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Abstract. It was recently shown that null-collision algorithms could lead to grid-free radiative-
transfer Monte Carlo algorithms that immediately benefit of computer-graphics tools for an
efficient handling of complex geometries [1, 2]. We here explore the idea of extending the
approach to heat transfer problems combining radiation, conduction and convection. This is
possible as soon as the model can be given the form of a second-kind Fredholm equation. In the
following pages, we show that this is quite straightforward at the stationnary limit in the linear
case. The oral presentation will provide corresponding simulation examples. Perspectives will
then be drawn concerning the extension to non-stationnary cases and non-linear coupling.
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Figure 1. Fluid and solid domains (left). Academic example of a Monte Carlo simulation
dealing with radiative, conductive and convective heat-transfers, for opaque solids and
transparent fluids (internal air-tempertaure for a sinusoidal external forcing, right).
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We consider a system constituted of solid and fluid connex domains, noted DS and DF
respectively, of boundary ∂DS and ∂DF . The heat transfer modes are conduction/radiation in
the solid, and convection/radiation in the fluid. Both the solid and the fluid are semi-transparent
and grey. Density ρ, specific heat capacity C, conductivity λ and absorption coefficient ka in the
solid are all heterogeneous but independant of temperature. The fluid is assumed perfectly mixed
in each connex domain : ρ, C and ka are therefore homogeneous. They are also independent
of temperature. Convective heat transfer is resumed to an heat exchange coefficient h at each
location at the solid boundary, and an incoming/outcoming flow of volumetric flow-rate φ, the
incoming flow being of a known temperature θN . These three quantities are independent of
the solid and fluid temperatures. Radiation is linearised around a reference temperature θref ,
defining a volumetric radiative heat transfer coefficient ζ = 16kaσθ

3
ref , where σ is the Stefan-

Boltzmann constant. Without precising the initial conditions, the resulting heat-transfer model
is linear in temperature:

~x ∈ DS : ρC
∂θ

∂t
= −~∇.

(
−λ~∇θ

)
+ ζ(θR − θ)

~x ≡ ~y ∈ ∂DS : −λ~∇θ.~n = h(θF − θ)

 solid (1)

ρCVF
∂θ

∂t
= ρCφ(θN − θ) + ζ

∫
DF

(θR(~xR, t)− θ)d~xR

+

∫
∂DS

h(~y, t)(θS(~y, t)− θ)d~y

 fluid (2)

θR =

∫
DΓ

pΓ(γ)dγ θ(~xγ , t− tγ)

}
solid or fluid (3)

where θ is temperature, t is time, ~x, ~xR (and later ~xG) are locations within the solid or fluid
domains, and ~y (and later ~yG) is a location at the boundary. At a boundary location, θS and
θF are respectively the solid and fluid temperatures; ~n is the unit normal heading toward the
solid. The radiative temperature θR is defined using the space DΓ of all trajectories γ of photons
emitted at ~x, until their absorption at ~xγ . The probability density pΓ(γ) of trajectory γ reflects
the statistical pictures associated to the radiative transfer equation and θR is therefore simply
the average value of the temperature at absorption locations, for photons emitted at ~x.

As the problem is linear, its general solution can be expressed using an integral formulation
involving unstationnary Green functions. We here only give the stationnary solution:

~x ∈ DS : θ(~x) =

∫
DS

d~xG GS,stat(~x; ~xG) θR(~xG)

+

∫
∂DS

d~yG GS,stat(~x; ~yG)
h(~yG)

ζ(~yG)
θF (~yG)

 solid (4)

θ =
ρCφθN + ζ

∫
DF

θR(~xR)d~xR +
∫
∂DS

h(~y)θS(~y)d~y

ρCφ + ζVF +
∫
∂DS

h(~y)d~y

}
fluid (5)

θR =

∫
DΓ

pΓ(γ)dγ θ(~xγ)

}
solid or fluid (6)

where VF is the volume of DF , and GS,stat(~x; ~xG) is the value of the stationnary Green function,
at ~x within the solid, for a source at ~xG within the same solid domain.

These integrals can each be interpreted as expectations of random variables and their
combination allows to interprete the temperature at any location, in the solid or in the fluid,
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as the expectation of a random function Θ(~x). The Monte Carlo algorithm then evaluates
θ(~x) as the average of a large number of Θ samples [3]. The definition of Θ combines six
random functions of location: AN , AR and ANC for the selection a source type (incoming flow,

radiation or convection), ~XG for the sampling of a location within the solid or fluid domain, ~YG
for sampling of a location at the boundary and ΘR that samples of an optical path and returns
the temperature at its extremity.

θ(~x) = E [Θ(~x)]

Θ(~x) = AN (~x)θN +AR(~x)ΘR( ~XG(~x)) +AC(~x)θC(~YG(~x))

}
solid or fluid (7)

As ΘR( ~XG(~x)) and θC(~YG(~x)) involve the solid and fluid temperatures at random locations,
these temperatures can again be replaced by the expectation of Θ at the corresponding locations
and the Monte Carlo algorithm becomes recursive, just as for simulation of multiply scattered
radiation. The algorithm stops when the required temperature is known, either because this
corresponds to the incoming flow and θN is known, or because the sampled location is at the
boundary. This recursivity is a typical consequence of the combination of equations 4, 5 and 6
leading to a second-kind Fredholm equation.
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Figure 2. Academic 1D examples involving semi-transparent solids: radiative “equilibrium”
(left); radiation coupled with non-stationnary conduction (right). Notations are from [4] page
460 and page ??.
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