
HAL Id: hal-00166795
https://hal.archives-ouvertes.fr/hal-00166795

Submitted on 29 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthode de Monte Carlo et synthèse d’images :
application à des milieux diffusants en transfert radiatif

Julien-Yves Rolland, Mouna El-Hafi, Richard Fournier, Stéphane Blanco,
Mathias Paulin

To cite this version:
Julien-Yves Rolland, Mouna El-Hafi, Richard Fournier, Stéphane Blanco, Mathias Paulin. Méthode
de Monte Carlo et synthèse d’images : application à des milieux diffusants en transfert radiatif. Jean-
Jacques BEZIAN. 13 èmes Journées Internationales de Thermique (JITH 2007), Aug 2007, Albi,
France. ENSTIMAC, 5 p., 2007, ISBN 978-2-9511591-6-7. <hal-00166795>

https://hal.archives-ouvertes.fr/hal-00166795
https://hal.archives-ouvertes.fr


13ème Journées Internationales de Thermique

MÉTHODE DE MONTE CARLO ET SYNTHÈSE D’IMAGES :
APPLICATION À DES MILIEUX DIFFUSANTS EN

TRANSFERT RADIATIF

Julien Yves ROLLAND∗, Mouna EL HAFI∗, Richard FOURNIER∗∗, Stéphane BLANCO**,

Mathias PAULIN∗∗∗

∗ École des Mines d’Albi Carmaux - UMR CNRS 2392 - Albi, France
∗∗ LAPLACE - UMR CNRS 5213 - Université Paul Sabatier - Bât. 3R1 - 118, route de Narbonne -

Toulouse, France
∗∗∗ IRIT - UMR CNRS 5505 - Université Paul Sabatier - 118 Route de Narbonne, Toulouse, France

e-mail : julien.rolland@enstimac.fr

Résumé L’objectif principal de cette étude est la prise en compte de la diffusion multiple pour

le calcul de transferts radiatifs dans des géométries complexes. Pour traiter la diffusion, un

algorithme basé sur la méthode de Monte Carlo a été développé et implémenté dans un envi-

ronnement issu d’un code de synthèse d’images existant. A l’aide de propriétés d’invariance de

la statistique des chemins de diffusion multiple, nous avons validé cette approche dans le cas de

trois géométries tridimensionnelles usuelles : sphère, cylindre et pyramide.

1 INTRODUCTION

Les problèmes de transfert radiatif associés à de fortes épaisseurs optiques de diffusion

(libre parcours moyen de diffusion très faible devant la dimension du système) sont nombreux.

En ce qui concerne les problématiques étudiées au sein des deux laboratoires LAPLACE et

RAPSODEE, il s’agit essentiellement du rayonnement solaire dans les nuages atmosphériques

terrestres, du rayonnement infrarouge dans les nuages vénusiens, du rayonnement infrarouge

dans les systèmes en combustion hétérogène, des échangeurs à lits fluidisés pour l’énergie so-

laire concentrée et enfin des techniques d’imagerie médicale. Dans chaque cas, deux types de

questions scientifiques se posent simultanément :

– Le calcul suffisamment rapide et précis de solutions de référence.

– L’analyse détaillée de la statistique des chemins optiques de multi-diffusion, en vue de

la proposition de schémas interprétatifs à l’échelle macroscopique et de paramétrisation

adaptées (évaluation rapide des échanges énergétiques permettant une inversion rapide

ou un couplage avec d’autres mécanismes physiques tels que chimie et dynamique des

fluides).

Ces questions soulèvent des difficultés d’ordre méthodologiques qui nous ont récemment conduit

à plusieurs développements significatifs [1, 2]. Nous avons d’abord cherché à mettre en oeuvre

en géométrique tridimentionnelle complexe l’ensemble des méthodes de Monte Carlo optimi-

sées dont nous disposions [3, 4]. Pour cela, nous avons lancé une collaboration avec l’IRIT

afin de bénéficier de l’ensemble des développements récents des algorithmes de suivi de rayon

dans le domaine de la synthèse d’image [5, 6]. Ensuite nous avons travaillé à la systématisa-

tion des calculs de sensibilité au sein de la méthode de Monte Carlo (à la fois pour l’analyse

de mécanismes et le développement de paramétrisations de type linéaire) [7, 1]. Enfin, nous

avons poussé aussi loin que possible les techniques d’analyse que nous avions à notre disposi-

tion, en particulier celles issues de la Physique statistique hors d’équilibre [8, 2]. Aujourd’hui,

ces éléments théoriques forment un ensemble qui nous permet d’envisager le développement
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d’outils informatiques performants dans le contexte scientifique défini ci-dessus. A l’heure ac-

tuelle, nous pouvons disposer de bibliothèques complètes et fiables comme base géométrique

pour l’ensemble de nos développements. C’est le cas notamment de la bibliothèque du code

PBRT (Physically Based Rendering Techniques) qui nous servira de point de départ dans le tra-

vail présenté ci-dessous [9]. Nous allons tester, pour des géométries tridimensionnelles simples,

les propriétés statistiques identifiées dans [8] et [2] et qui n’ont pour l’instant été contrôlées

numériquement qu’en géométries mono dimensionnelles et bidimensionnelles. La première de

ces propriétés est la suivante : pour un quelconque système tridimensionnel Ω de volume V , de

frontière ∂Ω de surface S, constitué d’un milieu purement diffusant hétérogène, si l’on consi-

dère un ensemble de photons entrant uniformément, de façon isotrope à la frontière, la longueur

moyenne < L > des chemins optiques au sein de Ω, jusqu’à la première sortie, est indépendant

du type de diffusion (libre parcours moyen et fonction de phase) et prend la valeur

< L >= 4V/S (1)

Cette propriété d’invariance est la traduction d’un mécanisme de compensation des chemins

courts et des chemins longs : lorsque l’on réduit le libre parcours moyen de diffusion, des che-

mins optiques de plus en plus courts apparaissent avec des probabilités de plus en plus fortes

(réflexion après quelques diffusions), mais il apparaît également quelques rares chemins dont la

longueur est très grande (des photons parvenant à pénétrer assez profondément dans le système

et qui ont ensuite besoin de beaucoup de diffusions pour sortir du système) et qui assurent la

constance de la valeur moyenne des longueurs. Ce mécanisme de compensation est très utile

dans un contexte d’analyse et de paramétrisation. En effet, il devient possible de raisonner sur

les chemins longs (qui sont faciles à aborder grâce à l’approximation de diffusion) pour en dé-

duire des propriétés concernant les chemins courts (qui sont à l’origine des principales difficulté

théoriques associées aux questions de diffusions multiples). C’est cette idée qui est à l’origine

des propositions faites dans [2] et que nous allons tester ici pour des géométries réalistes. Sans

présenter ici l’ensemble des raisonnements correspondants, nous retiendrons qu’il est possible

d’estimer très rapidement la moyenne < f(L) > d’une quelconque fonction f de la longueur de

chemin pourvu que f admette une limite finie en 0 et que le libre parcours moyen de diffusion

soit petit devant la taille du domaine. En particulier, si f est un monôme d’ordre n, on obtient

que Ln est proportionnel à l’inverse du libre parcours moyen de transport λ∗ à la puissance

n − 1, soit

< Ln >= αn

1

λ∗n−1 (2)

avec l∗ = λ
1−g

où λ est le libre parcours moyen de diffusion, g le paramètre d’asymétrie de la

fonction de phase, et où αn est une fonction de la géométrie du système qui peut être détermi-

née de manière assez rapide par une résolution instationnaire de l’équation macroscopique de

diffusion [2].

Ici, nous testerons < L > et < L2 > dans le cas de géométries simples en utilisant la

bibliothèque géométrique du code PBRT (de tels tests n’ayant été menés qu’en géométrie mono

dimensionnelle dans [2]). Dans la section 2, nous présentons rapidement les méthodes utilisées.

Dans la section 3 nous donnons l’algorithme de diffusion multiple utilisé et les résultats obtenus

sur les trois géométries. Les coefficients α1 obtenus numériquement sont comparés à la solution

analytique α1 = 4V/S. Les coefficients α2 (n=2) seront comparés ultérieurement à des calculs

utilisant une résolution de l’équation macroscopique de diffusion comme proposé dans [2].
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2 MÉTHODE DE MONTE CARLO (MCM) ET DIFFUSION MULTIPLE

2.1 Monte Carlo et synthèse d’image

Nous avons fait le choix d’utiliser un outil récent de calcul en synthèse d’image : Physi-

cally Based Rendering Techniques [9]. Il est constitué d’une bibliothèque d’objets programmés

en C++, dont la structure actuelle hérite du savoir-faire et des réflexions menées par les cher-

cheurs en informatique durant ces vingt dernières années. Les classes d’objets constituant la

bibliothèque ont été conçus de manière optimale et reflètent l’état actuel des réflexions menées

jusque là pour la définition de ces objets. Il est intéressant de profiter de l’existence de ces outils

pour étendre cette approche au calcul des transferts radiatifs avec la prise en compte de la com-

plexité spectrale des gaz participants ou des phénomènes de diffusion multiple. Dans PBRT, les

techniques d’accélération de suivi de rayons ainsi que les techniques de subdivision de grilles

pour la voxélisation sont les techniques standards utilisées en synthèse d’image. Ce code, pro-

duit de plusieurs années de travail et qui a donné lieu à de nombreuses validations, représente

pour nous un excellent outil de développement dans lequel nous incluons la partie algorithmique

concernant les calculs de transfert radiatif basés sur la MCM. Dans l’étude présentée, il s’agit

d’introduire un algorithme permettant de prendre en compte la diffusion multiple à l’aide de la

méthode de MCM.

2.2 Description de la méthode de Monte Carlo

Les méthodes de Monte Carlo sont basées sur une description stochastique du transport

de corpuscules. Lorsqu’elles sont utilisées de manière analogue, elles consistent à simuler le

suivi de photons depuis leur lieu d’émission jusqu’à leur absorption. Statistiquement parlant,

elles consistent à calculer la moyenne < I > d’une observable aléatoire O réalisée un grand

nombre de fois I ≃< O >N .

Selon un autre point de vue, ces méthodes permettent de calculer des intégrales multiples : à

tout calcul de la moyenne d’une observable, peut être associé un calcul intégral . Par exemple,

pour évaluer l’intégrale I : I =
∫ b

a
f(x)dx

l’introduction d’une densité de probabilité pX(x) définissant une variable aléatoire X permet

de récrire I sous la forme : I =
∫ b

a
pX(x) f(x)

pX(x)
dx =

∫ b

a
pX(x)wI(x)dx où wI(x) = f(x)

pX(x)

représente la fonction poids de Monte-Carlo associée au calcul de I . Si on définit la variable

aléatoire WI = f(X)
pX(X)

, l’intégrale I est égale à l’espérance de WI : I = E(WI) =< WI >N→+∞

On génère alors aléatoirement une série de réalisations {xi}i=1,N de la variable aléatoire X dont

on déduit une série de réalisations {wI,j = wI(xj)}j=1,N de la variable aléatoire WI . Il est à

noter que tout un travail de formulation mathématique sur ces écritures intégrales a été effectué

et permet ainsi de diminuer les variances associées au calcul de I [3, 4].

3 CALCUL DU TRAJET DE DIFFUSION

Comme il a été mentionné en introduction, afin de valider le développement du traitement

de la diffusion que nous implémentons dans PBRT, nous allons confronter des résultats de si-

mulation à un résultat analytique : l’existence d’invariants dans le calcul de la longueur du trajet

de diffusion.

Demarche algorithmique Nous utilisons un algorithme de Monte-Carlo déduit d’une approche

analogue. Nous considérons un volume prédéfini purement diffusant soumis à un rayonnement

ambiant uniforme. L’algorithme analogue présenté ici consiste en une simulation du trajet op-

tique de N photons et d’un calcul systématique de la longueur de ce trajet, en fonction des

diffusions, jusqu’à la sortie du photon. La grandeur calculée est la longueur du trajet effec-

tué par diffusion au sein de la géométrie. Cette grandeur s’exprime par l’intégrale multiple de
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dimension infinie suivante :

L =

∫

S

PX0
(X0) dX0

∫

2π

PU0
(U0) dU0

∫ +∞

0

Pσ0
(σ0) dσ0

[

H(σ0,X0,U0) l0 + (3)

G(σ0,X0,U0)

∫

4π

PU1
(U1) dU1

∫ +∞

0

Pσ1
(σ1) dσ1

[

H(σ1,X0,U1) l1 · · ·

où H est une fonction de test de sortie de la géométrie qui vaut 1 si la particule sort et zéro

autrement, G qui a le comportement contraire, X0 position d’entrée, Xi la position de diffusion

i, Ui direction de la diffusion i, σi longueur entre la diffusion i − 1 et i et li le trajet parcouru

depuis l’entrée (
∑

σi−1) plus la longueur du trajet di depuis Xi jusqu’à sortie dans la direction

Ui.

Géométries utilisées Nous effectuerons le suivi du photon à travers 3 géométries simples dis-

tinctes : une sphère, un cylindre et un tétraèdre régulier. Ces 3 géométries ont pour avantage de

mettre en jeu différents modules de PBRT, de complexité croissante, et représentent des géomé-

tries élémentaires dans la description d’objets plus complexes.

La diffusion dans ces volumes sera caractérisée par un coefficient de diffusion Kd constant et

une modélisation de la fonction de phase d’Henyey-Greenstein.

Cette formulation intégrale se traduit par l’algorithme suivant, où les densités de probabi-

lités sont détaillées (cf. figure 1).

NON OUI

Tirage d’une longueur de diffusion

Pσ(σ) = Kde−Kdσ

Test de sortie hors de l’objet

Calcul de la moyenne des longueurs des trajets dans l’objet

i = 1

Tirage d’une direction de diffusion

PUhg
= 1

4π
1−g2

(1+g2
−2g(cosθ))3/2

Si i = N Si i < N, i = i + 1

Tirage d’une position et d’une direction d’entrée selon PX0
et PU0

PX0
= 1

Surface totale

Calcul de la longueur avant sortie di et

PθU0
(θ) = cosθ

π

Enregistrement de la longueur parcourue li = li−1 + σi
enregistrement de la longueur totale parcourue L = li−1 + di

FIG. 1 – Algorithme analogue de diffusions multiples dans une géométrie donnée, pour des fonctions de
phase d’Henyey-Greenstein avec détail des fonctions de densité de probabilités utilisées.

4 RESULTATS ET PERSPECTIVES

Les simulations de diffusions multiples effectuées sous PBRT par une méthode de Monte

Carlo analogue nous ont permis de retrouver des invariants statistiques dans des géométries 3D

simples (cf. figure 2). Le comportement linéaire du moment d’ordre 2 en fonction de l’inverse

du libre parcours moyen a été confirmé et la validation quantitative reste à faire par la résolu-

tion de l’équation macroscopique de la diffusion. Le succès de la mise en oeuvre de ce code va

se poursuivre par une application à des cas plus concrets : nous envisageons d’appliquer l’al-

gorithme de diffusion à l’imagerie médicale (simulation dans une boîte crânienne) mais aussi

d’implémenter un calcul des sensibilité pour disposer d’un outil plus complet en terme d’ana-

lyse.
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FIG. 2 – Représentations des moments d’ordre 1 et 2 (eq. 1 et 2) des longueurs moyennes en fonction du
coefficient de diffusion Kd et du paramètre d’asymétrie g pour les trois types de géométries avec barres
d’erreurs.
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