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In this paper we compare two families of Lattice-Boltzmann models derived by means
of Gauss quadratures in the momentum space. The first one is the HLB(N; Qx, Qy, Qz)
family, derived by using the Cartesian coordinate system and the Gauss-Hermite quadra-
ture. The second one is the SLB(N; K, L, M) family, derived by using the spherical coordi-
nate system and the Gauss-Laguerre, as well as the Gauss-Legendre quadratures. These
models order themselves according to the maximum order N of the moments of the
equilibrium distribution function that are exactly recovered. Microfluidics effects (slip
velocity, temperature jump, as well as the longitudinal heat flux that is not driven by a
temperature gradient) are accurately captured during the simulation of Couette flow for
Knudsen number up to 0.25.
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1. Introduction

In their early days, the Lattice Boltzmann (LB) models were designed to retrieve the
Navier-Stokes equation in the incompressible limit by using a discrete set of vectors
in the two- (2D) or three-dimensional (3D) momentum space.!»?:3:4:5
nient LB models (isothermal or with variable temperature) were derived later using

More conve-
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the Gauss-Hermite quadrature.® "% Such models form a hierarchy and higher order
moments of the equilibrium distribution functions are successively achieved when
increasing the position of an LB model in the hierarchy.'%:*!:12 This is particularly
important when approaching microfluidics problems.!3:14,15,16,17,18

In this paper, we briefly outline the basics of the derivation of three-dimensional
(3D) LB models based on Gauss quadratures. There are two families of such models,
which differ by the coordinate system (Cartesian of spherical) used in the momen-
tum space and we consider the thermal Couette flow problem to compare the results

obtained by using both models.

2. Lattice Boltzmann models derived by Gauss quadratures

Let us consider the equilibrium distribution function f¢¢ = f(p;n,u,T) =
n(B/m)P/2e=BP-mw)* where p is the momentum vector (whose Cartesian com-
ponents in the D-dimensional space are p,, 1 < a < D), m is the mass of the fluid
particles, n is the local particle number density, u is the local fluid velocity, T is
the local fluid temperature and 8 = 1/2mT. According to the Chapman-Enskog
method, the derivation of the conservation equations from the Boltzmann equation
involves the calculation of the moments of the distribution functions up to a certain
order S (0 <s<S):

My =My = [ @089 [p0 (<a<D) &
=1

In the LB models, the integral in the equation above is replaced by summation over
a discrete set of momentum vectors {p;cz}, where Z is an index set. Accordingly,
the equilibrium distribution function f(¢? is replaced by the set of distribution
functions f{? = w;nEn(pi;u,T), i € Z, where Ex(p;u,T) is a polynomial of order
N with respect to p. After these replacements, Eq. (1) becomes:

M{al} = MSRQQ s Z feq leocl (2)

i€l

In practice, En(p;u,T) might be expanded with respect to some orthogonal poly-
nomials set, e.g., Hermite polynomials.578919:20.21 Thig allows one to determine
the momentum vectors p;, as well as their assomated welghts w; (i € ) by using
appropriate Gauss quadratures?! that ensure /\/l =M { yforo<s<s. 7,8,18,20
As stated in Refs. 19 and 20, the condition N Z S needb to be satisfied in other to
retain all relevant moments up to order S.

The integration over the whole momentum space, which appears in Eq. (1), may
be performed in using the separation of variables along the axes of the coordinate
system. When D = 3, both the Cartesian and the spherical coordinate systems may
be used for this purpose. In the first case, the equilibrium distribution function is

expanded with respect to the Hermite polynomials,'®?° while a more elaborated
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expansion involving the generalized Laguerre polynomials, as well as the Legendre
polynomials, is used in the second case.'®?22

In principle, the Gauss quadrature method allows one to build LB models of
order N as large as needed by using appropriate momentum vector sets. The num-
ber of the vectors is determined by the quadrature order(s) and the projections of
these vectors on the axes of the coordinate system are related to the roots of or-
thogonal polynomials.”-8:9:10:18:19.20 Thig feature greatly facilitates the assembling
of LB models of any order and LB models with momentum sets up to 8,000 ele-
ments, which run successfully on high performance computing systems, were already
reported.!”18:23 Although the number of momentum vectors in the set becomes very
large when increasing IV, it can be reduced by pruning techniques at the cost of
sacrificing the accuracy of some higher-order moments of the distribution function
or by taking advantage of the symmetry group of the lattice.!!:15:24 However, such
techniques are very elaborated and need to be carefully designed for each N.

In the sequel, we will denote by HLB(N; Q, Qy, Q) the 3D LB model of or-
der N based on Gauss-Hermite quadratures, where @; is the order of the quadra-
ture used along the ! axis (1 <! < 3). The spherical LB models are denoted by
SLB(N;K,L,M), where K, L, M are the orders of the quadratures with respect
to the spherical coordinates 7, # and ¢, respectively.'®?2 Since both models are
17,1825 involving the projection of the
discrete momenta on the Cartesian axes was used to compute the evolution of the
distribution functions after each time step. The Shakhov collision term!8-26,27,28
used in these models to achieve the right value (2/3) of the Prandtl number.

off-lattice, a flux limiter numerical scheme

was

3. Computer results

To compare the characteristics of the two families of quadrature-based LB models
(HLB and SLB), we considered the problem of thermal Couette flow between two
parallel plates perpendicular to the z axis. The plates are located at z, = —0.5 and
z+ = 0.5, respectively and move in opposite directions along the y axis with speed
Uy = 0.63. Their temperatures is T = 1.0 (nondimensionalized units'® are used).
The computer simulations were done on a cubic lattice with 128 nodes in the z
direction and 2 nodes in the x and y direction. Periodic boundary conditions were
applied along the z and y axes and the diffuse reflection boundary conditions!”18:29
were applied on the plates. The results reported in this paper were obtained with
the lattice spacing 6s = 1/128 and the time step 6t = 1074

Figure 1 shows the transversal profiles of the longitudinal velocity u,, the tem-
perature T, the transversal heat flux g, as well as the longitudinal heat flux g,.
These profiles were obtained in the stationary state with the Shakhov collision term
by using the models HLB(6;20,20,20) and SLB(6;20,20,20), for three values of the
Knudsen number. The profiles are compared to the Direct Simulation Monte Carlo
(DSMC) results for hard sphere molecules reported in Refs. 30 and 31. We used the
Shakhov collision term!® to ensure the right value of the Prandtl number (Pr = 2/3).
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Fig. 1. Velocity, temperature and heat flux profiles in Couette flow obtained with models
HLB(6;20,20,20) and SLB(6;20,20,20 at three values of the Knudsen number Kn.

Good agreement between the LB and DSMC results is observed for all quantities,
excepting the temperature results at Kn = 0.25.!® The specific microfluidics effects
(slip velocity, temperature jump, as well as the longitudinal heat flux that is not
driven by a temperature gradient) are accurately captured.

According to Figure 2, the HLB(N;20,20,20) and SLB(N;20,20,20) results get
well superposed for N > 4 and N > 3, respectively. As seen in Figure 3, both the
HLB and the SLB models are found to be very sensible with respect to the quadra-
ture orders when the Knudsen number is large enough. This behavior originates
from the half-space integrals involved in the implementation of the diffuse reflec-
tion boundary conditions. As mentioned in the literature, the errors are reduced
and the simulation results converge when the quadrature orders (i.e., the number
of momentum vectors) in the LB model) are large enough.!317:18,29,32,33
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Fig. 2. Velocity and heat flux profiles near the left wall, as well as temperature profiles in the
central region of Couette flow at Kn = 0.25, for various values of N.

4. Conclusion

In this paper we compared the simulation results obtained by using two families of
LB models based on Gauss quadratures. When using the Shakhov collision term,
both families of LB models allows one to accurately capture microfluidics effects (slip
velocity, temperature jump, as well as the longitudinal heat flux that is not driven
by a temperature gradient) in Couette flow when Kn < 0.25. The main advantage of
these models is that the momentum vector sets can be easily constructed, regardless
of the order N of the model. This feature is particularly helpful for the accurate
implementation of the diffuse reflection boundary conditions, which needs large
momentum sets as Kn increases.
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Fig. 3. Velocity profile parallel to the velocity of the walls (left) and temperature profile (right)
at Kn = 0.25 (rows 1 and 2) and Kn = 0.01 (rows 3 and 4) in the SLB (rows 1 and 3) and HLB
(rows 2 and 4) models, compared with DSMC results.
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