea was to go back

to the accurate discrete velocity model of Sec. B.2 using an interpolation procedure. In the first

study, we interpolatedfi,j outside the nodes in geometrical space. When a linear interpolation was

used, strong numerical instabilities were observed. Practical simulations could only be performed

with a quadratic interpolation [7, 8]. The corresponding accuracy for energy-flux estimation is grid

dependent and tends to that of the finite-difference scheme in the limit of an infinite number of

nodes. We observed that residual errors lower than those of Sec. B.4 could easily be reached with

reasonable spatial meshing. In the second test study, the interpolation was performed in the velocity
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FIG . B.4: Heat dissipation is tested in traditional Couette flow with atemperature gradient [5] for

a gas layer of thicknessH. The wall at locationy = 0 is fixed and its temperature isT0. The wall

located aty = H moves with a constant speed and its temperature isT1. The simulation points are

in complete agreement with the analytical solution for different Eckert numbers (Ec=[4 ;20 ;40]).

space so as to estimate the distribution function for the non-double speed assuming thatf follows

the Maxwellian form of the local equilibrium distribution function (cf Appendix B.7). Here the

accuracy is not lattice dependent : there was a 3% residual error for energy flux which is signifi-

cantly better than the residual error of the above “double-speed” model. These last preliminary test

studies were only performed in one dimension. For extensionto two dimensions, difficulties arise

in terms of boundary conditions.

On the whole it can be concluded that using a finite-difference lattice Boltzmann scheme, ex-

cellent accuracy levels can be obtained with the set of five discrete velocities corresponding to the

Gauss-Hermite quadrature, together with a local adjustment of the quadrature weights as a func-

tion of temperature. This could be performed without great difficulty because the finite-difference

approach is not restricted to velocity sets that exactly link lattice nodes in one time step.
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FIG . B.5: The relative error in thermal conductivity is shown for different values of∆T/T . From

the Chapman-Enskog expansion, the thermal conductivity isλ = D+2
2
R2Tτ . The mean (circles)

and maximum (crosses) relative errors incurred using the finite-difference scheme tend asympto-

tically towards0 for quasi-isothermal situations. The sensitivity to the reference temperature is

indicated by the maximum error, as it occurs where the temperature is minimum or maximum, i.e.

T − Tref = ∆T/2. However the maximum relative error inherent in a traditional lattice scheme

(triangles) shows the presence of a residual error.

Appendix

B.6 Determination of quadrature order

For heat transfer applications, thermal fluxes must be correctly evaluated and therefore the

moments of the distribution function must be correctly evaluated up to the third moment. Here the

first order Chapman-Enskog expansion is used to show that this constraint is equivalent to a correct

evaluation of the first six moments of the local equilibrium distribution function (paragraph A1).

Under the low-Mach and low-∆T approximations, the equilibrium distribution function iswritten
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as the product of a centered Gaussian with a fourth orderv polynomial (paragraph A2), which

leads to the use of tenth order Gauss-Hermite quadrature (paragraph A3).

B.6.1 Chapman-Enskog procedure

The Chapman-Enskog procedure is used to recover the macroscopic equations. This consists

in expanding the distribution functionf around the equilibrium functiong and in evaluating the

mean value of the product of the Boltzmann equation by all collisional invariants.

∫
χ

(
∂f

∂t
+ v · ∇f

)
dv = 0 (B.18)

with χ a collisional invariant (1,v and1
2
v2 ) At zero order the integral (B.18) is evaluated withf = g

leading to the hydrodynamic equations for perfect fluids (without dissipative effects). To recover

the dissipative terms, the distribution functionf is expanded around the equilibrium functiong.

f ≈ g + f (1) (B.19)

Replacingf in the Boltzmann equation byg + f (1) leads to :

∂
(
g + f (1)

)

∂t
+ v · ∇

(
g + f (1)

)
= −f

(1)

τ
(B.20)

and neglectingf (1) on the left hand side,f (1) may be writen :

f (1) ≈ −τ
(
∂g

∂t
+ v · ∇g

)
(B.21)

The temporal and spatial derivatives ofg are direct functions of the spatial derivatives ofρ, u and

T , which leads to :

f (1) ≈ −τg
{

1

T
[(v − u) · ∇T ]

[
(v − u)2

2RT
− 5

2

]
(B.22)

+
1

2RT

(
∂uj

∂xi
+
∂ui

∂xj

)[
(vi − ui)(vj − uj) −

1

3
δij(v − u)2

]}

So, in the general case,f (1) can be written asf (1) ≈ g · P3(v), and for isothermal applications

f (1) ≈ g · P2(v).
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B.6.2 Equilibrium expansion

For thermal applications, the equilibrium distribution function g is expanded aroundu = 0

(low-Mach-number approximation) and aroundT = T0, whereT0 is a reference temperature.

g =
ρ

(2πRT )D/2
exp

(
−(v − u)2

2RT

)

≈ ρ

(2πRT )D/2
exp

(
− v2

2RT

)
·
[
1 +

v · u
RT

+
(v · u)2

2(RT )2
− u2

2RT

]

≈ ρ

(2πRT )D/2
exp

(
− v2

2R(T0 + θ)

)
·
[
1 +

v · u
RT

+
(v · u)2

2(RT )2
− u2

2RT

]

≈ ρ

(2πRT )D/2
exp

(
− v2

2RT0

)
exp

(
v2

2RT0

θ

T0

)
·
[
1 +

v · u
RT

+
(v · u)2

2(RT )2
− u2

2RT

]

≈ ρ

(2πRT )D/2
exp

(
− v2

2RT0

)
·
(

1 +
v2

2RT0

θ

T0

)
·
[
1 +

v · u
RT

+
(v · u)2

2(RT )2
− u2

2RT

]

≈ exp

(
− v2

2RT0

)
· P4(v) (B.23)

with θ = T−T0, andP4(v) is a fourth-orderv polynomial. So the equilibrium distribution function

g is approximated by the product of centered Gaussian function with a fourth-orderv polynomial.

B.6.3 Required quadrature orders

For thermal applications, moments off are addressed up to the third :
∫
P3(v)fdv. Then

f ≈ g + f (1) = g · P3(v) andg ≈ exp

(
− v2

2RT0

)
· P4(v). So the quadrature must evaluate the

moments of a Gaussian function up to order 10 :∫
P10(v) exp

(
− v2

2RT0

)
dv. For isothermal applications, only the first two moments off are ad-

dressed. Thenf ≈ g + f (1) = g · P2(v) andg ≈ exp

(
− v2

2RT0

)
· P2(v). So the quadrature must

evaluate the moments of a Gaussian function up to order 6 :
∫
P5(v) exp

(
− v2

2RT0

)
dv.
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B.7 Extrapolation in velocity space

The discrete velocity set corresponding to the Gauss-Hermite quadrature is such thatv3 6= 2v1

andv4 6= 2v2 (cf Figure B.6).

2 2v1v vv

v v
0 1

34

22v

FIG . B.6: Discrete velocities set.

So, in one dimension, for the traditional lattice Boltzmannalgorithm, we computef0, f1, f2,

f2v1 andf2v2 . Thenf3 andf4 are extrapolated assumingfi has a Maxwellian form :

fi ≈ A exp

(
−(vi −B)2

C

)
(B.24)

To extrapolatef3, the coefficientsA,B andC are determined withf0, f1 andf2v1 and to extrapolate

f4 another set of coefficients is used corresponding tof0, f2 andf2v2 . Finally the macroscopic

variablesρ, u andT are calculated withf0, f1, f2, f3 andf4.
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Annexe C

Conditions aux limites thermiques

Pour les schémas Boltzmann-sur-réseau traditionnels pourles fluides isothermes, il existe dif-

férents choix possibles de conditions aux limites comme le rebond arrière (“bounce-back”) qui

assure la conservation de la masse et une vitesse de glissement nulle à la paroi. Ce type de condi-

tion aux limites est difficilement applicable aux schémas différences finies et multi-vitesses comme

le notre. De plus, nous souhaitons pouvoir imposer une température de paroi. Les conditions aux

limites que nous avons utilisées peuvent être qualifiées de macroscopiques dans le sens où elles ne

sont pas dérivées d’un modèle physique des interactions fluide-paroi à l’échelle mésoscopique. Ces

conditions aux limites sont telles qu’elles reproduisent les conditions aux limites macroscopiques,

c’est à dire, imposer les grandeurs macroscopiques vouluesà la paroi (vitesse, température etc ...).

Pour décrire les conditions aux limites, prenons l’exempled’une paroi (schématisée par la figure

(C.1)) pour laquelle sont imposées une vitesse de glissement up et une températureTp.

Les conditions aux limites utilisées consistent à dire qu’au noeudn0 la fonction de distribution

fi(n0) est proche de l’équilibre défini par les variables macroscopiquesρp, up etTp.

fi(n0) = f eq
i (n0) + fneq

i (n0) (C.1)

avecf eq
i (n0) la distribution d’équilibre au noeudn0 et fneq

i (n0) la partie hors d’équilibre de la

fonction de distribution. Ceci permet d’imposer la vitesseup et la températureTp par l’intermé-

diaire de la fonction d’équilibre. Mais il est aussi nécessaire de connaître la masse volumiqueρp

au noeudn0. Nous avons choisi d’extrapoler linéairementρp en fonction des masses volumiques

ρ1 et ρ2 respectivement aux noeudsρ1 et ρ2. De la même façon la partie hors d’équilibrefneq
i (n0)

a été extrapolée linéairement avec les noeudsn1 etn2. L’ajout de cette partie hors d’équilibre est

nécessaire pour assurer la continuité des flux dissipatifs car ceux-ci ne sont bien sûr pas pris en
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xn nn 210

Tp

up

FIG . C.1: schéma d’une paroi dont on veut imposer au noeudn0 une vitesse de glissementup et

une température de paroiTp.

compte dans la partie à l’équilibref eq
i (n0).



Annexe D

Coefficients de la distribution d’équilibre du

modèle BsR (EL)D3Q15

La distribution d’équilibref eq
i est un développement en série sur la vitesse locale :

f eq
i = Ai +Biviαuα + Ciuαuα +Diviαviβuαuβ (D.1)

+Giαβviαviβ pouri > 0

f eq
0 = ρ−

14∑

i=1

f eq
i (D.2)

Un jeu possible de valeurs pour les coefficientsAi, Bi, Ci,Di etGiαβ est :

Ai =
3wi

c2
(pb −

κ

2
(∂αρ)

2 − κ∂ααρ+ νuα∂αρ) (D.3)

Bi =
3wiρ

c2
Ci = −3wiρ

2c2
Di =

9wiρ

2c4
(D.4)

Giγγ =
1

2c4
(
κ(∂ρ)2 + 2νuγ∂γρ

)
pour1 ≤ i ≤ 6 (D.5)

Giγγ = 0 pouri ≥ 7 (D.6)

Giγδ =
1

16c4
(κ(∂γρ)(∂δρ) + ν(uγ∂δρ+ uδ∂γρ)) (D.7)

où pb est l’équation d’état du fluide,ν la viscosité cinématique etκ le paramètre relié à la tension

de surface. Les coefficientswi ont pour valeurs :wi = 2/9 pouri = 0, wi = 1/9 pouri = 1, . . . , 6

etwi = 1/72 pouri = 7, . . . , 14.
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Annexe E

Ecoulement de Poiseuille avec viscosité

non-uniforme

Pour tester la possibilité de faire varier la viscosité spatialement, nous avons effectué des simu-

lations numériques d’un écoulement de Poiseuille avec une viscosité non-uniforme dans l’espace.

L’écoulement est engendré par une force externeFx selon l’axex dans un canal de largeurLy. La

viscosité dépend linéairement de l’ordonnéey dans le canal :ν(y) = ν0 + αy. Le profil de vitesse

au stationnaire est tel que la force visqueuse égale la forceexterneFx :

Fx = − ∂

∂y

(
ν(y)

∂ux

∂y

)
(E.1)

Compte tenue de l’expression deν(y) et d’une vitesse de glissement nulle aux parois, l’intégration

de cette équation conduit au profil de vitesse suivant :

ux(y) = Fx
(Ly − y) ln(ν0) + y ln(ν0 + αLy) − Ly ln(ν0 + αy)

2α [ln(ν0) − ln(ν0 + αLy)]
(E.2)

La figure E.1 compare les résultats de simulations BsR et l’expression analytique du profil de

vitesse dans le canal.
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FIG . E.1: Profil de vitesse pour un écoulement de Poiseuille avec une viscosité non-uniforme dans

le canal. L’expression de la viscosité est :ν(y) = ν0 + αy. La ligne représente le profil analytique

et les cercles représentent les simulations BsR.



Annexe F

Procédure de Chapman-Enskog sur réseau

Dans cet appendice, nous effectuons la procédure de Chapman-Enskog sur réseau sur le modèle

BsR (EL) avec un terme de force extérieure. L’équation d’évolution est de la forme :

gi(x + vi δt, t+ δt) − gi(x, t) = −δt
τc

[gi(x, t) − geq
i (x, t)] + 3 φ wiviαFα δt (F.1)

Cette équation est développée au second ordre du pas de tempsδt :

(∂t + viα∂α) gi +
δt

2
(∂t + viα∂α)2 gi = − 1

τc
[gi − geq

i ] + φ wiviαFα (F.2)

L’ordre zéro de la procédure de Chapman-Enskog consiste à approximergi pargeq
i . Et les dérivées

seconde degeq
i sont négligeables com-pa-rées aux dérivées premières.

(∂t + viα∂α) geq
i = φ wiviαFα (F.3)

Ensuite pour retrouver les lois de conservation macroscopiques, nous prenons les sommes des

équations (F.3),
∑

i(F.3) et
∑

i viα(F.3) et nous obtenons :

∂tφ+ ∂α(φuα) = 0 (F.4)

∂t(φuα) + ∂βPαβ + ∂β(φuαuβ) + νc∂β(uα∂βφ+ uβ∂αφ+ δαβuγ∂γφ) = φFα (F.5)

Ici νc =
1

3
(
τc
δt

− 1

2
)
δx2

δt
est la viscosité cinématique du fluide colloïdal. Pour le premier ordre de

la procédure,gi est approximée pargeq
i + g

(1)
i . En utilisant l’équation (F.2), nous pouvons obtenir

une expression pourg(1)
i en considérant les dérivées premières degeq

i du membre de gauche de

l’équation.
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(∂t + viα∂α) geq
i = − 1

τc
g

(1)
i + φwiviαFα (F.6)

g
(1)
i = −τc (∂t + viα∂α) geq

i + τcφwiviαFα (F.7)

Ainsi avec cette expression pourgi, l’équation (F.2) est équivalente à :

(∂t + viα∂α) geq
i +

(
1 − δt

2 τc

)
(∂t + viα∂α) g

(1)
i +

δt

2
(∂t + viα∂α) (φwiviβFβ)

= − 1

τc
g

(1)
i + φwiviαFα

(F.8)

Après sommation de l’équation (F.8) et en négligeant les termes qui sont en carré du nombre de

Mach, nous retrouvons les équations macroscopiques de conservation de second ordre enδt.

∂tφ+ ∂α(φuα +
δt

2
φFα) = 0 (F.9)

∂t(φuα +
δt

2
φFα) + ∂β(φuαuβ) = −∂βPαβ + νc∂β [φ (∂βuα + ∂αuβ + δαβ∂γuγ)] + φFα (F.10)

Nous remarquons qu’à cause du terme de force, il y a dans les deux équations un terme de vitesse

parasiteuparasite = δt
2
Fα, qui est négligeable dans la plupart des cas. Cette vitesse parasite apparaît

également dans les modèles BsR traditionnels si le terme de force n’est pas négligé dans l’expres-

sion deg(1)
i (F.6).
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Résumé

MODELISATION MESOSCOPIQUE DES ECOULEMENTS AVEC CHANGEMEN T DE

PHASE A PARTIR DE L’EQUATION DE BOLTZMANN-ENSKOG. INTRODUC TION DES

EFFETS THERMIQUES.

Mots-clés: Transition de phase liquide-vapeur, modélisation cinétique, equation de Boltzmann, agrégation

de particules colloïdales.

Ce travail de thèse concerne la modélisation et la simulation des écoulements diphasiques avec changement

de phase par des équations cinétiques de type Boltzmann. Ce travail est motivé par deux applications dis-

tinctes pour lesquelles la compréhension et l’analyse fine des mécanismes et des dynamiques de changement

de phase sont nécessaires. Le premier thème concerne la miseau point de dispositifs passifs de refroidis-

sement diphasiques pour la micro-électronique. Le secondethématique concerne la formation de dépôts de

filtration résultant de l’agrégation de particules colloïdales à la surface d’une membrane dans des procédés

de filtration membranaire. Pour les applications de type colloïdal, un modèle à deux fluides est proposé en

adaptant des méthodes Boltzmann-sur-Réseau de la littérature pour la résolution de l’écoulement. Enfin,

dans une partie plus exploratoire, un méthode de résolutionoriginale de l’équation de Boltzmann-Enskog

est proposée afin de traiter des écoulements avec changementde phase en incluant les effets thermiques.

Abstract

MESOSCOPIC MODELING OF TWO-PHASE FLOW WITH PHASE CHANGE USI NG

THE BOLTZMANN-ENSKOG EQUATION. INTRODUCTION OF THERMAL EF FECTS.

keywords : liquid-vapor transition, kinetic modelisation, Boltzmann equation, aggregation of colloidal par-

ticles.

In this post-graduate research, kinetic equations of the Boltzmann type were used to model and simulate

two-phase flows with phase change. This work was aimed at two different applications where it is important

to understand and finely analyze the mechanisms and dynamicsof phase change. The first topic is related

to the development of two-phase passive cooling devices formicro-electronics. The second application is

the aggregation of colloidal particles that results in the formation of deposits on the surface of a membrane

during the process of membrane filtration. For the colloid application, a two-fluid model is proposed that

adapts existing Lattice-Boltzmann methods to solve the flow. Finally, in a more exploratory part, an original

method is proposed to solve the Boltzmann-Enskog equation,to deal with flows with phase change including

thermal effects.


