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Avant de commencer, précisons qu’autant que possible :
— les vecteurs sont surmontés d’une flèche, comme ~a,
— les variables aléatoires sont désignées par des lettres capitales, comme A,
— un estimateur d’une grandeur a est noté en majuscule (car c’est une variable

aléatoire) et surmonté d’un tilde, ce qui donne Ã.
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Acronyme Signification 1re apparition
MMC méthode de Monte-Carlo page 5
DSMC Direct Simulation Monte-Carlo page 4
BsR Boltzmann sur Réseau page 4
VA variable aléatoire page 44
ACN algorithme à collisions nulles page 73
PNE puissance nette échangée page 98
DSE développement en série entière page 134

DSEVI développement en série entière page 135
de variables indépendantes

mode BKW mode « Bobylev-Krook-Wu » page 199
méthode RK4 méthode Runge-Kutta d’ordre 4 page 192
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Introduction

Contexte scientifique
••••Le champ physico-mathématique dans lequel ce travail de thèse s’inscrit est
celui des modélisations mésoscopiques des phénomènes de transport. Grossièrement,
ces termes signifient qu’on a un phénomène physique conceptualisé comme issu
des déplacements et des interactions désordonnés de très nombreuses particules, et
qu’on le modélise mathématiquement via une fonction de distribution signifiant la
distribution de ces particules dans l’espace de leurs possibles états (rassemblant
leur position, leur vitesse, leur énergie interne,. . .) (on appelle cet espace l’espace
des phases).

Ces modélisations sont utiles quand celles basées sur les grandeurs macro-
scopiques locales usuelles (densité, vitesse moyenne, température, composition
chimique,. . .) ne suffisent plus, ou qu’il faut les justifier. Leurs applications sont
nombreuses :
— la lecture atomistique de la thermodynamique dans les gaz — historiquement

la 1re modélisation de ce type, lors des travaux de Ludwig Boltzmann,
— l’interprétation atomistique de la mécanique des fluides, qui fournit des mo-

dèles de dépendance des propriétés des fluides (viscosité, diffusivité thermique,
. . .) aux conditions thermodynamiques. Cela a été fait dans les gaz parfaits,
et aussi dans les gaz denses et les liquides [25].

— le calcul des taux et des vitesses de réaction nucléaire, dans les réacteurs
à fission ou dans les bombes, qui sont directement liés au flux de neutrons.
C’est ce domaine disciplinaire qui a développé et rendu populaire la méthode
de Monte-Carlo, dont il est question dans ce manuscrit [38, 81,112,113].

— le calcul du transfert radiatif de toute nature, et dans toute sorte d’ap-
plications : la protection radiologique, le génie des procédés combustifs
[33,62,90,95], le génie des procédés solaires [7, 29,31,44], le calcul des flux
thermiques atmosphériques (indispensable à la météorologie et à la clima-
tologie) [42], l’imagerie médicale [15,87,104],. . . De façon moins directe, la
synthèse d’images photo-réalistes [92] en fait aussi partie.

— l’astrophysique ; d’une part par le transfert radiatif, nécessaire à la compréhen-
sion détaillée de l’émission lumineuse des étoiles ou des nuages interstellaires
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de gaz et de poussières ; mais d’autre part par la dynamique des amas d’étoiles
et des galaxies (les étoiles sont alors les particules),

— la cinétique des gaz raréfiés. Celle-ci va du dimensionnement des protections
thermiques pour les rentrées atmosphériques, équipant les engins spatiaux,
jusqu’à toute la micro-fluidique [3, 93, 110,111].

— la compréhension des comportements collectifs, en biologie [23, 60,69],
— la physique des plasmas [14, 19, 79, 123]. Ses applications sont par exemple la

fusion thermonucléaire contrôlée, le four à micro-ondes, ou le traitement de
surfaces.

— la physique des solides, et en particulier la physique des semi-conducteurs
[10, 88, 97, 106]. Les particules considérées sont alors des phonons ou des
charges électriques libres.

— . . .

••••Nous nous restreignons dans cette thèse à ce qui obéit à l’équation de
Boltzmann ; et ne serait-ce que parmi les applications précédemment listées cela
fait déjà beaucoup. En fait l’équation de Boltzmann au sens large, c’est-à-dire par
exemple linéaire ou non-linéaire, est constituante du sujet de cette étude.

Cette équation s’écrit de façon générale :

D(f) = C(f)

où :
— f est la fonction de distribution,
— D est la dérivation particulaire, appelée aussi dérivation en suivant le mouve-

ment. Par exemple, si les particules sont des molécules identiques de masse
m dont l’état est complètement décrit par une position ~r et une vitesse ~c,
alors :

∀(~r;~c; t), D(f)(~r;~c; t) =

∂tf(~r;~c; t) + ~c · −−→grad~rf(~r;~c; t) + div~c
(
f(~r;~c; t) ~F

m
(~r;~c; t)

)

où ~F est la somme des forces issues de l’extérieur du système et s’appliquant
aux particules.

— C(f) est le terme collisionnel. Dans les équations de Boltzmann, ce terme
est supposé :
— local en position et en temps. Ceci signifie que la valeur de C(f) en un

point ne dépend que des valeurs de f en la même position ~r et au même
instant t. Les équations de Boltzmann s’opposent en cela aux équations
de Vlasov, où on tient compte d’interactions à longue portée entre les
particules.
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— directement intégral sur Ep \⊥ Er (les dimensions de l’espace des phases
autres que la position). Cela veut dire que la variation de la densité de
particules suivant une trajectoire balistique est due à la sortie et l’entrée
de particules dans cette trajectoire, et que ces entrées/sorties se font
par sauts instantanés dans l’espace des phases. Ces sauts sont appelés
collisions. Les opérateurs de collision de type Boltzmann se distinguent
en cela des opérateurs de collision de Landau-Fokker-Planck, modélisant
des situations où les collisions sont rasantes, et qui font apparaître un
Laplacien dans Ep \⊥ Er.

La linéarité d’une équation de Boltzmann dépend de la linéarité de son terme
de collision. En transfert radiatif ou en neutronique par exemple, le transport est
linéaire dans la plupart des cas ; alors C(f) s’exprime comme une intégrale de f
sur Ep \⊥ Er. En cinétique des gaz le transport est non-linéaire : en l’occurrence
C(f) est quadratique selon f , et s’exprime comme une intégrale sur Ep \⊥ Er de
f × f .

••••Notre sujet d’étude, en lui-même, est d’essayer d’étendre aux transports non-
linéaires des interprétations statistiques construites pour les transports linéaires.
Les applications que nous avions en tête lors de ce travail étaient essentiellement
fluidiques, si bien qu’il a été orienté, ainsi que ce manuscrit, vers des perspectives
fluidiques ; cependant, nous sommes convaincus que cet écrit peut avoir un intérêt
pour des lecteurs issus d’autres champs disciplinaires.

Par ailleurs, l’exemple de transport linéaire, que nous connaissons suite à de
précédents travaux dans l’équipe où cette thèse a été encadrée, et qui nous sert de
point de départ, est le transfert radiatif.

Ainsi, au cours de ce manuscrit nous parlerons systématiquement de transfert
radiatif ou de cinétique des gaz : le premier nous servira de représentant des
transports linéaires, et la deuxième sera notre exemple de transport non-linéaire.

••••Même si certains concepts construits dans ce manuscrit ont possiblement
une valeur intuitive propre (nous parlerons notamment de propagation dans le
monde du non-linéaire, où c’est réputé inopérant), notre objectif est entièrement
contenu dans le montage de solutions numériques à l’équation de Boltzmann, en
utilisant une approche statistique.

Cela nous amène à présenter maintenant les méthodes actuellement disponibles
pour résoudre les équations de Boltzmann, en transfert radiatif et en cinétique
des gaz. Souvent, les méthodes se correspondent strictement entre les deux do-
maines, même quand le vocabulaire diffère. Au fait, les équations d’évolution dans
ces domaines sont appelées respectivement « équation de transfert radiatif » et
« équation de Boltzmann » (sous-entendu la seule, celle d’origine).

Globalement, les méthodes de résolution se divisent en 2 catégories : les méthodes
à discrétisation et/ou à quadratures fixes, et les méthodes statistiques. La façon
dont ces méthodes se précisent dépend aussi du caractère linéaire ou non du
transport.
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•••Les méthodes à discrétisation se distinguent essentiellement par les qua-
dratures qu’elles utilisent dans l’espace des phases, et leur schéma de mise à jour
(dans l’échelle des temps).

Dans l’espace ordinaire, un maillage usuel de type volumes finis ou éléments
finis, régulier ou non, peut être utilisé. Les méthodes se distinguent plus souvent
par la quadrature utilisée dans l’espace supplémentaire à l’espace usuel — espace
des vitesses en cinétique des gaz, espace des directions en transfert radiatif. On
peut utiliser par exemple des harmoniques sphériques couplés à des moments de
la norme — en transfert radiatif la norme n’apparaît pas, car elle est constante.
Dans le même esprit, les harmoniques sphériques peuvent être remplacées par des
ordonnées discrètes. Dans un espace des vitesses réellement 3D, on peut utiliser des
quadratures spécifiques comme une quadrature tridimensionnelle de Gauss-Hermite.

Cela amène par exemple aux méthodes :
— aux harmoniques sphériques [22],
— aux ordonnées discrètes (DOM) [24],
— Boltzmann sur réseau (BsR), en cinétique des gaz [94,111].

•••En cinétique des gaz, exemple type de transport non-linéaire, les méthodes
statistiques se posent essentiellement comme une alternative à la discrétisation de
l’espace des vitesses. Une difficulté importante qu’elles proposent de surmonter
est le calcul du terme collisionnel de Boltzmann, qui est une intégrale au moins
pentadimensionnelle de la fonction de distribution.

La méthode statistique pour la cinétique des gaz la plus utilisée est certainement
la simulation directe Monte-Carlo (DSMC). Elle repose sur 2 fondements [9]. Un
suivi d’un essaim de molécules fictives permet de prendre en compte naturellement
le transport balistique. Les collisions sont prises en compte en faisant collisionner
aléatoirement des molécules situées dans des mêmes petites cellules d’une grille.
Plusieurs variantes se distinguent, par exemple selon la façon détaillée de simuler
les collisions [72, 73], ou encore selon la gestion du temps considéré comme variant
par pas ou de manière continue [66,67].

En cinétique des plasmas, non-linéaire elle-aussi, on peut signaler la méthode
de particules en cellules (PiC), qui sert à résoudre les équations de Vlasov. Comme
en DSMC, on suit des particules fictives ; la différence essentielle avec la méthode
DSMC est l’utilité de la grille. Plutôt que de faire apparaître des collisions sinon
improbables, son usage est de permettre le calcul du champ électromagnétique,
vecteur d’interactions à longue portée entre les particules, en effaçant les interactions
à courte portée. La décroissance lente des forces électrostatiques avec la distance
explique la prévalence des interactions à longue portée entre charges électriques,
en cinétique des plasmas.

•••En physique du transport linéaire, que ce soit en neutronique, en transfert
radiatif, ou dans certains problèmes de physique des plasmas, la situation des
méthodes statistiques est différente. Il n’y en a qu’une, et c’est la méthode de
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Monte-Carlo (MMC), au sens où l’entendaient ses concepteurs neutroniciens, qui
est aussi le sens où on l’entend dans ce manuscrit.

Ordinairement, la méthode de Monte-Carlo se conçoit comme la construction
de trajectoires de particules fictives, à l’aide d’un générateur aléatoire, dont on peut
tirer des observables moyennes. D’un point de vue mathématique, la méthode de
Monte-Carlo est une méthode numérique de calcul d’intégrales. Ces 2 conceptions
de la méthode sont complémentaires : nous en parlerons longuement au chapitre 1.

La différence essentielle entre la MMC pure et par exemple la DSMC, vient
de la propagation indépendante des sources : en MMC les particules sont suivies
une à une, indépendamment les unes des autres. Il n’y a pas non plus de maillage,
comme on n’en a pas besoin pour introduire des collisions inter-particulaires, ou
pour les empêcher.

La méthode de Monte-Carlo a de nombreux avantages reconnus :
— Elle gère facilement les espaces des phases aux nombreuses dimensions.
— Elle permet de prendre en compte simultanément de nombreux phénomènes

physiques, sans augmentation drastique de la dépense computationnelle.
— Ses résultats sont certes entachés d’erreur statistique, mais elle estime cette

erreur simultanément à l’estimation principale, ce qui permet de fournir des
intervalles de confiance réglables pour les résultats.

— Ses résultats ne sont (normalement) pas entachés d’erreur systématique : si
on recommence le calcul avec une initialisation différente des générateurs
aléatoires, l’erreur générée est différente, et de moyenne nulle. En augmentant
la taille d’échantillon à moyenner, on converge vers la valeur exacte recherchée.

— Elle est aisément parallélisable (sur CPUs du moins).
— Elle permet généralement le calcul simultané de plusieurs observables d’intérêt,

et même simultanément avec leurs sensibilités à divers paramètres.

Problématique
Quand le transport est non-linéaire, il n’y a plus propagation indépendante
des sources. Il est alors communément admis que la méthode de Monte-Carlo n’est
plus utilisable :

“So far as the author is aware, the extension of Monte Carlo methods
to nonlinear processes has not yet been accomplished and may be
impossible.” [28]
“Monte Carlo methods are not generally effective for nonlinear problems
mainly because expectations are linear in character.” [64]

Bien sûr, des aménagements de la méthode de Monte-Carlo existent, comme
l’introduction d’une grille en DSMC — qui revient à une linéarisation par pas de
temps. Mais ils effacent une partie des intérêts de la méthode de Monte-Carlo,
comme l’absence d’erreur systématique :
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“A nonlinear problem must usually be linearized in order to use Monte
Carlo technique.” [64]

Cependant, plusieurs contre-exemples nous permettent aujourd’hui de modérer
ce type d’affirmations, et nous allons les prendre comme point de départ pour
réexaminer la question de l’utilisation de la méthode Monte-Carlo en transport
non-linéaire.

On connaît depuis plus de 10 ans 2 situations où la méthode de Monte-Carlo
a pu être employée, de façon exacte donc sans linéarisation aucune, pour des calculs
non linéaires :

— la 1re est le calcul d’intégrales de Fredholm contenant des non-linéarités
polynomiales. Ivan T. Dimov a exposé un moyen de le réaliser par méthode
de Monte-Carlo, en utilisant des marches aléatoires avec branchement. Bien
que peu reprise et peu citée, cette technique est totalement démontrée et
fonctionnelle [36, 37], et son auteur affiche pleinement l’objectif d’étendre la
méthode de Monte-Carlo en direction de problèmes non-linéaires.

— la 2e est la prise en compte des propriétés d’absorption et de diffusion d’un
milieu en transport linéaire, par exemple en neutronique ou en transfert
radiatif, lorsque ces propriétés sont fortement variables — selon l’espace ou
selon le temps. Face à ce type de difficultés, une technique très connue est
la technique des collisions nulles : on rajoute des collisionneurs virtuels de
façon à ce que la fréquence de collision devienne constante. La question de
l’hétérogénéité est alors remplacée par la gestion (locale) du taux de collisions
virtuelles (de façon à ce que la solution du problème reste identique à celle
du problème initial).
Cette technique est très employée et très citée, mais personne ne la considère
comme un exemple d’utilisation de la méthode de Monte-Carlo dans un
problème non-linéaire. Elle est systématiquement présentée comme une tech-
nique d’échantillonnage des libres parcours en transport linéaire, et comme
elle est très intuitive (nous la présenterons en détails au chapitre 2) aucune
mention n’est faite à une quelconque non-linéarité. Pourtant nous verrons
que de façon sous-jacente, il s’agit de gérer la non-linéarité de la décroissance
exponentielle de la loi d’extinction de Beer, et que le succès de cette technique
atteste de la possibilité concrète de faire appel à la méthode de Monte-Carlo
dans des problèmes non-linéaires.
On peut exhiber la non-linéarité abordée dans cet exemple, en considérant
l’espace des chemins optiques U~Γ, et en écrivant pour chaque chemin ~γ le
coefficient d’extinction kt comme une fonction de l’abscisse curviligne s le long
du chemin. Le problème de transport se traduit alors comme un problème
intégral du type :

∫

U~Γ

d~γ exp
(
−
∫ l~γ

0
ds kt(s)

)
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où on intègre sur l’espace des chemins une fonction non-linéaire d’une intégrale
le long de chaque chemin. La méthode des collisions nulles se présente alors
comme un moyen d’évaluer cette intégrale par la méthode de Monte-Carlo,
malgré la non-linéarité de la combinaison de l’espace des chemins et de
l’espace des abscisses curvilignes. Cette méthode est par contre fortement
associée au cas particulier de l’exponentielle.

Plus récemment, lors de son travail de modélisation radiative des photobioréac-
teurs [29], Jérémi Dauchet a été confronté à deux situations où :
— la complexité présente, notamment géométrique, était trop élevée pour envi-

sager d’autres méthodes numériques que des méthodes statistiques,
— des non-linéarités étaient présentes et rendaient l’emploi de la méthode de

Monte-Carlo apparemment impossible.
Ces non-linéarités n’étaient pas de forme exponentielle, donc l’astuce des colli-

sions nulles n’était pas suffisante. Il ne s’agissait pas non plus de situations pouvant
se ramener à la famille des problèmes abordées par I. T. Dimov. J. Dauchet est
pourtant parvenu à résoudre ces deux problèmes, d’une façon qui ouvrait de très
larges perspectives. Résumés rapidement, ces 2 exemples sont les suivants (nous
reviendrons sur le 2e au chapitre 3) :

1. Le calcul des propriétés radiatives de particules à partir de la théorie élec-
tromagnétique : calcul des coefficients d’absorption et de diffusion, et de
la fonction de phase de diffusion, à partir d’une résolution numérique des
équations de Maxwell. Les particules considérées étaient les micro-organismes
cultivés, et leur formes pouvaient être complexes. En revanche, d’autres don-
nées du problème physique (le contraste d’indice de réfraction des particules
vis-à-vis de leur milieu, très faible) permettaient l’emploi de l’approximation
de la diffusion anomale ou de l’approximation de Schiff [30,105,120].
Selon ces approximations, le problème électromagnétique se ramène au ba-
layage d’un espace de chemins U~Γ de diffusion simple (un seul changement de
direction par chemin) à travers la particule, et au calcul d’un poids w(~γ) asso-
cié à chaque chemin. La méthode de Monte-Carlo est alors particulièrement
bien adaptée au traitement de la complexité géométrique.
Mais les propriétés radiatives sont des propriétés énergétiques, et on a donc
besoin de prendre le carré du champ électromagnétique. Et ensuite, il s’agit
d’intégrer sur l’ensemble des formes et des tailles de particules présentes dans
le mélange étudié. En notant U ~X l’ensemble des configurations géométriques
possibles, le problème posé est du type :

∫

U ~X

d~x f
(∫

U~Γ(~x)
d~γ w(~γ)

)

avec f : z 7→ z2. On est donc face au même type de problème intégral
que celui qu’on voulait résoudre par l’emploi des collisions nulles ; mais la
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fonction non-linéaire par laquelle se combinent les intégrales n’est plus une
exponentielle, mais un carré.

2. Le calcul de la productivité totale d’un photobioréacteur : on admet qu’en
chaque point ~r du réacteur on sait estimer le rayonnement présent comme une
intégrale, sur l’espace des chemins optiques ~γ menant à ~r, d’un poids w(~γ).
On suppose aussi qu’on connaît la loi de conversion f de ce rayonnement
en biomasse. Il s’agit d’intégrer cela sur tout le volume V du réacteur ; le
problème intégral résultant est semblable aux précédents :

∫

V
d~r f

(∫

U~Γ(~r)
d~γ w(~γ)

)

où la non-linéarité de f peut être relativement complexe.
Face à ces deux difficultés voisines, Jérémi Dauchet a développé une approche

passant par un développement en série entière de la non-linéarité, ce qui revient à
aplanir la non-linéarité en l’injectant dans un espace de dimension infinie. Cette
dimension infinie ne pose aucun problème dans le contexte de la méthode de Monte-
Carlo.

On reconnaît en effet une astuce de ce type dans le cas particulier des col-
lisions nulles : en ajoutant des collisionneurs fictifs, on introduit la récursivité
typique des problèmes de diffusion multiple (espace des chemins sans diffusion, avec
une diffusion, deux diffusions, etc). On remplace la non-linéarité de l’extinction
exponentielle par le balayage d’un espace de dimension infinie.

Chez J. Dauchet, l’espace de dimension infinie est un espace de polynômes.
Une seconde idée est alors introduite : dans la méthode de Monte-Carlo, les
intégrales sont vues comme des espérances de variables aléatoires, et dans le cas
particulier où la fonction f est un monôme de degré n portant sur une variable
aléatoire Z on peut écrire :

f(E(Z)) = aE(Z)n = E(aZ1 · · ·Zn)

où les Zi sont des variables aléatoires parentes à Z, c’est-à-dire indépendantes et
distribuées identiquement à Z. La puissance n de la moyenne de Z est remplacée
par la moyenne du produit de n variables aléatoires indépendantes. Aussi simple
soit-elle, cette astuce joue un rôle fondamental dans la proposition de J. Dauchet.
Nous y consacrerons le chapitre 3.

Cette proposition a ensuite été reprise par Olivier Farges pour calculer la
productivité annuelle d’une centrale solaire à concentration, en tenant compte
d’une conversion électrothermique non-linéaire [44]. On savait depuis longtemps
que le calcul de l’énergie récoltée annuellement au récepteur d’une centrale ne
poserait aucune difficulté supplémentaire majeure, comparativement au calcul de la
puissance reçue instantanée. Cela revient à rajouter une intégration (sur le temps),
ce qui est réputé facile en méthode de Monte-Carlo (voir [28], et aussi le chapitre
1.3.1). Dans un article récent [45], Olivier Farges montre en effet que pour évaluer
la puissance totale récoltée par une centrale solaire pendant l’ensemble de sa durée
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de vie, le temps de calcul nécessaire est pratiquement identique à celui nécessaire
pour évaluer la puissance reçue à un instant donné. Comme si l’intégration sur
trente ans (en tenant compte d’une climatologie à l’heure !) ne coûtait rien. . .

C’est clairement une illustration des capacités de la méthode de Monte-Carlo,
dans les problèmes de complexité élevée. La complexité de l’espace des chemins
optiques dans un champ de plus d’un millier d’héliostats est déjà élevée. Combiner
cet espace de chemins avec l’échelle des temps (variations de la position du soleil et
des conditions météorologiques) ne change pas sensiblement le niveau de complexité,
quand on l’échantillonne avec la quadrature statistique de la méthode de Monte-
Carlo (voir chapitre 1.3.1).

La prise en compte du rendement de conversion de la centrale, dépendant
de la puissance instantanée reçue, constitue une deuxième originalité du travail
d’O. Farges. Il est d’ailleurs remarquable que cela se fasse, là encore, sans une
augmentation sensible de la dépense computationnelle. Dans ce dernier exemple, le
problème intégral suit encore le même schéma :

∫

UT
dt f

(∫

U~Γ(t)
d~γ w(~γ)

)

où t est le temps et ~γ un chemin optique allant du Soleil au récepteur.
Dans tous ces exemples, on observe un détail algorithmique déjà montré par

Ivan Dimov [36, 37] : le processus d’estimation générant la grandeur d’entrée à
la loi non-linéaire f doit généralement être répété — 2 fois dans l’exemple des
propriétés optiques car f est un carré, un nombre variable de fois dans les autres
exemples. Cela peut être l’occasion d’un alourdissement computationnel, cependant
cet alourdissement reste très raisonnable dans tous les exemples testés jusqu’ici. Il
est d’autant plus acceptable, qu’on se retrouve alors en situation de réaliser des
calculs auparavant jugés impossibles !

Le propos de cette thèse est de mettre en œuvre une approche statistique
du même type pour la résolution des équations de Boltzmann non-linéaires ; en
particulier pour l’équation de Boltzmann de la cinétique des gaz. Initialement, le
problème n’a pas strictement la même forme que dans les exemples précédents : il ne
s’agit pas seulement de l’intégrale d’une fonction non-linéaire d’une intégrale. Mais
les ingrédients sont les mêmes : nous avons affaire à un problème de transport et
la technique des collisions nulles est immédiatement transposable ; la non-linéarité
du terme collisionnel est quadratique, c’est à dire qu’elle passe par le produit de la
fonction de distribution pour deux vitesses différentes, ce qui est très proche de
l’exemple précédent d’électromagnétisme.

Nous verrons qu’une telle extension est possible et notre question sera ensuite de
tester l’algorithmique qui en résulte. En particulier, est-ce que resteront valables en
cinétique des gaz toutes les caractéristiques propres à la méthode de Monte-Carlo
en transfert radiatif :
— La possibilité d’un calcul exact, c’est-à-dire sans biais et avec une estimation

fiable de l’incertitude.
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— La possibilité d’un calcul sonde, c’est à dire du calcul d’une grandeur en
un point, sans avoir à évaluer l’ensemble du champ. C’est standard en
transport linéaire, où l’on suit souvent les particules en sens inverse depuis un
capteur considéré ponctuel. Mais ceci est réputé être associé aux images de
propagation, qui ne sont plus valables en transport non-linéaire. On admet que
l’on puisse prédire numériquement une photo prise par satellite sans calculer
le rayonnement en tous les points de l’atmosphère ; mais en dynamique des
fluides on imagine mal prédire la densité, la vitesse et la température en un
point sans calculer l’ensemble du champ.

— La possibilité d’évaluer des événements rares. Il s’agit presque de la même
idée que celle qui précède : si on peut faire un calcul sonde, alors on peut
se concentrer sur des événements très rares et les évaluer sans difficulté
particulière, là où les méthodes statistiques utilisant un ensemble de pseudo-
particules seraient en échec, car elles auraient besoin d’un nombre immense
de particules pour gérer la rareté des événements recherchés.

— La possibilité de calculer, en même temps que le calcul principal, les sensibi-
lités de la grandeur étudiée aux paramètres du problème.

— La possibilité de faire appel à des échantillonnages par importance ou des
reformulations intégrales, le tout en étant guidé par des approches à variance
nulle.

— La possibilité de faire appels aux outils numériques de la synthèse d’image
pour la gestion des géométries 3D complexes.

— . . .

Comme, en cinétique des gaz tout comme en transfert radiatif, notre description
physique est basée sur la fonction de distribution (notée f), nous aurons fait
l’essentiel du chemin quand nous aurons exprimé un estimateur de f(~r;~c; t) pour
toutes position ~r, vitesse ~c et date t données. Quand cela sera fait, le raffinement
pour estimer des grandeurs macroscopiques (des flux, des débits, ou même des
grandeurs locales comme la densité, les densités de flux. . .), qui sont en fait des
intégrales de f , sera immédiat.

En démarrant ce travail, l’inconnue principale est bien sûr l’expression que
pourra avoir cet estimateur. A priori, on se basera sur des formulations totalement
intégrales de l’équation de Boltzmann, comme il en existe pour l’équation de
transfert radiatif. Cela donnera lieu à un suivi des particules en sens inverse,
en partant d’un détecteur ou d’une caméra comme c’est ordinaire en transfert
radiatif. Une différence notoire sera cependant que les chemins reconstruits depuis
le détecteur se diviseront pour devenir des arbres, comme c’est le cas dans les
propositions techniques de I. T. Dimov [37] ou de Jérémi Dauchet [29].
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Quelques illustrations

Quelques illustrations
•••• Il est inhabituel de présenter les résultats d’un travail de thèse dès l’introduc-
tion du manuscrit, mais nous choisissons tout de même de dévoiler dès à présent
quelques caractéristiques des algorithmes de calcul que nous avons finalement
obtenus.

La raison première de ce choix est didactique. Dans ce document, une place
majoritaire est consacrée à la présentation de précédents travaux, ou même à la
relecture du savoir-faire usuel. Ce qui sera alors expliqué pourra sembler éloigné de
notre objet d’étude ; et même si ces redites seront orientées selon les besoins de
notre progression logique, elles resteront centrées sur les thématiques originales de
chaque auteur. Le lecteur devra donc nous faire confiance, pendant les 3 premiers
chapitres, sur l’affirmation que le temps qu’il dépense dans ces pages est utile à
la compréhension de notre proposition. De plus, lorsque nous rentrerons dans ce
que cette thèse a de pleinement original, nous commencerons par un exemple très
académique qui ne relève pas à proprement parler de la cinétique des gaz : cela
fera encore un chapitre en apparence hors du sujet de ce manuscrit.

Nous estimons donc que le lecteur a besoin, dès maintenant, d’illustrations
concrètes de ce vers quoi le conduit le présent écrit, en termes pratiques. Ce choix
implique aussi, d’une certaine façon, que nous accordons plus d’importance au
cheminement formel mené durant cette recherche qu’à ses premières mises en
œuvre : nous ne cherchons donc nullement à maintenir une sorte de suspense sur
celles-ci. En fait, ces mises en œuvre ne sont que des tests de faisabilité, et nous
manquons encore de recul pour vraiment évaluer la portée de la stricte application
de la méthode de Monte-Carlo, sans linéarisation, à la cinétique des gaz. Les
résultats que nous présentons de suite (et qui seront décrits entièrement dans
les chapitres 5, 6, et lors des perspectives) illustrent donc avant tout le type de
conséquences pratiques auxquelles amènent les développements formels.

Les figures 1 et 2 montrent des simulations effectuées dans 2 cas académiques,
où la solution exacte est connue. Ces simulations ont été retenues comme des
occasions de tester la validité de l’estimateur de f que nous allons construire.

•••Le cas test de la figure 1 est habituellement dénommé « mode BKW »
(pour Bobylev-Krook-Wu). C’est une relaxation vers l’équilibre d’un gaz uniforme
et isotrope, mais dont la distribution des particules à l’instant initial n’est pas celle
d’équilibre. Il a été découvert par des physiciens spécialistes de la chimie nucléaire,
et proposé comme un moyen d’explorer la dynamique de relaxation vers l’équilibre
des queues de distributions, c’est à dire de particules peu nombreuses mais de haute
énergie cinétique, dont le rôle est essentiel en cinétique chimique. Pour nous, c’est
l’occasion de contrôler :
— la fonctionnalité de notre estimateur de f , même quand le gaz est en très

fort déséquilibre,
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(a) Profils de la fonction de distribution f le long de l’axe (Ox) de
l’espace des vitesses, en fonction de la coordonnée cx de la vitesse

Figure 1 – Calculs concernant la distribution des particules, dans un cas
académique appelé « mode BKW » (décrit au chapitre 5). Ce cas physique
décrit un gaz uniforme, isotrope et sans paroi, c’est pourquoi la dépen-
dance de la fonction de distribution f envers ~r n’est pas mentionnée. f
est fixée en un temps initial td, selon un profil largement hors-équilibre

(suivant la formule (5.12)). tvm est le temps de vol libre moyen d’une par-
ticule (totalement constant, dans ce cas physique précis), et cqma est la
vitesse quadratique moyenne d’agitation thermique sur chaque axe : le
mode BKW ne varie que selon ces 2 paramètres, de façon homothétique.

La solution exacte, connue, est donnée en traits. Les points avec barres d’erreur
sont calculés par l’algorithme 5.1, avec 104 réalisations en chaque point.

Suite de la figure page suivante.

— notre capacité à effectuer un calcul sonde dans l’espace des vitesses, c’est-à-
dire à calculer la fonction de distribution f pour une vitesse donnée (sans
aucune discrétisation de l’espace des vitesses),

— que notre estimateur reste précis même dans les zones peu peuplées de l’espace
des vitesses (gestion des événements rares).
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(b) Profils de la fraction des particules dont la vi-
tesse dépasse un seuil donné, en fonction de ce seuil c0

Figure 1 – Suite de la page précédente.
L’algorithme 5.1 sert à estimer f , en un point quelconque (~c; t) de l’espace-
temps des phases. Il est basé sur des formulations intégrales récursives de

l’équation de Boltzmann, avec les quelques nécessaires adaptations aux parti-
cularités du mode BKW. On se sert de cet algorithme soit directement dans la
figure (a), soit avec une intégration finale dans l’espace des vitesses pour calculer

des fractions de particules de haute énergie cinétique (dans la figure (b)).
L’algorithme 5.1 est assez représentatif de ce qu’on obtient à la fin de ce travail :

des algorithmes réalisant un calcul sonde de f , c’est-à-dire estimant f en
un point sans la calculer dans tout l’espace-temps des phases, fonctionnels
même dans des zones très peu peuplées de l’espace des phases, par contre
qui connaissent des difficultés quand le temps physique simulé augmente

(la variance d’estimation augmente avec t, cela est visible sur les graphes).

La figure 1a illustre ces trois points avec un accord parfait entre simulation et
solution exacte. Les calculs sont menés jusqu’à atteindre une précision inférieure à
1 %, sans observer de différence significative, en terme de convergence numérique,
entre les points de l’espace des vitesses très peuplés (le centre de la distribution)
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Figure 2 – Évolution de la fraction de la matière éloignée de l’origine des
positions par une distance supérieure à certains seuils, dans le cas académique
de confinement harmonique détaillé au chapitre 6. Dans ce cas physique, une

force rappelle élastiquement toutes les molécules vers l’origine. Contrairement au
mode BKW, ce cas physique fait donc apparaître une distribution non-uniforme
du gaz dans l’espace. En l’occurrence, le gaz forme un nuage centré sur l’origine,
gonflant et se dégonflant périodiquement sans jamais atteindre un équilibre.

La solution exacte, connue, est donnée en traits pleins. Les points avec
barres d’erreur sont calculés par l’algorithme 6.4, avec 104 réalisations
en chaque point. Comme l’algorithme 5.1 dont des résultats sont mon-
trés dans la figure 1, l’algorithme 6.4 sert à estimer f en des points quel-
conques (~r;~c; t) de l’espace-temps des phases. Le calcul des fractions de

particules éloignées de l’origine est réalisé grâce à cet algorithme, couplé à
une intégration statistique finale dans l’espace des positions. Ce couplage
d’un échantillonnage de positions et de chemins de molécules (c’est ceci
que réalise, en sous-jacent, l’algorithme 6.4) est réalisable par la méthode
de Monte-Carlo, pour le coup de façon totalement standard et répandue.

Là encore, il n’y a pas de difficulté importante à calculer ce qui se
passe à haute énergie (potentielle, cette fois-ci). Par contre, la va-

riance d’estimation augmente avec le temps physique simulé — on re-
présente environ 1,5 fois le temps de collision moyen, sur ce graphe.
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et ceux très dépeuplés (la queue de la distribution). La figure 1b présente une
évaluation de la fraction des particules ayant une vitesse supérieure à une valeur de
référence c0 donnée. Elle illustre notre gestion des événements rares dans l’espace
des vitesses : nous atteignons les mêmes précisions relatives pour des événements
ayant une probabilité de 10−8 que pour des événements de probabilité presque unité.
On parvient là à évaluer des grandeurs qui seraient complètement inaccessibles par
les approches statistiques représentant la distribution des vitesses à l’aide d’un
grand nombre de pseudo-particules. Dans notre cas, les pseudo-particules sont
remplacées par des chemins à branchements multiples qui partent du point étudié
de l’espace des vitesses, aussi dépeuplé soit-il. Par conception même, ces chemins
se concentrent sur l’objet d’étude. La faiblesse de l’approche est par contre la
multiplication des branchements, qui limite le temps physique simulé atteignable.

•••Dans ce premier exemple, le gaz était homogène et nous ne testions pas le
transport dans l’espace usuel des positions. Le cas test de la figure 2 est au contraire
une situation où les molécules d’un gaz sont rappelées élastiquement vers l’origine
des positions. Il en résulte que ce gaz forme un nuage centré sur l’origine, et gonfle
et se dégonfle de façon périodique sans jamais atteindre un équilibre. Pour nous,
c’est l’occasion de montrer que nous sommes capables de prédire correctement la
dynamique de très faibles portions de la masse, occupant des zones spécifiques de
l’espace ordinaire : l’événement rare est ici la présence d’une molécule très loin
du centre attracteur. On voit là encore que la précision des calculs est presque
indépendante de la rareté de l’événement et que la limite est le temps physique
simulé (du fait des branchements multiples).

La figure 3 montre les résultats obtenus, dans une configuration faisant intervenir
une géométrie complexe, sur une grille de points de l’espace ordinaire. Dans ce
cas-ci, nous ne disposons bien entendu pas d’une solution symbolique. C’était
toutefois l’occasion de montrer que :
— Aucun problème n’émerge de la prise en compte d’une géométrie complexe.

Comme dans les applications solaires précédemment évoquées, on utilise les
outils usuels de la communauté de la synthèse d’image. L’algorithme est
indépendant de la géométrie, et il n’y a donc aucun travail supplémentaire à
fournir pour passer des exemples académiques précédents à une configuration
de type industrielle.

— On est toujours capable de réaliser un calcul sonde, ici dans l’espace ordinaire,
ce qui illustre le fait que nous parvenons bien à prédire les caractéristiques
locales d’un écoulement (densité, vitesse, température) sans calculer l’en-
semble de cet écoulement. La notion de calcul sonde est donc bien étendue
à la mécanique des fluides, malgré la non-linéarité qui exclut les images
propagatives. On pourrait à l’inverse dire que les branchements multiples qui
caractérisent nos algorithmes permettent de raisonner avec des images de
type propagatif, mais arborescentes.
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Figure 3 – Visualisation du champ de densité de débit, obtenue
grâce à des calculs sondes effectués sur une grille de points. La si-
tuation physique est détaillée en partie dans le chapitre consa-

cré aux perspectives ; elle fait intervenir une géométrie complexe.
La géométrie visible sur l’image est une gorge, dans une courte section de tube
circulaire. Elle est modélisée à l’aide d’un maillage de triangles, c’est pourquoi
elle est si anguleuse. À chaque extrémité du tube, la distribution des molécules
entrantes est fixée — à une maxwellienne, de chaque côté à la même pression

mais avec 2 températures différentes. Tous les autres paramètres nécessaires sont
fixés aussi, comme le type de rebond aux parois, la section efficace de collision. . .

La prise en compte de la géométrie n’est pas difficile. Elle intervient uni-
quement par le biais de calculs d’intersections trajectoires/géométrie, et
la forme de l’algorithme de calcul de f n’est pas modifiée par rapport aux

exemples précédents des figures 1 et 2. De plus, pour ce calcul d’intersections
on peut profiter du savoir-faire de la communauté de la synthèse d’image.

Organisation du manuscrit
Nous démarrerons à partir les travaux menés dans l’équipe où ce travail de
thèse a été encadré, équipe répartie dans le centre RAPSODEE 2, le LAPLACE 3,
le laboratoire PROMES 4, et l’IBP 5. Les travaux visés ici sont spécifiquement :

1. ceux de J. Dauchet au sujet de la prise en compte d’une loi de couplage
non-linéaire [29],

2. ceux réalisés autour des algorithmes dits à collisions nulles [50].

2. centre de Recherche d’Albi en génie des Procédés des SOlides Divisés, de l’Énergie et de
l’Environnement, UMR 5302

3. LAboratoire PLAsmas et Conversion d’Énergie, UMR 5213
4. laboratoire PROcédés, Matériaux, et Énergie Solaire, UPR 8521
5. Institut Blaise Pascal, UMR 6602
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••••Bien que les points de départ de ce travail de thèse sont des concepts courants
en physique du transport linéaire — excepté les propositions de J. Dauchet en
MMC, encore relativement confidentielles —, ce que nous allons obtenir en transport
non-linéaire est très inhabituel, et pas forcément intuitif. Cela implique que nous
devrons progresser point par point, et avec beaucoup de rigueur. En particulier, nous
redémontrerons ce que nous utilisons habituellement pour le transport linéaire, afin
de connaître ce que nous pourrons étendre sans abus vers la physique du transport
non-linéaire.

Du coup, nous allons nous retrouver avec un déroulement logique très formel,
contenant des résultats mathématiques assez simples mais nombreux. Nous en
arriverons même à présenter certains résultats sous forme de théorèmes, avec leurs
preuves (succinctes). Nous avons conscience qu’un tel format d’écriture est peu
courant dans notre discipline ; nous avons néanmoins jugé que le lecteur issu de
notre communauté, tout comme nous, considérerait nécessaire d’asseoir ou de
ré-asseoir solidement chaque détail de sa théorie ou de sa pratique usuelle avant de
l’utiliser dans un champ nouveau.

••••Compte tenu de la quantité de ce que nous voulons présenter, et afin que
la lecture de cet écrit reste la plus agréable possible, nous avons fait le choix de
décanter son contenu entre 2 niveaux de lecture. Ces niveaux sont distingués par
des éditions différentes.
— Le niveau principal est écrit avec une seule colonne par page, et avec une

police normale. Par exemple, tout cette introduction en fait partie. Ce niveau
contient le fil conducteur de la thèse. Afin de comprendre tout son contenu,
il est nécessaire de le lire dans l’ordre des pages.

— Le niveau secondaire est écrit avec 2 colonnes par page, et en police réduite.
Cependant, pour des raisons techniques certaines équations et figures occupent
toute la largeur de page. Dans la table des matière, il est signalé par une
étoile (∗) .
Ce niveau contient des éléments dispensables en première lecture. Il fait
cependant partie intégrante de la thèse défendue. Il contient typiquement les
phases de redites et d’approfondissement du savoir-faire existant, dont nous
évoquions à l’instant l’utilité.

••••Par ailleurs, ce manuscrit s’organise principalement en 2 parties.

•••Les chapitres 1, 2, et 3 sont consacrés à une appropriation suffisante des
concepts et des techniques liés à la physique du transport ou à la méthode de
Monte-Carlo, qui nous ont été nécessaires au montage d’une approche statistique
en transport non-linéaire. Ces chapitres sont les seuls à contenir des sections du
niveau de lecture secondaire évoqué à l’instant.

Le chapitre 1 est une relecture de quelques bases de la physique du transport et
des méthodes de Monte-Carlo. L’accent est mis sur ce qui nous sera utile ensuite :
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ceci comprend :
— les formulations intégrales des équations de transport,
— une compréhension mathématique de la méthode de Monte-Carlo,
— le lien qui existe entre cette dernière compréhension, et une pratique — usuelle

— de la MMC comme analogie statistique du transport.
Le chapitre 2 est consacré aux « algorithmes à collisions nulles » : on désigne

par ce terme une sorte d’astuce, quand on fait du calcul par MMC en physique
du transport linéaire, pour gérer l’occurrence des collisions quand leur fréquence
n’est pas simple. Ils constituent la clé essentielle nous ayant permis de proposer
des estimateurs pour la fonction de distribution en cinétique des gaz.

Le chapitre 3 est une relecture de la technique développée par J. Dauchet puis
Olivier Farges pour gérer les lois de couplage non-linéaire, quand on utilise la
MMC. Nous l’utiliserons ensuite, combinée avec les algorithmes à collisions nulles,
pour gérer le transport non-linéaire.

•••Les chapitres 4, 5, et 6 détaillent la construction d’estimateurs de la
fonction de distribution. La fonctionnalité de ces estimateurs est par la même
occasion abondamment testée.

Dans le chapitre 4, on se concentre sur la résolution par MMC des équations
différentielles ordinaires scalaires non-linéaires. Un système différentiel, pouvant
être vu comme l’équation de Boltzmann dont on aurait retiré l’espace des phases,
sert de test tout au long de ce chapitre.

Les chapitres 5 et 6 montrent la construction d’estimateurs de f dans 2 cas
académiques de cinétique des gaz. Ces estimateurs sont testés, en particulier contre
les solutions symboliques disponibles dans ces cas simples.
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Chapitre 1

Équation de transfert radiatif,
équation de Boltzmann,
et méthode de Monte-Carlo

Le présent chapitre amène au lecteur les fondements physiques, mathé-
matiques, et numériques sur lesquels s’appuie ce travail de thèse. Ce qui est
présenté ici vise surtout à apporter au lecteur une compréhension particulière
de la pratique de la méthode de Monte-Carlo en transport linéaire, dans laquelle
la suite du manuscrit est aisément compréhensible.

Nous commençons en section 1.1 par rappeler les expressions précises
des équations de Boltzmann dans les champs disciplinaires qui nous servent
d’exemples (transfert radiatif et cinétique des gaz). Ces équations sont ré-
exprimées en section 1.2 sous forme purement intégrale.

Puis nous parlons en section 1.3 de la méthode de Monte-Carlo, et de son
utilisation en transport linéaire.

Ensuite, on s’attarde en section 1.4 sur la justification purement mathé-
matique d’une pratique courante en transport linéaire : on peut résoudre les
équations de Boltzmann linéaires par la méthode de Monte-Carlo, en suivant
des particules au fil de leurs trajectoires. Pourtant, les formulations intégrales
des équations de Boltzmann font uniquement apparaître un suivi des particules
depuis leur point d’arrivée, donc en remontant leurs trajectoires.

Enfin, on donnera en section 1.5 un exemple concret d’utilisation de la
méthode de Monte-Carlo pour résoudre un problème de transport linéaire.

1.1 Équations de Boltzmann
••••Comme nous l’avons annoncé dans le chapitre d’introduction, l’objet d’étude
de ce manuscrit est la résolution des équations de Boltzmann.
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Chapitre 1. Introduction technique

La 1re équation de ce type est celle posée par Ludwig Boltzmann vers la
fin du 19e siècle, lors de la construction de son modèle cinétique des gaz. C’est
généralement celle-ci qu’on désigne sous le terme d’« équation de Boltzmann »,
comme nous le faisons dans ce manuscrit.

Par la suite, la modélisation d’autres phénomènes physiques a donné lieu à l’éta-
blissement d’équations similaires, qui ont été regroupées sous le nom d’« équations
de Boltzmann », dans un sens plus générique. Comme expliqué dans le chapitre
d’introduction, toutes ces équations s’écrivent sous la forme :

D(f) = C(f) (1.1)

où f est la fonction de distribution des particules dont on considère le transport,
D est la dérivée en suivant le mouvement, et C est un opérateur de collision.

1.1.1 Fonctions de distribution
1.1.1.1 Fonctions de distribution, et approche mésoscopique

••••Toutes les descriptions et les modèles physiques pour la cinétique des gaz
ou le transfert radiatif, dont il sera question dans ce manuscrit, seront donc basés
sur des fonctions de distribution, respectivement des molécules ou des photons. La
définition de telles fonctions de distribution implique que l’on se place dans une
description mésoscopique, et ce à 2 titres :

1. On suppose l’existence d’une échelle dite mésoscopique, intermédiaire entre le
système à l’étude et les corpuscules le constituant, permettant de considérer
une multitude de petites parties du système telles que :
— Chaque petite partie puisse être considérée comme ponctuelle, compara-

tivement à l’extension totale du système.
L’échelle mésoscopique s’oppose ainsi à l’échelle globale, où on ne consi-
dère que quelques observables d’état simples du système ou de certains
de ses sous-volumes.

— Chaque petite partie soit assez étendue pour contenir de très nombreux
corpuscules. De la sorte, le contenu de 2 parties centrées sur un même
point du système est proportionnel au volume de ces parties.
Cela signifie que la fonction de distribution ignore la granularité de la
matière. L’échelle mésoscopique s’oppose ainsi à l’échelle microscopique,
où on essaie de caractériser l’état de chaque corpuscule constituant le
système.

2. L’espace de définition de la fonction de distribution est l’espace des états
possibles pour les corpuscules constituant le système. Cet espace est appelé
l’espace des phases. Souvent, il ne se limite pas à l’espace des positions.
Une approche mésoscopique se rapproche en cela d’une approche microsco-
pique, car on essaie de tenir compte de l’influence de toutes les variables d’état
des corpuscules (bien qu’on ne considère pas les corpuscules individuellement).
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1.1. Équations de Boltzmann

Elle se distingue de même d’une approche macroscopique à l’échelle méso-
scopique, où le système est décrit par les champs de certaines observables,
définis uniquement sur l’espace des positions (l’espace ordinaire). Dans une
telle approche, l’établissement des équations d’évolution nécessite plus que la
simple application des lois de la mécanique aux corpuscules, comme c’est le
cas avec les approches purement mésoscopiques.

•••• Il reste maintenant à :
— préciser les espaces des phases dans lesquels les molécules ou les photons vont

se répartir,
— donner les expressions exactes des équations de Boltzmann, applicables à nos

cas d’étude.

1.1.1.2 Fonction de distribution des molécules

••••Pour rester simple, dans ce travail nous nous limitons, en cinétique des gaz,
aux gaz monoatomiques et mono-espèce.

Un gaz est qualifié de monoatomique, à la base, quand ses molécules ne sont
chacune constituée que d’un seul atome. Du point de vue de la thermodynamique, on
qualifie un gaz de « monoatomique » quand ses molécules n’échangent pas d’énergie
interne lors de leurs collisions — c’est-à-dire que leurs collisions préservent l’énergie
cinétique. L’absence d’énergie interne observable des molécules est en pratique bel et
bien liée à leur caractère monoatomique, du moins dans les conditions ambiantes de
température et de pression. L’explication de cela, issue de la mécanique quantique,
ne sera pas donnée ici. Mais à chaque fois que nous parlerons, dans la suite de ce
manuscrit, du caractère monoatomique d’un gaz, ce sera pour signifier l’absence
d’énergie interne aux molécules.

Un gaz est qualifié de mono-espèce quand ses molécules sont toutes identiques,
du point de vue de la composition chimique et isotopique. Cela implique en
particulier que toutes les molécules ont la même masse.

••••Finalement, dans un gaz mono-espèce et monoatomique, les molécules ne
diffèrent que par 2 variables d’état : la position ~r et la vitesse ~c. Ainsi, leur espace
des phases Ep égale Er × Ec, le produit de l’espace des positions Er (l’espace
ordinaire, en fait) et de l’espace des vitesses Ec.

La fonction de distribution f des molécules est donc définie sur l’espace-temps
des phases Er × Ec × Et, où Et est l’échelle des temps. Elle est définie comme la
quantité de molécules par unité de volume de l’espace ordinaire et par unité de
volume de l’espace des vitesses, et son unité est la mol.m−6.s3 1. Cela s’écrit :

f(~r;~c; t) = dn
d~r d~c (1.2)

1. Il est très courant, dans la littérature consacrée à la cinétique des gaz ou des plasmas, de
travailler avec le nombre de molécules par unité de volume de l’espace des phases. Dans ce cas,
l’unité de f est le m−6.s3.
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où dn est la quantité de molécules présentes à l’instant t, dans une partie infinité-
simale de Er de volume d~r et centrée sur ~r, et dans une partie infinitésimale de Ec
de volume d~c et centrée sur ~c.

1.1.1.3 Fonction de distribution des photons, et luminance

••••La physique moderne explique que l’énergie lumineuse est transportée par
des particules appelées photons. L’état de ceux-ci est décrit par 4 variables :

— la position ~r,
— la direction de propagation ~u. La vitesse de propagation est imposée par le

milieu, on ne peut pas faire accélérer ou ralentir un photon en lui « appliquant
une force ».

— la fréquence ν de l’onde électromagnétique associée,
— le spin ~s, lié à la direction du champ électrique transporté par l’onde électro-

magnétique associée.

Le comportement des photons est descriptible par la mécanique quantique ;
celle-ci postule que les photons ont un comportement hybride, à la fois corpusculaire,
ondulatoire, et aléatoire. Dans ce manuscrit, à chaque fois que nous parlerons de
transfert radiatif nous envisagerons le comportement des photons comme purement
corpusculaire, ce qui impose quelques restrictions dans les cas d’étude :

— Les effets du spin des photons, c’est-à-dire les effets de la polarisation de
la lumière, sont totalement négligés. Dans les applications impliquant du
transfert radiatif, étudiées jusqu’ici par l’équipe où ce travail de thèse a
eu lieu — chambres de combustion, transferts thermiques atmosphériques,
procédés solaires, imagerie médicale —, ils avaient peu d’influence. Qui plus
est, leur prise en compte dans une modélisation corpusculaire du transfert
radiatif est en fait assez malaisée 2.

— Aucun phénomène d’interférence n’est observable.
— Les ondes électromagnétiques dans le système sont incohérentes.

••••Ainsi, l’espace des phases dans lequel les photons se répartissent est Ep =
Er × Eu × Eν , où Eu = S (Ec;~0; 1) est l’espace des directions et Eν ' R+∗ est
l’échelle des fréquences (appelée aussi échelle spectrale).

La fonction de distribution des photons se définit donc comme la quantité de
photons, par unité de volume de l’espace ordinaire, par unité d’angle solide, et par
unité d’intervalle de l’échelle des fréquences. La définition de l’angle solide est une
généralisation dans l’espace de la notion d’angle du plan ; l’angle solide correspond
à ce que devrait être le volume dans l’espace des directions.

2. Le lecteur que cela intéresse peut se reporter entre autres à l’ouvrage [59] page 725.
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1.1. Équations de Boltzmann

••••Une subtilité existe en revanche quand on recherche la différentielle spectrale
(sur l’échelle des fréquences). Selon les auteurs, la variable repérant les photons sur
l’échelle spectrale peut être la fréquence ν, mais aussi la longueur d’onde λ = c0/ν
ou le nombre d’onde η = ν/c0

3. Selon les cas l’élément différentiel sur l’échelle des
fréquences change, et la définition de la fonction de distribution avec, même s’il y
a une correspondance stricte entre les définitions possibles.

Ce dernier point aura peu d’importance dans ce manuscrit. Toutefois, en
fonction de l’élément différentiel choisi sur l’échelle spectrale, nous décidons de
noter la fonction de distribution fν , fλ ou fη. Par exemple, fν s’écrit :

fν(~r; ~u; ν; t) = dnγ
d~r d~u dν (1.3)

où dnγ est la quantité de photons présents à l’instant t, dans une partie infinitésimale
de Er de volume d~r et centrée sur ~r, dans un angle solide infinitésimal d~u centré
sur ~u, et dans un intervalle infinitésimal de fréquence de longueur dν et centré sur
ν. L’unité de fν est donc le mol.m−3.Hz−1.

Du fait de la définition de la fréquence, de la longueur d’onde et du nombre
d’onde, on a :

fλ = c0

λ2 fν et fη = c0 fν (1.4)

car c’est la quantité totale de photons dans un intervalle spectral donné qui doit
être conservé entre les différentes définitions de f .

Dans ce manuscrit, nous omettrons la plupart du temps de préciser quelle est la
différentielle spectrale de la fonction de distribution des photons, que nous noterons
alors f . Plusieurs situations existent, où cette précision est en fait inutile :
— Soit tout le rayonnement présent dans le système est à une seule fréquence.

On dit alors qu’il est monochromatique. Par exemple, les lasers sont des
sources de rayonnement monochromatique.

— Soit, dans la plage spectrale où se produit le transfert radiatif qui nous
intéresse, les propriétés du milieu de propagation sont indépendantes de la
fréquence. On peut dans ce cas la retirer de l’espace des phases, comme elle
n’a plus d’influence.

— On réalise une étude théorique, où le rayonnement est considéré monochro-
matique.
Les transferts radiatifs à fréquences différentes (même légèrement) sont
indépendants dans beaucoup d’applications, dont toutes celles évoquées dans
ce manuscrit. Il y a alors du sens à réfléchir sur des problèmes de transfert
radiatif monochromatique. Le retour à des problèmes polychromatiques se
fait en sommant simplement le transfert radiatif à chaque fréquence, ce qui
est possible car ils sont indépendants.

3. c0 est ici la vitesse de la lumière dans le vide, constante universelle. Il est plus prudent de
travailler avec les longueurs ou les nombres d’onde dans le vide, car la longueur d’onde d’une
onde électromagnétique change quand elle passe d’un milieu de propagation à un autre ; c’est la
fréquence de l’onde qui est conservée.
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••••Dans la communauté s’intéressant au transfert radiatif, même quand on
utilise une approche mésoscopique, la grandeur descriptive n’est généralement pas
la fonction de distribution des photons, mais la luminance (irradiance en anglais).
Plutôt que compter le nombre de photons près d’un point de l’espace des phases, on
compte l’énergie qu’ils transportent. Quand on se replace à l’échelle des systèmes
étudiés, c’est cette énergie qui intéresse le physicien ou l’ingénieur, plus que les
photons en tant que particules individuelles.

La luminance est ainsi définie comme la puissance lumineuse, à un instant t, se
propageant dans une unité d’angle solide autour d’une direction ~u, et divisée par
la surface normale à la direction de propagation. Cette surface normale est centrée
autour d’un point de l’espace ordinaire ~r.

L’unité de Lν , par exemple, est le W.m−2.Hz−1.
Étant donné qu’un photon :
— transporte une énergie hν, où h = 6,626 07× 10−34 J.s est la constante de

Planck,
— se déplace à une vitesse notée c,

la luminance L et la fonction de distribution des photons f sont directement liées
par la formule :

L(~r; ~u; ν; t) = hνc(~r; ~u; ν; t)NA f(~r; ~u; ν; t) (1.5)

où :
— c(~r; ~u; ν; t) est la vitesse de la lumière, au point de l’espace-temps des phases

considéré.
— NA est le nombre d’Avogadro, environ égal à 6,022 141 29× 1023 mol−1. Si

on exprime f comme un nombre de photons (sans unité) et non comme une
quantité de photons (en moles), le nombre d’Avogadro NA disparaît de la
formule (1.5).

1.1.2 Fonction de distribution et observables
macroscopiques

••••Nous expliquions précédemment qu’une description purement mésoscopique
est plus précise qu’une description macroscopique à l’échelle mésoscopique ; car
on décrit complètement la répartition des corpuscules dans l’espace de leurs états
possibles (l’espace des phases), et pas seulement dans l’espace ordinaire.

Comme l’espace des phases contient l’espace ordinaire, on peut exprimer les
variables macroscopiques locales selon la fonction de distribution, même si l’inverse
n’est pas vrai.

En cinétique des gaz, si on a un gaz mono-espèce et monoatomique de masse
molaireM , alors avec la définition de f donnée à la section 1.1.1.2 on peut exprimer :
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1.1. Équations de Boltzmann

— la densité molaire η et la densité massique ρ :

η(~r; t) =
∫

Ec
f(~r;~c; t) d~c ρ(~r; t) = Mη(~r; t) = M

∫

Ec
f(~r;~c; t) d~c (1.6)

— les densités de débit molaire ~mol et massique ~mas, et la vitesse moyenne ~v :

~mol(~r; t) = η(~r; t)~v(~r; t) =
∫

Ec
f(~r;~c; t)~c d~c (1.7a)

~mas(~r; t) = ρ(~r; t)~v(~r; t) = M
∫

Ec
f(~r;~c; t)~c d~c (1.7b)

— la densité d’énergie totale e :

e(~r; t) = M
2

∫

Ec
f(~r;~c; t)~c 2 d~c (1.8)

Cette énergie totale est généralement décomposée entre énergie cinétique ma-
croscopique et énergie thermique (due à l’agitation thermique microscopique)
u :

e(~r; t) = 1
2 ρ(~r; t)~v(~r; t)2
︸ ︷︷ ︸
énergie cinétique
macroscopique

+ u(~r; t) (1.9a)

avec

u(~r; t) = M
2

∫

Ec
f(~r;~c; t)(~c− ~v(~r; t))2 d~c (1.9b)

L’énergie thermique u est directement liée à la température par :

T (~r; t) = 2u(~r; t)
3Rη(~r; t) (1.9c)

où R ' 8,314 462 J.mol−1.K−1 est la constante des gaz parfaits. La tempé-
rature est ainsi une mesure locale de l’énergie moyenne des particules par
degré de liberté (ici il y en 3 : les coordonnées de la vitesse des particules).

— le tenseur de transfert de quantité de mouvement ~~~p :

~~~p (~r; t) = M
∫

Ec
f(~r;~c; t)(~c⊗ ~c) d~c (1.10)

Ce transfert volumique de quantité de mouvement est ordinairement décom-
posé entre une part due au transport macroscopiquement observable et une
part dénommée tenseur des contraintes. Nous notons ce dernier tenseur ~~σ en
accord avec les notations usuelles de la mécaniques des milieux continus 4.

~~~p (~r; t) = ρ(~r; t)~v(~r; t)⊗ ~v(~r; t)︸ ︷︷ ︸
transport macroscopique
de quantité de mouvement

+ ~~σ(~r; t) (1.11a)

4. Cependant, nous choisissons positives les contraintes en pression, contrairement au choix
usuel de la mécanique des milieux continus qui est de choisir positives les contraintes en tension.
Nous faisons ce choix pour rendre ~~σ positif.
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avec

~~σ(~r; t) = M
∫

Ec
f(~r;~c; t)

(
(~c− ~v(~r; t))⊗ (~c− ~v(~r; t))

)
d~c (1.11b)

La pression est la partie sphérique du tenseur des contraintes : p(~r; t) =
1/3 Tr

(
~~σ(~r; t)

)
.

En remarquant que u(~r; t) = 1/2 Tr
(
~~σ(~r; t)

)
, on retrouve l’équation d’état

des gaz parfaits monoatomiques : p(~r; t) = 2/3u(~r; t) = Rη(~r; t)T (~r; t). Cette
équation est donc une conséquence directe de la validité de l’approche cor-
pusculaire pour la cinétique des gaz 5.

— la densité de flux total ~e :

~e(~r; t) = M
2

∫

Ec
f(~r;~c; t)~c 2 ~c d~c (1.12a)

On dégage ordinairement de cette densité de flux total la densité de flux total
d’énergie thermique ~u :

~u(~r; t) = M
2

∫

Ec
f(~r;~c; t)(~c− ~v(~r; t))2 ~c d~c (1.12b)

et de cette dernière la densité de flux diffusif d’énergie thermique ~Du :

~Du(~r; t) = M
2

∫

Ec
f(~r;~c; t)(~c− ~v(~r; t))2 (~c− ~v(~r; t)) d~c (1.12c)

Par définition, ces densités de flux sont liées par les relations :

~e(~r; t) = ~u(~r; t) + 1
2 ρ(~r; t)~v(~r; t)2 ~v(~r; t)
︸ ︷︷ ︸
flux macroscopique d’énergie
cinétique macroscopique

+
(
~~σ(~r; t)

)
(~v(~r; t))

︸ ︷︷ ︸
puissance locale
des contraintes

(1.12d)

et

~u(~r; t) = u(~r; t)~v(~r; t)︸ ︷︷ ︸
flux macroscopique
d’énergie thermique

+ ~Du(~r; t) (1.12e)

Une fois que l’on connaît ces grandeurs macroscopiques locales, on obtient les
grandeurs globales par intégration sur l’espace ordinaire ou sur le temps. Ainsi
peut-on calculer la masse totale, l’énergie totale, la force exercée sur une paroi, le
flux de chaleur traversant une paroi. . .

En exprimant la conservation de la masse, de la quantité de mouvement et de
l’énergie, il est possible de dégager des relations entre les précédentes grandeurs
macroscopiques. Si une approche mésoscopique est indispensable, c’est que ce jeu
de relations n’est pas fermé. En fait, il manque généralement l’expression de ~Du et
de la partie déviatrice de ~~σ.

5. et aussi de l’absence de force intermoléculaire à longue portée, présupposée lors de l’écriture
du tenseur densité de flux de quantité de mouvement
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En transfert radiatif, en intégrant sur l’espace des directions et l’échelle des
fréquences on retrouve les observables habituelles du transfert de chaleur. On a
ainsi les expressions de :
— la densité d’énergie radiative e :

e(~r; t) =
∫

Eu
d~u
∫

Eν
dν hν NAfν(~r; ~u; ν; t) (1.13a)

=
∫

Eu
d~u
∫

Eν
dν Lν(~r;~c; ν; t)

c(~r;~c; ν; t) (1.13b)

Dans la littérature consacrée au transfert radiatif, on rencontre plutôt l’irra-
diance G, strictement équivalente quand l’indice de réfraction est constant :

G(~r; t) =
∫

Eu
d~u
∫

Eν
dν hνcNAfν(~r; ~u; ν; t) (1.13c)

=
∫

Eu
d~u
∫

Eν
dν Lν(~r;~c; ν; t) (1.13d)

— la densité de flux radiatif :

~ (~r; t) =
∫

Eu
d~u
∫

Eν
dν hνNAc(~r; ~u; ν; t)fν(~r; ~u; ν; t) ~u (1.14a)

=
∫

Eu
d~u
∫

Eν
dν Lν(~r; ~u; ν; t) ~u (1.14b)

On peut exprimer à partir de ce dernier le « terme source radiatif » :

Sr(~r; t) = −div~r ~ (~r; t) (1.15)

Le terme source radiatif joue un rôle primordial dans l’étude des transferts
thermiques par rayonnement. La création ou la destruction de photons se fait
par des interactions avec le milieu de propagation, qui préservent l’énergie
totale. Donc Sr est la puissance volumique prélevée par le milieu au « gaz
de photons ». Dans les équations de la chaleur applicables aux milieux de
propagation, le rayonnement intervient entièrement au travers de Sr.

On utilise fréquemment des versions spectrales des précédentes grandeurs :
c’est-à-dire qu’on ne fait pas l’intégration sur l’échelle des fréquences. La raison de
l’emploi de grandeurs spectrales est l’habituelle indépendance des transferts radia-
tifs à fréquences différentes. On écrit alors eν(~r; ν; t) =

∫
Eu

d~u hν NAfν(~r; ~u; ν; t),
~ν(~r; ν; t),. . . Si on utilise une différentielle autre qu’en fréquence sur l’échelle des
fréquences, on notera plutôt eλ(~r;λ; t) et ~λ(~r;λ; t), ou encore eη(~r; η; t). . .

Par ailleurs, au lieu de noter «
∫
Eu

d~u . . . » pour l’intégration sur l’espace des
directions, on note généralement «

∫
4π d~u . . . ». La raison en est que l’espace des

directions a une surface de 4π :
∫
Eu

d~u = 4π.
De même qu’en cinétique des gaz, il est possible de dégager des relations entre

les précédentes grandeurs macroscopiques. Ce jeu de relations n’est pas fermé, il
manque l’expression complète de ~.
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1.1.3 Hypothèses, établissement, et conséquences de
l’équation de Boltzmann

Nous donnons dans cette section une démonstration de l’équation de Boltzmann.
Pour cela, nous ne passons pas par la hiérarchie BBGKY (pour Bogoliubov-

Born-Green-Kirkwood-Yvon) [16,18,70,71,124]. Celle-ci consiste, en résumé, à poser
un système couplé d’équations décrivant l’évolution des fonctions de distribution à
1 corps 6, à 2 corps, etc jusqu’à N corps — où N est le nombre de particules dans
le système. Ensuite, en tronquant ce système on obtient une équation d’évolution
sur la fonction de distribution à 1 corps.

Ici, on se limitera à contraindre l’évolution de la fonction de distribution (à
1 corps) par quelques hypothèses simples. Le but en est multiple. Premièrement,
nous voulons rester transversal lors de la démonstration, dans le sens où celle-ci
nécessiterait peu d’aménagement pour être transposée dans un autre domaine
disciplinaire (par exemple la biologie). Deuxièmement, les hypothèses mises en
œuvre sont directement liées à la dynamique des molécules : elles limitent les
événements possibles pour ces dernières. Cela permet d’associer immédiatement
des images physiques aux différents termes de l’équation de Boltzmann ; or dans la
suite du présent manuscrit, nous essayons de permettre de telles images après de
conséquents développements mathématiques sur cette équation.

1.1.3.1 Hypothèses sur les molécules

••••Nous faisons les hypothèses suivantes :
1. Les molécules suivent des trajectoires balistiques (sans interaction mutuelle)

entre des collisions, ponctuelles dans l’espace et dans le temps.
2. Pendant leurs trajectoires balistiques, les molécules sont soumises à un champ

de force extérieur connu (potentiellement nul), en toute généralité fonction
de leur position, de leur vitesse, et du temps.

3. Les collisions impliquent chacune uniquement 2 particules, situées au même
point de l’espace et du temps.

4. Le gaz est mono-espèce : toutes les molécules sont identiques.
5. Les molécules sont monoatomiques, les collisions conservent leur énergie

cinétique.
6. Le taux de collision en un point de l’espace-temps est strictement propor-

tionnel au carré de f , via un facteur ne dépendant que de la différence de
vitesse entre les molécules.

Quelques remarques sur ces hypothèses :
— Un exemple de force dépendante de la vitesse des molécules est la composante

magnétique de la force de Lorentz.

6. C’est bien de fonctions de distributions à 1 corps dont nous parlions depuis le début de ce
manuscrit.
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— La 6e hypothèse sous-entend entre autres que les molécules n’ont pas d’orien-
tation privilégiée. Ceci peut être mis en défaut par exemple en présence d’un
intense champ électrique ou magnétique.

••••La 6e hypothèse est liée à une notion nommée chaos moléculaire.
Cela signifie en premier lieu que les molécules ne s’ordonnent pas à petite

échelle. Cette hypothèse est donc fausse dans les phases condensées, ou du moins
ne s’y énonce pas de la même manière.

Le gaz est par ailleurs supposé ne pas avoir de mémoire fine. Cela signifie que
son évolution est chaotique, et que s’il existe une fonction d’état très sensible aux
conditions initiales du gaz, telle que sa valeur doivent être ré-égalisée régulièrement,
cela n’a pas de conséquence notable sur l’évolution du système. De telles fonctions
sensibles se rencontrent par exemple en arithmétique modulaire, ce qui justifie son
usage en cryptographie ; nous supposons qu’il n’y a aucune observable telle dans le
système.

Cette hypothèse signifie aussi qu’aucune fluctuation, due à la granularité de la
matière, n’apparaît spontanément dans la fonction de distribution f .

Le chaos moléculaire, associé à la ponctualité des collisions, est la cause formelle
de l’irréversibilité (que nous évoquerons brièvement en section 1.1.3.3) de l’équation
de Boltzmann, qui s’oppose à la réversibilité du système à l’échelle microscopique.
Cette opposition n’est pas gênante tant que le système contient un très grand
nombre de molécules, et qu’on s’intéresse à la dynamique du système loin de
l’équilibre (détaillé en section 1.1.3.3) : dans ce cas, l’équation de Boltzmann peut
être une approximation très correcte de la dynamique moléculaire.

Le lecteur intéressé par la notion de chaos moléculaire, ses limites et ses défauts
pourra se reporter par exemple aux publications [63, 83,84].

1.1.3.2 Obtention de l’équation de Boltzmann

••••Soit une partie Ωp de l’espace des phases Ep, qui soit le produit d’une partie
Ωr de Er et d’une partie Ωc de Ec : Ωp = Ωr × Ωc. La frontière de Ωr est notée
∂Ωr et la frontière de Ωc est notée ∂Ωc ; chacune de ces frontières est supposée
avoir une normale sortante en tous ses points. Ces normales sortantes sont notées
respectivement ~nr(~r) et ~nc(~c). Ωp est supposée fixe dans le temps. La quantité de
molécules qu’elle contient est notée n(t).

n(t) varie à cause de 4 phénomènes :

1. Des particules proches de la frontière de Ωr la traversent, parce qu’elles ont
une vitesse.

2. Des particules proches de la frontière de Ωc la traversent, parce qu’elles
subissent une accélération progressive ~a = ~F

m
(due aux forces extérieures de

longue portée).
3. Des particules dans Ωc font un saut dans Ec, en subissant une collision.
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4. Des particules font un saut dans Ec et se retrouvent dans Ωc, en subissant
une collision.

Cela s’écrit :

dtn(t) =
∫

∂Ωr
d~r
∫

Ωc
d~c (−~c · ~nr(~r)) f(~r;~c; t)

+
∫

Ωr
d~r
∫

∂Ωc
d~c
(
−~a(~r;~c; t) · ~nc(~c)

)
f(~r;~c; t)

−
∫

Ωr
d~r
∫

Ωc
d~c f(~r;~c; t)

∫

Ec
d~c∗ f(~r;~c∗; t)

∫

Ec
d~c ′

∫

Ec
d~c ′∗ bF (~c ′;~c ′∗|~c;~c∗)

+
∫

Ωr
d~r
∫

Ωc
d~c
∫

Ec
d~c ′ f(~r;~c ′; t)

∫

Ec
d~c ′∗ f(~r;~c ′∗; t)

∫

Ec
d~c∗ bF (~c;~c∗|~c ′;~c ′∗)

(1.16)

où bF (~c1;~c2|~c3;~c4) est la probabilité, par unité de temps et 2 fois par unité de
volume de l’espace des vitesses, de 2 molécules situées au même point et de vitesses
~c3 et ~c4, de collisionner et de se retrouver respectivement avec les vitesses ~c1 et ~c2.

••••En appliquant le théorème de Green-Ostrogradski, et en considérant que la
précédente expression est vraie quelle que soit Ωp, on arrive à :

∂tf(~r;~c; t) + div~r
(
f(~r;~c; t)~c

)
+ div~c

(
f(~r;~c; t)~a(~r;~c; t)

)
=

− f(~r;~c; t)
∫

Ec
d~c∗ f(~r;~c∗; t)

∫

Ec
d~c ′

∫

Ec
d~c ′∗ bF (~c ′;~c ′∗|~c;~c∗)

+
∫

Ec
d~c ′ f(~r;~c ′; t)

∫

Ec
d~c ′∗ f(~r;~c ′∗; t)

∫

Ec
d~c∗ bF (~c;~c∗|~c ′;~c ′∗) (1.17)

Cette nouvelle expression peut être simplifiée. Premièrement, comme les va-
riables ~r et ~c sont indépendantes, on a : div~r ~c = 0. Ensuite, comme les collisions sont
réversibles (cf. la mécanique quantique) (on parle de micro-réversiblité) et n’ont pas
de direction privilégiée : bF (~c ′;~c ′∗|~c;~c∗) = bF (−~c;−~c∗| − ~c ′;−~c ′∗) = bF (~c;~c∗|~c ′;~c ′∗).
Ainsi :

∂tf(~r;~c; t) + ~c · −−→grad~rf(~r;~c; t) + div~c
(
f(~r;~c; t)~a(~r;~c; t)

)
=

∫

Ec
d~c∗

∫

Ec
d~c ′

∫

Ec
d~c ′∗ bF (~c;~c∗|~c ′;~c ′∗)

(
−f(~r;~c; t) f(~r;~c∗; t) + f(~r;~c ′; t) f(~r;~c ′∗; t)

)

(1.18)

Dans cette écriture, on peut interpréter les vitesses comme suit :
— ~c est la vitesse d’une particule suivie
— ~c∗ est la vitesse d’une partenaire de collision
— ~c ′ est la vitesse avant collision de la particule suivie
— ~c ′∗ est la vitesse avant collision de la partenaire de collision
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••••Le second membre de l’équation (1.18) peut être simplifié. Dans le cas d’un
gaz monoatomique et monomoléculaire, les collisions conservent la quantité de
mouvement et l’énergie cinétique, ce qui s’écrit :

{
~c+ ~c∗ = ~c ′ + ~c ′∗
~c 2 + ~c∗2 = ~c ′2 + ~c ′∗

2 (1.19)

Il en résulte en particulier que :

‖~c− ~c∗‖ = ‖~c ′ − ~c ′∗‖ (1.20)

Après calcul, on aboutit à ce que le système (1.19) est équivalent à la condition :

∃~u ′ ∈ S (Ec;~0; 1),
{
~c ′ = ~c+ ~c∗

2 + ‖~c− ~c∗‖2 ~u ′ et ~c ′∗ = ~c+ ~c∗
2 − ‖~c− ~c∗‖2 ~u ′

}
(1.21)

En posant
∫
Ec

∫
Ec

∫
Ec

∫
Ec
bF (~c;~c∗|~c ′;~c ′∗) . . . ≡

∫
Ec

∫
4π bF (~c − ~c∗; ~u ′) . . . , on se ra-

mène à :

∂tf(~r;~c; t) + ~c · −−→grad~rf(~r;~c; t) + div~c
(
f(~r;~c; t)~a(~r;~c; t)

)
=

∫

Ec
d~c∗

∫

4π
d~u ′ bF (~c− ~c∗; ~u ′)

(
−f(~r;~c; t) f(~r;~c∗; t) + f(~r;~c ′; t) f(~r;~c ′∗; t)

)
(1.22)

où ~c ′ et ~c ′∗ respectent les expressions (1.21). En considérant l’invariabilité de bF
selon le repère, on arrive finalement à l’équation de Boltzmann :

∂tf(~r;~c; t) + ~c · −−→grad~rf(~r;~c; t) + div~c
(
f(~r;~c; t)~a(~r;~c; t)

)
=

∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~c− ~c∗‖; ~u ′ ·

~c− ~c∗
‖~c− ~c∗‖

)
×

(
−f(~r;~c; t) f(~r;~c∗; t) + f(~r;~c ′; t) f(~r;~c ′∗; t)

)
(1.23)

On ré-exprime souvent l’équation de Boltzmann sous forme globale, en posant
l’opérateur de collision de Boltzmann CB :

∂tf(~r;~c; t) + ~c · −−→grad~rf(~r;~c; t) + div~c
(
f(~r;~c; t)~a(~r;~c; t)

)
= CB(f)(~r;~c; t) (1.24a)

avec

CB(f)(~r;~c; t) =
∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~c− ~c∗‖; ~u ′ ·

~c− ~c∗
‖~c− ~c∗‖

)
×

(
−f(~r;~c; t) f(~r;~c∗; t) + f(~r;~c ′; t) f(~r;~c ′∗; t)

)
(1.24b)
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Notion de section efficace : Usuellement, la participation à la fréquence de
collision, bF (g;u), est exprimée selon une grandeur appelée section efficace.

La section efficace différentielle de collision est définie comme :

σF (g;u) = bF (g;u)/g (1.25)

où g est la vitesse relative des particules et u le cosinus de l’angle de déviation lors
de la collision. La section efficace totale de collision est définie comme :

∀~u ∈ S (Ec;~0; 1), σT (g) =
∫

4π
d~u ′ σF (g; ~u · ~u ′) = 2π

∫ 1

−1
duσF (g;u) (1.26)

quand cette intégrale est bien définie.
Le terme de « section efficace » est justifiée par l’image suivante : en circulant

dans l’espace, chaque molécule balaie un cylindre où elle percute ses voisines.
Finalement, l’équation de Boltzmann s’écrit ordinairement, dans un gaz mono-

atomique et monomoléculaire :

∂tf(~r;~c; t) + ~c · −−→grad~rf(~r;~c; t) + div~c
(
f(~r;~c; t)~a(~r;~c; t)

)
=

∫

Ec
d~c∗

∫

4π
d~u ′ ‖~c− ~c∗‖σF

(
‖~c− ~c∗‖; ~u ′ ·

~c− ~c∗
‖~c− ~c∗‖

)
×

(
−f(~r;~c; t) f(~r;~c∗; t) + f(~r;~c ′; t) f(~r;~c ′∗; t)

)
(1.27)

où ~c ′ et ~c ′∗ suivent les expressions (1.21).
À toutes fins utiles, citons 2 modèles très classiques de section efficace :

sphères dures : Les molécules sont considérées comme des sphères parfaites,
dures, élastiques, et lisses. L’application de la mécanique de Newton et de
calculs géométriques aboutit à ce que dans ce modèle, la section efficace est
constante : σF (g;u) = σF constante.

particules de Maxwell : De façon générale, on désigne sous ce terme les
modèles où bF (g;u) ne dépend pas de la différence de vitesse g. Bien que
plus éloignés de la réalité que le modèle de sphères dures, ces modèles de
collision ont l’avantage de rendre plus simple la résolution de l’équation de
Boltzmann.

1.1.3.3 Distribution d’équilibre des molécules

••••Comme affirmé précédemment, l’équation de Boltzmann décrit une dyna-
mique irréversible. Cela se montre par un résultat appelé le théorème H, dont nous
donnons ici quelques éléments de démonstration.

Le départ est de prendre les termes de l’équation de Boltzmann, de les multiplier
par ln f(~r;~c; t), puis de les intégrer selon l’espace des vitesses. En retirant le terme
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dû aux forces à longue portée, on obtient :
∫

Ec
d~c (ln f(. . . ))× (∂tf(. . . )) +

∫

Ec
d~c (ln f(. . . ))×

(
div~r (f(. . . )~c)

)
=

∫

Ec
d~c (ln f(. . . ))× CB(f)(. . . ) (1.28)

où on a omis les dépendances de f pour alléger l’écriture.
Posons maintenant une entropie volumique s et une densité de flux d’entropie

~s :

s(~r; t) =
∫

Ec
d~c f(~r;~c; t) ln f(~r;~c; t) ~s(~r; t) =

∫

Ec
d~c f(~r;~c; t) ln f(~r;~c; t)~c

(1.29)
Après quelques traitements mathématiques, et l’utilisation de la conservation de la
quantité de particules dans l’équation de Boltzmann, on arrive depuis l’équation
(1.28) à :

∂ts(~r; t) + div~c ~s(~r; t) =
∫

Ec
d~c (ln f(~r;~c; t))× CB(f)(~r;~c; t) (1.30)

On peut montrer, en utilisant les invariants collisionnels 7 (masse, quantité de
mouvement, et énergie), que le terme de droite dans l’équation (1.30) ne peut
être que négatif ou nul. On retrouve ici un axiome de la thermodynamique : il
existe une grandeur d’état s qui ne peut varier que par échange ou par création
locale (destruction, avec les définitions données ici). L’évolution des gaz, tant que
l’équation de Boltzmann est valable, est irréversible.

Une distribution d’équilibre peut par ailleurs être dégagée depuis l’équation
(1.30).

On sait que η, ~v, et u sont des invariants collisionnels. Le gaz est donc à
l’équilibre si s est minimale compte-tenu de η, ~v, et u. Ce minimum est atteint
quand la fonction de distribution égalise la fonction de distribution d’équilibre :

feq(~r;~c; t) = η(~r; t)
(2π)3/2 cqma(~r; t)3 × exp

(
− (~c− ~v(~r; t))2

2 cqma(~r; t)2

)
(1.31a)

où

cqma(~r; t) =

√√√√2u(~r; t)
3ρ(~r; t) (1.31b)

est la vitesse quadratique moyenne d’agitation thermique sur chaque axe.
L’équilibre thermodynamique est donc atteint quand f = feq, avec η, ~v, et u

uniformes (sinon le transport des molécules interromprait immédiatement l’équi-
libre).

7. les grandeurs que les collisions ne modifient pas
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1.1.4 Équation de transfert radiatif
••••L’équation de transfert radiatif (ETR) s’obtient sous des hypothèses assez
semblables à celles qui mènent à l’équation de Boltzmann. Cela explique que l’ETR
soit une équation de Boltzmann linéaire, dans le sens expliqué dans l’introduction
de ce manuscrit. En particulier :
— Les photons n’interagissent pas entre eux, mais avec un milieu matériel. On

suppose ce dernier connu.
— Ces interactions sont ponctuelles dans l’espace et dans le temps.
— Ces interactions sont indépendantes.
— Pour un seul photon, la probabilité de collisionner dans un intervalle de

temps infinitésimal ne dépend que de la position dans l’espace des phases.
Cette hypothèse se rapproche du chaos moléculaire de la cinétique des gaz ;
une différence est que cette fois-ci le chaos est situé dans le milieu. Par
exemple, si on est dans un milieu poreux, on suppose qu’il n’est pas assez
ordonné pour favoriser certaines longueurs particulières entre collisions.

— Il n’y a que 3 types d’interactions rayonnement/matière possibles, dans un
milieu semi-transparent :
absorption : La matière récupère l’énergie transportée par un photon,

celui-ci est détruit.
émission : La matière crée un photon, évacuant de la sorte une partie de

son énergie.
diffusion : La matière fait changer à un photon sa direction de propagation.

Formellement, on peut considérer un événement de diffusion comme une
absorption suivi instantanément d’une ré-émission.

On fait quelques hypothèses simplificatrices, en plus des précédentes :
— La polarisation de la lumière est négligée.
— Le milieu est d’indice de réfraction constant.
— Les événements de diffusion sont élastiques, c’est-à-dire qu’ils ne font pas

changer la fréquence des photons.
— Le milieu est en équilibre thermodynamique local. Ceci signifie que la distribu-

tion locale des constituants de la matière dans les états qu’ils peuvent occuper
est proche d’une distribution d’équilibre imposée par la thermodynamique.
En particulier, cet équilibre est très peu perturbé par les transferts radiatifs,
si ce n’est par la puissance qu’ils transportent dans l’espace ordinaire.

Fonction de distribution d’équilibre (des photons) : on l’utilise dans l’équa-
tion de transfert radiatif. Dans un milieu fermé en équilibre thermodynamique
global 8 à la température T depuis un temps « infini », dans tout l’espace des phases

8. Ceci signifie que chaque point est en équilibre thermodynamique local, et que le système
entier est de température égale.
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la distribution des photons est à sa valeur d’équilibre feq, égale à 9 :

fν eq(T ; ν) = 2 ν2

NA c3 ×
1

exp
(
hν

kB T

)
− 1

(1.32)

où kB = 1,380 65× 10−23 J/K est la constante de Boltzmann — qu’on retrouve en
cinétique des gaz, en effet kB = R/NA.

••••Suite à toutes ces considérations, et en utilisant un raisonnement semblable
à celui permettant de dégager l’équation de Boltzmann pour les gaz dans la section
précédente, l’équation de transfert radiatif (ETR) s’écrit :

∂tfν(~r; ~u; ν; t) + c ~u · −−→grad~rfν(~r; ~u; ν; t) =
c ka(~r; ~u; ν; t)

(
fν eq

(
T (~r; t); ν

)
− fν(~r; ~u; ν; t)

)
+

∫

4π
d~u ′ c kd,F (~r; ~u|~u ′; ν; t)

(
fν(~r; ~u ′; ν; t)− fν(~r; ~u; ν; t)

)
(1.33)

où :
— ka(~r; ~u; ν; t) est le coefficient d’absorption, c’est-à-dire la probabilité pour un

photon en ~r, de direction ~u, de fréquence ν, et autour de l’instant t, d’être
absorbé en parcourant une longueur élémentaire ds de chemin,

— kd,F (~r; ~u; ν; t) est le coefficient angulaire de diffusion, c’est-à-dire la probabilité
pour un photon en ~r, de direction ~u ′, de fréquence ν, et autour de l’instant t,
d’être diffusé vers la direction ~u en parcourant une longueur élémentaire ds
de chemin,

— feq est la distribution d’équilibre précédemment introduite.

Remarque. L’identité du terme d’émission avec c ka(~r; ~u; ν; t) fν eq(T (~r; t); ν) est
une conséquence de l’équilibre thermodynamique local (ETL), associé au 2e principe
de la thermodynamique.

On ré-écrit habituellement l’ETR :

1
c
∂tfν(~r; ~u; ν; t) + ~u · −−→grad~rfν(~r; ~u; ν; t) =

ka(~r; ~u; ν; t)
(
fν eq

(
T (~r; t); ν

)
− fν(~r; ~u; ν; t)

)
+

∫

4π
d~u ′ kd,F (~r; ~u|~u ′; ν; t)

(
fν(~r; ~u ′; ν; t)− fν(~r; ~u; ν; t)

)
(1.34)

On dégage alors un terme collisionnel CT (fν) :

1
c
∂tfν(~r; ~u; ν; t) + ~u · −−→grad~rfν(~r; ~u; ν; t) = CT (fν)(~r; ~u; ν; t) (1.35a)

9. Encore une fois, si f est exprimée comme un nombre de photons et non comme une quantité
de photons (en moles), le nombre d’Avogadro disparaît de la formule qui suit.
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avec :

CT (fν)(~r; ~u; ν; t) = ka(~r; ~u; ν; t)
(
fν eq

(
T (~r; t); ν

)
− fν(~r; ~u; ν; t)

)
+

∫

4π
d~u ′ kd,F (~r; ~u|~u ′; ν; t)

(
fν(~r; ~u ′; ν; t)− fν(~r; ~u; ν; t)

)
(1.35b)

Plutôt que de parler de coefficient de diffusion angulaire, en transfert radiatif
on parle plus de coefficient de diffusion kd et de fonction de phase Φ :

kd(~r; ~u ′; ν; t) =
∫

4π
d~u kd,F (~r; ~u|~u ′; ν; t) (1.36a)

kd,F (~r; ~u|~u ′; ν; t) = kd(~r; ~u ′; ν; t)Φ(~r; ~u|~u ′; ν; t) (1.36b)

si l’intégrale définissant kd est bien définie. On définit alors aussi le coefficient
d’extinction kt = ka + kd. On note alors :

CT (fν)(~r; ~u; ν; t) = − kt(~r; ~u; ν; t)fν(~r; ~u; ν; t) + ka(~r; ~u; ν; t)fν eq
(
T (~r; t); ν

)
+

∫

4π
d~u ′ kd(~r; ~u ′; ν; t)Φ(~r; ~u|~u ′; ν; t)fν(~r; ~u ′; ν; t) (1.37)

••••Le 2e principe de la thermodynamique pose des contraintes sur la fréquence
des événements de collisions, qu’on appelle micro-réversibilité (ce n’est pas la même
micro-réversibilité qu’en cinétique des gaz). On a, à tout instant t et pour tout
(~r; ~u; ν) ∈ Ep :

kt(~r;−~u; ν; t) = kt(~r; ~u; ν; t) et kd,F (~r;−~u|−~u ′; ν; t) = kd,F (~r; ~u ′|~u; ν; t) (1.38)

Cette micro-réversibilité est une formulation équivalente de la réversibilité des
chemins optiques. Celle-ci affirme que, dans une situation stationnaire, la probabilité
d’un photon de se déplacer d’un point à un autre de l’espace des phases, est égale
à celle d’un autre photon d’effectuer le trajet inverse.

Milieu isotrope : C’est une propriété fréquente des milieux semi-transparents.
Leur influence sur la lumière ne dégage pas de direction particulière. L’équation de
transfert radiatif se simplifie alors :

1
c
∂tfν(~r; ~u; ν; t) + ~u · −−→grad~rfν(~r; ~u; ν; t) =

− kt(~r; ν; t)fν(~r; ~u; ν; t) + ka(~r; ν; t)fν eq
(
T (~r; t); ν

)
+

kd(~r; ν; t)
∫

4π
d~u ′Φ(~r; ~u · ~u ′; ν; t)fν(~r; ~u ′; ν; t) (1.39)
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1.2 Résolution des équations de Boltzmann le
long d’un chemin balistique

1.2.1 Forme intégrale de l’équation de transfert radiatif
••••Dans la section précédente 1.1.4, on donne l’équation de transfert radiatif
(ETR) sous forme différentielle, c’est-à-dire sous la forme d’une équation aux
dérivées partielles. Pour une utilisation dans certaines méthodes numériques, comme
la méthode de Monte-Carlo ou la méthode de lancer de rayons [86], il est plus
commode d’utiliser une écriture strictement équivalente, appelée forme intégrale
de l’ETR.

Cette écriture intégrale s’obtient en résolvant l’ETR sous forme différentielle,
en remontant un rayon lumineux.

••••En transfert radiatif, quand l’indice de réfraction est constant, les photons,
entre 2 collisions successives, suivent à vitesse constante des trajectoires rectilignes.

Si on note ~rb et ~ub la position et la direction en fonction du temps d’un photon
particulier, de position ~r et de direction ~u à l’instant t, alors tant qu’il n’interagit
pas avec la matière : {

∂t′ ~rb(t′) = c ~ub(t′)
∂t′ ~ub(t′) = ~0 (1.40)

La solution de ce système est immédiate :
{
~rb(t′) = ~r + c(t′ − t)~u
~ub(t′) = ~u

(1.41)

Remarque. On a passé sous silence la fréquence du photon, car dans les hypothèses
que nous avons faites celle-ci est constante.

Dérivons la fonction de distribution en suivant le photon :

1
c
∂t′fν(~rb(t′); ~ub(t′); ν; t′)

= 1
c

−−→grad1fν(~rb(t′); ~ub(t′); ν; t′) · ∂t′ ~rb(t′) +
1
c

−−→grad2fν(~rb(t′); ~ub(t′); ν; t′) · ∂t′ ~ub(t′) +
1
c
∂4 fν(~rb(t′); ~ub(t′); ν; t′)

= ~ub(t′) ·
−−→grad1fν(~rb(t′); ~ub(t′); ν; t′) +

1
c
∂4 fν(~rb(t′); ~ub(t′); ν; t′)

= CT (fν)(~rb(t′);~cb(t′); ν; t) (1.42)

La dérivée en suivant le mouvement de la fonction de distribution égalise
l’opérateur de collision. Ce résultat est connu sous le nom de théorème de Liouville.
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••••La précédente identité (1.42) possède la solution générale :

fν(~r; ~u; ν; t) =


∫ s0

0
ds exp

(
−
∫ s

0
ds′ kt

(
~r − s′~u; ~u; ν; t− s′

c

))
×

(
ka
(
~r − s~u; ~u; ν; t− s

c

)
fν eq

(
T
(
~r − s~u; t− s

c

)
; ν
)

+

∫

4π
d~u ′ kd

(
~r − s~u; ~u ′; ν; t− s

c

)
Φ
(
~r − s~u; ~u|~u ′; ν; t− s

c

)
fν
(
~r − s~u; ~u ′; ν; t− s

c

))

+

exp
(
−
∫ s0

0
ds kt

(
~r − s~u; ~u; ν; t− s

c

))
fν
(
~r − s0~u; ~u; ν; t− s0

c

)
(1.43)

où la variable muette s est une abscisse de remontée le long d’un rayon lumineux.
On pose dans cette écriture qu’elle possède un maximum s0, mais il peut ne pas
exister (on considère alors s0 = +∞). Dans la pratique, on considère généralement
que s0 = sm, l’abscisse de la plus récente intersection avec une paroi : sm = min{s ∈
R+, ~r − s~u ∈ parois}.

Une interprétation physique de l’écriture (1.43) peut être la suivante. La lumi-
nance en s = 0 est la somme des contributions de tous les points du rayon arrivant
en (~r; ~u; ν), chacune de ces contributions étant atténuée par le milieu entre son
point d’entrée et le point d’observation. Les contributions sont par hypothèse de 2
types : émission thermique et diffusion entrante. De même, l’atténuation est due à
l’absorption et la diffusion sortante.

1.2.2 Forme intégrale de l’équation de Boltzmann

La démarche de la section précédente (1.2.1) peut être appliquée sur l’équation
de Boltzmann, même si l’écriture résultante est usuellement moins utilisée que son
pendant avec l’ETR.

Si on note ~rb et ~cb la position et la vitesse en fonction du temps d’une molécule
particulière, de position ~r et de vitesse ~c à l’instant t, alors tant qu’elle ne subit
aucune collision :

{
∂t′ ~rb(t′) = ~cb(t′)
∂t′ ~cb(t′) = ~a(~rb(t′);~cb(t′); t′)

(1.44)

où ~a = ~F
m

est l’accélération subie par la molécule, dûe aux forces à longue portée.
Selon l’expression de ~a, la résolution de ce système peut être difficile.

En dérivant la fonction de distribution en suivant la molécule :
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∂t′f(~rb(t′);~cb(t′); t′)

= −−→grad1f(~rb(t′);~cb(t′); t′) · ∂t′ ~rb(t′) +
−−→grad2f(~rb(t′);~cb(t′); t′) · ∂t′ ~cb(t′) +
∂3 f(~rb(t′);~cb(t′); t′)

= ~cb(t′) ·
−−→grad1f(~rb(t′);~cb(t′); t′) +

~a(~rb(t′);~cb(t′); t′) ·
−−→grad2f(~rb(t′);~cb(t′); t′) +

∂3 f(~rb(t′);~cb(t′); t′)

= ~cb(t′) ·
−−→grad1f(~rb(t′);~cb(t′); t′) +

div2 (f × ~a)(~rb(t′);~cb(t′); t′)−(
div2 ~a(~rb(t′);~cb(t′); t′)

)
f(~rb(t′);~cb(t′); t′) +

∂3 f(~rb(t′);~cb(t′); t′)

= −
(
div2 ~a(~rb(t′);~cb(t′); t′)

)
f(~rb(t′);~cb(t′); t′) + CB(f)(~r;~c; t) (1.45)

Cette précédente expression possède la solution générale :

f(~r;~c; t) =


∫ t

t0
dt′ exp

(
−
∫ t

t′
dt′′

∫

Ec
d~c∗ bT (‖~cb(t′′)− ~c∗‖) f(~rb(t′′);~c∗; t′′)

)
×

exp
(
−
∫ t

t′
dt′′ div2 ~a(~rb(t′′);~cb(t′′); t′′)

) ∫

Ec
d~c∗

∫

4π
d~u ′ ×

bF

(
‖~cb(t′)− ~c∗‖; ~u ′ ·

~cb(t′)− ~c∗
‖~cb(t′)− ~c∗‖

)
f(~rb(t′);~c ′; t′)f(~rb(t′);~c ′∗; t′)


+

exp
(
−
∫ t

t0
dt′
∫

Ec
d~c∗ bT (‖~cb(t′)− ~c∗‖) f(~rb(t′);~c∗; t′)

)
×

exp
(
−
∫ t

t0
dt′ div2 ~a(~rb(t′);~cb(t′); t′)

)
f(~rb(t0);~cb(t0); t0) (1.46a)

où

~c ′ = ~cb(t′) + ~c∗
2 + ‖~cb(t

′)− ~c∗‖
2 ~u ′ et ~c ′∗ = ~cb(t′) + ~c∗

2 − ‖~cb(t
′)− ~c∗‖
2 ~u ′

(1.46b)

Par commodité, nous avons choisi comme variable muette un temps t′, corres-
pondant à une date d’entrée des particules dans la trajectoire balistique suivie.
Pour sa borne inférieure, on choisirait naturellement t0 = tm avec tm = max{t′ ∈
]−∞; t], ~rb(t′) ∈ parois}.
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Si le champ des forces à longue portée ne diverge pas dans l’espace des vitesses,
l’expression (1.46a) se simplifie en :

f(~r;~c; t) =


∫ t

t0
dt′ exp

(
−
∫ t

t′
dt′′

∫

Ec
d~c∗ bT (‖~cb(t′′)− ~c∗‖) f(~rb(t′′);~c∗; t′′)

)
×

∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~cb(t′)− ~c∗‖; ~u ′ ·

~cb(t′)− ~c∗
‖~cb(t′)− ~c∗‖

)
f(~rb(t′);~c ′; t′)f(~rb(t′);~c ′∗; t′)


+

exp
(
−
∫ t

t0
dt′
∫

Ec
d~c∗ bT (‖~cb(t′)− ~c∗‖) f(~rb(t′);~c∗; t′)

)
f(~rb(t0);~cb(t0); t0) (1.47)

1.2.3 Conditions aux frontières

••••Jusqu’ici dans ce chapitre, nous avons considéré la dynamique des corpuscules
(molécules ou photons) uniquement en volume, c’est-à-dire dans le volume du gaz
ou dans un milieu semi-transparent. Nous y avons donné des équations régissant
la fonction de distribution (des molécules ou des photons). Dans la plupart des
problèmes concrets, il faut aussi tenir compte de la présence de parois, et plus
généralement on doit disposer de conditions aux frontières.

Cette section détaille quelques conditions aux frontières couramment utilisées en
cinétique des gaz et en transfert radiatif. Nous n’entrons pas dans le détail de leur
justification, ou de la pertinence de leur utilisation pour tel ou tel problème physique.
Par ailleurs, quand nous donnons des conditions aux frontières applicables sur des
parois matérielles, nous considérons ces dernières systématiquement immobiles.

Du point de vue mathématique, il est intéressant de constater que ces condi-
tions aux frontières s’expriment directement sous la forme d’équations intégrales,
contrairement aux équations de Boltzmann en volume qui, pour nous, ont pris de
prime abord des expressions intégrodifférentielles.

Nous considérons à présent que le système à l’étude occupe un volume M,
délimité par une frontière ∂M. Cette frontière possède une normale en presque tous
ses points, notée ~n∂M(~r). Cette normale est choisie sortante des parois, c’est-à-dire
dirigée vers l’intérieur deM.

1.2.3.1 En transfert radiatif

••••La condition frontière la plus simple est certainement celle qui consiste à
imposer la luminance entrante. Cela s’écrit :

∀~u ∈ Eu tq ~u · ~n∂M(~r) > 0, fν(~r; ~u; ν; t) est connue (1.48)
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1.2. Forme intégrale des équations de Boltzmann

••••Sur une paroi opaque, en équilibre thermodynamique local à la température
T (~r; t), la condition frontière s’écrit en toute généralité [59] :

∀~u ∈ Eu tq ~u · ~n∂M(~r) > 0,
fν(~r; ~u; ν; t) = ε(~r; ~u; ν; t)fν eq(T (~r; t); ν) +

∫

2π+
d~u ′ (~u ′ · ~n∂M(~r))(1− ε(~r; ~u ′; ν; t))Φp(~r; ~u| − ~u ′; ν; t)fν(~r;−~u ′; ν; t) (1.49)

où :
—

∫
2π+ d~u ′ signifie qu’on intègre sur l’hémisphère des directions ~u ′ sortantes de
la paroi, c’est-à-dire telles que ~u ′ · ~n∂M(~r) > 0,

— ε est l’émissivité de la paroi,
— Φp(~r; ~u|~u ′; ν; t) est la densité de probabilité d’un photon de fréquence ν et

arrivant en ~r à l’instant t selon la direction ~u ′ d’être réfléchi dans la direction
~u, sachant qu’il est réfléchi.

Cette condition frontière est le pendant sur une surface de l’ETR dans un milieu
semi-transparent. Φp est ainsi l’équivalent surfacique de la fonction de phase de
diffusion. Par ailleurs :
— ε est à valeurs comprises entre 0 et 1.
— La micro-réversibilité s’exprime :

(~u ′ · ~n∂M(~r))(1− ε(~r; ~u ′; ν; t))Φp(~r; ~u| − ~u ′; ν; t) =
(~u · ~n∂M(~r))(1− ε(~r; ~u; ν; t))Φp(~r; ~u ′| − ~u; ν; t) (1.50)

••••La relation (1.49) admet de nombreux cas particuliers. On peut citer :
le corps noir : ε = 1, et donc :

∀~u ∈ Eu tq ~u · ~n∂M > 0, fν(~r; ~u; ν; t) = fν eq(T (~r; t); ν)

Si la paroi est froide (T (~r; t) = 0 K) :

∀~u ∈ Eu tq ~u · ~n∂M > 0, fν(~r; ~u; ν; t) = 0

les corps gris : ε et Φp ne dépendent pas de ν.
la réflexion diffuse : elle est l’équivalent surfacique de la diffusion avec fonc-

tion de phase isotrope :

∀~u ∈ Eu tq ~u · ~n∂M(~r) > 0, fν(~r; ~u; ν; t) =

ε(~r; ν; t)fν eq(T (~r; t); ν) +
∫

2π−
d~u ′ −~u

′ · ~n∂M(~r)
π

(1− ε(~r; ν; t))fν(~r; ~u ′; ν; t)
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1.2.3.2 En cinétique des gaz

••••Comme en transfert radiatif, la condition frontière la plus simple est d’im-
poser la distribution des particules entrantes.

Dans ce cas, on dit couramment que le milieu est connecté à un « réservoir »,
quand la distribution à l’entrée est une distribution d’équilibre, à densité, vitesse
moyenne et température connues.

••••Pour tenir compte d’une paroi étanche, plusieurs conditions aux limites sont
envisageables. En voici quelques unes, parmi les plus simples :
réflexion spéculaire :

∀~c ∈ Ec tq ~c · ~n∂M(~r) > 0,
f(~r;~c; t) = f(~r;~ci; t) avec ~ci = ~c− 2(~c · ~n∂M(~r))~n∂M(~r)

réflexion arrière :

∀~c ∈ Ec tq ~c · ~n∂M(~r) > 0, f(~r;~c; t) = f(~r;−~c; t)

rebond Maxwellien (avec thermalisation) : Les particules partent de la
paroi selon une distribution d’équilibre, à la vitesse moyenne et la température
de la paroi. La densité associée à cette distribution sortante est telle que le
flux total traversant la paroi soit nul :

∀~c ∈ Ec tq ~c · ~n∂M(~r) > 0, f(~r;~c; t) = jin(~r)
cqma2 ×

exp(−~c 2/ 2 cqma
2)

2πcqma2

avec jin la densité de particules arrivant sur la paroi, et cqma la vitesse
quadratique moyenne des molécules associée à la température de la paroi :

jin =
∫

Ec−
d~c ′f(~r;~c ′; t)(−~c ′ · ~n∂M(~r)) et cqma

2 = RTparoi
2Mgaz

où R est la constante des gaz parfaits, Mgaz est la masse molaire du gaz, et∫
Ec− d~c ′ signifie qu’on intègre sur le demi-espace des vitesses dirigées vers la
paroi (telles que ~c ′ · ~n∂M(~r) 6 0).

1.3 La méthode de Monte-Carlo
••••Dans les différentes disciplines physiques liées au transport linéaire, et
en particulier en transfert radiatif, la méthode de Monte-Carlo (MMC) est la
plupart du temps considérée comme une reproduction numérique du phénomène
de transport. Elle consiste alors à générer l’histoire de particules représentatives
dans le système d’étude, en leur faisant subir aléatoirement les événements qu’elles
seraient susceptibles de connaître en réalité.
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Bien sûr, on s’écarte assez vite de la stricte analogie avec le phénomène phy-
sique, dès que l’on veut rendre les calculs plus efficaces. Par exemple, on modifie
l’échantillonnage des événements possibles, en compensant par une pondération
des particules pour que les grandeurs physiques calculées restent les mêmes. Ou on
travaille sur des problèmes physiques reformulés, plus simples à simuler, mais où
les résultats sont strictement identiques. Tout ceci est cependant fait en préservant
une caractéristique essentielle de la méthode de Monte-Carlo : son côté intuitif.

••••Nous n’avons évidemment pas oublié ce caractère intuitif, ni les pratiques
existantes et répandues de la méthode de Monte-Carlo, au cours du travail de
thèse ici exposé. Néanmoins, en voulant appliquer la méthode de Monte-Carlo en
cinétique des gaz, ce qui est une première à notre connaissance, et en s’aidant pour
cela seulement de quelques astuces mathématiques (exposées au chapitres 2 et 3),
il nous sera difficile de construire rapidement un intuitif solide. À cause de ceci, ce
sera uniquement dans un formalisme rigoureux et de la théorie statistique exacte
que nous resterons en sécurité.

Afin de commencer dans une telle rigueur, la présente section repose complète-
ment les bases de la méthode de Monte-Carlo. Les connaisseurs de la méthode y
retrouveront presque exclusivement ce qu’ils savent déjà. Nous avons toutefois jugé
nécessaire d’effectuer ce passage en revue théorique, dans le but de déterminer ce
que nous pouvons utiliser sans crainte dans le monde du transport non-linéaire.

1.3.1 Les bases de la méthode
L’idée de base de la méthode de Monte-Carlo est de calculer une grandeur, définie
comme l’espérance d’une variable aléatoire elle-même issue d’un processus aléatoire,
en simulant n fois ce processus, à l’aide un générateur de nombres aléatoires.
Un ordinateur opère, numériquement, n fois le processus — les n réalisations du
processus doivent être indépendantes —, calcule à chaque fois une valeur pour
la variable aléatoire, et à la fin dégage la moyenne de toutes les valeurs qu’il a
calculé : cette moyenne est une estimation de la grandeur recherchée.

La méthode de Monte-Carlo est très appréciée en physique du transport corpus-
culaire (qui comprend la neutronique). Le transport corpusculaire est en général
lui-même vu comme la résultante observable d’un processus aléatoire s’appliquant à
de nombreuses particules (comme expliqué dans la section 1.1). Dans cette optique,
la MMC propose de réaliser in silico le processus aléatoire sur un échantillon de
particules, afin d’estimer directement les observables d’intérêts. Cette approche de
la méthode de Monte-Carlo est qualifiée d’analogue.

De façon plus générale, la MMC permet de calculer toute expression intégrale,
en fournissant une quadrature provenant d’un processus aléatoire arbitrairement
introduit. Il n’est alors plus nécessaire d’avoir un processus physique en tête pour
réfléchir, la MMC est conçue comme une pure méthode de calcul numérique. Cette
approche est qualifiée d’intégrale.
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Formellement, posons qu’on veut connaître l’espérance q d’une grandeur w( ~X)
issue d’un processus aléatoire, dont toute instance (c’est-à-dire toute réalisation) est
caractérisée par un vecteur d’état ~X. On écrit par convention « q = E(w( ~X)) » pour
signifier « q est l’espérance de w( ~X) », ce qui signifie par définition de l’espérance
que :

q =
∫

U ~X

p ~X(~x)d~xw(~x) (1.51)

où on note U ~X l’ensemble des valeurs possibles de ~X (appelé univers de ~X) et p ~X
la densité de probabilité de ~X. Pour mémoire, p ~X est définie 10 par :

∀Ω ⊂ U ~X ,Pr( ~X ∈ Ω) =
∫

Ω
p ~X(~x) d~x (1.52)

où Pr dénote la probabilité.

Remarques.
— Dans les écritures précédentes, ~X et w( ~X) sont des variables aléatoires (VA).

w est une fonction. On a implicitement posé que w( ~X) est la variable aléatoire
dont la valeur est l’image par w de la valeur de ~X. Cette convention d’écriture
tiendra pour toute variable aléatoire, et pour toute fonction à l’exception de :
E, Var, σ, Asym, Kurt, Kurtex, max, et min.

— Autant que possible, dans ce manuscrit nous essaierons de noter les variables
aléatoires en lettres capitales.

Définition 1.3.1 (Variance). Soit X une variable aléatoire à valeurs réelles. La
variance de X, notée Var(X), est définie par :

Var(X) = E
(
(X − E(X))2

)

si cette espérance est bien définie ; sinon Var(X) = +∞.

Théorème 1.3.2 (Formule de König-Huygens). Soit X une variable aléatoire à
valeurs réelles, de variance finie. Alors les espérances de X et de X2 sont bien
définies, et Var(X) = E(X2)− E(X)2.

Théorème 1.3.3 (Loi faible des grands nombres). Soit (Xn)n∈N∗ une suite de
variables aléatoires indépendantes de même univers inclus dans R, ayant la même
espérance E(X) et la même variance finies. On définit, pour tout n ∈ N∗, Xn =
1
n

∑n
i=1Xi. Alors :

∀ε > 0, lim
n→+∞

Pr
(∣∣∣Xn − E(X)

∣∣∣> ε
)

= 0

10. p ~X n’est pas, de façon générale, une fonction mais une distribution. Un exemple de distri-
bution qui ne s’identifie pas à une fonction est la distribution de Dirac. Les distributions sont
décrites dans une axiomatique appelée théorie des distributions.
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Théorème 1.3.4 (Loi forte des grands nombres). Soit (Xn)n∈N∗ une suite de
variables aléatoires indépendantes, à valeurs réelles, identiquement distribuées à X
(c’est-à-dire de même univers et de même densité de probabilité), et intégrables (ce
qui signifie E(|X|) < +∞). On définit, pour tout n ∈ N∗, Xn = 1

n

∑n
i=1Xi. Alors :

Pr
(

lim
n→+∞

Xn = E(X)
)

= 1

Les lois des grands nombres légitimisent la méthode de Monte-Carlo. En
échantillonnant de manière répétitive et indépendante une variable aléatoire, on
peut estimer son espérance par la moyenne arithmétique. Un deuxième résultat
mathématique fondamental envers la MMC est le théorème central limite.

Théorème 1.3.5 (Théorème central limite). Soit (Xn)n∈N∗ une suite de variables
aléatoires indépendantes, à valeurs réelles, identiquement distribuées à X, avec X
d’espérance et de variance finie. On définit, pour tout n ∈ N∗, Xn = 1

n

∑n
i=1Xi

puis Zn =
√
n/Var(X)×

(
Xn − E(X)

)
.

Alors la suite des variables aléatoires (Zn)n∈N∗ converge en loi vers la loi normale
centrée réduite.

Remarque. Un résultat intermédiaire du théorème central limite est que, avec les
mêmes notations : Var(Xn) = 1

n
Var(X). Ceci est en fait une conséquence presque

immédiate des propriétés de la variance.

Théorème-Définition 1.3.6 (Variance empirique échantillon). Soit (xi)i∈[[1;n]],
où n ∈ N, une famille de réalisations indépendantes de la variable aléatoire X à
valeurs réelles. On définit la variance empirique s2 de l’échantillon (xi)i∈[[1;n]] par :

s2
(
(xi)i∈[[1;n]]

)
= 1
n− 1

n∑

i=1

(
xi −

1
n

n∑

i=1
xi

)2

= 1
n− 1



(

n∑

i=1
xi

2
)
− 1
n

(
n∑

i=1
xi

)2



s2
(
(xi)i∈[[1;n]]

)
est une estimation non-biaisée, et convergente quand n→ +∞,

de Var(X).

Le théorème central limite et la formule de la variance empirique donnent à la
MMC une de ses propriétés essentielles : elle permet d’estimer l’erreur de calcul
qu’elle commet, et de donner son résultat sous forme d’intervalles de confiance,
en même temps qu’elle effectue le calcul. De plus, les données à retenir entre les
réalisations sont minimes : il faut juste mettre à jour une somme des réalisations,
et une somme des carrés des réalisations.

••••Cet aspect pratique serait néanmoins de peu d’intérêt, si on ne savait
pas échantillonner des variables aléatoires quelconques. Pour ce faire, on s’aide
notamment de :
— la propriété suivante 1.3.7,
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— la méthode de rejet.
Théorème-Définition 1.3.7 (Fonction de répartition). Soit X une variable aléa-
toire à valeurs réelles. On définit la fonction de répartition FX de X par :

FX(x) :
R 7→ [0; 1]
x → Pr(X 6 x) =

∫

]−∞;x]
pX(x′)dx′ (1.53)

On définit la pseudo-inverse FX−1 de FX par :

FX
−1(r) : [0; 1] 7→ R

r → inf{x ∈ R tq FX(x) > r} (1.54)

Alors si R est de loi uniforme standard (c’est-à-dire de loi uniforme sur ]0; 1[),
FX
−1(R) est distribuée identiquement à X.
Les générateurs aléatoires disponibles sur ordinateur (en fait, ce sont presque

toujours des générateurs pseudo-aléatoires, délivrant en une boucle très longue une
séquence de nombres aux propriétés statistiques satisfaisantes) délivrent tous des
valeurs entre 0 et 1. En appliquant à de telles valeurs la réciproque de la primitive
de pX centrée en −∞, on échantillonne la variable aléatoire X.

Pour échantillonner une variable aléatoire ~X à valeurs vectorielles, on tire ses
coordonnées les unes après les autres.

•••Si le théorème 1.3.7 ne donne pas immédiatement satisfaction pour échan-
tillonner une variable aléatoire ~X, une astuce disponible est la méthode de rejet.

L’idée est d’utiliser une variable aléatoire ~Y dont l’univers U~Y inclut celui de
~X, et dont la densité de probabilité p~Y est proportionnelle à p ~X sur U ~X . Alors pour
échantillonner ~X, on échantillonne ~Y — nous supposons qu’on sait le faire — jusqu’à
trouver une valeur dans U ~X . Pour que cela fonctionne, il faut que Pr(~Y ∈ U ~X) > 0.

Cette technique prend toute sa puissance en ajoutant une dimension à l’univers
de ~X.
Théorème 1.3.8 (Méthode de rejet). Considérons une variable aléatoire ~Y recou-
vrant ~X, ce qui signifie que :

∀Ω ⊂ U ~X , Pr( ~X ∈ Ω) > 0 =⇒ Pr(~Y ∈ Ω) > 0

On suppose qu’on sait échantillonner ~Y , et aussi que le rapport p ~X/p~Y est majoré
par α ∈ R+∗ connu :

∀Ω ⊂ U ~X ,Pr( ~X ∈ Ω) 6 α× Pr(~Y ∈ Ω)
Posons les variables aléatoires :
— ~X ′ = ( ~X;R ~X), où R ~X est indépendante de ~X et de loi uniforme standard,

— ~Y ′ = (~Y ;R~Y ), où R~Y est de loi uniforme sur
]
0; αp~Y (~Y )

p ~X(~Y )

[
.

Alors α > 1, U ~X′ ⊂ U~Y ′ , et p ~X′ est proportionnelle à p~Y ′ . On peut donc échan-
tillonner ~X ′, et donc ~X, par une méthode de rejet, détaillée en algorithme 1.1.
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Sorties : Un échantillon ponctuel ~x de ~X

1 répéter
2 échantillonner ~Y : on obtient ~y;
3 échantillonner R de loi uniforme standard : on obtient r;
4 jusqu’à r α p~Y (~y) < p ~X(~y);
5 retourner ~y; // ~y remplace ~x

Algorithme 1.1 : Algorithme servant à échantillonner ~X, par
méthode de rejet, dans les hypothèses de la proposition 1.3.8.

••••Malgré ce qui est précédemment expliqué sur :

— la convergence de la moyenne arithmétique d’un échantillon de réalisations
indépendantes,

— les moyens d’effectuer de telles réalisations, des points de vue mathématique
et informatique,

on peut se demander quel est l’intérêt d’utiliser une « quadrature aléatoire » pour
estimer q =

∫
U ~X

d~x p ~X(~x)w(~x), plutôt qu’une quadrature régulière (comme dans la
méthode des rectangles centrés, par exemple).

Cet intérêt apparaît quand U ~X est de dimension élevée. Une quadrature discrète
doit comporter un nombre certain de coordonnées d’échantillonnage dans chaque
dimension, sinon elle peut générer des erreurs systématiques par repli de spectre (ce
phénomène s’appelle moiré en synthèse d’image). Si l’espace échantillonné contient
beaucoup de dimensions, les points de quadrature peuvent devenir extrêmement
nombreux, ce qui amène à un temps de calcul prohibitif.

Par ailleurs, les exigences sur une quadrature statistique de type Monte-Carlo
et sur une quadrature régulière ne sont pas les mêmes quand des fortes difficultés
de convergence sont attendues dans plusieurs dimensions d’intégration. Supposons
que l’on n’ait que 2 dimensions d’intégration, devant être échantillonnées chacune
en N1 et N2 points. Une quadrature régulière devra comporter N1 × N2 points ;
à moins que l’on sache comment en enlever une partie, ce qui est un exercice
mathématique laborieux. Une quadrature Monte-Carlo comportera max{N1;N2}
points ; car quand on ajoute une dimension, la coordonnée ajoutée à chacun
des points possède une unique valeur aléatoire par point, et non pas une liste
de valeurs (fixes). On dit qu’en MMC, les difficultés de convergence propres à
chaque dimension d’intégration ne se multiplient pas. En contrepartie, N1 et N2
doivent de base être grands avec une quadrature Monte-Carlo, car sinon elle risque
d’échantillonner insuffisamment certaines régions du domaine d’intégration, à cause
de son irrégularité.

Tout cela fait que la MMC et sa quadrature deviennent performantes, comparées
aux quadratures régulières, quand le domaine d’intégration est de dimension élevée
(plus de 5 dimensions est la valeur habituellement retenue).
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Un dernier avantage des quadratures statistiques est qu’elles sont sans biais.
C’est-à-dire que si on recommence le même calcul avec des tirages aléatoires
différents, les points de quadratures sont entièrement renouvelés, et l’erreur produite
est différente. Les quadratures régulières ont généralement une technique fixe de
positionnement associée : à moins de raffiner franchement la quadrature, l’erreur
générée est donc systématique.

1.3.2 Approche analogue et approche intégrale, et
concept de variance nulle

En physique du transport corpusculaire, il existe 2 façons complémentaires de
concevoir la méthode de Monte-Carlo : l’approche analogue et l’approche intégrale,
évoquées dans la section précédente 1.3.1.

••••La base d’une approche analogue de la MMC est le constat que la description
physique du transport corpusculaire est une description statistique.

En transfert radiatif par exemple, un photon dans un milieu semi-transparent
a une probabilité donnée d’être absorbé ou diffusé à chaque élément de longueur
qu’il parcourt. S’il est diffusé ou s’il rencontre une paroi, sa probabilité d’acquérir
telle ou telle direction décrit la façon dont le flux lumineux est redistribué dans
l’espace des directions.

L’approche analogue propose de mimer le phénomène physique, à l’aide d’un
ordinateur et de son générateur aléatoire. On suit des particules fictives de lumière,
indépendantes, dans le système physique, en générant leur parcours en tenant
compte des probabilités d’occurrence des événements possibles (absorption, diffu-
sion, réflexion,. . .). Les grandeurs recherchées sont calculées comme des sommes de
contributions des différents photons suivis 11.

En approche intégrale, on suppose que la grandeur d’intérêt q a été mise sous
forme intégrale, lors d’une phase de physique et de mathématiques préalable au
travail numérique. On a alors : q =

∫
D d~x h(~x). On introduit ensuite, arbitrairement,

une variable aléatoire ~X à valeurs dans D. La densité de probabilité de ~X doit
recouvrir h sur D au sens des distributions :

∀Ω ⊂ D,
∫

Ω
|h(~x)|d~x > 0 =⇒

∫

Ω
p ~X(~x)d~x > 0 (1.55)

11. Certains auteurs font remarquer le barbarisme qu’est l’appellation de « photon » pour ces
particules que l’on simule (par exemple [96]). Les photons sont un concept de physique quantique,
descriptibles à l’aide de fonctions d’onde à laquelle est liée une probabilité de présence ; or nous
les envisageons sous un jour purement corpusculaire. Pire encore, ce qu’ils transportent n’est
pas l’énergie hν, et n’est bien souvent même pas une énergie. . . Toutefois, par commodité et par
habitude, nous emploierons le terme de « photon » pour cet usage.
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Dès lors :

q =
∫

D
d~x h(~x) (1.56)

=
∫

D
p ~X(~x)d~x h(~x)

p ~X(~x)

=
∫

D
p ~X(~x)d~xw(~x) avec w(~x) = h(~x)

p ~X(~x)

= E(w( ~X)) (1.57)

La même démarche est applicable à une somme dénombrable. Soit q = ∑+∞
n=0 hn

la grandeur que l’on veut calculer. On pose N une variable aléatoire à valeurs dans
N, telle que ∀n ∈ N, hn 6= 0 =⇒ Pr(N = n) > 0. Alors :

q =
+∞∑

n=0
hn (1.58)

=
+∞∑

n=0
Pr(N = n) hn

Pr(N = n)

=
+∞∑

n=0
Pr(N = n)wn avec wn = hn

Pr(N = n)

= E(wN) (1.59)

••••Nous allons maintenant présenter sur 2 exemples la mise en œuvre de
la méthode de Monte-Carlo. Ces exemples — certes extrêmement simplifiés, et
présents dans la plupart des manuels consacrés à la MMC — seront l’occasion
d’illustrer les approches analogues et intégrales expliquées au-dessus, ainsi que leur
complémentarité.

Le premier exemple est celui du calcul de l’aire d’un étang. L’approche sera
très mathématique ; nous utiliserons peu d’intuitif, ou bien nous en créerons un de
manière clairement artificielle.

Le deuxième exemple est celui du calcul de la transmittivité au travers d’une
colonne de gaz uniforme. Nous l’attaquerons par une approche purement analogue :
la MMC se réduira alors dans un premier temps à construire des trajectoire de
photons, en simulant leur comportement statistique. Nous prendrons ensuite le
temps de donner une formulation intégrale correspondant à l’algorithme monté. Ceci
nous permettra d’introduire le concept de variance nulle, que nous ré-utiliserons
aux chapitres 5 et 6 dans nos exemples de cinétique des gaz, en le combinant
avec la distribution d’équilibre des molécules. Enfin, nous montrerons comment
l’utilisation directe de la formulation intégrale de l’ETR aboutit à des algorithmes
en apparence éloignés de toute analogie avec le phénomène physique de transfert
radiatif.
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1.3.2.1 Calcul de l’aire d’un étang

On a un étang à l’anglaise G, dans lequel est installée une fontaine F . On veut
calculer la surface de l’étang SG, ainsi que la portion FF de la surface de l’étang
couverte par la fontaine. Les géométries de l’étang et de la fontaine sont connues,
mais leur complexité rend le calcul de SG et de FF malaisé.

••••On pose alors un rectangle R englobant l’étang. Grâce à l’énoncé 1.3.7,
échantillonner uniformément un point dans R est facile. Dès lors, on peut exhiber
une expression de la surface SG comme une intégrale sur R :

SG =
∫

G
d~r (1.60a)

=
∫

R
d~r H(~r ∈ G) (1.60b)

En utilisant une VA ~RR de loi uniforme sur R, on arrive à une expression
statistique de SG utilisable immédiatement dans un calcul par méthode de Monte-
Carlo :

SG =
∫

R
p~RR(~r)d~r H(~r ∈ G)

p~R(~r) (1.60c)

=
∫

R
p~RR(~r)d~r H(~r ∈ G)SR (1.60d)

= E
(
H(~RR ∈ G)SR

)
(1.60e)

où SR est la surface du rectangle englobant, facilement calculable.
Penchons-nous maintenant sur la fraction FF . La même démarche mathématique

que pour SG peut lui être appliquée, ce qui mène à :

FF =
∫

F
d~r/SG (1.61a)

= E
(
H(~RG ∈ F)

)
(1.61b)

où ~RG est une variable aléatoire de loi uniforme sur l’étang G. À cause de la
géométrie de l’étang, ce tirage est difficile à réaliser directement ; mais en se basant
sur un tirage uniforme sur R, on peut utiliser une méthode de rejet.

Les précédentes techniques d’estimation sont synthétisées dans les algorithmes
1.2, 1.3, et 1.4.

••••Nous avons mis en place des algorithmes de Monte-Carlo, pour estimer SG
et FF , selon une approche purement intégrale. Néanmoins, une image physique
analogue peut être rajoutée à peu de frais sur les algorithmes obtenus.

Supposons qu’il pleuve sur l’étang et ses alentours une hauteur d’eau uniforme.
La probabilité, pour une goutte d’eau tombée sur le rectangle englobant R, de
tomber dans l’étang G est égale à SG/SR. On sait simuler le choix aléatoire d’une
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Sorties : Un tirage aléatoire ~rR uniforme sur R
1 échantillonner R de loi uniforme standard, 2 fois indépendamment : on
obtient r1 et r2;

2 retourner A+ r1
−→
AB + r2

−−→
AD;

Algorithme 1.2 : Algorithme servant à échantillon-
ner un point uniformément sur un rectangle ABCD.

Sorties : Une estimation ponctuelle de SG
1 échantillonner ~RR de loi uniforme sur R, grâce à l’algorithme 1.2 : on obtient
~rR;

2 retourner H(~rR ∈ G)× SR;
Algorithme 1.3 : Algorithme estimant ponctuel-
lement la surface SG, décrite dans la section 1.3.2.

Sorties : Une estimation ponctuelle de FF
1 répéter
2 échantillonner ~R de loi uniforme sur R, grâce à l’algorithme 1.2 : on

obtient ~r;
3 jusqu’à ~r ∈ G;
4 retourner H(~r ∈ F);

Algorithme 1.4 : Algorithme estimant ponctuel-
lement la fraction FF , décrite dans la section 1.3.2.

position de chute sur R, grâce à l’algorithme 1.2 issu du théorème 1.3.7. En opérant
une telle simulation, on peut estimer SG/SR ; comme SR est aisément calculable,
cela revient à estimer SG.

La même image tient pour calculer FF = SF/SG. Il faut cependant rajouter
que l’on est capable d’échantillonner uniformément sur G grâce à une méthode de
rejet.

1.3.2.2 Calcul d’une transmittivité dans une colonne de gaz uniforme

On a un rayon allant de ~rd à ~rf , séparés par une longueur ` : ~rf = ~rd + `~u. Le
système est en régime permanent, le milieu traversé est uniforme, et seulement
absorbant (pas d’émission, pas de diffusion). On veut connaître la transmittivité
τ de ~rd à ~rf , c’est-à-dire la portion de l’énergie lumineuse arrivant à atteindre ~rf
depuis ~rd. En ~rd, la luminance dans la direction ~u est connue : elle dépend de la
fréquence ν.
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Posons à présent :

L(~r; ~u) =
∫

Eν
dν Lν(~r; ~u; ν) (1.62a)

L′ν(~r; ν; ν) = Lν(~r; ~u; ν)
/
L(~r; ~u) (1.62b)

L′ν caractérise la répartition spectrale de la puissance lumineuse en (~r; ~u).

••••On peut proposer une expression statistique de la transmittivité par analogie
avec le transport des photons le long du rayon. En l’occurrence :

τ = E
(
H
(
EO/ka(N) > `

))
(1.63)

où :
— la variable aléatoire N est une fréquence, de densité de probabilité : pN : ν 7→

L′ν(~rd; ~u; ν).
— la variable aléatoire EO correspond à une épaisseur optique traversée.

L’épaisseur optique eo le long d’un segment de rayon lumineux {~r0 + s~u, s ∈
[sa; sb]} s’exprime de façon générale comme :

eo =
∫ sb

sa
ds kt(~r0 + s~u; ~u; ν) (1.64)

Elle est l’intégrale de l’atténuation le long d’un chemin optique. Dans le cas
à l’étude ici, eo = ka(sb − sa).
Comme la mémoire des photons se limite à :
— le fait qu’ils existent encore,
— leur fréquence, qui reste constante,

pour un photon quelconque, l’épaisseur optique restante à traverser avant
la prochaine collision suit toujours une loi exponentielle d’espérance unité.
Donc EO suit une loi exponentielle d’espérance unité, c’est-à-dire que pEO :
eo 7→ H(eo > 0)× exp(−eo).

Le déroulement d’une estimation ponctuelle de τ basée sur l’expression (1.63)
est le suivant. On suit un photon depuis l’entrée dans le rayon. D’abord on lui
choisit une fréquence, selon la distribution de l’énergie selon la fréquence à l’entrée
du rayon. Puis on tire une longueur avant absorption de ce photon, sachant que
l’épaisseur optique qu’il traverse suit une loi exponentielle unité. Si cette longueur
l’amène après ~rf on compte 1 pour la transmittivité, sinon on compte 0.

••••La formulation statistique (1.63) de la transmittivité peut être convertie en
une formulation intégrale, en utilisant la définition de l’espérance :

τ =
∫

Ec
L′ν(~rd; ~u; ν)dν

∫

R+
exp(−eo)deo H

(
eo/ka(ν) > `

)
(1.65)
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Cette conversion est bien sûr réalisable à partir de toute formulation statistique.
Donc même si on a monté un algorithme de Monte-Carlo en suivant une analogie
avec la physique, une traduction intégrale de l’algorithme est toujours possible.

Par ailleurs, comme a priori on ne précise pas dans la formulation intégrale
quelles sont les variables aléatoires servant à l’échantillonnage 12, à une seule
formulation intégrale correspondent une multitude de traductions statistiques.
Quand on vient de monter un algorithme de Monte-Carlo en suivant une approche
analogue, exhiber sa formulation intégrale donne ainsi un accès direct à l’arsenal
habituel des techniques d’optimisation disponible en MMC [38,54] :
variables de contrôle : on ajoute dans l’expression intégrale une fonction

arbitraire à l’intégrande. Cette fonction doit être d’intégrale connue, et
choisie de sorte que la variance du nouveau poids échantillonné soit diminuée.

variables antithétiques : à chaque échantillonnage, on calcule non pas un
poids mais une moyenne de plusieurs poids de Monte-Carlo, variant en sens
opposés.

tirage stratifié : on divise le domaine d’intégration en strates où l’intégrande
est de valeur peu variante. Le but est de faire diminuer la variance totale d’un
facteur supérieur au nombre de strates choisies, pour gagner en efficacité.

suites à discrépance faible (non aléatoires) : elles peuvent être considé-
rées comme un cas extrême de tirage stratifié.

échantillonnage préférentiel : on remplace les variables aléatoires de tirage.
reformulation intégrale complète.
Par exemple, notre expression intégrale précédente de la transmittivité τ peut

être simplifiée en :

τ =
∫

Ec
L′ν(~rd; ~u; ν)dν exp

(
−ka(ν)`

)
(1.66)

ce qui est l’occasion de présenter une expression statistique de τ où le tirage de
l’épaisseur optique a disparu :

τ = E
(
exp

(
− ka(N)`

))
(1.67)

Si l’échantillonnage de N selon ν 7→ L′ν(~rd; ~u; ν) est trop compliqué, et qu’on ne veut
pas utiliser une méthode de rejet, on peut remplacer N par une nouvelle variable
aléatoire arbitraire N ′. Alors l’expression intégrale (1.66) admet la traduction
statistique :

τ = E
(
L′ν(~rd; ~u;N ′)
pN ′(N ′)

exp
(
− ka(N ′)`

))
(1.68)

12. Dans de nombreux écrits faisant part d’une utilisation de la MMC, et en particulier dans
les thèses encadrées dans l’équipe où la présente l’a été, on se sert tout de même de la formulation
intégrale pour détailler les algorithmes de Monte-Carlo. Simplement, les variables aléatoires
échantillonnées sont précisées en clair dans les formulations intégrales via leurs densités de
probabilité.
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••••Quand on introduit dans une expression intégrale de nouvelles lois de tirage,
comme c’est fait en passant de l’expression (1.66) à la (1.68), quelque chose qui
est utile à garder en tête est l’approche à variance nulle. Celle-ci ne constitue pas
à proprement parler une technique d’optimisation des algorithmes de Monte-Carlo,
mais un guide à suivre quand on met en place une reformulation intégrale ou un
échantillonnage préférentiel.

Supposons que l’on connaisse la valeur exacte de τ , et que dans l’expression
statistique (1.68) N ′ ait la densité de probabilité :

pN ′ : ν 7→ L′ν(~rd; ~u; ν) exp(− ka(N ′)`)
τ

(1.69)

alors effectuant un seul tirage de N ′, l’estimateur de τ décrit en (1.68) vaut
exactement τ . Sa variance est nulle.

Bien sûr, un tel estimateur n’est pas utilisable en pratique, car pour le construire
il faut déjà disposer du résultat. Il n’y a alors plus aucun intérêt à mettre en place
un calcul par MMC. Cependant, si on dispose d’une approximation relativement
bonne h≈(~x) de h(~x) dans q =

∫
D d~x h(~x), alors il est utile de s’en servir pour

choisir la densité de probabilité de la VA ~X qu’on introduira pour mettre en place
un calcul par MMC de q. De manière générale, plus le modèle de h≈(~x) dont on
dispose est bon, plus l’estimateur qu’on construira avec son aide aura une variance
faible.

Une condition de validité importante de l’approche à variance nulle décrite ci-
dessus, est que l’intégrande approximée h≈(~x) doit être de signe constant ; sinon on
ne peut pas poser une densité de probabilité qui lui soit proportionnelle. Toutefois,
on peut en général contourner cette limitation grâce à une variable de contrôle.

••••Plutôt que de suivre une analogie du phénomène physique pour estimer la
transmittivité, on pourrait se baser sur la forme intégrale de l’ETR (1.43). La
transmittivité s’exprime comme :

τ = L(~rf ; ~u)
L(~rd; ~u) (1.70)

à supposer qu’il n’y a pas d’apport de lumière sur la portion [~rd;~rf ] du rayon suivi,
par émission ou par diffusion entrante. À supposer par ailleurs que la luminance
présente en ~rd soit émise thermiquement, le long d’une portion [~r0;~rd] du rayon
suivi, on peut utiliser la formulation intégrale (1.43) de l’ETR :

τ = 1
L(~rd; ~u)

∫

Eν
dν
∫ ~rf−s~u=~r0

0
ds ka(ν) exp

(
− ka(ν)s

)
Lν eq

(
T (~rd − s~u); ν

)
(1.71)

En introduisant les variables aléatoires S et N , avec N à valeurs dans Eν et S à
valeurs dans R+ de fonction de répartition FS : s 7→ H(s > 0)× (1− exp(−ka(ν)s)),
on obtient :

τ = E
(

1
L(~rd; ~u) pN(N) H

(
S < ‖~r0 − ~rf‖

)
Lν eq

(
T (~rf − s~u); ν

))
(1.72)
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Contrairement à l’approche analogue, l’approche intégrale ne fournit pas les
variables aléatoires paramétrant l’intégrande ; elles doivent être fournies dans un
second temps.

Par ailleurs, en utilisant directement les formes intégrales des équations de
transport dans une approche intégrale, on aboutit à un algorithme donnant l’im-
pression de suivre des photons en sens inverse de leur parcours. Cela ne se voit
pas forcément très bien dans cet exemple, mais se voit mieux quand il y a des
diffusions ou réflexions multiples. Il y a là une différence forte avec des algorithmes
analogues mimant le phénomène physique, et suivant les photons depuis leur émis-
sion jusqu’à leur absorption. Un lien entre les algorithmes analogues suivant les
photons directement et les formulations intégrales des équations de transport est
proposé en section 1.4.

1.3.3 Événements rares, et indicateurs statistiques
avancés

••••Précédemment, nous expliquons grâce au théorème central limite 1.3.5 que la
méthode de Monte-Carlo donne, en même temps qu’une estimation d’une grandeur
q, une estimation de l’erreur de calcul commise dans cette estimation de q. Plus
exactement, il s’agit d’une estimation de l’écart-type de l’estimation de q : on prend
comme estimation de cet écart-type s((q̃i)[[1;n]])/

√
n, si on a tiré un échantillon

(q̃i)[[1;n]] de n réalisations indépendantes de l’estimateur Q̃ de q (à valeurs réelles
ici).

Au total, le résultat de la MMC se présente systématiquement sous la forme
d’un couple « (estimation de la grandeur ; variance estimée de cette précédente
estimation) ». Ceci nous permet de fournir des intervalles de confiance pour q, en
supposant que l’on a effectué assez de tirages pour que notre estimation finale de q
(la moyenne arithmétique q̃n de n réalisations indépendantes de Q̃) suive une loi
normale. Ces intervalles de confiance ne seront toutefois valables que si :
— on estime correctement Var(Q̃),
— la loi de q̃n est effectivement proche d’une loi normale.

En pratique, on connaît souvent une contrainte sur l’estimateur Q̃ que l’on va
moyenner qui nous permet de savoir que ces conditions seront remplies. Cette
contrainte peut par exemple être que Q̃ a ses valeurs dans un intervalle restreint
(assez pour que l’utilisateur puisse en tirer des conclusions).

Malheureusement, nous sommes confrontés, à partir du chapitre 4 à des estima-
teurs de variance infinie, sans savoir exactement quand ils ont cette caractéristique.
On aimerait donc disposer d’un indicateur permettant de détecter, avec une
confiance appréciable, cette situation.

Cet indicateur devrait, de façon générale, détecter toute sorte de situations où
l’on sait que notre calcul de Monte-Carlo donne des résultats insatisfaisants. Ces
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situations font intervenir, systématiquement, ce qu’on appelle des « événements
rares ».

Un cas caricatural est certainement celui d’un estimateur dont la valeur est
a sauf une fois sur (par exemple) 106 où il vaut b. Selon le nombre k de tirages
valant b, le résultat d’une MMC tirant cet estimateur 106 fois serait :

(
a+ 10−6k(b− a); 1− 10−6k

1− 10−6 × 10−12k(b− a)2
)

Sur la moyenne des valeurs possibles pour k, la MMC donne une estimation
non-biaisée de l’espérance a+ 10−6(b− a) de l’estimateur. Néanmoins chacun des
résultats ci-dessus, pour une valeur particulière de k, est clairement inadéquat pour
une utilisation dans des intervalles de confiance basés sur la loi normale.

Comme indicateurs permettant de repérer ces événement rares, nous proposons
les paramètres de forme, dont en particulier le kurtosis.

Le kurtosis est avec le paramètre d’asymétrie l’un des 2 paramètres de forme
d’une distribution de probabilité sur R. Ces 2 paramètres sont définis comme :

Asym(X) =
((

X − E(X)
σ(X)

)3 )
et Kurt(X) =

((
X − E(X)
σ(X)

)4 )
(1.73a)

où σ(X) =
√

Var(X) est l’écart-type de la distribution de X. On dit ainsi que le
paramètre d’asymétrie et le kurtosis sont les moments centrés réduits d’ordre 3 et
4 de la distribution de X.

Une ré-écriture couramment employée est le kurtosis d’excès :

Kurtex(X) = Kurt(X)− 3 (1.73b)

Les paramètres de forme décrivent l’aspect d’une distribution de probabilité sur
R, sans tenir compte de son centrage ou de sa largeur — décrits par l’espérance
et l’écart-type. Les valeurs de ces paramètres changent en fonction de ce qu’on
appelle couramment le type de la distribution : loi de Bernoulli, loi de Poisson, loi
exponentielle, loi normale, loi uniforme, et bien d’autres encore. Une asymétrie
positive signifie que, par rapport à la loi normale, la distribution considérée à un
flanc gauche lourd et une longue queue à droite ; et vice-versa avec une asymétrie
négative. Un kurtosis d’excès positif signifie que, par rapport à la loi normale,
la distribution considérée à des queues lourdes, un centre pointu et des flancs
appauvris ; et vice-versa avec un kurtosis d’excès négatif.

Proposition 1.3.9. Soit X une VA à valeurs réelles, et (Xi)i∈[[1;n]] une famille de
VA indépendantes et distribuées identiquement à X. On note X = 1

n

∑n
i=1Xi. Les

paramètres de forme respectent les assertions suivantes :
1. Kurt(X) > Asym(X)2 + 1,
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2. le minimum Kurt(X) = 1 est atteint par une seule loi : le pile ou face
(Bernoulli équilibré),

3. si X est de loi normale, Kurtex(X) = Asym(X) = 0,
4. Asym(X) = 1√

n
Asym(X),

5. Kurtex(X) = 1
n

Kurtex(X),

6. Var
(
s2
(
(Xi)i∈[[1;n]]

))
= Var(X)2

n

(
Kurt(X)− n− 3

n− 1

)

Les points 3 et 5 de la proposition 1.3.9 montrent l’utilité du kurtosis d’excès :
ses propriétés étendent le théorème central limite 1.3.5. En quelque sorte, le kurtosis
d’excès quantifie la façon dont une moyenne d’échantillon tend vers la loi normale,
quand la taille de l’échantillon augmente.

Pour estimer les paramètres de forme d’une distribution quelconque, on peut
utiliser la méthodologie présentée dans ce manuscrit au chapitre 3.2.1 et en annexe
C.2, et l’appliquer aux moments centrés d’ordre 3 et 4.

À partir d’un échantillon (xi)i∈[[1;n]] de n > 4 réalisations indépendantes d’une
VA X, on peut calculer des estimations sans biais m′3 emp((xi)i∈[[1;n]]) et m′4 emp(
(xi)i∈[[1;n]]) des moments centrés d’ordre 3 et 4 respectivement :

m′3 emp
(
(xi)i∈[[1;n]]

)
= 1
A3
n

(
n2 Σ3 − 3nΣ2Σ1 + 2 Σ1

3
)

(1.74)

m′4 emp
(
(xi)i∈[[1;n]]

)
= 1
A4
n

×
(

(n2 − 2n+ 3)(nΣ4 − 4 Σ3Σ1) + (− 6n+ 9) Σ2
2 + 6nΣ2Σ1

2 − 3 Σ1
4
)

(1.75)

où Akn = n!/(n − k)! est le nombre d’arrangements de k éléments parmi n, et
Σj = ∑n

i=1Xi
j.

Cela nous amène à utiliser les expressions suivantes, pour calculer les pa-
ramètres de forme empiriques d’un échantillon (xi)i∈[[1;n]] de n > 4 réalisations
indépendantes 13 :

Asymemp

(
(xi)i∈[[1;n]]

)
=

√
n(n− 1)
n− 2 × n2 Σ3 − 3nΣ2Σ1 + 2 Σ1

3

(nΣ2 − Σ12)3/2 (1.76)

Kurtexemp
(
(xi)i∈[[1;n]]

)
=
(

n(n− 1)
(n− 2)(n− 3) ×

(n2 − 2n+ 3)(nΣ4 − 4 Σ3Σ1) + (− 6n+ 9) Σ2
2 + 6nΣ2Σ1

2 − 3 Σ1
4

(nΣ2 − Σ12)2

)
− 3 (1.77)

13. D’autres expressions des paramètres de forme, à calculer à partir d’un échantillon, existent,
parfois appelées statistiques de Fisher [35].
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Ces expressions sont obtenues par division des estimateurs non-biaisés des moments
centrés d’ordre 3 et 4 par l’estimateur non-biaisé de la variance. Ce sont néanmoins
des estimations biaisées du paramètre d’asymétrie et du kurtosis.

En particulier, quels que soient l’échantillon calculé (xi)i∈[[1;n]] et la loi de
probabilité dont il est issu, |Asymemp((xi)i∈[[1;n]])| 6

√
n et Kurtexemp((xi)i∈[[1;n]]) +

3 6 n (voir [61]). Il y a égalité dans le cas où toutes les valeurs de l’échantillon
sont égales sauf une.

Au final, on obtient une estimation (Kurtexemp((xi)i∈[[1;n]])/n) du kurtosis d’ex-
cès de la distribution de la moyenne arithmétique x = 1

n

∑n
i=1 xi, qui constitue

l’estimation de la grandeur ; et (Kurtexemp((xi)i∈[[1;n]])/n) 6 1. Ce kurtosis estimé
est proche de 1 à la condition suivante : toutes les valeurs échantillonnées sont dans
un intervalle restreint, sauf quelques-unes qui sont très éloignées de cet intervalle.
Cette situation est exactement le signe que :
— soit on a pas assez échantillonné la VA pour donner des intervalles de con-

fiance corrects. En utilisant plus de tirages, on pourra éventuellement donner
des intervalles plus fiables, et le kurtosis le signalera.

— ou bien, la variance de la VA est en fait infinie. Dans ce cas, il est impossible
de dégager des intervalles de confiance quelle que soit la taille de l’échantillon,
en tout cas pas grâce au théorème central limite. En augmentant le nombre
de tirages, le kurtosis restera près de l’unité.

Cela nous amène à dire que le kurtosis d’excès estimé (Kurtexemp((xi)i∈[[1;n]])/n)
de la moyenne arithmétique est bien un indicateur comme nous le cherchions.
Remarque. Un calcul du kurtosis, depuis un échantillon, ne peut signaler une
mauvaise convergence que si au moins une valeur « pathologique » a été tirée. Seule
une étude préalable théorique (mais pas nécessairement complexe) du comportement
de la variable aléatoire échantillonnée permet de décider d’une taille d’échantillon
suffisante, pour ne pas être trompé par les résultats numériques de la méthode de
Monte-Carlo.

1.4 (∗) Suivi direct et suivi inverse des
photons : un lien par l’adjonction

Dans la pratique courante de la méthode de Monte-Carlo en transport li-
néaire, on passe fréquemment d’algorithmes suivant des particules dans le sens
de leur trajectoires à d’autres algorithmes suivant les particules en remontant
leur historique, et on réalise autant le passage inverse. L’équivalence de ces fonc-
tionnements algorithmiques est si connue et si éprouvée qu’on prend rarement
la peine de la justifier spécifiquement.

Nous tentons de donner une compréhension de cette équivalence dans cette
section, car elle ne sera plus vraie en transport non-linéaire.
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1.4.1 Principe
••••Dans la section 1.3.2, nous donnions un
exemple de mise en œuvre de la méthode de
Monte-Carlo pour le calcul d’une transmitti-
vité au travers d’un milieu absorbant uniforme.
Nous y montrions comment une formulation
intégrale peut toujours être mise en place, qui
décrit le fonctionnement d’un algorithme de
Monte-Carlo, même si celui-ci a été construit
comme une pure analogie du phénomène phy-
sique étudié.

Néanmoins, quand il s’agissait d’inventer
l’algorithme de Monte-Carlo, 2 types de rai-
sonnements distincts subsistaient :

— Soit on suit des photons dans le milieu,
en cherchant à savoir s’ils vont le tra-
verser ou non. Dans ce cas, on suit des
photons fictifs, depuis leur entrée dans
le milieu jusqu’à leur disparition (tra-
versée ou absorption). On parle alors
de suivi direct des photons.

— Soit on essaie de calculer la transmit-
tivité définie comme une intégrale de
la fonction de distribution f , détaillée
grâce à la forme intégrale de l’Équa-
tion de Transfert Radiatif. On estime
la quantité de photons présente en sor-
tie du système, en remontant depuis
cette sortie les chemins optiques qui y
mènent. On parle alors de suivi inverse
des photons.

— En toute rigueur, une 3e possibilité doit
être mentionnée : celle de compter les
participations de chemins optiques re-
liant l’entrée à la sortie du système, et
construits en partant d’une famille de
points de passage obligés des photons
allant de l’entrée à la sortie. Nous re-
viendrons là-dessus un peu plus tard
dans cette section.

Cette distinction n’est pas seulement présente
dans le précédent exemple de calcul de trans-
mittivité. Elle est présente dans tout calcul
d’une observable radiative par MMC — et par-
tant, dans tout calcul Monte-Carlo en transfert
radiatif.

Le lien qui existe entre ces diffé-
rentes conceptions algorithmiques, desquelles
émergent des formulations intégrales apparem-
ment incompatibles, est issu de l’adjonction
hermitienne 14.

L’idée maîtresse est que toute grandeur ra-
diative que l’on veut calculer s’exprime comme
un produit scalaire entre la fonction de distri-
bution f et un champ de sensation que nous
noterons Sg.

Supposons que le système à l’étude soit
un milieu semi-transparent M, entourée de
parois opaques ∂M possédant une normale en
tout point. Cette normale est notée ~n∂M(~r),
et est choisie sortante de la paroi, autrement
dit dirigée vers l’intérieur deM.

Si on étudie un régime permanent : pour commencer, notons Qp = F ((M∪ ∂M) ×
Eu×Eν ;R) l’ensemble des champs à valeurs réelles définis sur l’espace des phases. Posons ensuite
les 2 produits scalaires suivants, définis sur Qp2 :

〈a; b〉obs I =
∫

Eν

dν
{∫
M d~r

∫
Eu

d~u a(~r; ~u; ν)b(~r; ~u; ν) +
∫
∂M d~r

∫
{~u∈Eu,~u·~n∂M(~r)60} d~u (−~u · ~n∂M(~r)) a(~r; ~u; ν)b(~r; ~u; ν)

(1.78a)

〈a; b〉obs D =
∫

Eν

dν
{∫
M d~r

∫
Eu

d~u a(~r; ~u; ν)b(~r; ~u; ν) +
∫
∂M d~r

∫
{~u∈Eu,~u·~n∂M(~r)>0} d~u (~u · ~n∂M(~r)) a(~r; ~u; ν)b(~r; ~u; ν)

(1.78b)

Si on est en régime transitoire, entre les instants ti et tf : on considère Qt = F ((M∪
∂M)× Eu × Eν × [ti; tf ];R) l’ensemble des champs à valeurs réelles définis sur l’espace-temps

14. L’annexe A.2 donne quelques rappels mathématiques au sujet de l’adjonction Hermitienne.
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des phases, ainsi que les produits scalaires définis sur Qt2 :

〈a; b〉obs I =

∫

Eν

dν





∫ tf
ti

dt
∫
M d~r

∫
Eu

d~u a(~r; ~u; ν; t)b(~r; ~u; ν; t) +
∫ tf
ti

dt
∫
∂M d~r

∫
{~u∈Eu,~u·~n∂M(~r)60} d~u (−~u · ~n∂M(~r)) a(~r; ~u; ν; t)b(~r; ~u; ν; t) +

∫
M d~r

∫
Eu

d~u a(~r; ~u; ν; tf )b(~r; ~u; ν; tf )
(1.79a)

〈a; b〉obs D =

∫

Eν

dν





∫ tf
ti

dt
∫
M d~r

∫
Eu

d~u a(~r; ~u; ν; t)b(~r; ~u; ν; t) +
∫ tf
ti

dt
∫
∂M d~r

∫
{~u∈Eu,~u·~n∂M(~r)>0} d~u (~u · ~n∂M(~r)) a(~r; ~u; ν; t)b(~r; ~u; ν; t) +

∫
M d~r

∫
Eu

d~u a(~r; ~u; ν; ti)b(~r; ~u; ν; ti)
(1.79b)

Par exemple, en notant q l’observable radiative recherchée :
— Dans un problème instationnaire, on veut calculer la fonction de distribution en un point

donné (~r0;~c0; ν0; t0) de l’espace temps des phases, avec ~r0 /∈ ∂M :

q = f(~r0;~c0; ν0; t0) = 〈fν ;Sg〉obs I avec Sg(~r;~c; ν; t) = δ(~r−~r0) δ(~c−~c0) δ(ν−ν0) δ(t−t0)

— Dans un problème stationnaire, on veut connaître le flux incident sur une paroi S ⊂ ∂M :

q = 〈fν ;Sg〉obs I avec Sg(~r;~c; ν) = H(~r ∈ S) H(~u · ~n∂M(~r) 6 0)

— Dans un problème stationnaire, on veut connaître le terme source radiatif en un point ~r0 :

q = Sr(~r0) = −div~r0 ~ (~r0) selon la définition (1.15)

=
∫
Eν

dν
∫

4π d~u ka(~r0; ~u; ν)
(
fν(~r0; ~u; ν)− fν eq

(
T (~r0); ν

))
selon l’ETR

= 〈(fν − fν eq);Sg〉obs I avec Sg(~r;~c; ν) = δ(~r − ~r0) ka(~r0; ~u; ν)

••••Dans l’équation de transfert radiatif sous forme différentielle, isolons le terme d’émission,
que nous noterons Sf :

Sf (~r; ~u; ν; t)
= ka(~r; ~u; ν; t)feq

(
T (~r; t); ν

)

= 1
c ∂tf(~r; ~u; ν; t) + ~u · −−→grad~r f(~r; ~u; ν; t) + ka(~r; ~u; ν; t)f(~r; ~u; ν; t) +∫

4π
d~u′ kd,F (~r; ~u|~u′; ν; t)

(
f(~r; ~u; ν; t)− f(~r; ~u′; ν; t)

)
(1.80)

= CTR(f)(~r; ~u; ν; t) (1.81)

où CTR est un opérateur déduisant le terme d’émission depuis la fonction de distribution. Son
expression, sur l’intérieur deM, se déduit de la ligne (1.80) précédant son invocation. Le même
travail peut être fait sur les conditions aux limites. Au total, on trouve que CTR est linéaire.

La résolution d’un problème de transfert radiatif, répondant aux hypothèses détaillées en
sections 1.1.1.3 et 1.1.4, revient formellement à inverser CTR. On connaît les champs de propriétés
radiatives, le terme source d’émission Sf , et on en déduit f = CTR−1(Sf ). Ainsi, une observable
radiative q se calcule comme q = 〈f ;Sg〉obs I =

〈
CTR−1(Sf );Sg

〉
obs I.

60



1.4. Sens de suivi des particules et adjonction

••••CTR est linéaire, et placée dans l’espace préhilbertien réel (Q; 〈•; •〉obs D) elle possède un
adjoint dans l’espace préhilbertien réel (Q; 〈•; •〉obs I). Sans expliquer le détail de son obtention,
voici son expression à l’intérieur d’un milieu semi-transparent :

CTR?(g)(~r; ~u; ν; t) = − 1
c ∂tg(~r; ~u; ν; t)− ~u · −−→grad~r g(~r; ~u; ν; t) +

ka(~r; ~u; ν; t)g(~r; ~u; ν; t) +
∫

4π
d~u′ kd,F (~r; ~u′|~u; ν; t)

(
g(~r; ~u; ν; t)− g(~r; ~u′; ν; t)

)
(1.82)

Aux parois, on obtient des résultats similaires. Depuis la version générique de l’ETR applicable
à une surface opaque en équilibre thermodynamique local (1.49), on sépare le terme d’émission
ε(~r; ~u; ν; t)fν eq(T (~r; t); ν). Puis on dégage l’adjoint de CTR à la surface (en fait en même temps
que l’adjoint à CTR dans le volume) :

∀~u ∈ Eu tq ~u · ~n∂M(~r) 6 0,CTR?(g)(~r; ~u; ν; t) =

g(~r; ~u; ν; t)−
∫

2π−
d~u′ (−~u′ · ~n∂M(~r))(1− ε(~r;−~u; ν; t))Φp(~r;−~u′|~u; ν; t)g(~r; ~u′; ν; t) (1.83)

où
∫

2π− d~u′ signifie qu’on intègre dans l’hémisphère des directions entrantes dans la paroi, telles
que ~u′ · ~n∂M(~r) 6 0.

Comme CTR a un adjoint dans (Q; 〈•; •〉obs I), CTR−1 a un adjoint dans (Q; 〈•; •〉obs D).
Cela permet de ré-exprimer l’observable d’intérêt :

〈f ;Sg〉obs I =
〈
CTR−1(Sf );Sg

〉
obs I

=
〈
Sf ; (CTR−1)?(Sg)

〉
obs D

=
〈
Sf ; (CTR?)−1(Sg)

〉
obs D

= 〈Sf ; g〉obs D (1.84)

où g est la solution de l’équation : « CTR?(g) = Sg ». Dans la suite de ce manuscrit, nous
dénommerons g la « captance ».

••••On peut appliquer une démarche de résolution le long d’un rayon similaire à ce qui est
présenté en section 1.2.1, pour obtenir une forme intégrale de l’équation régissant la captance.
On obtient :

g(~r; ~u; ν; t) =
(∫ s0

0
ds exp

(
−
∫ s

0
ds′ kt

(
~r + s′~u; ~u; ν; t+ s′

c

))(
Sg
(
~r + s~u; ~u; ν; t+ s

c

)
+

kd
(
~r + s~u; ~u; ν; t+ s

c

) ∫

4π
d~u′Φ

(
~r + s~u; ~u′|~u; ν; t+ s

c

)
g
(
~r + s~u; ~u′; ν; t+ s

c

))
)

+

exp
(
−
∫ s0

0
ds kt

(
~r + s~u; ~u; ν; t+ s

c

))
g
(
~r + s0~u; ~u; ν; t+ s0

c

)
(1.85)

où la variable muette s est une abscisse de descente le long d’un rayon lumineux. Comme dans
l’écriture (1.43) on pose qu’elle possède un maximum s0, avec éventuellement s0 = +∞. Dans la
pratique, on considère généralement que s0 = sm, l’abscisse de l’intersection suivante avec une
paroi : sm = min{s ∈ R+, ~r + s~u ∈ parois}.

L’équation (1.85) se retrouve dans les for-
mulations intégrales des algorithmes analogues
de calcul de grandeurs radiatives, en suivi
direct, comme celui calculant la transmitti-

vité dans l’exemple de la section 1.3.2. Elle
en constitue, avec les adjointes des équations
aux frontières, les parties récursives. La partie
initiale est contenue dans le produit scalaire
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〈•; •〉obs D. On peut finalement affirmer que
du point de vue de la formulation intégrale du
transport, l’image physique d’un échantillon-
nage de la captance justifie les algorithmes de
Monte-Carlo en suivi direct.

1.4.2 Remarques
••••Dans l’expression (1.85) on intègre le
rayon sur t+ s/c > t, au lieu de l’intégrer sur
t−s/c 6 t comme dans l’équation de transfert
radiatif sous forme intégrale (1.43). L’image
de somme de contributions avec atténuation,
justifiant physiquement la forme intégrale de
l’ETR (1.43), est néanmoins valable sur la
forme intégrale (1.85) de l’adjointe à l’ETR ;
mais la causalité est renversée.

S’il y a une luminance non nulle en un
point de l’espace-temps des phases, c’est parce
que des sources de lumière sont présentes dans
le passé. S’il y a de la captance en un point de
l’espace-temps des phases, c’est parce que des
zones sensibles sont présentes dans le futur.

À ce titre, si on s’intéresse à un problème
instationnaire de transfert radiatif, la formu-
lation différentielle en luminance du problème
sera dotée d’une condition initiale, et la formu-
lation différentielle en captance du problème
sera dotée d’une condition finale.

••••Plus tôt dans cette section, on évoquait
la possibilité d’écrire une formulation intégrale
d’une observable radiative, basée sur un espace
de chemins optiques construit depuis une fa-
mille de points de passage obligés entre les
sources de lumière et les zones sensibles. De
telles formulations intégrales sont en fait ex-
primées à l’aide :

— d’un produit scalaire 〈•; •〉obs M, à l’ex-
pression similaire de celles de 〈•; •〉obs I
et de 〈•; •〉obs D,

— de la formulation intégrale (1.43) de
l’ETR, et de ses conditions aux limites,

— de la formulation intégrale (1.85) de
l’adjointe à l’ETR, et de ses conditions
aux limites,

et peuvent être expliquées grâce à la notion
de source de lumière secondaire.

Si l’on dispose d’une famille P de points
de l’espace-temps des phases, telle que tout le
flux allant des sources de lumière aux zones

sensibles passe une et une seule fois par P,
alors du point de vue des zones sensibles on
peut remplacer les vraies sources de lumière
par un ensemble de sources secondaires répar-
ties sur P. Ces sources secondaires émettent
alors directement ce qu’elles reçoivent depuis
les sources primaires.

En notant Sf2 l’émission fictive des
sources secondaires, qui égalise la luminance
reçue par ces sources reçue depuis les sources
primaires, on arrive à ce que :

q = 〈f ;Sg〉obs I
=
〈
CTR1

−1(Sf2);Sg
〉
obs I

où CTR1 exprime l’émission fictive Sf2 en
fonction de la distribution de la lumière ayant
traversé P.

=
〈
CTR1

−1(CTR2
−1(Sf ));Sg

〉
obs I

(1.86a)

où CTR2 exprime l’émission originelle Sf
en fonction de la distribution de la lumière
n’ayant pas traversé P.

=
〈
CTR2

−1(Sf ); CTR1
?−1(Sg)

〉
obs M
(1.86b)

=
〈
Sf ; CTR2

?−1(CTR1
?−1(Sg))

〉
obs D
(1.86c)

En matière de calcul de q, l’expression
(1.86a) est associée à un suivi inverse, l’expres-
sion (1.86c) est associée à un suivi direct, et
l’expression (1.86b) est associée à un suivi à
deux sens et partant de P.

Des formalismes intégraux basés sur une
telle construction des chemins optiques depuis
leur milieu se rencontrent par exemple :

— au chapitre 3.3 de ce manuscrit, où il
est question de calculer la productivité
d’une centrale solaire de concentration
à tour,

— lorsqu’on utilise les décompositions en
ordre de diffusion.

•••• Il est parfois mentionné qu’en transfert
radiatif, la réversibilité des chemins optiques
explique la validité des approches utilisant
l’adjonction. C’est faux. Dans l’obtention de
l’adjoint de l’opérateur CTR, la réversibilité
des chemins optiques ne joue aucun rôle.
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••••Le discours mathématique tenu dans
cette section, qui explique à l’aide de l’adjonc-
tion les algorithmes de Monte-Carlo suivant
les particules de leur émission vers leur cap-
ture, ne tient pas en cinétique des gaz. En
effet, l’équation de Boltzmann est non-linéaire,
donc elle n’a pas d’adjointe.

Cela me fait dire qu’il est a priori impos-
sible de créer des algorithmes de Monte-Carlo
comme je les décris dans ce manuscrit, c’est-à-
dire sans biais par rapport à une formulation
intégrale justifiée à l’aide des équations de
transport elles-mêmes, en cinétique des gaz et
en suivant les particules en sens direct.

1.5 (∗) Diffusion multiple

Lors de ce travail de thèse, les diverses pratiques algorithmiques utilisées en
transfert radiatif dans les situations de diffusion multiple ont constituées pour
nous des références essentielles.

Nous prenons le temps dans cette section d’étudier un problème physique de
ce type. Nous explicitons les formulations intégrales et statistiques de plusieurs
algorithmes utilisables, tout en gardant à l’esprit l’aide ce que fournit un intuitif
analogue. C’est aussi l’occasion d’une part d’illustrer le propos de la section 1.4,
et d’autre part de traiter de l’utilisation d’échantillonnages « non analogues ».

1.5.1 Description du problème
On veut calculer, pour un milieuM borné,

isotrope et uniformément diffusant (le milieu
n’est ni absorbant ni émissif), les moments de
la distribution des longueurs de premier retour
d’une lumière monochromatique. L’éclairage
du milieu est supposé uniforme et isotrope, à
sa surface. Ces résultats sont utilisés dans la

publication [118], en considérant des géomé-
tries particulières.

Le problème se formule comme suit. On
a un milieu M, entouré d’une frontière ∂M
dont la normale est définie presque partout.
Le milieu est diffusant avec un coefficient de
diffusion constant kd et une fonction de phase
Φ ne dépendant que de l’angle de déviation.

On veut calculer les grandeurs :

〈Ln〉 =
∫ +∞

0
(ct)ndt

∫

∂M
d~r
∫

2π−
d~u (−~u · ~n∂M(~r))f(~r; ~u; t) (1.87a)

avec n ∈ N, où f est fixée par :




∀(~r; ~u) ∈ (M\ ∂M)× Eu, f(~r; ~u; t = 0) = 0

∀(~r; ~u; t) ∈ ∂M× Eu × Et, tq ~u · ~n∂M(~r) > 0, f(~r; ~u; t) = 1
πS

δ(t)
(1.87b)

où ~n∂M(~r) est la normale à ∂M en ~r dirigée vers l’intérieur deM, 2π− signifie qu’on intègre sur
l’hémisphère des directions sortantes deM, et S est la surface de ∂M. La dépendance de f en ν
est omise, car la lumière présente est monochromatique.

1.5.2 Formulation intégrale, et notations
••••En reprenant la section 1.4, on peut ré-exprimer les 〈Ln〉. Ils s’identifient à 〈f ;Sg〉obs, où :





∀(~r; ~u; t) ∈ (M\ ∂M)× Eu × Et, Sf (~r; ~u; t) = 0

∀(~r; ~u; t) ∈ ∂M× Eu × Et, Sf (~r; ~u; t) = H(~u · ~n∂M(~r) > 0)
πS

δ(t)
(1.88a)
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{
∀(~r; ~u; t) ∈ (M\ ∂M)× Eu × Et, Sg(~r; ~u; t) = 0
∀(~r; ~u; t) ∈ ∂M× Eu × Et, Sg(~r; ~u; t) = H(~u · ~n∂M(~r) < 0) (ct)n

(1.88b)

••••Pour pouvoir justifier facilement la mise
en place de calculs de sensibilités paramé-
triques, à la section 1.5.5, nous utilisons une
approche intégrale de la MMC, basée sur les
formulations intégrales des équations de trans-
port.

Étant données les formes des sources
de luminance et de captance, nous choisis-
sons, comme modèle de transport, l’adjointe
à l’équation de transfert radiatif. En effet, si

on choisissait l’ETR elle-même, il faudrait in-
tégrer la distribution de Dirac sur un espace
de chemins optiques complexe. La MMC ne
permet pas de faire cela, car sa quadrature
ne permet pas de recouvrir la distribution de
Dirac dans ce cas (les points d’échantillonnage
tomberont à côté du pic de la distribution).

Nous allons ainsi monter des algorithmes
de Monte-Carlo suivant des photons en sens
direct.

L’estimateur 〈̃Ln〉 de 〈Ln〉 que ces considérations font apparaître sera basé sur :

〈Ln〉 =
∫

∂M

d~r
S

∫

2π+

d~u
π

(~u · ~n∂M(~r)) g(~r; ~u; t = 0) (1.89a)

g(~r; ~u; t) =
∫ +∞

0
ds kd exp(−kds)

(
H(s > sm) (ct+ sm)n +

H(s < sm)
∫

4π
d~u′Φ(~u′ · ~u)g(~r + s~u; ~u′; t+ s/c)

)
(1.89b)

où 2π+ signifie qu’on intègre sur l’hémisphère des directions entrantes dansM, et sm = min{s ∈
R+, ~r + s~u ∈ ∂M}.

1.5.3 Choix des variables aléatoires

••••Pour exprimer complètement 〈̃Ln〉, il faut mettre ces précédentes expressions intégrales
sous forme statistique, et donc introduire des VA pour tirer ~r et ~u dans (1.89a) et s et ~u′ dans
(1.89b). Le choix le plus simple, présentant par ailleurs une analogie certaine avec la physique du
problème, est sans doute :

〈̃Ln〉 = G̃(~R; ~U ; 0) (1.90a)
G̃(~r; ~u; t) = H(S > sm) (ct+ sm)n + H(s < sm) G̃(~r + S~u; ~U ′; t+ S/c) (1.90b)

avec :
— ~R de loi uniforme sur ∂M : p~R : ~r 7→ 1/S,

— ~U de loi lambertienne : p~U : ~u 7→ (~u · ~n∂M(~r))/π,
— S de loi exponentielle de constante kd : FS : s 7→ H(s > 0)× (1− exp(−kds)),
— ~U ′ dont la loi est la fonction de phase : p~U ′ : ~u′ 7→ Φ(~U ′ · ~u)).

Cependant, le choix de ~R, ~U , S, et ~U ′ est en fait arbitraire. De façon générale, un estimateur
de 〈Ln〉 basé sur les expressions intégrales (1.89a) et (1.89b) aura l’expression :

〈̃Ln〉 =
~U · ~n∂M(~R)

πS p~R(~R)p~U (~U)
G̃(~R; ~U ; 0) (1.91a)
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G̃(~r; ~u; t) =
∫ +∞

0
ds kd exp(−kdS)

pS(S)

(
H(S > sm) (ct+ sm)n +

H(S < sm) Φ(~U ′ · ~u)
p~U ′(~U ′)

G̃(~r + S~u; ~U ′; t+ S/c)
)

(1.91b)

et sera échantillonné par un algorithme suivant le prototype présenté en 1.5.

Sorties : Une estimation ponctuelle du moment 〈Ln〉
1 i← 0;
2 ltot ← 0;
3 échantillonner ~R0 sur ∂M : on obtient ~r0;
4 échantillonner ~U0 sur {~u ∈ Eu, ~u · ~n∂M(~r0) > 0} : on obtient ~u0;

5 π0 ←
~u0 · ~n∂M(~r0)

πS p~R0
(~r0)p~U0

(~u0) ;

6 répéter
7 i← i+ 1;
8 échantillonner Si sur [0; +∞[ : on obtient si;

9 πi ←
kd exp(−kdsi)

psi(si)
πi−1;

10 si {~ri−1 + s′~ui−1, s
′ ∈ [0; si]} ∩ ∂M = ∅ alors

11 sortie ← non;
12 ltot ← ltot + si;
13 ~ri ← ~ri−1 + si~ui−1;
14 échantillonner ~Ui sur la sphère unité : on obtient ~ui;

15 πi ←
Φ(~ui · ~ui−1)
p~Ui(~ui)

πi;

16 sinon
17 sortie ← oui;
18 ltot ← ltot + min{s′ ∈ R+, ~ri−1 + s′~ui−1 ∈ parois};
19 jusqu’à sortie = oui;
20 retourner πi(ltot

n);

Algorithme 1.5 : Patron d’algorithme estimant ponctuellement le moment
〈Ln〉 décrit en section 1.5.1, en échantillonnant l’expression statistique (1.91).

••••Considérant l’algorithme 1.5, posons les variables aléatoires suivantes :

— ~Γ, qui est le chemin optique parcouru (le descriptif complet, pas seulement la longueur),

— Im, la valeur de i quand le chemin optique revient aux parois,

— Πi, avec i ∈ [[0; Im]], correspondant à πi,

ainsi que ltot(~Γ), la longueur cumulée de ~Γ. On a :

〈̃Ln〉 = ΠIm

(
ltot(~Γ)n

)
(1.92a)
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avec :

ΠIm =
~U0 · ~n∂M(~R0)

πS p~R0
(~R0) p~U0

(~U0)
× kd exp(−kdSIm)

pSIm(SIm)

Im−1∏

i=1

kd exp(−kdSi)
pSi(Si)

× Φ(~Ui · ~Ui−1)
p~Ui(~Ui)

(1.92b)

ltot(~Γ) =
Im∑

i=1
Si (1.92c)

Si les ~R0, Si, et ~Ui ont les lois de probabi-
lités analogues à la physique décrites en (1.90),
alors ΠIm = 1.

Par ailleurs, pltot(~Γ) décroît de façon expo-
nentielle au voisinage de +∞. Cela est démon-
trable grâce au théorème spectral, applicable
à CTR−1 parce queM est borné et CTR pré-
sente une certaine symétrie.

Grâce à cela, si on utilise les lois de ti-
rages analogues décrites précédemment, pour
tout n ∈ N la distribution de 〈̃Ln〉 a tous ses
moments finis.

•••• Il n’en va pas aussi commodément avec
toutes les lois de tirages possibles pour les ~R0,
Si, et ~Ui. Pour comprendre cela, considérons
le produit

∏Im−1
i=1 · · · dans (1.92b).

Supposons pour simplifier que ~R0, Im, les
Si, et les ~Ui sont indépendants 15, et posons :

Π′i = kd exp(−kdSi) Φ(~Ui · ~Ui−1)
pSi(Si) p~Ui(~Ui)

(1.93)

On a : E(Π′i) = 1.
Supposons maintenant aussi que les Π′i

sont identiquement distribués. Les propriétés
de la variance amènent alors à ce que :

∀n ∈ N∗,Var
( n∏

i=1
Π′i
)

=
(
Var(Π′1) + 1

)n − 1

(1.94)
Grossièrement, la variance du produit∏Im−1
i=1 · · · suit une progression géométrique

selon Im.
Comme la loi de probabilité de Im

converge par ailleurs vers une suite géomé-
trique décroissante (de la même façon que
ltot(~Γ)), si Var(Π′1) est trop élevée la variance
de 〈̃Ln〉 est infinie.

Bien sûr, quelle que soit l’expression inté-
grale qu’on convertit sous forme statistique,

il existe toujours des lois de tirage assez mal
adaptées pour que la variance de l’estimateur
obtenu soit infinie. Cependant, cela prend da-
vantage d’importance quand l’expression in-
tégrale est hautement récursive, comme dans
l’expression (1.89) des moments 〈̃Ln〉. Cette
importance vient de ce que grossièrement, la
variance d’un produit est le produit des va-
riances de ses composantes.

Il en résulte finalement, que l’expression
analogue proposée pour les ~R0, Si, et ~Ui n’est
pas si peu optimale qu’on aurait pu l’imagi-
ner au départ. Elle fonctionne, et c’est en fait
déjà pas mal. Globalement, dans toute expres-
sion intégrale infiniment récursive comme la
(1.89b), il vaut mieux poser les VA d’échan-
tillonnage de sorte à compenser les coefficients
multiplicateurs de la partie récursive de l’in-
tégrale. En transport corpusculaire, une ap-
proche analogue mène souvent à des lois de
tirage adéquates. Par exemple, dans un pro-
blème de transfert radiatif avec diffusion mul-
tiple (comme le cas d’étude de cette section),
il vaut mieux utiliser exactement la fonction
de phase du modèle pour tirer les directions
de diffusion, quitte à utiliser une méthode de
rejet, qu’utiliser une loi de tirage différente.

••••Cette difficulté à optimiser le tirage des
chemins, quand on est en présence de diffu-
sion multiple ou d’un équivalent, est connu des
physiciens du transport corpusculaire depuis
des décennies. Il était déjà présent dans le pro-
blème de protection neutronique pour lequel
la MMC a été créée. Dans ce cas, on s’inté-
resse à la minuscule proportion des neutrons
arrivant à traverser le bouclier. Un calcul ana-
logue demande alors beaucoup d’estimations
pour fournir une estimation moyenne précise
(car les événements intéressants sont des événe-
ments rares), et chaque estimation requiert un

15. C’est impossible à obtenir tout-à-fait en pratique, car Im est lié à la suite des ~Ri échan-
tillonnés.
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grand effort computationnel (à cause des nom-
breuses collisions subies par chaque neutron
suivi).

De nombreuses techniques d’optimisation
ont alors été proposées, pour pallier à ce
problème : échantillonnage préférentiel des
longues distances de vol, échantillonnage pré-
férentiel des directions amenant à la sortie,. . .
L’expérience a montré qu’elles amenaient sou-
vent à des résultats bien pires que ceux qu’elles
étaient censées corriger ; à cause de ce qui
est expliqué précédemment dans cette section.
L’approche de variance nulle a permis de com-
prendre pourquoi. Un neutron situé profon-
dément dans le milieu, loin de toute sortie,
subira de nombreuses collisions avant de sor-
tir éventuellement du milieu. Quand on tire
une distance de vol libre ou une direction de
diffusion pour ce neutron, sa sortie du milieu
dépend assez peu du résultat de ce tirage en
particulier. La déformation à appliquer à ce
tirage, depuis un tirage analogue, pour obtenir
la plus faible variance possible, est en fait très
faible ; et il est indispensable de la baser sur
un modèle physique simplifié.

Finalement, il apparaît dans l’exemple
plus haut que la diffusion épaisse — situa-
tion physique où les corpuscules subissent un
nombre moyen élevé de collisions dans le sys-
tème — est un problème difficile pour la mé-
thode de Monte-Carlo ; la difficulté dont il est
question est due au coût computationnel élevé
de chaque réalisation, plus qu’à une forte va-
riance d’estimateur. Ce point d’achoppement
de la MMC est très connu ; des techniques
pour l’éviter, comme le couplage de la MMC
avec une autre méthode de calcul, ont été dé-
veloppées (voir par exemple [103]).

1.5.4 Modification du probème :
ajout d’absorption

••••Supposons à présent qu’en plus d’être
diffusant, le milieuM est absorbant, avec un
coefficient d’absorption constant ka.

On définit à présent les 〈Ln〉 comme les
moments de la distribution des longueurs avant
absorption — dans le milieu, ou à la paroi sup-
posée parfaitement absorbante.

Ils s’écrivent :

〈Ln〉 =
∫ +∞

0
(ct)ndt

(∫

∂M
d~r
∫

2π−
d~u (−~u · ~n∂M(~r))f(~r; ~u; t)+

∫

M
d~r
∫

4π
d~u kaf(~r; ~u; t)

)
(1.95)

On peut donner une expression intégrale récursive des 〈Ln〉, en utilisant à nouveau l’adjointe
à l’ETR :

〈Ln〉 =
∫

∂M

d~r
S

∫

2π+

d~u
π

(~u · ~n∂M(~r)) g(~r; ~u; t = 0) (1.96a)

g(~r; ~u; t) =
∫ +∞

0
ds kt exp(−kts)

(
H(s > sm) (ct+ sm)n + H(s < sm)×

(
ka
kt

(ct+ s)n + kd
kt

∫

4π
d~u′Φ(~u′ · ~u)g(~r + s~u; ~u′; t+ s/c)

))
(1.96b)

••••Des estimateurs 〈̃Ln〉 de 〈Ln〉 peuvent à nouveau être donnés.

•••En utilisant encore une analogie avec la physique, on peut aboutir à un estimateur ayant
une variance assurément finie :

〈̃Ln〉 = G̃(~R; ~U ; 0) (1.97a)

G̃(~r; ~u; t) = H(S > sm) (ct+ sm)n + H(S < sm)×
(
H(Col = abs) (ct+ S)n + H(Col = diff ) G̃(~r + S~u; ~U ′; t+ S/c)

)
(1.97b)

avec :
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— ~R de loi uniforme sur ∂M : p~R : ~r 7→ 1/S,
— ~U de loi lambertienne : p~U : ~u 7→ (~u · ~n∂M(~r))/π,
— Col à valeurs dans {abs; diff }, de probabilités respectives ka/kt et kd/kt,
— S de loi exponentielle de constante kt : FS : s 7→ H(s > 0)× exp(−kts),
— ~U ′ dont la loi est la fonction de phase : p~U ′ : ~u′ 7→ Φ(~U ′ · ~u)).
L’algorithme 1.6 montre la procédure d’échantillonnage de cet estimateur.

Sorties : Une estimation ponctuelle du moment 〈Ln〉
1 i← 0;
2 ltot ← 0;
3 échantillonner ~R0 sur ∂M de façon uniforme : on obtient ~r0;
4 échantillonner ~U0 sur {~u ∈ Eu, ~u · ~n∂M(~r0) > 0} de façon lambertienne : on obtient ~u0;
5 répéter
6 i← i+ 1;
7 échantillonner S de loi exponentielle de constante kt : on obtient si;
8 si {~ri−1 + s′~ui−1, s

′ ∈ [0; si]} ∩ ∂M = ∅ alors
9 ltot ← ltot + si;

10 ~ri ← ~ri−1 + si~ui−1;
11 échantillonner R de loi uniforme standard : on obtient ri;
12 si ri < kd/kt alors
13 sortie ← non;
14 échantillonner ~Ui de densité de probabilité ~u′ 7→ Φ(~u′ · ~ui−1) : on obtient ~ui;
15 sinon sortie ← oui;
16 sinon
17 sortie ← oui;
18 ltot ← ltot + min{s′ ∈ R+, ~ri−1 + s′~ui−1 ∈ parois};
19 jusqu’à sortie = oui;
20 retourner ltot

n;

Algorithme 1.6 : Algorithme estimant ponctuellement le moment 〈Ln〉
décrit en section 1.5.4, en échantillonnant l’expression statistique (1.97).

•••Un autre estimateur très similaire peut être donné :

〈̃Ln〉 = G̃(~R; ~U ; 0) (1.98a)

G̃(~r; ~u; t) = H(S > sm) (ct+ sm)n + H(S < sm)×
(
ka
kt

(ct+ S)n + kd
kt
G̃(~r + S~u; ~U ′; t+ S/c)

)
(1.98b)

avec les mêmes variables aléatoires. L’algorithme 1.7 en montre la procédure d’échantillonnage.
Cet estimateur peut être décomposé en une somme de contributions le long du chemin optique

construit :

〈̃Ln〉 =
Im∑

i=1
CpiWpi =

+∞∑

i=1
CpiWpi (1.99a)
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Sorties : Une estimation ponctuelle du moment 〈Ln〉
1 i← 0;
2 ltot ← 0;
3 Σ← 0;
4 échantillonner ~R0 sur ∂M de façon uniforme : on obtient ~r0;
5 échantillonner ~U0 sur {~u ∈ Eu, ~u · ~n∂M(~r0) > 0} de façon lambertienne : on obtient ~u0;
6 π0 ← 1;
7 répéter
8 i← i+ 1;
9 échantillonner S de loi exponentielle de constante kt : on obtient si;

10 si {~ri−1 + s′~ui−1, s
′ ∈ [0; si]} ∩ ∂M = ∅ alors

11 sortie ← non;
12 ltot ← ltot + si;
13 ~ri ← ~ri−1 + si~ui−1;
14 Σ← Σ + πi−1ka(ltot

n)/kt;
15 πi ← kd πi−1/kt;
16 échantillonner ~Ui de densité de probabilité ~u′ 7→ Φ(~u′ · ~ui−1) : on obtient ~ui;
17 sinon
18 sortie ← oui;
19 ltot ← ltot + min{s′ ∈ R+, ~ri−1 + s′~ui−1 ∈ parois};
20 Σ← Σ + πi−1(ltot

n);
21 jusqu’à sortie = oui;
22 retourner Σ;

Algorithme 1.7 : Algorithme estimant ponctuellement le moment 〈Ln〉
décrit en section 1.5.4, en échantillonnant l’expression statistique (1.98).

avec

∀i ∈ N∗,Cpi =





(
i∏

j=1

kd
kt

)
ka
kt

si i < Im

Im∏

j=1

kd
kt

si i = Im

0 si i > Im

(1.99b)

∀i ∈ N∗,Wpi =





(
i∑

j=1
Si

)n
si i < Im

(
sm Im +

Im−1∑

j=1
Si

)n
= ltot

n si i > Im
(1.99c)

••• Il ressort des 2 formulations statis-
tiques précédentes, 2 façons différentes de gérer
l’absorption :

le « partitionnement de l’énergie » :
La contribution du chemin optique
échantillonné est répartie entre plu-
sieurs points qui l’émaillent. La 2e for-
mulation statistique proposée, associée

à l’algorithme 1.7, suit ce schéma.
la « roulette russe » : La contribution

du chemin optique échantillonné se
fait en une seule fois. Du coup, une
fois qu’elle est faite on peut arrêter la
construction du chemin, d’où le nom de
roulette russe. La 1re formulation statis-
tique proposée, associée à l’algorithme
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1.6, suit ce schéma.
Le terme de roulette russe s’applique
aussi à une technique visant à arrêter
arbitrairement l’évaluation d’une inté-
grale multidimensionnelle, sans créer de
biais. À un certain moment, on effectue
un test à 2 issues : survie ou interrup-
tion. Si on décide d’interrompre l’esti-
mation, celle-ci est fixée à une valeur
par défaut (0 par exemple). Si on décide
de la continuer, sa contribution est aug-
mentée par division par la probabilité
préfixée de survie.

Avec une roulette russe l’estimation est en
moyenne plus rapide, mais sa variance aug-
mente.

1.5.5 Calcul de sensibilités

••••Le calcul de sensibilités, en méthode de
Monte-Carlo, revêt une forme particulière.

D’abord, il faut savoir que la MMC n’est
de façon générale pas compatible avec la mé-
thode des différences finies. Cette dernière
consiste, pour résumer grossièrement, à utili-
ser, quand on veut calculer la sensibilité d’une
grandeur q à un paramètre π autour de π = π0,

une approximation du type :

∂πq(π = π0) ' q(π = π0 + δπ)− q(π = π0)
δπ

(1.100)
où δπ est une petite variation de π.

Cette approche est problématique combi-
née avec la MMC, car cette dernière génère
inévitablement un bruit statistique. Si δπ est
grand, l’approximation de la dérivée n’est pas
bonne. Mais si δπ est petit, la différence entre
q(π = π0 + δπ) et q(π = π0) est recouverte
par l’incertitude des estimations.

••••Considérons les algorithmes d’estima-
tion des moments 〈Ln〉 détaillés dans cette
section. Dans tous les cas, on construit un
chemin optique, depuis l’entrée d’un photon
dans le milieu jusqu’à son arrêt. Ensuite ou en
même temps, selon qu’il y a de l’absorption
et surtout selon l’estimateur de 〈Ln〉 qu’on
échantillonne, on en déduit une estimation
pour 〈Ln〉. On peut constater aisément, en re-
lisant les algorithmes, que plusieurs moments
〈Ln〉 (avec des n différents) peuvent être es-
timés simultanément, suite à la construction
d’un même chemin optique.

Il en va de même pour d’éventuelles sensi-
bilités paramétriques de 〈Ln〉 : elles peuvent
être calculées simultanément à 〈Ln〉 grâce au
même jeu de chemins optiques.

••••Considérons un paramètre π dont dépendent simultanément les coefficients d’absorption
ka et de diffusion kd, et aussi la fonction de phase de diffusion Φ. En reprenant les expressions
(1.96) et en dérivant sous l’intégrale on obtient :

∂π〈Ln〉 =
∫

∂M

d~r
S

∫

2π+

d~u
π

(~u · ~n∂M(~r)) ∂πg(~r; ~u; t = 0) (1.101a)

∂πg(~r; ~u; t) =
∫ +∞

0
ds kt exp(−kts)

(
H(s > sm)

(
∂πkt
kt
− (∂πkt)s

)
(ct+ sm)n +

H(s < sm)×
(
ka
kt

(
∂πka
ka
− (∂πkt)s

)
(ct+ s)n + kd

kt

∫

4π
d~u′ Φ(~u′ · ~u)×

((
∂πkd
kd
− (∂πkt)s+ ∂πΦ(~u′ · ~u)

Φ(~u′ · ~u)

)
g(~r + s~u; ~u′; t+ s/c) + ∂πg(~r + s~u; ~u′; t+ s/c)

)))

(1.101b)

Ceci peut se traduire statistiquement, par exemple, par l’estimateur ˜〈Ln〉∂π suivant de
∂π〈Ln〉 :

˜〈Ln〉∂π = G̃∂π(~R; ~U ; 0) (1.102a)
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G̃∂π(~r; ~u; t) = H(S > sm)
(
∂πkt
kt
− (∂πkt)S

)
(ct+ sm)n +

H(S < sm)
(

H(Col = abs)
(
∂πka
ka
− (∂πkt)S

)
(ct+ S)n + H(Col = diff )×

((
∂πkd
kd
− (∂πkt)S + ∂πΦ(~U ′ · ~u)

Φ(~U ′ · ~u)

)
G̃(~r + S~u; ~U ′; t+ S/c) + G̃∂π(~r + S~u; ~U ′; t+ S/c)

))

(1.102b)

où les VA ~R, ~U , S, Col, et ~U ′ suivent les mêmes lois analogues qu’en (1.97).
L’algorithme 1.8 propose une estimation simultanée de 〈Ln〉 et ∂π〈Ln〉, en se basant sur les

formulations statistiques (1.97) et (1.102).

Sorties : Une estimation ponctuelle de 〈Ln〉 et ∂π〈Ln〉
1 i← 0;
2 ltot ← 0;
3 Π∂π ← 0;
4 échantillonner ~R0 sur ∂M de façon uniforme : on obtient ~r0;
5 échantillonner ~U0 sur {~u ∈ Eu, ~u · ~n∂M(~r0) > 0} de façon lambertienne : on obtient ~u0;
6 répéter
7 i← i+ 1;
8 échantillonner S de loi exponentielle de constante kt : on obtient si;
9 si {~ri−1 + s′~ui−1, s

′ ∈ [0; si]} ∩ ∂M = ∅ alors
10 ltot ← ltot + si;
11 ~ri ← ~ri−1 + si~ui−1;
12 échantillonner R de loi uniforme standard : on obtient ri;
13 si ri < kd/kt alors
14 sortie ← non;
15 échantillonner ~Ui de densité de probabilité ~u′ 7→ Φ(~u′ · ~ui−1) : on obtient ~ui;
16 Π∂π ← Π∂π + ∂π ln kd − si∂πkt + ∂π ln Φ(~ui · ~ui−1);
17 sinon
18 sortie ← oui;
19 Π∂π ← Π∂π + ∂π ln ka − si∂πkt;

20 sinon
21 sortie ← oui;
22 ltot ← ltot + min{s′ ∈ R+, ~ri−1 + s′~ui−1 ∈ parois};
23 Π∂π ← Π∂π + ∂π ln kt − si∂πkt;
24 jusqu’à sortie = oui;
25 retourner ltot

n et Π∂π(ltot
n);

Algorithme 1.8 : Algorithme estimant ponctuellement 〈Ln〉 et ∂π〈Ln〉 décrits en
section 1.5.4 et 1.5.5, en échantillonnant les expressions statistiques (1.97) et (1.102).

••••Cette démarche n’est pas seulement ap-
plicable à l’exemple de cette section, mais à
tous les algorithmes de Monte-Carlo, tant que :

— le paramètre de dérivation n’intervient

pas dans l’expression du domaine d’in-
tégration,

— l’intégrande ne dépend pas de façon dis-
continue du paramètre.
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La récursivité de l’expression intégrale évaluée
n’est pas un problème.

Quand on est dans l’un des cas listés à
l’instant, le travail de formulation intégrale de
la sensibilité est plus difficile. Il a néanmoins
été abordé avec succès au cours de plusieurs
travaux, dont [29,44,101].

Tout cela me fait dire qu’en matière de cal-
cul de sensibilités, la MMC n’est pas en reste

par rapport à d’autres méthodes numériques,
comme les méthodes avec maillage. Au cours
de ce manuscrit, nous reviendrons de temps en
temps sur la possibilité de calcul de sensibili-
tés, afin de montrer qu’elle n’est pas obstruée
au cours des développements méthodologiques
orientés vers le transport non-linéaire.
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Chapitre 2

Algorithmes à Collisions Nulles

Quand on met en place un calcul numérique par MMC pour un problème de
transport linéaire, si le coefficient d’extinction est variable, alors on est presque
immanquablement gêné par le terme exponentiel d’intégrale manifestant la loi
de Beer.

Les algorithmes à collisions nulles (ACNs) proposent une façon simple
d’effectuer l’échantillonnage des libres parcours, dans cette situation. Leur
principe est d’ajouter au problème physique des collisionneurs en quantité
arbitraire, qui n’ont pas d’effet sur l’état des particules suivies, et en quantité
adéquate pour rendre le coefficient d’extinction constant.

Les ACNs restent fonctionnels même quand le coefficient d’extinction n’est
pas calculé à l’avance. Ceci a été utilisé en transfert radiatif dans les gaz, où le
coefficient d’absorption est très variable et très difficile à calculer exactement.
La méthode de Monte-Carlo prend alors le tout dans un seul calcul : elle intègre
de façon combinée le modèle du transfert radiatif et le modèle de la dépendance
du coefficient d’absorption aux conditions thermodynamiques [49]. Dans la
suite de ce manuscrit, nous utiliserons cette propriété en cinétique des gaz, où
l’extinction le long d’un chemin est de prime abord inconnue car dépendante de
la solution du problème.

Les Algorithmes à Collisions Nulles (ACNs) sont, basiquement, une reformu-
lation de la version intégrale des équations de transport. Ils sont connus depuis
les années 1960, et depuis sont largement utilisés dans plusieurs disciplines de
la physique du transport, comme la physique des plasmas, la neutronique, ou la
synthèse d’image. Ils y servent presque exclusivement de technique algorithmique
permettant de calculer des grandeurs liées au transport quand les coefficients
d’extinction sont variables. Cependant, les possibilités qu’ils offrent sont plus larges
que cela ; en particulier, ils sont au cœur de la technique algorithmique et du point
de vue statistique sur la cinétique des gaz développés dans la suite de ce manuscrit.
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Ce chapitre a pour but d’introduire petit-à-petit la majeure partie des propriétés
et intérêts des Algorithmes à Collisions Nulles. Il balaye depuis le plus simple et le
plus classique, jusqu’à certains développements récents utilisés dans la suite du
manuscrit. Dans la section 2.1, on part d’une image physique simple, amenant aux
formes les plus utilisées des Algorithmes à Collisions Nulles, pour ensuite développer
mathématiquement et exhiber dans la section 2.2 des propriétés augmentant encore
leurs caractères pratiques avantageux. Enfin, dans la section 2.5, on évoque le
travail de thèse de Mathieu Galtier [49] ; il montre que le transport corpusculaire
est encore conceptualisable et calculable quand l’extinction balistique est inconnue
en premier lieu — c’est-à-dire quand le coefficient d’extinction kt résulte d’un
modèle, et n’est pas pré-calculé — ; cette capacité sera centrale dans la façon dont
nous aborderons la cinétique des gaz.

2.1 Les ACNs comme technique
d’échantillonnage des libres parcours

2.1.1 Bref historique
Les Algorithmes à Collisions Nulles ont été expliqués pour la 1re fois indépen-

damment par au moins 3 chercheurs à la fin des années 1960 : E. Woodcock en
1965 [122], neutronicien ; H.D. Rees en 1968 [98], physicien des semi-conducteurs ;
et H.R. Skullerud en 1968 [108], plasmicien. Chacun est considéré comme le
découvreur de la méthode par sa propre communauté ; de même, les travaux qui
en ont découlé se divisent en 3 ensembles indépendants qui semblent mutuellement
s’ignorer jusqu’à aujourd’hui.

H.R. Skullerud aborde pour la 1re fois dans [108] un Algorithme à Collisions
Nulles, sans encore le dénommer ainsi, dans le but de pouvoir échantillonner des
temps de vol libre pour des ions dans un gaz soumis à un champ électrique. De
nombreux travaux vont suivre, comme [6, 14, 20, 57, 79, 80], consacrés essentielle-
ment à la même problématique. Les ACNs s’y rencontrent essentiellement sous
cette dénomination, ou plus rarement sous le terme d’« événements nuls » ou de
« pseudocollisions ». Aujourd’hui, ils constituent une technique standard dans la
physique des plasmas. Ils ont aussi été importés par la communauté s’intéressant
aux gaz raréfiés — voir les publications [67,72].

Par ailleurs, la technique développée par E. Woodcock sera étendue en 1968
par W. Coleman [26], et ensuite intensivement utilisée dans les sciences nucléaires.
Parmi les travaux qui l’utilisent on peut citer [1, 81, 82, 100, 112]. On sait même
qu’avant la publication de E. Woodcock, souvent citée comme référence, des
techniques semblables étaient déjà utilisées dans les codes de calcul neutronique ; par
exemple le rapport [21] en témoigne. L’utilisation des ACNs dans cette communauté
est si répandue qu’ils sont nativement implémentés dans plusieurs codes de calcul
pour le transport corpusculaire, comme SERPENT [75–77] ou MORET [47,85]. Ces
formes algorithmiques ont aussi diffusé vers d’autres domaines applicatifs, comme
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la radiothérapie [5,65], la tomographie [99,121], et la synthèse d’image [89,115,116].
Dans la littérature consacrée à toutes ces sciences, les ACNs sont généralement
désignés par le terme «Woodcock tracking », ou aussi « delta-scattering », « pseudo-
scattering », « fictitious collisions », « fictitious scattering », « fictitious interaction
tracking », « self-scattering », « hole-tracking ». . .

En physique des solides, H.D. Rees crée et explique la technique dans [97,98],
sous le terme de « self scattering ». Cet apport sera très vite repris, par exemple
dans des travaux sur les diodes Gunn [10, 46], puis largement employé dans la
communauté. Nous n’avons hélas, par manque de temps, pas poussé plus loin la
bibliographie sur les ACNs dans ce champ disciplinaire.

D’après ce que nous avons pu constater, ces différents groupes d’utilisateurs des
ACNs ont rarement eu conscience de leur existence mutuelle. La seule publication
que nous connaissons faisant référence à des travaux de ces trois ensembles biblio-
graphiques simultanément est [14]. Avant, nous observons quelques croisements au
sujet des ACNs entre les plasmiciens et les physiciens des semi-conducteurs, comme
dans [6]. Nettement plus tard, nous savons que l’auteur Alfred I. Khisamutdinov
a cité les ensembles bibliographiques neutronique et plasma. Finalement, ces deux
ensembles sont à nouveau cités dans [50], dont ce travail est une suite.

2.1.2 La difficulté que l’on veut surmonter
••••Supposons que l’on veuille calculer quelque grandeur, dans un problème de
transfert radiatif. Comme on utilise une approche mésoscopique, cette grandeur
est une valeur particulière de la fonction de distribution f , ou bien une intégrale
de f (voir le chapitre 1.1).

Comme expliqué au chapitre 1.2.1, dans un milieu isotrope et en équilibre
thermodynamique local, à indice de réfraction constant, la fonction de distribution
des photons en un point se calcule comme :

fν(~r; ~u; ν; t) =
∫ sm

0
ds kt

(
~r−s~u; ~u; ν; t− s

c

)
exp

(
−
∫ s

0
ds′kt

(
~r−s′~u; ~u; ν; t− s′

c

))
×



ka
(
~r − s~u; ~u; ν; t− s

c

)

kt
(
~r − s~u; ~u; ν; t− s

c

) fν,eq

(
T
(
~r − s~u; t− s

c

)
; ν
)

+
kd
(
~r − s~u; ~u; ν; t− s

c

)

kt
(
~r − s~u; ~u; ν; t− s

c

)

∫

4π
d~u ′Φ

(
~r − s~u; ~u · ~u ′; ν; t− s

c

)
fν
(
~r − s~u; ~u ′; ν; t− s

c

)

+

exp
(
−
∫ sm

0
ds kt

(
~r − s~u; ~u; ν; t− s

c

))
fν
(
~r − sm~u; ~u; ν; t− sm

c

)
(2.1)

où sm = min{s ∈ R+, ~r − s~u ∈ parois} est la distance de la plus proche paroi le
long du rayon R(~r;−~u).

En supposant que
∫+∞
0 ds kt(. . . ) = +∞, l’expression précédente peut être
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ré-écrite :

fν(~r; ~u; ν; t) =
∫ +∞

0
ds kt

(
~r−s~u; ~u; ν; t− s

c

)
exp

(
−
∫ s

0
ds′kt

(
~r−s′~u; ~u; ν; t− s′

c

))
×


H(s < sm)



ka
(
~r − s~u; ~u; ν; t− s

c

)

kt
(
~r − s~u; ~u; ν; t− s

c

) fν,eq

(
T
(
~r − s~u; t− s

c

)
; ν
)

+

kd
(
~r − s~u; ~u; ν; t− s

c

)

kt
(
~r − s~u; ~u; ν; t− s

c

)
∫

4π
d~u ′Φ

(
~r − s~u; ~u · ~u ′; ν; t− s

c

)
fν
(
~r − s~u; ~u ′; ν; t− s

c

)

+

H(s > sm)fν
(
~r − sm~u; ~u; ν; t− sm

c

)

 (2.2)

Pour des questions de simplicité, on se limitera dans la suite de ce chapitre à un
cas monochromatique, en régime stationnaire, dans un milieu purement absorbant
et émissif, le long d’une ligne de visée terminée par une paroi opaque. Le lecteur
constatera au fur et à mesure de ce chapitre que ce cas physique est suffisamment
représentatif des difficultés physico-mathématiques que nous pouvons dépasser
grâce aux ACNs. Dans ce cas restreint, la formule précédente se simplifie en :

f(s) =
(∫ sm

s
ds′ ka(s′) exp

(
−
∫ s′

s
ds′′ ka(s′′)

)
feq(s′)

)
+

exp
(
−
∫ sm

s
ds′ ka(s′)

)
f(sm) (2.3)

où feq(s) = feq
(
T (s)

)
, et s est l’abscisse le long du rayon, avec s 6 sm. Comme

précédemment, cela peut aussi se ré-écrire comme :

f(s) =
∫ +∞

s
ds′ ka(s′) exp

(
−
∫ s′

s
ds′′ ka(s′′)

)
×

(
H(s′ < sm)feq(s′) + H(s′ > sm)f(sm)

)
(2.4)

Il s’agit maintenant d’être capable d’exploiter ces précédentes expressions, en
particulier pour le calcul.

••••De la même façon qu’au chapitre 1.5, l’équation (2.4) peut être convertie
sous forme statistique. Pour ce faire, on opte ici pour une approche intégrale ;
mais une vision analogue peut être utilisée pour poser la variable aléatoire S ′, qui
correspondra à la longueur parcourue avant collision.

Avec une variable aléatoire analogue :

f(s) = E
(

H(S ′ < sm)feq(S ′) + H(S ′ > sm)f(sm)
)

(2.5a)
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où S ′ est une variable aléatoire à valeurs dans [s; +∞[ et de fonction de répartition :

FS′(s′) = 1− exp
(
−
∫ s′

s
ds′′ka(s′′)

)
(2.5b)

S ′ est bien un libre parcours d’absorption.

Remarque. FS′ est bien une fonction de répartition sur [s; +∞[ ssi
∫ s′
s ds′′ ka(s′′)

s′→+∞−−−−→ +∞. Par ailleurs, comme l’éventuel milieu derrière le mur n’a pas d’influence
directe dans l’expression ci-dessus :
— On peut temporairement fixer la valeur de ka(s′) pour s′ > sm à n’importe

quelle valeur arbitraire strictement positive, pour l’évaluation de f(s). Cette
considération permet de traiter les cas où la valeur de ka(s′) pour s′ > sm
n’est pas définie a priori.

— Dans la formulation (2.5a), on peut très bien poser :

FS′ :





R → [0; 1]
s′ 7→ 0 si s′ 6 s

s′ 7→ 1− exp
(
−∫ s′s ds′′ka(s′′)

)
si s 6 s′ < sm

s′ 7→ 1 si sm 6 s′

cela ne change rien.

Approche intégrale arbitraire :

f(s) = E



exp
(
− ∫ s′0 ds′′ ka(s′′)

)

pS′(s′)

(
H(S ′ < sm)feq(S ′) + H(S ′ > sm)f(sm)

)
 (2.6)

où S ′ est une variable aléatoire à valeurs dans [s; +∞[ et de densité de probabilité
arbitraire (mais strictement positive). Choisir S ′ avec une répartition éloignée du
libre parcours d’absorption présente des risques d’augmentation de la variance,
comme expliqué au chapitre 1.3.2.

Remarque. Dans les expressions (2.5) et (2.6), on peut remplacer f(sm) par un
estimateur sans biais F̃ (sm), car f(s) dépend linéairement de f(sm). Dans ce cas,
les échantillonnages de F̃ (sm) et de S ′ doivent être indépendants.

••••Disposant de l’expression statistique (2.5) ou (2.6) de f(s), il est naturel
de s’en servir pour monter un algorithme de Monte-Carlo visant à l’évaluer. En
pratique, la difficulté se situera en 2 points :
— L’évaluation de sm, qui peut être compliquée si la géométrie du problème l’est.

Nous bénéficions ici toutefois des apports de la communauté de la synthèse
d’image, pour qui le calcul de l’intersection entre un rayon et une géométrie
est un problème fondamental et extensivement étudié.
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— Le tirage de la VA S ′ si on utilise l’expression (2.5), ou l’évaluation de
l’exponentielle si on utilise l’expression (2.6).

Si ka est une constante, la 2e difficulté mentionnée n’en est pas une. En approche
analogue, il suffit de poser S ′ = −(lnR)/ka avec R de loi uniforme standard, comme
nous l’avons déjà montré au chapitre 1.3.1. En approche intégrale, le calcul du
terme exponentiel est immédiat.

En approche analogue, si ka n’est plus uniforme il faut d’abord tirer une
épaisseur optique traversée EO = − lnR, puis retrouver l’abscisse curviligne
correspondante S ′ ∈ [s; +∞[ telle que

∫ S′
s ds′′ka(s′′) = EO. Dans la pratique,

plusieurs démarches apparaissent :
— Si on dispose d’une formule donnant ka en fonction de l’abscisse curviligne

s′, on peut parfois réaliser l’inversion-intégration EO 7→ S ′ de manière
symbolique puis implémenter le résultat. On peut être dans cette situation
si la formule s 7→ ka est simple sur l’ensemble du domaine d’intérêt (cas
académiques), ou est définie par morceaux (cas des maillages).

— Dans le cas précédent, si on est capable d’exprimer l’épaisseur optique
traversée eo en fonction de s′ mais qu’on n’arrive pas à exprimer la réciproque
eo 7→ s′, on peut avoir recours à une procédure d’inversion numérique. Il
n’y a pas là de grande difficulté théorique, mais les calculs peuvent être
sensiblement rallongés.

— En dernier lieu, on pourra approximer le profil s′ 7→ ka par une fonction
se prêtant aisément au traitement symbolique — intégration puis inversion
—, comme une spline cubique. La méthode de Monte-Carlo perd alors son
caractère non-biaisé, à moins de mettre en place de complexes contrôles de
la précision.

Ces précédentes méthodes ont d’importants défauts. Parmi eux :
— L’inversion symbolique de la primitive du profil d’absorption n’est en général

pas réutilisable. C’est-à-dire que dès que le type du profil (ou de la fonction
d’interpolation, dans le cas d’un maillage) est modifié, le travail mathématique
d’inversion doit être recommencé.

— Les procédures d’approximation (qui reposent d’habitude sur une reconstitu-
tion du profil d’absorption sur un maillage le long du rayon) sont naturel-
lement laborieuses. Quand un contrôle de précision est utilisé, cela devient
encore pire, car ce contrôle repose souvent sur une répétition de la procédure
d’approximation.

— Quand un maillage est utilisé, la procédure de suivi d’un rayon dans le maillage
peut être lourde (informatiquement parlant). Cela se fait sentir typiquement
quand le transfert radiatif est couplé avec la mécanique des fluides, par
exemple dans un problème de combustion. La CFD (Computationnal Fluid
Dynamics) utilise ordinairement des maillages de plusieurs millions de mailles,
soit approximativement 100× 100× 100 mailles. Dans ces cas, une pratique

78
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existante consiste à utiliser un maillage différent pour le calcul du transfert
radiatif, plus lâche que celui servant aux calculs de mécanique des fluides.
Cependant, lorsqu’on calcule le transfert radiatif par MMC sur un maillage
et que l’on veut être précis :
— soit le maillage est fin, et donc les mailles à traverser sont nombreuses,
— soit la fonction d’interpolation permet de modéliser des profils complexes

dans chaque maille, et donc les calculs à faire dans chaque maille sont
plus coûteux.

En approche purement intégrale, c’est-à-dire en utilisant une VA S ′ arbi-
traire, la situation est relativement semblable bien que l’échantillonnage de S ′ ne
soit a priori plus une difficulté ; car il faut connaître le terme exp

(
− ∫ s′0 ds′′ ka(s′′)

)
.

Estimer l’intégrale interne (par une méthode de Monte-Carlo) n’est pas une bonne
technique, car la fonction exponentielle n’est pas affine : elle est convexe et donc
amplifie le bruit statistique davantage vers le haut que vers le bas, d’où un biais de
calcul. On doit donc connaître l’intégrale interne exactement, ce qui nous ramène
à peu de choses près à la liste des cas de figure précédente.

Une solution serait d’utiliser la méthode présentée au chapitre 3, et d’utiliser
un Développement en Série Entière de la fonction exponentielle. On serait alors
capable d’estimer le terme exp

(
− ∫ s′0 ds′′ ka(s′′)

)
sans biais. En fait, les formes

mathématiques qui en résultent sont proches des Algorithmes à Collisions Nulles ;
l’annexe B donne plus de détails à ce sujet.

••••Ces difficultés sont connues depuis longtemps des physiciens du transport
corpusculaire, même si elles peuvent prendre des formes légèrement différentes.
Par exemple, en neutronique, en transfert radiatif, ou en synthèse d’image ce
sont les inhomogénéités du milieu qui posent problème. En physique des plasmas,
l’échantillonnage des longueurs de collision peut rencontrer la difficulté explicitée
précédemment même dans un milieu uniforme. En effet, si un champ électrique
est présent, la vitesse des particules chargées évolue au cours de leurs trajectoires
balistiques, ainsi que leur section efficace de collision avec les autres particules
présentes.

Les Algorithmes à Collisions Nulles proposent de court-circuiter totalement
ces difficultés.

2.1.3 Utilisation de collisionneurs fictifs
L’idée de base qui sous-tend ces formes algorithmiques est d’introduire dans le
problème physique des collisionneurs supplémentaires, en quantité arbitraire et
ajustable, qui génèrent des collisions sans effet. On parle alors de collisions nulles.

Par exemple, dans un problème de transfert radiatif, on peut considérer que
ces collisionneurs provoquent de la diffusion sans déviation des photons — d’où le
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terme de « delta-scattering » : « delta » fait référence à la fonction de phase de
diffusion, qui est ici un Dirac vers l’avant.

On passe ainsi de l’équation différentielle de transport (sans diffusion) :

~u · −−→grad~rf(~r; ~u) = − ka(~r)f(~r; ~u)︸ ︷︷ ︸
atténuation

+ ka(~r)feq(~r)︸ ︷︷ ︸
terme source

(2.7)

à :

~u · −−→grad~rf(~r; ~u) = − (ka(~r) + kn(~r)) f(~r; ~u)︸ ︷︷ ︸
atténuation

+ ka(~r)feq(~r) + kn(~r)f(~r; ~u)︸ ︷︷ ︸
terme source

(2.8)

qui revient, du point de vue du transport, strictement au même.
Par contre, du point de vue algorithmique, c’est tout-à-fait différent. On peut

reprendre la même image de somme de contributions avec atténuation qu’au
chapitre 1.2.1 pour obtenir une forme intégrale de notre version modifiée — mais
exacte — de l’ETR (2.8) ; cette fois-ci on obtient :

f(s) =
∫ +∞

s
ds′ k̂a(s′) exp

(
−
∫ s′

s
ds′′ k̂a(s′′)

)
×


H(s′ < sm)

(
ka(s′)
k̂a(s′)

feq(s′) + kn(s′)
k̂a(s′)

f(s′)
)

+ H(s′ > sm)f(sm)

 (2.9)

avec k̂a = ka + kn, appelé coefficient d’absorption majoré. Cette équation peut être
convertie sous forme statistique, ici en utilisant des VAs analogues :

f(s) = E
(

H(S ′ < sm)
(

H(Col = abs)feq(S ′) + H(Col = nul)F̃ (S ′)
)

+

H(S ′ > sm)F̃ (sm)
)

(2.10)

avec :
— S ′ une VA à valeurs dans [s; +∞[, mais cette fois-ci de fonction de répartition

FS′ : s′ 7→ 1 − exp
(
− ∫ s′s ds′′ k̂a(s′′)

)
. Elle correspond au libre parcours

d’extinction, compte tenu de l’absorption et des collisionneurs fictifs ajoutés.
— Col une VA à 2 valeurs possibles (abs et nul), prenant la valeur abs avec une

probabilité ka(S ′)
/
k̂a(S ′). Elle correspond au type d’événement dont est issu

le photon partant de S ′ : émission ou collision nulle.
— F̃ (sm) un estimateur sans biais de f(sm).
— F̃ (S ′) un estimateur sans biais de f(S ′). Cet estimateur est typiquement

construit à l’aide de l’expression (2.10) elle-même, où la valeur de S ′ remplace
s.
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2.1. Les ACNs comme technique d’échantillonnage

L’intérêt de cette nouvelle forme statistique/intégrale de f réside dans la loi de
tirage de S ′ : S ′ suit désormais une loi exponentielle selon un coefficient d’extinction
réglable, on peut choisir le profil et les valeurs de k̂a(s′) que l’on souhaite (un profil
constant, par exemple). La complexité de l’extinction est désormais renvoyée dans
la récursivité de l’expression intégrale ou statistique. La seule contrainte restante
est que kn doit être positif, d’ailleurs nous verrons dans la section suivante que
cette contrainte peut être levée elle aussi.

0
s s′

ka

(a) Sans collisions nulles. Les centres absor-
bants sont figurés par des carrés rouges pleins.

On sait que l’épaisseur optique traversée suit, statistiquement parlant, une
loi exponentielle unité. Une fois que l’on a choisi une épaisseur optique eo,
il faut lui faire correspondre s′ telle que l’aire sous la courbe rouge entre s
et s′ vale bien eo. Selon la forme du profil de ka, cela peut être très difficile.

Figure 2.1 – Échantillonnage de libres parcours d’absorp-
tion dans une colonne absorbante unidimensionnelle, effectué

avec — (b), page suivante — ou sans — (a) — collisions nulles.

••••À titre d’illustration, la structure d’un algorithme à collisions nulles pour
l’estimation ponctuelle de f(s) est donnée en algorithme 2.2, à comparer à la
structure d’un algorithme plus ordinaire donnée en algorithme 2.1 1. La figure 2.1
propose une image physique du fonctionnement de ces algorithmes.

1. Ces algorithmes peuvent être nettement améliorés pour éviter des calculs inutiles. En
particulier, dans l’algorithme 2.2, un test scur < sm peut être placé dans la boucle pour éviter de
continuer à échantillonner des libres parcours alors qu’on a déjà heurté la paroi. Cela n’a pas été
fait ici afin de ne garder dans l’algorithme 2.2 que la substantifique mœlle des algorithmes de
type « à collisions nulles ».
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0

k̂a

s ŝ1 ŝ2 ŝ3 ŝ4

kn

ka

r1k̂a

r2k̂a

r3k̂a

r4k̂a

(b) Avec collisions nulles. Des collisionneurs fictifs représentés par des carrés bleus
creux sont ajoutés, ici de sorte que la densité totale de collisionneurs soit constante.

Il est désormais facile de déterminer ŝ1 : l’épaisseur optique traversée
correspond à la surface rouge et bleue entre s et ŝ1, rectangulaire. Par
contre l’extinction peut être due à une absorption ou une collision nulle ;
il faut donc faire un choix, ici guidé par les densités respectives d’absor-
beurs et de collisionneurs fictifs (figurées par les aires rouge et bleue).
Si une collision nulle est choisie, le photon suivi poursuit son chemin.

Figure 2.1 – L’ajout de collisionneurs fictifs rend récursive la procédure de
choix d’une longueur d’absorption ; par contre, chaque itération de la procédure

est facile. Au total, on peut gagner en facilité de calcul grâce à cet ajout.
Figure inspirée de la publication [89].

On voit que la différence se situe uniquement dans le calcul de s′ ou scur . Comme
les espérances de f̃ sont égales à la fin des 2 algorithmes quel que soit le profil de
feq , cela signifie que l’échantillonnage de scur dans l’algorithme 2.2 est équivalent à
l’échantillonnage de s′ dans l’algorithme 2.1. De manière plus formelle, en posant
les variables aléatoires :
— S ′ de fonction de répartition FS′(s′) = 1− exp

(
− ∫ s′s ds′′ ka(s′′)

)
,

— Ŝ0 = s,
— ∀i ∈ N, Ŝi+1 de fonction de répartition FŜi+1

(ŝ) = 1− exp
(
− ∫ ŝŜi ds′′ k̂a(s′′)

)
,

— et Iabs à valeurs dans N∗, telle que ∀i ∈ N∗,Pr(Iabs = i | Iabs > i) =
ka(Ŝi)/k̂a(Ŝi),

ŜIabs est identiquement distribué à S ′.
Cela permet d’affirmer que du point de vue numérique, dans leur forme la

plus simple, les Algorithmes à Collisions Nulles ne constituent ni plus ni moins
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Résultat : Une estimation f̃ de f(s)
1 échantillonner EO selon une loi exponentielle unité : on obtient eo;

// échantillonnage d’une épaisseur optique traversée
2 calculer s′ tq

∫ s′
s ds′′ ka(s′′) = eo; // POTENTIELLEMENT DIFFICILE

3 si s′ < sm alors f̃ ← feq(s′) sinon f̃ ← f(sm);

Algorithme 2.1 : Algorithme basique
et ordinaire pour l’estimation de f(s)

Résultat : Une estimation f̃ de f(s)
1 scur ← s;
2 répéter
3 échantillonner EO selon une loi exponentielle unité : on obtient eo;

// échantillonnage d’une épaisseur optique traversée
4 calculer s′ tq

∫ s′
scur ds′′ k̂a(s′′) = eo; // FACILE

5 scur ← s′;
6 Pabs ← ka(scur)

/
k̂a(scur);

7 échantillonner R de loi uniforme standard : on obtient r;
8 si r < Pabs alors Col ← abs sinon Col ← nul;
9 jusqu’à Col = abs;

10 si scur < sm alors f̃ ← feq(scur) sinon f̃ ← f(sm);

Algorithme 2.2 : Algorithme à collisions
nulles basique pour l’estimation de f(s)

qu’une technique d’échantillonnage des libres parcours. Ils font penser en cela à
une méthode de rejet. Nous verrons cependant dans la section suivante que sous
des formes plus raffinées, leur applicabilité et leur utilité ne se réduit pas à une
telle technique d’échantillonnage.

2.2 Fondements mathématiques
Dans la section précédente 2.1.3, nous avons justifié la formulation intégrale des

ACNs (2.9) par l’image d’un problème de transport équivalent, où des collisionneurs
sans effet sont ajoutés. En considérant ces collisionneurs fictifs comme des centres
diffuseurs ne déviant en fait pas les photons, on peut se ramener au cas des milieux
absorbants et diffusants ; la formulation intégrale de l’équation de transfert radiatif
y est bien connue, ainsi que les formes algorithmiques de type Monte-Carlo associées.
La question de la fonctionnalité de ces derniers algorithmes a déjà été traitée dans
ce manuscrit au chapitre 1.5.4, et ne fait de toute façon plus de doute auprès de la
communauté étudiant le transfert radiatif.
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Néanmoins, une exploration purement mathématique de la formulation (2.9)
est un passage obligé dans notre contexte :
— Elle permet d’en explorer pleinement la validité, indépendamment des images

intuitives de la diffusion multiple, ce qui sera un élément de confiance im-
portant lorsque nous quitterons cet intuitif pour explorer la cinétique des
gaz.

— Elle permet d’imaginer d’autres algorithmes, toujours basés sur la formulation
(2.9), mais qui ne sont pas ancrés dans la pratique du transfert en milieu
diffusant. On pourrait manquer ces astuces en raisonnant uniquement avec
l’image d’une diffusion vers l’avant en tête.

2.2.1 Validité de la formulation intégrale
Rappelons l’équation simplifiée du cas que nous étudions :

~u · −−→grad~rf(~r; ~u) = − ka(~r)f(~r; ~u) + ka(~r)feq(~r) (2.11)
Le long d’une ligne de visée selon −~u, cela se réduit à :

f ′(s) = ka(s)f(s)− ka(s)feq(s) (2.12)
avec la condition frontière : « f(sm) est connue ».

L’équation (2.9) est correcte si et seulement si l’expression qu’elle donne pour
f(s) satisfait à l’équation (2.12), ainsi qu’à la condition frontière. Faisons la
vérification :

Preuve. L’équation (2.9) s’écrit :

f(s) =
∫ +∞

s
ds′ k̂a(s′) exp

(
−
∫ s′

s
ds′′ k̂a(s′′)

)
×


H(s′ < sm)

(
ka(s′)
k̂a(s′)

feq(s′) + kn(s′)
k̂a(s′)

f(s′)
)

+ H(s′ > sm)f(sm)



ce qui se simplifie, si k̂a(s′) est non nul pour tout s′ > s, en :

f(s) =
∫ +∞

s
ds′ exp

(
−
∫ s′

s
ds′′ k̂a(s′′)

)
×

(
H(s′ < sm)

(
ka(s′)feq(s′) + kn(s′)f(s′)

)
+ H(s′ > sm)k̂a(s′)f(sm)

)
(2.13)

d’où (pour s < sm) :

f ′(s) = −
(
ka(s)feq(s) + kn(s)f(s)

)
+

∫ +∞

s
ds′ k̂a(s) exp

(
−
∫ s′

s
ds′′ k̂a(s′′)

)

(
H(s′ < sm)

(
ka(s′)feq(s′) + kn(s′)f(s′)

)
+ H(s′ > sm)k̂a(s′)f(sm)

)
(2.14)
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ce qui aboutit bien à :

f ′(s) = −
(
ka(s)feq(s) + kn(s)f(s)

)
+ k̂a(s)f(s)

= ka(s)f(s)− ka(s)feq(s)

L’expression (2.9) satisfait donc bien à l’équation différentielle (2.12) sur [s; +∞[.
En ce qui concerne la condition frontière, en reprenant l’équation (2.9) avec s = sm :

f(sm) =
∫ +∞

sm
ds′ k̂a(s′) exp

(
−
∫ s′

sm
ds′′ k̂a(s′′)

)
f(sm)

= f(sm) ssi
∫ s′
sm

ds′′ k̂a(s′′) s′→+∞−−−−→ +∞ �

La démonstration que l’on vient d’effectuer ne laisse apparaître que 2 condi-
tions nécessaires pour la validité de l’expression intégrale des ACNs (2.9). Ces 2
contraintes, en fait assez lâches, sont que :
— On doit avoir

∫ s′
sm

ds′′ k̂a(s′′) s′→+∞−−−−→ +∞. Cette contrainte n’en est pas
vraiment une, comme cela est expliqué précédemment à la section 2.1.2.

— k̂a(s) doit être non-nulle en tout point. Si on se base directement sur l’ex-
pression (2.13), cette contrainte disparaît.

2.2.2 Transformation en expression statistique
••••Pour obtenir une reformulation statistique générique de l’expression (2.9),
utilisable en MMC, il nous faut introduire une variable aléatoire S ′ (pour l’instant
arbitraire) sur [s; +∞[. Alors :

f(s) = E


k̂a(S ′) exp

(
− ∫ S′s ds′′ k̂a(s′′)

)

pS′(S ′)

(

H(S ′ < sm)
(

terme(s) de collision︷ ︸︸ ︷
ka(S ′)
k̂a(S ′)

feq(S ′)
︸ ︷︷ ︸
terme d’émission

+ kn(S ′)
k̂a(S ′)

F̃ (S ′)
︸ ︷︷ ︸

terme de
collision nulle

)
+ H(S ′ > sm)F̃ (sm)

)
 (2.15)

où F̃ (s) est un estimateur sans biais de f(s).
Deux remarques sont à faire à ce stade :
— Nous n’avons pas introduit de variable aléatoire pour le choix d’un type de

collision, comme en (2.10). Comme il n’y a qu’un nombre fini de termes de
collision, cela n’est a priori pas nécessaire pour que l’expression (2.15) soit
utilisable directement dans un algorithme de type Monte-Carlo.
Dans la pratique, une telle procédure de choix peut redevenir nécessaire.
En effet, parmi les 2 termes, celui de collision nulle est récursif — le terme
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d’émission fait intervenir les propriétés locales du milieu, et n’est donc en
général pas récursif. Pour que l’algorithme puisse s’effectuer, il faut donc un
moyen d’interrompre cette récursivité. Cela peut souvent être réalisé par la
condition frontière, mais introduire un choix du type de collision est aussi
une solution très utilisée (et souvent pertinente).

— Aucune hypothèse n’est ici encore faite sur k̂a et pS′ . On peut ainsi aboutir
à des formes algorithmiques tout-à-fait différentes de ce que nous allons
présenter dans la suite de ce chapitre.

••••Pour la suite de ce chapitre, on reprendra S ′ comme une longueur d’extinction
obéissant à une loi exponentielle de coefficient k̂a. Le but de ce choix algorithmique
est de faire diminuer la variance d’une estimation utilisant l’expression (2.15),
comme cela est expliqué au chapitre 1.5.3.

Ce choix élimine plusieurs optimisations concevables pour un algorithme MC
calculant f(s). Par exemple un tirage stratifié de S ′, d’un côté sur [s; sm[ et de
l’autre sur [sm; +∞[ ; l’intégrale de la 2e strate est d’ailleurs calculable symboli-
quement. Néanmoins, l’approche algorithmique consistant à utiliser k̂a pour tirer
des longueurs d’extinction semble tout-à-fait suffisante pour les besoins qui seront
explicités dans ce manuscrit.

Ainsi, la formulation statistique générale pour les Algorithmes à Collisions
Nulles que nous utiliserons devient :

f(s) = E

H(S ′ < sm)

(
ka(S ′)
k̂a(S ′)

feq(S ′) + kn(S ′)
k̂a(S ′)

F̃ (S ′)
)

+ H(S ′ > sm)F̃ (sm)



(2.16a)
avec

S ′ à valeurs dans [s; +∞[ et FS′(s′) = 1− exp
(
− ∫ S′s ds′′ k̂a(s′′)

)
(2.16b)

2.2.3 Partitionnement de l’énergie vs. roulette russe

••••Lorsqu’on calcule un estimateur F̃ (s) de f(s) construit selon l’expression
(2.16), si le point de collision échantillonné est à l’intérieur du milieu (c’est-à-dire
si S ′ < sm), on doit calculer la somme des contributions du terme de collision nulle
et du terme d’émission. Ce calcul peut être effectué de plusieurs façons :

1. Soit on calcule la somme, « tout simplement ». On doit alors calculer locale-
ment ka(S ′) et feq(S ′), et récursivement F̃ (S ′).

2. Soit, comme cela est proposé dans la formulation (2.10), on choisit le terme
d’émission avec une probabilité ka(S ′)/k̂a(S ′) ou alors le terme de collision
nulle. Puis on considère que F̃ (s) = feq(S ′) si on a choisi le terme d’émission,
ou F̃ (s) = F̃ (S ′) si on a choisi le terme de collision nulle. On a donc besoin
de calculer d’abord ka(S ′) puis, selon le choix qu’on a fait, feq(S ′) ou F̃ (S ′).
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On retrouve ici l’opposition entre partitionnement de l’énergie (la 1re méthode)
et roulette russe (la 2e méthode), déjà mentionnée au chapitre 1.5.4. La 2e technique
est bien une roulette russe, car si on choisit le terme d’émission les calculs nécessaires
sont uniquement locaux, et le suivi de photon peut se terminer.

3. Si on utilise une roulette russe — c’est-à-dire une épreuve de Bernoulli entre le
terme d’émission et le terme de collision nulle — on peut poser arbitrairement
les probabilités de choisir chacun des termes. En effet, l’équation (2.16) peut
être ré-écrite :

f(s) = E

H(S ′ < sm)

(
Pabs

Pabs

ka(S ′)
k̂a(S ′)

feq(S ′) + Pnul

Pnul

kn(S ′)
k̂a(S ′)

F̃ (S ′)
)

+

H(S ′ > sm)F̃ (sm)



= E

H(S ′ < sm)

(
H(Col = abs) 1

Pabs

ka(S ′)
k̂a(S ′)

feq(S ′) +

H(Col = nul) 1
Pnul

kn(S ′)
k̂a(S ′)

F̃ (S ′)
)

+ H(S ′ > sm)F̃ (sm)

 (2.17a)

avec




Pabs et Pnul arbitraires telles que
Pabs > 0, Pnul > 0, et Pabs + Pnul = 1

Col une VA à valeurs dans {abs; nul}
de probabilités respectives Pabs et Pnul

(2.17b)

4. Précédemment dans cette liste, on propose de mettre en place un choix de
Bernoulli entre le terme d’émission et le terme de collision nulle, afin de créer
un mécanisme de roulette russe.
On peut même ré-exprimer cette somme de termes, afin de faire apparaître
de nouveaux termes entre lesquels choisir ! A priori, comme on doit alors
exhiber à nouveau une somme, on va procéder par combinaison linéaire.
L’intérêt d’une telle astuce numérique est d’obtenir une estimation de f(s)
avec une variance plus faible que ce qu’autorise les démarches précédentes, en
gardant l’utilité de la roulette russe : la possibilité d’arrêter le suivi de photon.
On va donc essayer d’obtenir une somme de 2 termes, dont un seulement est
récursif. Le terme non-récursif ne pouvant pas contenir une contribution de
collision nulle, la formulation générale correspondante est la suivante :
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f(s) = E

H(S ′ < sm)

(
θabs,arr

ka(S ′)
k̂a(S ′)

feq(S ′) + θabs,rec
ka(S ′)
k̂a(S ′)

feq(S ′) +

kn(S ′)
k̂a(S ′)

F̃ (S ′)
)

+ H(S ′ > sm)F̃ (sm)



= E

H(S ′ < sm)


H(Col = arr)

Parr
θabs,arr

ka(S ′)
k̂a(S ′)

feq(S ′) +

H(Col = rec)
Prec

(
θabs,rec

ka(S ′)
k̂a(S ′)

feq(S ′) + kn(S ′)
k̂a(S ′)

F̃ (S ′)
)
+

H(S ′ > sm)F̃ (sm)

 (2.18a)

avec




θabs,arr et θabs,rec arbitraires tels que
θabs,arr + θabs,rec = 1

Parr et Prec arbitraires telles que
Parr > 0, Prec > 0, et Parr + Prec = 1

Col une VA à valeurs dans {arr ; rec}
de probabilités respectives Parr et Prec

(2.18b)

••••Ces méthodes algorithmiques peuvent être combinées entre elles. En effet, les
Algorithmes à Collisions Nulles sont par nature récursifs, et quand on veut estimer
f(s), quelque soit la technique sus-explicitée utilisée, il existe une probabilité non-
nulle (si k̂a 6= ka) de devoir estimer f en une abscisse aléatoire S ′ > s pour aboutir.
Par contre, il n’est pas obligatoire de réutiliser exactement la même technique
algorithmique pour estimer f(S ′) et f(s). Au cours du suivi d’un photon, on pourra
donc utiliser des approches différentes pour estimer la somme des termes d’émission
et de collision nulle.

Dans la littérature, on constate que ce sont les 1re et 2e approche qui sont le plus
utilisées. Elles étaient toutes deux déjà connues en 1966 [112]. En neutronique c’est
généralement la 2e approche qui est utilisée, car les collisions sont généralement
des diffusions, et donc l’emploi d’un partitionnement de l’énergie provoquerait une
multiplication généralement inutile des chemins suivis. Dans les autres domaines
c’est plus variable.

En fait, selon la situation, il vaut mieux privilégier une approche ou une autre.
Les sections 2.3 et 2.4 fournissent des éléments de réponses au lecteur que ces choix
algorithmiques intéressent. Le cas de milieux absorbants et diffusants, et non plus
uniquement absorbants comme dans cette section, y est évoqué.
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2.2.4 ACNs et calcul de sensibilités
••••Comme affirmé au chapitre 1.5.5, le calcul de sensibilités par la méthode de
Monte-Carlo nécessite un travail spécifique sur la formulation intégrale, la méthode
des différences finies n’étant pas utilisable.

Comparativement à l’exemple donné au chapitre 1.5.5, les Algorithmes à Colli-
sion Nulles n’ajoutent pas de difficulté. Si on se replace dans le cas d’étude simplifié
de la section 2.1.2, et qu’on considère un paramètre π, la sensibilité ∂πf(s) peut
venir de :

— la fonction de distribution d’équilibre feq,
— le coefficient d’absorption ka,
— la luminance au bout de la ligne de visée f(sm),
— la distance du mur au bout de la ligne de visée sm.
La sensibilité vis-à-vis d’un paramètre géométrique comme sm est un cas

particulier. Le lecteur intéressé pourra se reporter à la monographie [101] dont
c’est le sujet, ou encore à [29] et [44]. Les 3 autres contributions possibles à ∂πf(s)
constituent en revanche des problèmes bien maîtrisés.

••••Si on utilise un algorithme à collisions nulles, on passe de l’expression de f :

f(s) =
∫ +∞

s
ds′ ka(s′) exp

(
−
∫ s′

s
ds′′ ka(s′′)

)
×

(
H(s′ < sm)feq(s′) + H(s′ > sm)f(sm)

)
(2.4) ↑

à

f(s) =
∫ +∞

s
ds′ exp

(
−
∫ s′

s
ds′′ k̂a(s′′)

)
×

(
H(s′ < sm)

(
ka(s′)feq(s′) + kn(s′)f(s′)

)
+ H(s′ > sm)k̂a(s′)f(sm)

)
(2.9) ↑

La démarche pour obtenir la formulation intégrale d’une sensibilité ∂πf reste
globalement la même : il faut dériver l’équation (2.9) (au lieu de (2.4)) selon π.

Une petite subtilité apparaît cependant : kn est un paramètre libre, sans
influence sur f , mais selon ce qu’il devient lors de la dérivation de (2.9) le résultat
s’exprime différemment. On peut distinguer 2 attitudes simples : soit on laisse k̂a
constant soit on laisse kn constant.

Si on laisse k̂a constant :

∂π⊥k̂af(s) =
∫ +∞

s
ds′ exp

(
−
∫ s′

s
ds′′ k̂a(s′′)

)
×

(
H(s′ < sm)

(
∂πka(s′)

(
feq(s′)− f(s′)

)
+ ka(s′)∂πfeq(s′) + kn(s′)∂πf(s′)

)
+

H(s′ > sm)k̂a(s′)∂πf(sm)
)

(2.19)
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Si on laisse kn constant :

∂π⊥knf(s) =
∫ +∞

s
ds′ exp

(
−
∫ s′

s
ds′′ k̂a(s′′)

)
×

((
H(s′ < sm)

(
∂πka(s′)feq(s′) + ka(s′)∂πfeq(s′) + kn(s′)∂πf(s′)

)
+

H(s′ > sm)
(
k̂a(s′)∂πf(sm) + ∂πka(s′)f(sm)

)
−
∫ s′

s
ds′′ ∂πka(s′′)×

(
H(s′ < sm)

(
ka(s′)feq(s′) + kn(s′)f(s′)

)
+ H(s′ > sm)k̂a(s′)f(sm)

))
(2.20)

Bien entendu, ∂π⊥k̂af(s) = ∂π⊥knf(s) ; néanmoins, l’expression (2.19) semble
plus simple pour le calcul, dans la majorité des situations.

2.3 (∗) Mise en œuvre pratique des alternatives
algorithmiques

Nous avons expliqué dans la section 2.2.3 que plusieurs choix algorithmiques
sont possibles, avec partitionnement de l’énergie ou roulette russe. Mais que
décider en pratique ? Comment faire un choix qui soit raisonnablement efficace ?
Nous donnons ici quelques éléments de clarification.

2.3.1 Dans le cas d’étude du cha-
pitre (absorption/émission
seule)

Le choix d’une méthode de calcul de la
somme des contributions de l’émission et des
collisions nulles dans l’expression (2.16) de-
vrait être guidé par les avantages et les défauts
de ces méthodes. Ils sont de plusieurs ordres :

— applicabilité de la méthode
— récursivité générée
— variance du poids résultant
La roulette russe analogue (la 2e méthode

de la liste en section 2.2.3) n’est utilisable
que si k̂a majore effectivement ka. Si ce n’est
pas le cas, ka(S′)/k̂a(S′) et kn(S′)/k̂a(S′) ne
sont plus des probabilités. En pratique, et en
particulier dans les problèmes de transfert ra-
diatif atmosphérique, c’est une limitation forte.
Quand on utilise un Algorithme à Collisions
Nulles, et que k̂a > ka, la récursivité moyenne

est proportionnelle à k̂a ; on a donc intérêt à
prendre un k̂a le plus faible possible pour li-
miter le temps de calcul. Par ailleurs, dans les
gaz le coefficient d’absorption est une fonction
non monotone de la pression et de la tempé-
rature, avec une dépendance spectrale forte.
Pour chaque fréquence donnée ν, il est donc
difficile de connaître avec précision la borne
supérieure du coefficient d’absorption sur le
volume d’intérêt — surtout en science atmo-
sphérique, où la pression varie très largement.

Ceci a amené l’équipe où la présente thèse
a été encadrée, à proposer l’utilisation d’un
choix émission/collision nulle modifié (la 3e

possibilité évoquée en section 2.2.3) [50] ; ce
choix était accompagné d’une proposition pour
Pabs et Pnul (valable ssi ka > 0) :

Pabs = ka(S′)
ka(S′) + |kn(S′)|

Pnul = |kn(S′)|
ka(S′) + |kn(S′)|

(2.21)
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Tant que k̂a > ka, ceci reste strictement
équivalent à une roulette russe analogue. Par
contre, si k̂a < ka par endroits, cette roulette
russe avec probabilités modifiées reste encore
utilisable, bien que la variance du poids aug-
mente. En particulier, si la situation physique
étudiée est en équilibre thermodynamique glo-
bal 2, le poids estimant f(s) n’est plus fixé à
feq(Tglobale), comme cela est le cas avec parti-
tionnement de l’énergie ou avec roulette russe
analogue.

La 4e proposition de la section 2.2.3 per-
met de remédier partiellement à ce défaut. On
peut en effet assurer que, avec cette roulette
russe à nouveau modifiée :

— le mécanisme est identique à une rou-
lette russe analogue si k̂a > ka,

— le poids estimant f(s) est de variance
nulle en cas d’équilibre thermodyna-
mique global,

si on utilise par exemple le jeu de paramètres
suivants :

Parr = ka(S′)
ka(S′) + |kn(S′)|

Prec = |kn(S′)|
ka(S′) + |kn(S′)|

(2.22a)

θabs,arr = ka(S′) + kn(S′)
ka(S′) + |kn(S′)|

θabs,rec = |kn(S′)| − kn(S′)
|kn(S′)|+ ka(S′)

(2.22b)

Étude des techniques sus-citées : On se
place précisément dans le cas d’étude de ce
chapitre, c’est-à-dire qu’on estime f(sinit). En
réutilisant les notations introduites au cha-
pitre 1.5.4, on peut donner l’expression totale
du poids de Monte-Carlo W = F̃ (sinit) qui
va sortir d’un Algorithme à Collisions Nulles,
selon la technique de sommation utilisée, afin
d’anticiper le comportement de ce poids. No-
tons :

— Ŝ0 = sinit la position de départ du suivi
de photon,

— Ŝi avec i ∈ N la ie position de collision
du photon qu’on échantillonne. ∀i ∈

N, Ŝi+1 est de fonction de répartition
FŜi+1

: ŝ 7→ 1− exp
(
−
∫ ŝ
Ŝi

ds′ k̂a(s′)
)
.

— Iarr l’indice de la position Ŝ où le pho-
ton sera arrêté, si on utilise une ap-
proche en roulette russe. Iarr obéit à la
propriété ∀i ∈ N∗,Pr(Iarr = i | Iarr >
i) = Parr,i où Parr,i = Parr(Ŝi) est la
probabilité d’arrêt du suivi en Ŝi, selon
la formule qu’on s’est donnée.

— Im l’indice de la 1re position Ŝ échan-
tillonnée au-delà du mur au bout de la
ligne de visée.

Si on utilise exclusivement le parti-
tionnement de l’énergie, en reprenant les
notations du chapitre 1.5.4 on a, ∀i ∈ N∗ :

Πi =





i∏

j=1

kn(Ŝj)
k̂a(Ŝj)

si i < Im

0 si i > Im

(2.23a)

Cpi =





(
i−1∏

j=1

kn(Ŝj)
k̂a(Ŝj)

)
ka(Ŝi)
k̂a(Ŝi)

si i < Im

i−1∏

j=1

kn(Ŝj)
k̂a(Ŝj)

si i = Im

0 si i > Im
(2.23b)

Wpi =
{
feq(Ŝi) si i < Im

F̃ (sm) si i > Im
(2.23c)

donc

W =
Im−1∑

i=1

(
i−1∏

j=1

kn(Ŝj)
k̂a(Ŝj)

)
ka(Ŝi)
k̂a(Ŝi)

feq(Ŝi) +

Im−1∏

i=1

kn(Ŝi)
k̂a(Ŝi)

F̃ (sm) (2.23d)

2 remarques sont à faire à ce stade :

— W est une moyenne pondérée des
feq(Ŝi) et de F̃ (sm).
De plus, les coefficients de pondération
Cpi sont tous positifs si et seulement
si k̂a > ka à toutes les positions de

2. Chaque point est en équilibre thermodynamique local, et le système entier est de température
égale.
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collisions choisies. Cela s’écrit :
(
∀i ∈ [[1; Im]],Cpi > 0

)
⇐⇒

(
∀i ∈ [[1; Im − 1]], k̂a(Ŝi) > ka(Ŝi)

)

(2.24)

Dans ce cas, on obtient nécessaire-
ment W ∈ [minF ; maxF ], où F =
{feq(Ŝi), i ∈ [[1; Im−1]]}∪{F̃ (sm)}. De
façon plus générale, si k̂a > ka tout le
long de la ligne de visée, alors le poids
W est nécessairement dans l’intervalle
[inf Ft; supFt] où Ft = {feq(s), s ∈
[sinit ; sm]}∪U

F̃ (sm) ; c’est une garantie
de bonne convergence pour la moyenne
de N poids wn.
En revanche, si par endroit k̂a < ka,
alors on obtiendra des valeurs négatives
pour certains coefficients de pondéra-
tion. Cela mène à une augmentation de
la variance de la distribution de W .

— Au fil des collisions, si ka < 2k̂a, le
total de pondération des collisions res-
tantes Πi tend vers 0. Plus précisément,
arrivé à une certaine position s, le to-

tal de pondération restante Π a pour
espérance la transmitivité de s vers
sinit ; on peut s’en convaincre en pre-
nant Wpi = H(Ŝi > s) dans l’expres-
sion (2.23c).
Cela implique que dans un milieu opti-
quement épais, l’algorithme va passer
du temps à sommer des contributions
à la luminance en sinit, contributions
dont la plupart seront très faibles (à
moins que les zones contribuant réelle-
ment à éclairer le point initial soient
éloignées).
Diminuer k̂a sous ka n’est pas une so-
lution. Le long du chemin, Π garde la
même espérance quel que soit k̂a, par
contre si k̂a est faible devant ka cela
fait augmenter la variance de W .

Vis-à-vis de l’utilisation exclusive
d’une roulette russe, on peut effectuer la
même étude que précédemment. On se pla-
cera dans le cas le plus général d’une roulette
russe à termes modifiés (la 4e proposition de
la section 2.2.3).

On pose I ′arr = min{Iarr ; Im}, alors ∀i ∈ N∗ :

Πi =





(
i∏

j=1

1
Prec,j

kn(Ŝj)
k̂a(Ŝj)

)
si i < I ′arr

0 si i > I ′arr

(2.25a)

Cpi =





(
i−1∏

j=1

1
Prec,j

kn(Ŝj)
k̂a(Ŝj)

)
θabs,rec i

Prec,i

ka(Ŝi)
k̂a(Ŝi)

si i < I ′arr

(
i−1∏

j=1

1
Prec,j

kn(Ŝj)
k̂a(Ŝj)

)
θabs,arr i

Parr,i

ka(Ŝi)
k̂a(Ŝi)

si i = I ′arr < Im

i−1∏

j=1

1
Prec,j

kn(Ŝj)
k̂a(Ŝj)

si i = I ′arr = Im

0 si i > I ′arr

(2.25b)

Wpi =
{
feq(Ŝi) si i < Im

F̃ (sm) si i > Im
(2.25c)

donc

W =
I′arr−1∑

i=1

(
i−1∏

j=1

1
Prec,j

kn(Ŝj)
k̂a(Ŝj)

)
θabs,rec i

Prec,i

ka(Ŝi)
k̂a(Ŝi)

feq(Ŝi) +
(I′arr−1∏

i=1

1
Prec,i

kn(Ŝi)
k̂a(Ŝi)

)
×

(
H(Iarr < Im)θabs,arr Iarr

Parr,Iarr

ka(ŜIarr )
k̂a(ŜIarr )

feq(ŜIarr ) + H(Iarr > Im)F̃ (sm)
)

(2.25d)
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Le comportement de la variable aléatoire W et le coût de l’algorithme qui la génère vont
dépendre de l’expression détaillée des Parr,i, Prec,i, θabs,rec i, et θabs,arr i. Par exemple, avec la
proposition faite en (2.22), l’expression de W se précise comme :

W =
I′arr−1∑

i=1

(
i−1∏

j=1
sgn
(
kn(Ŝj)

)ka(Ŝj) + |kn(Ŝj)|
ka(Ŝj) + kn(Ŝj)

)(
1− sgn

(
kn(Ŝi)

))ka(Ŝi)
k̂a(Ŝi)

feq(Ŝi) +

(I′arr−1∏

i=1
sgn
(
kn(Ŝi)

)ka(Ŝi) + |kn(Ŝi)|
ka(Ŝi) + kn(Ŝi)

)(
H(Iarr < Im)feq(ŜIarr ) + H(Iarr > Im)F̃ (sm)

)
(2.26)

Si k̂a > ka (au moins aux positions de collisions Ŝi) cette expression se réduit à :

W = H(Iarr < Im)feq(ŜIarr ) + H(Iarr > Im)F̃ (sm) (2.27)

Plutôt que de faire la moyenne entre les va-
leurs de feq à différentes positions de collisions
échantillonnées, on cherche à affecter à W la
valeur de feq ou F̃ (sm) en une seule position
(la position d’arrêt du suivi de photon). On
peut alors s’attendre à ce que la variance de
W soit plus élevée que ce qu’on aurait obtenu
avec un partitionnement de l’énergie.

Plus en détails, en suivant la proposition
(2.22) :

— Si k̂a majore ka en tout point, la proba-
bilité que le suivi de photon arrive jus-
qu’à une abscisse curviligne s égale la
transmitivité de s vers sinit . Si le milieu
est optiquement épais, l’algorithme se
terminera donc plus vite que si on avait
utilisé un partitionnement de l’énergie.

— Si k̂a � ka, la probabilité que le suivi
de photon atteigne une certaine abscisse
curviligne suit une loi exponentielle de
coefficient d’extinction k̂a/2.

— Si au cours d’un suivi de photon on ob-
tient k̂a < ka à certaines positions de
collisions, W devient une moyenne pon-
dérée entre la luminance d’équilibre à
ces positions et la luminance d’équilibre
à la position d’arrêt. Les coefficients de
pondération alternent en signe, et le
total de pondération des collisions res-
tantes augmente en valeur absolue à
chaque collision. Ce comportement est
susceptible faire augmenter la variance
de W .

Une autre proposition pour l’expression
de Parr , Prec, θabs,rec, et θabs,arr est donnée à

la section 2.4.

Roulette russe déclenchable : Une ap-
proche pour combiner les avantages du parti-
tionnement de l’énergie et de la roulette russe
est de commencer le suivi de photon en parti-
tionnant l’énergie lors des collisions, puis de
passer en roulette russe. Le critère de change-
ment est généralement un seuil sur le total de
pondération des collisions restantes.

••••La figure 2.2 donne un exemple de l’évo-
lution de π et d’un échantillon de cp pour
l’estimation de f(sinit). Deux façons de cal-
culer la somme des termes d’émission et de
collision nulle sont comparées : une roulette
russe analogue (applicable dans l’exemple de
la figure), et une roulette russe analogue dé-
clenchable précédée d’un partitionnement de
l’énergie.

Une remarque peut être faite au vision-
nage de cette figure : il est moins pénalisant
d’avoir un k̂a trop élevé si on utilise un parti-
tionnement de l’énergie plutôt qu’une roulette
russe. Dans les deux cas, plus k̂a est grand plus
chaque suivi de photon comportera de colli-
sions et nécessitera donc de temps de calcul.
Par contre, quand on utilise un partitionne-
ment de l’énergie, f(sinit) est estimée comme
une somme de contributions venant de plu-
sieurs points du segment [sinit ; sm] ; et plus k̂a
est grand, plus l’ensemble des points contri-
buteurs est raffiné, et donc plus l’estimation
de f(sinit) est précise. En roulette russe on ne
garde que la contribution du dernier point de
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0
ka

k̂a serré

k̂a lâche

sinit sm

eototale = 3,0

(a) Profils du coefficient d’absorp-
tion et des coefficients d’absorption
majorés utilisés dans cet exemple

0

1

sinit sm

π

(b) 1 photon lancé, k̂a serré

0

1

sinit sm

π

(c) 1 photon lancé, k̂a lâche

0

1

π

0

1

sinit sm

cp

(d) 16 photon lancés, k̂a serré

0

1

π

0

1

sinit sm

cp

(e) 16 photons lancés, k̂a lâche

Figure 2.2 – Évolution, lors du calcul de f dans une situation décrite à la sec-
tion 2.1.2 page 76, du total de pondération des collisions restantes π en fonc-
tion de l’abscisse curviligne s, π étant calculé avec 1 ou 16 photons lancés.

Dans les graphes de (b) à (e), c’est une roulette russe analogue qui à été utilisée.
La courbe bleue donne la transmitivité exacte de s vers sinit, la courbe

rouge donne π moyenné entre les photons lancés, et s’il y en a plusieurs les
courbes roses fines donnent π pour chaque photon. Les marques noires fines
indiquent les points de collision, réelle ou nulle, où ka a dû être calculé. Les
marques rouges fines indiquent ceux où feq(s) entre dans le calcul de f(sinit).
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̟
0

1

sinit sm

π

(f) 1 photon lancé, k̂a serré

̟
0

1

sinit sm

π

(g) 1 photon lancé, k̂a lâche

̟
0

1

π

0

1

sinit sm

cp

(h) 16 photons lancés, k̂a serré

̟
0

1

π

0

1

sinit sm

cp

(i) 16 photons lancés, k̂a lâche

Figure 2.2 – Dans les graphes de (f) à (i), c’est une roulette russe déclenchable qui a
été utilisée. Avant que cette roulette ne soit déclenchée, on utilise un partitionnement
de l’énergie ; la roulette se déclenche quand π passe en dessous d’un seuil $ (fixé à 0,2).

La hauteur des marques rouges est proportionnelle à la pondération asso-
ciée à feq(s) dans le calcul de f(sinit). Certaines marques se superposent.

Figure inspirée de la publication [89].
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collision choisi, donc l’estimation de f(sinit)
ne s’améliore pas quand k̂a augmente.

Il faut cependant garder à l’esprit que dans
un calcul Monte-Carlo concret de transfert
radiatif, l’estimation de f(sinit) entre généra-
lement dans un processus d’estimation plus
large, comme par exemple celui d’un terme
source radiatif ; alors f(sinit) devient dépen-
dante de paramètres choisis antérieurement,
comme par exemple une direction d’arrivée en
un point. Dans ce cas il n’est pas très utile
d’avoir une estimation ponctuelle très précise
de f(sinit) pour un choix particulier de para-
mètres antérieurs, car l’estimation finale com-
prendra une part de variance issue de l’échan-
tillonnage de ces paramètres. L’avantage sus-
explicité du partitionnement de l’énergie par
rapport à la roulette russe est alors plus faible.

2.3.2 Avec diffusion
••••Les Algorithmes à Collisions Nulles res-
tent parfaitement fonctionnels en présence de
diffusion. Simplement, il faut tenir compte des
termes de diffusion dans les équations inté-
grales de transport.

En présence de diffusion pure, la transfor-
mation à appliquer aux écritures précédentes
de ce chapitre pour obtenir les expressions in-
tégrales appropriées est évidente : il suffit de
remplacer le coefficient d’absorption ka par le
coefficient de diffusion kd, et le terme d’émis-
sion thermique kafeq par le terme source de

diffusion. Dans un milieu isotrope, ce terme
s’écrit kd(~r)

∫
4π d~u′ Φ(~r; ~u · ~u′)f(~r; ~u′).

Si on a en même temps diffusion, absorp-
tion, et émission, plusieurs approches sont a
priori possibles. La 1re, la plus efficace, est
de tenir compte des 3 contributions (d’ab-
sorption/émission, de diffusion, et de collision
nulle) dans le terme d’extinction et dans le
terme source de l’équation de transport. Du
point de vue algorithmique, l’émission et la
diffusion entrante seront alors pris en compte
simultanément. La 2e approche consiste à
d’abord générer des chemins optiques de dif-
fusion en tenant compte uniquement du ca-
ractère diffusant du milieu, puis d’appliquer
un algorithme adapté aux situations d’absorp-
tion/émission seule le long de ces chemins pour
estimer f en leur origine ; un ACN peut facili-
ter l’une de ces étapes, ou même les 2. Dans
ce cas, la variable s utilisée dans les précé-
dentes formulations de f en absorption/émis-
sion devient l’abscisse curviligne le long de
chaque chemin optique de diffusion. On sait
qu’une approche consistant à traiter ainsi sé-
quentiellement la diffusion puis l’absorption
est tout-à-fait valable ; il existe d’ailleurs des
démonstrations basées sur les ACNs de ce ré-
sultat [81]. Elle est cependant peu efficace, car
on commence par générer des chemins optiques
de diffusion destinés à être utilisés seulement
partiellement ensuite par la prise en compte
de l’absorption (à moins que le milieu soit
optiquement peu épais).

••••On s’intéresse ici uniquement à la 1re approche. En présence de diffusion, d’absorption
et d’émission thermique, et dans un milieu isotrope, l’équation de transport s’écrit sous forme
statistique :

f(~r; ~u) = E
(
k̂t(~r − S~u) exp

(
−
∫ S
s

ds′ k̂t(~r − s′~u)
)

pS(S)

(
H(S < sm)

(
ka(~r − S~u)
k̂t(~r − S~u)

feq(~r − S~u)
︸ ︷︷ ︸

terme d’émission

+ kd(~r − S~u)
k̂t(~r − S~u)

Φ(~r − S~u; ~U ′ · ~u)
p~U ′|S(~U ′)

F̃ (~r − S~u; ~U ′)

︸ ︷︷ ︸
terme de diffusion

+

kn(~r − S~u)
k̂t(~r − S~u)

F̃ (~r − S~u; ~u)
︸ ︷︷ ︸

terme de collision nulle

)
+ H(S > sm)F̃ (~r − sm~u; ~u)

))
(2.28)

où k̂t = kt + kn = ka + kd + kn, et S et ~U ′ sont deux variables aléatoires à valeurs respectivement
dans R+ et S (R3;~0; 1).

Afin de faire diminuer la variance d’un estimateur de f(~r; ~u) basé sur l’expression (2.28),
selon ce que l’on a déduit au chapitre 1.5.3 il peut être judicieux de choisir :
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— S comme une longueur d’extinction obéissant à une loi exponentielle de coefficient k̂t,
c’est-à-dire que FS(s) = 1− exp

(
−
∫ s

0 ds′ k̂t(s′)
)
,

— ~U ′ comme une direction de diffusion obéissant à la fonction de phase de diffusion, c’est-à-
dire que p~U ′|S(~u′) = Φ(~r − S~u; ~u · ~u′),

auquel cas l’expression (2.28) se simplifie en :

f(~r; ~u) = E
(

H(S < sm)
(
ka(~r − S~u)
k̂t(~r − S~u)

feq(~r − S~u) + kd(~r − S~u)
k̂t(~r − S~u)

F̃ (~r − S~u; ~U ′) +

kn(~r − S~u)
k̂t(~r − S~u)

F̃ (~r − S~u; ~u)
)

+ H(S > sm)F̃ (~r − sm~u; ~u)
)

(2.29)

••••Reste à faire un choix algorithmique
pour calculer la somme des contributions de
l’émission, de la diffusion entrante, et des col-
lisions nulles. Nous ne détaillerons pas ici tout
ce qui peut être mis au point et intéressant
du point de vue calculatoire : les possibilités
sont nombreuses, bien plus que lorsque le mi-
lieu n’est pas diffusant. Néanmoins, la section
suivante présente un cas académique de trans-
fert radiatif avec un milieu chaud absorbant et
diffusant ; l’algorithme de Monte-Carlo à colli-
sions nulles qui est utilisé pour les calculs est
détaillé, offrant un exemple d’implémentation
pratique.

Quoi qu’il en soit, il est important de no-
ter qu’on utilise rarement un partitionnement
de l’énergie pour calculer la somme du terme
de diffusion entrante et du terme de collision
nulle. En effet, chacun de ces termes est récur-
sif et demande de recommencer l’estimation de

f en un nouveau point de l’espace des phases.
Si on utilise un partitionnement de l’énergie
pour calculer leur somme, le suivi de photon ne
forme plus un chemin mais un arbre se divisant
en deux branches à chaque nouvelle collision.
Lorsqu’on traite un problème stationnaire (ce
qu’on fait en transfert radiatif la plupart du
temps), seules les conditions aux frontières ou
l’émission sont susceptibles de terminer une
branche du suivi de photon (car ce sont les
sources de lumière). Ainsi, si l’épaisseur op-
tique en diffusion du milieu est assez grande,
il se produit un phénomène de criticité : l’es-
pérance du nombre de branches d’un arbre
de suivi de photon devient strictement infinie,
et l’algorithme de calcul est alors susceptible
de ne pas pouvoir se terminer. Une possibilité
évoquée comme perspective, page 251, se situe
dans le même cas.

2.4 (∗) Exemple académique

Cet exemple est repris de la publication [43]. Il est académique, mais com-
prend une géométrie (simple) 3D avec des champs de propriétés anisothermes.
Il permet d’illustrer le comportement d’un algorithme à collisions nulles, et en
particulier sa sensibilité au choix du coefficient d’extinction majoré k̂t.

2.4.1 Introduction
Nous présentons dans cette section un cas

académique de calcul du transfert radiatif, qui
figure une chambre de combustion contenant
une flamme axisymétrique. Ce cas académique

a déjà été présenté dans plusieurs publica-
tions : [43, 50].

Dans cette étude, on considère un rayonne-
ment monochromatique. En effet, les spectres
d’absorption des gaz sont très complexes, et la
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prise en compte des propriétés spectrales des
milieux gazeux constitue un sujet de réflexion
à part entière. L’exemple que nous allons pré-
senter ici a pour seule vocation d’illustrer la
capacité à prendre en compte les hétérogénéi-
tés des milieux participants dans un calcul
par méthode de Monte-Carlo, en utilisant les
Algorithmes à Collisions Nulles ; on évitera
donc temporairement de traiter la complexité
spectrale.

Bien sûr on peut envisager que, gérées
simultanément, la difficulté de la prise en
compte des hétérogénéités géométriques et la
difficulté liée à la prise en compte des pro-
priétés spectrales fassent plus que s’ajouter.
En réalité, quand on utilise des méthodes de
Monte-Carlo basées sur des formulations inté-
grales avec collisions nulles c’est l’inverse. Les
Algorithmes à Collisions Nulles permettent
une gestion statistique des propriétés spec-
trales des milieux semi-transparents, gestion
qui dans le cas des gaz diminue considérable-
ment la complexité mathématique et numé-
rique liée au calcul de grandeurs énergétiques
(luminance, flux,. . .) . C’est la contribution
originale principale de la thèse de Mathieu
Galtier [49], et le point de vue statistique et
numérique pour la cinétique des gaz développé
dans ce manuscrit en est directement inspiré.
Cela sera développé dans la section suivante
2.5.

L’illustration faite ici a 2 objectifs :

— montrer une implémentation aboutie
des formes algorithmiques à Collisions
Nulles, permettant d’effectuer des bi-
lans radiatifs dans des milieux partici-
pants aux hétérogénéités un tant soit
peu complexes. Il s’agit de montrer
qu’elle fonctionne, et comment elle fonc-
tionne intérieurement.

— permettre de cerner les situations phy-
siques et numériques qui vont mettre
en difficulté l’approche algorithmique
à collisions nulles. Les difficultés ren-
contrées seront analysées à l’aune de ce
que nous avons expliqué dans la section
précédente.

2.4.2 Présentation du cas
d’étude

Le système considéré est l’intérieur d’un
cube de côté 2L, centré sur l’origine et aligné
sur les axes. Ses faces, opaques, réfléchissent
partiellement la lumière, de manière diffuse
et uniforme — on note ε leur absorptivité —
et elles sont à 0 K. Le milieu à l’intérieur est
hétérogène à la fois en température et en pro-
priétés optiques. Les champs de ka, kd, et feq
sont donnés par les formules :

ka(~r) = Fact(~r)× ka max (2.30a)
kd(~r) = Fact(~r)× kd max (2.30b)
feq(~r) = Fact(~r)× feq max (2.30c)

Fact(~r) = L− rx
2L

(
1−

√
ry

2 + rz
2

2L2

)

(2.30d)

ils singent une flamme axisymétrique selon
l’axe (Ox) — température et extinction maxi-
male le long de l’axe, et décroissant linéaire-
ment selon la distance à l’axe jusqu’à 0 dans
les coins. La figure 2.3 donne une représenta-
tion de ces champs. La fonction de phase de
diffusion Φ est considérée isotrope.

Pour rester simple, le champ d’extinction
majoré k̂t est pris uniforme. Étant donné que
ka et kd ont leur valeur maximale au même
endroit, kt max = ka max + kd max est la valeur
maximale du coefficient d’extinction et le ratio
% = k̂t/kt max indique si des valeurs négatives
de kn sont obtensibles (% < 1) ou non.

La grandeur que l’on veut calculer
est le terme source radiatif Sr(~r0) =∫

4π d~uhνc ka(~r0)
(
f(~r0; ~u) − feq(~r0)

)
en 2

points sondes ~r0 : (0; 0; 0) et (−L; 0; 0). L’ex-
pression de Sr ne contient que 2 dimensions
d’intégration en plus de l’expression de f , qui
en comporte pour sa part une infinité (c’est
une expression intégrale récursive) : on peut
donc s’attendre à ce que cela ne rajoute que
peu de difficultés.

2.4.3 Détails techniques sur le
calcul effectué

••••On utilisera le concept de Puissance
Nette Échangée présenté dans les manuscrits
[42,48,90]. C’est-à-dire que dans les formula-
tions intégrales de f(~r; ~u) précédemment dé-
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00,20,40,60,81
A

/
Amax

(a) Échelle de couleur utili-
sée dans les figures suivantes

-1 0 1
rx

/
L

-1

0

1

r z
/ L

(b) Coupe selon le plan (ry = 0)

-1 0 1
rx

/
L

-1

0

1

r z
/ L

(c) Coupe selon le plan (ry = −0.5)

-1 0 1
ry

/
L

-1

0

1

r z
/ L

(d) Coupe selon le plan (rx = 0)

-1 0 1
ry

/
L

-1

0

1

r z
/ L

(e) Coupe selon le plan (rx = −0.5)

Figure 2.3 – Coupes de la géométrie du cas d’étude de la section 2.4, montrant
les champs ka, kd et feq. A désigne au choix ka, kd ou feq (ils sont proportionnels).
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taillées, on substituera « feq(~R)− feq(~r0) » à
« feq(~R) », après quoi les dites formulations
expriment f(~r; ~u)− feq(~r0).

Une telle modification des écritures in-
tégrales est validée par la possibilité d’un
équilibre thermodynamique global à la tem-
pérature T (~r0). Dans ce cas, en tout point
~r, f(~r) = feq(~r) = feq(~r0). Cette modifica-
tion peut aussi s’assimiler à l’utilisation d’une
variable de contrôle (voir [38]).

Dans la suite de cette section on notera :

δf(~r; ~u) = f(~r; ~u)− feq(~r0) (2.31a)
δfeq(~r) = feq(~r)− feq(~r0) (2.31b)

••••Par ailleurs, nous mettons en œuvre l’en-
semble des astuces techniques détaillées dans
la section précédente. L’algorithme de suivi
de photon fonctionne globalement selon une
roulette russe déclenchable. Jusqu’à ce que le
total de pondération restante Π passe sous un
seuil fixé $, à chaque collision — dans le mi-
lieu ou sur les parois — l’énergie échangée est
partitionnée entre une partie émise et une par-
tie qui continue son chemin (avant diffusion,
collision nulle, ou réflexion). Ensuite et jus-
qu’à la fin du suivi du photon, on choisit entre
tous les événements possibles pour le photon
à chaque collision — émission, diffusion, ou
collision nulle si la collision a lieu dans le vo-
lume, ou émission ou réflexion si la collision
se fait aux parois.

•••Tant que l’algorithme partitionne
l’énergie, la fonction de distribution est éva-
luée, à l’intérieur du milieu, selon l’expression
suivante :

δf(~r; ~u) = E
(

H(S′ > sm) δF̃ (~r− sm~u; ~u) +

H(S′ < sm)
(
ka(~R′)
k̂t(~R′)

δfeq(~R′) +

H(Col = diff )
Pdiff

kd(~R′)
k̂t(~R′)

δF̃ (~R′; ~U ′) +

H(Col = nul)
Pnul

kn(~R′)
k̂t(~R′)

δF̃ (~R′; ~u)
))

(2.32a)

avec




S′ une VA à valeurs dans R+

et de fonction de répartition FS′(s′) =
1− exp

(
−
∫ s′

0 ds′′ k̂t(~r − s′′~u)
)

~R′ = ~r − S′~u
Col une VA à valeurs dans {diff ;nul},
de probabilités respectives Pdiff et Pnul
~U ′ une VA à valeurs dans la sphère unité
et de densité de probabilité 1/(4π)

δF̃ (~r; ~u) un estimateur de δf(~r; ~u)
(2.32b)

Lorsqu’on estime récursivement δf , le to-
tal de pondération restante est ainsi ajourné
selon la formule :

Πi+1 =





kd(~R′)
Pdiff k̂t(~R′)

Πi si Col = diff

kn(~R′)
Pnul k̂t(~R′)

Πi si Col = nul

(2.32c)
Pour choisir l’événement dont est origi-

naire la partie non-émise de la puissance échan-
gée (diffusion ou collision nulle), on fait le choix
d’utiliser les probabilités :

Pdiff = kd(~R′)
kd(~R′) + |kn(~R′)|

Pnul = |kn(~R′)|
kd(~R′) + |kn(~R′)|

(2.32d)

Lorsque le photon suivi passe par une pa-
roi, la fonction de distribution issue de la paroi
est calculée selon :

δf(~r; ~uout) = E
(

(1− ε) δF̃ (~r; ~Uin)− ε feq(~r0)
)

(2.33)
où ~Uin est une direction aléatoire dans {~u ∈
S (R;~0; 1), ~u · ~n 6 0}, de densité de probabi-
lité p~Uin

: ~u 7→ −~u·~nπ , où ~n est la normale à la
surface intérieure du cube. La part absorbée
est alors soustraite au total de pondération
restante selon la formule : Πi+1 = (1− ε)Πi.

•••À partir du 1er passage de Π en deça de $ une roulette russe est mise en place. Dans
le milieu semi-transparent, la fonction de distribution est dès lors évaluée selon l’expression
suivante :
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δf(~r; ~u) = E
(

H(S′ > sm) δF̃ (~r − sm~u; ~u) + H(S′ < sm)
(

H(Col = abs)
Pabs

θabs,abs
ka(~R′)
k̂t(~R′)

δfeq(~R′) +

H(Col = diff )
Pdiff

(
θabs,diff

ka(~R′)
k̂t(~R′)

δfeq(~R′) + kd(~R′)
k̂t(~R′)

δF̃ (~R′; ~U ′)
)

+

H(Col = nul)
Pnul

(
θabs,nul

ka(~R′)
k̂t(~R′)

δfeq(~R′) + kn(~R′)
k̂t(~R′)

δF̃ (~R′; ~u)
)))

(2.34a)

avec





S′ une VA à valeurs dans R+ et de fonction de répartition
FS′(s′) = 1− exp

(
−
∫ s′

0 ds′′ k̂t(~r − s′′~u)
)

~R′ = ~r − S′~u
Col une VA à valeurs dans {abs; diff ; nul},

de probabilités respectives Pabs, Pdiff et Pnul
~U ′ une VA à valeurs dans la sphère unité

et de densité de probabilité p~U ′|S′ = Φ(~R′; ~U ′ · ~u)
θabs,abs + θabs,diff + θabs,nul = 1
δF̃ (~r; ~u) un estimateur de δf(~r; ~u)

(2.34b)

Lors de l’estimation récursive de δf , la mise à jour du total de pondération restante suit donc la
formule :

Πi+1 =





kd(~R′)
Pdiff k̂t(~R′)

Πi si Col = diff

kn(~R′)
Pnul k̂t(~R′)

Πi si Col = nul

0 si Col = abs

(2.34c)

Nous avons, dans le cas de l’utilisation d’une roulette russe, choisi des probabilités plus
compliquées pour l’événement d’origine du photon, comparativement à ce que nous utilisons avec
un partitionnement de l’énergie. Si, au point ~R′ de collision du photon, on a kn(~R′) > −ka(~R′)/2,
on prend :

Pabs = ka(~R′) + kn(~R′)− |kn(~R′)|
k̂t(~R′)

θabs,abs = 1 + kn(~R′)− |kn(~R′)|
ka(~R′)

Pdiff = kd(~R′)
k̂t(~R′)

θabs,diff = 0

Pnul = |kn(~R′)|
k̂t(~R′)

θabs,nul = kn(~R′)− |kn(~R′)|
ka(~R′)

(2.34d)
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Sinon on choisit :

Pabs = kn(~R′)
2kn(~R′)

× 2kn(~R′) + ka(~R′)
2kd(~R′) + ka(~R′)

θabs,abs = k̂t(~R′)
2kn(~R′)

× 2kn(~R′) + ka(~R′)
2kd(~R′) + ka(~R′)

Pdiff =
kd(~R′)

(
ka(~R′)2 − 4kd(~R′)kn(~R′)

)

− 2kn(~R′)
(
kd(~R′)− kn(~R′)

)(
2kd(~R′) + ka(~R′)

)

θabs,diff = kd(~R′)
ka(~R′)

(
k̂t(~R′)

(
ka(~R′)2 − 4kd(~R′)kn(~R′)

)

− 2kn(~R′)
(
kd(~R′)− kn(~R′)

)(
2kd(~R′) + ka(~R′)

) − 1
)

Pnul = ka(~R′)2 − 4kd(~R′)kn(~R′)
2
(
kd(~R′)− kn(~R′)

)(
2kd(~R′) + ka(~R′)

)

θabs,nul =
k̂t(~R′)

(
ka(~R′)2 − 4kd(~R′)kn(~R′)

)

2ka(~R′)
(
kd(~R′)− kn(~R′)

)(
2kd(~R′) + ka(~R′)

) − kn(~R′)
ka(~R′)

(2.34e)

Ces choix paramétriques respectent les re-
lations suivantes, quelle que soit la valeur de
kn(~R′) relativement à ka(~R′) :

θabs,abs
Pabs

ka(~R′)
k̂t(~R′)

= 1

1
Pdiff

(
θabs,diff

ka(~R′)
k̂t(~R′)

+ kd(~R′)
k̂t(~R′)

)
= 1

1
Pnul

(
θabs,nul

ka(~R′)
k̂t(~R′)

+ kn(~R′)
k̂t(~R′)

)
= 1

(2.35a)
La relation suivante aussi est vérifiée, même
en cas d’utilisation d’un partitionnement de
l’énergie :

Pdiff

kd(~R′)
= Pnul

|kn(~R′)|
(2.35b)

Lorsque l’algorithme de suivi de photon
passe en roulette russe, ce changement de fonc-
tionnement a lieu aussi pour la prise en compte
de la réflexion aux parois. Ainsi, si le photon
suivi vient d’une paroi on estime désormais la
fonction de distribution par :

δf(~r; ~uout) = E
(

H(Col = refl) δF̃ (~r; ~Uin) +

H(Col = abs)×−feq(~r0)
)

(2.36a)

où Col est une variable aléatoire à valeurs
dans {abs; refl} de probabilités respectives ε
et 1− ε, et ~Uin est la même variable aléatoire

qu’en (2.33), quand on partitionnait l’éner-
gie. Le total de pondération restante est cette
fois-ci actualisé selon un schéma tout-ou-rien :

{
Πi+1 = Πi si Col = refl
Πi+1 = 0 si Col = abs (2.36b)

••••Le détail de l’implémentation qui a été
réalisée (en langage C++) de l’algorithme com-
plet détaillé au cours de cette section est donné
en annexe D.1.

2.4.4 Résultats et commentaires
L’algorithme expliqué à la section précé-

dente 2.4.3 a été testé avec une série de valeurs
pour les paramètres précisant la situation phy-
sique expliquée précédemment. Les résultats
sont présentées dans les figures de 2.4 à 2.13.

Dans ces figures, on s’intéresse à l’évolution
de :

— la variance de l’estimateur de Sr(~r0)
généré, notée Var(W ),

— le nombre moyen de points de collision
dans le milieu durant chaque estimation
ponctuelle de Sr(~r0), noté recp. Cette
estimation se fait en effet en construi-
sant un chemin optique passant par ~r0.
Les collisions sur les parois ne sont pas
comptées dans recp. À chaque point de
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Figure 2.4 – Tests de l’algorithme présenté à la section 2.4.3, en fonction du coefficient
d’extinction majoré k̂t = % kt max . Les parois sont noires (ε = 1), le point sonde est le

milieu du cube (~r0 = (0; 0; 0)), et l’algorithme fonctionne en roulette russe pure ($ = 1).
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Figure 2.5 – Tests de l’algorithme présenté à la section 2.4.3, en fonction du coefficient d’ex-
tinction majoré k̂t = % kt max . Les parois sont totalement réfléchissantes (ε = 0), le point sonde
est le milieu du cube (~r0 = (0; 0; 0)), et l’algorithme fonctionne en roulette russe pure ($ = 1).
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Figure 2.6 – Tests de l’algorithme présenté à la section 2.4.3, en fonction du coefficient
d’extinction majoré k̂t = % kt max . Les parois sont noires (ε = 1), le point sonde est sur
une paroi (~r0 = (−L; 0; 0)), et l’algorithme fonctionne en roulette russe pure ($ = 1).
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Figure 2.7 – Tests de l’algorithme présenté à la section 2.4.3, en fonction du coefficient
d’extinction majoré k̂t = % kt max . Les parois sont noires (ε = 1), le point sonde est le milieu
du cube (~r0 = (0; 0; 0)), et l’algorithme fonctionne en roulette russe déclenchable ($ = 0,1).
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Figure 2.8 – Tests de l’algorithme présenté à la section 2.4.3, en fonction du coefficient
d’extinction majoré k̂t = % kt max . Les parois sont noires (ε = 1), le point sonde est sur une
paroi (~r0 = (−L; 0; 0)), et l’algorithme fonctionne en roulette russe déclenchable ($ = 0,1).
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Figure 2.9 – Tests de l’algorithme présenté à la section 2.4.3, en fonction du
coefficient d’extinction majoré k̂t = % kt max . Les parois sont totalement ré-
fléchissantes (ε = 0), le point sonde est sur une paroi (~r0 = (−L; 0; 0)),
et l’algorithme fonctionne en roulette russe déclenchable ($ = 0,1).
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(b) Idem (a), mais avec % = 5

Figure 2.10 – Tests de l’algorithme présenté à la section 2.4.3, en fonc-
tion du seuil de déclenchement de la roulette russe. Les parois sont noires

(ε = 1) et le point sonde est le milieu du cube (~r0 = (0; 0; 0)).

collision dans le milieu, il faut déter-
miner les propriétés locales ka, kd et
feq.

Ce qui est noté dans les figures « diff. ap-
prox. » est une approximation de la difficulté
du calcul. Celle-ci est prise comme égale au
produit de Var(W ) et de recp, car :

— Le nombre d’échantillonnages d’un es-
timateur nécessaires pour obtenir une
précision donnée est proportionnel à la
variance. Ceci est une propriété géné-
rale de la méthode de Monte-Carlo.

— La difficulté de calcul est considéré pro-
portionnelle à recp. Cela veut dire que

la majorité de l’effort computationnel
est dépensé à calculer les propriétés lo-
cales du milieu.
On aurait pu raisonner différemment.
Par exemple si on considère que le
calcul d’intersection rayon/géométrie
est le plus coûteux, informatiquement
parlant, il aurait fallu comptabiliser le
nombre de recours à ce calcul plutôt
que la grandeur recp choisie.

Ces grandeurs, Var(W ), recp et Var(W )×
recp sont considérées dans leur évolution selon
les paramètres algorithmiques :

— k̂t, le coefficient d’extinction majoré,
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(b) Idem (a), mais avec % = 5

Figure 2.11 – Tests de l’algorithme présenté à la section 2.4.3, en fonction du
seuil de déclenchement de la roulette russe. Les parois sont totalement réflé-
chissantes (ε = 0) et le point sonde est le milieu du cube (~r0 = (0; 0; 0)).

défini à partir de %,
— $, le seuil de déclenchement de la rou-

lette russe,

pour quelques jeux des paramètres (ka max ;
kd max ; ε;~r0).

Quelques remarques sur les résultats :

— Quand l’algorithme fonctionne en rou-
lette russe pure ($ = 1), et tant que k̂t
est bien un majorant de kt :

— k̂t n’a aucune influence sur la va-
riance de l’estimateur obtenu,

— le nombre de collisions dans le
milieu, réelles ou fictives, est pro-
portionnel à k̂t.

C’était attendu, compte-tenu de ce
qu’on a pu expliquer au cours de la
section 2.3.

— Il est plus grave de choisir un k̂t trop
petit quand l’extinction est majoritai-
rement dûe à de la diffusion.
Il faut probablement y voir une consé-
quence des choix algorithmiques dé-
taillés que nous avons fait, dans l’ex-
pression des Pevent et des θabs,event.
Nous avons en fait suivi la 4e proposi-
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(b) Idem (a), mais avec % = 5

Figure 2.12 – Tests de l’algorithme présenté à la section 2.4.3, en fonc-
tion du seuil de déclenchement de la roulette russe. Les parois sont

noires (ε = 1) et le point sonde est sur une paroi (~r0 = (−L; 0; 0)).

tion de la section 2.2.3, en essayant d’ob-
tenir un estimateur de f de variance
nulle en cas d’équilibre thermodyna-
mique global, comme cela est suggéré
dans le début de la section 2.3.

Cet objectif de variance nulle n’était
qu’un guide pour la construction des
Pevent et des θabs,event

3. Mais il nous a
fait placer des contributions de l’émis-
sion thermique dans les termes récur-
sifs (de collision nulle et de diffusion),

de sorte que si k̂t se révèle trop pe-
tit, des termes d’émission thermique
puissent se compenser entre les diffé-
rents points de collision échantillonnés
successivement. Si k̂t se révèle trop pe-
tit, on rogne prioritairement sur la pro-
babilité de choisir un événement d’ab-
sorption (voir les détails de la section
précédente), en espérant une compensa-
tion dans les collisions suivantes. Mais
si kd � ka, si k̂t est trop petit cette
astuce n’est rapidement plus utilisable.

3. D’ailleurs, le formalisme en PNE garantit à lui seul la nullité systématique de notre
estimateur de Sr(~r0) en cas d’équilibre thermodynamique global.
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(b) Idem (a), mais avec % = 5

Figure 2.13 – Tests de l’algorithme présenté à la section 2.4.3, en fonction
du seuil de déclenchement de la roulette russe. Les parois sont totalement ré-
fléchissantes (ε = 0) et le point sonde est sur une paroi (~r0 = (−L; 0; 0)).

— Utiliser un partitionnement de l’éner-
gie permet parfois, comme annoncé en
section 2.3, de diminuer la pénalité (en
efficacité algorithmique) provoquée par
une trop large majoration de kt. Mais
c’est loin d’être toujours le cas.
Par ailleurs, la pénalité provoquée
par une majoration insuffisante de kt
semble plus grande quand on utilise un
partitionnement de l’énergie.

— Si on utilise une roulette russe déclen-

chable, il n’est pas utile d’attendre
d’avoir très fortement entamé le total
des pondérations restantes Π pour dé-
clencher la roulette russe. 0,1 est une
valeur suffisamment basse pour $ dans
toute notre campagne de tests.

••••Le lecteur que les choix algorithmiques
dans les ACNs intéressent pourra continuer
par lire par exemple les publications [43,89].
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2.5 ACNs et estimation de l’extinction

2.5.1 Intérêt (pour nous) de cette démarche

Dans les sections précédentes, nous montrions comment les « algorithmes à
collisions nulles » permettent de gérer la variabilité du coefficient d’absorption (ou
de diffusion), quand on calcule le transfert radiatif par MMC. Dans la formulation
intégrale sans collisions nulles de l’équation de transfert radiatif (1.43) (ou plus
simplement (2.4)), le terme exponentiel d’intégrale provenant de la loi de Beer
est susceptible de gêner. L’addition de collisionneurs fictifs permet de traiter ce
terme directement dans tout algorithme de Monte-Carlo estimant une grandeur
radiative. On évite ainsi toutes les approximations consistant à mailler le domaine
pour évaluer l’épaisseur optique le long du chemin.

Mais dans ces raisonnements, on a toujours supposé que le coefficient d’extinc-
tion kt était connu. La seule question était sa présence, sous forme intégrale, à
l’intérieur de l’exponentielle. En cinétique des gaz kt sera inconnu. En effet, comme
les molécules d’un gaz collisionnent entre elles, la fréquence de collision pour une
molécule donnée dépend de la fonction de distribution, et donc de la solution du
problème que l’on voudra calculer.

Dans son travail de thèse [49], Mathieu Galtier a détaillé une partie de la
démarche que nous allons proposer pour la cinétique des gaz. L’objet d’étude de
M. Galtier était le transfert radiatif dans les milieux gazeux semi-transparents.
Il considérait certes que le coefficient d’extinction était connaissable en entrée,
parce que fonction seulement des conditions thermodynamiques du gaz supposées
connues, mais sa problématique était que ce coefficient d’extinction était très
difficilement pré-calculable. En effet, dans un gaz, le coefficient d’absorption est la
somme des contributions de très nombreuses transitions entre états énergétiques
internes des molécules (typiquement une centaine de millions). M. Galtier a alors
choisi d’écarter l’idée d’une évaluation préalable de ka et de kt, et il a vu dans les
ACNs un moyen de faire traiter la sommation des contributions des transitions
par l’algorithme de Monte-Carlo lui-même. L’idée est globalement la même que
celles des ACNs usuels ; mais au lieu d’échantillonner seulement un espace de
chemins optiques contenants des collisions nulles, on échantillonne un espace de
dimension plus élevé, résultant d’un produit de l’espace des chemins et de l’espace
des transitions.

Nous allons, dans cette section, reprendre ce propos de M. Galtier. Nous
allons d’abord introduire la physique et la problématique de calcul auquel il s’est
confronté — afin que le lecteur saisisse le contexte, même si c’est un peu long.
Ensuite nous introduirons sa proposition méthodologique. Partant de tout ce que
nous avons précédemment expliqué sur les ACNs, cette étape finale sera en fait
très courte.
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2.5.2 Situation du travail de Mathieu Galtier
Comme expliqué et montré dans les parties précédentes de ce chapitre, les ACNs

permettent d’outrepasser les difficultés liées au calcul numérique par méthode de
Monte-Carlo du transfert radiatif (du transport corpusculaire, de façon plus géné-
rale) dans les milieux participants aux propriétés optiques hétérogènes — excepté
l’indice de réfraction. Par ailleurs, le travail de thèse de Patrice Pérez [90], effectué
en collaboration entre le centre RAPSODEE, l’IRIT 4, et le LAPLACE, avait mon-
tré ce que pouvaient représenter les apports des outils conceptuels et informatiques
de la communauté de la synthèse d’image pour gérer la complexité géométrique des
problèmes rencontrés en transfert radiatif (voir aussi la publication [32]). Pour la
majorité des gens utilisant les méthodes de Monte-Carlo pour calculer le transfert
radiatif dans des milieux isotropes et non-uniformes en équilibre thermodynamique
local et à indice de réfraction constant, sans tenir compte de la polarisation, la
gestion de la complexité géométrique des surfaces et des hétérogénéités optiques des
milieux semi-transparents ne représente plus une difficulté dès lors que l’on dispose
de ressources informatiques bureautiques modernes. Les difficultés qui restent sont
plutôt :
— la gestion des milieux optiquement épais en diffusion, notoirement très difficile

pour les méthodes de Monte-Carlo,
— la connaissance et la prise en compte des propriétés diffusantes des milieux

semi-transparents,
— toute la complexité spectrale des milieux gazeux.
Ce dernier point constitue le sujet de la thèse de Mathieu Galtier, soutenue

récemment en Décembre 2014.

2.5.3 Problématique spectrale des milieux gazeux
2.5.3.1 Complexité du coefficient d’absorption

••••Dans les gaz de faible densité, l’absorption et l’émission de rayonnement
thermique est un phénomène se déroulant à l’échelle moléculaire. Un photon est
absorbé ou émis à l’occasion d’une transition d’une molécule entre deux états
internes, associés à des énergies différentes.

On écrit ainsi le coefficient d’absorption comme la somme des contributions
de toutes les espèces chimiques présentes. De même, on écrit la contribution à
l’absorption de chaque espèce chimique comme la somme des contributions de
toutes les transitions énergétiques que ses molécules sont susceptibles de subir.
Premièrement :

ka =
Nm∑

m=1
ηmσm (2.37a)

4. Institut de Recherche en Informatique de Toulouse
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où ka est le coefficient d’absorption en m−1, ηm est la concentration en l’espèce 5

m (en mol/m3 par exemple), et σm est la section efficace d’absorption/émission de
l’espèce m (ici en m2/mol). Ensuite :

σm =
Nt(m)∑

j=1
σm,j (2.37b)

où σm,j dénote la contribution de la transition j à la section efficace d’absorption de
l’espècem. Bien sûr, les sections efficaces dépendent de la fréquence du rayonnement
considéré.

••••Selon la physique quantique, l’énergie interne d’une molécule isolée ne peut
prendre qu’un ensemble discret de valeurs. Il s’ensuit qu’une molécule ne peut
émettre ou absorber un photon que si l’énergie de celui-ci correspond exactement à
une transition entre 2 de ses énergies internes discrètes possibles. Les contributions
de chaque transition au coefficient d’absorption devraient, suivant ceci, être des
raies d’épaisseur nulle sur l’échelle des fréquences.

Cela devrait a priori rendre l’absorption et l’émission du rayonnement dans les
gaz impossible. En fait, dans un gaz les raies d’absorption associées aux transitions
subissent chacune des élargissements. Ces élargissements peuvent être de 3 natures,
que nous ne détaillerons pas plus avant : l’élargissement naturel (dû à l’incertitude
quantique), l’effet Doppler, et l’élargissement collisionnel (dû aux collisions entre
molécules).

Malgré ces élargissements, les raies restent flagrantes dans le spectre d’absorption
d’un gaz. Et étant donné le nombre de ces raies (jusqu’à plusieurs centaines de
millions !), le spectre d’absorption des gaz, même quand ils ne contiennent qu’une
seule espèce chimique, exhibe généralement un profil très torturé. La figure 7 en
donne un exemple.

••••Pour finir, les conditions thermodynamiques dans le gaz vont modifier le
spectre d’absorption associé à chaque espèce. En effet :
— La température va influer sur la distribution des molécules parmi les divers

états qu’elles peuvent occuper. Cela influe en effet sur l’absorptivité, car la
capacité d’une molécule à absorber ou émettre un photon dépend de son état
initial.

Remarque. Dans les chambres de combustion ou dans les atmosphères
planétaires, les collisions entre molécules sont beaucoup plus nombreuses que
leurs interactions avec le rayonnement. Comme ces collisions sont aussi des
occasions de modification de l’énergie interne des molécules, la répartition des
états des molécules est en permanence proche de l’équilibre transitoire imposé
par la cinétique des gaz : cela fait partie de l’équilibre thermodynamique local.

5. Dans la distinction des espèces chimiques, la nature isotopique compte aussi car la masse
des noyaux des atomes influe sur l’énergie associée aux états.
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Figure 2.14 – Spectre d’absorption d’un mélange gazeux à une pression
de 1 atm et une température de 1500 K, composé de 50 % de CO2 et de
50 % de N2

6. Ces spectres sont calculés 7 à partir de la base de données
CDSD-4000. Les mêmes données sont représentées à gauche avec une échelle
verticale linéaire et à droite avec une échelle verticale logarithmique, et entre
chaque ligne il y a un grossissement sur l’échelle horizontale d’un facteur 16.

6. Dans ce cas, presque toute l’absorption/émission de rayonnement thermique est due au
seul CO2.

7. Les profils de raie sont supposés Lorentzien, et sont tronqués à 7,5× 1011 Hz. Voir la table
2.1 page 118. Crédits : Mathieu Galtier.
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La micro-réversibilité entre absorption et émission (c’est-à-dire l’identité du
terme d’émission avec kafeq

(
T (~r; t)

)
) est une des conséquence de cet équilibre.

— La température, la pression, et la masse des molécules en présence vont
influer sur leur vitesse moyenne et leur fréquence de collision, et ainsi sur les
élargissements possibles des raies.

Ainsi, la section efficace d’absorption par une espèce chimique et isotopique va
dépendre des conditions thermodynamiques locales du gaz.

Au total, le coefficient d’absorption se calcule comme 8 :

ka(~r; ~u; t) =
Nm∑

m=1
ηm(~r; t)

Nt(m)∑

j=1
σm,j

(
T (~r; t); p(~r; t);

(
ηm′(~r; t)

)
m′∈[[1;Nm]]

)
(2.38)

La dépendance des σm,j envers la concentration en les différentes espèces est faible
devant leur dépendance envers la pression et plus encore devant leur dépendance
envers la température.

Pour aller plus loin dans la compréhension de l’absorption et de l’émission
thermique dans les gaz, le lecteur intéressé pourra se reporter au manuscrit de
thèse de M. Galtier [49], ainsi qu’aux ouvrages [24, 52,59,86] considérés comme
des références par les communautés scientifiques concernées.

2.5.3.2 Conséquences de cette complexité
en calcul numérique du transfert radiatif

••••Le calcul prédictif de grandeurs radiatives dans une situation impliquant un
milieu semi-transparent nécessite, a priori, de connaître le coefficient d’absorption
en tout point, et pour toute fréquence.

Pour obtenir ce coefficient d’absorption, on aura généralement recours à une
base de données spectroscopiques, appelée aussi base de données de transitions.
Ces bases sont construites depuis plusieurs années par une large communauté de
spectroscopistes. Leur principe est de rassembler un jeu de paramètres descriptifs
pour chacune des transitions ayant un impact significatif sur le spectre d’absorption
d’une espèce en particulier (les isotopes sont rassemblés par espèce chimique) ; et
ce, pour toutes les espèces chimiques ayant de l’importance sur le transfert radiatif
dans certaines applications. Chaque jeu de paramètres permet de calculer une
section efficace de transition σm,j dans une plage de pression et de température
donnée. La table 2.1 liste quelques-unes de ces bases de données spectroscopiques.

Ces bases de données ont en général plusieurs versions, et sont encore aujourd’hui
en cours d’édition, au fur et à mesure que de nouvelles transitions sont découvertes.

8. tant que l’on est en équilibre thermodynamique local
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Base de données Espèces Gamme de températures
CDSD-1000 CO2 . 1 000 K
CDSD-4000 CO2 . 4 000 K
Geisa 2011 50 molécules Basses températures
Hitemp CO2, H2O, CO, NO, HO . 1 000 K

Hitemp 2010 . 3 000 K
Hitran 2008 42 molécules Basses températuresHitran 2012 47 molécules

Table 2.1 – Principales bases de données spectroscopiques

Disposant de ces bases de données, on obtient le coefficient d’absorption
par la formule (2.38). Imaginons maintenant qu’on effectue un calcul de transfert
radiatif, par la MMC et en utilisant un ACN comme présenté précédemment dans
ce chapitre. Comme le coefficient d’absorption ka est évalué à chaque point de
collision testé, son calcul répété va peser fortement sur la dépense computationnelle
totale. Or, par exemple, la base de données CDSD-4000 recense 600 millions de
transitions pour le seul CO2 ! Il n’est donc pas raisonnable d’évaluer ka, à chaque
demande, par la formule (2.38).

Parmi les travaux traitant du calcul du transfert radiatif dans les milieux gazeux
(par méthodes de Monte-Carlo ou autres), 2 approches ont principalement été
retenues jusqu’à aujourd’hui :
— Pré-enregistrer le spectre d’absorption des différents constituants du mélange.

Pendant le calcul radiatif proprement dit, on n’aura plus qu’à aller chercher
les valeurs des σm depuis une mémoire informatique. C’est la base des calculs
qualifiés de raie par raie. Le calcul reste globalement gourmand en ressources
informatiques, car les spectres sont relativement lourds en mémoire et surtout
longs à produire.
Cette approche est qui plus est mise en difficulté dès que la température et/ou
la pression varient continûment. Dans ce cas, on ne peut pas pré-enregistrer
les spectres des σm pour toutes les conditions thermodynamiques présentes,
mais seulement pour quelques-unes ; pour les autres conditions possibles, on
devra procéder par interpolation. Dans ce cas, la maîtrise de la précision
devient une tâche ardue.

— Opter pour une gestion statistique du coefficient d’absorption. On considère
alors que sur différentes bandes spectrales, le coefficient d’absorption aura
une certaine répartition statistique si on choisit la fréquence de manière
uniforme. Dans l’expression des grandeurs radiatives, l’intégration spectrale
est ainsi remplacée par la combinaison d’une intégration spectrale partielle et
d’une intégration sur la distribution du coefficient d’absorption. C’est la base
de la méthode des k-distribution, ou des modèles globaux comme WSGG
(Weighted Sum of Gray Gazes) [117].
La présence d’hétérogénéités dans les conditions thermodynamiques est aussi
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un handicap pour ces méthodes. Il n’est en effet pas systématique que les
distributions des σm en 2 points de pression et température différentes soient
strictement corrélées, quand la fréquence varie.

2.5.4 Estimation de l’extinction dans un ACN
M. Galtier propose dans son manuscrit de thèse une méthode originale pour
gérer la complexité des spectres d’absorption des gaz, dans un calcul de transfert
radiatif. Son coût calculatoire est très faible comparativement aux calculs raie par
raie, et elle n’introduit aucune approximation.

Le principe en est basé sur l’équation intégrale (2.9), mais au lieu d’en déduire
l’équation statistique (2.10) ou (2.16) on déduit l’expression plus générale :

f(s) = E

H(S ′ < sm)

(
K̃a(S ′)
k̂a(S ′)

feq(S ′) + k̂a(S ′)− K̃a(S ′)
k̂a(S ′)

F̃ (S ′)
)

+

H(S ′ > sm)F̃ (sm)

 (2.39)

où :
— S ′ est une VA à valeurs dans [s; +∞[ et de fonction de répartition FS′(s′) =

1− exp
(
− ∫ S′s ds′′ k̂a(s′′)

)
, comme en (2.16),

— F̃ (S ′) est un estimateur de f(S ′), comme en (2.16),
— K̃a(S ′) est un estimateur de ka(S ′),
— sachant S ′, les VA F̃ (S ′) et K̃a(S ′) sont indépendantes.

Cela signifie que pour pouvoir estimer f(s), il n’est pas nécessaire d’être capable
de calculer ka (ou kd) en tout point, mais seulement de l’estimer.

La figure 2.15 propose une illustration d’un algorithme estimant f(s) à l’aide
de l’expression (2.39), et utilisant une roulette russe seule pour le choix du type
des événements de collisions.

Remarque. On franchit ici une étape supplémentaire par rapport à la démarche
initiale des Algorithmes à Collisions Nulles. Initialement, il s’agit d’être capable
d’estimer f(s) sans connaître exactement l’intégrale de ka le long d’un chemin
— l’épaisseur optique d’absorption —, mais seulement des valeurs ponctuelles de
ka ; ce qui aboutit à utiliser des estimations de l’épaisseur optique d’absorption.
Désormais, les valeurs ponctuelles de ka ne sont elles-mêmes qu’estimées ; cette
logique d’estimation de l’épaisseur optique est ainsi poussée à son paroxysme.

••••Cette capacité à utiliser un estimateur du coefficient d’absorption est une
aubaine : on peut en effet en construire un facilement à l’aide de l’équation (2.38).
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Figure 2.15 – Illustration, inspirée de la figure 2.1, du principe de fonc-
tionnement d’un algorithme échantillonnant des libres parcours avant
absorption, utilisant un estimateur K̃a du coefficient d’absorption ka.

Il y a une densité constante de collisionneurs, absorbants (carrés rouges) ou
fictifs (carrés vides bleus). Cependant, certains collisionneurs sont incertains
(carrés bleus avec croix rouge) : leur statut réel ou fictif n’est déterminé que
quand une collision a lieu à leur emplacement. Ensuite, le type de collision est
choisi selon les proportions de collisionneurs réels et fictifs qu’on a trouvées.

Il suffit de poser des probabilités de choix de molécules Pm et des probabilités
conditionnelles de choix de transitions P ′j|m et alors :

ka =
Nm∑

m=1
Pm

ηm
Pm

Nt(m)∑

j=1
P ′j|m

σm,j
P ′j|m

= E
(
ηM σM,J

PMP ′J |M

)
(2.40)

avec les variables aléatoires M et J vérifiant Pr(M = m) = Pm et Pr(J = j |M =
m) = P ′j|m. On peut donc choisir pour ka l’estimateur

K̃a = ηM σM,J

PMP ′J |M
(2.41)

Une particularité forte de la méthode proposée est, que la gestion de la com-
plexité spectrale de l’absorption se fait simultanément à la gestion des hétérogénéités
des conditions thermodynamiques. Ceci est une rupture par rapport aux précédentes
démarches de calcul numérique existantes en transfert radiatif.
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Dans la pratique, toute la difficulté se situe dans le choix des probabilités Pm
et P ′j|m, devant assurer une variance suffisamment faible pour K̃a.

On sait que si k̂a majore K̃a, on est assuré d’avoir l’estimation de f(s) dans
l’intervalle [inf Ft; supFt], où Ft = {feq(s), s ∈ [sinit ; sm]}∪U

F̃ (sm) ; cette contrainte
sur l’estimateur lui assure une faible variance. Donc si K̃a est susceptible de prendre
des valeurs très dispersées, une solution pour que l’algorithme converge bien est de
prendre une valeur élevée pour k̂a ; mais ce n’est pas une solution parfaite, car le
suivi de photon devient très laborieux parce qu’encombré de nombreuses collisions
nulles.

Il va donc falloir trouver un compromis entre 2 attitudes :
— Utiliser un choix rapide pour M et J , afin que l’échantillonnage de K̃a soit

beaucoup plus rapide que le calcul complet de ka par la formule (2.38).
— Choisir minutieusement les Pm et Pj|m, de sorte à diminuer la variance de

K̃a ou mieux encore à le majorer par une valeur proche de ka, pour éviter
une explosion de la variance de l’estimateur de f(s) ou de la proportion de
collisions nulles.

On peut aussi envisager d’utiliser un estimateur K̃a de ka de définition différente
à l’expression (2.41) ; par exemple on pourrait utiliser plusieurs transitions à la
fois.

Cette problématique occupe une partie du manuscrit de thèse de M. Galtier.
Je renvoie à cet écrit pour les résultats obtenus pour l’instant.

2.6 Les algorithmes à collisions nulles dans la
suite de ce manuscrit

••••Nous venons de voir que les algorithmes à collisions nulles permettent de
lever les difficultés qui émergent, lors d’un calcul du transfert radiatif par MMC,
de la complexité de l’expression de l’épaisseur optique d’extinction le long d’un
rayon. Cette complexité peut émerger :
— de la variabilité du coefficient d’extinction le long du rayon,
— de l’expression du coefficient d’extinction lui-même (une somme des contri-

butions d’un grand nombre de transitions dans le cas de M. Galtier).
Les ACNs nous permettent, dans les 2 cas, de gérer statistiquement la complexité
de l’épaisseur optique. Pour cela, leur principe est de faire virtuellement disparaître
la non-linéarité de la loi de Beer, en la transformant en récursivité. Dès lors,
l’épaisseur optique peut être échantillonnée comme les autres grandeurs, au cours
d’un algorithme de Monte-Carlo ordinaire.

En cinétique des gaz, la complexité de l’épaisseur d’extinction n’aura qu’une
seule source : l’extinction dépend de la solution elle-même. Cette complexité-là
synthétise et dépasse à elle-seule celles que nous avons rencontrées dans ce chapitre.
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Nous allons y remédier en augmentant encore la récursivité de nos algorithmes.
En fait, on appliquera strictement la démarche exposée dans cette section : nous
utiliserons un estimateur du coefficient d’extinction. Mais cette fois-ci, il sera
construit à partir de la fonction de distribution elle-même ! Les chapitres 3 et 4
montreront la validité d’une telle approche. Ils montreront aussi comment gérer la
source dans le terme collisionnel de Boltzmann ; car pour l’instant, nous n’avons
parlé que de l’extinction.
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Chapitre 3

Estimation
d’une fonction non-linéaire
d’une espérance statistique

Les utilisateurs de la méthode de Monte-Carlo admettent couramment que
la force principale de la méthode est sa capacité à combiner des espaces de
grande dimension. Mais ils admettent également que cela devient impossible dès
que la combinaison passe par une fonction non linéaire. Il n’y a aucun problème
à calculer la moyenne sur un espace 1 d’une fonction linéaire d’une moyenne
sur un espace 2 ; mais seulement dans le cas linéaire.

Cette apparente incapacité peut être contournée, pour les fonctions analy-
tiques. Le point central est d’estimer une puissance n entière d’une espérance
par le produit de n réalisations indépendantes. Nous reprendrons cette idée en
cinétique des gaz, en particulier pour tenir compte du terme source de l’équation
de Boltzmann, quadratique en la fonction de distribution.

3.1 Introduction
••••Au chapitre précédent, nous avons présenté les algorithmes à collisions nulles
(ACNs). Historiquement, ceux-ci ont été conçus comme une astuce algorithmique,
pour pouvoir échantillonner des longueurs de vol libre dans un milieu où le coefficient
d’extinction est variable. Mais d’un point de vue théorique, on peut les interpréter
comme une façon de gérer la non-linéarité de l’extinction vis-à-vis de son coefficient.
L’exponentielle d’intégrale, représentant l’extinction dans l’équation (1.43), est
démontée en un empilement infini d’intégrales que l’on sait gérer dans un calcul de
type Monte-Carlo.

Mais au stade actuel nous avons présenté cette approche d’une manière très
intuitive, en faisant appel à l’image de collisionneurs fictifs. En conséquence, le
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seul type de non-linéarité que ces ACNs peuvent gérer est le terme exponentiel
d’extinction, caractéristique de la loi de Beer.

Ce chapitre propose une approche plus générale pour calculer par MMC les
expressions se présentant sous la forme : « intégrale d’une fonction non-linéaire d’une
intégrale ». Ses fondements théoriques ne sont rien d’autre que les développements
en série entière et l’indépendance statistique. Au passage, cette approche permet
aussi d’expliquer et de formaliser les ACNs sous un angle radicalement différent.
Toutefois, comme dans cette thèse, à chaque fois que nous en aurons besoin, nous
utiliserons les ACNs tels que présentés au chapitre précédent, nous ne détaillons
pas ce travail de redite des ACNs dans le corps du manuscrit ; nous le reportons
en annexe B. Par contre, nous aurons besoin de la généralisation pour traiter la
non-linéarité du terme collisionnel.

En fait, dans les chapitres suivants de ce manuscrit, nous diviserons la non-
linéarité du terme collisionnel de Boltzmann en deux :
— l’extinction, dépendante de la fonction de distribution, sera gérée par un

ACN identique à ceux du chapitre précédent,
— le terme source sera géré grâce à l’approche généralisée présentée dans le

présent chapitre.
Ce chapitre va plus loin que ce qui est strictement nécessaire pour traiter le

terme source de l’équation de Boltzmann, qui est seulement quadratique en f . Mais
encore une fois, l’équation de Boltzmann d’origine, celle de la cinétique des gaz, est
pour nous une représentante de toutes les équations de Boltzmann non-linéaires.
Nous avons donc donné à ce chapitre une portée plus générale que le seul objectif
de traiter le terme source quadratique de Boltzmann.

••••La section 3.1 explique le type de difficultés numériques que l’on rencontre
avec la MMC lorsque deux espaces sont combinés par l’intermédiaire d’une fonction
non-linéaire. On commencera par un exemple concret, issu du génie des procédés
photobiochimiques. Puis on définira la question posée en toute généralité avant
d’entrer dans la section 3.2 qui détaillera la technique permettant de surmonter les
difficultés annoncées.

Enfin, les 2 dernières sections de ce chapitre exposeront des exemples où la
technique a été appliquée avec succès. Ils sont tirés des travaux de thèse de Jérémi
Dauchet [29] et d’Olivier Farges [44].

3.1.1 Grandeurs dérivées de la fonction de distribution :
le cas des photobioréacteurs

••••Dans les chapitres précédents, nous avons présenté plusieurs grandeurs
d’intérêt macroscopiques pour le physicien ou l’ingénieur confronté à un problème
de transfert radiatif ou de cinétique des gaz :
— la masse ou l’énergie totale contenue dans un volume donné,
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— le flux lumineux absorbé par une surface,
— la pression sur une surface,
— le flux de chaleur échangé entre une surface et un gaz. . .

Comme ces grandeurs ne sont que des intégrales de la fonction de distribution f
sur une partie de l’espace des phases, leur calcul, par une méthode de Monte-Carlo,
ne pose aucune difficulté supplémentaire par rapport au calcul de f elle-même.
Nous en avons discuté au chapitre au chapitre 1.

Les choses se corsent sensiblement lorsque l’on veut calculer des grandeurs
macroscopiques plus complexes, dépendant non-linéairement de f . Un problème
concret de ce type est celui rencontré par Jérémi Dauchet pendant sa thèse [29],
quand il a voulu calculer la productivité totale d’un photobioréacteur. Ce cas est
exposé partiellement ici, et ensuite dans la section 3.4.

••••Grossièrement résumé, le photobioréacteur étudié est une enceinte cylindrique
fermée dans laquelle on fait se multiplier des micro-organismes photosynthétiques,
dans un milieu aqueux mélangé en permanence. De ce milieu est constamment
extrait de la biomasse, pendant qu’il est suffisamment alimenté en eau, en CO2, en
autres nutriments, et en lumière pour que cette biomasse se renouvelle au plus vite.
Aujourd’hui, l’homogénéisation et l’optimisation des conditions thermochimiques
dans le réacteur (température, salinité, concentration en nutriments, concentration
en biomasse) pour maximiser la croissance des micro-organismes n’est plus une
difficulté : les technologies nécessaires sont totalement maîtrisées. Il n’en est hélas
pas de même pour son éclairage ; c’est l’objet de la thèse de J. Dauchet.

(a) Photobioréacteur « fait main »
Source : post du blog
www.inventgeek.com

(b) Photobioréacteur plan,
pour essais en laboratoire

Source : GEPEA 1

Figure 3.1 – Exemples de photobioréacteurs en milieu fermé

1. laboratoire GÉnie des Procédés Environnement et Agroalimentaire, UMR 6144

La lumière est la source primaire et unique d’énergie des micro-organismes
dans le réacteur. La géométrie de ce dernier est prévue pour que, sachant les
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propriétés optiques du milieu de croissance, l’absorption de la lumière fournie et
surtout la production subséquente de biomasse soient maximales. Ceci n’est pas
une tâche évidente, car le rendement de la photosynthèse est variable, et dépend en
particulier de l’éclairage local ; il n’y a donc pas proportionnalité entre l’éclairage
absorbé et la production finale. En résumé, la vraie grandeur d’intérêt est bien
la production totale de biomasse par le réacteur, qui n’est que l’intégrale sur le
volume du réacteur de la vitesse locale de production de biomasse, mais cette
dernière est une fonction non-linéaire de l’irradiance locale.

Cela s’écrit, avec Qx en kg/s la productivité totale en biomasse (matière sèche
organique) du réacteur :

Qx =
∫

V
vx(~r)d~r (3.1a)

où vx est la vitesse volumique locale de production de biomasse (en kg.m−3.s−1),
et V le volume réactionnel. Comme affirmé précédemment, vx(~r) est fonction :
— du type de micro-organismes présents (fixé)
— des conditions thermochimiques (uniformes)
— de l’irradiance. Plus exactement, vx(~r) est fonction de la vitesse volumique

locale d’absorption des photons, parfois notée A(~r) 2. Ces photons doivent
appartenir à une certaine fenêtre spectrale, appelée PAR — pour Photosyn-
thetically Active Radiation. A s’exprime ainsi comme :

A(~r) =
∫

PAR
dν ka(~r; ν)

∫

4π
d~u fν(~r; ~u; ν) (3.1b)

On note alors : vx(~r) = fvx
(
A(~r)

)
, où fvx est appelée la loi de couplage

cinétique.
Finalement :

Qx =
∫

V
d~r fvx (A(~r)) (3.1c)

=
∫

V
d~r fvx

(∫

PAR
dν ka(~r; ν)

∫

4π
d~u fν(~r; ~u; ν)

)
(3.1d)

où fvx est une fonction non-linéaire.

••••La détermination des conditions radiatives dans un photobioréacteur revêt
une importance particulière, dès qu’on veut améliorer son rendement.

Un éclairage inadéquat peut en effet entailler largement le rendement d’un
procédé photobioréactif. Si l’irradiance locale est trop faible, les micro-organismes
ne génèrent pas plus de biomasse par photosynthèse qu’ils n’en consomment par
respiration dans le même temps — ce 2e mécanisme est toujours présent —, et donc
ne produisent rien. Si l’irradiance est très élevée, les fonctions photosynthétiques

2. J. Dauchet utilise dans son manuscrit une notation différente : il note A pour la vitesse
spécifique locale d’absorption des photons, ce qui correspond ici à A/Cx où Cx est la concentration
locale massique en biomasse.
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saturent, produisant certes de la biomasse à un rythme maximal, mais perdant une
grande partie de l’énergie lumineuse reçue en chaleur inutile. Il y a donc bien un
optimum à chercher dans l’irradiance locale.

Un des prototypes étudiés par J. Dauchet, nommé le DiCoFluV, vise à une
optimisation du rendement total 3, en particulier par la recherche d’un bon éclairage.
Technologiquement parlant, il est conçu comme une enceinte cylindrique où la
lumière est amenée par des fibres optiques réparties dans tout le volume intérieur
(voir figure 3.7 page 149). Cette disposition vise d’une part à utiliser efficacement
le volume disponible : la surface d’entrée de la lumière est maximisée, pour que
l’on puisse travailler avec une faible densité de flux lumineux entrant. Cette faible
densité de flux est indispensable, car l’optimum de rendement photosynthétique
vis-à-vis de l’éclairage est situé généralement à une irradiance faible, du moins
comparativement à l’éclairage du jour. D’autre part, cette disposition des sources
de lumière vise à rendre l’irradiance la plus uniforme possible, près de l’optimum.

L’uniformité de l’irradiance vise à ce que le rendement photosynthétique soit
le meilleur en tout point. Mais elle est contradictoire avec la nécessité d’absorber
la lumière fournie. L’absorption se fait dans le volume de la suspension de micro-
organismes, et obligatoirement les points proches des entrées lumineuses seront
plus éclairés que ceux qui en sont éloignés. Il est bien sûr faisable d’assurer une
irradiance presque uniforme dans tout le volume : c’est le cas quand il y a peu
d’absorption dans le milieu réactionnel ; mais cette situation serait incompatible
avec la volonté de produire le plus possible avec la ressource lumineuse disponible.

Bref, la conception d’un photobioréacteur efficace, du point de vue de l’utilisation
de sa ressource lumineuse, est une tâche difficile ; et la difficulté porte essentiellement
sur la géométrie du réacteur et le placement des sources lumineuses, par leur
influence sur le champ d’irradiance. On ne saurait se dispenser du calcul de la
productivité totale du réacteur. Celle-ci s’exprime de façon générale avec la formule
(3.1d).

Au vu de la complexité du problème de transfert radiatif posé (diffusion multiple,
géométrie complexe, dépendance spectrale importante des propriétés optiques,
diffusion anisotrope,. . .), il semble raisonnable d’évaluer cette productivité par
la méthode de Monte-Carlo. Mais la présence de la loi de couplage cinétique,
non-linéaire, entre 2 intégrations, pose problème.

3.1.2 Problématique
Dans la suite de ce chapitre, nous opterons pour des notations plus génériques,

non-spécifiques aux photobioréacteurs.

••••Le problème global posé est celui de l’évaluation l’expression intégrale :

3. en opposition par exemple avec une optimisation du coût, ou une optimisation de l’encom-
brement
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Sf =
∫

U ~X

d~x f
(
~x;
∫

U~Y
(~x)

d~y g(~x; ~y)
)

(3.2)

où U ~X et U~Y (~x) sont des parties d’espaces euclidiens, et f et g sont 2 fonctions
quelconques à valeurs réelles (aucun rapport ici entre f et g et des fonctions de
distribution).

En introduisant ~X et ~Y 2 variables aléatoires, à valeurs dans U ~X et U~Y ( ~X) et
de densités de probabilité p ~X et p~Y | ~X , l’expression recherchée peut-être ré-exprimée
sous forme statistique :

Sf =
∫

U ~X

d~x p ~X(~x)wf
(
~x;
(∫

U~Y
(~x)

d~y p~Y | ~X(~y|~x)wg(~x; ~y)
))

= E
(
wf
(
~X; E| ~X

(
wg
(
~X; ~Y

))))
(3.3)

où wf (~x; z) = f(~x;z)
p ~X(~x) et wg(~x; ~y) = g(~x;~y)

p~Y | ~X(~y|~x) .
Remarquons d’abord que si f est une fonction affine 4 envers sa 2e variable, le

problème se simplifie. En effet, cela signifie qu’il existe 2 fonctions λ0 et λ1 telles
que f(~x; z) = λ0(~x) + λ1(~x)z, auquel cas on peut écrire :

Sf =
∫

U ~X

d~x
(
λ0(~x) + λ1(~x)

∫

U~Y
(~x)

d~y g(~x; ~y)
)

=
∫

U ~X

d~x
(
λ0(~x) + λ1(~x)

∫

U~Y
(~x)
p~Y | ~X(~y|~x)d~y wg(~x; ~y)

)

=
∫

U ~X

d~x
∫

U~Y
(~x)
p~Y | ~X(~y|~x)d~y

(
λ0(~x) + λ1(~x)wg(~x; ~y)

)

=
∫

U ~X

d~x
∫

U~Y
(~x)
p~Y | ~X(~y|~x)d~y f

(
~x;wg(~x; ~y)

)

=
∫

U ~X

p ~X(~x) d~x
∫

U~Y
(~x)
p~Y | ~X(~y|~x)d~y wf

(
~x;wg(~x; ~y)

)
(3.4a)

= E
(
wf
(
~X;wg

(
~X; ~Y

)))
(3.4b)

On retrouve ici la formulation intégrale d’un algorithme de Monte-Carlo tout-à-fait
standard.

Les choses se compliquent quand f n’est plus affine, car elle ne commute alors
pas avec l’intégration sur ~y comme montré plus haut. Il n’est alors a priori plus
possible d’exprimer Sf comme l’espérance d’un processus aléatoire.

••••La question pratique reste alors : comment évaluer Sf ? Notons pour la suite
Sg(~x) =

∫
U~Y

(~x) d~y g(~x; ~y) = E| ~X=~x

(
wg
(
~x; ~Y

))
, de sorte que Sf = E

(
wf
(
~X;Sg

(
~X
)))

.
En l’état, la formulation algorithmique qui se dégage est celle de l’algorithme 3.1.

Ce qui laisse plusieurs interrogations :

4. On dit très souvent « fonction linéaire » dans ce cas, même si cela ne correspond pas
tout-à-fait à la définition de la linéarité.
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Résultat : Une estimation (wf ; s2(wf )) de Sf
1 Σf ← 0 ;
2 Σf2 ← 0 ;
3 pour i← 1 à Nf faire
4 échantillonner ~X : on obtient ~xi ;
5 Σg ← 0;
6 pour j ← 1 à Ng faire
7 échantillonner ~Y : on obtient yj,i ;
8 wg j,i ← wg(~xi; ~yj,i) ;
9 Σg ← Σg + wg j,i ;

10 wg i ← Σg/Ng ;
11 wf i ← wf (~xi;wg i) ;
12 Σf ← Σf + wf i ;
13 Σf2 ← Σf2 + wf i

2 ;
14 wf ← Σf/Nf ;
15 s2(wf )←

(
Σf2

/
Nf − wf 2

)/
(Nf − 1) ;

Algorithme 3.1 : Algorithme naïf et biaisé pour le calcul de Sf

1. Comment évaluer l’erreur de calcul ?
2. Comment évoluera le temps de calcul ?
Les wg i sont des estimateurs sans biais des Sg(~xi), dont on peut estimer la

variance. Par contre, si f est non-linéaire en sa 2e variable, les wf(~xi;wg i) sont
des estimateurs en général biaisés de wf(~xi;Sg(~xi)). Pour s’en convaincre, on
pourra considérer le cas où wf(~xi; •) est strictement convexe (comme z 7→ z2, ou
l’exponentielle) (équivalent à « f(~xi; •) est strictement convexe ») ; la figure 3.2 en
donne une illustration. Dans ce cas, en posant Z une variable aléatoire à valeurs
réelles et de variance non-nulle, l’inégalité de Jensen affirme que E(wf(~xi;Z)) >
wf (~xi; E(Z)). La différence augmente quand la variance de Z augmente et quand
la convexité de wf (~xi; •) se creuse ; on ne connaît cependant pas de formule simple
et systématique pour la calculer.

Tant que wf(~xi; •) est continue en Sg(~xi), wf(~xi;wg i) reste néanmoins un
estimateur convergent de wf (~xi;Sg(~xi)), et donc le résultat de l’algorithme 3.1 tend
bien vers Sf quand Nf et Ng tendent vers l’infini. Au final :
— L’algorithme 3.1 donne une estimation s2(wf) non biaisée de la variance

de son résultat wf , comme tout algorithme de Monte-Carlo respectant la
constitution présentée au chapitre 1.3.1.

— Cet écart-type ne correspond cependant plus à une barre d’erreur sur la
grandeur calculée, car au bruit statistique se rajoute un biais non-quantifiable.

— Ce biais tend vers 0 quand Ng tend vers l’infini ; on ne sait toutefois pas
comment.
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x1

f(x1)

x2

f(x2)

x3

f(x3)

x4

f(x4)

x̄

f(x̄)

f(x)

Figure 3.2 – Illustration de l’inégalité de Jensen.
Soit une fonction strictement convexe f . Le barycentre d’une fa-
mille de points du graphe de f distincts et strictement positive-

ment pondérés est strictement au-dessus de ce graphe. La moyenne
des images par f d’une famille de plusieurs réels est donc stricte-
ment supérieure à l’image par f de la moyenne de cette famille.

D’où la non-commutativité de f avec la
prise de moyenne, ou l’espérance statistique.

— La complexité de l’algorithme n’est plus en Nf , mais en Nf ×Ng.

••••Pour le numéricien utilisateur de la MMC, la combinaison de ces 2 derniers
points est un gros défaut. À fins d’illustrations, revenons au cas du photobioréacteur
pré-cité.

Dans les travaux de J. Dauchet sur le prototype DiCoFluV, la méthode de
calcul choisie pour A(~r) était bien la méthode de Monte-Carlo. Elle permet de
prendre en compte la pleine complexité du problème radiatif (diffusion multiple
et anisotrope, géométrie complexe, propriétés spectrales) pour un coût computa-
tionnel réduit, et sans nécessiter de développement ou de validation spécifique au
cas d’étude. Comme affirmé au chapitre 1.3.1, cette capacité à rester simple et
moyennement coûteuse dans des situations très complexes est son principal intérêt.

Là, le calcul de A en un point ~r donné nécessitait environ 105 réalisations (consis-
tant chacune en l’échantillonnage d’un chemin optique, comme au chapitre 1.5)
pour atteindre une précision relative de 1 %. En utilisant des outils informatiques
issus de la communauté de la synthèse d’image, pour paralléliser les réalisations
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et surtout accélérer le calcul d’intersections rayon/géométrie — seule véritable
difficulté numérique présente dans le cas d’étude — ceci nécessitait environ 5
secondes sur un ordinateur de bureau usuel. Soit : un coût calculatoire parfaitement
acceptable dans le contexte du génie des procédés.

Seulement, pouvoir calculer A, et ainsi la productivité volumique vx, en tout
point du réacteur est certes très intéressant quand on le conçoit, mais ce n’est pas
la grandeur d’intérêt finale : c’est la productivité totale Qx. Pour l’obtenir, il faut
intégrer vx sur tout le volume réactionnel.

Dans le cas considéré, en prenant une démarche calquée sur l’algorithme 3.1,
l’expérience a montré qu’il fallait :

— 105 positions ~r de calcul de vx(~r) pour estimer Qx avec un écart-type de 1 %.
Si l’étape d’intégration volumique de vx(~r) est réalisée avec une méthode
déterministe, on reste dans le même besoin de calcul, pour obtenir une
précision de 1 %.

— estimer A(~r), afin de calculer vx(~r), avec un écart-type de 1 %, et donc avec
105 échantillonnage de chemins optiques.

Cela nécessite au total 1010 échantillonnages de chemins optiques soit plusieurs
semaines de calcul !

••••Confronté à cet obstacle, J. Dauchet a, en s’inspirant de la formulation
intégrale des Algorithmes à Collisions Nulles, mis au point une astuce numérique,
basée sur les développements en série entière et les propriétés de l’indépendance
statistique. Pour son cas d’étude, elle écrase complètement la difficulté explicitée
au-dessus.

La technique mathématique et numérique dont il est question est bien sûr
présentée dans le manuscrit de thèse de Jérémi Dauchet [29]. Elle est reprise dans
le manuscrit de thèse d’Olivier Farges [44], et présentée dans la section suivante.

3.2 Présentation de la technique utilisée

3.2.1 Cas d’un monôme ou d’un polynôme

La base de la technique dont il est question dans ce chapitre est la capacité
à calculer un monôme de l’espérance d’une variable aléatoire (soit E(Z)i). On
rappellera que l’on ne peut pas la calculer comme l’espérance du même monôme
de la variable aléatoire (soit E (Zi)). Pour s’en convaincre, il suffit de considérer la
formule de la variance : Var(X) = E (X2)− E(X)2.

Pour calculer la ie puissance de l’espérance d’une variable aléatoire réelle Z, on
utilise une famille (Zj)j∈[[1;i]] de variables indépendantes identiquement distribuées
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à Z (on parle alors de variables parentes à Z). En effet :

(E(Z))i =
i∏

j=1
E(Z) par définition (3.5a)

=
i∏

j=1
E(Zj) si les Zj sont identiquement distribuées à Z (3.5b)

= E
(

i∏

j=1
Zj

)
si les Zj sont indépendantes (3.5c)

Le nombre d’échantillonnages de Z nécessaires est alors multiplié par i. i peut
certes être grand : mais il est à comparer avec le Ng de l’algorithme 3.1, qui devrait
théoriquement être infini pour qu’aucun biais de calcul de subsiste.

••••Une technique similaire peut être utilisée pour calculer un polynôme de
degré k de E(Z). Soit h : z 7→ ∑k

i=0 aiz
i une fonction polynomiale, alors :

h(E(Z)) =
k∑

i=0
ai E(Z)i = E

(
k∑

i=0
ai

i∏

j=1
Zj

)
avec les Zj parentes à Z (3.6)

Là-aussi, le nombre d’échantillonnages de Z nécessaires est multiplié par le
degré du polynôme.

Astuce : Dans la formule 3.6, les Zj sont parfaitement interchangeables. Si σ est
une permutation donnée des entiers, on a donc :

k∑

i=0
ai E(Z)i = E

(
k∑

i=0
ai

i∏

j=1
Zσ(j)

)
avec les Zj parentes à Z (3.7)

Plus largement, si l’on dispose d’un ensemble fini R de couples de :
1. coefficients réels ς
2. permutations σ des entiers,

tel que ∑(ς;σ)∈R ς = 1, alors on peut écrire :

k∑

i=0
ai E(Z)i = E


 ∑

(ς;σ)∈R
ς

k∑

i=0
ai

i∏

j=1
Zσ(j)


 avec les Zj parentes à Z (3.8)

Remarque. R doit être indépendant des Zj.

La possibilité de permuter les Zj n’est pas uniquement une curiosité formelle ;
elle permet de diminuer la variance de l’estimation de h(E(Z)). En effet, comme
cette somme comporte un terme en E(Z)k il faudra un échantillon d’au moins
k tirages indépendants de Z pour l’estimer. Cependant, dans la formule (3.6),
l’estimation de chaque terme E(Z)i n’utilise que les i premiers tirages de Z :
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l’information utilisable dans les tirages suivants est perdue pour l’estimation du
terme E(Z)i.

Ainsi, une fois qu’on a échantillonné Z au moins 5 k > i fois, en permutant les
tirages on peut calculer différentes estimations d’un terme E(Z)i, toutes non biaisées.
En moyennant ces différentes estimations, on récupère donc plus d’information de
l’échantillon effectué que si on n’en avait utilisé que i éléments, une seule fois. Une
fois qu’on a effectué k′ > k tirages de Z, le choix pour R donnant l’estimateur le
plus efficace de h(E(Z)) est de prendre toutes les permutations de [[1; k′]] (on note
usuellement leur ensemble Sk′ , et elles sont au nombre de k′!) et de les affecter du
même coefficient ς :

k∑

i=0
ai E(Z)i = E


 1
k′!

∑

σ∈Sk′

k∑

i=0
ai

i∏

j=1
Zσ(j)


 avec

{
les Zj parentes à Z
k′ ∈ [[k; +∞[[ (3.9)

Pour le calcul de cette formulation, un algorithme est présenté dans l’annexe
C.1.

Dans la suite de ce manuscrit, on reparlera peu de cette possibilité de permuter
les estimations indépendantes de Z pour estimer h(E(Z)) avec une précision accrue.
Les exemples d’application de la méthode exposée ici, détaillés à la fin de ce chapitre,
sont directement repris des travaux de thèse de J. Dauchet et O. Farges, qui
n’ont de fait pas utilisé de permutations.

De même, dans ce que nous avons mis en place pour la cinétique des gaz,
l’utilité de telles techniques ne s’est pas encore fait sentir. Mais cela est lié à ce
que le terme collisionnel de Boltzmann est purement quadratique en la fonction de
distribution, sans partie linéaire.

Si nous évoquons une possible utilisation de permutations dans cette section,
c’est parce que nous pensons que notre lecteur pourrait vouloir :
— utiliser la technique présentée dans ce chapitre, telle quelle, par exemple dans

une application de génie des procédés (comme le sont les exemples illustratifs
de ce chapitre),

— étendre notre démarche de montage d’un estimateur de la fonction de dis-
tribution, que nous avons appliqué à la cinétique des gaz, vers d’autres
phénomènes de transport non-linéaire.

Dans ces 2 cas, des permutations des Zj pourraient être plus utiles que ce qu’elles
nous l’ont été durant cette thèse.

3.2.2 Cas des fonctions analytiques

On reprend les notations de la section 3.1.2, avec de plus Z = wg
(
~X; ~Y

)
, ce qui

permet d’exprimer avec concision Sf = E
(
wf
(
~X; E| ~X(Z)

))
= E

(
wf
(
~X;Sg

(
~X
)))

.

5. Il est effectivement possible de diminuer le rapport Var(h̃(E(Z)))/Nb total tiragesZ , avec
h̃ un estimateur de la fonction polynomiale h, en prenant plus de tirages de Z que nécessaire
pour calculer ponctuellement de h̃(E(Z)). Voir l’annexe C.2 pour plus de détails.
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••••On suppose désormais que pour tout ~x ∈ U ~X , il existe zR ∈ R tel que :
— f soit développable en série entière 6 vis-à-vis de sa 2e variable autour de zR

avec un rayon de convergence R ∈ R+∗, et
— Sg(~x) appartienne au disque ouvert de convergence B(zR;R) du DSE sus-cité.
La développabilité en série entière de f(~x; z) vis-à-vis de z se transmet immé-

diatement à wf (~x; z) = f(~x;z)
p ~X(~x) , ce qui permet de poser la suite des coefficients λ(~x)

tels que :

∀z ∈ B(zR;R), wf (~x; z) =
+∞∑

i=0
λi(~x)(z − zR)i (3.10)

On peut alors écrire :

wf
(
~x; E| ~X=~x(Z)

)
=

+∞∑

i=0
λi(~x)

(
E| ~X=~x(Z)− zR

)i
(3.11a)

=
+∞∑

i=0
E| ~X=~x

(
λi(~x)

i∏

j=1
(Zj − zR)

)
(3.11b)

= E| ~X=~x

(+∞∑

i=0
λi(~x)

i∏

j=1
(Zj − zR)

)
(3.11c)

Ainsi, les propriétés de l’indépendance statistique nous permettent de faire traverser
une fonction analytique par l’espérance.

••••Cependant, l’équation (3.11c) donne certes l’expression d’une variable aléa-
toire dont wf (~x;Sg(~x)) est l’espérance, mais le calcul de cette VA nécessite l’évalua-
tion d’un échantillon strictement infini de Z ; en pratique, l’estimation de wf (~x; z)
ne pourra donc pas être basée sur cette expression. On en restera donc à l’équa-
tion (3.11b), qui donne une trame pour des expressions statistiques calculables de
wf(~x;Sg(~x)). En effet, plutôt que de commuter directement l’espérance avec une
somme infinie, on va transformer la somme infinie aussi en une espérance, comme
la possibilité en est évoquée au chapitre 1.3.2.

Par exemple, en posant une variable aléatoire arbitraire I à valeurs dans N,
associée à la suite de probabilités (Pi)i∈N toutes non nulles, on peut écrire :

wf
(
~x; E| ~X=~x(Z)

)
=

+∞∑

i=0
E| ~X=~x

(
λi(~x)

i∏

j=1
(Zj − zR)

)

=
+∞∑

i=0
Pi E| ~X=~x

(
λi(~x)
Pi

i∏

j=1
(Zj − zR)

)

= E| ~X=~x

(
λI(~x)
PI

I∏

j=1
(Zj − zR)

)
(3.12)

6. L’annexe A.1 donne quelques rappels mathématiques au sujet des développement en série
entière (DSE).
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Finalement, en posant la variable aléatoire W̃f :

W̃f = λI( ~X)
PI

I∏

j=1
(Zj − zR) (3.13)

on a bien Sf = E
(
E| ~X

(
W̃f

))
= E

(
W̃f

)
avec W̃f calculable. La technique de calcul

proposée reposant sur l’utilisation d’un développement en série entière calculée à
partir de variables indépendantes, on la désignera dans la suite du manuscrit par
« Développement en Série Entière de Variables Indépendantes » (ou DSEVI).

••••D’autres VA d’espérance Sf peuvent être construites à partir des Zj . Nous en
introduirons ici 2, en nous inspirant de ce qui a été introduit en section précédente
3.2.1.

L’expression de W̃f nous donne la procédure par laquelle cette V.A. sera
échantillonnée (une fois ~X connue) :

1. choisir I ∈ N selon les probabilités PI

2. échantillonner Z I fois de manière indépendante

3. calculer w̃f n selon l’expression (3.13)

Cela signifie qu’on commence par choisir le terme de degré I du DSE de wf en z,
puis qu’on le calcule par I tirages de Z comme proposé à la section précédente.
Étant donné qu’on doit échantillonner Z au moins I fois pour calculer le terme de
degré I, il peut sembler dommage de ne calculer que le terme de degré I, sans les
précédents. Ainsi, on peut construire une estimation de Sf basée sur un échantillon
de taille I de Z, utilisant tous les termes du DSE de wf ( ~X; •) jusqu’au degré I.

On pose maintenant (en accord avec le formalisme de la section précédente) une
variable aléatoire K à valeurs dans N, de probabilités (P ′k)k∈N non-stationnaires à
0. On pose aussi la suite (R+

i )i∈N telle que :

∀i ∈ N, R+
i = Pr(K > i+ 1 | K > i) =

∑+∞
k=i+1 P

′
k∑+∞

k=i P
′
k

(3.14a)

ce qui équivaut à :

∀i ∈ N,
i−1∏

j=0
R+
j =

+∞∑

k=i
P ′k (3.14b)

ou encore :

∀k ∈ N, P ′k =
(
1−R+

k

) k−1∏

i=0
R+
i (3.14c)
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Alors :

wf
(
~x; E| ~X=~x(Z)

)
=

+∞∑

i=0
E| ~X=~x

(
λi(~x)

i∏

j=1
(Zj − zR)

)

=
+∞∑

i=0

∑+∞
k=i P

′
k∑+∞

k=i P
′
k

E| ~X=~x

(
λi(~x)

i∏

j=1
(Zj − zR)

)

=
+∞∑

k=0
P ′k

k∑

i=0

1
∑+∞
k=i P

′
k

E| ~X=~x

(
λi(~x)

i∏

j=1
(Zj − zR)

)

= E| ~X=~x




K∑

i=0


 λi(~x)
∑+∞
k=i P

′
k

i∏

j=1
(Zj − zR)




 (3.15a)

= E| ~X=~x




K∑

i=0


 λi(~x)
∏i−1
j=0R

+
j

i∏

j=1
(Zj − zR)




 (3.15b)

En posant la variable aléatoire :

W̃ ′
f =

K∑

i=0


 λi( ~X)
∏i−1
j=0R

+
j

i∏

j=1
(Zj − zR)


 (3.16)

on obtient un nouvel estimateur calculable de Sf .
Cette logique peut être poussée plus loin en utilisant des permutations. Pour tout

k ∈ N, soit Rk un ensemble fini de couples (ς ;σ) ∈ R×Sk tel que ∑(ς;σ)∈Rk ς = 1,
on a alors :

wf
(
~x; E| ~X=~x(Z)

)
= E| ~X=~x




K∑

i=0


 λi(~x)
∏i−1
j=0R

+
j

i∏

j=1
(Zj − zR)






= E| ~X=~x




K∑

i=0


 λi(~x)
∏i−1
j=0R

+
j

∑

(ς;σ)∈RK
ς

i∏

j=1

(
Zσ(j) − zR

)



 (3.17)

En faisant le choix Rk = {1/k!} ×Sk, cela donne :

wf
(
~x; E| ~X=~x(Z)

)
= E| ~X=~x




K∑

i=0


 λi(~x)
∏i−1
j=0R

+
j

× 1
K!

∑

σ∈SK

i∏

j=1

(
Zσ(j) − zR

)



 (3.18)

On a ainsi de nouvelles expressions aléatoires calculables d’espérance Sf :

W̃ ′′
f =

K∑

i=0


 λi( ~X)
∏i−1
j=0R

+
j

∑

(ς;σ)∈RK
ς

i∏

j=1

(
Zσ(j) − zR

)

 (3.19)

W̃ ′′′
f =

K∑

i=0


 λi( ~X)
∏i−1
j=0R

+
j

× 1
K!

∑

σ∈SK

i∏

j=1

(
Zσ(j) − zR

)

 (3.20)
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3.2.3 Parenthèse sur les sensibilités
Comme affirmé au chapitre 1.5.5, le calcul de sensibilités par la méthode de

Monte-Carlo nécessite un travail spécifique sur la formulation intégrale, la méthode
des différences finies n’étant pas utilisable. Ce travail de reformulation intégrale
commence à être bien balisé, en particulier depuis les travaux de thèse d’Amaury
de Guilhem De Lataillade [33,34], de Maxime Roger [101,102], Jérémie De
La Torre [31], Jérémi Dauchet [29], et Olivier Farges [44]. Le cas de la
traversée d’une fonction non-linéaire par une sensibilité reste cependant peu étudié,
sauf dans la thèse de J. Dauchet (à la section 6.4.2, page 248). Ce qui suit
reprend partiellement ses travaux, en les plaçant dans le formalisme utilisé dans ce
manuscrit.

On s’intéresse au calcul de la sensibilité de Sf vis-à-vis d’un paramètre π
n’intervenant dans l’expression de Sf que via Sg, ce qui s’écrit « Sf =

∫
U ~X

d~x f(
~x;Sg(~x; π)) ». Le cas plus général « Sf =

∫
U ~X

(π) d~x f(~x;Sg(~x; π); π) » se traite en
sommant les contributions à la sensibilité vis-à-vis de π passant par U ~X(π), par
∂3f , et par Sg(~x; π). Les 2 premières contributions font déjà l’objet de travaux
extensifs dans [29,31,44,101,102], et sont de peu d’intérêt dans ce chapitre ; nous
nous concentrons donc sur la 3e.

En supposant que Sf =
∫
U ~X

d~x f(~x;Sg(~x; π)) on a :

∂πSf =
∫

U ~X

d~x ∂πf(~x;Sg(~x; π)) (3.21)

= E
(
∂πwf

(
~X;Sg( ~X; π)

))
(3.22)

La difficulté du calcul de ∂πSf se transfère donc sur le calcul de ∂πwf
(
~X;Sg

(
~X; π

))
.

En l’occurrence, par dérivation d’une composée :

∀~x ∈ U ~X , ∂πwf (~x;Sg(~x; π)) = ∂2wf (~x;Sg(~x; π))× ∂πSg(~x; π) (3.23)

Nous avons supposé précédemment que f était Développable en Série Entière
sur sa 2e variable, de sorte que pour tout ~x ∈ U ~X , Sg(~x; π) soit dans le rayon de
convergence du DSE de f(~x; •), ce qui s’écrivait :

wf (~x;Sg(~x; π)) =
+∞∑

i=0
λi(~x)(Sg(~x; π)− zR)i (3.11a) ↑

De par les propriétés de dérivation des DSE, la formule (3.23), et l’identité
E| ~X=~x(Z) = Sg(~x; π) :

∂πwf
(
~x; E| ~X=~x(Z)

)
= ∂2wf

(
~x; E| ~X=~x(Z)

)
× ∂π E| ~X=~x(Z) (3.24)

=
+∞∑

i=1
iλi(~x)

(
E| ~X=~x(Z)− zR

)i−1
∂π E| ~X=~x(Z) (3.25)
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On suppose maintenant qu’on dispose d’une variable aléatoire Z∂π telle que
E| ~X(Z∂π) = ∂π E| ~X(Z) 7.

∂πwf
(
~x; E| ~X=~x(Z)

)
=

+∞∑

i=0
E| ~X=~x

(
iλi(~x)Z∂π,1

i∏

j=2
(Zj − zR)

)
(3.26) 8

On peut maintenant construire des variables aléatoires calculables d’espérance
∂πSf sur la base des mêmes transformations de la somme infinie du DSE en
espérance qu’on a utilisées pour l’expression de variables aléatoires calculables
d’espérance Sf .

∂πwf
(
~x; E| ~X=~x(Z)

)
=

+∞∑

i=0
E| ~X=~x

(
iλi(~x)Z∂π,1

i∏

j=2
(Zj − zR)

)

= E| ~X=~x


I

λI(~x)
PI

Z∂π,1
I∏

j=2
(Zj − zR)


 (3.27)

D’où l’expression d’une V.A. W̃f,∂π d’espérance ∂πSf :

W̃f,∂π = I λI( ~X)
PI

Z∂π,1
I∏

j=2
(Zj − zR) (3.28)

Ou sinon :

∂πwf
(
~x; E| ~X=~x(Z)

)
=

+∞∑

i=0
E| ~X=~x

(
iλi(~x)Z∂π,1

i∏

j=2
(Zj − zR)

)

= E| ~X=~x


Z∂π,1

K∑

i=0


 iλi(~x)
∑+∞
k=i P

′
k

i∏

j=2
(Zj − zR)




 (3.29)

= E| ~X=~x


Z∂π,1

K∑

i=0


 iλi(~x)
∏i−1
j=0R

+
j

i∏

j=2
(Zj − zR)




 (3.30)

Ce qui donne de nouvelles façons d’estimer ∂πSf :

W̃ ′
f,∂π =

K∑

i=0

iλi( ~X)
∏i−1
j=0R

+
j

Z∂π,1
i∏

j=2
(Zj − zR) (3.31)

7. Au sens où Z est le produit d’un mécanisme pseudo-aléatoire impliquant π, on peut en
général dériver Z par rapport à π. Si c’est faisable, un choix possible pour Z∂π est de prendre
Z∂π = ∂πZ. Néanmoins, ce choix n’est nullement une obligation.

8. Strictement, la somme devrait commencer à i = 1. On peut formellement considérer qu’elle
commence à i = 0, car à i = 0 son terme est nul ; cela permet de la définir sur le même ensemble
qu’à la section précédente, et par là de mener les calculs de Sf et ∂πSf simultanément.
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Ou encore :

∂πwf
(
~x; E| ~X=~x(Z)

)
= E| ~X=~x


Z∂π,1

K∑

i=0


 iλi(~x)
∏i−1
j=0R

+
j

i∏

j=2
(Zj − zR)






= E| ~X=~x




K∑

i=0


 iλi(~x)
∏i−1
j=0R

+
j

∑

(ς;σ)∈RK
ς Z∂π,σ(1)

i∏

j=2

(
Zσ(j) − zR

)





(3.32)

= E| ~X=~x




K∑

i=0


 iλi(~x)
∏i−1
j=0R

+
j

× 1
K!

∑

σ∈SK
Z∂π,σ(1)

i∏

j=2

(
Zσ(j) − zR

)





(3.33)

Ce qui donne les V.A. d’espérance ∂πSf :

W̃ ′′
f,∂π =

K∑

i=0

iλi( ~X)
∏i−1
j=0 R

+
j

∑

(ς,σ)∈RK
ς Z∂π,σ(1)

i∏

j=2

(
Zσ(j) − zR

)
(3.34)

W̃ ′′′
f,∂π =

K∑

i=0

iλi( ~X)
∏i−1
j=0R

+
j

× 1
K!

∑

σ∈SK
Z∂π,σ(1)

i∏

j=2

(
Zσ(j) − zR

)
(3.35)

3.3 (∗) Calcul de la productivité annuelle d’une
centrale solaire à concentration

Nous disions en introduction du manuscrit que la MMC permet, sans aucune
difficulté, de passer du calcul de la puissance instantanée d’une centrale solaire
au calcul de sa puissance moyenne sur par exemple 1 an, et ce en utilisant des
données climatologiques détaillées par pas de 15 minutes.

Mais nous pensions à la puissance reçue, sans tenir compte de sa conversion
— non-linéaire. Ici, on tient compte de cette conversion ; il nous faut alors tirer
plusieurs rayons à chaque date. Cependant, le temps de calcul n’est presque pas
augmenté.

Ce calcul est repris de la thèse d’Olivier Farges [44].

3.3.1 Contexte
••••La consommation croissante d’énergie
par les sociétés modernes, associée à des diffi-
cultés croissantes d’approvisionnement (diffi-
cultés en cours ou prévues), amène à s’intéres-
ser à de nouvelles sources primaires d’énergie
convertible en électricité. Ces sources sont déjà
plus ou moins connues ; l’une d’elles, qui attire

aujourd’hui beaucoup d’intérêt, est l’énergie
solaire concentrée.

Rapidement, le principe est de concentrer
la puissance lumineuse issue du Soleil et di-
rigée vers un terrain (1,36 kW/m2 de surface
face au Soleil, au sommet de l’atmosphère),
sur un récepteur, à l’aide d’un jeu de miroir.
Par temps clair, la luminance du disque solaire
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étant très élevée (20,0 MW.m−2.sr−1 au som-
met de l’atmosphère), cela permet d’échauffer
le récepteur jusqu’à plusieurs milliers de degrés
Celsius pendant qu’on lui extrait de la chaleur :
on peut ainsi alimenter un cycle thermodyna-
mique produisant de l’énergie consommable,
typiquement de l’électricité.

Les technologies de concentration de la lu-
mière solaire sont ordinairement réparties en
2 catégories : concentration linéaire et concen-
tration ponctuelle. La figure 3.3 en donne
quelques exemples. La technologie étudiée par
O. Farges est appelée centrale Beam Down,
et se rapproche des centrales à tour (où la
concentration est ponctuelle).

••••Dans une centrale à tour, le terrain de
la centrale est recouvert d’héliostats — des mi-
roirs à orientation pilotée automatiquement à
distance. Ces héliostats réfléchissent la lumière
solaire vers un récepteur situé en hauteur.

La technologie Beam Down se distingue
de la technologie à tour classique par le rem-
placement, en haut de la tour, du récepteur
par un miroir secondaire renvoyant la lumière
issue du champ d’héliostats vers le récepteur
(situé cette fois-ci au sol). Ceci est illustré sur
la figure 3.4.

La technologie Beam Down présente plu-
sieurs avantages appréciables sur la technolo-
gie à tour ordinaire, et aussi quelques inconvé-
nients :

— La tour n’a plus à supporter le poids du
récepteur et d’une partie du cycle ther-
modynamique, mais celui du réflecteur
secondaire, beaucoup plus léger. Cela
représente des économies de construc-
tion substantielles.

— Le cycle thermodynamique est désor-
mais complètement au sol, ce qui éli-
mine des problèmes potentiels dûs à
l’éloignement de ses puits thermiques
chaud et froid (ceux dus à une longue
tuyauterie, par exemple).

— Comme le récepteur est au sol, sa dispo-
sition est plus facilement maîtrisable.

— Comme il y a deux réflexions au lieu
d’une, les pertes par réflexion sur les
miroirs augmentent.

— La réflexion sur le miroir secondaire
courbe rend le système très sensible

aux erreurs de pointage : un léger dé-
faut d’orientation d’un héliostat envoie
sa contribution loin hors du récepteur.
Ce défaut peut cependant être corrigé
à l’aide d’optiques supplémentaires au
sol.

••••Quoi qu’il en soit, en phase de concep-
tion, une fois qu’un type de design est choisi,
il convient de l’optimiser. Il faut donc disposer
d’une grandeur d’intérêt.

Jusqu’à la thèse d’O. Farges, c’était la
puissance thermique récupérable au récepteur
qui était en général considérée. Cependant, ce
choix, bien que raisonnable, n’est pas le mieux
que l’on puisse faire, car si la puissance solaire
est bien ce qui fait fonctionner la centrale, ce
n’est pas son produit final, qui est vendu et
utilisé ; ce sera plutôt de l’électricité, ou un
produit chimique. Or le rendement puissance
solaire → puissance valorisée n’est pas forcé-
ment constant.

Tant que l’on reste dans une technique
de design à l’ancienne, où l’on optimisait le
design de la centrale vis-à-vis de l’éclairage
d’une date donnée (dans la plupart des cas, le
21 Mars à midi solaire), ce précédent point n’a
pas d’importance. Il en prend quand l’optimi-
sation est faite en considérant la productivité
annuelle de la centrale (bien plus représen-
tative de ses capacités en utilisation). Si le
rendement du cycle thermodynamique varie
avec la puissance thermique disponible, il n’y
a plus correspondance entre la chaleur totale
reçue au récepteur et la production dans l’an-
née de la centrale ; la répartition temporelle
de la puissance joue aussi.

La grandeur d’intérêt devient donc la
production annuelle de la centrale, calculée
comme l’intégrale sur l’année de la puissance
sortante de la centrale, cette puissance étant
fonction de la puissance thermique récoltée
au récepteur. Si cette puissance thermique est
calculée par MMC, on retombe exactement
dans la problématique de ce chapitre.

Remarques.
— Au lieu d’estimer la production de la

centrale au cours d’une année, on peut
carrément estimer sa production au
cours de toute son existence prévue. Le
calcul reste assez identique, mais il faut
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3.3. Productivité annuelle d’une centrale solaire

(a) Un concentrateur cylindro-parabolique.
Source : site web de NextEra Energy
Ressources (entreprise états-unienne)

(b) [Modèle pilote de concentrateur linéaire
de Fresnel, à la plate-forme d’Almeria.

Source : DLR

(c) Concentrateur Dish, avec miroir de Fresnel.
Installation d’Heliofocus (entreprise israélienne)

Source : CSP Korea

(d) Vue sur un des champs de concen-
trateurs cylindro-paraboliques du
complexe SEGS, en Californie.
Source : Wikimedia Commons

(e) Photo partielle de la centrale à tour
Solar Two en fonctionnement, au Ne-
vada. Centrale aujourd’hui démantelée.

Source : Wikimedia Commons

(f) Concentrateur Dish avec moteur Stirling au
foyer, en exposition au four solaire d’Odeillo.

Source : Wikimedia Commons

Figure 3.3 – Exemples de différentes technologies de concentration du rayon-
nement solaire. On parle de concentration linéaire ((a), (d), et (b)) ou ponc-
tuelle ((c), (e), et (f)) selon la forme du récepteur. Si pour chaque récep-
teur, le miroir concentrateur est morcelé, on parle de miroir de Fresnel.
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(a) Centrale à tour « clas-
sique » Solar Tres, en Espagne.

Source : CSP Korea. Photo commerciale.
(b) Installation pilote de type Beam Down
en construction à Masdar, à Abu Dhabi.

Source : site web http://nenmore.blogspot.fr

Figure 3.4 – Comparatif de principe entre une centrale à
tour Beam Down (b) et une centrale à tour plus ordinaire (a).

pouvoir prendre en compte les effets du
vieillissement de l’installation.

— En plus du rendement de conversion de
la puissance, on peut prendre en compte
les variations du prix de l’énergie ven-
due selon la date et l’heure. Cela laisse
la forme du calcul presque inchangée.

3.3.2 Démarche
Le calcul mené est fait sur une centrale

à tour ordinaire. O. Farges a fait ce choix
en partie pour avoir une comparaison avec
une situation expérimentale (la centrale PS10).
Toutefois, l’algorithme de calcul entre ce cas
d’étude et une centrale Beam Down change
très peu.

Pour calculer la puissance arrivante sur le
récepteur, on fait les hypothèses suivantes :

— Toute la puissance lumineuse arrivant
sur le récepteur (noté R) a auparavant
subi une et une seule réflexion sur la
face avant des héliostats (notée H+),
et vient avant cela du disque solaire
(noté S). C’est-à-dire que les seuls tra-
jets optiques amenant de la lumière au
récepteur sont du type : S → H+ → R.

— Les héliostats sont des miroirs gris et
spéculaires. Les défauts des miroirs sont
pris en compte par une déviation sta-
tistique de la normale à leur surface,
déviation qui suit le modèle de micro-

facettes de Blinn (détaillé un peu plus
tard dans cette section, et dans [92]).

— L’air dans lequel baigne la centrale est
transparent.

Alors la puissance lumineuse reçue par le
récepteur s’exprime comme :

Pth =
∫

H+
d~r1

∫

S
d~us

∫

U ~Nh

p ~Nh(~nh|~us; b) d~nh(~us · ~nh)





H(~r0 /∈ S)× 0 +

H(~r0 ∈ S)×
{

H(~r2 /∈ R)× 0 +
H(~r2 ∈ R) ρHLS

}




(3.36)

où :
— ~nh est la normale à la surface de l’hé-

liostat, suivant une distribution statis-
tique décrite par le modèle de Blinn.

— b est un paramètre du modèle de Blinn.
— ~r0 est le 1er point d’intersection du

rayon partant de ~r1 et de direction ~us.
On compte ~r0 ∈ S si le rayon « atteint
l’infini » au niveau du disque solaire (ce
sera toujours au niveau du disque so-
laire car on a choisi ~us ∈ S), et ~r0 /∈ S
si le rayon impacte un obstacle avant
d’atteindre le ciel (un héliostat situé
devant, la tour, ou le terrain).
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3.3. Productivité annuelle d’une centrale solaire

— ~r2 est le 1er point d’intersection du
rayon réfléchi venant de ~r1. On compte
~r2 ∈ R si le rayon atteint le récepteur,
et ~r2 /∈ R sinon (que ce soit parce que
le rayon impacte l’arrière d’un autre
héliostat, ou parce qu’il passe à côté du
récepteur).

— ρH est la réflectivité des héliostats.
— LS est la luminance du disque solaire.
Cette expression peut être justifiée par le

formalisme détaillé au chapitre 1.4, en consi-
dérant qu’on fait sur la surface des héliostats
le produit scalaire de la luminance issue du
Soleil et de la captance issue du récepteur.
Avec les hypothèses de travail faites, ce calcul
doit donner le même résultat que l’intégration

de la luminance sur le récepteur, ou que le
produit scalaire de la captance du récepteur
sur la luminosité du ciel.

La luminance du disque solaire est souvent
ré-exprimée selon une grandeur plus usuelle,
le DNI (pour Direct Normal Insulation). Il
mesure la puissance lumineuse reçue par une
unité de surface, orientée face au Soleil. C’est
une fonction de la date et de l’heure (à cause de
l’atmosphère au-dessus de la centrale). Comme
le disque solaire est très étroit dans le ciel
on peut considérer que LS ' DNI/ΩS , où
ΩS =

∫
S d~us est l’angle solide du disque so-

laire. ΩS est calculable à l’aide du rayon an-
gulaire du disque solaire θS = 4,65 mrad selon
la formule ΩS = 2π(1− cos θS) = 68 µsr.

En introduisant des densités de probabilité sur H+ et sur S, on peut maintenant donner une
expression utilisable par MMC de Pth :

Pth =
∫

H+
p~R1

(~r1) d~r1

∫

S
p~Us(~us) d~us

∫

U ~Nh

p ~Nh(~nh|~us; b) d~nh wPth (3.37a)

avec

wPth =





H(~r0 /∈ S)× 0 +

H(~r0 ∈ S)×





H(~r2 /∈ R)× 0 +

H(~r2 ∈ R) (~us · ~nh) ρHDNI
p~R1

(~r1) ΩS p~Us(~us)









(3.37b)

Des choix usuels pour p~R1
et p~Us sont :




p~R1
(~r1) = 1

SH+

p~Us(~us) = 1
ΩS

= 1
2π(1− cos θS)

(3.38)

p ~Nh(~nh|~us; b) doit quant à elle suivre le modèle qu’on s’est fixé 9, en l’occurrence le modèle
de Blinn :

p ~Nh(~nh|~us; b) =
1 + 1

b

2π
(

1− cos
( 1

2 arcsin(~us · ~n1)
)2+ 1

b

) (~nh · ~n1)1+ 1
b (3.39)

où ~n1 est la normale à la surface de l’héliostat, d’un point de vue purement géométrique.
On pose pour la suite Pref = DNI SH+ (pour rappel, DNI et donc Pref dépendent de t), et

ainsi Pth = ηoptPref , avec le rendement optique :

ηopt =
∫

H+
p~R1

(~r1) d~r1

∫

S
p~Us(~us) d~us

∫

U ~Nh

p ~Nh(~nh|~us; b) d~nh wηopt (3.40a)

9. On aurait pu introduire une nouvelle densité de probabilité pour ~Nh, de façon à modifier
le tirage aléatoire comme la possibilité en est évoquée au chapitre 1.3.2. Ceci ne s’est pas avéré
utile ici.

143



Chapitre 3. Estimation d’une fonction non-linéaire d’une espérance

où

wηopt =





H(~r0 /∈ S)× 0 +

H(~r0 ∈ S)×





H(~r2 /∈ R)× 0 +

H(~r2 ∈ R) (~us · ~nh) ρH
SH+ p~R1

(~r1) ΩS p~Us(~us)









(3.40b)

On pose par la suite ~γ = (~r1; ~us;~nh) et la variable aléatoire ~Γ = (~R1; ~Us; ~Nh) (qui décrit bel
et bien un chemin optique), ce qui permet d’écrire plus simplement :

ηopt =
∫

U~Γ

p~Γ(~γ) d~γ wηopt (3.41)

où wηopt se calcule comme précédemment.
On reprend le cas de génération électrique étudié dans sa thèse par O. Farges. Basiquement,

comme on génère de l’électricité la puissance valorisée est Pelec = ηcyclePth. Quand le DNI
est supérieur à une valeur seuil DNI l de démarrage de la centrale, le rendement du cycle
thermodynamique est modélisé par une loi puissance :

ηcycle = keff

( Pth
Pnom

)αeff
(3.42)

Ce qui amène à :
Pelec = keff

( Pref
Pnom

)αeff
Pref η

αeff +1
opt (3.43)

où ηopt est la seule partie inconnue de l’expression. Si DNI < DNI l, on considère que Pelec = 0.
Les valeurs des coefficients sont : keff = 0,425 267, αeff = 0,125 788, et Pnom = 100 MW.
L’expression du rendement optique ηopt montre que ce dernier est compris entre 0 et 1, on

peut donc utiliser le développement en série entière de x 7→ (1 + x)α autour de 0 :

η
αeff +1
opt = (1 + ηopt − 1)αeff +1

=
+∞∑

i=0

(i−1∏

j=0

αeff + 1− j
j + 1

)
(ηopt − 1)i ssi ηopt − 1 ∈]− 1; 1[ (3.44)

=
+∞∑

i=0

i−1∏

j=0

(
αeff + 1− j

j + 1 (ηopt − 1)
)

(3.45)

On retrouve bien l’expression ηαeff +1
opt =

∑+∞
i=0 λi(E(Z)− zR)i avec :





λi =
i−1∏

j=0

αeff + 1− j
j + 1

Z = Wηopt

zR = 1

(3.46)

Un autre choix est possible, avec l’avantage que les λi et les Zi − zR sont presque tous
positifs : 




λi =
i−1∏

j=0

j − αeff − 1
j + 1

Z = −Wηopt

zR = − 1

(3.47)

Ne reste maintenant plus qu’à convertir cette écriture en une expression calculable. On fera
ici le même choix algorithmique qu’O. Farges, directement repris des travaux de J. Dauchet ;
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3.3. Productivité annuelle d’une centrale solaire

c’est-à-dire qu’on utilise l’expression (3.15b) avec le choix ∀j ∈ N, R+
j = 1−Wηopt j+1 (qui est

bien compris entre 0 et 1).
La formulation statistique de l’algorithme qui en découle est la suivante :





Pelec = E
(

H(DNI > DNI l) keff

( Pref
Pnom

)αeff
Pref wNL

)

wNL =
K∑

i=0
λi

λi =
i−1∏

j=0

j − αeff − 1
j + 1

UK ⊂ N et ∀j ∈ N, R+
j = Pr (K > j + 1 | K > j) = 1−Wηopt j+1 |T

T est la date (heure incluse), tirée uniformément sur l’année
Wηopt est précédement décrit, dans l’équation (3.40b) et

dans le descriptif de l’équation (3.36)

(3.48)

Remarque. Un point d’achoppement pour-
rait apparaître : si ηopt est rigoureusement nul
(par exemple la nuit) on doit obtenir wNL = 0.
Cependant, si ηopt = 0, le DSE utilisé ne
converge pas.

Cependant, la condition sur le DNI de
mise en marche de la centrale rend ce cas im-
possible en pratique. On peut en effet espérer
que le champ d’héliostats ne soit pas assez mal
conçu pour que son rendement optique soit
rigoureusement nul quand le Soleil brille !

L’algorithme finalement construit pour le
calcul de la puissance électrique moyenne de
la centrale PM,elec est décrit en 3.2.

3.3.3 Résultats
••••On se contentera dans cette section es-
sentiellement d’épiloguer sur les résultats obte-
nus par Olivier Farges. Je n’ai en effet pas re-
commencé ses simulations, d’une part à cause
de la difficulté d’une telle entreprise, et d’autre
part par manque de temps à y consacrer et
manque d’intérêt dans cet acte. Cela aurait
été d’autant moins intéressant que faisant les
mêmes hypothèses de travail et utilisant le
même algorithme de calcul, j’aurais dû obtenir
les mêmes résultats. À mes yeux, reprendre le
travail d’O. Farges constitue essentiellement,
dans ce manuscrit, l’occasion d’illustrer les
principes méthodologiques et mathématiques
énoncés dans ce chapitre.

Comme annoncé dans la section précé-
dente, nous prendrons les paramètres keff =

0,425 267, αeff = 0,125 788, et Pnom =
100 MW. À ceux-ci s’ajoutent tous les para-
mètres géométriques et optiques de la centrale
simulée, ainsi que les données sur l’ensoleille-
ment. Nous ne les listerons pas ici, étant donné
leur quantité ; le lecteur intéressé pourra se re-
porter au manuscrit de thèse d’O. Farges [44].

••••La figure 3.5 donne une représentation
visuelle de la loi de conversion Pth → Pelec.
Comme on peut le constater, cette loi est fi-
nalement assez proche d’une loi affine : on
pourrait par exemple l’approximer par la loi

Pelec = 0,430 131× Pth − 1369,39 kW (3.49)

comme cela est montré sur la figure 3.5.

••••La figure 3.6 donne les résultats de simu-
lation. Comme on peut le constater, la conver-
gence de l’algorithme a l’air correcte.

De plus, il y a finalement peu de différence
entre les résultats de l’approche non-linéaire
et les résultats qu’aurait eu une approche li-
néaire basée sur l’expression (3.49), que ce soit
en termes de valeur ou de convergence. Cela
est dû à plusieurs facteurs qui se rassemblent
dans ce cas :

— La faible non-linéarité de la loi de
conversion Pth → Pelec, qui explique
à elle seule la proximité des valeurs ob-
tenues.

— L’utilisation d’une valeur de référence
Pref pour mettre en œuvre le Dévelop-
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Résultat : Une estimation
(
wPM,elec ; s2(wPM,elec )

)
de PM,elec

1 ΣPM,elec ← 0;
2 ΣPM,elec 2 ← 0;
3 pour i← 1 à Ntirages faire
4 échantillonner T : on obtient ti;
5 si DNI < DNI l alors wNL i ← 0;
6 sinon
7 Σλ ← 0;
8 λ← 1;
9 j ← 0;

10 répéter
11 Σλ ← Σλ + λ;
12 λ← j−αeff−1

j+1 λ;
13 j ← j + 1;

14 échantillonner ~Γ : on obtient ~γj,i = (~r1 j,i; ~us j,i;~nh j,i);
15 wηopt j,i ← H(~r0 j,i ∈ S)×H(~r2 j,i ∈ R)×
16

(~us j,i · ~nh j,i) ρH
SH+ p~R1

(~r1 j,i) ΩS p~Us(~us j,i)
;

17 R+
j−1,i ← 1− wηopt j,i;

18 échantillonner R uniformément dans [0; 1] : on obtient rj−1,i;
19 jusqu’à rj−1,i > R+

j−1,i;

20 wPM,elec i ←
Σλ DNI (ti)SH+

pT (ti)× 1 an ;

21 ΣPM,elec ← ΣPM,elec + wPM,elec i;
22 ΣPM,elec 2 ← ΣPM,elec 2 + wPM,elec i

2;
23 wPM,elec ← ΣPM,elec

/
Ntirages;

24 s2(wPM,elec )←
(
ΣPM,elec 2

/
Ntirages − wPM,elec

2)/(Ntirages − 1);

Algorithme 3.2 : Algorithme pour le calcul de la puis-
sance électrique moyenne d’une centrale solaire à tour
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pement en Série Entière proche de la va-
leur réelle de Pth . Le manuscrit [44] ex-
plique que la centrale étudiée est dimen-
sionnée pour éviter les pertes optiques,
que ce soit par ombrage (~r0 /∈ S), blo-
cage (~r2 /∈ R car l’arrière d’un héliostat
gêne), ou débordement (~r2 /∈ R car le
rayon réfléchi passe à côté du récep-
teur) ; il en résulte que le rendement
optique ηopt, tel que nous l’avons dé-
fini, est proche de 1.

— Le choix que nous avons fait sur R+
j =

1− wηopt j , combiné à la proximité sta-
tistique de wηopt avec 1 (car ηopt ' 1
et wηopt 6 1), fait que le DSEVI sur
wηopt n’est généralement pas poussé loin.
L’addition d’un compteur permettant
de compter les calculs de wηopt pour
chaque calcul de wPM,elec montre en effet
une moyenne de 1,08. Malgré cela, l’uti-
lisation d’une valeur de référence adé-
quate ajoutée à la faible non-linéarité
de la loi de conversion fait que le DSEVI
converge très bien, à peu près aussi bien
que l’approche affine.

3.4 (∗) Calcul de la productivité d’un
photobioréacteur

Cet exemple est similaire au précédent. On tient compte d’un couplage non-
linéaire entre la production d’une installation photobiochimique et son champ
interne de luminance. Cette fois, l’intégration de la loi de couplage ne se fait
plus sur le temps mais dans l’espace.

Ici, le nombre de chemins optiques suivis est multiplié par environ 40 [29].
Le besoin en calcul n’est néanmoins plus bloquant pour les ingénieurs intéressés,
alors qu’il l’était avant — ou alors, il fallait approximer fortement le modèle.

3.4.1 Problématique
••••Le problème, d’ordre technique, est ce-
lui introduit en début de ce chapitre.

On veut cultiver des micro-organismes
photo-synthétiques, afin d’en extraire des sub-
stances d’intérêt : biocarburants, nourriture,
médicaments, intermédiaires chimiques. . . Ceci
s’inscrit dans une problématique environne-
mentale : en effet, tous ces produits sont au-
jourd’hui majoritairement issus de l’agricul-
ture conventionnelle ou de la pétrochimie, ces
2 filières étant massivement développées, fonc-
tionnelles, et compétitives. Typiquement, si on
veut produire des biocarburants en photobio-
réacteurs, c’est pour atteindre des rendements
ainsi qu’une compétitivité économique supé-
rieurs à ce qu’on obtient avec des cultures en
plein champ.

La possibilité théorique d’atteindre des
rendements (vis-à-vis de la surface occupée
au sol) supérieurs en photobioréacteur qu’en

culture plein champ a déjà été démontrée ;
ainsi, il serait possible d’augmenter ces rende-
ments de 2 ordres de grandeur en utilisant des
photobioréacteurs du type du prototype DiCo-
FluV ( [29]), qui est étudié dans cette section.
L’intérêt est grand en notre période de diffi-
cultés liées à l’utilisation des ressources éner-
gétiques fossiles. Les biocarburants ont déjà
été testés comme approvisionnement de sub-
stitution à celles-ci, avec un succès très mitigé.
Pour résumer, leur production requiert beau-
coup trop de surface cultivée, et la production
d’une quantité d’énergie consommable d’ori-
gine biologique nécessite un effort énergétique
(pour le travail des sols, la moisson, la transfor-
mation. . .) comparable. Les photobioréacteurs
laissent espérer d’éliminer ces blocages : encore
faut-il éviter les pièges technologiques suscep-
tibles d’anéantir leurs avantages, et optimiser
un tant soit peu leur conception.

147



Chapitre 3. Estimation d’une fonction non-linéaire d’une espérance

••••Le concept du réacteur DiCoFluV est
dirigé vers une maximisation du rendement
puissance lumineuse captée → puissance chi-
mique produite. En gros, la lumière solaire
est injectée via un dispositif extérieur au ré-
acteur en lui-même dans des fibres optiques,
qui l’amènent et la redistribuent ensuite dans
l’enceinte du réacteur, où les conditions sont
contrôlées pour que la photosynthèse soit la
plus efficace possible.

Le contrôle des conditions thermochi-
miques (température, pH,. . .) dans le réacteur
a fait l’objet de précédents travaux (d’après
[29]) ; la difficulté est ici de ne pas consommer
trop de puissance en pompage. La grande dif-
ficulté restante reste l’éclairage de l’enceinte.
Comme affirmé au début de ce chapitre, il doit
être le plus uniforme possible dans le volume
réactionnel pour maximiser le rendement de la
photosynthèse, ce qui est contradictoire avec
la nécessité d’absorber tout le rayonnement
fourni.

On est là en plein problème d’optimisa-
tion. Comme expliqué en début de chapitre,
le calcul de la grandeur d’intérêt — la pro-
ductivité totale du réacteur Qx — est compré-
hensible dans le formalisme exposé en section
3.1.2.

3.4.2 Modèle
••••On reprend ici complètement le cas
d’étude de J. Dauchet dans sa thèse. Le pho-
tobioréacteur est une enceinte cylindrique où
est disposé un maillage triangulaire de 979
fibres optiques à éclairage latéral (voir la fi-
gure 3.7). Le milieu réactionnel est absorbant,
diffusant, uniforme et isotrope.

Le comportement d’un micro-organisme
vis-à-vis de la lumière dépend de son espèce.
On sait par exemple que les cyanobactéries soit
respirent, soit réalisent la photosynthèse, mais
ne font en général pas les 2 en même temps.
Les micro-algues (eucaryotes) effectuent au
contraire ces processus simultanément, avec
un couplage entre les 2 ; on se placera pour
cette succincte étude dans ce cas. De plus,
on peut s’attendre à ce que le comportement
des micro-organismes varie avec leur « état » :
on supposera ici qu’il n’en est rien. C’est-à-
dire que la réaction qui a lieu dans le bioréac-

teur est une réaction auto-catalytique, où les
micro-organismes produisent la biomasse dont
ils sont eux-même constitués. Cette biomasse
leur sert à grandir, ce qui leur permet, une
fois qu’ils ont dédoublé leur matériel cellulaire,
de se diviser. On supposera que l’absorptivité
lumineuse d’une quantité de matière vivante
(biomasse, mesurée en masse sèche) ainsi que
l’efficacité de la production de biomasse neuve
qu’elle réalise grâce à la lumière absorbée ne
dépend pas de l’état de la cellule dans laquelle
elle est située (en cours de division ou non,
par exemple).

Notations : On notera A = Cxa, c’est
à dire que la vitesse volumique d’absorption
des photons A (en mol.m−3.s−1) est égale à
la vitesse spécifique d’absorption des photons
a (en mol.kg−1.s−1) que multiplie la concen-
tration en masse sèche Cx (en kg/m3). Cela
rappelle le concept de section efficace mas-
sique : ka = Cxσa, où ka est en m−1 et σa en
m2/kg.

••••La quantité de biomasse évolue essen-
tiellement de 2 façons : elle est produite par
photosynthèse, et consommée par respiration.
On note : vx = vx,prod − vx,conso.

La photosynthèse est considérée comme
un processus à saturation. Quand la puissance
lumineuse est basse, la lumière est convertie
par le biais d’un complexe processus photo-
chimique en biomasse (ou plutôt en énergie
chimique) avec un rendement ρM . Quand la
puissance lumineuse augmente, la production
de biomasse approche un maximum. Cela est
modélisé par une loi de conversion en fraction
rationnelle. Le rendement de conversion ρ (en
kgx/molphotons, l’indice x signifiant « biomasse
sèche » ) s’exprime comme :

ρ = ρM

1 + a

a0,p

= ρM

1 + A

Cxa0,p

(3.50a)

où a0,p est la vitesse spécifique maximale d’ab-
sorption utile des photons, en effet

vx,prod = ρA = ρM
1
A

+ 1
Cxa0,p

= CxρM
1
a

+ 1
a0,p
(3.50b)

Le couplage entre la photosynthèse, ali-
mentée par la lumière, et la respiration, active
en permanence chez les eucaryotes, est encore
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3.4. Productivité d’un photobioréacteur

(a) Photo d’ensemble
du prototype DiCoFluV

(b) Photo de l’entrée des fibres op-
tiques dans le prototype DiCoFluv

(c) Vue en écorchée, par image
de synthèse, de l’intérieur du
prototype DiCoFluv. Les fibres

optiques sont colorisées en mauve.

Figure 3.7 – Agencement du prototype de photobioréacteur DiCoFluV, du GEPEA.
Le réacteur se présente extérieurement sous la forme d’une enceinte cylindrique. À
l’intérieur est placé un faisceau de 979 fibres optiques éclairant latéralement, dis-
posées selon un maillage triangulaire. Les fibres sont chacune alimentées en lu-
mière par une extrémité, grâce à un dispositif extérieur au réacteur en lui-même.

Crédits : J. Dauchet

mal compris. Nous considérons un compor-
tement d’inhibition de la respiration par la
lumière, modélisé là-encore par une fraction
rationnelle. En notant kc (en s−1) la constante
de temps d’autodestruction de la biomasse en
l’absence de lumière, cela donne :

vx,conso = Cxkc

1 + a

a0,c

= Cxkc

1 + A

Cxa0,c

(3.51)

où a0,c est le paramètre caractérisant l’inhi-
bition de la respiration par l’absorption des
photons.

Finalement :

vx = ρM
1
A

+ 1
Cxa0,p

− Cxkc

1 + A

Cxa0,c

(3.52a)

= Cx




ρM
1
a

+ 1
a0,p

− kc

1 + a

a0,c


 (3.52b)

On notera pour la suite A0,p = Cxa0,p et
A0,c = Cxa0,c.

On peut maintenant exprimer la loi de couplage cinétique fvx, telle que définie à la section
3.1.1, c’est-à-dire telle que vx = fvx(A) :

fvx :





]0; +∞[ → R

A 7→ Cx




ρM
1

A/Cx
+ 1
a0,p

− kc

1 + A

Cxa0,c




(3.53a)

Ainsi :

fvx(A) = ρMA

1 + A

A0,p

− Cxkc

1 + A

A0,c

(3.53b)
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Chapitre 3. Estimation d’une fonction non-linéaire d’une espérance

3.4.3 Traitement mathématique
••••Posons AR ∈ R+, de sorte à exhiber une expression développable en série entière :

fvx(A) = ρMA

1 + A−AR +AR
A0,p

− Cxkc

1 + A−AR +AR
A0,c

(3.54a)

= ρMAA0,p
A0,p +AR

× 1

1 + A−AR
A0,p +AR

− kcCxA0,c
A0,c +AR

× 1

1 + A−AR
A0,c +AR

(3.54b)

On utilise le DSE autour de 0 de x 7→ 1
1+x :

fvx(A) =
+∞∑

i=0
λi(A−AR)i (3.55a)

où : 



λ0 = ρMARA0,p
AR +A0,p

− CxkcA0,c
AR +A0,c

∀i ∈ N∗, λi = (−1)i+1
(

ρMA0,p
2

(AR +A0,p)i+1 + CxkcA0,c
(AR +A0,c)i+1

) (3.55b)

La somme précédemment écrite converge
ssi :
∣∣∣∣
A−AR
A0,p +AR

∣∣∣∣ < 1 et
∣∣∣∣
A−AR
A0,c +AR

∣∣∣∣ < 1

(3.56a)
ce qui correspond à :

AR >
A−min{A0,p;A0,c}

2 (3.56b)

•••• Il faut maintenant un estimateur de A
pour continuer. Dans sa thèse, J. Dauchet
se base sur l’expression (3.1b) :

A(~r) =
∫

PAR
dν ka(~r; ν)

∫

4π
d~u fν(~r; ~u; ν)

et sur un estimateur de fν(~r; ~u; ν) construit
par un suivi de photon inverse. Cet estima-
teur est justifiable par une forme intégrale de
l’équation de transfert radiatif le long d’un
rayon, comme montré dans le chapitre précé-
dent 1.2 du présent manuscrit, bien que les
justifications données par J. Dauchet dans
sa thèse soient principalement basées sur une
image analogue utilisant la réciprocité des che-
mins. Contrairement à ce qui est proposé dans
le présent manuscrit, l’estimateur utilisé est
construit en séparant la diffusion et l’absorp-
tion : on construit un chemin de diffusion-
réflexion pure depuis le point sonde ~r jusqu’à

l’émetteur (obligatoirement une fibre optique),
puis la luminance est calculée comme la lumi-
nance émise par la fibre et exactement atté-
nuée selon une loi exponentielle tenant compte
de l’absorption totale le long du chemin de
diffusion-réflexion. Cette technique est rendu
possible par les spécificités du cas d’étude Di-
CoFluV : le milieu participant est uniforme,
et non émissif.

Construire un majorant de A, valable en
tout point du réacteur, est une tâche relati-
vement simple. Il suffit de considérer le maxi-
mum de ka selon la fréquence — ka ne varie
en fait pas selon la position —, la luminance
émise par les fibres, ainsi que leur réflectivité.
Une fois que l’on dispose d’un tel majorant,
on peut s’en servir de valeur de référence AR
pour centrer les DSE précédemment montrés
de vx selon A.

Ce majorant a une qualité intéressante :
il est aussi majorant des valeurs de l’estima-
teur WA de A. Cela permet d’utiliser le choix
algorithmique

R+
j = 1− WA j+1

AR
(3.57)

où WA est l’estimateur de A. J. Dauchet
détaille ce choix dans son manuscrit.
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3.4. Productivité d’un photobioréacteur

••••J. Dauchet effectue aussi dans son ma-
nuscrit le calcul de la sensibilité de Qx =∫
V d~r fvx(A(~r)) vis-à-vis de plusieurs para-
mètres de fonctionnement ou de construction
du photobioréacteur DiCoFluV : par exemple
la concentration du milieu réactionnel en bio-
masse sèche, la concentration de la biomasse
en pigments photosynthétiques, ou la réflecti-
vité des fibres. Comme expliqué à la section
3.2.3, si on est capable d’estimer Qx et la sen-
sibilité de A vis-à-vis d’un paramètre, alors on
est capable d’estimer la sensibilité de Qx vis-à-
vis de ce paramètre, du moins s’il n’intervient
dans la définition de Qx que via A.

C’est évidemment le cas de la réflectivité
des fibres ρF : elle n’intervient dans l’expres-
sion de Qx qu’en modifiant le champ fν(~r; ~u; ν)
continûment en chaque point. C’est a priori
différent pour la concentration en biomasse
sèche Cx et la teneur en pigments p, car Cx
en particulier intervient dans l’expression de
fvx. Cependant, si on exprime vx selon la vi-
tesse locale massique d’absorption des pho-
tons a = A/Cx, plutôt que selon la vitesse
volumique A, cette difficulté est vite élimi-

née, comme en témoigne l’expression (3.52b).
On peut en première approximation suppo-
ser qu’il en est de même pour la sensibilité
∂pfν(~r; ~u; ν).

Les sensibilités de fν(~r; ~u; ν) selon ρF ,
Cx, et p sont calculables simultanément avec
fν(~r; ~u; ν) elle-même par des techniques pré-
sentées au chapitre 1.5.5. ρF intervient lors
de l’interaction avec les fibres optiques, les
coefficients d’absorption et de diffusion sont
proportionnels à Cx, et p influe sur la fonction
de phase de diffusion.

La situation aurait été plus complexe
en cas de calcul d’une sensibilité de Qx =∫
V d~r fvx(A(~r)) vis-à-vis d’un paramètre géo-
métrique. On peut alors penser que ce pa-
ramètre interviendrait dans l’expression du
domaine d’intégration V . De plus, l’évaluation
de la sensibilité de fν(~r; ~u; ν) selon un tel pa-
ramètre nécessite généralement un échantillon-
nage dans un espace de chemins particulier,
construit sur la base d’un modèle de sensibilité.
Nous renvoyons le lecteur intéressé par plus
de détails à ce sujet au manuscrit [29], dont
un chapitre entier est consacré à ce sujet.

••••Avant de présenter les algorithmes utilisés par J. Dauchet, quelques points restent à
préciser :

— Pour réaliser le calcul des sensibilités, il assemble ses DSEVI d’une manière non-présentée
à la section 3.2.3 (mais soluble dans le formalisme de la section 3.2.3, qui est conçu pour
être généraliste). Sa technique peut être grossièrement résumée comme suit : d’abord il
prend les tirages Zi effectués pour le calcul de la grandeur Qx et il les décale en indice,
selon Zi → Zi+1 ; de même, les R+

i sont décalés selon R+
i → R+

i+1 et 1 → R+
0 ; puis il

effectue un tirage du poids de sensibilité Z∂π,1 ; enfin il utilise la formulation (3.30).
— Nous avons besoin d’une expression de vx en fonction de a = A/Cx. Cela s’écrit vx = fvmx (a)

avec :

fvmx :





]0; +∞[ → R

a 7→ Cx




ρM
1
a

+ 1
a0,p

− kc

1 + a

a0,c




(3.58)

qui admet notamment le DSE fvmx (a) =
∑+∞
i=0 λ

m
i (aR − a)i, avec :





λm0 = Cx

(
ρM aR a0,p
aR + a0,p

− kc a0,c
aR + a0,c

)

∀i ∈ N∗, λmi = − Cx
(

ρM a0,p
2

(aR + a0,p)i+1 + kc a0,c
(aR + a0,c)i+1

) (3.59)

Les algorithmes qui découlent finalement de ces considérations sont décrit en 3.3 et 3.4.
L’algorithme 3.3 permet de calculer Qx uniquement, tandis que l’algorithme 3.4 permet de
calculer non seulement Qx mais aussi ses sensibilités selon ρF , Cx, et p. L’algorithme 3.4 est bien
celui utilisé par J. Dauchet dans le 6e chapitre de sa thèse.
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Résultat : Une estimation
(
wQx ; s2(wQx)

)
de Qx

1 ΣQx ← 0;
2 ΣQx 2 ← 0;
3 pour i← 1 à Ntirages faire
4 échantillonner une position uniformément dans le volume réactionnel V : on obtient

~r0 i;
5 Σλ ← 0;
6 j ← 0;
7 répéter
8 Σλ ← Σλ + λmj aR

j ; // cf. définition (3.59)
9 j ← j + 1;

10 tirer une fréquence sur [νmin; +∞[ selon une densité de probabilité pN : on
obtient νj,i;

11 tirer une direction de façon isotrope : on obtient ~u0 j,i;
12 estimer f(~r0 i; ~u0 j,i; νj,i), grâce à un algorithme de suivi inverse : on obtient

f̃(~r0 i; ~u0 j,i; νj,i);

13 ãj,i ←
4πka(νj,i)f̃(~r0 i; ~u0 j,i; νj,i)

Cx pN (νj,i)
;

14 R+
j−1,i ← 1− ãj,i/aR;

15 échantillonner R uniformément dans [0; 1] : on obtient rj−1,i;
16 jusqu’à rj−1,i > R+

j−1,i;

17 wQx i ← VV Σλ; // où VV est le volume total du milieu réactionnel
18 ΣQx ← ΣQx + wQx i;
19 ΣQx 2 ← ΣQx 2 + wQx i

2;
20 wQx ← ΣQx

/
Ntirages;

21 s2(wQx)←
(
ΣQx 2

/
Ntirages − wQx 2)/(Ntirages − 1);

Algorithme 3.3 : Algorithme pour le calcul de Qx
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Résultat : Une estimation
(
wQx ; s2(wQx)

)
de Qx,

une estimation
(
w∂ρF ,Qx ; s2(w∂ρF ,Qx)

)
de ∂ρFQx,

une estimation
(
w∂Cx,Qx ; s2(w∂Cx,Qx)

)
de ∂CxQx,

et une estimation
(
w∂p,Qx ; s2(w∂p,Qx)

)
de ∂pQx

1 mettre les sommes à 0;
2 pour i← 1 à Ntirages faire
3 échantillonner une position uniformément dans le volume réactionnel V : on obtient

~r0 i;
4 tirer une fréquence sur [νmin ; +∞[ selon une densité de probabilité pN : on obtient ν0,i;
5 tirer une direction de façon isotrope : on obtient ~u0 0,i;
6 estimer les sensibilités de f(~r0 i; ~u0 0,i; ν0,i) vis-à-vis de ρF , Cx, et p, grâce à un

algorithme en suivi inverse : on obtient respectivement w∂ρF ,f i, w∂Cx,f i, et w∂p,f i;
7 Σλ ← 0;
8 Σ′λ ← 0;
9 j ← 0;

10 répéter
11 Σλ ← Σλ + λmj aR

j ; // cf. définition (3.59)
12 Σ′λ ← Σ′λ + j λmj aR

j ;
13 j ← j + 1;
14 tirer une fréquence sur [νmin; +∞[ selon une densité de probabilité pN : on

obtient νj,i;
15 tirer une direction de façon isotrope : on obtient ~u0 j,i;
16 estimer f(~r0 i; ~u0 j,i; νj,i), grâce à un algorithme de suivi inverse : on obtient

f̃(~r0 i; ~u0 j,i; νj,i);

17 ãj,i ←
4πka(νj,i)f̃(~r0 i; ~u0 j,i; νj,i)

Cx pN (νj,i)
;

18 R+
j−1,i ← 1− ãj,i/aR;

19 échantillonner R uniformément dans [0; 1] : on obtient rj−1,i;
20 jusqu’à rj−1,i > R+

j−1,i;

21 wQx i ← VV Σλ; // où VV est le volume total du milieu réactionnel
22 w∂ρF ,Qx i ← VV w∂ρF ,f i Σ′λ;

23 w∂Cx,Qx i ← VV

(
w∂Cx,f i Σ′λ + Σλ

Cx

)
;

24 w∂p,Qx i ← VV w∂p,f i Σ′λ;
25 mettre à jour les sommes;
26 extraire les résultats des sommes, de façon usuelle;

Algorithme 3.4 : Algorithme pour le calcul si-
multané de Qx et de certaines de ses sensibilités

153





Chapitre 4

Résolution d’une équation
différentielle ordinaire
non-linéaire d’ordre 1 par une
méthode de Monte-Carlo

Ce chapitre est consacré à la résolution, par MMC, d’une équation dif-
férentielle non-linéaire, où l’inconnue est à variable et à valeurs réelles. La
solution proposée s’appuie sur les ACNs et les DSEVIs tels que présentés aux 2
précédents chapitres.

Il s’agit d’une première étape vers la résolution des équations de Boltzmann
non-linéaires. Les non-linéarités des équations différentielles résolues ici peuvent
être interprétées comme résultant de collisions inter-particulaires dans un modèle
physique sous-jacent (comme dans une approche de cinétique macroscopique),
mais il manque pour l’instant l’espace des phases.

4.1 Introduction
••••Nous proposons dans ce chapitre une technique de calcul de type Monte-
Carlo pour la résolution de certaines équations différentielles ordinaires d’ordre 1.
Plus précisément, on considère les systèmes différentiels de la forme :

{
y′(t) = f

(
y(t); t

)
∀t > 0

y(0) = y0 avec y0 ∈ R
(4.1)

où y et f sont des fonctions à valeurs réelles. f est supposé Développable en Série
Entière vis-à-vis de sa 1re variable. Ainsi, d’après le théorème de Cauchy-Lipschitz,
le système différentiel précédent admet une unique solution maximale.

On suppose parfois qu’on dispose d’une solution approchée y≈ au système (4.1).
Cette solution est alors continue et de classe C 1 par morceaux.
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Chapitre 4. Méthode de Monte-Carlo et équadiffs non-linéaires

••••Cette proposition technique, présentée tout au long du chapitre, constitue
uniquement une étape dans la construction d’une proposition similaire applicable
aux équations de Boltzmann non-linéaires. Aujourd’hui et depuis longtemps, la
résolution d’un système différentiel scalaire du type présenté en équation (4.1)
ne pose plus aucune difficulté, en utilisant des méthodes à discrétisation de la
variable indépendante (ici t). La nouvelle méthode de type Monte-Carlo proposée
ici n’a donc pas vocation à être particulièrement performante sur un tel cas d’étude.
D’ailleurs, le lecteur pourra constater, sur les exemples qui seront présentés, qu’elle
est de fait nettement moins performante que les méthodes de discrétisation usuelles.

Peu importe, car l’objectif final est la résolution de l’équation de Boltzmann. La
méthode de Monte-Carlo deviendra performante, comparée aux méthodes utilisant
des discrétisations ou des quadratures, lorsque l’espace des variables indépendantes
sera de grande dimension ou lorsque les conditions aux limites seront complexes.
Dès que nous nous intéresserons à des problèmes concrets de cinétiques des gaz,
l’espace des phases apportera 6 dimensions supplémentaires, et les contraintes aux
limites géométriques du domaine pourront prendre tout type de forme (on peut
penser notamment aux géométries 3D des systèmes industriels).

••••Par ailleurs, le système (4.1) revêt une expression très générique ; ceci est
volontaire. Même si le montage d’une solution statistique utilisable en MMC pour
l’équation de Boltzmann (en cinétique des gaz) est le fil conducteur de cette thèse,
cette dernière équation est pour nous une représentante de toutes les équations de
Boltzmann non-linéaires. C’est la raison pour laquelle nous n’avons pas cherché à
préciser f et à rendre l’équation d’évolution aussi proche que possible de l’équation
de Boltzmann (sans espace des phases toutefois, ce qui resterait une simplification
lourde). Nous ne le ferons que lors des tests de mise en œuvre.

Nous fournissons donc d’abord des solutions générales au problème (4.1). Il
nous faudra ensuite rajouter l’espace des phases. Cet ajout sera fait dans les
chapitres suivants 5 et 6 comme un extension très directe de la proposition du
présent chapitre. Mais pour le coup nous le ferons alors spécifiquement pour des
cas de cinétique des gaz. Ce chapitre est ainsi le dernier à exhiber un caractère de
généralité.

••••Les formulations intégrales solutions du système (4.1), que nous allons bientôt
détailler, et qui seront utilisables dans le contexte de la méthode de Monte-Carlo,
seront basées initialement sur les ACNs présentés au chapitre 2 et feront ensuite
appel aux DSEVIs présentés au chapitre 3. Nous amènerons ces formulations dans
la section 4.2, dans un premier temps de façon très formelle pour ne laisser aucune
zone d’ombre, sachant que nous nous éloignons graduellement de l’intuitif usuel de
la physique du transport et que nous ne pouvons plus nous appuyer sur lui pour
contrôler la rigueur de nos développements.

Nous donnerons ensuite, en section 4.3, une démarche concrète de résolution. Ce
sera l’occasion de tester le comportement des algorithmes, en particulier en termes
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de variance et de récursivité. Nous montrerons aussi comment ce comportement
peut être anticipé par le calcul symbolique.

Ensuite, nous montrerons en section 4.4 comment la résolution par MMC d’un
système différentiel du type (4.1) peut être facilité lorsqu’on dispose, avant de
commencer, d’une solution approximative. Cette solution pourrait être calculé par
exemple à l’aide d’une méthode à discrétisation.

Ensuite encore, en section 4.5 nous montrerons comment le calcul de sensibilité
est aisément compatible avec la démarche mathématique et numérique exposée
dans ce chapitre. Notre intérêt pour ce détail, depuis le chapitre 2, vient de ce que
nous voulons montrer que toutes les propriétés de la MMC sont utilisables dans la
résolution des équations de Boltzmann non-linéaires ; y compris la façon de gérer
les calculs de sensibilité tels que demandés de plus en plus fréquemment dans le
contexte de l’ingénierie. Ce sera notre dernière digression sur le calcul de sensibilité
dans le présent manuscrit.

Ce chapitre est donc à dominante formelle, mais comme la plupart des raison-
nements s’étendront immédiatement à la cinétique des gaz, ils ne seront présentés
qu’une seule fois ; et cela nous évitera de repasser par des considérations trop
techniques dans les chapitres plus illustratifs de la fin de ce mémoire.

4.2 Bases mathématiques de la méthode
Proposition 4.2.1. Soit y≈ une fonction de [0; tf [ ⊆ R+ vers R, continue et de
classe C 1 par morceaux. Soit aussi k̂ une fonction de ]−∞; tf [ vers R+∗ continue
par morceaux et de morceaux continûment prolongeables vers R+∗, telle que∫ 0
−∞ k̂(t)dt = +∞. Pour tout t ∈ [0; tf [, on a :

y≈(t) =
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
×


H(t′ 6 0) y≈(0) + H(t′ > 0)

(
y≈(t′) + y≈ ′(t′)

k̂(t′)

)
 (4.2)

Preuve. On note y≈e le membre de droite dans l’identité (4.2). Comme k̂ ne
s’annule pas, y≈e peut être simplifié en :

y≈e (t) =
∫ t

−∞
dt′ exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
×


H(t′ 6 0) k̂(t′)y≈(0) + H(t′ > 0)

(
k̂(t′)y≈(t′) + y≈ ′(t′)

)


Dans cette expression intégrale de y≈e , l’intégrande est une fonction continue
par morceaux et dominée au voisinage de −∞ par une fonction intégrable, donc
l’intégrale est bien définie.
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On va montrer que y≈ ′e (t) = y≈ ′(t) partout où y≈ ′(t) existe, et que y≈e et y≈
satisfont à la même condition initiale. Comme y≈e et y≈ sont continues et de classe
C 1 par morceaux, cela suffit à montrer leur égalité.

En t = 0 :

y≈e (0) =
∫ 0

−∞
dt′ k̂(t′) exp

(
−
∫ 0

t′
dt′′ k̂(t′′)

)(
H(t′ 6 0) y≈(0) + H(t′ > 0) . . .

)

= y≈(0)
∫ 0

−∞
dt′k̂(t′) exp

(
−
∫ 0

t′
dt′′ k̂(t′′)

)

= y≈(0)
[
exp

(
−
∫ 0

t′
dt′′ k̂(t′′)

)]t′=0

t′=−∞
= y≈(0)

Par ailleurs, en t > 0 tel que y≈ ′(t) existe :

∂ty
≈
e (t) = ∂t

∫ 0

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
y≈(0) +

∂t

∫ t

0
dt′ exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)(
k̂(t′) y≈(t′) + y≈ ′(t′)

)

= y≈(0)
∫ 0

−∞
dt′ k̂(t′) ∂t

(
−
∫ t

t′
dt′′ k̂(t′′)

)
exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
+

∫ t

0
dt′ ∂t

(
−
∫ t

t′
dt′′k̂(t′′)

)
exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)(
k̂(t′) y≈(t′) + y≈ ′(t′)

)
+

k̂(t) y≈(t) + y≈ ′(t)

= − k̂(t) y≈(0)
∫ 0

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
−

k̂(t)
∫ t

0
dt′ exp

(
−
∫ t

t′
dt′′k̂(t′′)

)(
k̂(t′) y≈(t′) + y≈ ′(t′)

)
+

k̂(t) y≈(t) + y≈ ′(t)

= − k̂(t) y≈(0)
[
exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)]t′=0

t′=−∞
−

k̂(t)
[
y≈(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)]t′=t

t′=0
+ k̂(t) y≈(t) + y≈ ′(t)

= − k̂(t) y≈(0) exp
(
−
∫ t

0
dt′ k̂(t′)

)
− k̂(t) y≈(t) +

k̂(t) y≈(0) exp
(
−
∫ t

0
dt′ k̂(t′)

)
+ k̂(t) y≈(t) + y≈ ′(t)

= y≈ ′(t)

Ceci clôt la démonstration. �
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Proposition 4.2.2. Soit y une fonction de [0; tf [ ⊆ R+ vers R, solution du
système : {

y′(t) = f
(
y(t); t

)
∀t ∈ [0; tf [

y(0) = y0 y0 ∈ R
(4.3)

et supposée de classe C 1 par morceaux. Soit aussi k̂ une fonction de ]−∞; tf [ vers
R+∗, continue par morceaux et de morceaux continûment prolongeables vers R+∗,
telle que

∫ 0
−∞ k̂(t)dt = +∞. Pour tout t ∈ [0; tf [, on a :

y(t) =
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
×


H(t′ 6 0) y0 + H(t′ > 0)

(
y(t′) + f(y(t′); t′)

k̂(t′)

)
 (4.4)

Preuve. y est solution du système différentiel (4.3), donc y est continue. Ainsi,
y satisfait aux conditions pour y≈ dans la proposition 4.2.1, de même que k̂. En
substituant f

(
y(t′); t′

)
à y′(t′), on obtient le résultat. �

Proposition 4.2.3. Soit le système différentiel :
{
y′(t) = f

(
y(t); t

)
∀t ∈ [0; tf [

y(0) = y0 y0 ∈ R
(4.3) ↑

avec tf ∈ R̄+, ainsi que k̂ : ] − ∞; tf [ → R+∗ continue par morceaux et de
morceaux continûment prolongeables vers R+∗, et B : [0; tf [ →P(R) répondant
aux hypothèses suivantes :

1. ∀t ∈ [0; tf [, (E (B(t))× {t}) ⊂ Df

2. ∀t ∈ [0; tf [, y0 ∈ B(t)
3. ∀t ∈ [0; tf [, si on dispose d’une variable aléatoire calculable Z à valeurs

dans B(t) et d’espérance finie, on peut construire un estimateur calcu-
lable non-biaisé convergeant de ϕ(E(Z); t) = E(Z) + f(E(Z);t)

k̂(t) à valeurs dans
⋂
t′∈[t;tf [ B(t′). On note C(t) un majorant, sur les VA Z précédemment définies,

du nombre moyen de tirages de Z nécessaires pour estimer ϕ(E(Z); t) grâce
à cette construction.

4. C est intégrable sur [0; tf [.
Soit y∗ définie comme « une solution maximale du système différentiel (4.3), telle
que ∀t ∈ Dy∗ , y

∗(t) ∈ E (B(t)) ».
Alors y∗ est unique à répondre à cette définition, et satisfait à l’équation

intégrale (4.4) sur tout son ensemble de définition. Pour tout t ∈ Dy∗ , il existe un
estimateur calculable non-biaisé convergent de y∗(t) à valeurs dans B(t).

De plus :
— Si B(t) est borné pour tout t ∈ [0; tf [, alors y∗ est définie sur tout [0; tf [.
— Si B(t) est ouvert pour tout t ∈ [0; tf [, alors y∗ est l’unique solution maximale

du système (4.3), en toute généralité.
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••••La proposition 4.2.2, couplée à la méthodologie expliquée au chapitre 3,
fournit une méthode de résolution de type Monte-Carlo pour les équations dif-
férentielles étudiées dans ce chapitre. La proposition 4.2.3 donne des conditions
suffisantes de fonctionnalité pour une telle méthode de résolution.

L’idée est d’utiliser le principe des Algorithmes à Collisions Nulles — tirer un
temps ou une distance de recul selon une extinction arbitraire, puis tenir compte
de la variation réelle de y par un mécanisme de compensation utilisant le ratio
extinction réelle / extinction arbitraire — encore valable lorsque le coefficient d’ex-
tinction est a priori inconnu. Mais cette fois-ci, ce coefficient n’est plus simplement
une grandeur complexe qu’on préfère estimer que calculer exactement (comme au
chapitre 2.5), mais est une fonction de l’inconnue calculée y elle-même. On utilise
alors un Développement en Série Entière de Variables Indépendantes pour estimer
f(y; t) à partir de l’estimateur récursif de y, qu’on aurait utilisé de toute façon.

Il y a tout de même une différence importante entre la forme algorithmique
expliquée ici et un simple ACN : dès que f n’est pas affine envers y, le processus
d’estimation de y en remontant le temps ne forme plus un chemin à proprement
parler, mais un arbre. En effet, à chaque temps intermédiaire ti de la remontée vers
l’instant initial qui permet d’estimer y(t), on doit estimer y(ti) + f

(
y(ti); ti

)/
k̂(ti) :

cette estimation requière plusieurs estimations indépendantes de y(ti) si f n’est
pas affine en sa 1re variable.

••••Afin de se repérer dans un tel arbre d’estimations, il est utile de mettre
en place un indiçage des estimations de y. Cet indiçage doit permettre de situer
de manière unique chaque estimation intermédiaire de y faite pour arriver au
résultat. On indicera de même les temps t auxquels on remonte pour effectuer
chaque estimation.

On s’inspire ici d’une notation utilisée par Ivan T. Dimov [36, 37, 119]. On
indice les estimations intermédiaires de y par des suites à coefficients naturels,
selon les règles suivantes :
— Seules sont utilisées les suites N∗ → N, stationnaires à 0, dont tous les termes

sont nuls à partir du 1er terme nul. On note leur ensemble Z.
— Le degré de la suite (l’indice de son plus lointain terme non nul) indique

à quelle profondeur dans l’arbre de remontée se situe l’estimation repérée,
c’est-à-dire combien de tirages de temps de recul fait-on avant d’avoir besoin
de cette estimation.

— Parmi les termes non-nuls d’une suite i, le je terme désigne une estimation
de y(t(n7→H(n<j)×in)) servant à estimer y(t(n7→H(n<j)×in)) + f(y(t(n 7→H(n<j)×in));
t(n 7→H(n<j)×in)). La donnée des numéros des estimations choisies à chaque
temps de recul permet de déterminer la branche que l’on suit.

Bien sûr, pour un arbre de remontée en particulier seule une partie des suites
indices de Z est utilisée.

La figure 4.1 donne un exemple de fonctionnement de cet indiçage.
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t0

ỹ(0;... )

t0t(0;... )

ỹ(1;0;... )

t(1;0;... )

ỹ(1;1;0;... )

ỹ(1;2;0;... )

t(1;2;0;... )

y0

ỹ(2;0;... )

t(2;0;... )

ỹ(2;1;0;... )

ỹ(2;2;0;... )

t(2;2;0;... )

ỹ(2;2;1;0;... )

t(2;2;1;0;... )

y0

ỹ(2;2;2;0;... )

ỹ(2;3;0;... )

Figure 4.1 – Exemple de fonctionnement de l’indiçage des branches
d’un « arbre d’estimations » servant à l’estimation de y(t0)

Preuve (proposition 4.2.3). Seules les grandes lignes de la preuve sont données
ici.

On note ϕ l’application (z; t) 7→ z + f(z;t)
k̂(t) .

On note Wϕ le mécanisme qui permet, à partir d’une VA Z d’espérance finie
à valeurs dans B(t), de construire un estimateur de ϕ

(
E(Z); t

)
= E

(
Wϕ ◦ (Z; t)

)
.

E(Z) ∈ E (B(t)) donc ϕ
(
E(Z); t

)
est bien défini, et le mécanisme Wϕ existe par

hypothèse.
Considérons la variable aléatoire Ỹ �(t) définie par :

Ỹ �(t) = H(T ′ 6 0)× y0 + H(T ′ > 0)×Wϕ ◦
(
Ỹ �(T ′);T ′

)

avec T ′ une VA à valeurs dans ] −∞; t] et de fonction de répartition FT ′ : t′ 7→
exp

(
− ∫ tt′ dt′′ k̂(t′′)

)
.

Si T ′ 6 0, Ỹ �(t) est calculable et à valeurs dans B(t). Si T ′ > 0, et si Ỹ �(T ′) est
calculable et à valeurs dans B(T ′), alors Ỹ �(t) est calculable et à valeurs dans B(t).
Soit alors rec(t) la moyenne du nombre total d’évaluations de Ỹ �(ti) à différents
ti à effectuer pour obtenir une valeur de Ỹ �(t), récursivité comprise : Ỹ �(t) est
calculable ssi rec(t) est finie (voir [55]).

Pour tout t ∈ [0; tf [, rec(t) est positive et obéit à l’inéquation intégrale :

rec(t) 6
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
×

(
H(t′ 6 0)× 1 + H(t′ > 0)

(
1 + C(t′)rec(t′)

))
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et donc au système différentiel :
{

rec(0) = 1
∂trec(t) 6 k̂(t)

((
C(t)− 1

)
rec(t) + 1

)

Soit recM obéissant au système différentiel :
{

recM(0) = 1
∂trecM(t) = k̂(t)

((
C(t)− 1

)
recM(t) + 1

)

Il s’agit de la récursivité rec, dans l’hypothèse où le branchage généré par le
mécanisme Wϕ est égale au majorant C. Sans surprise, on a recM > rec.

Comme k̂ est continue par morceaux de morceaux continûment prolongeables
vers R+∗, et C est intégrable sur [0; t], le précédent système admet la solution finie
suivante :

recM(t) = exp
(
−
∫ t

0
dt′ k̂(t′)

(
C(t′)− 1

))
+

∫ t

0
dt′ k̂(t′) exp

(
−
∫ t′

0
dt′′k̂(t′′)

(
C(t′′)− 1

))

donc rec(t) est finie. Donc Ỹ �(t) est calculable.
Il s’en suit que chaque réalisation de la variable aléatoire Ỹ �(t) donnera lieu

pour son calcul à un arbre de réalisations — de Ỹ �(t′) avec t′ ∈ [0; t] — fini. Par
récurrence depuis les feuilles de cet arbre vers sa racine, sur le plus grand intervalle
de R+ contenant 0 où l’espérance de Ỹ �(t) existe, cette espérance obéit à l’équation
intégrale (4.4) :

E
(
Ỹ �(t)

)
=
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
×

(
H(t′ 6 0) y0 + H(t′ > 0)ϕ

(
E
(
Ỹ �(t)

)
; t
))

De plus, quand l’espérance de Ỹ �(t) n’existe pas, c’est que l’intégrale précédente
ne converge pas.

Par dérivation, l’espérance de Ỹ �(t) est solution du système différentiel (4.3).
L’unicité de l’espérance amène au résultat. Ỹ �(t) est un estimateur de y∗(t).
Concernant les résultats annexes :
— Si B(t) est borné, Ỹ �(t) est borné et possède donc une espérance, et donc

y∗(t) existe.
— Étant donné ce que l’on vient de montrer, si une solution au système (4.3)

autre que y∗ existe, lorsqu’elle diffère de y∗ elle prend des valeurs hors de
E (B(t)). Comme une solution d’un problème différentiel est continue, si B(t)
est ouvert alors y∗ est bien la seule solution maximale existante au système
(4.3) : sinon il y aurait violation du théorème des valeurs intermédiaires. �
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Remarque. La proposition 4.2.3 fournit des conditions d’unicité pour la solution
maximale du problème différentiel (4.3) qui sont plus étroites que la condition
ordinaire du théorème de Cauchy-Lipschitz. Cette condition-là est que f soit
localement lipschitzienne autour de sa 1re variable. Dans la proposition 4.2.3 la
condition est que la donnée d’un estimateur de y(t) permet la construction d’un
estimateur de f

(
y(t); t

)
: nous avons dans l’idée qu’une telle construction fasse

appel à un Développement en Série Entière de f en sa 1re variable, comme cela
est expliqué au chapitre 3 ; or toute fonction développable en série entière est
localement lipschitzienne sur le domaine de validité du développement.

Des contre-exemples permettent de montrer comment la méthode proposée
peut être mise en défaut, et quels pièges sont à éviter. On peut citer le système
suivant : {

y′(t) = a y(t)2/3 ∀t ∈ R+

y(0) = 0

Ce système différentiel apparemment bien posé admet en fait un ensemble continu
de solutions S = {t 7→ H(t > t0)(a(t− t0)/3)3, t0 ∈ R̄+}. On peut vérifier qu’il ne
satisfait pas à la condition du théorème de Cauchy-Lipschitz, en effet la fonction
y 7→ y2/3 n’est pas localement lipschitzienne en 0, or toute solution du système
passe en 0 du fait de la condition initiale.

On peut cependant être tenté d’appliquer la technique algorithmique de Monte-
Carlo expliquée dans cette section pour estimer y(t) avec t > 0. En effet, la fonction
y 7→ y2/3 est développable en série entière, autour de tout yR > 0 avec un rayon de
convergence yR. En plus, sur un tel intervalle de convergence la-dite fonction est
bornée. Comme la fonction k̂ est arbitraire, il n’y a de ce côté pas de limitation.
La technique devrait donc fonctionner, ce qui garantirait à la fois l’existence et
l’unicité de la solution. Il n’en est en fait rien, car aucun développement en série
entière de la fonction y 7→ y2/3 n’est convergent en y = 0.

4.3 Illustration sur un cas de cinétique
chimique

4.3.1 Le cas d’étude
Nous illustrons maintenant la technique algorithmique développée dans la

section précédente sur un cas simple. Ce cas est décrit par le système :
{
y′(t) = −α y(t)2

y(0) = y0
avec

{
α > 0
y0 > 0 (4.5)

dont l’unique solution sur R+ est :

y(t) = y0

α y0 t+ 1 (4.6)
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C’est, par exemple, l’évolution de la concentration en une espèce chimique d’un
milieu uniforme, lorsque cette espèce subit une réaction de destruction d’ordre 2.

Ce cas d’étude, malgré sa simplicité, a pour nous suffisamment d’intérêt, à
plusieurs titres :

— Bien qu’assez simple pour permettre des études par le calcul symbolique,
il est représentatif de comportements fréquents de la méthode développée.
Certains d’entre eux sont pathologiques et méritent d’être anticipés. . .

— L’équation d’évolution est quelque peu proche de l’équation de Boltzmann,
dont la résolution numérique est l’objet d’étude de ce manuscrit. En effet,
le terme de collision de Boltzmann comporte un terme source et un terme
puits, tous deux quadratiques. Le terme puits est proportionnel à la fonction
de distribution en le point considéré, alors que le terme source ne fait appel
à la fonction de distribution que via une intégration sur l’espace des phases.
Dans le cas d’étude de cette section, on a juste un terme puits, quadratique
en y. En quelque sorte, il est une simplification grossière de l’équation de
Boltzmann, dont on aurait retiré le terme source et l’espace des phases. À ce
titre, l’image physique d’une réaction chimique de destruction d’ordre 2 est
tout-à-fait justifiée ; l’ordre 2 est une caractéristique cinétique typique des
réactions chimiques de destruction par interaction à 2 molécules (par exemple
2 O3 → 3 O2), de même selon la mécanique de Boltzmann les particules
changent de vitesse en collisionnant 2 à 2.
Une conséquence de cette ressemblance est qu’on peut espérer qu’une partie
des éventuels comportements de la méthode numérique que nous allons
proposer pour l’équation de Boltzmann soit déjà observable sur ce cas d’étude
simple.

4.3.2 Premier algorithme de résolution proposé
••••En reprenant ce qui est expliqué dans la section 4.2, et notamment l’équation
(4.4), on peut donner une expression intégrale récursive de y(t) dans le cas étudié :

y(t) =
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′k̂(t′′)

)
×


H(t′ 6 0) y0 + H(t′ > 0)

(
y(t′)− α y(t′)2

k̂(t′)

)
 (4.7)

=
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′k̂(t′′)

)
×


H(t′ 6 0) y0 + H(t′ > 0)

(
1− α y(t′)

k̂(t′)

)
y(t′)


 (4.8)

À fins de simplicité, on choisira k̂ comme une fonction constante strictement
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positive. Ainsi :

y(t) =
∫ t

−∞
dt′ k̂ exp

(
−k̂(t−t′)

)

H(t′ 6 0) y0+H(t′ > 0)

(
1−α y(t′)

k̂

)
y(t′)


 (4.9)

Cette expression intégrale peut être convertie sous forme statistique, en vue de
monter un algorithme récursif d’estimation de y(t). Plusieurs expressions statis-
tiques peuvent être proposées, nous choisissons ici la suivante :

y(t) = E

H(T ′ 6 0) y0 + H(T ′ > 0)

(
1− α Ỹ1(T ′)

k̂

)
Ỹ2(T ′)


 (4.10)

où T ′ est une VA à valeurs dans ]−∞; t] et de fonction de répartition FT ′ : t′ 7→
exp

(
−k̂(t− t′)

)
, et Ỹ1(T ′) et Ỹ2(T ′) sont 2 estimateurs indépendants de y en T ′.

L’algorithme 4.1 découle directement de cette formulation statistique.

Entrées : Le temps t où on veut estimer y(t)
Sorties : Une estimation ponctuelle de y(t)

1 échantillonner Tr , ad selon une loi exponentielle d’espérance unité : on obtient
tr , ad ;

2 t′ ← t− tr , ad

k̂
;

3 si t′ 6 0 alors retourner y0;
4 sinon
5 estimer y(t′) grâce à cet algorithme : on obtient ỹ1(t′);
6 estimer à nouveau y(t′) grâce à cet algorithme : on obtient ỹ2(t′); // de

manière indépendante à ỹ1(t′)

7 retourner
(

1− α ỹ1(t′)
k̂

)
ỹ2(t′);

Algorithme 4.1 : Algorithme pour estimer ponctuellement y(t)

••••Comme le lecteur peut le constater en lisant l’algorithme 4.1, la façon dont
nous l’avons écrit utilise ce qui est appelé la programmation récursive : en s’exécu-
tant, l’algorithme 4.1 s’appelle lui-même, et même plusieurs fois. Cette structure
de programmation est tout-à-fait valable, pourvu qu’on soit sûr que l’algorithme
sera capable de s’exécuter — complètement, avec toutes ses ramifications — avec
une espérance de ramification finie ; ceci est en partie l’objet de la proposition 4.2.3.
La programmation récursive est naturellement autorisée par plusieurs langages de
programmation modernes, comme le C++ que nous avons utilisé.

L’annexe D.2 fournit le code source que nous avons écrit pour tester le cas
d’étude ; la partie du code correspondant vraiment à l’algorithme 4.1 est le bloc
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fonction Mon_algorithme::algorithme_ponctuel { } du fichier algo1.cpp. Ce
code possède la capacité supplémentaire de compter les ramifications des arbres de
reconstruction qu’il génère. On peut constater qu’il n’y est nulle part fait référence
à une façon d’enregistrer de tels arbres. Comme illustré dans la figure 4.2, le
programme ne conserve en mémoire que :
— la branche qui est en cours d’exploration,
— les départs des sous-arbres partant de la branche d’exploration, qui sont

encore à explorer,
— les résultats totaux d’estimations intermédiaires des sous-arbres déjà explorés,

partant de la branche d’exploration,
le tout étant enregistré automatiquement par la pile d’exécution. Cette pile enre-
gistre « où doit-on revenir dans le code quand on a terminé le bloc fonction où on
se situe » pour tous les blocs fonctions dans lesquels on est entré successivement,
ainsi que l’état (les valeurs des variables) du code appelant quand il appelle un
bloc fonction (La pile d’exécution est bien sûr automatiquement déchargée quand
un bloc fonction se termine et qu’on retourne au code appelant.). Cette structure
permet à notre code d’être relativement économe en ressources informatiques, en
plus d’être facile à écrire.

••••En C++, le compilateur n’effectue aucune vérification concernant la capacité
de l’algorithme à se terminer. En revanche, pendant l’exécution, si la récursivité
est potentiellement infinie la pile d’exécution se charge progressivement, jusqu’à
saturer en provoquant le crash du programme.

On peut penser que la programmation récursive aurait aussi permis d’écrire
les Algorithmes à Collisions Nulles utilisés pour traiter les équations différentielles
linéaires, que nous avons présentés au chapitre 2. Il n’y en a en effet aucune
impossibilité. Nous n’avons cependant pas retenu cette solution dans ce cas-là.
Une raison est que les appels de fonction consomment du temps, pour charger
et décharger la pile d’exécution. S’il n’y a pas de multiplication des branches
suivies, une simple boucle permet d’effectuer le même travail pour des coûts
computationnels moindres.

A priori on aurait pu concevoir un algorithme sans programmation récursive
pour traiter le cas étudié ici, aussi performant, en utilisant des boucles, des tests, et
une structure de mémorisation adaptée. Nous ne l’avons pas fait pour des questions
de simplicité de codage.

4.3.3 Comportement de l’algorithme de résolution
proposé : étude par modélisation de la récursivité
et de la variance

Deux éléments dans le comportement de l’algorithme 4.1, que nous avons proposé
comme générateur d’estimations ponctuelles de la grandeur étudiée y(t), nous
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t0

déjà parcouru, et oublié
en mémoire

restant à parcourir,
ou à calculer

ỹ(0;... )

t0t(0;... )

ỹ(1;0;... )

t(1;0;... )

ỹ(1;1;0;... )

ỹ(1;2;0;... )

t(1;2;0;... )

y0

ỹ(2;0;... )

t(2;0;... )

ỹ(2;1;0;... )

ỹ(2;2;0;... )

t(2;2;0;... )

ỹ(2;2;1;0;... )

t(2;2;1;0;... )

y0

ỹ(2;2;2;0;... )

Figure 4.2 – Illustration du parcours par l’algorithme 4.1 d’un arbre d’es-
timations servant à l’estimation de y(t0). Cette figure reprend la figure

4.1 ; par souci de cohérence avec l’algorithme 4.1, on a retiré une branche.
On suppose ici qu’on vient juste de terminer le calcul de ỹ(2;1;0;... ) ; l’étage

de calcul de ỹ(2;0;... ) n’en garde en mémoire que la valeur de ỹ(2;1;0;... ).
De même, il sait qu’il va devoir calculer ỹ(2;2;0;... ) ; mais on ne saura
comment qu’en effectuant ce calcul, car la forme des sous-arbres d’es-
timations à parcourir dépend des valeurs aléatoires qui seront fournies.

À chaque étage de récursion, cette mémorisation est
mise en place. De la sorte, l’algorithme sait ce qui lui

reste globalement à faire pour finir l’estimation de y(t0).

intéressent particulièrement : sa récursivité moyenne, et la variance de l’estimateur
qu’il génère.

••••L’étude de la récursivité générée en moyenne par l’algorithme peut reprendre
le travail effectué dans la preuve de la proposition 4.2.3. Nous opterons toutefois
ici pour une démarche détaillée, permettant d’expliciter ce précédent travail sur
l’exemple étudié.

On note rec(t) l’espérance du nombre de tirages de temps de recul T ′ nécessaires
à une estimation ponctuelle de y(t) ; un tirage de T ′ correspond à une traversée de
l’intégrale sur t′ dans l’expression (4.9).

Nous allons modéliser cette grandeur, c’est-à-dire que nous allons retrouver les
équations auxquelles elle obéit. Pour cela, nous entrerons dans une démarche inverse
à notre démarche mathématique habituelle visant à construire un algorithme de
Monte-Carlo. Nous partirons de l’équation statistique ou intégrale vérifiée par rec,
facile à obtenir quand on dispose de l’expression statistique vérifiée par y à partir
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de laquelle on monte l’algorithme. Ensuite on dérive l’équation intégrale obtenue
pour retrouver une équation différentielle, qui modélise l’évolution de rec. Dans le
cas simple que nous étudions, le système différentiel obtenu est assez simple pour
être résolu à la main.

Dans le cas où T ′ 6 0, le suivi en remontée s’arrête, et on a donc besoin que du
seul échantillonnage de T ′ que l’on a fait. Dans le cas inverse, en plus du tirage de
T ′ effectué, il va falloir recommencer l’algorithme 2 fois, mais en partant à présent
du temps T ′. Cela amène à :

rec(t) =
∫ t

−∞
dt′ k̂ exp

(
−k̂(t−t′)

)(
H(t′ 6 0)×1+H(t′ > 0)

(
1+2 rec(t′)

))
(4.11)

En dérivant l’expression précédente on obtient un système différentiel sur t auquel
rec obéit :

{
rec(0) = 1
∂trec(t) = k̂ ×

(
1 + rec(t)

) (4.12)

Ce qui donne immédiatement :

rec(t) = 2 ek̂t − 1 (4.13)

La récursivité de l’algorithme augmente de façon exponentielle avec le temps si-
mulé. Plus le coefficient arbitraire d’extinction k̂ est grand, plus cette augmentation
exponentielle est rapide.

••••La démarche de modélisation utilisée sur la récursivité de l’algorithme peut
aussi être employée sur la variance. En fait, on l’appliquera au 2e moment de la
distribution de l’estimateur Ỹ (t), plutôt qu’à sa variance, car les équations intégrales
vérifiées par les moments sont plus simples à écrire. Par ailleurs Var(Ỹ (t)) =
E
(
Ỹ (t)2

)
−E(Ỹ (t))2 = E

(
Ỹ (t)2

)
−y(t)2, avec y connue ou alors grandeur d’intérêt

principale, donc si on connaît E
(
Ỹ (t)2

)
on connaît Var(Ỹ (t)) et vice versa.

Parfois, cette démarche de modélisation n’est pas le plus simple moyen de
connaître la variance de l’estimateur obtenu. On en donnera quelques exemples
dans la suite de ce chapitre. Toutefois dans ce cas-ci c’est bien le seul moyen que
nous avons trouvé. En fait, cette démarche semble pouvoir faire office de « technique
par défaut » quand on ne sait pas obtenir la variance plus simplement (à part par
l’expérience numérique, bien entendu).

En reprenant l’équation (4.10), on déduit :
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E
(
Ỹ (t)2

)
=
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0) y0

2 + H(t′ > 0)

E
((

1− α Ỹ1(t′)
k̂

)2 )
E
(
Ỹ2(t′)2

)



=
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0) y0

2 + H(t′ > 0)

(
1−

2α E
(
Ỹ1(t)

)

k̂
+
α2 E

(
Ỹ1(t′)2

)

k̂2

)
E
(
Ỹ2(t′)2

)



=
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0) y0

2 + H(t′ > 0)

(
1− 2α y(t′)

k̂
+
α2 E

(
Ỹ (t′)2

)

k̂2

)
E
(
Ỹ (t′)2

)

 (4.14)

En dérivant on obtient :




E
(
Ỹ (0)2

)
= y0

2

∂t E
(
Ỹ (t)2

)
= α2

k̂
E
(
Y (t)2

)2 − 2α y(t) E
(
Y (t)2

)

= α2

k̂
E
(
Y (t)2

)2 − 2α y0

α y0 t+ 1 E
(
Y (t)2

)
(4.15)

Ce système admet la solution :

E
(
Ỹ (t)2

)
=





y0
2

(
1 + α y0 t

)(
1 +

(
1− α y0

k̂

)
α y0 t

) si





k̂ > α y0 ou
α y0 t <

1
αy0
k̂
− 1

+∞ si





k̂ < α y0 et
α y0 t >

1
αy0
k̂
− 1

(4.16)
Ce résultat peut être traduit immédiatement en termes de variance :

Var(Ỹ (t)) =





y0
2 α y0 t
(
1 + α y0 t

)2
(

k̂

α y0
+
(

k̂

α y0
− 1

)
α y0 t

) si





k̂ > α y0 ou
α y0 t <

1
αy0
k̂
− 1

+∞ si





k̂ < α y0 et
α y0 t >

1
αy0
k̂
− 1

(4.17)
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On peut en déduire comment la variance de notre algorithme se comporte, d’un
point de vue qualitatif. 2 cas de figure se distinguent principalement, selon la valeur
du rapport k̂

α y0
:

— Si k̂
α y0

> 1, la variance relative de l’estimateur Ỹ (t) — c’est-à-dire Var(Ỹ (t))
E(Ỹ (t))2 —

tend vers la valeur αy0
k̂−αy0

quand t tend vers l’infini.

— Si k̂
α y0

< 1, la variance, relative ou absolue, de l’estimateur Ỹ (t) devient
infinie au bout d’un temps simulé t fini ! Le temps minimal au-delà duquel la
variance est infinie vaut :

techec = 1
α y0
× k̂

α y0 − k̂
(4.18)

••••La 1re incidence de ces comportements combinés de la variance d’estimateur
et de la récursivité moyenne de construction est sur le réglage de k̂ pour améliorer
le temps de calcul. Un algorithme sera d’autant plus efficace que le temps de
calcul nécessaire pour obtenir une estimation de y(t) avec un écart-type donné (par
exemple 1%) sera faible (voir chapitre 1.3.1). Ici, on peut grossièrement considérer
que ce temps évolue comme : t1% ∝ rec × Var(Ỹ ).

Étant donné comment évoluent rec et Var(Ỹ ) en fonction du temps simulé, on
peut en déduire l’attitude suivante : dès que le temps simulé dépasse 1

αy0
, il vaut

mieux baisser k̂ autant que possible. Mais cependant, il est indispensable d’assurer
que k̂ > α y0.

••••La 2e chose à remarquer est que l’absence de comportement pathologique de
la variance quand k̂ > α y0 était prévisible, grâce à la proposition 4.2.3.

En effet, le segment [0; k̂/α] est stable par la fonction (Ỹ1; Ỹ2) 7→ (1−αỸ1/k̂)Ỹ2.
Dès lors, il semble naturel de choisir B(t) = [0; k̂/α] pour tout t positif dans les
hypothèses de la proposition 4.2.3, dès que y0 ∈ [0; k̂/α] ; on peut montrer assez
vite que l’on peut compléter toutes les hypothèses de la proposition 4.2.3 dans ce
cas et avec ce choix pour B. Ainsi, l’estimateur Ỹ (t) est à valeurs dans un ensemble
borné, et sa variance est donc nécessairement finie.

Dans ce cas, il est tentant de parler d’estimateur récursivement borné. En effet,
si les valeurs de l’estimateur de y sont coincées dans le segment [0; k̂/α] en un point
d’un arbre de reconstruction, c’est parce que les valeurs du même estimateur juste
un peu plus haut dans l’arbre le sont aussi. C’est un mécanisme récursif.

Quelque chose à remarquer du même ordre, est que ce n’est pas aux temps
simulés où un tel bornage récursif n’est pas constructible que l’estimateur exhibe
un comportement pathologique. En effet, si k̂ est légèrement inférieur à α y0, le
bornage récursif est a priori irréalisable dans les petits temps, pourtant c’est dans
les grands temps que le calcul échoue. Cela laisse à penser que des trop grandes
valeurs de Ỹ vont être produites dans les petits temps calculés, qui vont ensuite
être multipliées entre elles et finalement faire exploser la variance.
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4.3.4 Second algorithme de résolution proposé
••••Comme affirmé précédemment, la formulation intégrale (4.9) :

y(t) =
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0) y0 + H(t′ > 0)

(
1− α y(t′)

k̂

)
y(t′)




n’admet pas uniquement l’expression (4.10) comme traduction statistique, même
si cette dernière en est sûrement la plus évidente.

Considérons par exemple que comme la solution du système étudié (4.5) est
positive et décroissante — ce qui n’est pas difficile à deviner même sans connaître
exactement la solution — celle-ci est nécessairement à valeurs dans [0; y0]. En
choisissant k̂ > α y0, on a donc immédiatement

∀t ∈ R+, 0 6 1− α y(t)
k̂
6 1 (4.19)

ce qui permet d’utiliser 1− αy(t)
k̂

comme une probabilité. Dans ces conditions, on
peut donner à la formulation intégrale (4.9) la traduction statistique :

y(t) = E

H(T ′ 6 0) y0 + H(T ′ > 0) H

(
1− α Ỹ1(T ′)

k̂
> R

)
Ỹ2(T ′)


 (4.20)

où T ′ est une VA à valeurs dans ]−∞; t] et de fonction de répartition FT ′ : t′ 7→
exp

(
−k̂(t − t′)

)
, Ỹ1(T ′) et Ỹ2(T ′) sont 2 estimateurs de y en T ′, avec Ỹ1(T ′) à

valeurs dans [0; k̂/α], et R est une VA réelle de loi uniforme standard ; Ỹ1(T ′),
Ỹ2(T ′), et R doivent être indépendantes.

Cette expression peut être immédiatement simplifiée en :

y(t) = E

H(T ′ 6 0) y0 + H(T ′ > 0) H

(
α Ỹ1(T ′)

k̂
< R

)
Ỹ2(T ′)


 (4.21)

avec les mêmes éléments à l’intérieur. Il en découle l’algorithme 4.2.
Cet algorithme a une caractéristique originale par rapport au précédent algo-

rithme 4.1 : la façon dont il branche dépend des valeurs obtenues pour Ỹ . Cela est
illustré par la figure 4.3.

•••• Il est intéressant, aussi avec ce nouvel algorithme, de prévoir la récursivité
moyenne générée ainsi que la variance de l’estimateur sortant.

L’étude de la variance est ici facile. En reprenant l’énoncé de la proposition
4.2.3 avec B(t) = {0; y0}, on obtient rapidement que l’estimateur ne peut avoir
pour valeurs que 0 ou y0. Comme par ailleurs l’espérance de l’estimateur est
y(t) = y0

αy0 t+1 , on obtient :

Var(Ỹ (t)) = y0
2 α y0 t

(1 + α y0 t)2 (4.22)
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Entrées : Le temps t où on veut estimer y(t)
Sorties : Une estimation ponctuelle de y(t)

1 échantillonner Tr , ad selon une loi exponentielle d’espérance unité : on obtient
tr , ad ;

2 t′ ← t− tr , ad

k̂
;

3 si t′ 6 0 alors retourner y0;
4 sinon
5 estimer y(t′) grâce à cet algorithme : on obtient ỹ1(t′);
6 échantillonner R de loi uniforme standard : on obtient r;
7 si α ỹ1(t′)

k̂
< r alors

8 estimer à nouveau y(t′) grâce à cet algorithme : on obtient ỹ2(t′);
9 retourner ỹ2(t′);

10 sinon retourner 0;

Algorithme 4.2 : Un autre algorithme pour estimer ponctuellement y(t)

t0

déjà parcouru, et oublié
en mémoire

restant à parcourir,
ou à calculer

ỹ(0;... )

t0t(0;... )

ỹ(1;0;... )

t(1;0;... )

ỹ(1;1;0;... )

ỹ(1;2;0;... )

t(1;2;0;... )

y0

ỹ(2;0;... )

t(2;0;... )

ỹ(2;1;0;... )

ỹ(2;2;0;... )

t(2;2;0;... )

ỹ(2;2;1;0;... )

t(2;2;1;0;... )

y0

ỹ(2;2;2;0;... )

Figure 4.3 – Illustration du parcours par l’algorithme 4.2 d’un arbre
d’estimations servant à l’estimation de y(t0), reprise de la figure 4.2.

On suppose ici qu’on vient de calculer ỹ(2;1;0;... ). La nécessité de calculer ou non
un ỹ(2;2;0;... ) dépend de la valeur de ỹ(2;1;0;... ) et d’un tirage uniforme standard.
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L’étude de la récursivité générée peut reprendre la méthodologie exposée à
la section 4.3.3. Cette fois-ci, si T ′ > 0 on ne doit pas forcément recommencer 2
fois la procédure d’estimation. On aboutit à l’équation suivante sur la récursivité :

rec(t) =
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0)× 1 +

H(t′ > 0)
(

1 + rec(t′) +
(

1− α y0/k̂

α y0 t+ 1

)
rec(t′)

)


=
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0)× 1 +

H(t′ > 0)
(

1 +
(

2− α y0/k̂

α y0 t+ 1

)
rec(t′)

)
 (4.23)

En dérivant, ou plus simplement en procédant par identification dans l’équation
(4.4), on arrive au système différentiel :




∂trec(t) = k̂ +

(
k̂ − α y0

α y0 t+ 1

)
rec(t)

rec(0) = 1
(4.24)

qui admet l’unique solution

rec(t) = 1
α y0 t+ 1

((
2 + α y0

k̂

)
ek̂t − α y0

k̂

)
− 1 (4.25)

Concernant l’efficacité globale de l’algorithme 4.2, on peut considérer à nou-
veau que t1% ∝ rec × Var(Ỹ ). En l’occurrence :

recalgo 4.2 × Var(Ỹ )algo 4.2 = y0
2 α y0 t

(1 + α y0 t)3

((
2 + α y0

k̂

)
ek̂t − α y0 t− 1− α y0

k̂

)

(4.26)

∼t→+∞

(
2 + α y0

k̂

)
× ek̂t

(α t)2 (4.27)

Ce résultat peut être comparé avec son équivalent pour l’algorithme 4.1 :

recalgo 4.1 × Var(Ỹ )algo 4.1 = y0
2 α y0 t

(1 + α y0 t)2 ×
2 ek̂t − 1

k̂

α y0
+
(

k̂

α y0
− 1

)
α y0 t

(4.28)

∼t→+∞
2

k̂

α y0
− 1
× ek̂t

(α t)2 (4.29)

Plusieurs remarques peuvent être tirées de ces expressions :
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— Les 2 algorithmes montés sont aussi performants quand t tend vers l’infini ;
c’est-à-dire que l’accroissement du temps simulé t ne rend pas l’un d’eux
beaucoup plus efficace que l’autre, au niveau de t1%.

— Par contre leur comportement se différencie selon k̂. Si k̂ � α y0, l’algorithme
4.1 est meilleur, car sa plus dense plage de valeurs possibles pour le résultat
permet d’en faire diminuer la variance. Si k̂ ' α y0, l’algorithme 4.2 est plus
efficace, car il ne perd pas de temps à parcourir des branches dont le résultat
serait finalement peu pris en compte.

— Bien que l’algorithme 4.2 soit meilleur quand k̂ ' α y0, il faut assurer pour
son bon fonctionnement que k̂ > α y0, comme avec l’algorithme 4.1. Cette
fois-ci, ce n’est pas que l’estimateur résultant risque d’avoir une variance
infinie, c’est que son espérance serait fausse.

On pourrait être déçu que, après avoir monté l’algorithme 4.2 de façon appa-
remment plus rusée que l’algorithme 4.1, les performances soient aussi similaires.
Peut-être aurions-nous dû être plus inventifs encore : par exemple, on pourrait
choisir entre une multiplication (algorithme 4.1) et un test de Bernoulli (algorithme
4.2) selon les valeurs de 1− α Ỹ1(T ′)

k̂
. Globalement, la question de l’optimisation des

algorithmes tels ceux présentés jusqu’ici dans ce chapitre reste ouverte.

4.3.5 Expériences numériques
••••Pour cette campagne de tests, nous fixons les paramètres α = 1 et y0 = 1.
Nous étudions le comportement des algorithmes 4.1 et 4.2 en fonction du temps
final t et du majorant k̂. Les résultats sont présentés dans les figures 4.4, 4.5, 4.6,
et 4.7.

Les résultats ont été obtenus avec 104 réalisations pour chaque point représenté
— certains points, dessinés sur des graphes différents, sont calculés simultanément.
Ils comprennent les estimations obtenues de y(t), avec leurs barres d’erreur, la
variance relative des estimateurs utilisés, ainsi que la récursivité moyenne des
algorithmes calculant ces estimateurs.

La récursivité moyenne est bien celle définie dans la section 4.3.3. Les formules
prévisionnelles explicitées en sections 4.3.3 et 4.3.4 sont tracées en trait plein.
Les estimations de la récursivité par les algorithmes eux-même sont données en
points séparés avec barres d’erreur. Comme annoncé précédemment, les algorithmes
possèdent un compteur de leur nombre d’appels par réalisation ; leur implémentation
est détaillée en annexe D.2.

De même, la variance d’estimateur est donnée d’une part grâce aux formules
détaillées en sections 4.3.3 et 4.3.4 en trait plein, et d’autre part en points séparés
grâce aux résultats des algorithmes. C’est la variance relative qui est tracée, égale
au quotient de la variance absolue par le carré de l’espérance. La variance relative
« empirique » est calculée comme le quotient de la variance absolue empirique
d’échantillon par le carré de la moyenne d’échantillon ; il est important de noter
que cet estimateur de la variance relative est biaisé, bien que la variance empirique
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Figure 4.4 – Comportements des algorithmes 4.1 et 4.2 estimant y(t),
et utilisant k̂ = 1. En chaque point, 104 réalisations ont été effectuées.
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Figure 4.5 – Comportements des algorithmes 4.1 et 4.2 estimant y(t),
et utilisant k̂ = 2,5. En chaque point, 104 réalisations ont été effectuées.
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Ỹ (5) calculé par l’algorithme 4.1

Va
r( Ỹ
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Figure 4.6 – Comportements des algorithmes 4.1 et 4.2 estimant y(t = 5),
en fonction du k̂ utilisé. En chaque point, 104 réalisations ont été effectuées.
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Figure 4.7 – Comportements de l’algorithme 4.1, dans des situations où il
n’est pas fonctionnel. En chaque point, 104 réalisations ont été effectuées.
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4.3. Illustration sur un cas de cinétique chimique

d’échantillon et la moyenne d’échantillon soient des estimateurs non-biaisés de
la variance et de l’espérance respectivement. Pour estimer sans biais la variance
relative, on pourrait remplacer la moyenne d’échantillon par l’espérance : mais il
faut bien comprendre que quand on attaquera des problèmes dont les solutions
seront inaccessibles symboliquement, on ne disposera pas de meilleur estimateur
de la variance relative que celui utilisé ici.

••••La 1re chose que l’on peut constater, c’est que les formules prévisionnelles
que l’on a données pour la variance et la récursivité sont apparemment justes.

Aussi, il y a confirmation des performances comparées des algorithmes 4.1 et
4.2. Quand k̂ est à sa valeur minimale de « bon » comportement des algorithmes
(k̂ = α y0), l’algorithme 4.2 est le plus efficace, grâce à sa récursivité plus faible. Cela
change quand k̂ augmente, car la variance de l’estimateur obtenu par l’algorithme
4.1 diminue, ce qui n’est pas le cas avec l’algorithme 4.2.

Il ne faut cependant par perdre de vue que le temps de calcul est proportionnel
et non égal au produit variance × récursivité ; d’autres facteurs entrent en jeu. Par
exemple, si on considère que la grande majorité du temps de calcul est utilisé pour
les générations aléatoires, l’algorithme 4.2 est à la base désavantagé d’un facteur
presque 2 : en effet, à chaque appel de l’algorithme 4.2 2 tirages aléatoires sont faits
(1 seul si on a traversé la condition initiale), contre 1 seulement dans l’algorithme
4.1.

••••Ensuite, le comportement des estimateurs de y(t), quand leur variance
devient infinie, est inquiétant.

Dans l’étude en fonction de k̂ du comportement de l’algorithme 4.1 calculant
y(5), on obtient que lorsque la variance doit devenir infinie, la variance relative
estimée (avec biais, pour rappel) devient effectivement très élevée. Le résultat est
qu’on obtient une barre d’erreur comparable à l’estimation, elle-même de norme
très grande (ce n’est pas montré sur les graphes). Ce comportement est connu
pour être le signe de la non-convergence d’une méthode de Monte-Carlo, encore
que lorsque l’on dispose d’une unique estimation il ne soit pas forcément aisé à
reconnaître.

Dans l’étude en fonction de t du comportement de l’algorithme 4.1 utilisant
un k̂ trop faible, les résultats sont plus gênants. Quand la variance devient infinie,
la variance relative estimée augmente progressivement : il est alors difficile de
soupçonner le caractère infini de la variance. Le graphe des estimations montre
cependant qu’elles ne sont pas très éloignées de la réalité ; mais, dans l’état de
cette étude, il est impossible d’affirmer que ce sera toujours le cas.

Cela me fait dire qu’il serait utile :
— d’étudier la convergence d’estimateurs de variance infinie,
— d’essayer l’usage d’indicateurs statistiques supplémentaires au couple moyenne

/ variance empirique. Je pense en particulier au kurtosis, introduit au chapitre
1.3.3.
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Malheureusement, par manque de temps je n’ai pas pu obtenir de résultat là-dessus.

4.4 Utilisation d’une solution approximative
calculée a priori

On suppose ici qu’on est capable de donner une solution approximative et
déterministe du problème différentiel étudié, du type donné en (4.3). Cette solution,
notée y≈, est continue et de classe C 1 par morceaux. Elle est précisément connue
avant que l’algorithme de Monte-Carlo qui s’en sert comme guide ne démarre.

••••Posons maintenant y∆ = y − y≈. Comme y≈ est connue, la résolution d’un
problème en y∆ est équivalente à la résolution d’un problème en y.

En soustrayant les équations (4.4) et (4.2), on obtient une équation intégrale à
laquelle satisfait y∆ :

y∆(t) =
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′ k̂(t′′)

)
H(t′ 6 0) y∆(0) + H(t′ > 0)


y∆(t′) + f(y∆(t′) + y≈(t′); t′)− f(y≈(t′); t′)

k̂(t′)
+ f(y≈(t′); t′)− y≈ ′(t′)

k̂(t′)




 (4.30)

Parmi les termes que multiplie l’exponentielle décroissante dans cette équation :
1. y∆(0) est connu, comme y0 en (4.4).
2. y∆(t′) est à estimer récursivement, comme y(t′) en (4.4).

3. f(y∆(t′)+y≈(t′);t′)−f(y≈(t′);t′)
k̂(t′) est à estimer récursivement, à l’instar de f(y(t′);t′)

k̂(t′)
en (4.4).

4. f(y≈(t′);t′)−y≈ ′(t′)
k̂(t′) est un terme nouveau par rapport à l’équation (4.4), mais il

est calculable immédiatement.
Si y≈ est proche de y, l’estimation de y∆(t) grâce à l’expression (4.30) sera

certainement plus facile que l’estimation directe de y(t) grâce à l’expression (4.4).
En effet si y≈ est proche de y :
— Le taux de non-linéarité du 3e terme vis-à-vis de y∆ sera moindre qu’en

(4.4), donc pour obtenir des estimations intermédiaires satisfaisantes de ce
terme il sera nécessaire de monter en moyenne moins loin dans les ordres
des Développements en Série Entière de f sur sa 1re variable. Comme la
récursivité multiplicative de l’algorithme est dûe à ce terme, et qu’elle est
d’autant plus multiplicative qu’il faut monter loin dans les ordres des DSE
de f , la récursivité devrait chuter si y≈ est bien choisie.

— Le 1er et le 4e terme seront proches de 0. Récursivement, le 2e et le 3e devraient
l’être aussi, ainsi que l’estimateur final de y∆(t) dont la variance devrait
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donc être amoindrie. C’est d’autant plus appréciable, par rapport au cas
d’un système différentiel linéaire, que des estimations multiples de y sont
multipliées pour obtenir le terme récursif non-linéaire, conduisant à une auto-
amplification de la variance (parfois jusqu’à une divergence pathologique,
comme cela est illustré en sections 4.3.3 et 4.3.5).

Une situation montrant ces dernières considérations poussées au maximum est le
cas idéal y≈ = y : dans ce cas, il est aisé de construire depuis l’expression (4.30)
un estimateur de y∆ valant systématiquement 0.

••••La disponibilité d’une solution approximative y≈ a un autre intérêt : cette
solution peut servir de référence autour de laquelle effectuer les DSEs de f . Avec
l’exemple de cinétique chimique qui nous sert d’illustration dans ce chapitre ça n’est
pas sensible, car nous avons choisi f polynomiale : il n’y a donc ici pas de question
qui se pose concernant la convergence d’un Développement en Série Entière. Dans
des cas non explorés dans ce manuscrit, l’utilisation d’une solution approximative
semble donc pouvoir n’être pas seulement une question de temps de calcul, mais
aussi carrément une question de faisabilité du calcul.

Cela ne remet pas en cause la proposition 4.2.3. Au contraire, il s’agit plutôt
de trouver comment satisfaire à ses hypothèses, en particulier l’existence d’un
estimateur de f

(
y(t); t

)
.

4.5 Calcul de sensibilités paramétriques
On explique brièvement dans cette section comment le calcul d’une sensibilité

paramétrique de y(t) peut-être mené dans un problème du type posé. 2 types de
sensibilités se distinguent :
— La sensibilité à un paramètre π dont dépendent f ou y0,
— La sensibilité au temps t. La démarche de calcul dans ce cas est immédiate,

car par hypothèse ∂ty(t) = f
(
y(t); t

)
.

•••• Intéressons-nous donc au 1er cas de figure. Remplaçons dans les écritures
du problème y(t) par y(t; π), f

(
y(t); t

)
par f

(
y(t; π); t; π

)
, et y0 par y0(π). Par

dérivation, on obtient depuis l’équation (4.4) :

∂πy(t; π) =
∫ t

−∞
dt′ k̂(t′) exp

(
−
∫ t

t′
dt′′k̂(t′′)

)
H(t′ 6 0) ∂πy0(π) + H(t′ > 0)


∂πy(t′; π)

(
1 +

∂1f
(
y(t′; π); t′; π

)

k̂(t′)

)
+
∂3f

(
y(t′; π); t′; π

)

k̂(t′)




 (4.31)

Plusieurs remarques sont à faire sur cette précédente écriture :
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— Cette écriture intégrale est récursive en ∂πy, mais cette récursivité est linéaire.
Cela veut dire qu’il n’est pas nécessaire d’estimer ∂πy le long d’un arbre de
reconstruction pour estimer ∂πy(t) ; cette reconstruction ne nécessite qu’un
simple chemin, sans ramification.

— Néanmoins, à chaque étape de cette récursion en chemin on a besoin d’estimer
∂1f

(
y(ti; π); ti; π

)
. Si f n’est pas linéaire en sa 1re variable cette sensibilité

est bien à estimer récursivement, en estimant y(ti; π). Cela signifie que
l’algorithme de calcul de sensibilité doit être épaulé par l’algorithme de calcul
de la grandeur pour pouvoir fonctionner.

— Nous avions montré au chapitre 3.2.3 que les estimations de f
(
y(ti; π); ti;π

)

et de ∂1f
(
y(ti; π); ti; π

)
pouvait être réalisées simultanément, en utilisant

les mêmes échantillons de Ỹ (ti;π). Détail supplémentaire, l’estimation de la
sensibilité peut consommer systématiquement 1 tirage de Ỹ (ti; π) de moins
que l’estimation de la grandeur, ce qui laisse une construction de sous-arbre
indépendante pour estimer ∂πy(ti; π). La conséquence est que, à moins d’une
subtilité dans le terme ∂3f

(
y(t′; π); t′; π

)
, il n’est pas nécessaire d’étoffer les

arbres de reconstruction pour estimer une sensibilité de la grandeur d’intérêt.

— Un développement en série entière conserve son rayon de convergence par dé-
rivation. Donc si l’algorithme récursif d’estimation de la grandeur fonctionne,
il peut aussi estimer la sensibilité (il peut y avoir exception si on est au bord
du domaine de convergence) (encore une fois à moins d’une subtilité dans le
terme ∂3f

(
y(t′; π); t′; π

)
). Ajoutons qu’il ne peut pas y avoir d’explosion de

la variance dans la partie sensibilité de l’algorithme, car la récursivité en la
sensibilité est linéaire.

••••Nous n’étudierons pas spécialement comment le calcul de sensibilités pa-
ramétriques peut être facilité par l’usage d’une solution approximative comme
référence. Il y a plusieurs raisons à cela :

— Si l’on ne dispose pas d’un modèle de sensibilité sur y≈ (c’est-à-dire de ∂πy≈),
la dérivation par rapport à π de l’équation (4.30) amène à l’équation (4.31),
sans nouveauté.

— Même si l’on dispose d’un tel modèle, on n’obtiendra aucune diminution de
la récursivité, et apparemment assez peu de diminution de la variance car
celle-ci ne s’amplifie pas à la base du fait de la multiplication d’estimations
différentes.

En fait, une solution approximative peut bel et bien être une aide au calcul de
sensibilité. . . essentiellement en ce qu’elle est une aide au calcul de la grandeur,
qui est utilisé par le calcul de sensibilité.
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4.6 Illustration sur un cas de cinétique
chimique : suite et fin

4.6.1 Sensibilités paramétriques
4.6.1.1 Mise en place des calculs

••••On reprend l’exemple de la section 4.3 : on considère le système :
{
y′(t) = −α y(t)2

y(0) = y0
avec

{
α > 0
y0 > 0 (4.5) ↑

dont l’unique solution sur R+ est :

y(t) = y0

α y0 t+ 1 (4.6) ↑

On va calculer les sensibilités de y(t) vis-à-vis des paramètres α et y0. Les
résultats seront comparés aux solutions facilement obtensibles symboliquement :

∂αy(t) = − y0
2 t

(α y0 t+ 1)2 ∂y0y(t) = 1
(α y0 t+ 1)2 (4.32)

••••Pour obtenir les équations intégrales vérifiées par ∂αy(t) et ∂y0y(t), il suffit
de dériver l’équation intégrale (4.9) vérifiée par y(t) (on garde k̂ constant) :

∂αy(t) =
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)
H(t′ > 0)∂αy(t′) (k̂ − 2α y(t′))− y(t′)2

k̂
(4.33)

∂y0y(t) =
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)(
H(t′ 6 0)× 1 +

H(t′ > 0)∂y0y(t′) (k̂ − 2α y(t′))
k̂

)
(4.34)

Ces équations intégrales peuvent être immédiatement reformulés statistique-
ment :

∂αy(t) = E

H(T ′ > 0) ∂̃αY 1(T ′) (k̂ − 2α Ỹ2(T ′))− Ỹ1(T ′) Ỹ2(T ′)

k̂


 (4.35)

∂y0y(t) = E

H(T ′ 6 0)× 1 + H(T ′ > 0) ∂̃y0Y 1(T ′)

(
1− 2α Ỹ2(T ′)

k̂

)
 (4.36)

où :
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— T ′ est une VA à valeurs dans ]−∞; t] et de fonction de répartition FT ′ : t′ 7→
exp

(
−k̂(t− t′)

)
,

— Ỹ (T ′), ∂̃αY (T ′), et ∂̃y0Y (T ′) sont des estimateurs de y(T ′), ∂αy(T ′) et ∂y0y(T ′)
respectivement,

— la notation « •̃1 . . . •̃2 » signifie comme précédemment l’indépendance de 2
estimateurs.

L’algorithme 4.3, qui estime simultanément y(t), ∂αy(t), et ∂y0y(t), découle
directement de ces formulations statistiques ainsi que de l’algorithme 4.1.

Entrées : Le temps t où on veut estimer
(
y(t); ∂αy(t); ∂y0y(t)

)

Sorties : Une estimation ponctuelle de
(
y(t); ∂αy(t); ∂y0y(t)

)

1 échantillonner Tr , ad selon une loi exponentielle d’espérance unité : on obtient
tr , ad ;

2 t′ ← t− tr , ad

k̂
;

3 si t′ 6 0 alors retourner (y0; 0; 1);
4 sinon
5 estimer

(
y(t′); ∂αy(t′); ∂y0y(t′)

)
grâce à cet algorithme : on obtient(

ỹ1(t′); ∂̃αy1(t′); ∂̃y0y1(t′)
)
;

6 estimer à nouveau y(t′), grâce à l’algorithme 4.1 : on obtient ỹ2(t′); // de
manière indépendante à

(
ỹ1(t′); ∂̃αy1(t′); ∂̃y0y1(t′)

)

7 retourner


(

1− α ỹ1(t′)
k̂

)
ỹ2(t′);

∂̃αy1(t′) (k̂ − 2α ỹ2(t′))− ỹ1(t′) ỹ2(t′)
k̂

; ∂̃y0y1(t′)
(

1− 2α ỹ2(t′)
k̂

)
;

Algorithme 4.3 : Algorithme pour esti-
mer ponctuellement y(t), ∂αy(t), et ∂y0y(t)

••••Cette fois-ci, il ne semble a priori pas simple de mettre en place un test
permettant de ne pas évaluer une partie de l’arbre d’estimations parcouru par
l’algorithme 4.3, comme on l’a fait dans la section 4.3.4 ; du moins pas là où on veut
estimer y(t), ∂αy(t), et ∂y0y(t) simultanément. Le terme 1− 2α ỹ2(t′)

k̂
peut peut-être

être borné récursivement, dans l’intervalle [−1; 1] ; mais il semble difficile de rendre
compatible un test basé sur la valeur de ce terme avec un « bon » comportement
de l’estimation de y(t). De plus, le terme en ỹ1(t′) ỹ2(t′)

k̂
dans ∂̃αy(t′) paraît lui-aussi

peu compatible avec un tel test. Pour ces raisons, nous n’essayons pas de modifier
les formulations statistiques (4.10), (4.35), et (4.36) de sorte à exhiber une épreuve
de Bernoulli commune.
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Cependant, cela n’empêche pas d’« élaguer » massivement l’arbre d’estimations
parcouru par l’algorithme 4.3, car comme annoncé dans la section 4.5 l’estimation
des sensibilités de y(t) n’est nécessaire que le long d’une seule branche de cet
arbre pour pouvoir aboutir — et une lecture attentive de l’algorithme 4.3 le
confirme. Tout le reste de l’arbre d’estimation parcouru ne fait que prodiguer des
estimations indépendantes de y(t) en différents temps t : on a déjà montré, avec
la formulation (4.21) et l’algorithme 4.2, que cette partie de l’arbre d’estimations
peut être appauvrie facilement.

On fournit donc maintenant l’algorithme 4.4 pour le calcul simultané de y(t) et
de ses sensibilités vis-à-vis de α et de y0. Il ne diffère de l’algorithme 4.3 que par
l’utilisation de l’algorithme 4.2 en lieu et place de l’algorithme 4.1, pour fournir
une 2e estimation de y(T ′).

Entrées : Le temps t où on veut estimer
(
y(t); ∂αy(t); ∂y0y(t)

)

Sorties : Une estimation ponctuelle de
(
y(t); ∂αy(t); ∂y0y(t)

)

1 échantillonner Tr , ad selon une loi exponentielle d’espérance unité : on obtient
tr , ad ;

2 t′ ← t− tr , ad

k̂
;

3 si t′ 6 0 alors retourner (y0; 0; 1);
4 sinon
5 estimer

(
y(t′); ∂αy(t′); ∂y0y(t′)

)
grâce à cet algorithme : on obtient(

ỹ1(t′); ∂̃αy1(t′); ∂̃y0y1(t′)
)
;

6 estimer à nouveau y(t′), grâce à l’algorithme 4.2 : on obtient ỹ2(t′); // de
manière indépendante à

(
ỹ1(t′); ∂̃αy1(t′); ∂̃y0y1(t′)

)

7 retourner


(

1− α ỹ1(t′)
k̂

)
ỹ2(t′);

∂̃y0y1(t′) (k̂ − 2α ỹ2(t′))− ỹ1(t′) ỹ2(t′)
k̂

; ∂̃αy1(t′)
(

1− 2α ỹ2(t′)
k̂

)
;

Algorithme 4.4 : Autre algorithme pour es-
timer ponctuellement y(t), ∂αy(t), et ∂y0y(t)

4.6.1.2 Résultats des calculs

Nous menons une 2e campagne de tests très semblable à la 1re : on prend les
paramètres α = 1 et y0 = 1, et on effectue en chaque point de calcul 104 réalisations.
Nous avons aussi choisi de faire évoluer t et k̂ parmi les mêmes valeurs qu’en section
4.3.5. L’implémentation détaillée des algorithmes est donnée en annexe D.2, et les
résultats sont présentés dans les figures 4.8, 4.9, 4.10, et 4.11.
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par l’algorithme 4.4, à différents t

Figure 4.8 – Comportements des algorithmes 4.3 et 4.4 estimant ∂αy(t) et
∂y0y(t), et utilisant k̂ = 1. En chaque point, 104 réalisations ont été effectuées.

Nous ne faisons ici pas de commentaires très poussés sur les résultats obtenus.
Nous remarquons tout de même que le comportement des estimateurs des sensibilités
de y(t) suit grossièrement celui de l’estimateur de y(t). On observe les mêmes
zones de non-fonctionnalité, c’est-à-dire que les estimateurs des sensibilités ont une
variance finie si et seulement si l’estimateur de la grandeur en a une ; ceci était
prévisible en analysant les formulations statistiques (4.35) et (4.36). Pareillement,
les performances du calcul de sensibilités semblent liées aux performances du calcul
de la grandeur ; là où l’algorithme 4.3 est le plus efficace (comparativement à
l’algorithme 4.4) est là où l’algorithme 4.1, qu’il utilise en sous-jacent, est aussi le
plus efficace, et vice-versa.

4.6.2 Utilisation d’une solution approximative

4.6.2.1 Étude théorique sur le cas choisi

••••On reprend encore une fois l’exemple de la section 4.3 :

{
y′(t) = −α y(t)2

y(0) = y0
avec

{
α > 0
y0 > 0 (4.5) ↑

186



4.6. Illustration sur un cas de cinétique chimique : suite et fin
−

∂
α

y
(t

)

t

solution exacte
résultats algo

0

0,05

0,1

0,15

0,2

0,25

0,3

0 1 2 3 4 5 6

∂
y

0
y
(t

)

t

solution exacte
résultats algo

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6

(a) Estimation des sensibilités de y(t)
par l’algorithme 4.3, à différents t

−
∂

α
y
(t

)

t

solution exacte
résultats algo

0

0,05

0,1

0,15

0,2

0,25

0,3

0 1 2 3 4 5 6

∂
y

0
y
(t

)

t

solution exacte
résultats algo

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6

(b) Estimation des sensibilités de y(t)
par l’algorithme 4.4, à différents t

Figure 4.9 – Comportements des algorithmes 4.3 et 4.4 estimant ∂αy(t) et
∂y0y(t), et utilisant k̂ = 2,5. En chaque point, 104 réalisations ont été effectuées.

L’unique solution de ce système, sur R+, est :

y(t) = y0

α y0 t+ 1 (4.6) ↑

On montre dans cette section une accélération de la convergence d’un algorithme
de Monte-Carlo estimant y(t), grâce à l’utilisation d’une solution approximative
y≈ connue à l’avance.

La possibilité de faire diminuer la récursivité de l’algorithme ne sera pas
illustrée.

Nous avons montré à la section 4.3, en insérant un test de Bernoulli dans
l’algorithme 4.1 qui devenait alors l’algorithme 4.2, qu’on pouvait faire diminuer la
récursivité. Cette diminution était obtenue en créant un mécanisme de roulette
russe, placé à la base de nombreuses branches des arbres d’estimations de y,
élaguant de fait celles dont les résultats auraient été de toute façon peu pris en
compte.

Excepté le cas particulier où k̂ = α y0, où les branches élaguées n’auraient
nullement été prises en compte, cela se fait cependant au prix d’une augmentation
de la variance de l’estimateur obtenu. Nous verrons par ailleurs au chapitre 5.4 que
la démarche inverse — augmenter la récursivité pour faire diminuer la variance —
peut être utilisée.
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Figure 4.10 – Comportements des algorithmes 4.3 et 4.4
estimant ∂αy(t = 5) et ∂y0y(t = 5), en fonction du k̂
utilisé. En chaque point, 104 réalisations ont été effectuées.

Il y a ainsi une équivalence partielle, entre :

— une diminution de la variance, sans augmentation de la récursivité,

— une diminution de la récursivité, sans augmentation de la variance.

C’est d’autant plus vrai que l’effort computationnel associé à une estimation de
y(t), avec un objectif de précision donné, est en fait juste proportionnel au produit
de la récursivité et de la variance.

Si, dans cette section, on n’illustre que la diminution de la variance, c’est parce
que c’est plus simple à mettre en place.

••••En injectant l’expression (4.5) de f dans l’équation (4.30), on arrive à la
formulation intégrale :

y∆(t) =
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0) y∆(0) + H(t′ > 0)×

(
y∆(t′) + − α (y∆(t′) + y≈(t′))2 + α y≈(t′)2

k̂
+ − α y

≈(t′)2 − y≈ ′(t′)
k̂

)

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(b) Estimation de ∂αy(t) et
∂y0y(t) par l’algorithme 4.3,
travaillant avec k̂ = 0,75

Figure 4.11 – Comportements de l’algorithme 4.3, dans des situations où
il n’est pas fonctionnel. En chaque point, 104 réalisations ont été effectuées.

=
∫ t

−∞
dt′ k̂ exp

(
−k̂(t− t′)

)

H(t′ 6 0) y∆(0) + H(t′ > 0)×


y∆(t′)

(
1− α (2 y≈(t′) + y∆(t′))

k̂

)
− y≈ ′(t′) + α y≈(t′)2

k̂




 (4.37)

qui peut être convertie en la formulation statistique :

= E

H(T ′ 6 0) y∆(0) + H(T ′ > 0)×

Ỹ ∆

1(T ′)
(

1− α (2 y≈(T ′) + Ỹ ∆
2(T ′))

k̂

)
− y≈ ′(T ′) + α y≈(T ′)2

k̂






(4.38)
où :
— T ′ est une VA à valeurs dans ]−∞; t] et de fonction de répartition FT ′ : t′ 7→

exp
(
−k̂(t− t′)

)
,

— Ỹ ∆
1(T ′) et Ỹ ∆

2(T ′) sont 2 estimateurs indépendants de y∆(T ′).
L’algorithme 4.5 illustre l’échantillonnage de la formulation (4.38).
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Entrées : Le temps t où on veut estimer y∆(t)
Sorties : Une estimation ponctuelle de y∆(t)

1 échantillonner Tr , ad selon une loi exponentielle d’espérance unité : on obtient
tr , ad ;

2 t′ ← t− tr , ad

k̂
;

3 si t′ 6 0 alors
4 calculer y≈(0);
5 retourner y0 − y≈(0);
6 sinon
7 calculer y≈(t′) et y≈ ′(t′);
8 estimer y∆(t′) grâce à cet algorithme : on obtient ỹ∆

1(t′);
9 estimer à nouveau y∆(t′) grâce à cet algorithme : on obtient ỹ∆

2(t′);
// de manière indépendante à ỹ∆

1(t′)

10 retourner ỹ∆
1(t′)

(
1− α (2 y≈(t′) + ỹ∆

2(t′))
k̂

)
− y≈ ′(t′) + α y≈(t′)2

k̂
;

Algorithme 4.5 : Algorithme pour estimer ponctuel-
lement y∆(t), basé sur la formulation statistique (4.38).

On suppose que la solution approximative y≈(t) a été détermi-
née au préalable, et que ses valeurs sont calculables à la demande.

••••La récursivité moyenne rec de l’algorithme 4.5 est la même que celle de
l’algorithme 4.1. Intéressons-nous maintenant à la variance de l’estimateur Ỹ ∆(t)
généré.

Une telle étude de la variance peut reprendre la méthodologie présentée à
la section 4.3.3. Elle consistait à dégager une formulation intégrale du moment
d’ordre 2 de l’estimateur Ỹ (t), pour ensuite en tirer un système différentiel auquel
ce moment obéit.

Ici, afin d’avoir une comparaison pertinente avec l’algorithme 4.1, on pousse la
démarche un peu plus loin, jusqu’au dégagement d’un système différentiel sur la
variance de Ỹ ∆(t). En effet, comme les estimateurs issus des algorithmes 4.1 et
4.5 n’ont pas la même espérance, comparer les 2e moments de la distribution de
leurs résultats n’est pas directement intéressant ; ce sont les variances (déduites
facilement des 2e moments) qu’il faut comparer.

La démarche pour dégager un système différentiel auquel Var
(
Ỹ ∆(t)

)
obéit est

finalement la suivante (très proche de ce qu’on a pu montrer en section 4.3.3) :
1. reprendre l’expression statistique (4.38), pour en tirer une expression statis-

tique sur E
(
Ỹ ∆(t)2

)
,

2. convertir l’expression statistique obtenue en expression intégrale,
3. opérer une dérivation de l’expression intégrale obtenue, pour dégager un

système différentiel sur t auquel E
(
Ỹ ∆(t)2

)
obéit,
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4. utiliser la formule de König-Huygens 1.3.2, pour transformer ce système
différentiel en un système différentiel applicable à Var

(
Ỹ ∆(t)

)
,

5. enfin, simplifier ce dernier système à l’aide de l’équation différentielle (4.5)
sur la grandeur y(t).

6. Ce système ne peut semble-t-il pas être résolu symboliquement, car il fait
intervenir y≈ ; ou alors, il faut disposer d’une expression de y≈.

Sans entrer dans le détail des calculs, on arrive au système différentiel suivant
pour la variance de Ỹ ∆(t), avec ŷ = k̂/α :





∂t Var
(
Ỹ ∆(t)

)

k̂
=

Var
(
Ỹ ∆(t)

)2

ŷ2 −

2
(
y(t)
ŷ

(
1− y(t)

ŷ

)
+ y≈(t)

ŷ

(
1− y≈(t)

ŷ

))
Var

(
Ỹ ∆(t)

)
+

(
y(t)2 − y≈(t)2

ŷ

)2

+
(
y≈ ′(t)
k̂
− y≈(t)2

ŷ

)2

Var
(
Ỹ ∆(0)

)
= 0

(4.39)

••••En posant y≈(t) = 0, ce qui équivaut à y∆(t) = y(t), on retrouve le système
différentiel auquel obéit Var

(
Ỹ (t)

)
si Ỹ (t) est obtenu par l’algorithme 4.1 :





∂t Var
(
Ỹ (t)

)

k̂
=

Var
(
Ỹ (t)

)2

ŷ2 − 2 y(t)
ŷ

(
1− y(t)

ŷ

)
Var

(
Ỹ (t)

)
+ y(t)4

ŷ2

Var
(
Ỹ (0)

)
= 0

(4.40)

Nous n’avions pas exhibé ce système différentiel sur Var
(
Ỹ (t)

)
durant la section

4.3.3, néanmoins il pouvait effectivement être obtenu à partir du système (4.15)
portant sur E

(
Ỹ (t)2

)
.

On ne peut pas donner ici une solution symbolique du système (4.39), à cause de
la présence des termes en y≈ non précisés. Il est quand même possible de comparer
l’évolution de la variance des estimateurs générés par les algorithmes 4.1 et 4.5, en
comparant les termes contenus dans les systèmes différentiels (4.40) et (4.39).

Dans les 2 cas, on a la même condition initiale. Dans les équations d’évolution
de la variance elles-même :
— Le terme quadratique positif, seul susceptible de provoquer une divergence

au bout d’un temps fini, est le même.
— On a un terme linéaire sur la variance. Dans le système (4.40), il est partout

négatif ssi k̂ > α y0. Ce terme est plus grand — en valeur absolue — dans le
système (4.39) tant que k̂/α > y≈(t) > 0.
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— On a un terme d’augmentation, en y(t)4. Si 2 y(t) > y≈(t) > 0, ce terme est
plus faible dans le système (4.39).

— Un terme augmentant la variance s’ajoute dans le système (4.39). Ce terme
dépend uniquement, et de façon quadratique, de l’erreur commise en construi-
sant y≈ voulue comme une solution du système (4.5).

Cela amène à penser que l’algorithme 4.5 construit un estimateur moins variant
de y(t) que l’algorithme 4.1, tant que la solution approximative y≈ qu’il utilise
comme guide est une « bonne » solution du système à résoudre (4.5). « Bonne »
signifie ici que :
— y≈ est proche de la solution exacte y, en particulier pour tout t > 0, 0 6

y≈(t) 6 y0,
— en tout point t > 0, y≈ obéit approximativement à l’équation différentielle

de (4.5), de sorte que y≈ ′(t) ' − α y≈(t)2.
A priori, pour que l’algorithme 4.5 fonctionne bien, il faudra aussi que k̂ > α y0,
comme avec tous les algorithmes précédemment montrés dans ce chapitre.

4.6.2.2 Derniers choix algorithmiques

La méthode à discrétisation utilisée pour fournir une solution approximative
au problème différentiel (4.5), avant de lancer le calcul par MMC, est la version
usuelle de la méthode Runge-Kutta d’ordre 4 (abrégée RK4). On l’utilise avec un
pas de temps constant ∆t≈.

Dans la résolution des équations différentielles ordinaires, la méthode RK4 est
presque systématiquement celle utilisée. Elle a l’avantage d’être :
— explicite (pas d’inversion à faire),
— très précise : elle est d’ordre 4, c’est-à-dire que quand le pas de temps tend

vers 0, l’erreur de calcul est proportionnelle au pas de temps à la puissance 4,
— d’une stabilité comparable à celle de la méthode d’Euler explicite,
— peu coûteuse, en terme de temps de calcul et de difficulté de programmation.

Son fonctionnement est similaire à celui de la méthode d’Euler, qui constitue
elle-même la méthode Runge-Kutta d’ordre 1.

La méthode RK4 fournit une solution sous la forme d’une liste de points
(ti; y≈(ti); y≈ ′(ti)). Entre ces points, nous choisissons d’utiliser une interpolation
polynomiale de degré 3, égalisant y≈ et y≈ ′ aux points calculés les plus proches.

L’explication détaillée et l’implémentation des techniques d’obtention et d’in-
terpolation de y≈ est donnée en annexe D.2.

••••Simultanément à l’estimation de y∆(t), et donc de y(t), par l’algorithme 4.5,
nous estimons les sensibilités de y(t) vis-à-vis des paramètres α et y0. Ce calcul
de sensibilités est réalisé selon les formulations intégrales (4.35) et (4.36) ; quand
on a besoin d’une estimation de y(t), celle-ci est remplacée par y≈(t) plus une
estimation de y∆(t).
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Le calcul de sensibilités est donc effectué selon une démarche semblable à celle
prévalant dans les algorithmes 4.3 et 4.4, mais cette fois-ci c’est l’algorithme 4.5
qui fournit des estimations de y(t). L’algorithme 4.5 n’a été en rien modifié pour
permettre le calcul des sensibilités, ce calcul n’utilise que quelques instructions
supplémentaires qui ne modifient pas la récursivité de l’algorithme 4.5.

La campagne de tests illustre 2 dépendances de Var
(
Ỹ ∆(t)

)
:

— la dépendance de Var
(
Ỹ ∆(t)

)
selon t,

— la dépendance de Var
(
Ỹ ∆(t)

)
selon la précision de la solution y≈, donc selon

∆t≈.
Cette campagne est menée avec un majorant k̂ > α y0, suffisant pour garantir

que l’estimateur Ỹ ∆(t) obtenu est de variance finie — quand y≈ n’est pas une
approximation trop mauvaise.

Les paramètres α et y0 sont tous les deux pris égaux à 1.

4.6.2.3 Résultats, et commentaires

Les résultats sont donnés en figures 4.12, 4.13, 4.14, et 4.15.

Le comportement de l’estimateur Ỹ ∆(t) peut être compris grâce à l’équation
différentielle sur sa variance (4.39). Elle explique notamment pourquoi la variance
relative de l’estimateur Ỹ (t) obtenu par l’algorithme 4.5 décroit avec le temps t,
contrairement à celle de l’estimateur obtenu par l’algorithme 4.1.

Ceci est notamment dû à ce que :
— la solution approximative y≈ est de bonne qualité, même avec ∆t≈ = 1,
— la solution y(t) tend asymptotiquement vers l’axe des abscisses, quand t→

+∞.
Dans l’équation différentielle (4.39), nous avions 4 termes :

1. un terme quadratique, négligeable car Ỹ ∆ est de faible variance,
2. un terme de décroissance linéaire,
3. un terme source en (y(t)2 − y≈(t)2)2,
4. un terme source, dû à l’imprécision de y≈ en tant que solution de (4.5).

Or, quand t augmente :
— Le 3e terme tend rapidement vers 0, car y(t) et y≈(t) tendent vers 0.
— Comme y≈ décroit de plus en plus lentement, et est de moins en moins

convexe, la méthode RK4 résout le système (4.5) de plus en plus précisément.
Donc le 4e terme s’effondre.

Combiné avec le terme de décroissance linéaire, la chute des termes sources de
variance amène une diminution notable de Var(Ỹ ∆(t)) quand t augmente.

De même, quand ∆t≈ diminue, y≈ est plus précise, et la variance de Ỹ ∆ diminue.
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Figure 4.12 – Évolution selon t de la variance relative de plusieurs
estimateurs Ỹ (t) de y(t). Les estimateurs sont issus de l’algorithme
4.1 ou de l’algorithme 4.5 (avec Ỹ (t) = y≈(t) + Ỹ ∆(t)). Dans
ce 2e cas, plusieurs guides y≈ plus ou moins précis sont considérés.
2 valeurs pour k̂ sont utilisées. À part ça, les conditions de l’ex-
périence numérique sont celles décrites dans la section 4.6.2.2.
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(b) Avec k̂ = 2,5

Figure 4.13 – Évolution selon t de la variance re-
lative de plusieurs estimateurs ∂̃αY (t) de ∂αy(t).

Ces estimateurs sont tous construits à l’aide de la formulation statistique (4.35),
mais en se basant sur des estimateurs Ỹ (t) différents. L’algorithme prodiguant

l’estimateur Ỹ (t), utilisé de façon sous-jacente, est précisé sur la figure.
2 valeurs pour k̂ sont utilisées. À part ça, les conditions de l’ex-
périence numérique sont celles décrites dans la section 4.6.2.2.
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Figure 4.14 – Évolution selon t de la variance re-
lative de plusieurs estimateurs ∂̃y0Y (t) de ∂y0y(t).

Ces estimateurs sont tous construits à l’aide de la formulation statistique (4.36),
mais en se basant sur des estimateurs Ỹ (t) différents. L’algorithme prodiguant

l’estimateur Ỹ (t), utilisé de façon sous-jacente, est précisé sur la figure.
2 valeurs pour k̂ sont utilisées. À part ça, les conditions de l’ex-
périence numérique sont celles décrites dans la section 4.6.2.2.
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Figure 4.15 – Profils de la variance des estimateurs de y(t), ∂αy(t), et ∂y0y(t),
obtenus grâce à l’algorithme 4.5, selon la précision de y≈ voulue comme une

solution du système (4.5). On se place en t = 5, et la précision de y≈ est évaluée
par l’écart relatif |y∆(t)/y(t)| en t = 5. Les points pleins indiquent les résultats
de l’algorithme 4.1, c’est-à-dire les résultats qu’aurait obtenu l’algorithme 4.5
avec y≈ = 0. Les points creux sont obtenus en faisant varier ∆t≈ de 1 à 0,1.

2 valeurs pour k̂ sont utilisées. À part ça, les conditions de l’ex-
périence numérique sont celles décrites dans la section 4.6.2.2.
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Le calcul des sensibilités de y(t) vis-à-vis de α et y0 semble peu profiter de
l’amélioration de la précision de l’estimation de y(t). Ceci est particulièrement vrai
quand k̂ est grand.

C’est dû à ce que le calcul de sensibilités ne se fait que sur une seule branche de
l’arbre d’estimations, étant donnés les choix algorithmiques que l’on a fait. Dans
ce cas, la valeur d’une estimation ponctuelle d’une sensibilité est surtout sensible
au nombre de « collisions » qui ont eu lieu le long de cette branche. Ceci explique
d’ailleurs que le calcul des sensibilités s’améliore nettement quand k̂ augmente.
Dans ce cas les collisions sont plus nombreuses, mais chaque modification sur le
poids en sensibilité est plus faible, et au final on échantillonne mieux l’évolution de
la sensibilité selon le temps.
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Chapitre 5

Résultats obtenus dans un gaz
uniforme mais hors équilibre

On résout l’équation de Boltzmann par MMC dans un cas académique de
cinétique des gaz, où une solution symbolique est disponible. Ce cas académique
montre un gaz uniforme, où la distribution des vitesses revient vers l’équilibre
en partant d’une situation initiale qui en est très éloignée. Avec cet exemple,
par comparaison avec celui du chapitre précédent, on a maintenant un espace
des phases (même si il se réduit à l’espace des vitesses) et un terme source
correspondant aux collisions entrantes (une particule de vitesse ~c ′ collisionne
avec une particule de vitesse ~c ′∗ et se retrouve à la vitesse étudiée ~c).

Ce cas simple est aussi l’occasion de commencer à sonder les éventuelles
difficultés de convergence associées à la résolution par MMC de l’équation de
Boltzmann. Aucun problème de variance n’apparaît aux grandes vitesses, même
lorsque les particules correspondantes sont extrêmement peu nombreuses. C’est
notre premier exemple d’un calcul sonde se concentrant sur un événement
rare. Par contre il apparaît un problème de variance aux grands temps (temps
physiques) simulés. Une technique est proposée pour y remédier partiellement.

Ce chapitre présente une résolution par MMC de l’équation de Boltzmann, dans
un cas académique usuellement nommé mode BKW . Entre autres particularités,
il s’agit d’un gaz uniforme, dont la dynamique hors-équilibre est détaillé dans la
1re section. C’est l’un des rares problèmes de cinétique des gaz pour lesquels on
dispose d’une solution symbolique.

La formulation intégrale de l’équation de Boltzmann, que l’on va présenter en
section 5.2 puis tester en section 5.3, est similaire à ce qu’on a pu montrer au
chapitre précédent ; mais l’espace des vitesses est ajouté. Ce cas académique est
l’occasion d’un premier test de la validité de notre approche : dégager un estimateur
exact de la fonction de distribution dans des problèmes de cinétique des gaz, sans
aucune discrétisation de l’espace des vitesses et sans chercher à représenter la
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statistique de vitesse par le suivi d’un grand nombre de pseudo-particules.
Une particularité intéressante de l’estimateur que nous obtenons est qu’il a la

même variance relative partout dans l’espace des vitesses. On a aucune difficulté
à calculer ce qui se passe dans des zones peu peuplées de l’espace des vitesses,
contrairement à ce qui se passe par exemple avec les méthodes BsR et DSMC.
Et c’est bien normal : ces 2 méthodes suivent des particules au cours de leur
évolution, soit par un suivi statistique direct (DSMC), soit grâce à une quadrature
nécessairement centrée sur les zones très peuplées de l’espace des vitesses (BsR).
L’estimateur que nous proposons ici est au contraire construit, du point de vue des
chemins suivis, en partant de la zone d’intérêt : le suivi des particules se fait en
sens inverse depuis le point d’étude. Comme expliqué au chapitre 1.2, partant de
formulations intégrales de l’équation de Boltzmann, il est normal d’aboutir à un
suivi des particules en remontant le temps. Cette capacité à rester précis dans des
zones peu peuplées de l’espace des vitesses est très utile du point de vue applicatif.
Par exemple en chimie, où des événements déterminants sur l’évolution du système
se produisent uniquement à grande vitesse, donc à haute énergie, et n’impliquent
nécessairement que peu de particules. Cette question était d’ailleurs l’objectif initial
des concepteurs du mode BKW. Nous prenons la suite avec des algorithmes de
Monte Carlo dont nous espérons qu’ils autoriseront de telles analyses au delà du
mode BKW.

Une difficulté importante apparaît cependant : on ne peut atteindre que des
temps physiques simulés assez faibles. Cela est dû à ce que la variance d’un produit
de variables aléatoires égalise, grossièrement, le produit des variances des variables
(voir chapitre 1.5.3). Or notre estimateur se détaille comme un grand produit,
où chaque branche de l’arbre de suivi des particules amène un terme. Nous nous
attendions à rencontrer des difficultés informatiques associée à la multiplication du
nombre de branches, mais le problème s’avère numérique et non pas informatique.
Nous présentons, dans les 2 dernières sections, une première tentative d’y remédier.

5.1 Quelques explications sur le mode BKW
(Bobylev-Krook-Wu)

5.1.1 Revue bibliographique partielle
Le couramment dénommé mode BKW a été détaillé pour la 1re fois parallèlement

par Alexander V. Bobylev [11], et par Max Krook et Tai Tsun Wu [74], en 1976.
C’est une solution symbolique de l’équation de Boltzmann sous forme complète.

De telles solutions de l’équation de Boltzmann sont relativement rares. Il y
a bien sûr l’équilibre thermodynamique global, ainsi que des situations où les
particules ne connaissent ni collision sauf aux parois, ni aucune force à longue
portée ; ces configurations dont la compréhension est relativement simple sont
cependant d’un intérêt assez limité. En dehors de cela sont connus :
— la situation de confinement harmonique, exposée au chapitre suivant,
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— le mode BKW,
— des solutions semblables au mode BKW, mais en dimension autre que 3

(voir [39]),
— des solutions valables dans des conditions relativement semblables à celles

du mode BKW (particules de Maxwell, absence de force à longue portée,
uniformité, et isotropie), mais où la densité volumique d’énergie est infinie.
Pour plus de détails à ce sujet, lire les publications [12,13].

— de nombreux comportements asymptotiques. Le lecteur intéressé pourra se
reporter par exemple aux publications [40,41].

La découverte d’une solution exacte à l’équation de Boltzmann, à la fois
instationnaire, dans laquelle les collisions jouent un rôle, et répondant aux exigences
de réalisme physique les plus simples (positivité de f , densités de masse et d’énergie
finies) a été une avancée importante pour le développement de la théorie cinétique
des gaz. Le mode BKW a été l’objet d’une littérature conséquente, permettant le
test de plusieurs hypothèses théoriques (voir par exemple [27, 51]). Pour une revue
plus approfondie, le lecteur pourra utiliser la publication [56].

5.1.2 Description du mode BKW
••••On se place dans un gaz monomoléculaire et monoatomique, dans une
situation uniforme et isotrope, ainsi : f(~r;~c; t) = f(‖~c‖; t). Par commodité, on
notera toutefois : f(~r;~c; t) = f(~c; t). Il n’y a pas de force à longue portée s’exerçant
sur les molécules, et les molécules respectent le modèle de Maxwell isotrope, c’est-
à-dire que σF (g;u) = κ/(4πg), où κ est une constante. Dans ce cas, l’équation de
Boltzmann se simplifie en :

∂tf(~c; t) = − κηf(~c; t) + κ
∫

Ec
d~c∗

∫

4π

d~u ′
4π f(~c ′; t)f(~c ′∗; t) (5.1)

où 



η =
∫
Ec

d~c f(~c; t) est une constante

~c ′ = ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′

~c ′∗ = ~c+ ~c∗
2 − ‖~c− ~c∗‖2 ~u ′

Afin de simplifier encore les écritures on adimentionnalise partiellement cette
précédente équation : f remplace f/η, et t remplace κηt, alors :

∂tf(~c; t) = − f(~c; t) +
∫

Ec
d~c∗

∫

4π

d~u ′
4π f(~c ′; t)f(~c ′∗; t) (5.2)

••••Cette équation admet la solution particulière suivante :

fBKW(~c; t) = exp(− ~c 2/2Kcqma
2)

2(2πKcqma2)3/2

(
5K − 3
K

+ 1−K
K2 × ~c 2

cqma2

)
(5.3a)
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où
K = 1− exp(− t/6) (5.3b)

Pour que cette solution soit positive, il faut que K > 3/5, donc que t > td =
6 ln 5/2 ' 5,4977. De plus, par la suite on prendra l’unique paramètre cqma égal
à 1 (Ce paramètre est bien la vitesse quadratique moyenne sur chaque axe :
3ηcqma

2 =
∫
Ec

d~c f(~c; t)~c 2.) : quand cqma varie, fBKW reste similaire par homothétie
sur ~c.

La figure 5.1 donne une représentation graphique de la solution fBKW. En
résumé, la situation initiale du mode BKW est une Maxwellienne à trop basse
température, où les particules à très basses vitesses ont été déplacées vers les
moyennes vitesses. Ensuite, quand le temps passe, les zones de moyenne vitesse se
dépeuplent vers les zones de haute et basse vitesse.

••••Comme nous utilisons cette grandeur plus loin dans ce chapitre, nous donnons
ici l’expression de la fraction des particules dont la vitesse dépasse un seuil c0
donné :

Frac (‖~c‖ > c0; t)

=
∫

Ec
d~c H(‖~c‖ > c0)fBKW(~c; t) (5.4)

= exp
(
− c0

2

2Kcqma2

)
 1√

π

c0√
2Kcqma

(
2 + 1−K

K2
c0

2

cqma2

)
+ erfcx

(
c0√

2Kcqma

)


(5.5)

où erfcx est la fonction d’erreur complémentaire normalisée (voir l’annexe A.3).

5.2 Développement d’un algorithme de
Monte-Carlo simple pour le mode BKW

La disposition que nous avons d’une solution symbolique à l’équation de Boltz-
mann est pour nous l’occasion de tester la fonctionnalité de plusieurs algorithmes
de type Monte-Carlo adaptés à la cinétique des gaz. Bien sûr, les aspects de tels
algorithmes ne pourront pas être tous testés ici, à cause des particularités du mode
BKW. Ses particularités les plus importantes sont certainement l’uniformité, qui
fait qu’on ne testera pas la manière de gérer le transport, associée au modèle de
particules de Maxwell, qui rend le taux de collision constant. Ces deux aspects
seront travaillés sur la situation de piège harmonique, au chapitre suivant.

Étant donnée cette incapacité à être exhaustifs dans le test des formes algo-
rithmiques que nous voulons monter, nous nous contenterons ici d’algorithmes
spécifiquement adaptés au calcul de f dans le mode BKW. En particulier, nous
profiterons de la constance du taux de collision pour simplifier l’échantillonnage des
temps de vol libre des particules. Cette simplification n’est pas seulement portée
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Figure 5.1 – Profils de f à différents temps dans l’espace des vitesses, dans le
cas du mode BKW décrit en section 5.1.2. f ne dépend que du temps et de ‖~c‖.
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par une volonté de se faciliter le travail ; c’est aussi l’occasion de distinguer les
sources possibles de dysfonctionnement de nos algorithmes. Dans ce chapitre, nous
devrons juste traiter la présence d’un terme source quadratique dans l’équation
d’évolution (5.2), et il sera à lui seul source d’importantes difficultés. Quand nous
rajouterons au chapitre suivant un échantillonnage plus fonctionnel des temps de
vol libre, cela ajoutera des difficultés supplémentaires que nous pourrons distinguer
des précédentes.

5.2.1 Formulation intégrale
On réécrit l’équation d’évolution (5.2) sous la forme :

∂tf(~c; t) + f(~c; t) = s(~c; t) avec s(~c; t) =
∫

Ec
d~c∗

∫

4π

d~u ′
4π f(~c ′; t)f(~c ′∗; t) (5.6)

En supposant que f est connue à un temps tinit > td, on peut écrire une solution
partielle à l’équation (5.6) :

f(~c; t) =
∫ t

−∞
dt′ e−(t−t′)

(
H(t′ 6 tinit)f(~c; tinit) + H(t′ > tinit)s(~c; t′)

)
(5.7)

=
∫ t

−∞
dt′ e−(t−t′)

(
H(t′ 6 tinit)f(~c; tinit) + H(t′ > tinit)×

∫

Ec
d~c∗

∫

4π

d~u ′
4π f(~c ′; t′)f(~c ′∗; t′)

)
(5.8)

Pour obtenir une expression statistique évaluable dans un algorithme de
Monte-Carlo, il nous faut introduire une variable aléatoire pour chaque variable
d’intégration. Posons donc les variables aléatoires T ′, ~C∗, et ~U ′ à valeurs respec-
tivement dans ] −∞; t], Ec et S (Ec;~0; 1). Une interprétation algorithmique et
physique de ces VA peut être donnée :
— T ′ est la date de la dernière collision d’une particule suivie.
— ~C∗ est la vitesse sortante de la partenaire, dans sa dernière collision, de la

particule suivie.
— ~U ′ est la direction d’entrée, de la particule suivie, dans le référentiel barycen-

trique de sa dernière collision.
On a :

f(~c; t) =
∫ t

−∞
pT ′(t′)dt′

e−(t−t′)

pT ′(t′)


H(t′ 6 tinit)f(~c; tinit) + H(t′ > tinit)×

∫

Ec
p ~C∗(~c∗)d~c∗

∫

4π
p~U ′(~u

′)d~u ′ f(~c ′; t′)f(~c ′∗; t′)
4π p ~C∗(~c∗) p~U ′(~u ′)


 (5.9)
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L’expression statistique correspondante est :

f(~c; t) = E

e
−(t−T ′)

pT ′(T ′)

(
H(T ′ 6 tinit)f(~c; tinit) + H(T ′ > tinit)

F̃1(~C ′;T ′)F̃2(~C ′∗;T ′)
4π p ~C∗(~C∗) p~U ′(~U ′)

)


(5.10a)
où

~C ′ = ~c+ ~C∗
2 + ‖~c−

~C∗‖
2

~U ′ ~C ′∗ = ~c+ ~C∗
2 − ‖~c−

~C∗‖
2

~U ′ (5.10b)

et les notations « F̃1(~c1; t1) » et « F̃2(~c2; t2) » signifient 2 estimateurs indépendants
de f(~c1; t1) et f(~c2; t2).

5.2.2 Un choix pour pT ′, p~C∗ et p~U ′
Le choix le plus évident pour les VA T ′, ~C∗ et ~U ′ est sans doute de prendre
une loi exponentielle unité à gauche de t pour T ′, une loi gaussienne centrée réduite
(une Maxwellienne à vitesse nulle et vitesse quadratique unité sur chaque axe) pour
~C∗, et une loi isotrope pour ~U ′. Cela s’écrit :

FT ′(t′) = H(t′ < t) e−(t−t′) + H(t′ > t)× 1

p ~C∗(~c∗) = exp(− ~c∗2/2)
(2π)3/2 p~U ′(~u

′) = 1
4π

(5.11)

Au-delà de sa simplicité, ce choix algorithmique a une autre qualité : avec les
hypothèses du mode BKW, si à tinit la fonction de distribution f est la distribution
d’équilibre à densité unité, vitesse nulle et température unité — c’est-à-dire l’état
final ffin de la solution (5.3) —, alors l’estimateur généré est de variance nulle. En
effet, en appliquant ce choix et cette distribution initiale dans l’expression (5.10) :

— le terme e−(t−T ′)
pT ′ (T ′)

se simplifie,

— si T ′ 6 tinit , alors F̃ (~c; t) = ffin(~c),
— si T ′ > tinit, et que F̃1(~C ′;T ′) = ffin(~C ′) et F̃2(~C ′∗;T ′) = ffin(~C ′∗), alors

F̃ (~c; t) = ffin(~c). Il suffit de réaliser le calcul suivant pour s’en convaincre :

ffin(~C ′; t)ffin(~C ′∗; t)
4πp~U ′(~U ′)p ~C∗(~C∗)

=
exp

(
−~C ′2/2

)
exp

(
−~C ′∗2/2

)

(2π)3/2 exp
(
−~C∗2/2

)

=
exp

(
−
(
~C ′2 + ~C ′∗

2
)
/2
)

(2π)3/2 exp
(
−~C∗2/2

)
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comme les collisions conservent l’énergie cinétique (voir système (1.19)) :

=
exp

(
−
(
~c 2 + ~C∗2

)
/2
)

(2π)3/2 exp
(
− ~C∗2/2

)

= exp(−~c 2/2)
(2π)3/2

= ffin(~c)

L’estimation de f(~c; t) va générer un arbre d’estimations, comme au chapitre 4.2.
Par récurrence depuis les feuilles jusqu’à la racine de cette arbre, on obtient l’égalité
de F̃ (~c; t) avec ffin(~c; t) (qui est bien la valeur attendue en espérance dans ce cas).

••••Finalement, en se basant sur l’expression statistique (5.10) et en y injectant
les densités de probabilités choisies en (5.11), on arrive à l’algorithme 5.1.

Entrées : Le point (~c; t) où on veut estimer f(~c; t)
Sorties : Une estimation ponctuelle de f(~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr;
3 si t′ 6 tinit alors retourner f(~c; tinit); // f(~c; tinit) est connue
4 sinon
5 échantillonner ~C∗, selon la loi normale centrée réduite tridimensionnelle :

on obtient ~c∗;
6 échantillonner ~U ′ de façon isotrope : on obtient ~u ′;

7 ~c ′ ← ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′;

8 ~c ′∗ ←
~c+ ~c∗

2 − ‖~c− ~c∗‖2 ~u ′;
9 estimer f(~c ′; t′) grâce à cet algorithme : on obtient F̃1(~c ′; t′);

10 estimer f(~c ′∗; t′) grâce à cet algorithme : on obtient F̃2(~c ′∗; t′); // de
façon indépendante à F̃1(~c ′; t′)

11 retourner (2π)3/2 exp(~c∗2/2)× F̃1(~c ′; t′)× F̃2(~c ′∗; t′);

Algorithme 5.1 : Algorithme servant à estimer f(~c; t), va-
lide dans les conditions du mode BKW décrites en section
5.1.2 (densité uniforme et unité, particules de Maxwell, . . .).
En particulier, si f(~c; tinit) = fBKW (~c; tinit), alors on a

f(~c; t) = fBKW (~c; t). f(~c; t) est supposée connue à un temps tinit.
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5.3 Premiers résultats obtenus

5.3.1 Campagne de tests, et résultats
••••On a testé l’algorithme 5.1 en comparant ses résultats avec la formule
(5.3). Plus précisément, on donne comme condition initiale dans l’algorithme 5.1
« f(~c; td) = fBKW (~c; td) », avec td = 6 ln 5/2, puis on teste si l’algorithme estime
correctement f = fBKW quand t > td. Pour mémoire, en se plaçant au temps initial
td dans l’expression (5.3) on obtient :

fBKW (~c; td) = 25
√

5
54
√

6π3/2
~c 2 exp

(
− 5

6 ~c
2
)

(5.12)

Cette expression est utilisée dans les codes ayant servi à cette campagne de tests,
et présentés dans l’annexe D.3.

••••Nous avons demandé à l’algorithme 5.1 de réaliser 2 types de calcul de f :
— des calculs sondes, c’est-à-dire des calculs de f(~c; t) en divers points (~c; t)

donnés,
— des calculs de la fraction des particules dont la vitesse dépasse un seuil, en

certains temps t donnés.
Comme expliqué dans le chapitre 1, quand on utilise des méthodes de Monte-

Carlo suivant les particules en sens inverse — comme c’est le cas ici — le calcul
sonde est le test unique de fonctionnalité des algorithmes mis au point. Étant donné
que les diverses grandeurs macroscopiques (densité de matière, densités de flux,
fraction de la matière dans une partie du volume,. . .) ne sont que des intégrales à 1
ou quelques étages de la fonction de distribution f , si on est capable de réaliser le
calcul de f(~r;~c; t) en tout point de l’espace-temps des phases — ce qu’on appelle
le calcul sonde — alors on est capable de calculer toute grandeur macroscopique.
Néanmoins, réaliser le calcul de fractions des particules dont l’énergie cinétique
dépasse un seuil présente pour nous 2 intérêts :
— s’assurer qu’aucun problème n’apparaît durant le calcul de f quand la vitesse

est élevée. Plusieurs calculs sondes en des points de l’espace des phases à ‖~c‖
élevée auraient cependant suffit à cela.

— pouvoir affirmer, sans laisser subsister le moindre doute, que nous sommes
capables de calculer ce qui se passe à haute vitesse.

••••Cette capacité à calculer correctement les événements de haute énergie (et
plus largement, les événements rares) revêt pour nous une importance particulière.
Ce type de calcul est connu pour mettre en difficulté toutes les méthodes numériques
disponibles en cinétique des gaz — que ce soit Boltzmann sur Réseau, Direct
Simulation Monte-Carlo,. . .— ; pourtant, au niveau applicatif il sont très demandés,
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car c’est à haute énergie que se produisent les phénomènes « intéressants » — il
peut s’agir de réactions chimiques, d’ionisation, de dégradation de matériaux,. . . .

Quand nous avons conceptualisé la méthode de calcul de f que nous présentons
dans ce manuscrit, nous n’avons pas cherché spécifiquement à être capables de
calculer les événements de haute énergie. Nous venions de lancer le travail présenté
en [49], et il nous semblait extensible à la cinétique des gaz. C’est ainsi que ce
travail a commencé. En progressant dans nos recherches et nos essais, nous avons
constaté comme les problèmes de haute énergie peuvent être traités aisément par
cette voie (les résultats de simulation en témoignent) ; même si en étant au stade
purement théorique, nous aurions pu soupçonner cette capacité, car les méthodes
de calcul de type Monte-Carlo utilisant un suivi des particules en sens inverse sont
connues pour cela [1].

Finalement, c’est pour nous l’occasion de proposer dès maintenant une applica-
tion à ce travail de recherche : le calcul des événements rares, et en particulier de
haute énergie, en cinétique des gaz. Connaissant pour partie les problématiques
auxquelles se confrontent les communautés scientifiques des gaz raréfiés et des
plasmas, nous imaginons que cela pourrait les intéresser — plus rapidement que le
calcul de référence, qui est une de nos motivations plus habituelles.

••••Pour connaître la fraction des particules dont la vitesse dépasse un certain
seuil c0, nous devons évaluer l’intégrale :

Frac (‖~c‖ > c0; t) =
∫

Ec
d~c H(‖~c‖ > c0)f(~c; t) (5.13)

=
∫ +∞

c0
dcf

∫

4π
c2 d~uf f(cf~uf ; t) (5.14)

donc ajouter une (en fait 3) intégration au calcul de f .
On pose donc les variables aléatoires Cf et ~Uf à valeurs dans [c0; +∞[ et

S (Ec;~0; 1) respectivement, de sorte que :

Frac (‖~c‖ > c0; t) =
∫ +∞

c0
pCf (cf )dcf

∫

4π
p~Uf (~uf )d~uf

f(cf~uf ; t) cf 2

pCf (cf ) p~Uf (~uf )
(5.15)

= E

 F̃ (Cf ~Uf ; t)Cf 2

pCf (Cf ) p~Uf (~Uf )


 (5.16)

où F̃ (~c; t) est un estimateur de f(~c; t). Cela nous amène à l’algorithme 5.2, qui
comptabilise la fraction des particules de vitesse élevée.

Pour réaliser les calculs, on choisit arbitrairement :




pCf (cf ) = c0(c0
2 − 2)

(
(c02 − 2)(cf − c0) + c0

)2 si c0 > 2

pCf (cf ) = 2
(2 + cf − c0)2 si c0 6 2

p~Uf (~uf ) = 1
4π

(5.17)
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Entrées : Une vitesse c0 et un temps t
Sorties : Une estimation ponctuelle de la fraction des particules dont la

vitesse dépasse c0 au temps t
1 échantillonner Cf : on obtient cf ;
2 échantillonner ~Uf : on obtient ~uf ;
3 estimer f(cf~uf ; t) grâce à l’algorithme 5.1 : on obtient f̃(cf~uf ; t);

4 retourner cf
2 f̃(cf~uf ; t)

pCf (cf ) p~Uf (~uf )
;

Algorithme 5.2 : Algorithme servant à estimer la fraction des par-
ticules dont, à un instant fixé, la vitesse dépasse un certain seuil ;
valide dans les conditions du mode BKW décrites en section 5.1.2.

••••Les résultats de simulation sont montrés en figures 5.2, 5.3, et 5.4.

5.3.2 Analyse des résultats
••••La 1re constatation est que les résultats exhibent un comportement évoquant
une variance d’estimateur infinie, comme dans la figure 4.7 au chapitre précédent.
En comparant les profils des résultats obtenus en 4.7 et maintenant, on peut penser
que la variance devient infinie vers t = td + 2. Nous n’avons cependant pas réalisé
de modélisation de la variance afin de confirmer ou d’infirmer une telle intuition.

Le comportement des résultats fait penser au chapitre 4.3.5, quand on réalisait
le calcul de y(t) avec un k̂ trop faible. Ici, on est plutôt dans le cas « inquiétant »
évoqué au chapitre 4.3.5, c’est-à-dire que la variance relative estimée augmente
progressivement. En réalité, la variance vraie de notre estimateur de f(~c; t) doit
diverger à un certain t fini, mais on ne sait pas lequel.

••••À certains égards, les résultats présentés ici sont encore plus inquiétants
qu’au chapitre 4.3.5. Quand la variance d’estimateur est infinie, ils exhibent un
comportement étonnant : certaines estimations tombent largement trop haut et
avec une grande barre d’erreur, alors que les autres tombent trop bas avec une
barre d’erreur faible, pouvant amener à fournir — sans se douter de rien — des
intervalles de confiance faux. Quand on pousse les simulations à des temps non
montrés dans les figures 5.2, 5.3, et 5.4, ce comportement s’accentue encore, jusqu’à
ce que toutes les estimations soient bien trop faibles.

Ce comportement surprenant est probablement lié à la positivité de notre
estimateur de f(~c; t) (une lecture de l’algorithme 5.1 ou de la formulation 5.10
laisse deviner cette positivité). À cause de celle-ci, une grande dispersion de
l’estimateur aboutit nécessairement à ce que dans sa répartition :
— on ait une « longue queue » dans les grands réels positifs, qui provoque

l’infinité de la variance,
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Figure 5.2 – Profils de fBKW (~c; t) au cours du temps, et en différents points
de l’espace des vitesses. La solution symbolique est donnée en trait plein,
et en points séparés avec barres d’erreur sont donnés les résultats de l’al-
gorithme 5.1, travaillant avec la condition initiale « f(~c; td) est connue »
(voir section 5.3). En chaque point, 104 réalisations ont été effectuées.
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Figure 5.3 – Profils de fBKW le long de l’axe (Ox) de l’espace des vitesses,
à différents t fixés. La solution symbolique est donnée en trait plein, et
en points séparés avec barres d’erreur sont donnés les résultats de l’al-
gorithme 5.1, travaillant avec la condition initiale « f(~c; td) est connue »
(voir section 5.3). En chaque point, 104 réalisations ont été effectuées.
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Figure 5.4 – Évolution selon le temps de fractions des particules dont
la vitesse dépasse différents seuils c0 donnés. La solution symbolique est

donnée en trait plein, et en points séparés avec barres d’erreur sont donnés les
résultats de l’algorithme 5.2, travaillant avec la condition initiale « f(~c; td) est
connue » (voir section 5.3). En chaque point, 104 réalisations ont été effectuées.
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— la grande majorité de la « masse » soit proche de 0, compensant cette longue
queue de sorte que l’espérance soit toujours correcte.

••••Peut-être aurions-nous pu prédire cette infinité de la variance de l’estimateur
f(~c; t), en considérant l’équation d’évolution (5.2). Sous la forme adimentionnalisée
dans laquelle nous l’avons mise, elle est en effet instable en densité. C’est-à-dire
qu’en reprenant la définition de la densité : η =

∫
Ec

d~c f , l’équation (5.2) amène à :

∂tη = η2 − η (5.18)

qui est clairement instable autour de η = 1. Selon la valeur initiale de η, soit on
tend asymptotiquement vers 0, soit on arrive à η → +∞ au bout d’un temps fini !

Bien sûr cette instabilité en densité de l’équation (5.2) ne se ressent pas dans
le comportement du phénomène physique étudié, car l’adimentionnalisation qui
amène à l’équation (5.2) impose η = 1 exactement. Avec une condition initiale
imposant η = 1, l’équation (5.2) amène bien à une densité η constante, et n’est
donc pas en contradiction avec la physique qu’elle modélise.

Par contre, l’algorithme 5.1 qui la résout ignore la particularité de la condition
initiale. Si η 6= 1 dans la condition initiale qui lui est donnée, il calculera une
divergence sur η, suivant strictement l’équation (5.2). Mais comme l’algorithme
5.1 ne connaît pas exactement la densité initiale mais ne fait que l’échantillonner,
il ne peut pas aboutir à ce que η = 1 exactement ; donc ses résultats divergent
systématiquement (à part dans la situation de variance nulle décrite à la section
5.2.2).

••••La dernière chose que nous constatons est que conformément à ce que nous
avions annoncé, la technique de calcul de f(~c; t) que nous avons mise au point n’est
pas mise en échec à grande vitesse. On peut le constater en premier lieu sur la
figure 5.3 : l’écart-type d’estimation reste faible quand la norme de ~c est grande
(disons supérieure à 3).

Aussi, les calculs de fractions des particules à haute vitesse sont une réussite,
comme en témoigne la figure 5.4. On observe certes que la variance relative des
résultats de ces calculs est plus élevée, mais il n’y a rien de grave. Sûrement,
cette augmentation de la variance est partiellement due à l’intégration finale sur
Ec \B(Ec;~0; c0), car nous n’avons pas vraiment optimisé le tirage de Cf dans
l’expression (5.16). On calcule sans difficulté des fractions de la masse totale
inférieures à un milliardième (voir la figure 5.4c).

À ce niveau, nous repensons évidemment aux applications éventuelles précédem-
ment listées — chimie gazeuse, physique des plasmas, fusion nucléaire. . . À notre
connaissance, notre capacité à prévoir les fractions de particules de grande énergie
cinétique, même quand elles sont aussi faibles qu’un milliardième, constitue une
première. Il n’y a d’ailleurs a priori pas de limitation sur la petitesse des fractions
que nous calculons.
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••••Nous n’avons jusqu’ici pas parlé de la récursivité de l’algorithme 5.1. En
fait, elle suit exactement la même évolution que la récursivité de l’algorithme 4.1 :
comparer les formulations statistiques 5.10 (avec les choix de la section 5.2.2) et
4.10 permet de s’en convaincre. Plus exactement, avec la formulation 5.10 on a
k̂ = 1 ; donc en reprenant l’expression (4.13) :

rec(t) = 2 et − 1 (5.19)

où rec(t) est l’espérance du nombre total de tirages de temps de recul T ′, quand
on fait une estimation ponctuelle de f(~c; t) par l’algorithme 5.1 (la valeur de ~c ne
joue pas).

Par exemple, si on considère que pour chaque tirage d’un temps de recul T ′ on
effectue au plus 7 tirages uniformes standard (pour tirer T ′, ~C∗ et ~U ′, voir l’annexe
D.3), alors pour estimer f(~c; t) avec un échantillon de 104 réalisations en suivant
l’algorithme 5.1 il faudra moins de 106 tirages uniformes standards. Si on considère
que ces tirages représentent la majorité de la dépense computationnelle, celle-ci
est plutôt faible. Sur nos graphes de 5.2 à 5.4, nous avons effectivement utilisé 104

réalisations par points. Même si on considère les barres d’erreur trop larges à t = 2,
rétrécir l’écart-type d’un facteur 10 est très abordable sur un ordinateur de bureau.

Bien sûr, à des temps physiques t simulés plus grands, la dépense computation-
nelle augmente de façon exponentielle. Nous en parlerons toutefois dans la section
suivante, car à des temps simulés supérieurs à 2 nous sommes plutôt limités par
un problème d’explosion de la variance.

5.4 Une astuce algorithmique pour accroître les
capacités de la méthode développée

••••Au total, la méthode développée donne des résultats intéressants, mais il y a
de quoi être frustré par les faibles temps qu’elle peut simuler, avant que la variance
de ses résultats ne devienne infinie. Nous proposons ici une façon peu élégante
d’améliorer cette situation, inspirée de la situation de variance nulle décrite en
section 5.2.2.

On se base sur le constat que si la distribution initiale f(~c; tinit) était la distribu-
tion d’équilibre, alors notre algorithme donnerait un estimateur de variance nulle.
Cela amène à penser que si l’état initial, qu’on a choisi comme f(~c; td) = fBKW (~c; td),
était plus proche de l’état d’équilibre alors notre estimateur divergerait plus lente-
ment. Or justement, l’équilibre est l’état final du mode BKW.

Au bout d’un temps simulé t− tinit non nul, on s’est rapproché de l’équilibre.
Cependant, notre estimateur de f(~c; t) est maintenant entaché de variance, alors
qu’à tinit il ne l’est pas (par hypothèse) ; et c’est par auto-multiplication de notre
estimateur dans l’algorithme 5.1 que sa variance finit par exploser (comme au
chapitre 1.5.3). Ce serait donc bien si au bout d’un temps simulé non nul on faisait
baisser la variance de l’estimateur ; de la sorte, notre capacité d’estimer f(~c; t) irait
plus loin dans les temps simulés.

214



5.5. Deuxièmes résultats obtenus

••••Une façon simple de faire baisser la variance d’un estimateur est de l’évaluer
plusieurs fois, puis d’en prendre la moyenne. De la sorte, on passe de l’expression
statistique (5.10) :

f(~c; t) = E

e
−(t−T ′)

pT ′(T ′)

(
H(T ′ 6 tinit)f(~c; tinit) + H(T ′ > tinit)

F̃1(~C ′;T ′)F̃2(~C ′∗;T ′)
4π p ~C∗(~C∗) p~U ′(~U ′)

)


à

f(~c; t) = E

e
−(t−T ′)

pT ′(T ′)


H(T ′ 6 tinit)f(~c; tinit) + H(T ′ > tinit)×

1
Nm

Nm∑

i=1

F̃1(~C ′i;T ′)F̃2(~C ′∗i;T ′)
4π p ~C∗i(~C∗i) p~U ′i(~U ′i)




 (5.20a)

où

~C ′i = ~c+ ~C∗i
2 + ‖~c−

~C∗i‖
2

~U ′i ~C ′∗i = ~c+ ~C∗i
2 − ‖~c−

~C∗i‖
2

~U ′i (5.20b)

et Nm est un paramètre réglable, choisi coup sur coup en fonction d’au moins t et
T ′. Nous le choisirons égal à 1, sauf quand le suivi de particule traverse certains
paliers en remontant le temps. Cela nous mène à l’algorithme 5.3.

5.5 Deuxième groupe de résultats obtenus
Pour cette campagne de tests, nous choisissons l’expression suivante pour Nm :





si 1,2 ∈ [t′; t[ 9
sinon si 2,5 ∈ [t′; t[ 4
sinon si 4 ∈ [t′; t[ 4
sinon 1

(5.21)

C’est-à-dire que Nm vaut 1, sauf si en faisant une remontée dans le temps (voir la
formulation statistique 5.10) on traverse certains paliers. Si on franchit le palier
T ′ 6 1,2, on effectuera l’estimation de s(~c;T ′) 1 avec Nm = 9 échantillons. Sinon,
si on franchit les paliers T ′ 6 2,5 ou T ′ 6 4, on procède de même avec Nm = 4.

L’implémentation de l’algorithme 5.3 qui en découle est détaillée en annexe D.3.
Les résultats de la campagne de tests, menée avec des conditions similaires à celles
de la précédente (section 5.3), sont donnés dans les figures 5.5, 5.6, 5.7, et 5.8.

Apparemment, l’estimateur sortant de l’algorithme 5.3, dans les conditions de
cette campagne de tests, voit désormais sa variance exploser autour de t− td = 5,5,
si on suit les figures. À moment-là, une estimation de f(~c; t) basée sur un échantillon
de 104 réalisations de l’algorithme 5.3 demandera entre 109 et 1010 tirages uniformes
standards : ça commence à faire beaucoup, pour une machine de bureau actuelle.

1. voir la définition de s dans l’expression (5.6)
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Entrées : Le point (~c; t) où on veut estimer f(~c; t)
Sorties : Une estimation ponctuelle de f(~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr;
3 si t′ 6 tinit alors retourner f(~c; tinit);
4 sinon
5 déterminer Nm en fonction de t et t′ : on obtient nm;
6 Σf ← 0;
7 pour i← 1 à nm faire
8 échantillonner ~C∗, selon la loi normale centrée réduite

tridimensionnelle : on obtient ~c∗;
9 échantillonner ~U ′ de façon isotrope : on obtient ~u ′;

10 ~c ′ ← ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′;

11 ~c ′∗ ←
~c+ ~c∗

2 − ‖~c− ~c∗‖2 ~u ′;
12 estimer f(~c ′; t′) grâce à cet algorithme : on obtient F̃1(~c ′; t′);
13 estimer f(~c ′∗; t′) grâce à cet algorithme : on obtient F̃2(~c ′∗; t′);
14 Σf ← Σf + (2π)3/2 exp(~c∗2/2)× F̃1(~c ′; t′)× F̃2(~c ′∗; t′);
15 retourner (Σf/nm);

Algorithme 5.3 : Un nouvel algorithme servant à estimer f(~c; t),
valide dans les conditions du mode BKW décrites en section 5.1.2

100
101
102
103
104
105
106

0 1 2 3 4 5 6 7 8

re
c(

t)

t − td

Figure 5.5 – Évolution de la récursivité de l’algorithme 5.3 selon le temps phy-
sique t simulé. La récursivité rec(t) est celle définie à la fin de la section 5.3.2.
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(c) Profil de fBKW (~c; t) en ~c = (3; 0; 0) et en fonction de t

Figure 5.6 – Profils de fBKW (~c; t) au cours du temps, et en différents
points de l’espace des vitesses. La solution symbolique est donnée en
trait plein, et en points séparés avec barres d’erreur sont donnés les ré-
sultats de l’algorithme 5.3, travaillant avec la condition initiale « f(~c; td)

est connue ». En chaque point, 104 réalisations ont été effectuées.
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Figure 5.7 – Profils de fBKW le long de l’axe (Ox) de l’espace des vi-
tesses, à différents t fixés. La solution symbolique est donnée en trait
plein, et en points séparés avec barres d’erreur sont donnés les résul-
tats de l’algorithme 5.3, travaillant avec la condition initiale « f(~c; td)
est connue ». En chaque point, 104 réalisations ont été effectuées.

218



5.5. Deuxièmes résultats obtenus

0
0,1
0,2
0,3
0,4
0,5

0 1 2 3 4 5 6 7 8

Fr
ac

(‖
~c‖

>
2;

t)

t − td

valeur exacte
résultats algo

(a) Fraction des particules dont la vitesse dépasse c0 = 2.

0
2
4
6
8

10

0 1 2 3 4 5 6 7 8Fr
ac

(‖
~c‖

>
4;

t)
/ 10

−
4

t − td

valeur exacte
résultats algo

(b) Fraction des particules dont la vitesse dépasse c0 = 4.

10−10

10−9

10−8

0 1 2 3 4 5 6 7 8

Fr
ac

(‖
~c‖

>
6;

t)

t − td

valeur exacte
résultats algo

(c) Fraction des particules dont la vitesse dépasse c0 = 6.

Figure 5.8 – Évolution selon le temps de fractions des particules dont la
vitesse dépasse différents seuils c0 donnés. La solution symbolique est donnée en
trait plein, et en points séparés avec barres d’erreur sont donnés les résultats
de l’algorithme 5.3 intégrés par l’algorithme 5.2, travaillant avec la condition

initiale « f(~c; td) est connue ». En chaque point, 104 réalisations ont été effectuées.
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Chapitre 6

Résultats obtenus sur un nuage
de gaz oscillant

On résout l’équation de Boltzmann par MMC dans un deuxième cas acadé-
mique de cinétique des gaz, où une solution symbolique est disponible. Dans
ce cas-ci, le gaz n’est plus uniforme, il forme un nuage autour de l’origine
des positions, qui se contracte et se détend périodiquement. En plus de ce que
nous avons réalisé au chapitre précédent, nous devrons donc tenir compte du
transport balistique dans l’espace des positions. Nous devrons aussi ajouter
la gestion d’une fréquence de collision variable, alors que le cas d’étude du
précédent chapitre permettait de nous en dispenser.

Plusieurs alternatives algorithmiques apparaissent quand on veut gérer
la somme de l’extinction et du terme source dans le terme collisionnel de
Boltzmann. Nous proposerons plusieurs choix réalisables, dont nous comparerons
la pertinence à l’aune d’une approche à variance nulle (voir le chapitre 1.3.2)
dans laquelle nous supposerons la distribution des vitesses à l’équilibre. Puis
nous testerons numériquement ces choix.

••••Nous allons montrer dans ce chapitre la résolution de l’équation de Boltzmann
dans un 2e cas académique. Ce dernier est détaillé dans la section 6.1, et possède
comme le précédent une solution symbolique.

Dans ce nouveau cas, le gaz n’est pas uniforme, ce qui va nous obliger à prendre
en compte les 2 aspects du transport que nous avions mis de côté au chapitre
précédent :
— le transport balistique dans l’espace des positions,
— la variabilité de la fréquence de collision.
Pour tenir compte du transport entre les collisions, il nous suffira de mettre à

jour la position des particules dans l’espace entre 2 collisions, ce que nous n’avions
pas fait au chapitre précédent. Un champ de forces extérieures est présent dans
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le cas d’étude ; heureusement, il est suffisamment simple pour que les trajectoires
balistiques soient aisément paramétrisables.

La fréquence de collision variable, et dépendante de la fonction de distribution,
est gérée en reprenant presque à l’identique la démarche du chapitre 4. L’espace
des vitesses est cependant ajouté (comme au chapitre 5), et l’extinction dûe aux
collisions agit en parallèle au terme source.

••••À ce stade, nous avons jugé utile de donner une formulation intégrale géné-
rique de l’équation de Boltzmann, pour en tirer ensuite la formulation particulière
à notre problème. Ceci est fait dans la section 6.2.

Après cela, nous nous attardons sur la conversion de l’écriture intégrale en
écriture statistique détaillée, et sur les alternatives que ce passage fait apparaître.
Nous faisons des prédictions sur la variance de quelques estimateurs possibles, que
finalement nous testons numériquement à la section 6.3.

••••La campagne de tests de la section 6.3 fait apparaître les mêmes comporte-
ments numériques qu’au chapitre précédent.

Aucune augmentation significative de la variance ne se produit quand nos
estimateurs sondent des zones peu peuplées de l’espace des phases. Le cas d’étude
de ce chapitre permet de tester ceci, dans les zones peu peuplées de l’espace des
positions (Nous l’avons déjà testé aux grandes vitesses. Le présent cas d’étude n’a
pas invalidé ce qu’on avait alors déduit.). En effet, parce que le champ de forces
extérieures rappelle les particules à l’origine des positions, la masse est concentrée
autour de celle-ci : les zones éloignées de l’origine sont dépeuplées, et nous testons
nos estimateurs de f en particulier là.

Par ailleurs, la même fulgurante augmentation de la variance avec le temps
physique simulé qu’au chapitre 5 est constatée. Il est à noter que les choix algo-
rithmiques que l’on peut faire, à la section 6.2.3, influencent beaucoup la durée au
bout duquel la variance explose.

6.1 Description de la situation physique,
dite « de confinement harmonique »

6.1.1 Cas général
••••La situation de confinement harmonique est connue depuis les travaux de
Ludwig Boltzmann lui-même.

Le théorème H explique que, lors des collisions, la quantité
∫
Er×Ec f × ln f ne

peut que décroître — d’où son nom d’entropie en cinétique des gaz. La situation
de confinement harmonique est, avec l’équilibre thermodynamique global, la seule
situation connue où il n’y a pas de destruction de cette entropie. C’est-à-dire que
c’est une situation sans dissipation, où les collisions ne jouent aucun rôle ; on dit
qu’elle fait partie du noyau de l’opérateur de collision.
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La combinaison de la minimisation de l’entropie et de la conservation des
3 premiers moments de f selon la vitesse ~c amène à rechercher des solutions
permanentes à l’équation de Boltzmann sous la forme (voir le chapitre 1.1.3.3) :

f(~r;~c; t) = exp(− α− β~c 2 − ~γ · ~c) (6.1)

où β > 0, α, et ~γ sont a priori des fonctions de l’espace et du temps. L’équilibre
thermodynamique global est en effet décrit par une telle expression de f . Une autre
solution moins connue existe, à condition que le gaz soit monoatomique et que le
champ des forces extérieures suive un certain type de profil.

••••Nous reprendrons ici directement les résultats de la publication [53], de
David Guéry-Odelin, Juan Gonzalo Muga, María José Ruiz Montero, et
Emmanuel Trizac, sans les calculs détaillés.

On s’intéresse aux situations où la somme des forces à longue portée découle
d’un potentiel scalaire. La distribution des particules peut appartenir au noyau
de l’opérateur de collision de Boltzmann — quelle que soit la section efficace de
collision — sans être la distribution d’équilibre hydrostaique si le potentiel V dont
découle la force à longue portée s’écrit (aux translations près) :

V

m
= V

m
(~r; t) = ω(t)2 ~r 2

2 + b(~r /‖~r‖)
~r 2 (6.2)

où m est la masse des particules, et b une fonction positive. Si le gaz possède un
moment cinétique total ~J non nul autour de l’origine, il faut aussi que le terme b
soit invariant par rotation d’axe ~J , ce qui s’écrit : b = b(~r /‖~r‖) = b

(
~r
‖~r‖ ·

~J

‖ ~J‖

)
.

Par ailleurs, la température doit être uniforme, et son évolution régie par
l’équation différentielle :

∂tttβ + 4ω2∂tβ + 4ω(∂tω)β = 0 (6.3)

où β est le coefficient de l’équation (6.1).
Pour plus de détails, nous renvoyons à la publication [53].

6.1.2 Nos choix
Le cas physique précis décrit dans cette section est représenté sur la figure 6.1.

••••Pour simplifier notre cas d’étude, nous prenons un champ de force sans
répulsion centrale (b = 0) et de raideur constante (ω = cste), et nous choisissons
un gaz mono-espèce, dont le moment cinétique total est nul. Alors la fonction de
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(a) Densité de matière le long de l’axe (Ox)
de l’espace ordinaire, en fonction du temps.

Les lignes bleues tiretées sont des isolignes de den-
sité, écartées soit d’un facteur 2 soit d’un facteur 100.

En aucun point de l’espace la densité n’est constante. Même si cela ne se voit
pas bien, les isolignes η = 6 mol/m3 ou η = 3 mol/m3 ondulent légèrement.
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(b) Profils temporels de différentes énergies du gaz, exprimées en fractions de leur
somme ETot . EP est l’énergie potentielle cumulée des molécules, due au champ de
force centrale ; ETh est l’énergie thermique totale du gaz, due à l’agitation molécu-
laire ; et ECM est l’énergie cinétique du gaz, due au mouvement observable à l’échelle

macroscopique. ECM est agrandie d’un facteur 10 pour des raisons de lisibilité.

Figure 6.1 – Présentation partielle de la situation
physique qui sert de cas test au cours de ce chapitre.

Le problème est à symétrie sphérique. Un gaz monoatomique, dont
chaque molécule est rappelée élastiquement vers l’origine des positions,

forme un nuage gonflant et se dégonflant de façon strictement périodique.
Les paramètres de la situation dessinée ici sont
bien aux valeurs utilisées dans les simulations.
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distribution des particules s’écrit (voir [53]) :

f(~r;~c; t) = nω3

8π3cqm min3cqm max3 exp



−
(
cqm min

−2 + cqm max
−2

4 + cqm min
−2 − cqm max

−2

4 sin(2(ωt+ φ0))
)
~c 2

+ cqm min
−2 − cqm max

−2

2 cos(2(ωt+ φ0))ω~r · ~c

−
(
cqm min

−2 + cqm max
−2

4 − cqm min
−2 − cqm max

−2

4 sin(2(ωt+ φ0))
)
ω2~r 2


 (6.4)

où n est la quantité totale de gaz, cqm min est le minimum au cours du temps de
la vitesse quadratique moyenne sur chaque axe d’agitation thermique (uniforme),
cqm max est le maximum de la même vitesse, et φ0 est un décalage de phase à
l’origine des temps.

À toutes fins utiles, on peut donner aussi l’expression des grandeurs macrosco-
piques associées à la distribution du gaz :

η(~r; t) = nω3

π3/2

(
cqm max

2 + cqm min
2 +

(
cqm max

2− cqm min
2
)

sin(2(ωt+ φ0))
)−3/2

×

exp
(

− ω2~r 2

cqm max2 + cqm min2 + (cqm max2 − cqm min2) sin(2(ωt+ φ0))

)
(6.5)

cqma(t) =
√

2
(
cqm min

−2 + cqm max
−2 +

(
cqm min

−2− cqm max
−2
)

sin(2(ωt+ φ0))
)−1/2

(6.6)

~v(~r; t) = (cqm max
2 − cqm min

2) cos(2(ωt+ φ0))ω~r
(cqm max2 + cqm min2) + (cqm max2 − cqm min2) sin(2(ωt+ φ0)) (6.7)

Comme on calculera cette grandeur, on donne ici l’expression de la fraction des
particules se situant à une distance de l’origine supérieure à un seuil r0 donné :

Frac (‖~r‖ > r0; t) = exp
(
− r0

2

2 rqma2

)
×
(√

2
π
× r0

rqma
+ erfcx

(
r0√

2 rqma

))
(6.8a)

où

rqma = 1
ω
√

2

√
cqm max2 + cqm min2 +

(
cqm max2 − cqm min2

)
sin(2(ωt+ φ0)) (6.8b) 1

et erfcx est la fonction d’erreur complémentaire normalisée (voir l’annexe A.3).

1. Cette expression de rqma est peu semblable à l’expression (6.6) de cqma. C’est normal, car
alors que rqma est la distance quadratique moyenne sur chaque axe des particules à l’origine des
positions, cqma est la vitesse quadratique moyenne sur chaque axe relative à la vitesse vectorielle
moyenne locale ~v(~r; t) ; d’où la différence.
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••••Nous choisissons pour la suite de ce chapitre, afin de mettre en place les
simulations, le jeu de paramètres suivant : ω = 2πHz, n = 1 mol, cqm max = 1 m/s,
cqm min
cqm max

= 0,8 , et φ0 = 0. Ces valeurs sont purement arbitraires, et ne préjugent en
rien de la physique sous-jacente.

Il nous faut aussi choisir un modèle de section efficace. Bien qu’il ne doive pas
influencer la distribution des particules, il faut quand même en poser un, à moins
de traiter uniquement du transport balistique (ce qui serait assez peu intéressant
ici. . .). Pour nous simplifier les choses, nous prenons un modèle de section efficace
de Maxwell isotrope, c’est-à-dire que σF (g;u) = κ/(4πg), où κ est une constante.
Nous fixons : nκω2

cqm max3 = 1,5.

••••La figure 6.1 donne une représentation visuelle de la situation étudiée. Comme
on peut s’y attendre en lisant les expressions de f et des grandeurs macroscopiques,
on a un nuage de gaz centré sur l’origine, qui gonfle et se dégonfle de façon
périodique.

6.2 Solution intégrale partielle de l’équation de
Boltzmann, et application à la situation de
confinement harmonique

6.2.1 Écritures intégrale et statistique de l’équation de
Boltzmann, basée sur les Algorithmes à Collisions
Nulles

••••On peut reprendre dans un premier temps directement l’équation de Boltz-
mann, dans sa forme générale 1.1.3 adaptée aux problèmes de cinétique des gaz
monoatomiques et mono-espèce :

∂tf(~r;~c; t) + ~c · −−→grad~rf(~r;~c; t) + div~c
(
f(~r;~c; t)~a(~r;~c; t)

)

=
∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~c− ~c∗‖; ~u ′ ·

~c− ~c∗
‖~c− ~c∗‖

)
×

(
− f(~r;~c; t)f(~r;~c∗; t) + f(~r;~c ′; t)f(~r;~c ′∗; t)

)

où ~a = ~F
m

est l’accélération subie par les particules due aux forces à longue portée,
bF (g;u) = g × σF (g;u) est une participation à la fréquence de collision, et :

~c ′ = ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′ ~c ′∗ = ~c+ ~c∗

2 − ‖~c− ~c∗‖2 ~u ′

Plutôt que d’en déduire l’expression intégrale (1.46a), on utilise le fonction-
nement des Algorithmes à Collisions Nulles. Sans frontière et avec la condition
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initiale « f est connue en un temps tinit », et en considérant que la force ~F ne
diverge pas dans l’espace des vitesses, on aboutit à l’expression suivante :

f(~r;~c; t) =
∫ t

−∞
dt′ ν̂

(
~rb(t′);~cb(t′); t′

)
exp

(
−
∫ t

t′
dt′′ ν̂

(
~rb(t′′);~cb(t′′); t′′

))
×


H(t′ 6 tinit)f

(
~rb(tinit);~cb(tinit); tinit

)
+ H(t′ > tinit)×

((
1− νt(~rb(t′);~cb(t′); t′)

ν̂(~rb(t′);~cb(t′); t′)

)
f
(
~rb(t′);~cb(t′); t′

)
+ sis(~rb(t′);~cb(t′); t′)

ν̂(~rb(t′);~cb(t′); t′)

)
 (6.9a)

où ν̂ est une fréquence majorée de collision, ~rb et ~cb sont les solutions du problème
différentiel :
{
∂t′~rb(t′) = ~cb(t′)
∂t′~cb(t′) = ~a

(
~rb(t′);~cb(t′); t′

) avec les conditions finales
{
~rb(t) = ~r
~cb(t) = ~c

(6.9b)

et finalement νt(~r;~c; t) et sis(~r;~c; t) sont respectivement la fréquence réelle de
collision et le terme source dû aux entrées par collision, en le point de l’espace-
temps des phases (~r;~c; t) :

νt(~r;~c; t) =
∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~c− ~c∗‖; ~u ′ ·

~c− ~c∗
‖~c− ~c∗‖

)
f(~r;~c∗; t) (6.9c)

sis(~r;~c; t) =
∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~c− ~c∗‖; ~u ′ ·

~c− ~c∗
‖~c− ~c∗‖

)
f(~r;~c ′; t)f(~r;~c ′∗; t) (6.9d)

••••En introduisant quelques variables aléatoires, on peut transformer l’expres-
sion intégrale précédente (6.9) en expression statistique utilisable dans un calcul
de type Monte-Carlo :

f(~r;~c; t) = E

H(T ′ 6 tinit)f

(
~rb(tinit);~cb(tinit); tinit

)
+ H(T ′ > tinit)×

((
1− Ñt 1(~rb(T ′);~cb(T ′);T ′)

ν̂(~rb(T ′);~cb(T ′);T ′)

)
F̃2
(
~rb(T ′);~cb(T ′);T ′

)
+ S̃is(~rb(T ′);~cb(T ′);T ′)

ν̂(~rb(T ′);~cb(T ′);T ′)

)


(6.10a)

où

Ñt 1(~r;~c; t) = bF

(
‖~c− ~C∗‖; ~U ′ ·

~c− ~C∗

‖~c− ~C∗‖

)
F̃1(~r; ~C∗; t)

p ~C∗(~C∗)p~U ′(~U ′)
(6.10b)

S̃is(~r;~c; t) = bF

(
‖~c− ~C∗‖; ~U ′ ·

~c− ~C∗

‖~c− ~C∗‖

)
F̃1(~r; ~C ′; t)F̃2(~r; ~C ′∗; t)

p ~C∗(~C∗)p~U ′(~U ′)
(6.10c)
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sont des estimateurs de la fréquence de collision νt et du terme source sis. Dans
l’expression (6.10c) :

~C ′ = ~c+ ~C∗
2 + ‖~c−

~C∗‖
2

~U ′ ~C ′∗ = ~c+ ~C∗
2 − ‖~c−

~C∗‖
2

~U ′ (6.10d)

et F̃ (~r;~c; t) signifie un estimateur sans biais de f(~r;~c; t). Dans les écritures (6.10a)
et (6.10c), la notation « F̃1, F̃2 » signifie comme d’habitude l’indépendance de 2
estimateurs.

Les variables aléatoires à échantillonner sont les mêmes qu’au chapitre 5.2.1 :
— T ′, à valeurs dans ]−∞; t], est l’instant de la dernière collision d’une particule

suivie.
T ′ est supposée suivre une loi de probabilité en analogie avec la physique ;
sinon, dans l’expression (6.10a), une division par pT ′ serait présente. La loi
que doit suivre T ′ est une loi exponentielle à gauche de t, dont le coefficient
d’extinction est ν̂ (au fil de la trajectoire balistique de la particule suivie).
Cela s’écrit :

FT ′ : t′ 7→ H(t′ < t) exp
(
−
∫ t

t′
dt′′ ν̂

(
~rb(t′′);~cb(t′′); t′′

))
+ H(t′ > t) (6.10e)

— ~C∗ à valeurs dans Ec, qui correspond à une vitesse sortante de la partenaire
de la particule suivie dans sa dernière collision,

— ~U ′ à valeurs dans Eu = S (Ec;~0; 1), qui correspond à la vitesse d’arrivée de
la particule suivie dans le référentiel barycentrique de sa dernière collision.

Remarques.
— Il n’est pas nécessaire que les variables aléatoires ~C∗ et ~U ′, dans l’expression

de Ñt 1 d’une part, et dans l’expression de S̃is d’autre part, soient bien les
mêmes.

— Nous avons choisi la variable aléatoire T ′ comme une date de précédente
collision, suivant la fréquence d’extinction ν̂. Au prix d’une légère modification
de l’expression (6.10a) ce choix n’est pas obligatoire, même s’il est en général
préférable comme cela est expliqué aux chapitres 1.5.3 et 2.2.2.

6.2.2 Transformations possibles de l’expression
statistique

Considérant l’expression (6.10a), on se retrouve avec des possibilités similaires
à ce qui était expliqué dans le chapitre 2.2.3. À savoir qu’une fois T ′ tiré et ~rb(T ′)
et ~cb(T ′) calculés (dans le cas où T ′ > tinit), il faut calculer (ν̂ − Ñt 1)F̃2 + S̃is — la
somme du terme de collision nulle et du terme source des collisions entrantes. C’est
une somme dont les termes doivent être calculés récursivement, et on profiterait
volontiers des possibilités offertes par les méthodes de Monte-Carlo pour ne pas la
calculer entièrement à chaque demande.
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Au contraire de ce qui est exposé au chapitre 2.2.3, les termes de la somme
(ν̂ − Ñt 1)F̃2 + S̃is sont tous 2 récursifs, et nécessitent chacun a priori 2 estimations
de f pour être obtenus. Il n’y a pas d’intérêt à faire un choix de Bernoulli entre
des combinaisons linéaires de ces termes (la 4e proposition au chapitre 2.2.3), car
l’un ne peut pas être partiellement ajouté à l’autre sans rendre le calcul de ce
dernier nettement plus difficile 2. Par ailleurs, des probabilités analogues que la
particule suivie ait subi ou non une collision ne paraissent pas aisées à dégager,
car la fréquence vraie d’extinction νt est inconnue de prime abord. Restent donc
fondamentalement 2 possibilités : calculer la somme (ν̂ − Ñt 1)F̃2 + S̃is entièrement,
ou utiliser un choix de Bernoulli plus ou moins arbitraire entre les 2 termes de
cette somme.

En introduisant un choix de Bernoulli, l’équation (6.10a) se réécrit :

f(~r;~c; t) = E

H(T ′ 6 tinit)f

(
~rb(tinit);~cb(tinit); tinit

)
+ H(T ′ > tinit)×

(
Pnul ×

1
Pnul

(
1− Ñt 1(~rb(T ′);~cb(T ′);T ′)

ν̂(~rb(T ′);~cb(T ′);T ′)

)
F̃2
(
~rb(T ′);~cb(T ′);T ′

)
+

Pdiff ×
S̃is(~rb(T ′);~cb(T ′);T ′)

Pdiff ν̂(~rb(T ′);~cb(T ′);T ′)

)
 (6.11)

où Pnul et Pdiff sont 2 probabilités telles que Pnul + Pdiff = 1.
Il reste à faire un choix pour ces deux probabilités. Nous faisons ici 3 propositions

que nous testerons :
pile ou face : Pnul = Pdiff = 1/2

utilisation d’une approximation de f : On dispose d’une expression ap-
proximative de f . Grâce à elle, on dispose d’approximations νt≈ et sis

≈

respectivement de la fréquence de collision et du terme source. On en déduit
des valeurs pour Pnul et Pdiff grâce à une approche variance nulle, ou selon
un calcul plus simple si l’approche variance nulle est trop difficile à mener à
bien.

utilisation d’une estimation de f : Arrivé au point (~rb(T ′);T ′), on effectue
en premier lieu une estimation de f(~rb(T ′); ~C∗;T ′), où ~C∗ est une vitesse
aléatoire pour une partenaire de collision. Cette estimation nous renseigne
sur la fréquence de collision et le terme source, et on en déduit des valeurs
pour Pnul et Pdiff . L’estimation de f(~rb(T ′); ~C∗;T ′) peut éventuellement être
réutilisée dans l’échantillonnage de Ñt ou de S̃is.

Dans le cas étudié d’un nuage de gaz pulsant dans un piège harmonique, le
fait que l’on soit dans le noyau de l’opérateur de collision facilite les choses. En

2. À moins que le calcul de la somme de ces 2 termes ne soit de base plus simple que le calcul
séparé de ces termes. Des propositions à ce sujet sont données page 258.
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effet, il en résulte que sis(~r;~c; t) = νt(~r;~c; t)f(~r;~c; t). Cela rend l’approximation
ou l’estimation simultanée de νt et sis plus facile — on pourrait s’attendre à ce
que dans d’autres cas le calcul de sis soit particulièrement difficile. Ainsi, dans la
suite de ce chapitre nous justifierons nos choix essentiellement par l’approximation
ou l’estimation de νt ; mais il n’est pas à exclure que dans d’autres situations, les
choix à effectuer soient plus complexes.

6.2.3 Choix algorithmiques
••••Notre premier choix algorithmique sera de prendre la fréquence majorée
de collision ν̂ constante. Ce choix est rendu raisonnable en particulier par le
modèle des particules de Maxwell que nous avons choisi — pour nous faciliter le
montage de la simulation justement —, qui fait que la fréquence de collision d’une
particule est directement proportionnelle à la densité de particules en sa position
(de l’espace ordinaire). Comme cette densité est majorée, la fréquence de collision
l’est aussi ; nous choisirons ν̂ comme égale au maximum de la fréquence de collision,
calculable à la main, et valant ν̂ = κmax(η) = κ η

(
~r = ~0; sin(2(ωt+ φ0)) = −1

)
=

nκω3

(2π)3/2 cqm min3 ' 1,168 776 Hz.

••••Si on calcule complètement la somme (ν̂−Ñt 1)F̃2+S̃is, ou qu’on choisit entre
les 2 termes la composant par un test de pile ou face équilibré, la détermination
des probabilités Pnul et Pdiff n’est pas une question. Ces deux techniques seront
d’ailleurs testées.

Si on utilise une approximation de f , il faudra a priori en tirer une
approximation de νt et de sis. Dans notre cas d’étude, le modèle de collisionneurs
de Maxwell et l’annulation de l’opérateur de collision simplifient grandement les
choses : νt(~r;~c; t) = κ η(~r;~c; t), et par ailleurs sis(~r;~c; t) = νt(~r;~c; t)f(~r;~c; t).

Sans nous intéresser au terme source sis, nous choisissons Pnul = ξ(Pnul B), où :

— Pnul B = 1 − νt≈(~r;~c;t)
ν̂

= 1 − κ η≈(~r;t)
ν̂

, où η≈ est une approximation de η que
nous détaillerons bientôt.

— ξ est une fonction à valeurs dans [0; 1], de sorte à assurer qu’on puisse utiliser
Pnul comme une probabilité. On prendra :

ξ :





R → [0; 1]
PB 7→ PB si PB ∈ [0; 1]
PB 7→ 1

2

( 1
2PB − 1 + 1

)
si PB /∈ ]0; 1[

(6.12)

, tracée en figure 6.2. Cette fonction respecte en particulier la propriété :
∀PB ∈ R, ξ(1− PB) = 1− ξ(PB).

Ensuite Pdiff est calculée comme 1− Pnul .
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Figure 6.2 – Graphe de la fonction ξ

Si on effectue une première estimation F̃ de f , alors on peut donner
une estimation de la fréquence de collision :

Ñt(~r;~c; t) = κ

4π ×
F̃ (~r; ~C∗; t)

p ~C∗(~C∗)p~U ′(~U ′)
(6.13)

On peut alors choisir Pnul B = 1− Ñt(~r;~c;t)
ν̂

, puis Pnul = ξ(Pnul B) comme en (6.12).

••••Restent les choix de ~C∗ et de ~U ′, pour l’estimation de νt et sis.
S’il est possible que l’on doive calculer à la fois Ñt 1 et S̃is, il faut d’abord savoir

si on choisit les mêmes ~C∗ et ~U ′ pour le calcul de Ñt 1 et de S̃is. On est dans cette
situation si on calcule extensivement la somme (ν̂ − Ñt 1)F̃2 + S̃is, ou si on effectue
un choix de Bernoulli entre ses 2 termes basé sur le calcul à l’avance de Ñt 1.

En considérant que l’on se basera sur les formulations statistiques (6.10) ou
(6.11), on peut lister dès maintenant les 6 techniques d’estimation de (ν̂−νt)f + sis
dont nous envisageons la construction — sans compter les divers choix possibles
pour p ~C∗ et p~U ′ :

1. calcul extensif de (ν̂ − Ñt 1)F̃2 + S̃is, en utilisant les mêmes ~C∗ et ~U ′ dans le
calcul de Ñt 1 et de S̃is

2. calcul extensif de (ν̂ − Ñt 1)F̃2 + S̃is, en utilisant 2 couples (~C∗; ~U ′) différents
pour le calcul de Ñt 1 et de S̃is

3. choix de pile ou face entre les termes (ν̂ − Ñt 1)F̃2 et S̃is

4. choix de Bernoulli entre les termes (ν̂ − Ñt 1)F̃2 et S̃is. Les probabilités de
choisir l’un ou l’autre terme sont déterminées suivant une approximation de
νt, elle-même basée sur une approximation de f .

5. choix de Bernoulli entre les termes (ν̂ − Ñt 1)F̃2 et S̃is. Les probabilités de
choisir l’un ou l’autre terme sont déterminées en calculant d’office Ñt 1. Si
on choisit finalement le terme S̃is, il est alors calculé en réutilisant ~C∗ et ~U ′
tirées pour le calcul de Ñt 1.
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6. choix de Bernoulli entre les termes (ν̂ − Ñt 1)F̃2 et S̃is. Les probabilités de
choisir l’un ou l’autre terme sont déterminées en calculant d’office Ñt 1. Si on
choisit finalement le terme S̃is, il est calculé totalement indépendamment à
Ñt 1.

Les algorithmes qui découlent de ces différents choix sont détaillés respectivement
en 6.1, 6.2, 6.3, 6.4, 6.5, et 6.6.

Entrées : Le point (~r;~c; t) où on veut estimer f(~r;~c; t)
Sorties : Une estimation ponctuelle de f(~r;~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr/ν̂;
3 si t′ 6 tinit alors retourner f(~rb(tinit);~cb(tinit); tinit);
4 sinon
5 échantillonner ~C∗ : on obtient ~c∗;
6 échantillonner ~U ′ : on obtient ~u ′;

7 ~c ′ ← ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′;

8 ~c ′∗ ←
~c+ ~c∗

2 − ‖~c− ~c∗‖2 ~u ′;
9 estimer f(~rb(t′);~c∗; t′) grâce à cet algorithme : on obtient F̃1(~rb(t′);~c∗; t′);

10 estimer f(~rb(t′);~cb(t′); t′) grâce à cet algorithme : on obtient
F̃2(~rb(t′);~cb(t′); t′);

11 estimer f(~rb(t′);~c ′; t′) grâce à cet algorithme : on obtient F̃1(~rb(t′);~c ′; t′);
12 estimer f(~rb(t′);~c ′∗; t′) grâce à cet algorithme : on obtient F̃2(~rb(t′);~c ′∗; t′);

13 retourner
((

1− κ F̃1(~rb(t′);~c∗; t′)
4πν̂ p ~C∗(~c∗)p~U ′(~u ′)

)
F̃2(~rb(t′);~cb(t′); t′) +

κ F̃1(~rb(t′);~c ′; t′)F̃2(~rb(t′);~c ′∗; t′)
4πν̂ p ~C∗(~c∗)p~U ′(~u ′)

)
;

Algorithme 6.1 : Algorithme servant à estimer
f(~r;~c; t), valide dans les conditions décrites à la sec-

tion 6.1. f(~r;~c; t) est supposée connue à un temps tinit.

•••L’algorithme 6.1 est à variance nulle 3 dans notre cas d’étude. L’algorithme
6.5 est de même à variance nulle, tant que Pnul B reste dans l’intervalle [0; 1].

Ceci est une conséquence de l’annulation de l’opérateur de collision. En tout
point (~r; t) de l’espace-temps, la distribution des vitesses des molécules est max-
wellienne. Une propriété de cette distribution est la balance détaillée : pour tout

3. Le concept de variance nulle est, dans ce manuscrit, introduit au chapitre 1.3.2.
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Entrées : Le point (~r;~c; t) où on veut estimer f(~r;~c; t)
Sorties : Une estimation ponctuelle de f(~r;~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr/ν̂;
3 si t′ 6 tinit alors retourner f(~rb(tinit);~cb(tinit); tinit);
4 sinon
5 échantillonner ~C∗1 : on obtient ~c∗1;
6 échantillonner ~U ′1 : on obtient ~u ′1;
7 estimer f(~rb(t′);~c∗1; t′) grâce à cet algorithme : on obtient

F̃1(~rb(t′);~c∗1; t′);
8 estimer f(~rb(t′);~cb(t′); t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~cb(t′); t′);
9 échantillonner ~C∗2 : on obtient ~c∗2;

10 échantillonner ~U ′2 : on obtient ~u ′2;

11 ~c ′ ← ~c+ ~c∗2
2 + ‖~c− ~c∗2‖2 ~u ′2;

12 ~c ′∗ ←
~c+ ~c∗2

2 − ‖~c− ~c∗2‖2 ~u ′2;
13 estimer f(~rb(t′);~c ′; t′) grâce à cet algorithme : on obtient F̃1(~rb(t′);~c ′; t′);
14 estimer f(~rb(t′);~c ′∗; t′) grâce à cet algorithme : on obtient F̃2(~rb(t′);~c ′∗; t′);

15 retourner
((

1− κ F̃1(~rb(t′);~c∗1; t′)
4πν̂ p ~C∗1(~c∗1)p~U ′1(~u ′1)

)
F̃2(~rb(t′);~cb(t′); t′) +

κ F̃1(~rb(t′);~c ′; t′)F̃2(~rb(t′);~c ′∗; t′)
4πν̂ p ~C∗2(~c∗2)p~U ′2(~u ′2)

)
;

Algorithme 6.2 : Algorithme servant à estimer
f(~r;~c; t), valide dans les conditions décrites à la sec-

tion 6.1. f(~r;~c; t) est supposée connue à un temps tinit.

(~r;~c; t;~c∗; ~u ′) ∈ (Er × Ec × Et × Ec × Eu), on a :

f(~r;~c; t)f(~r;~c∗; t) = f(~r;~c ′; t)f(~r;~c ′∗; t) (6.14)

Injectée dans la traduction statistique de l’algorithme 6.1, la balance détaillée
amène à (ν̂ − Ñt 1)F̃2 + S̃is = ν̂F̃2, de façon récursive dans les arbres d’estimations.
C’est aussi le cas avec l’algorithme 6.5, tant que Pnul = Pnul B — tant que Pnul B ∈
[0; 1], étant donné notre choix de ξ.

•••Comme au chapitre précédent, on tire ~C∗ selon une maxwellienne et ~U ′ de
façon isotrope. Il nous faut donc décider d’une vitesse moyenne et d’une température
pour mettre en place complètement le tirage de ~C∗.
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Entrées : Le point (~r;~c; t) où on veut estimer f(~r;~c; t)
Sorties : Une estimation ponctuelle de f(~r;~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr/ν̂;
3 si t′ 6 tinit alors retourner f(~rb(tinit);~cb(tinit); tinit);
4 sinon
5 échantillonner ~C∗ : on obtient ~c∗;
6 échantillonner ~U ′ : on obtient ~u ′;
7 échantillonner R de loi uniforme standard : on obtient r;
8 si r < 1/2 alors
9 estimer f(~rb(t′);~c∗; t′) grâce à cet algorithme : on obtient

F̃1(~rb(t′);~c∗; t′);
10 estimer f(~rb(t′);~cb(t′); t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~cb(t′); t′);

11 retourner
(

2
(

1− κ F̃1(~rb(t′);~c∗; t′)
4πν̂ p ~C∗(~c∗)p~U ′(~u ′)

)
F̃2(~rb(t′);~cb(t′); t′)

)
;

12 sinon

13 ~c ′ ← ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′;

14 ~c ′∗ ←
~c+ ~c∗

2 − ‖~c− ~c∗‖2 ~u ′;
15 estimer f(~rb(t′);~c ′; t′) grâce à cet algorithme : on obtient

F̃1(~rb(t′);~c ′; t′);
16 estimer f(~rb(t′);~c ′∗; t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~c ′∗; t′);

17 retourner
(

2× κ F̃1(~rb(t′);~c ′; t′)F̃2(~rb(t′);~c ′∗; t′)
4πν̂ p ~C∗(~c∗)p~U ′(~u ′)

)
;

Algorithme 6.3 : Algorithme servant à estimer
f(~r;~c; t), valide dans les conditions décrites à la sec-

tion 6.1. f(~r;~c; t) est supposée connue à un temps tinit.

Si on choisit la vitesse moyenne et la température exactes du cas d’étude, les
algorithmes 6.1, 6.2, 6.5 et 6.6 sont à variance nulle. Là-encore, c’est en partie lié à
ce que la distribution f dans notre cas d’étude est maxwellienne en tout point. Si
on choisit de plus la densité exacte pour η≈, l’algorithme 6.4 aussi est à variance
nulle.

•••Afin d’avoir des résultats intéressants, on choisit de paramétrer la max-
wellienne de tirage de ~C∗ avec une vitesse et une température différentes de leur
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6.2. Solution intégrale partielle

Entrées : Le point (~r;~c; t) où on veut estimer f(~r;~c; t)
Sorties : Une estimation ponctuelle de f(~r;~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr/ν̂;
3 si t′ 6 tinit alors retourner f(~rb(tinit);~cb(tinit); tinit);
4 sinon
5 νt

≈ ← κ η≈(~rb(t′);~cb(t′); t′);
6 Pnul B ← 1− νt≈/ν̂;
7 Pnul ← ξ(Pnul B);
8 échantillonner ~C∗ : on obtient ~c∗;
9 échantillonner ~U ′ : on obtient ~u ′;

10 échantillonner R de loi uniforme standard : on obtient r;
11 si r < Pnul alors
12 estimer f(~rb(t′);~c∗; t′) grâce à cet algorithme : on obtient

F̃1(~rb(t′);~c∗; t′);
13 estimer f(~rb(t′);~cb(t′); t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~cb(t′); t′);

14 retourner
(

1
Pnul

(
1− κ F̃1(~rb(t′);~c∗; t′)

4πν̂ p ~C∗(~c∗)p~U ′(~u ′)

)
F̃2(~rb(t′);~cb(t′); t′)

)
;

15 sinon

16 ~c ′ ← ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′;

17 ~c ′∗ ←
~c+ ~c∗

2 − ‖~c− ~c∗‖2 ~u ′;
18 estimer f(~rb(t′);~c ′; t′) grâce à cet algorithme : on obtient

F̃1(~rb(t′);~c ′; t′);
19 estimer f(~rb(t′);~c ′∗; t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~c ′∗; t′);

20 retourner
(

1
1− Pnul

× κ F̃1(~rb(t′);~c ′; t′)F̃2(~rb(t′);~c ′∗; t′)
4πν̂ p ~C∗(~c∗)p~U ′(~u ′)

)
;

Algorithme 6.4 : Algorithme servant à estimer
f(~r;~c; t), valide dans les conditions décrites à la sec-

tion 6.1. f(~r;~c; t) est supposée connue à un temps tinit.
η≈ est une approximation connue à l’avance de la densité η.

expressions exactes (connues). On fait le choix suivant : on prélève les paramètres
macroscopiques (vitesse moyenne, température et densité) depuis une situation
physique où la masse et l’énergie totale sont les mêmes, mais où il n’ y a pas
d’oscillations.
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Entrées : Le point (~r;~c; t) où on veut estimer f(~r;~c; t)
Sorties : Une estimation ponctuelle de f(~r;~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr/ν̂;
3 si t′ 6 tinit alors retourner f(~rb(tinit);~cb(tinit); tinit);
4 sinon
5 échantillonner ~C∗ : on obtient ~c∗;
6 échantillonner ~U ′ : on obtient ~u ′;
7 estimer f(~rb(t′);~c∗; t′) grâce à cet algorithme : on obtient F̃1(~rb(t′);~c∗; t′);

8 Ñt 1 ←
κ

4π ×
F̃1(~rb(t′);~c∗; t′)
p ~C∗(~c∗)p~U ′(~u ′)

;

9 Pnul B ← 1− Ñt 1/ν̂;
10 Pnul ← ξ(Pnul B);
11 échantillonner R de loi uniforme standard : on obtient r;
12 si r < Pnul alors
13 estimer f(~rb(t′);~cb(t′); t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~cb(t′); t′);

14 retourner
(
Pnul B

Pnul
F̃2(~rb(t′);~cb(t′); t′)

)
;

15 sinon

16 ~c ′ ← ~c+ ~c∗
2 + ‖~c− ~c∗‖2 ~u ′;

17 ~c ′∗ ←
~c+ ~c∗

2 − ‖~c− ~c∗‖2 ~u ′;
18 estimer f(~rb(t′);~c ′; t′) grâce à cet algorithme : on obtient

F̃1(~rb(t′);~c ′; t′);
19 estimer f(~rb(t′);~c ′∗; t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~c ′∗; t′);

20 retourner
(

1
1− Pnul

× κ F̃1(~rb(t′);~c ′; t′)F̃2(~rb(t′);~c ′∗; t′)
4πν̂ p ~C∗(~c∗)p~U ′(~u ′)

)
;

Algorithme 6.5 : Algorithme servant à estimer
f(~r;~c; t), valide dans les conditions décrites à la sec-

tion 6.1. f(~r;~c; t) est supposée connue à un temps tinit.

Dans les choix que nous avons faits, la quantité de matière totale vaut n = 1 mol,
et l’énergie totale vaut :

ETot = 3m cqm max
2 + cqm min

2

2 (6.15)
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6.2. Solution intégrale partielle

Entrées : Le point (~r;~c; t) où on veut estimer f(~r;~c; t)
Sorties : Une estimation ponctuelle de f(~r;~c; t)

1 échantillonner Tr selon une loi exponentielle unité : on obtient tr;
2 t′ ← t− tr/ν̂;
3 si t′ 6 tinit alors retourner f(~rb(tinit);~cb(tinit); tinit);
4 sinon
5 échantillonner ~C∗1 : on obtient ~c∗1;
6 échantillonner ~U ′1 : on obtient ~u ′1;
7 estimer f(~rb(t′);~c∗; t′) grâce à cet algorithme : on obtient F̃1(~rb(t′);~c∗1; t′);

8 Ñt 1 ←
κ

4π ×
F̃1(~rb(t′);~c∗1; t′)
p ~C∗1(~c∗1)p~U ′1(~u ′1) ;

9 Pnul B ← 1− Ñt 1/ν̂;
10 Pnul ← ξ(Pnul B);
11 échantillonner R de loi uniforme standard : on obtient r;
12 si r < Pnul alors
13 estimer f(~rb(t′);~cb(t′); t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~cb(t′); t′);

14 retourner
(
Pnul B

Pnul
F̃2(~rb(t′);~cb(t′); t′)

)
;

15 sinon
16 échantillonner ~C∗2 : on obtient ~c∗2;
17 échantillonner ~U ′2 : on obtient ~u ′2;

18 ~c ′ ← ~c+ ~c∗2
2 + ‖~c− ~c∗2‖2 ~u ′2;

19 ~c ′∗ ←
~c+ ~c∗2

2 − ‖~c− ~c∗2‖2 ~u ′2;
20 estimer f(~rb(t′);~c ′; t′) grâce à cet algorithme : on obtient

F̃1(~rb(t′);~c ′; t′);
21 estimer f(~rb(t′);~c ′∗; t′) grâce à cet algorithme : on obtient

F̃2(~rb(t′);~c ′∗; t′);

22 retourner
(

1
1− Pnul

× κ F̃1(~rb(t′);~c ′; t′)F̃2(~rb(t′);~c ′∗; t′)
4πν̂ p ~C∗2(~c∗2)p~U ′2(~u ′2)

)
;

Algorithme 6.6 : Algorithme servant à estimer
f(~r;~c; t), valide dans les conditions décrites à la sec-

tion 6.1. f(~r;~c; t) est supposée connue à un temps tinit.

où m est la masse totale contenue dans le système. Cela représente 6 fois l’énergie
cinétique moyenne sur chaque axe. Le facteur 6 remplace ici l’habituel facteur
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Chapitre 6. Résultats obtenus sur un nuage de gaz oscillant

3, car aux degrés de liberté stockant de l’énergie que sont les coordonnées de la
vitesse s’ajoutent les coordonnées de la position, qui représente de l’énergie à cause
du champ de force extérieur.

Si la quantité de matière, la masse, le moment cinétique, et l’énergie sont
les mêmes que dans la situation d’étude, ainsi que le champ de force de rappel
vers le centre, mais qu’il n’y a pas d’oscillations, les paramètres macroscopiques
s’expriment :

η(~r) = nω3

π3/2

(
cqm max

2 + cqm min
2
)−3/2

exp
(

− ω2~r 2

cqm max2 + cqm min2

)
(6.16a)

~v(~r) = ~0 (6.16b)

cqma =
√

1
2(cqm max2 + cqm min2) (6.16c)

••••Les algorithmes qui résultent finalement de toutes ces considérations, et qui
ont été utilisés dans la campagne de tests qui suit, sont présentés dans l’annexe
D.4.

6.3 Résultats obtenus
••••La campagne de tests a été menée sur les 6 algorithmes proposés : 6.1, 6.2,
6.3, 6.4, 6.5, et 6.6. Ceux-ci sont testés dans le calcul de 3 grandeurs :
— f(~r;~c; t) en des points fixés de l’espace des phases. 3 points (~r;~c) de l’es-

pace des phases sont choisis, auxquels nous traçons des profils de f(~r;~c; t)
selon le temps t. Nous posons arbitrairement rb1 = 0,2 m, puis les 3 points
sont : (rb1 ~ex; rb1ω ~ex), (rb1 ~ex; rb1ω ~ey), et (rb1 ~ex;−rb1ω ~ex), où ~ex et ~ey sont
2 vecteurs unitaires suivant les axes du repère.
En le 2e point f est constante. En effet, dans la situation précise de piège
harmonique qui nous sert de cas test, f(~r;~c; t) est stationnaire ssi ~r ⊥ ~c et
‖~c‖ = ω ‖~r‖.

— η(~r; t) en des points fixés de l’espace usuel. 3 points ~r de l’espace usuel sont
choisis, auxquels nous traçons des profils de η(~r; t) selon le temps t : ~0, rb2 ~ex,
et 2 rb2 ~ex, avec cette fois-ci rb2 = 0,25 m.
L’intégration finale de f sur Ec est faite en choisissant une vitesse selon un
profil maxwellien, avec la même vitesse moyenne et la même température
que le tirage de ~C∗ dans les algorithmes de calcul récursif de f .

— la fraction du total des particules dont la distance au centre dépasse des
seuils fixés r0. 3 seuils sont choisis, pour lesquels nous traçons le profil de la
fraction selon le temps : rb1 , 2 rb1 , et 3 rb1 — avec le même rb1 = 0,2 m qu’à
l’instant.
L’intégration finale de f sur Ec est faite de la même manière que lors des
calculs de η. L’intégration sur Er \B(Er;~0; r0) utilise une loi de probabilité
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similaire à celle exhibée en (5.16) : ~Rf = Rf
~Uf , où ~Uf ∈ S (Er;~0; 1) et est

de loi isotrope, et :




pRf (rf ) = r0(r0
2 − 2 m2)

(
(r02 − 2 m2)(rf − r0) + r0

)2 si r0 > 2 m

pRf (rf ) = 2 m
(2 m + rf − r0)2 si r0 6 2

(6.17)

Les résultats en sont présentés en figures 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, et 6.9.

••••La campagne de tests révèle finalement peu de comportements que l’on ne
suspectait pas déjà.
— L’algorithme 6.1 est à variance nulle. Les algorithmes 6.2 et 6.5 exhibent eux

aussi une variance très faible.
Dans le cas de l’algorithme 6.2, cela est probablement dû à un mécanisme
similaire à celui explicité dans le chapitre 5.4. En effet, à chaque nœud d’un
arbre d’estimations généré par cet algorithme, non seulement on multiplie
ensemble des estimateurs (la variance relative augmente) mais ensuite on les
somme (la variance relative diminue).
Ce mécanisme a par contre le même défaut, sur la récursivité, que celui évoqué
au chapitre 5.5 : comme chaque nœud de l’arbre d’estimations multiplie sa
branche par 4, la récursivité atteint vite de très hauts niveaux (cf. figure 6.3).
C’est d’ailleurs pour cela que les algorithmes 6.1 et 6.2 n’ont été testés que
jusqu’à t = 4 s — contrairement aux autres, qui ont été testés jusqu’à t = 5 s.
À t = 4 s, la récursivité (définie comme le nombre de tirages de T ′ dans un
arbre d’estimations) moyenne atteint déjà 106. En considérant :
— tous les tirages aléatoires effectués à chaque nœud d’un arbre — le

temps de recul T ′, mais aussi la vitesse ~C∗ et la direction ~U ′ —, soit 11
tirages uniformes standards pour l’algorithme 6.2 si T ′ > tinit (contre 7
tirages uniformes standards pour l’algorithme 6.1) (voir annexe D.4),

— qu’on effectue au total 104 réalisations,
il faut effectuer 1011 tirages uniformes standards, pour donner une estimation
à t = 4 s en utilisant l’algorithme 6.2. Cela représente, encore à l’heure
actuelle, un coût computationnel élevé (surtout si c’est pour calculer 1 seul
point !).

— L’algorithme 6.3 est celui dont la variance explose le plus vite. Ce n’est pas
surprenant, car parmi les algorithmes testés effectuant un choix de Bernoulli
entre l’extinction et le terme source, c’est celui qui effectue ce choix de la
façon la plus arbitraire. L’algorithme 6.4 fonctionne mieux, en utilisant de
l’information préalable sur la distribution.
Il est intéressant de noter que l’algorithme 6.6 obtient des résultats similaires
à l’algorithme 6.4, apparemment sans utiliser d’information a priori sur
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Figure 6.3 – Évolution de f selon le temps en 3 points fixes de l’espace des
phases ; rb1 = 0,2 m. Les solutions symboliques sont données en trait plein,
et des résultats d’algorithmes Monte-Carlo sont donnés en points séparés
avec barres d’erreur. En chaque point, 104 réalisations ont été utilisées.
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Figure 6.4 – Évolution de f selon le temps en 3 points fixes de l’espace des
phases ; rb1 = 0,2 m. Les solutions symboliques sont données en trait plein,
et des résultats d’algorithmes Monte-Carlo sont donnés en points séparés
avec barres d’erreur. En chaque point, 104 réalisations ont été utilisées.
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(c) Résultats de l’algorithme 6.6
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Figure 6.5 – Évolution de f selon le temps en 3 points fixes de l’espace des
phases ; rb1 = 0,2 m. Les solutions symboliques sont données en trait plein,
et des résultats d’algorithmes Monte-Carlo sont donnés en points séparés
avec barres d’erreur. En chaque point, 104 réalisations ont été utilisées.
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(b) Résultats de l’algorithme 6.3

Figure 6.6 – Évolution de η selon le temps en 3 points fixes de l’espace ;
rb2 = 0,25 m. Les solutions symboliques sont données en trait plein, et
des résultats d’algorithmes Monte-Carlo sont donnés en points séparés
avec barres d’erreur. En chaque point, 104 réalisations ont été utilisées.
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Figure 6.7 – Évolution de η selon le temps en 3 points fixes de l’espace ;
rb2 = 0,25 m. Les solutions symboliques sont données en trait plein, et
des résultats d’algorithmes Monte-Carlo sont donnés en points séparés
avec barres d’erreur. En chaque point, 104 réalisations ont été utilisées.
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Figure 6.8 – Évolution selon le temps de fractions des particules
dont la distance au centre dépasse 3 seuils fixes ; rb1 = 0,2 m.

Les solutions symboliques sont données en trait plein, et des résul-
tats d’algorithmes Monte-Carlo sont donnés en points séparés avec
barres d’erreur. En chaque point, 104 réalisations ont été utilisées.
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Figure 6.9 – Évolution selon le temps de fractions des particules
dont la distance au centre dépasse 3 seuils fixes ; rb1 = 0,2 m.

Les solutions symboliques sont données en trait plein, et des résul-
tats d’algorithmes Monte-Carlo sont donnés en points séparés avec
barres d’erreur. En chaque point, 104 réalisations ont été utilisées.
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la distribution. En fait, il dispose bien d’une information préalable sur la
distribution : la vitesse moyenne et la température sont approximativement
connues, car elles sont utilisées dans le tirage de ~C∗. C’est la connaissance de
la densité dont l’algorithme 6.6 arrive à se dispenser ; au prix d’une récursivité
légèrement augmentée.

— On observe une difficulté à calculer les fractions de particules de grande
énergie. Elle n’est pas rédhibitoire, mais plus marquée que ce qu’on avait
observé avec le mode BKW.
Cela est peut-être lié à ce que cette fois-ci, nous nous sommes concentrés sur
des événements rares en position, et non en vitesse comme au chapitre précé-
dent. On sait que la distribution des particules, dans des zones peu peuplées
de l’espace des phases, est très fortement influencée par la distribution dans
les zones « majoritairement » peuplées de cet espace ; et que les particules
de haute énergie (relativement aux autres) sont issues des zones fortement
peuplées, avant de subir une courte et peu probable succession de collisions
faisant augmenter leur énergie. Un propos de l’étude du mode BKW était
d’ailleurs de comprendre ce mécanisme.
La configuration en confinement harmonique fait que les particules de haute
énergie potentielle orbitent loin du centre attracteur, et de la majorité de la
masse du gaz. Elles collisionnent donc entre elles de manière privilégiée, ce
qui n’est nullement le cas dans le mode BKW. Si on ajoute que dans les 2
cas, l’information fournie aux algorithmes (sous forme de lois de tirage) est
moins bonne dans les zones dépeuplées de l’espace des phases, cela donne
un élément d’explication à la hausse de variance de notre estimateur de f ,
dans les zones de haute énergie potentielle de la configuration de confinement
harmonique.

— Les algorithmes 6.1 et 6.5, où ~C∗ et ~U ′ sont identiques dans le calcul de Ñt 1
et S̃is, exhibent une variance largement plus faible que leurs équivalents 6.2
et 6.6, où ~C∗ et ~U ′ sont tirées 2 fois.
Dans cet exemple on arrive à un résultat caricatural (variance nulle ou presque)
à cause de la situation physique simulée. Comme expliqué précédemment,
ceci est permis par la capacité de ces premiers algorithmes à profiter de la
balance détaillée. Si la distribution des particules n’est plus maxwellienne
en tout point, ils ne seront plus à variance nulle (ou presque), mais on peut
penser qu’ils resteront les plus efficaces si la distribution des particules est
proche d’une maxwellienne (c’est-à-dire proche de l’équilibre).
Du point de vue numérique, utiliser le même tirage du couple (~C∗; ~U ′) dans le
calcul de Ñt 1 et de S̃is, quand les 2 doivent être calculés, relève de l’utilisation
de variables antithétiques (des variables aléatoires de covariance négative,
comme annoncé au chapitre 1.3.2 et détaillé dans [54]). Même dans un calcul
sur une situation de hors équilibre lointain, utiliser 2 tirages indépendants du
couple (~C∗; ~U ′) dans les calculs Ñt 1 et de S̃is paraît ainsi n’avoir, en première
approche, aucun intérêt.
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Ce manuscrit a commencé par la revisite en détails de 2 idées :

— les algorithmes à collisions nulles, au chapitre 2,
— les propositions de Jérémi Dauchet sur le calcul par méthode de Monte-Carlo

d’expressions non-linéaires d’intégrales, au chapitre 3.

Si nous avons fait leur révision avec autant de détails que dans ces 2 premiers
chapitres, c’est parce que nous réutilisons ces 2 approches dans la suite du manuscrit.
En fait, leur combinaison, dans le but d’une utilisation en cinétique des gaz, est
constitutive de l’originalité de notre propos.

Pour construire, depuis ces 2 idées, une approche mathématique et numérique
pour la cinétique des gaz, nous avons travaillé sur un cas simplifié. Ce cas est celui
de la résolution des équations différentielles ordinaires scalaires d’ordre 1, présenté
au chapitre 4. Nous l’avons imaginé comme une simplification de l’équation de
Boltzmann, dont on aurait en particulier retiré l’espace des phases. Il nous permet
de mettre en place toute la théorie utilisée ensuite ; les chapitres 5 et 6, qui montrent
l’application de l’approche originale dans des problèmes de cinétique des gaz, ne
font apparaître que de la mise en œuvre de ce qui est développé dans le chapitre 4.

Ce travail s’est fait sans hypothèse restrictive et sans accroc, même si
nous nous sommes basés, tout au long du manuscrit, sur un formalisme mathé-
matique détaillé pour ne pas commettre d’erreur. Nous avons fait le pari que
des images physiques, permettant de ré-interpréter les développements mathéma-
tiques, pourraient être construites une fois que ces développements seraient en
place ; et globalement, ce pari a réussi. Rien n’est venu invalider ou entraver notre
construction d’un estimateur de la fonction de distribution des molécules, si ce n’est
éventuellement l’apparition de variances d’estimateurs infinies, que nous avons
étudiée aux chapitres 1.5.3, 4.3, 5.3 et 5.4.

En dépit de l’absence de spécificité — orientée vers la cinétique des gaz, parmi
les différents phénomènes de transport descriptibles par les équations de Boltzmann
— de l’approche que nous avons mis en place, celle-ci exhibe quelques particularités
intéressantes du point de vue pratique, par exemple :

— Aucun maillage, de l’espace ou du temps, n’est utilisé pour résoudre numéri-
quement l’équation de Boltzmann.
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— On peut réaliser du calcul sonde, c’est-à-dire calculer la fonction de distribu-
tion en un point sans la calculer dans le reste de l’espace (ou du temps). À
notre connaissance ceci constitue une nouveauté en cinétique des gaz, et plus
généralement en mécanique des fluides.

— Calculer des événements rares, c’est-à-dire calculer la fonction de distribution
en des lieux où elle est très faible, n’est pas spécialement difficile.

Ces inhabituelles propriétés sont apparues spontanément au fur et à mesure
de la mise en place des algorithmes de calcul jusqu’aux 2 derniers chapitres, et
sans lien avec des spécificités des exemples physiques alors à l’étude. Ainsi, bien
que ces exemples soient académiques les conséquences pratiques observées sont
intéressantes de façon générale.

••••Néanmoins, nous n’avons fait que défricher le sujet, et ce qui reste intéressant
à explorer nous paraît vaste. Dans ce chapitre, nous listons quelques pistes pour
continuer ce travail, qui nous paraissent prometteuses à court terme.

Premièrement, l’approche développée permet de réaliser des calculs en régime
stationnaire.

Tous les cas physiques illustrant la méthode développée, et montrés dans
ce manuscrit jusqu’ici, sont en régime instationnaire. Nous montrons dans ce
chapitre un exemple de calcul dans un exemple de cinétique des gaz en régime
stationnaire. Cet exemple sera toutefois détaillé dans la section consacrée à la 2e
piste d’exploration, pour faire d’une pierre deux coups.

Deuxièmement, dans nos cas physiques d’illustration il n’y avait jamais de
parois aux systèmes.

Les expressions intégrales de la fonction de distribution, qui constituent l’élément
clé de l’approche statistique pour la cinétique des gaz exposée dans ce manuscrit, ne
font apparaître la géométrie que par des bornes d’intégration. La prise en compte
de toutes sortes de géométries, éventuellement complexes, pourra être réalisée
facilement, grâce aux outils issus de la synthèse d’image.

Troisièmement, nous n’avons pas essayé de travailler sur l’expression statis-
tique de l’opérateur de collision de Boltzmann.

D’une part, nous nous sommes arrêtés, par simplicité, aux modèles de section
efficaces de Maxwell. Même si nous savons que la technique numérique que nous
avons développée ne se limite pas à ceux-ci, il serait bon d’en faire un exemple.

D’autre part, l’augmentation de la variance de nos estimateurs de la fonction
de distribution avec le temps physique simulé, qui constitue le principal handicap
à une utilisation directe de ce travail en calcul numérique appliqué, ne pourra être
surmontée que grâce à un travail de fond sur la façon dont nous échantillonnons les
termes de collision (extinction et terme source). Nous proposons dans ce chapitre
plusieurs pistes de travail.
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1 Calcul en régime permanent
••••Les cas académiques que nous avons traités, aux chapitres 5 et 6 sont en
régime instationnaire. La fixation de la distribution du gaz s’y fait par une condition
initiale.

D’un point de vue formel, le traitement d’une situation stationnaire, avec des
entrées et sorties de matière et d’énergie, devrait être relativement semblable. Dans
l’expression (6.9), la condition aux limites n’est plus prise en compte par :

f(~r;~c; t) =
∫ t

−∞
dt′ ν̂

(
~rb(t′);~cb(t′); t′

)
exp

(
−
∫ t

t′
dt′′ ν̂

(
~rb(t′′);~cb(t′′); t′′

))
×


H(t′ 6 tinit)f

(
~rb(tinit);~cb(tinit); tinit

)
+ H(t′ > tinit)× · · · (1)

mais par l’expression plus générale :

f(~r;~c; t) =
∫ t

−∞
dt′ ν̂

(
~rb(t′);~cb(t′); t′

)
exp

(
−
∫ t

t′
dt′′ ν̂

(
~rb(t′′);~cb(t′′); t′′

))
×


H(t′ 6 tm)f

(
~rb(tm);~cb(tm); tm

)
+ H(t′ > tm)× · · · (2)

où tm = max{t′ ∈] −∞; t], (~rb(t′);~cb(t′); t′) ∈ limites} est l’instant de la dernière
intersection de la trajectoire balistique remontée avec une limite. Cette limite peut
être un instant initial, une paroi, ou une frontière autre qu’une paroi.

••••S’il n’y a plus de condition initiale, plusieurs points d’achoppements peuvent
néanmoins apparaître :
— En deçà d’un nombre de Knudsen critique, l’algorithme se met à suivre, en

remontant le temps, un arbre de trajectoires gonflant de façon exponentielle.
Sans condition initiale, on ne peut pas arrêter l’inflation d’un tel arbre à
un temps physique fixe. Selon les tirages aléatoires que l’algorithme fait —
surtout les premiers —, il peut devenir incapable de se terminer (voir [55]
pour des détails).
Nous n’avons pour l’instant pas essayé de comprendre comment remédier à
ce mécanisme.

— Le problème physico-mathématique peut être mal posé. Ceci est une difficulté
courante en cinétique des gaz.
Elle apparaît par exemple quand on veut déterminer un écoulement dans
un circuit fermé. Dans ce cas, si les parois sont étanches, les conditions aux
frontières ne fixent pas la masse totale dans le système. Celle-ci reste donc
un paramètre libre, à moins d’être déterminée par exemple par une condition
initiale.
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Ce n’est pas un problème pour les méthodes de calcul de type DSMC ou BsR,
car elles utilisent toujours une condition initiale. Partant de celle-ci, elles
calculent l’évolution du système jusqu’à ce qu’il ait convergé (au besoin, en
truquant cette évolution de sorte qu’elle se finisse plus rapidement, sur le même
état final). Une telle approche peut sûrement être tentée avec une technique
de calcul inspirée de ce manuscrit, mais elle signifierait l’introduction d’une
hypothèse nouvelle (« Le temps simulé est assez grand pour que le système
ait convergé. »).

2 Gestion des géométries complexes
••••Dans les 2 cas académiques que nous avons traités, il n’y a pas de paroi.

L’existence de parois ne pose pas de problème dans les écritures intégrale (6.9)
ou statistiques (6.10a) et (6.11) de l’équation de Boltzmann. On peut les prendre
en compte comme expliqué précédemment en (2). Le cas échéant, il faut fixer une
relation sur f exprimant le comportement du gaz à la paroi (réflexion spéculaire,
rebond maxwellien, adsorption, émission,. . .), comme montré au chapitre 1.2.3. Il
reste à savoir calculer les intersections entre les trajectoires balistiques et les parois.

•••• Il est important de comprendre que les parois ne rentrent en compte, dans
la méthode de calcul que nous proposons ainsi que dans les formulations mathé-
matiques dont elle est issue, que via ce calcul d’intersections. En particulier, il
n’y a aucun maillage ni aucune quadrature devant être réglé en fonction de la
géométrie de sorte que les calculs fonctionnent. Du point de vue informatique,
l’interaction entre l’algorithme de calcul et la géométrie ne se fait que par une
routine de demande de calcul d’intersection.

Ce dernier point nous permet de profiter du travail de la communauté de la
synthèse d’image. En effet, cette prise en compte de la géométrie uniquement par
le calcul d’intersections se retrouve dans la technique dite de « lancer de rayon »,
utilisée en rendu photo-réaliste. Ainsi, une telle gestion de la géométrie est pour
cette communauté une problématique fondamentale, ayant amené à la construction
d’un savoir-faire étendu, concernant en particulier :
— la réalisation du calcul d’intersections dans toutes sortes de géométries, de

façon générique, quelle que soit leur complexité,
— la transmission au code de calcul proprement dit de la géométrie, décrite

extérieurement,
— la réalisation à faible coût computationnel du calcul d’intersections, dans les

géométries très complexes.
Le lecteur cherchant un exposé extensif de ce savoir-faire pourra se reporter par
exemple à l’ouvrage [92].

Ces outils sont surtout utilisables quand les trajectoires balistiques sont droites :
car en synthèse d’image, les rayons lumineux sont majoritairement droits. En
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cinétique des gaz, s’il y a une force à longue portée les trajectoires peuvent
être courbes ; le calcul d’intersections trajectoires/géométrie devient alors plus
compliqué.

2.1 Exemple
••••Nous avons demandé à MésoStar, une entreprise partenaire, de réaliser
des implémentations de formes algorithmiques semblables à celles présentées au
chapitre 6 dans des exemples géométriques, à l’aide d’EDstar, un environnement
de développement que STARwest (l’équipe qui a encadré ce travail de thèse) a
partiellement monté.

•••La création d’EDstar a fait suite au constat que, lorsqu’on utilise la
méthode de Monte-Carlo pour le calcul du transfert radiatif, la géométrie du
problème n’intervient que via un calcul d’intersections rayon/géométrie — comme
expliqué à l’instant au sujet de la cinétique des gaz. L’équipe STARwest avait alors
déjà eu l’idée d’utiliser les avancées en synthèse d’image (voir [32, 104]). EDstar
était aussi l’occasion de fixer et réutiliser des parties de codes systématiquement
présentes dans tous ses codes de calcul par MMC, comme la parallélisation, dont
l’écriture était un exercice peu utile effectué à chaque nouvelle simulation.

EDstar se présente comme un code source partiel, en C++, où l’utilisateur
doit coder l’algorithme de Monte-Carlo qu’il veut implémenter. La génération de
nombres aléatoires de loi uniforme standard, ainsi que le calcul d’intersections
rayon/géométrie sont fournis sous forme de routines qu’il suffit d’appeler depuis
l’algorithme. Par ailleurs, la parallélisation, la lecture du fichier de géométrie (écrit
séparément), la garantie de l’indépendance des tirages aléatoires entre processus
parallèles, ou le calcul final des moyennes et des écart-types sont déjà en place.
L’utilisateur ne doit détailler qu’un bloc fonction fournissant un vecteur résultat
ponctuel de l’algorithme (ses coordonnées sont des nombres réels) à chaque appel,
appel qui se comprend comme une réalisation de l’algorithme de Monte-Carlo.

Pour mettre en place EDstar, STARwest s’est basé sur le code de synthèse
d’image Physically Based Rendering Techniques (PBRT). Ce code, conçu comme
une base d’entraînement pour des étudiants en synthèse d’image, a pour nous
plusieurs avantages comme base pour EDstar :
— Il est sous licence libre.
— Il est modulaire, et écrit sur une base physique en profitant du caractère

orienté objet du langage C++.
« Orienté objet » signifie qu’on peut définir des structures de données, appelées
classes, avec des fonctions associées, appelées méthodes. Par exemple, pour
représenter des vecteurs de l’espace ordinaire, on dispose dans PBRT de la
classe Vector, qui possède 3 attributs : float x, y, z;. De nombreuses
méthodes lui sont associées, comme par exemple l’addition, la multiplication
par un réel, ou le produit scalaire :
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class Vector {
float x, y, z; // attributs
Vector(float xx , float yy , float zz)

: x(xx), y(yy), z(zz) { } // constructeur
...

Vector operator +( const Vector &v) const {
return Vector(x + v.x, y + v.y, z + v.z);

}
Vector operator *( float f) const { return Vector(f*

x, f*y, f*z); }
...
};
...
inline Vector operator *( float f, const Vector &v) {

return v*f; }
inline float Dot(const Vector &v1 , const Vector &v2)

{ return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z
; } // le produit scalaire

...

Grâce à une telle définition on peut écrire du code comme :
Vector a, b, c;

... // des calculs modifiant a et b
c = a + 0.5 * Dot (a, b) * b;

qui signifie ce qu’il signifie intuitivement.
Des classes sont fournies pour toute sortes d’abstractions : des formes géomé-
triques (disque, cône, maillage de triangles, . . .), des matériaux de surface
(mats de couleur fixe, avec réflectivité interpolée, . . .) . . . Le gain en vitesse
d’écriture et en lisibilité du code est énorme.

— Il est conçu de sorte à ce que des fonctionnalités puissent lui être ajoutées
facilement. Par exemple, il y a un modèle de classe pour les formes (la classe
abstraite Shape) avec une interface standard ; si les formes disponibles par
défaut dans PBRT ne conviennent pas à un utilisateur, il peut en rajouter une
en ajoutant une sous-classe de Shape avec le détail de son implémentation.

— Et surtout, il en existe une documentation complète : [91].

•••2 séries de tests ont été réalisées, chacune dans une géométrie particulière :
un tube tortueux, et une courte longueur de tube munie d’une gorge. Chacune
de ces géométries est décrite par un maillage de triangles ; elles sont montrées en
figure 1.

Dans les 2 géométries, on se place en régime permanent. Le tube relie 2 réservoirs.
De chaque réservoir sort une distribution de particules à l’équilibre, avec une densité
et une température fixes, et une vitesse moyenne nulle. Les 2 réservoirs sont à
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(a) Tube tortueux (b) Tube court avec une gorge

Figure 1 – Géométries maillées, utilisées dans des
tests de prise en compte de géométries complexes.

pressions égales, mais à 2 températures différentes. Hors des connexions avec les
réservoirs, les parois réfléchissent les particules en les thermalisant : la distribution
des particules quittant les parois est maxwellienne en tout point, à vitesse nulle
et température de la paroi, avec une densité réglée de sorte qu’aucun flux de
matière ne traverse la paroi. La température des parois suit un profil affine selon la
coordonnée z, continu avec les températures des réservoirs — les connexions aux
réservoirs suivent bien des plans d’équation z = cste.

Les simulations illustrent le phénomène de transpiration thermique : dans de
telles configurations, la mécanique des fluides à l’échelle macroscopique prévoit que
le débit de matière dans le tube est nul ; lorsqu’on est en régime microfluidique, et
qu’une approche macroscopique n’est plus valable, il en va différemment.

Dans le tube tortueux est simulé une situation sans collision inter-particules.
La raison est qu’on n’arrivait pas à obtenir des effets significatifs des collisions,
sans que l’algorithme de calcul ne cesse de fonctionner (voir la section précédente
1). On choisit plutôt d’illustrer la dépendance du débit de matière dans le tube
envers la différence de température entre les extrémités (voir la figure 2).

Dans le tube court, on illustre la dépendance du champ de densité de débit
selon le taux de collision. On choisit un modèle de collision de Maxwell isotrope, et
les températures des réservoirs sont fixées à 300 K et 350 K. Voir la figure 2.

3 Perspectives formelles
sur l’opérateur de collision de Boltzmann

3.1 Variation des sections efficaces
Dans les cas tests de ce manuscrit, on a systématiquement utilisé le modèle de

collisionneurs de Maxwell isotrope.
Il y avait là essentiellement une volonté de se simplifier le travail, en posant

bF = cste. Il serait bon de tester d’autres modèles de section efficace, à deux titres :
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(a) Profil du débit de matière dans
le tube sinueux, en fonction de la
température de l’un des réservoirs,

l’autre étant supposé à 300 K.

(b) Champ de densité de débit dans
la gorge du tube court, obtenu
par une série de calculs sondes
sur les points d’une grille. Dans
le calcul ayant donné ces résul-
tats, il n’y a pas de collisions.
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(c) Profil de la densité de débit
traversant le plan de symétrie de
la gorge du tube court, en fonction
de la profondeur dans la gorge

(1 6 rx 6 1,04) et du coefficient
réglant la section efficace de collision.
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(d) Zoom sur une partie de (c)

Figure 2 – Résultats obtenus dans les configurations impli-
quant des géométries complexes, décrites dans ce chapitre.

— Prouver que la méthode que nous avons développée accepte toute sorte de
modèle de section efficace (à condition d’adapter les lois de tirage, si on
veut qu’elle reste un minimum efficiente), et pas seulement celui de Maxwell
isotrope. Étant donnés les développements formels illustrés dans ce manuscrit
nous en sommes convaincus, mais il serait mieux de le montrer concrètement.

— Le modèle de collisionneurs de Maxwell donne des résultats assez éloignés
de ce qu’on constate expérimentalement. Il serait bien d’étendre la méthode
développée vers des modèles de collisionneurs plus réalistes, ne serait-ce que
le modèle de sphères dures.

Quelque chose que nous pouvons affirmer dès maintenant, est que les densités de
probabilité pour ~C∗ et ~U ′ assurant une variance nulle quand la situation physique
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est à l’équilibre, ne seront plus les mêmes que dans les cas tests de ce manuscrit —
loi normale multidimensionnelle pour ~C∗ et loi isotrope pour ~U ′.

3.2 Combinaison du terme source et de la fréquence de
collision

••••Dans la formulation intégrale (6.9), générique pour la cinétique des gaz et
utilisable en MMC, apparaît une récursivité de facteur 4. Nous montrons peu après
dans le chapitre 6.2 comment cette récursivité peut être diminuée, en introduisant
un choix de Bernoulli.

Nous faisions plusieurs propositions, pour orienter le choix de Bernoulli : appli-
quer un choix purement arbitraire, se baser sur une approximation de l’extinction
connue au préalable, ou estimer récursivement l’extinction d’office. On ne se basait
pas sur le terme source, car dans le cas de confinement harmonique étudié au
chapitre 6 il compensait exactement l’extinction : sis(~r;~c; t) = νt(~r;~c; t)f(~r;~c; t).
Dans d’autres situations physiques il serait sûrement utile de le prendre en compte.

••••Par ailleurs il serait intéressant de prendre en compte le terme source et
l’extinction simultanément, autrement qu’exposé dans les algorithmes 6.1 et 6.2. Le
terme source est dû à la présence de particules à des vitesses autres que la vitesse
d’intérêt, qui collisionnent ; de même l’extinction est dûe à la présence de particules
qui collisionnent avec la particule suivie. Je pense qu’il est possible de lier leurs
estimations, de façon à maîtriser la variance sans introduire une récursivité d’un
facteur 4 à chaque collision.

Je pense aussi qu’un gain en variance est obtensible de la sorte même dans
le chapitre 5. Dans ce chapitre, nous avons ignoré l’estimation de la fréquence
d’extinction, car le cas d’étude la rendait constante. Cela rendait hélas le modèle
mathématique associé à nos algorithmes instable en densité, ce qui explique en
partie la façon dont la variance des estimateurs calculés diverge avec le temps
simulé. Si on inclue une estimation de la fréquence de collision dans les algorithmes
du chapitre 5, cela devrait corriger l’instabilité en densité.

Mais alors, les estimations de l’extinction et du terme source devraient être
profondément liées, pas comme dans ce qu’on avait proposé au chapitre 6.2, en
introduisant un choix de Bernoulli entre l’extinction et le terme source. Si on
ne considère pas la conservation de la masse totale dans le terme collisionnel de
Boltzmann CB, la différence de l’extinction et du terme source, tous 2 quadratiques
en f , provoque une instabilité en densité comme au chapitre 5.3.2. Cela me fait
dire que pour construire un estimateur de la fonction de distribution f , dans un
problème de cinétique des gaz, dont la variance ne diverge pas avec le temps simulé,
et n’utilisant pas de récursivité accrue comme proposée au chapitre 5.4, il faudra
tenir compte de la conservation de la masse dans CB, d’une façon ou d’une autre.

••••On pourrait par exemple profiter des écritures alternatives suivantes de
l’opérateur de collision de Boltzmann : en posant ~g = ~c− ~c∗ (pour simplifier les
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écritures), et aussi ~k = ~c ′ − ~c = ~c∗ − ~c ′∗ de ~l = ~c ′∗ − ~c = ~c∗ − ~c ′, on a :

CB(~r;~c; t)

=
∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~g‖; ~u ′ · ~g

‖~g‖

)
×

(
−f(~r;~c; t) f(~r;~c∗; t) + f(~r;~c ′; t) f(~r;~c ′∗; t)

)

=
∫

Ec
d~c ′∗

∫

Ec\⊥R~l

4 d~k
~g 2 f(~r;~c ′∗; t)


bF

(
‖~g‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c ′; t)−

~l 2

~g 2 bF

(
‖~l ‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c; t)


 (3a)

=
∫

Ec
d~c∗

∫

4π
d~u ′ f(~r;~c ′∗; t)


bF

(
‖~g‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c ′; t)−

1
2

(
1 + ~u ′ · ~g

‖~g‖

)
bF

(
‖~l ‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c; t)


 (3b)

=
∫

Ec
d~c ′∗

∫

Ec\⊥R~k

4 d~l
~g 2 f(~r;~c ′; t)


bF

(
‖~g‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c ′∗; t)−

~k 2

~g 2 bF

(
‖~k‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c; t)


 (3c)

=
∫

Ec
d~c∗

∫

4π
d~u ′ f(~r;~c ′; t)


bF

(
‖~g‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c ′∗; t)−

1
2

(
1− ~u ′ · ~g

‖~g‖

)
bF

(
‖~k‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c; t)


 (3d)

=
∫

Ec
d~c∗

∫

4π
d~u ′ bF

(
‖~g‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c ′; t)f(~r;~c ′∗; t)−

1
4

(
1− ~u ′ · ~g

‖~g‖

)
bF

(
‖~k‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c ′; t)f(~r;~c; t)−

1
4

(
1 + ~u ′ · ~g

‖~g‖

)
bF

(
‖~l ‖; ~u ′ · ~g

‖~g‖

)
f(~r;~c ′∗; t)f(~r;~c; t) (3e)
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où : 



~g + ~k +~l = ~0
~k ⊥ ~l

~c ′ = ~c+ ~c∗
2 + ‖~g‖2 ~u ′ = ~c+ ~k = ~c∗ −~l

~c ′∗ = ~c+ ~c∗
2 − ‖~g‖2 ~u ′ = ~c∗ − ~k = ~c+~l

~u ′ · ~g

‖~g‖ =
~l 2 − ~k 2

~l 2 + ~k 2
=
~l 2 − ~k 2

~g 2

~l 2

~g 2 = 1
2

(
1 + ~u ′ · ~g

‖~g‖

)

~k 2

~g 2 = 1
2

(
1− ~u ′ · ~g

‖~g‖

)

(3f)

3.3 Utilisation d’information connue a priori
••••Au chapitre 4, on montrait comment on pouvait utiliser une solution ap-
proximative, connue de prime abord, pour faciliter la résolution d’un problème
différentiel non-linéaire par méthode de Monte-Carlo. Ceci venait en complément :
— des approches à variance nulle [4, 17,32,50],
— de certaines techniques de calcul où on ne calcule par MMC que la différence

entre la solution exacte d’un modèle physico-mathématique et une solution
approximative, donnée par une méthode à discrétisation. La publication
[103] en donne un exemple en transport linéaire, en transfert radiatif dans
les milieux très diffusants. Nous expliquons, au chapitre 4.4, en quoi ces
techniques deviennent encore plus avantageuses quand le problème différentiel
résolu est non-linéaire.

Malheureusement, par manque de temps, nous n’avons pas appliqué cette
méthodologie en cinétique des gaz.

••••Le test le plus rapide, venant à l’esprit de l’auteur, pourrait être effectué sur
le mode BKW. On pourrait utiliser comme approximation de guidage le modèle
collisionnel BGK [8]. Dans ce modèle, les collisions provoquent un rappel de la
distribution vers l’équilibre, selon un temps de relaxation constant dans l’espace
des vitesses :

CBGK (~r;~c; t) = 1
τ(~r; t)

(
feq
(
~c; η(~r; t);~v(~r; t); cqma(~r; t)

)
− f(~r;~c; t)

)
(4)

où η(~r; t), ~v(~r; t), et cqma(~r; t) sont les densité, vitesse moyenne et vitesse quadra-
tique moyenne sur chaque axe locales de la distribution f , et τ(~r; t) est le temps
de relaxation.
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Ce modèle a l’avantage d’être solvable symboliquement dans le cas du mode
BKW, et d’y donner une solution approximative très simple. De plus, il est avec ses
modèles dérivés ES-BGK et Shakhov [2,58,107,125] le modèle collisionnel simplifié
le plus utilisé en calcul numérique de la cinétique des gaz, particulièrement avec
les méthodes BsR [93,94,109–111].

••••Les avantages qu’il y a à utiliser une solution approximative comme guide
pour la MMC, dans la résolution d’un problème différentiel non-linéaire, laisse
penser qu’à moyen terme la MMC pourra être utilisée en cinétique des gaz en
tandem avec une méthode à discrétisation, comme DSMC ou BsR. Un tel couple
pourrait fonctionner selon un schéma prédicteur-correcteur : à chaque pas de temps,
la méthode à discrétisation, travaillant à basse résolution, générerait une solution
approximative, corrigée ensuite par la MMC utilisant tous les points déjà calculés
comme guides et fonctionnant en méthode de référence sur le problème différentiel
et ses conditions limites d’origine.
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Annexe A

Rappels de mathématiques
utilisées dans ce manuscrit

A.1 Développements en Série Entière
Définition A.1.1 (modes de convergence d’une suite de fonctions).

Soit (fn)n∈N une suite de fonctions à variable réelle et à valeurs dans un R-espace
vectoriel E de norme ‖ • ‖E, soit f une fonction à variable réelle et à valeurs dans
E, et soit I un intervalle non-dégénéré de R.

On dit que :
— (fn)n∈N converge simplement sur I vers f , ssi pour tout x ∈ I la suite

(fn(x))n∈N est convergente, vers f(x) :

∀x ∈ I,∀ε > 0,∃N ∈ N, ∀n > N, ‖fn(x)− f(x)‖E 6 ε

— (fn)n∈N converge uniformément sur I vers f , ssi la suite réelle (‖fn − f‖∞,E
)n∈N converge vers 0 :

∀ε > 0,∃N ∈ N,∀n > N, ∀x ∈ I, ‖fn(x)− f(x)‖E 6 ε

Par extension, on dit que la suite (fn)n∈N converge simplement (resp. uniformé-
ment) sur I ssi il existe f ∈ F (I;E) telle que (fn)n∈N converge simplement (resp.
uniformément) sur I vers f .

Cette définition s’étend immédiatement aux fonctions à variables complexes et
à valeurs dans un C-espace vectoriel.

Proposition A.1.2. La convergence uniforme implique la convergence simple.

Définition A.1.3 (modes de convergence d’une série de fonctions).
Soit Σ(fn)n∈N une série de fonctions à variable réelle et à valeurs dans un

R-espace vectoriel E de norme ‖ • ‖E, soit f une fonction à variable réelle et à
valeurs dans E, et soit I un intervalle non-dégénéré de R.

On dit que :
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— Σ(fn)n∈N converge simplement sur I vers f ssi la suite des sommes partielles
de Σ(fn)n∈N converge simplement sur I vers f :

∀x ∈ I,∀ε > 0, ∃N ∈ N,∀n > N,

∥∥∥∥∥

(
n∑

i=0
fi(x)

)
− f(x)

∥∥∥∥∥
E

6 ε

— Σ(fn)n∈N converge absolument sur I ssi pour tout x ∈ I, la série numérique
Σ(‖fn(x)‖E)n∈N converge :

∀x ∈ I,∃l ∈ R, ∀ε > 0,∃N ∈ N, ∀n > N,

∣∣∣∣∣

(
n∑

i=0
‖fi(x)‖E

)
− l

∣∣∣∣∣ 6 ε

— Σ(fn)n∈N converge uniformément sur I vers f ssi la suite des sommes partielles
de Σ(fn)n∈N converge uniformément sur I vers f :

∀ε > 0,∃N ∈ N, ∀n > N, ∀x ∈ I,
∥∥∥∥∥

(
n∑

i=0
fi(x)

)
− f(x)

∥∥∥∥∥
E

6 ε

— Σ(fn)n∈N converge normalement sur I ssi la série numérique Σ(‖fn‖∞,E)n∈N
converge :

∃l ∈ R,∀ε > 0,∃N ∈ N,∀n > N,∀x ∈ I,
∣∣∣∣∣

(
n∑

i=0
‖fi(x)‖E

)
− l

∣∣∣∣∣ 6 ε

Par extension, on dit que la série Σ(fn)n∈N converge simplement (resp. unifor-
mément) sur I ssi il existe f ∈ F (I;E) telle que Σ(fn)n∈N converge simplement
(resp. uniformément) sur I vers f .

Proposition A.1.4.
— La convergence uniforme d’une série de fonctions implique sa convergence

simple.
— La convergence absolue d’une série de fonctions implique sa convergence

simple.
— La convergence normale d’une série de fonctions implique ses convergences

uniforme, absolue, et simple.

Définition A.1.5 (Série entière). Une série entière est une série de fonctions à
variable réelle ou complexe de la forme Σ(z 7→ anz

n)n∈N, avec (an)n∈N une série
numérique réelle ou complexe. On la note usuellement Σnanz

n.

Théorème-Définition A.1.6 (Rayon de convergence d’une série entière). Soit
Σnanz

n une série entière. Il existe un unique R ∈ R̄+ tel que :
— Σnanz

n converge normalement sur tout compact inclus dans le disque ouvert
B(C; 0;R) = {z ∈ C, |z| < R}, et
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— la série numérique Σ(anzn)n∈N diverge grossièrement pour tout z hors du
disque fermé Bf (0;R) = {z ∈ C, |z| 6 R}

R est appelé le rayon de convergence de la série entière Σnanz
n.

Définition A.1.7 (Développabilité en Série Entière). Soient f une fonction réelle
ou complexe, et zR ∈ R (ou C).

On dit que f admet un Développement en Série Entière (DSE) autour de zR sur
un voisinage V ssi il existe Σnanz

n une série entière telle que Σ(z 7→ an(z−zR)n)n∈N
converge sur ce voisinage V de zR, vers f .

Par extension, on dit que f admet un DSE autour de zR, sans plus de précision,
si il existe un voisinage V de zR tel que f admette un DSE autour de zR sur V .

Proposition A.1.8 (DSE et Développement en Série de Taylor). Soit f une
fonction Développable en Série Entière sur un voisinage V ouvert autour de zR.

Alors f est continûment dérivable sur V , et son DSE Σnanz
n en zR est unique

et s’identifie au Développement en Série de Taylor de f en zR. Cela s’écrit :




f ∈ C∞(V ;K) avec K = R ou C

∀n ∈ N, an = f (n)(zR)
n!

Proposition A.1.9 (DSE et dérivation). Soit Σnanz
n une série entière, convergente

avec un rayon R ∈ R̄+ vers une fonction f . Alors :
— f est dérivable sur le disque ouvert de convergence B(0;R), et
— la série entière Σ(z 7→ nanz

n−1)n∈N∗ (qui s’écrit aussi Σ(z 7→ (n+1)an+1z
n)n∈N)

a R pour rayon de convergence, et converge sur B(0;R) vers f ′.

Définition A.1.10 (Fonction analytique). Une fonction analytique est une fonc-
tion réelle ou complexe, qui est développable en série entière autour de chaque
point de son domaine de définition.

A.2 Adjonction Hermitienne
Dans cette section, on notera K pour « R ou C » .

Définition A.2.1 (Produit scalaire réel). Soit E un R-espace vectoriel, et ϕ une
application de E2 vers R. On dit que ϕ est un produit scalaire sur E ssi elle est :

— bilinéaire : ∀(x; y; z;λ) ∈ E3 × R,
{
ϕ(λx+ z; y) = λϕ(x; y) + ϕ(z; y)
ϕ(x;λy + z) = λϕ(x; y) + ϕ(x; z) ,

— symétrique : ∀(x; y) ∈ E2, ϕ(y;x) = ϕ(x; y) ,
— positive : ∀x ∈ E,ϕ(x;x) > 0 ,
— et « définie » : ∀x ∈ E,

(
ϕ(x;x) = 0 =⇒ x = 0E

)
.

Dans ce manuscrit, on notera ϕ(x; y) = 〈x; y〉 ou ϕ(x; y) = x · y.
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Définition A.2.2 (Produit scalaire hermitien). Ici, « •̄ » dénote le complexe
conjugué.

Soit E un C-espace vectoriel, et ϕ une application de E2 vers C. On dit que ϕ
est un produit scalaire sur E ssi elle est :
— sesquilinéaire à gauche : ∀(x; y; z;λ) ∈ E3 × C,{

ϕ(λx+ z; y) = λ̄ϕ(x; y) + ϕ(z; y)
ϕ(x;λy + z) = λϕ(x; y) + ϕ(x; z) ,

— symétrique hermitienne : ∀(x; y) ∈ E2, ϕ(y;x) = ϕ(x; y) ,
— positive : ∀x ∈ E,ϕ(x;x) ∈ R+ ,
— et « définie » : ∀x ∈ E,

(
ϕ(x;x) = 0 =⇒ x = 0E

)
.

On utilisera la même notation ϕ(x; y) = 〈x; y〉 ou ϕ(x; y) = x · y que dans le cas
réel.

Remarques.
— Dans le cas du produit scalaire hermitien, la sesquilinéarité à gauche n’est

pas une convention universelle, certains auteurs utilisent la sesquilinéarité à
droite.

— Un R-espace vectoriel muni d’un produit scalaire est appelé espace préhilber-
tien réel.

— Un C-espace vectoriel muni d’un produit scalaire est appelé espace préhilber-
tien complexe.

— Lorsqu’un K-espace vectoriel possède un produit scalaire, celui-ci n’est pas
unique. Néanmoins, la plupart des espaces vectoriels dont il est question dans
ce manuscrit possèdent un produit scalaire usuel.

Théorème-Définition A.2.3. Soit E un K-espace vectoriel muni d’un produit
scalaire 〈•; •〉E. L’application x 7→

√
〈x;x〉E est une norme sur E, appelée norme

issue de 〈•; •〉E.

Définition A.2.4 (Adjoint). Soient E et F deux K-espaces vectoriels munis des
produits scalaires respectifs 〈•; •〉E et 〈•; •〉F , et u ∈ F (E;F ). Soit v ∈ F (F ;E),
on dit que v est adjointe à u ssi :

∀(x; y) ∈ E × F, 〈u(x); y〉F = 〈x; v(y)〉E
Proposition A.2.5. Soient E et F deux espaces préhilbertiens, ainsi que u ∈
F (E;F ) et v ∈ F (F ;E). Si v est adjointe à u alors :
— u est linéaire,
— v est linéaire,
— v est l’unique adjointe de u. On note : v = u?.
— u est (l’unique) adjointe à v. C’est-à-dire que (u?)? = u.
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— Si u est inversible, alors u? est inversible, u−1 possède un adjoint, et (u?)−1 =
(u−1)?.

Proposition A.2.6. Ici, « •̄ » dénote le complexe conjugué.
Soient E et F deux espaces préhilbertiens, λ ∈ K, ainsi que u et v ∈ L (E;F )

possédant chacune une adjointe.
Alors λu+ v possède une adjointe, et : (λu+ v)? = λ̄u? + v?.

Proposition A.2.7. Soient E, F , et G trois espaces préhilbertiens, ainsi que
u ∈ L (E;F ) et v ∈ L (F ;G) possédant chacune une adjointe.

Alors v ◦ u possède une adjointe, et : (v ◦ u)? = u? ◦ v?.

A.3 Fonction d’erreur complémentaire
normalisée erfcx

Définition A.3.1 (erfcx). La fonction d’erreur complémentaire normalisée, notée
erfcx, est définie de R vers R par la formule :

∀x ∈ R, erfcx(x) = ex
2erfc(x) = 2√

π
ex

2
∫ +∞

x
e−t

2dt

où erfc est la fonction d’erreur complémentaire.

Proposition A.3.2.
— erfcx est l’unique solution sur R du problème différentiel :{

erfcx′(x) = 2x erfcx(x)− 2√
π

erfcx(0) = 1 .

— erfcx(0) = 1, et erfcx′(0) = − 2√
π
.

— erfcx(x) ∼x→+∞
1√
π x

.

−0,5

0

0,5

1

1,5

−1 0 1 2 3 4 5
x

erfcx(x)

Figure A.1 – Une portion du graphe de la fonction erfcx
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Lien entre les Algorithmes à
Collisions Nulles et les
Développements en Série Entière
de Variables Indépendantes

Soit le problème différentiel sur R+ simplifié :

{
f ′(x) = − k(x)f(x)
f(0) = f0

(B.1)

Les ACNs d’une part et les DSEVIs d’autre part offrent chacun une expression
intégrale de f(x) avec x ∈ R+, évaluable par méthode de Monte-Carlo.

Si on utilise un DSEVI : La solution symbolique au problème (B.1), est bien
connue, c’est :

f(x) = exp
(
−
∫ x

0
dx′ k(x′)

)
f0 (B.2)

mais elle ne peut pas être évaluée directement par méthode de Monte-Carlo en
toute généralité, comme c’est expliqué au chapitre 3.1.2.

On peut en dégager une expression évaluable par méthode de Monte-Carlo, en
utilisant le développement en série entière de l’exponentielle (convergeant sur R
tout entier) :

f(x) =
+∞∑

n=0

(−1)n
n!

(∫ x

0
dx′ k(x′)

)n
f0 (B.3)
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Si on utilise un ACN : On introduit une fonction k̂ arbitraire mais strictement
positive, ensuite la formulation intégrale d’un ACN s’écrit :

f(x) = exp
(
−
∫ x

0
dx′ k̂(x′)

)
f0 +

∫ x

0
dx′ exp

(
−
∫ x

x′
dx′′ k̂(x′′)

)(
k̂(x′)− k(x′)

)
f(x′) (B.4)

Cette écriture peut être transformée en une expression proche de ce qu’on
obtient avec un DSEVI :

f(x)

= exp
(
−
∫ x

0
dx′′ k̂(x′′)

)(
f0 +

∫ x

0
dx′ exp

(∫ x′

0
dx′′ k̂(x′′)

)(
k̂(x′)− k(x′)

)
f(x′)

)

d’où

exp
(∫ x

0
dx′ k̂(x′)

)
f(x)

= f0 +
∫ x

0
dx′

(
k̂(x′)− k(x′)

)
exp

(∫ x′

0
dx′′ k̂(x′′)

)
f(x′)

= f0 +
∫ x

0
dx1

(
k̂(x1)− k(x1)

)(
f0 +

∫ x1

0
dx2

(
k̂(x2)− k(x2)

)(
f0 + . . .

))

= f0 ×
(

1 +
+∞∑

n=1

∫ x

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−1

0
dxn

n∏

i=1

(
k̂(xi)− k(xi)

))

En notant x0 = x :

exp
(∫ x

0
dx′ k̂(x′)

)
f(x) =

(
1 +

+∞∑

n=1

∫ x0

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−1

0
dxn

n∏

i=1

(
k̂(xi)− k(xi)

))
f0 (B.5)

••••Cette dernière expression peut être presque atteinte par un DSE. Il faut
d’abord multiplier arbitrairement chaque terme de l’égalité (B.2) par exp

(∫ x
0 dx′

k̂(x′)
)
, et ensuite le développement en série entière de l’exponentielle nous mène à :

exp
(∫ x

0
dx′ k̂(x′)

)
f(x) =

+∞∑

n=0

1
n!

(∫ x

0
dx′

(
k̂(x′)− k(x′)

))n
f0 (B.6)

La validité des algorithmes à collisions nulles, la validité du développement
en série entière de l’exponentielle, combinées à l’unicité des développements en
série entière impliquent l’égalité terme à terme des sommes dans (B.5) et (B.6).
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Cela signifie, de façon plus générale, que pour toute fonction réelle k continue par
morceaux :

∀x0 ∈ R,∀n ∈ N∗,
∫ x0

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−1

0
dxn

n∏

i=1
k(xi) = 1

n!

(∫ x0

0
dx′ k(x′)

)n
(B.7)

Ce résultat peut être montré indépendamment des ACNs et des DSEVIs de
plusieurs façons, dont la suivante :

Preuve Identité (B.7). Pour tout n ∈ N∗ et x0 ∈ R+, on note :

T (n;x0) = {~x = (xi)i∈[[1;n]] ∈ [0;x0]n, tq ∀(i; j) ∈ [[1;n]]2, i < j =⇒ xi > xj}

T (n;x0) est en fait le domaine d’intégration du membre de gauche de l’identité
(B.7). C’est un hypertétrahèdre. Soit aussi, pour toute permutation σ ∈ Sn,
l’hypertétrahèdre :

T (n;x0;σ) = {(xσ(i))i∈[[1;n]], avec (xi)i∈[[1;n]] ∈ T (n;x0)}

On a immédiatement T (n;x0) = T (n;x0; id)
Soit maintenant ~x = (xi)i∈[[1;n]] ∈ [0;x0]n. Comme « > » est une relation

d’ordre strict totale sur [0;x0], s’il existe une permutation σ ∈ Sn telle que
(xσ(i))i∈[[1;n]] ∈ T (n;x0) — ce qui équivaut à (xi)i∈[[1;n]] ∈ T (n;x0;σ−1) —, cette
permutation σ est unique. Si elle n’existe pas c’est que certains xi sont égaux, les
~x tels que ceci formant un ensemble de mesure nulle sur [0;x0]n.

Donc pour des n et x0 fixés, quand σ parcourt Sn (équivalent à « σ−1 parcourt
Sn » ) les différents T (n;x0;σ) forment presque (à une partie de mesure nulle près)
une partition de l’hypercube [0;x0]n. Il en résulte que :

(∫ x0

0
dx′ k(x′)

)n
=

∑

σ∈Sn

∫

~x∈T (n;x0;σ)

n∏

i=1
k(xi)dxi

=
∑

σ∈Sn

∫

~x∈T (n;x0)

n∏

i=1
k(xσ(i))dxσ(i)

=
∑

σ∈Sn

∫

~x∈T (n;x0)

n∏

i=1
k(xi)dxi

Comme par ailleurs Sn contient n! permutations :

(∫ x0

0
dx′ k(x′)

)n
= n!

∫

~x∈T (n;x0)

n∏

i=1
k(xi)dxi �
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••••Apparemment, les ACNs fournissent 2 éléments par rapport à un DSEVI
direct de la solution symbolique de (B.1) :
— Si la fonction arbitraire k̂ majore k, chacun des termes sous la somme dans

(B.5) (ou dans (B.6)) est positif, contrairement aux termes de la somme
(B.3).
Comme il faut, lors d’une estimation d’une somme infinie, évaluer seule-
ment un nombre fini de ses termes, leur égalité en signe devrait faciliter la
convergence de l’estimateur obtenu.

— Les ACNs fournissent des probabilités analogues intuitives pour choisir n
et (xi)i∈[[1;n]], dans (B.5) ou (B.6). L’estimateur obtenu de f(x) répond à un
formalisme proche de celui décrit en (3.12). En effet, en se plaçant dans le
cas le plus général possible, avec pX′(x′) quelconque sur ] −∞;x] et Pnul
quelconque dans ]0; 1[ :

F̃ (x) =
k̂(X ′) exp

(
− ∫ xX′ dx′′ k̂(x′′)

)

pX′(X ′)

(
H(X ′ 6 0) F̃0 +

H(X ′ > 0) H(Col = nul)
Pnul

× k̂(X ′)− k̃(X ′)
k̂(X ′)

F̃ (X ′)
)

(B.8)

donc

F̃ (x0) =
Im∏

i=1

k̂(Xi)
pXi(Xi)

exp
(
−
∫ x0

XIm

dx′k̂(x′)
)
×

Im−1∏

i=1

k̂(Xi)− k̃(Xi)
k̂(Xi)

× H(Col i = nul)
Pnul i

F̃0 (B.9)

où :
— ∀i ∈ N, Xi+1 à valeurs dans ]−∞;Xi],
— Im = min{i ∈ N, Xi 6 0},
— les Col i prennent chacune la valeur nul avec une probabilité Pnul i

— F̃0 est un estimateur de f0,
— les k̃(Xi) sont estimateurs des k(Xi).

Si on choisit les Xi comme des longueurs d’extinction selon k̂, ce qui est
conseillé au chapitre 2.2.2, l’expression précédente se réduit à :

F̃ (x0) =
Im−1∏

i=1

k̂(Xi)− k̃(Xi)
k̂(Xi)

× H(Col i = nul)
Pnul i

F̃0 (B.10)

Cette dernière expression est totalement soluble dans le formalisme (3.12).
Cela donne :

F̃ (x0) =
Nnul∏

i=1

k̂(X̌i)− k̃(X̌i)
k̂(X̌i)

× H(Col i = nul)
Pnul i

F̃0 (B.11)

où
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— Nnul suit une loi de Poisson de paramètre
∫ x0

0 dx k̂(x),
— les X̌i sont indépendantes, à valeurs dans ]0;x0[ et de densité de proba-

bilité pX̌(x) = k̂(x)/
∫ x0

0 dx′ k̂(x).

••••On peut pour finir remarquer qu’en utilisant un Algorithme à Collisions
Nulles, on effectue a priori un DSEVI non centré sur 0. L’expression (B.11) montre
en effet un DSEVI non correspondant à l’équation (B.3) mais plutôt à l’équation
(B.6), où le développement en série entière est centré sur

∫ x0
0 dx′ k̂(x′).

On peut en effet dégager les termes du DSE sous-jacent à (B.11) :

f(x0) = E
(
F̃ (x0)

)

= E
(
Nnul∏

i=1

k̂(X̌i)− k̃(X̌i)
k̂(X̌i)

× H(Col i = nul)
Pnul i

F̃0

)

=
+∞∑

nnul=0
pNnul (nnul)

nnul∏

i=1

∫ x0

0
pX̌(x̌i)dx̌i

k̂(x̌i)− k̃(x̌i)
k̂(x̌i)

f0

=
+∞∑

nnul=0

(∫ x0
0 dx′ k̂(x′)

)nnul

nnul !
exp

(
−
∫ x0

0
dx′ k̂(x′)

) nnul∏

i=1

∫ x0

0

k̂(x̌i)∫ x0
0 dx′ k̂(x′)

dx̌i ×

k̂(x̌i)− k̃(x̌i)
k̂(x̌i)

f0

= exp
(
−
∫ x0

0
dx′ k̂(x′)

) +∞∑

nnul=0

1
nnul !

nnul∏

i=1

∫ x0

0

(
k̂(x̌i)− k(x̌i)

)
dx̌i f0

= exp
(
−
∫ x0

0
dx′ k̂(x′)

) +∞∑

nnul=0

1
nnul !

(∫ x0

0

(
k̂(x̌)− k(x̌)

)
dx̌
)nnul

f0

ce qui est exactement l’équation (B.6).

••••Le propos de cette annexe peut être retrouvé au moins partiellement dans
[68,78–80,114].
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Annexe C

Élements pour le calcul d’un
polynôme de l’espérance d’une
variable aléatoire

C.1 Calcul en ligne de la formulation (3.9)
Problème mathématique posé : On dispose d’une variable aléatoire Z, et on
veut estimer h(E(Z)), où h est une fonction polynômiale. On note h : z 7→ ∑k

i=0 aiz
i

où les ai sont des constantes réelles. Si k′ ∈ N est tel que k′ > k, on peut se servir
de la formule (3.9) page 133 :

k∑

i=0
ai E(Z)i = E


 1
k′!

∑

σ∈Sk′

k∑

i=0
ai

i∏

j=1
Zσ(j)


 avec les (Zi)i∈N parentes à Z

pour obtenir une expression aléatoire Wh,Z dérivée de Z dont h(E(Z)) soit l’espé-
rance. On peut alors échantillonnerWh,Z pour estimer h(E(Z)), dans une procédure
Monte-Carlo tout-à-fait standard. En l’occurrence, l’expression Wh,Z qui apparaît
dans la formule (3.9) est

Wh,Z = 1
k′!

∑

σ∈Sk′

k∑

i=0
ai

i∏

j=1
Zσ(j) (C.1)

Lorsqu’on dispose d’un échantillon (zi,n)i∈[[1;k′]],n∈[[1;N ]] de Z, on pose ainsi pour n
allant de 1 à N les

wh,Z n = 1
k′!

∑

σ∈Sk′

k∑

i=0
ai

i∏

j=1
zσ(j),n (C.2)

qui forment un échantillon de Wh,Z . Tous les zi,n doivent avoir été tirés indépen-
damment.

On propose ici une technique de calcul pour wh,Z n, à partir des (zi,n)i∈[[1;k′]],n,
selon la formule précédente (C.2). L’ensemble Sk′ contenant k′! permutations, ce
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calcul peut être extrêmement fastidieux si mené dans un ordre peu efficace. La
complexité de la méthode proposée ici est en O(k′ 2), ce qui est suffisamment faible
pour les besoins exhibés dans ce manuscrit.

••••k et k′ étant indépendants car fixés, on peut ré-exprimer

wh,Z n =
k∑

i=0

ai
k′!

∑

σ∈Sk′

i∏

j=1
zσ(j),n (C.3)

La difficulté du calcul se reporte essentiellement sur le terme « ∑σ∈Sk′
∏i
j=1

zσ(j),n ».
Posons la suite à 2 indices (θ̃k′,i)k′∈N,i∈N définie par récurrence :





θ̃k′,i = 1 si i = 0
θ̃k′,i = 0 si k′ < i

θ̃k′+1,i+1 = θ̃k′,i+1 + zk′,n θ̃k′,i sinon
(C.4)

On peut obtenir assez aisément que :

— ∀i ∈ N :

θ̃i,i =
i∏

j=1
zj,n

d’où

θ̃i,i = 1
i!
∑

σ∈Si

i∏

j=1
zσ(j),n

— ∀(k′, i) ∈ N2 tq k′ > i, θ̃k′,i est la somme de tous les produits zazb · · · de i
échantillons ponctuels de Z (échantillons d’indices 2 à 2 différents), avec les
indices {a; b; . . . } ⊂ [[1; k′]]. Ces produits sont au nombre de

(
k′

i

)
, car l’ordre

de leurs termes ne compte pas : en effet, dans θ̃k′,i chaque produit n’est
calculé que dans un seul ordre.
Par ailleurs, dans le terme ∑σ∈Sk′

∏i
j=1 zσ(j),n, on a k′! produits de ce genre

(car Sk′ contient k′! éléments), en comptant les répétitions qui auront lieu.
Le nombre de répétitions est le même pour tous les produits.

Ce qui amène à :

∀(k′, i) ∈ N2 tq k′ > i,
1
k′!

∑

σ∈Sk′

i∏

j=1
zσ(j),n = 1(

k′
i

) θ̃k′,i (C.5)
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C.2. Sur-échantillonnage d’un polynôme d’une espérance

••••Les θ̃k′,i peuvent être calculés au fur et à mesure que l’on échantillonne Z,
par l’algorithme suivant :

Résultat : Un échantillon ponctuel wh,Z n de Wh,Z

1 θ̃0,0 ← 1;
2 pour `← 1 à k′ faire // Il faut que k′ > deg h.
3 échantillonner Z ; on obtient z`,n;
4 θ̃`,0 ← 1;
5 θ̃`,` ← z`,nθ̃`−1,`−1;
6 pour i← 1 à min{`− 1; deg h} faire θ̃`,i ← θ̃`−1,i + z`,nθ̃`−1,i−1;
7 wh,Z n ← 0;
8 pour i← 0 à deg h faire wh,Z n ← wh,Z n + ai θ̃k′,i

/(
k′

i

)
;

Algorithme C.1 : Algorithme pour l’échantillonnage de Wh,Z , variable
aléatoire d’espérance h(E(Z)) où h est polynômiale de coefficients ai

C.2 Intérêt d’estimer un polynôme de
l’espérance d’une V.A. grâce à un
échantillon contenant plus de tirages de la
V.A. que le degré du polynôme : exemple
du calcul de la variance

••••On considère ici une variable aléatoire Z à valeurs réelles, dont les moments
E(Zi) sont finis au moins jusqu’à l’ordre i = 4.

Le problème de l’estimation d’un polynôme de l’espérance de Z trouve certaine-
ment sa plus simple expression dans l’estimation du monôme E(Z)2. Ce problème
est lié à l’estimation de la variance de Z, en effet Var(Z) = E(Z2) − E(Z)2 —
l’estimation de E(Z2) ne posant aucune difficulté particulière.

••••En reprenant la méthodologie exposée au chapitre 3.2.1, on obtient qu’un
estimateur de Var(Z) doit utiliser au moins 2 estimations de Z. Si on utilise en
effet 2 estimations de Z, l’estimateur le plus efficace de Var(Z) est ainsi :

Ṽar(Z)P = 1
2!

∑

σ∈S2

Zσ(1)
2 − Zσ(1)Zσ(2) (C.6)

= 1
2

(
Z1

2 + Z2
2
)
− Z1Z2 (C.7)

Si on dispose de n > 2 tirages de Z, on peut les combiner pour former une seule
estimation de Var(Z). En utilisant les techniques les plus abouties présentées au
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chapitre 3.2.1, on retrouve la formule de la variance empirique échantillon :

Ṽar(Z)MVU = 1
n!

∑

σ∈Sn
Zσ(1)

2 − Zσ(1)Zσ(2) (C.8)

= 1
n

n∑

i=1
Zi

2 − 1
n(n− 1)

n∑

i=1

n∑

j=1
j 6=i

ZiZj (C.9)

= 1
n− 1

(
n∑

i=1
Zi

2 − 1
n

(
n∑

i=1
Zi

)2 )
(C.10)

Cet estimateur est bien l’estimateur Minimal Variance and Unbiased de Var(Z)
(voir par exemple [38,54]).

••••Reprenons la formule (C.7). Pour estimer Var(Z), il est tentant d’effectuer
2N tirages de Z puis de calculer l’estimateur :

Ṽar(Z)MP = 1
N

N∑

i=1

1
2

(
Z2i−1

2 + Z2i
2
)
− Z2i−1Z2i (C.11)

Mais quelle est sa variance ?
En considérant l’estimateur de Var(Z) donné en C.10 avec n tirages de Z, on

peut rappeler une des formule de la proposition 1.3.9 page 56 :

Var
(

Ṽar(Z)MVU

)
= Var(Z)2

n

(
Kurt(Z)− n− 3

n− 1

)

En prenant n = 2 :

Var
(

Ṽar(Z)P
)

= Var(Z)2

2
(
Kurt(Z) + 1

)
(C.12)

d’où, en effectuant 2N tirages :

Var
(

Ṽar(Z)MP

)
= Var(Z)2

2N
(
Kurt(Z) + 1

)
(C.13)

car les tirages sont censés être indépendants.
Par ailleurs, en effectuant aussi 2N tirages :

Var
(

Ṽar(Z)MVU

)
= Var(Z)2

2N

(
Kurt(Z)− 2N − 3

2N − 1

)
(C.14)

Sans surprise, on constate que Ṽar(Z)MP est un estimateur de Var(Z) moins
efficace que Ṽar(Z)MVU . Plus en détails, on a :

Var
(
Ṽar(Z)MP

)

Var
(
Ṽar(Z)MVU

) = 2N(Kurt(Z) + 1)−Kurt(Z)− 1
2N(Kurt(Z)− 1)−Kurt(Z) + 3 (C.15)

Par exemple :
— avec une loi de pile ou face équilibrée (Kurt(Z) = 1) : Var...

Var... = 2N − 1.
— avec une loi normale (Kurt(Z) = 3) : Var...

Var... = 2− 1
N
.
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Annexe D

Codes sources utilisés pour
certains des calculs présentés

Cette annexe liste les codes sources utilisés pour plusieurs des calculs présentés
au cours de ce manuscrit.

••••Tous ces codes sources sont prévus pour être compilés conjointement avec
un environnement de développement nommé MCM (pour Monte-Carlo Method, en
anglais). Cet environnement est un code source partiel, en C++, où l’utilisateur
doit coder dans un emplacement prévu l’algorithme de Monte-Carlo qu’il veut
implémenter.

Le principe en est le même que celui d’EDstar, présenté dans les perspectives
page 253, dont MCM est d’ailleurs une des composantes 1. MCM gère plusieurs
tâches utiles ou indispensables dans tous les calculs de type Monte-Carlo, de sorte
que l’utilisateur n’ait pas à les ré-implémenter à chaque fois :
— le maintien de la somme et de la somme des carrés des réalisations, puis

le calcul final de la moyenne, de la variance d’échantillon, ou encore des
coefficients de corrélations entre différentes variables,

— la parallélisation,
— la fourniture des tirages uniformes standards, avec la garantie de l’indépen-

dance des tirages, en particulier entre processus parallèles.

••••L’utilisateur doit détailler l’implémentation de la fonction Mon_algorithme::
calculUnique, dont le prototype est : void Mon_algorithme::calculUnique ()
; (pas de valeurs d’entrée, pas de valeur de retour). Comme son nom l’indique, dans
cette fonction doivent être explicités les calculs à réaliser pour obtenir une estimation
ponctuelle. Cette estimation est l’échantillonnage ponctuel d’un estimateur à valeurs
vectorielles, dont les composantes sont dans R.

1. C’est un petit peu plus compliqué. . . La version de MCM utilisée dans ce travail de thèse
est une version de travail customisée et personnelle, qui n’est pas celle sur laquelle a été construit
EDstar. Cette dernière version est disponible sur le Web, contrairement à ma version personnelle.
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L’interface disponible dans la fonction Mon_algorithme::calculUnique, avec
le reste de MCM, est la suivante :
— double Mon_algorithme::mcmRng ();

fournit des tirages uniformes standards.
— void Mon_algorithme::setCoordonneeRes (unsigned long i, double

w);
permet de placer la ie coordonnée du vecteur résultat à la valeur w.

— unsigned long Mon_algorithme::indiceCoordonneeRes (unsigned
long indGrd, unsigned long indParam = 0)const;
cette fonction fournit la valeur de i, à utiliser dans la fonction
setCoordonneeRes. Son utilité est de simplifier la prise en charge du
calcul de sensibilités paramétriques.

— void Mon_algorithme::enregistrerRealisation ();
signale que l’on va pouvoir passer à la réalisation suivante, et donc que les
sommes doivent être mises à jour.

D.1 Chambre de combustion contenant une
flamme axisymétrique (problème
académique de la section 2.4) : calcul du
terme source radiatif, avec gestion des
hétérogénéités des propriétés optiques par
un Algorithme à Collisions Nulles

Le problème physique à l’étude est celui du chapitre 2.4. On cherche à calculer le
terme source radiatif Sr en un point ~r0, à l’intérieur d’une configuration stationnaire
monochromatique partiellement décrite au chapitre 2.4.2. Ce terme source s’écrit :

Sr(~r0) =
∫

4π
d~u ka(~r0)δf(~r0; ~u)

où
δf(~r0; ~u) = f(~r0; ~u)− feq(~r0)

On estime δf(~r0; ~u) grâce à un algorithme à collisions nulles, détaillé au chapitre
2.4.3.

Plusieurs paramètres, d’une part de la situation physique, d’autre part liés au
fonctionnement de l’algorithme, sont variables selon les simulations, et doivent être
passés lors de la compilation sous forme de macros. Ces paramètres sont :
— le point de départ ~r0, devant être passé au travers de la macro DEPART,
— ka max , devant être passé au travers de la macro KAMAX,
— kd max , devant être passé au travers de la macro KDMAX,
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— l’émissivité des parois ε, devant être passé au travers de la macro EMISSIVITE,
— %, devant être passé au travers de la macro SURESTIMATION,
— $, devant être passé au travers de la macro SEUIL_ROULETTE.

Les fichiers suivants sont prévus pour être compilés avec l’environnement MCM,
expliqué à la page 277 ; d’où la ligne #include "mcmGT2.h" présente en tête du
fichier contenant l’algorithme.

Fichier algorithme :

1 # include " mcmGT2 .h"
2 # include "geom.h"
3 # include <math.h>
4 # define KTAPR (( double ) ( SURESTIMATION * (KAMAX + KDMAX)))
5
6 InfosMontageAlgo Mon_algorithme :: giveDims () {
7
8 InfosMontageAlgo infosMontage ;
9

10 infosMontage . nb_Grandeurs_RDR = 2;
11 infosMontage . nb_Parametres_RDR = 0;
12 infosMontage . pile_active = 0;
13 infosMontage . nb_Coordonnees_PDR = 2;
14 infosMontage . valeurDeBaseResume = 0.;
15 infosMontage . valeurDeBasePile = 0.;
16
17 return ( infosMontage );
18 }
19
20 inline double kA ( const Point & r)
21 {
22
23 return ((( double ) KAMAX) * .5 * (1. - r.x) * (1. - sqrt

(.5 * (r.y * r.y + r.z * r.z))));
24 }
25
26 inline double kD ( const Point & r)
27 {
28
29 return ((( double ) KDMAX) * .5 * (1. - r.x) * (1. - sqrt

(.5 * (r.y * r.y + r.z * r.z))));
30 }
31
32 inline double fEq (const Point & r)
33 {
34
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35 return (.5 * (1. - r.x) * (1. - sqrt (.5 * (r.y * r.y + r.
z * r.z))));

36 }
37
38 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
39 {
40 double f0 , pondDirInit , tpr , poidsCumuleChemin ;
41 long nbAppels ;
42 Point depart DEPART , arrivee ;
43 Vector dir , normale ;
44 BBox cube (Point ( -1. , -1. , -1.) , Point (1. ,1. ,1.));
45 double distExtinction , distMur , margeSlab ;
46 bool murTouche , roulette ;
47 int i, iChoc;
48 double ka , kd , feq , kn , Pdiff , Pnul , R;
49
50 nbAppels = 0;
51 poidsCumuleChemin = 0.;
52
53 dir = UniformSampleSphere ( mcmRng (), mcmRng ()); //

tirage de la direction de depart
54 pondDirInit = 4. * M_PI;
55 f0 = fEq ( depart );
56
57 for (tpr = 1., roulette = false ;; depart = arrivee ) { //

boucle de calcul
58
59 // calcul du point d’arret
60 // calcul d’un point d’arret selon l’extinction par le

milieu semi - transparent
61 distExtinction = - log ( mcmRng ()) / KTAPR;
62 arrivee = depart + distExtinction * dir;
63
64 // calcul d’une eventuelle intersection avec la bordure

de la geometrie
65 murTouche = ! cube. Inside ( arrivee );
66 if ( murTouche ) {
67 for (i = 0, distMur = INFINITY ; i < 3; i++) {
68 if (dir [i] == 0.) continue ;
69 margeSlab = (( dir [i] >= 0. ? cube.pMax [i] : cube.

pMin [i]) - depart [i]) / dir [i];
70 if ( margeSlab < distMur ) {
71 distMur = margeSlab ;
72 iChoc = i;
73 }
74 }
75 for (i = 0; i < 3; i++) {
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76 if (i == iChoc) {
77 if (dir [i] >= 0.) {
78 arrivee [i] = cube.pMax [i];
79 normale [i] = -1.;
80 }
81 else {
82 arrivee [i] = cube.pMin [i];
83 normale [i] = 1.;
84 }
85 }
86 else {
87 arrivee [i] = Clamp ( depart [i] + distMur * dir [i

], cube.pMin [i], cube.pMax[i]);
88 normale [i] = 0.;
89 }
90 }
91 }
92
93 if (tpr <= SEUIL_ROULETTE ) roulette = true;
94
95 // calcul partiel du poids au point d’arret
96 if ( murTouche ) { // si le photon a atteind une paroi
97 if ( roulette ) {
98 if ( mcmRng () <= EMISSIVITE ) {
99 poidsCumuleChemin += tpr * - f0;
100 break ;
101 }
102 else dir = CosineSampleHemisphere ( mcmRng (), mcmRng

(), normale );
103 }
104 else {
105 poidsCumuleChemin += tpr * EMISSIVITE * - f0;
106 tpr *= (1. - EMISSIVITE );
107 dir = CosineSampleHemisphere ( mcmRng (), mcmRng (),

normale );
108 }
109 }
110 else { // si le photon a collisionne dans le milieu
111 ka = kA ( arrivee );
112 kd = kD ( arrivee );
113 feq = fEq ( arrivee );
114 kn = KTAPR - ka - kd;
115 R = mcmRng ();
116 nbAppels ++;
117
118 if ( roulette ) { // utilisation d’une roulette russe

totale
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119 if (kn >= 0.) {
120 if (R * KTAPR < ka) {
121 poidsCumuleChemin += tpr * (feq - f0);
122 break ;
123 }
124 else if (R * KTAPR < kd + ka) dir = SampleHG (

mcmRng (), mcmRng (), ASYM , dir);
125 }
126 else if (-2. * kn <= ka) {
127 if (R * KTAPR < ka + 2. * kn) {
128 poidsCumuleChemin += tpr * (feq - f0);
129 break ;
130 }
131 else if (R * KTAPR < ka + 2. * kn + kd) dir =

SampleHG ( mcmRng (), mcmRng (), ASYM , dir);
132 else {
133 poidsCumuleChemin += 2. * tpr * (feq - f0);
134 tpr = - tpr;
135 }
136 }
137 else {
138 if (Pnul = (ka * ka - 4. * kd * kn) / (2. * (kd -

kn) * (2. * kd + ka)), 1. - R < Pnul) {
139 poidsCumuleChemin += tpr * (1. - kn / (KTAPR *

Pnul)) * (feq - f0);
140 tpr *= kn / (KTAPR * Pnul);
141 }
142 else if (Pdiff = - kd * Pnul / kn , 1. - R < Pnul +

Pdiff) {
143 poidsCumuleChemin += tpr * (1. - kd / (KTAPR *

Pdiff)) * (feq - f0);
144 tpr *= kd / (KTAPR * Pdiff);
145 dir = SampleHG ( mcmRng (), mcmRng (), ASYM , dir)

;
146 }
147 else {
148 poidsCumuleChemin += tpr * (feq - f0);
149 break ;
150 }
151 }
152 }
153 else { // utilisation d’un partitionnement de l’

energie
154 if (kn >= 0.) {
155 if ((kd + kn) * R < kn) {
156 poidsCumuleChemin += tpr * ka / KTAPR * (feq -

f0);
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157 tpr *= (kd + kn) / KTAPR;
158 }
159 else {
160 poidsCumuleChemin += tpr * ka / KTAPR * (feq -

f0);
161 tpr *= (kd + kn) / KTAPR;
162 dir = SampleHG ( mcmRng (), mcmRng (), ASYM , dir)

;
163 }
164 }
165 else {
166 if ((kd - kn) * R < - kn) {
167 poidsCumuleChemin += tpr * ka / KTAPR * (feq -

f0);
168 tpr *= - (kd - kn) / KTAPR;
169 }
170 else {
171 poidsCumuleChemin += tpr * ka / KTAPR * (feq -

f0);
172 tpr *= (kd - kn) / KTAPR;
173 dir = SampleHG ( mcmRng (), mcmRng (), ASYM , dir)

;
174 }
175 }
176 }
177 }
178
179 if (tpr == 0.) break ; // Normalement inutile , mais peut

servir si ( EMISSIVITE == 1).
180 // Normalement inutile , car quand tpr tombe

a 0 on sort immediatement de la boucle ,
telle qu’elle est ecrite ici.

181 }
182
183 poidsCumuleChemin *= pondDirInit ;
184
185 setCoordonneeRes ( indiceCoordonneeRes (1) ,

poidsCumuleChemin );
186 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
187 enregistrerRealisation ();
188 }

Fichier geom.h :
1 /* ************************************** */
2 /* Repris depuis le code source de PBRT */
3 /* ************************************** */
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4
5 /*
6 pbrt source code Copyright (c) 1998 -2010 Matt Pharr and

Greg Humphreys .
7 pbrt is free software ; you can redistribute it and/or

modify it under the terms of the GNU General Public
License as published by the Free Software Foundation ;

either version 2 of the License , or (at your option )
any later version . Note that the text contents of

the book " Physically Based Rendering " are *not*
licensed under the GNU GPL.

8 pbrt is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE . See the GNU General Public
License for more details .

9 You should have received a copy of the GNU General
Public License along with this program . If not , see <
http :// www.gnu.org/ licenses />.

10 */
11
12
13 # ifndef HMGEOM_H
14 # define HMGEOM_H
15
16 # include <math.h>
17 # include <algorithm >
18 using std :: min;
19 using std :: max;
20
21 inline double Clamp( double val , double low , double high) {
22 if (val < low) return low;
23 else if (val > high) return high;
24 else return val;
25 }
26
27 class Vector {
28 public :
29 // Vector Public Methods
30 Vector () { x = y = z = 0.f; }
31 Vector ( double xx , double yy , double zz)
32 : x(xx), y(yy), z(zz) { }
33 Vector operator +( const Vector &v) const {
34 return Vector (x + v.x, y + v.y, z + v.z);
35 }
36
37 Vector & operator +=( const Vector &v) {
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38 x += v.x; y += v.y; z += v.z;
39 return *this;
40 }
41 Vector operator -( const Vector &v) const {
42 return Vector (x - v.x, y - v.y, z - v.z);
43 }
44
45 Vector & operator -=( const Vector &v) {
46 x -= v.x; y -= v.y; z -= v.z;
47 return *this;
48 }
49 Vector operator *( double f) const { return Vector (f*x, f*

y, f*z); }
50
51 Vector & operator *=( double f) {
52 x *= f; y *= f; z *= f;
53 return *this;
54 }
55 Vector operator /( double f) const {
56 double inv = 1. / f;
57 return Vector (x * inv , y * inv , z * inv);
58 }
59
60 Vector & operator /=( double f) {
61 double inv = 1. / f;
62 x *= inv; y *= inv; z *= inv;
63 return *this;
64 }
65 Vector operator -() const { return Vector (-x, -y, -z); }
66 double operator []( int i) const {
67 return (&x)[i];
68 }
69
70 double & operator []( int i) {
71 return (&x)[i];
72 }
73 double LengthSquared () const { return x*x + y*y + z*z; }
74 double Length () const { return sqrt ( LengthSquared ()); }
75
76 bool operator ==( const Vector &v) const {
77 return x == v.x && y == v.y && z == v.z;
78 }
79 bool operator !=( const Vector &v) const {
80 return x != v.x || y != v.y || z != v.z;
81 }
82
83 // Vector Public Data
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84 double x, y, z;
85 };
86
87 inline Vector operator *( float f, const Vector &v) { return v

*f; }
88 inline Vector Normalize (const Vector &v) { return v / v.

Length (); }
89 inline double Dot(const Vector &v1 , const Vector &v2) {

return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; }
90 inline Vector Cross(const Vector &v1 , const Vector &v2) {
91 double v1x = v1.x, v1y = v1.y, v1z = v1.z;
92 double v2x = v2.x, v2y = v2.y, v2z = v2.z;
93 return Vector (( v1y * v2z) - (v1z * v2y), (v1z * v2x) - (

v1x * v2z), (v1x * v2y) - (v1y * v2x));
94 }
95
96 class Point {
97 public :
98 // Point Public Methods
99 Point () { x = y = z = 0.f; }
100 Point( double xx , double yy , double zz)
101 : x(xx), y(yy), z(zz) {}
102 Point operator +( const Vector &v) const {
103 return Point(x + v.x, y + v.y, z + v.z);
104 }
105
106 Point & operator +=( const Vector &v) {
107 x += v.x; y += v.y; z += v.z;
108 return *this;
109 }
110 Vector operator -( const Point &p) const {
111 return Vector (x - p.x, y - p.y, z - p.z);
112 }
113
114 Point operator -( const Vector &v) const {
115 return Point(x - v.x, y - v.y, z - v.z);
116 }
117
118 Point &operator -=( const Vector &v) {
119 x -= v.x; y -= v.y; z -= v.z;
120 return *this;
121 }
122 Point & operator +=( const Point &p) {
123 x += p.x; y += p.y; z += p.z;
124 return *this;
125 }
126 Point operator +( const Point &p) const {
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127 return Point(x + p.x, y + p.y, z + p.z);
128 }
129 Point operator * ( double f) const {
130 return Point(f*x, f*y, f*z);
131 }
132 Point & operator *=( double f) {
133 x *= f; y *= f; z *= f;
134 return *this;
135 }
136 Point operator / ( double f) const {
137 double inv = 1./f;
138 return Point(inv*x, inv*y, inv*z);
139 }
140 Point & operator /=( double f) {
141 double inv = 1./f;
142 x *= inv; y *= inv; z *= inv;
143 return *this;
144 }
145 float operator []( int i) const {
146 return (&x)[i];
147 }
148
149 float & operator []( int i) {
150 return (&x)[i];
151 }
152
153 bool operator ==( const Point &p) const {
154 return x == p.x && y == p.y && z == p.z;
155 }
156 bool operator !=( const Point &p) const {
157 return x != p.x || y != p.y || z != p.z;
158 }
159
160 // Point Public Data
161 float x, y, z;
162 };
163
164 class BBox {
165 public :
166 // BBox Public Methods
167 BBox () {
168 pMin = Point( INFINITY , INFINITY , INFINITY );
169 pMax = Point(-INFINITY , -INFINITY , -INFINITY );
170 }
171 BBox(const Point &p) : pMin(p), pMax(p) { }
172 BBox(const Point &p1 , const Point &p2) {
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173 pMin = Point(min(p1.x, p2.x), min(p1.y, p2.y), min(
p1.z, p2.z));

174 pMax = Point(max(p1.x, p2.x), max(p1.y, p2.y), max(
p1.z, p2.z));

175 }
176 bool Overlaps ( const BBox &b) const {
177 bool x = (pMax.x >= b.pMin.x) && (pMin.x <= b.pMax.x

);
178 bool y = (pMax.y >= b.pMin.y) && (pMin.y <= b.pMax.y

);
179 bool z = (pMax.z >= b.pMin.z) && (pMin.z <= b.pMax.z

);
180 return (x && y && z);
181 }
182 bool Inside (const Point &pt) const {
183 return (pt.x >= pMin.x && pt.x <= pMax.x &&
184 pt.y >= pMin.y && pt.y <= pMax.y &&
185 pt.z >= pMin.z && pt.z <= pMax.z);
186 }
187 void Expand ( double delta) {
188 pMin -= Vector (delta , delta , delta);
189 pMax += Vector (delta , delta , delta);
190 }
191 double SurfaceArea () const {
192 Vector d = pMax - pMin;
193 return 2. * (d.x * d.y + d.x * d.z + d.y * d.z);
194 }
195 double Volume () const {
196 Vector d = pMax - pMin;
197 return d.x * d.y * d.z;
198 }
199 int MaximumExtent () const {
200 Vector diag = pMax - pMin;
201 if (diag.x > diag.y && diag.x > diag.z)
202 return 0;
203 else if (diag.y > diag.z)
204 return 1;
205 else
206 return 2;
207 }
208 const Point & operator []( int i) const ;
209 Point & operator []( int i);
210 Vector Offset (const Point &p) const {
211 return Vector ((p.x - pMin.x) / (pMax.x - pMin.x),
212 (p.y - pMin.y) / (pMax.y - pMin.y),
213 (p.z - pMin.z) / (pMax.z - pMin.z));
214 }
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215 bool operator ==( const BBox &b) const {
216 return b.pMin == pMin && b.pMax == pMax;
217 }
218 bool operator !=( const BBox &b) const {
219 return b.pMin != pMin || b.pMax != pMax;
220 }
221
222 // BBox Public Data
223 Point pMin , pMax;
224 };
225
226 void CoordinateSystem (const Vector &v1 , Vector *v2 , Vector

*v3);
227 Vector CosineSampleHemisphere ( double u1 , double u2 , const

Vector & normale );
228 Vector UniformSampleSphere ( double u1 , double u2);
229 Vector SampleHG ( double r1 , double r2 , double g, const

Vector &v1);
230
231 #endif // HMGEOM_H

Fichier geom.cpp :
1 # include "geom.h"
2
3 /* **************************************************** */
4 /* Partiellement repris depuis le code source de PBRT */
5 /* **************************************************** */
6
7 /*
8 pbrt source code Copyright (c) 1998 -2010 Matt Pharr and

Greg Humphreys .
9 pbrt is free software ; you can redistribute it and/or

modify it under the terms of the GNU General Public
License as published by the Free Software Foundation ;

either version 2 of the License , or (at your option )
any later version . Note that the text contents of

the book " Physically Based Rendering " are *not*
licensed under the GNU GPL.

10 pbrt is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE . See the GNU General Public
License for more details .

11 You should have received a copy of the GNU General
Public License along with this program . If not , see <
http :// www.gnu.org/ licenses />.
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12 */
13
14 void CoordinateSystem (const Vector &v1 , Vector *v2 , Vector

*v3)
15 {
16 if (fabs (v1.x) > fabs (v1.y)) {
17 double invLen = 1. / sqrt (v1.x * v1.x + v1.z * v1.z);
18 *v2 = Vector (-v1.z * invLen , 0., v1.x * invLen );
19 }
20 else {
21 double invLen = 1. / sqrt (v1.y * v1.y + v1.z * v1.z);
22 *v2 = Vector (0., v1.z * invLen , -v1.y * invLen );
23 }
24 *v3 = Cross(v1 , *v2);
25 }
26
27 Vector CosineSampleHemisphere ( double u1 , double u2 , const

Vector & normale )
28 {
29 double r, theta , sx , sy;
30
31 sx = 2. * u1 - 1.;
32 sy = 2. * u2 - 1.;
33
34 if (sx == 0. && sy == 0.) return ( normale );
35
36 if (sx >= -sy) {
37 if (sx > sy) {
38 r = sx;
39 theta = sy / r;
40 }
41 else {
42 r = sy;
43 theta = 2. - sx / r;
44 }
45 }
46 else {
47 if (sx <= sy) {
48 r = - sx;
49 theta = 4. - sy / r;
50 }
51 else {
52 r = - sy;
53 theta = - 2. + sx / r;
54 }
55 }
56 theta *= M_PI / 4.;
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57
58 Vector v2 , v3;
59 CoordinateSystem (normale , & v2 , & v3);
60 return (sqrt (1. - r * r) * normale + (r * cos (theta)) *

v2 + (r * sin (theta)) * v3);
61 }
62
63 Vector UniformSampleSphere ( double u1 , double u2)
64 {
65 double z = 1. - 2. * u1;
66 double r = sqrt (1. - z * z);
67 double phi = 2. * M_PI * u2;
68 double x = r * cos (phi);
69 double y = r * sin (phi);
70 return Vector (x, y, z);
71 }
72
73 Vector SampleHG ( double u1 , double u2 , double g, const

Vector &v1)
74 {
75 double costheta , sintheta , tmp , phi;
76
77 tmp = (1. - g * (1. - 2. * u1));
78 tmp *= tmp;
79 costheta = (2. * (1. + g) * (1. + g) * u1 * (g * (u1 - 1.)

+ 1.) / tmp) - 1.;
80 costheta = Clamp (costheta , -1., 1.);
81 sintheta = sqrt (1. - costheta * costheta );
82 phi = (2 * M_PI) * u2;
83 Vector v2 , v3;
84 CoordinateSystem (v1 , & v2 , & v3);
85 return ( costheta * v1 + ( sintheta * cos (phi)) * v2 + (

sintheta * sin (phi)) * v3);
86 }

D.2 Résolution d’un problème instationnaire
simplifié de cinétique chimique d’ordre 2

D.2.1 Sans approximation de guidage y≈

Le problème physico-mathématique à l’étude ici est celui qui sert d’exemple au
fil du chapitre 4 : on cherche à calculer sur R+ :

{
y′(t) = −α y(t)2

y(0) = y0
avec

{
α > 0
y0 > 0 (4.5) ↑
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La solution symbolique à ce système différentielle est aisément obtensible :

y(t) = y0

α y0 t+ 1 (4.6) ↑

Les 4 fichiers algorithmes qui suivent servent à estimer, par une méthode de
Monte-Carlo, y(t) à t donné. Les algorithmes codés dans les fichiers
algo1-sensi.cpp et algo2-sensi.cpp estiment aussi, simultanément, les sen-
sibilités de y(t) selon les paramètres α et y0.

Ces fichiers sont prévus pour être compilés avec l’environnement MCM, expliqué
à la page 277 ; d’où la ligne #include "mcmGT2.h" présente en tête de tous ces
fichiers.

Lors de la compilation de ces codes, les valeurs de α, y0, k̂, et t doivent être
fournies au travers des macros ALPHA, Y0, MAJOR, et TF respectivement.

Fichier algo1.cpp (code l’algorithme 4.1) :
1 # include " mcmGT2 .h"
2
3 InfosMontageAlgo Mon_algorithme :: giveDims () {
4
5 InfosMontageAlgo infosMontage ;
6
7 infosMontage . nb_Grandeurs_RDR = 2;
8 infosMontage . nb_Parametres_RDR = 0;
9 infosMontage . pile_active = 0;

10 infosMontage . nb_Coordonnees_PDR = 2;
11 infosMontage . valeurDeBaseResume = 0.;
12 infosMontage . valeurDeBasePile = 0.;
13
14 return ( infosMontage );
15 }
16
17 void Mon_algorithme :: algorithme_ponctuel ( double t, double *

y, long * nbAppels )
18 {
19 double tr , y1 , y2;
20
21 (* nbAppels ) ++;
22 tr = - log ( mcmRng ()) / MAJOR;
23 if (t - tr <= 0.) {
24 *y = Y0;
25 return ;
26 }
27 algorithme_ponctuel (t - tr , & y1 , nbAppels );
28 algorithme_ponctuel (t - tr , & y2 , nbAppels );
29 *y = (1. - ALPHA * y1 / MAJOR) * y2;
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30 return ;
31 }
32
33 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
34 {
35 double y;
36 long nbAppels ;
37
38 nbAppels = 0;
39 algorithme_ponctuel (TF , & y, & nbAppels );
40
41 setCoordonneeRes ( indiceCoordonneeRes (1) , y);
42 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
43 enregistrerRealisation ();
44 }

Fichier algo2.cpp (code l’algorithme 4.2) :

1 # include " mcmGT2 .h"
2
3 InfosMontageAlgo Mon_algorithme :: giveDims () {
4
5 InfosMontageAlgo infosMontage ;
6
7 infosMontage . nb_Grandeurs_RDR = 2;
8 infosMontage . nb_Parametres_RDR = 0;
9 infosMontage . pile_active = 0;

10 infosMontage . nb_Coordonnees_PDR = 2;
11 infosMontage . valeurDeBaseResume = 0.;
12 infosMontage . valeurDeBasePile = 0.;
13
14 return ( infosMontage );
15 }
16
17 void Mon_algorithme :: algorithme_ponctuel ( double t, double *

y, long * nbAppels )
18 {
19 double tr , y1;
20
21 (* nbAppels ) ++;
22 tr = - log ( mcmRng ()) / MAJOR;
23 if (t - tr <= 0.) {
24 *y = Y0;
25 return ;
26 }
27 algorithme_ponctuel (t - tr , & y1 , nbAppels );
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28 if (( ALPHA * y1 / MAJOR) < mcmRng ()) algorithme_ponctuel
(t - tr , y, nbAppels );

29 else *y = 0.;
30 return ;
31 }
32
33 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
34 {
35 double y;
36 long nbAppels ;
37
38 nbAppels = 0;
39 algorithme_ponctuel (TF , & y, & nbAppels );
40
41 setCoordonneeRes ( indiceCoordonneeRes (1) , y);
42 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
43 enregistrerRealisation ();
44 }

Fichier algo1-sensi.cpp (code l’algorithme 4.3) :
1 # include " mcmGT2 .h"
2
3 InfosMontageAlgo Mon_algorithme :: giveDims () {
4
5 InfosMontageAlgo infosMontage ;
6
7 infosMontage . nb_Grandeurs_RDR = 4;
8 infosMontage . nb_Parametres_RDR = 0;
9 infosMontage . pile_active = 0;

10 infosMontage . nb_Coordonnees_PDR = 2;
11 infosMontage . valeurDeBaseResume = 0.;
12 infosMontage . valeurDeBasePile = 0.;
13
14 return ( infosMontage );
15 }
16
17 void Mon_algorithme :: algorithme_ponctuel_avec_sensis ( double

t, double * y, double * day , double * d0y , long *
nbAppels )

18 {
19 double tr , y1 , y2 , day1 , d0y1;
20
21 (* nbAppels ) ++;
22 tr = - log ( mcmRng ()) / MAJOR;
23 if (t - tr <= 0.) {
24 *y = Y0;
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25 *day = 0.;
26 *d0y = 1.;
27 return ;
28 }
29 algorithme_ponctuel_avec_sensis (t - tr , & y1 , & day1 , &

d0y1 , nbAppels );
30 algorithme_ponctuel (t - tr , & y2 , nbAppels );
31 *y = (1. - ALPHA * y1 / MAJOR) * y2;
32 *day = (day1 * (MAJOR - 2. * ALPHA * y2) - y1 * y2) /

MAJOR;
33 *d0y = d0y1 * (1. - 2. * ALPHA * y2 / MAJOR);
34 return ;
35 }
36
37 void Mon_algorithme :: algorithme_ponctuel ( double t, double *

y, long * nbAppels )
38 {
39 double tr , y1 , y2;
40
41 (* nbAppels ) ++;
42 tr = - log ( mcmRng ()) / MAJOR;
43 if (t - tr <= 0.) {
44 *y = Y0;
45 return ;
46 }
47 algorithme_ponctuel (t - tr , & y1 , nbAppels );
48 algorithme_ponctuel (t - tr , & y2 , nbAppels );
49 *y = (1. - ALPHA * y1 / MAJOR) * y2;
50 return ;
51 }
52
53 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
54 {
55 double y, day , d0y;
56 long nbAppels ;
57
58 nbAppels = 0;
59 algorithme_ponctuel_avec_sensis (TF , & y, & day , & d0y , &

nbAppels );
60
61 setCoordonneeRes ( indiceCoordonneeRes (1) , y);
62 setCoordonneeRes ( indiceCoordonneeRes (2) , day);
63 setCoordonneeRes ( indiceCoordonneeRes (3) , d0y);
64 setCoordonneeRes ( indiceCoordonneeRes (4) , nbAppels );
65 enregistrerRealisation ();
66 }
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Fichier algo2-sensi.cpp (code l’algorithme 4.4) :

1 # include " mcmGT2 .h"
2
3 InfosMontageAlgo Mon_algorithme :: giveDims () {
4
5 InfosMontageAlgo infosMontage ;
6
7 infosMontage . nb_Grandeurs_RDR = 4;
8 infosMontage . nb_Parametres_RDR = 0;
9 infosMontage . pile_active = 0;

10 infosMontage . nb_Coordonnees_PDR = 2;
11 infosMontage . valeurDeBaseResume = 0.;
12 infosMontage . valeurDeBasePile = 0.;
13
14 return ( infosMontage );
15 }
16
17 void Mon_algorithme :: algorithme_ponctuel_avec_sensis ( double

t, double * y, double * day , double * d0y , long *
nbAppels )

18 {
19 double tr , y1 , y2 , day1 , d0y1;
20
21 (* nbAppels ) ++;
22 tr = - log ( mcmRng ()) / MAJOR;
23 if (t - tr <= 0.) {
24 *y = Y0;
25 *day = 0.;
26 *d0y = 1.;
27 return ;
28 }
29 algorithme_ponctuel_avec_sensis (t - tr , & y1 , & day1 , &

d0y1 , nbAppels );
30 algorithme_ponctuel (t - tr , & y2 , nbAppels );
31 *y = (1. - ALPHA * y1 / MAJOR) * y2;
32 *day = (day1 * (MAJOR - 2. * ALPHA * y2) - y1 * y2) /

MAJOR;
33 *d0y = d0y1 * (1. - 2. * ALPHA * y2 / MAJOR);
34 return ;
35 }
36
37 void Mon_algorithme :: algorithme_ponctuel ( double t, double *

y, long * nbAppels )
38 {
39 double tr , y1;
40
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41 (* nbAppels ) ++;
42 tr = - log ( mcmRng ()) / MAJOR;
43 if (t - tr <= 0.) {
44 *y = Y0;
45 return ;
46 }
47 algorithme_ponctuel (t - tr , & y1 , nbAppels );
48 if (( ALPHA * y1 / MAJOR) < mcmRng ()) algorithme_ponctuel

(t - tr , y, nbAppels );
49 else *y = 0.;
50 return ;
51 }
52
53 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
54 {
55 double y, day , d0y;
56 long nbAppels ;
57
58 nbAppels = 0;
59 algorithme_ponctuel_avec_sensis (TF , & y, & day , & d0y , &

nbAppels );
60
61 setCoordonneeRes ( indiceCoordonneeRes (1) , y);
62 setCoordonneeRes ( indiceCoordonneeRes (2) , day);
63 setCoordonneeRes ( indiceCoordonneeRes (3) , d0y);
64 setCoordonneeRes ( indiceCoordonneeRes (4) , nbAppels );
65 enregistrerRealisation ();
66 }

D.2.2 Avec approximation de guidage y≈

••••Dans le chapitre 4, quand nous testons les bénéfices de l’utilisation, dans un
calcul par méthode de Monte-Carlo, d’une solution approximative y≈ du système
(4.5) connue à l’avance, cette solution est générée à l’aide de :

1. la méthode Runge-Kutta d’ordre 4 usuelle (méthode RK4), utilisée avec un
pas de temps constant ∆t≈,

2. une interpolation cubique, entre les points calculés par la méthode RK4.

La méthode RK4 fournit un résultat sous la forme d’une liste de points
(ti; y≈(ti)). C’est une méthode directement explicite, c’est-à-dire que y≈i+1 est calculée
seulement à partir de y≈i , ti, et ti+1, et ce sans technique d’inversion. La procédure
est la suivante :

1. Disposant de y≈(ti), calculer un 1er taux de variation d1 = f(y≈(ti); ti).
2. Calculer un 1er point intermédiaire y2, en partant de y≈(ti) et en utilisant le

taux de variation d1 : y2 = y≈(ti) + d1 ∆t≈
2 .
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3. Calculer un 2e taux de variation d2, au 1er point intermédiaire : d2 = f(y2; ti+
∆t≈

2 ).
4. Calculer un 2e point intermédiaire y3, en partant de y≈(ti) et en utilisant le

taux de variation d2 : y3 = y≈(ti) + d2 ∆t≈
2 .

5. Calculer un 3e taux de variation d3, au 2e point intermédiaire : d3 = f(y3; ti +
∆t≈

2 ).
6. Calculer un point final y4, en partant de y≈(ti) et en utilisant le taux de

variation d3 : y4 = y≈(ti) + d3 ∆t≈.
7. Calculer un dernier taux de variation d4, au point final : d4 = f(y4; ti + ∆t≈).
8. Calculer le taux de variation total dT comme la moyenne pondérée dT =

(d1 + 2 d2 + 2 d3 + d4)/6.
9. Le point y≈(ti+1) est obtenu en partant de y≈(ti) et en utilisant le taux de

variation dT : y≈(ti) + dT ∆t≈.
L’algorithme D.1 résume cette procédure.

Entrées : La condition initiale (t0; y≈(t0)), le temps final tf , et le pas de
temps ∆t≈

Sorties : Une solution approximative d’un système du type (4.3), sous la
forme d’une liste de points (ti; y≈(ti))

1 i← 0;
2 tant que t0 + (i+ 1)∆t≈ 6 tf faire
3 ti+1 ← t0 + (i+ 1)∆t≈;
4 d1 ← f(y≈(ti); ti);
5 y2 ← y≈(ti) + (d1 ∆t≈)/2;
6 d2 ← f(y2; ti + (∆t≈/2));
7 y3 ← y≈(ti) + (d2 ∆t≈)/2;
8 d3 ← f(y3; ti + (∆t≈/2));
9 y4 ← y≈(ti) + d3 ∆t≈;

10 d4 ← f(y4; ti + ∆t≈);
11 dT ← (d1 + 2 d2 + 2 d3 + d4)/6;
12 y≈(ti+1)← y≈(ti) + dT ∆t≈;
13 i← i+ 1;

Algorithme D.1 : Méthode Runge-Kutta d’ordre 4
usuelle, avec pas de temps constant, pour résoudre une
équation différentielle d’ordre 1 du type donné en (4.3)

Entre les points fournis par la méthode RK4, on utilise une interpolation
cubique. Cette interpolation égalise y≈ et sa dérivée en les points interpolés les
plus proches.
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Pour que cela fonctionne simplement, les dérivées sont enregistrées lors de la
construction de la solution par la méthode RK4. C’est à dire que la méthode RK4
fournit une liste de points (ti; y≈(ti); y≈ ′(ti)). Les y≈ ′(ti) sont calculées directement
selon la formule : y≈ ′(ti) = f(y≈(ti); ti). Ce calcul ne rajoute d’ailleurs aucune
charge computationnelle, car la méthode RK4 doit de toute façon l’effectuer.

Considérons ensuite un segment quelconque [ti; ti+1] : sur ce segment, y≈ est
définie par :

y≈(t) = y≈(ti)P0(tad) + y≈(ti+1)P1(tad) +
y≈ ′(ti)× (ti+1 − ti)P0 ′(tad) + y≈ ′(ti+1)× (ti+1 − ti)P1 ′(tad)

où

tad = t− ti
ti+1 − ti

P0 : x 7→ (2x+ 1)(x− 1)2 P1 : x 7→ x2(3− 2x)
P0 ′ : x 7→ x(x− 1)2 P1 ′ : x 7→ x2(x− 1)

Les fonctions polynomiales P0, P1, P0 ′, et P1 ′ respectent les contraintes :




P0(0) = 1 P0(1) = 0 P ′0(0) = 0 P ′0(1) = 0
P1(0) = 0 P1(1) = 1 P ′1(0) = 0 P ′1(1) = 0
P0 ′(0) = 0 P0 ′(1) = 0 P ′0 ′(0) = 1 P ′0 ′(1) = 0
P1 ′(0) = 0 P1 ′(1) = 0 P ′1 ′(0) = 0 P ′1 ′(1) = 1

••••Le fichier algorithme qui suit implémente à la fois l’algorithme 4.5, et la
résolution par la méthode RK4. Celle-ci est effectuée avant que l’algorithme de
Monte-Carlo ne démarre.

Ce fichier est prévu pour être compilé avec l’environnement MCM, expliqué à
la page 277 ; d’où la ligne #include "mcmGT2.h" présente en tête.

Lors de la compilation de ce code, les valeurs de α, y0, k̂, t, et ∆t≈ doivent être
fournies au travers des macros ALPHA, Y0, MAJOR, TF et TIMESTEP respectivement.

Fichier algo-guige-sensi.cpp (code l’algorithme 4.5) :
1 # include " mcmGT2 .h"
2
3 #ifdef TIMESTEP
4 Mon_algorithme :: Mon_algorithme (int calcCov , int resumeCreux

, int pileON , int pileCreuse , const gsl_rng_type * nomGen
, McmTransmetteur * branchement ) : McmAlgo (
Mon_algorithme :: giveDims (), calcCov , resumeCreux , pileON
, pileCreuse , nomGen , branchement ), approxtpts (ceil (((
double ) TF) / TIMESTEP ) + 1), approxypts (ceil ((( double )

TF) / TIMESTEP ) + 1), approxdpts (ceil ((( double ) TF) /
TIMESTEP ) + 1)
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5 {
6 RK4solver ();
7 }
8 #endif
9

10 InfosMontageAlgo Mon_algorithme :: giveDims () {
11
12 InfosMontageAlgo infosMontage ;
13
14 infosMontage . nb_Grandeurs_RDR = 5;
15 infosMontage . nb_Parametres_RDR = 0;
16 infosMontage . pile_active = 0;
17 infosMontage . nb_Coordonnees_PDR = 2;
18 infosMontage . valeurDeBaseResume = 0.;
19 infosMontage . valeurDeBasePile = 0.;
20
21 return ( infosMontage );
22 }
23
24 void Mon_algorithme :: RK4solver (void)
25 {
26 int step;
27 double y1 , k1 , y2 , k2 , y3 , k3 , y4 , k4 , yf;
28
29 approxtpts [0] = 0.;
30 approxypts [0] = Y0;
31 approxdpts [0] = - ALPHA * Y0 * Y0;
32 for (step = 0; step < approxtpts .size () - 1 ; step ++) {
33 approxtpts [step + 1] = (step + 1) * TIMESTEP ;
34 y1 = approxypts [step ];
35 k1 = - ALPHA * y1 * y1;
36 y2 = y1 + .5 * TIMESTEP * k1;
37 k2 = - ALPHA * y2 * y2;
38 y3 = y1 + .5 * TIMESTEP * k2;
39 k3 = - ALPHA * y3 * y3;
40 y4 = y1 + TIMESTEP * k3;
41 k4 = - ALPHA * y4 * y4;
42 yf = y1 + ( TIMESTEP / 6.) * (k1 + 2. * k2 + 2. * k3 + k4

);
43 approxypts [step + 1] = yf;
44 approxdpts [step + 1] = - ALPHA * yf * yf;
45 }
46 }
47
48 void Mon_algorithme :: RK4interp ( double t, double * y, double

* dty)
49 {
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50 int dinter ;
51 double tadim;
52
53 dinter = floor (t / TIMESTEP ); // fonctionne parce que

les intervalles sont reguliers
54 if ( dinter >= approxtpts .size () - 1) dinter = approxtpts .

size () - 2;
55 if ( dinter < 0) dinter = 0;
56
57 tadim = (t - approxtpts [ dinter ]) / TIMESTEP ;
58 if (y) *y = (tadim - 1.) * (tadim - 1.) * ((2. * tadim +

1.) * approxypts [ dinter ] + tadim * TIMESTEP *
approxdpts [ dinter ]) + tadim * tadim * ((3. - 2. *
tadim) * approxypts [ dinter + 1] + (tadim - 1.) *
TIMESTEP * approxdpts [ dinter + 1]);

59 if (dty) *dty = (tadim - 1.) * (6. * tadim * approxypts [
dinter ] / TIMESTEP + (3. * tadim - 1.) * approxdpts [
dinter ]) + tadim * (6. * (1. - tadim) * approxypts [
dinter + 1] / TIMESTEP + (3. * tadim - 2.) * approxdpts

[ dinter + 1]);
60 }
61
62 void Mon_algorithme :: algorithme_ponctuel_avec_sensis ( double

t, double * yd , double * day , double * d0y , long *
nbAppels )

63 {
64 double tr , yd1 , yd2 , y2 , day1 , d0y1 , yg , dtyg;
65
66 (* nbAppels ) ++;
67 tr = - log ( mcmRng ()) / MAJOR;
68 if (t - tr <= 0.) {
69 RK4interp (0., & yg , NULL);
70 *yd = Y0 - yg;
71 *day = 0.;
72 *d0y = 1.;
73 return ;
74 }
75 RK4interp (t - tr , & yg , & dtyg);
76 algorithme_ponctuel_avec_sensis (t - tr , & yd1 , & day1 , &

d0y1 , nbAppels );
77 algorithme_ponctuel (t - tr , & yd2 , nbAppels );
78 y2 = yg + yd2;
79 *yd = yd1 * (1. - ALPHA / MAJOR * (2. * yg + yd2)) - (dtyg

+ ALPHA * yg * yg) / MAJOR;
80 *day = (day1 * (MAJOR - 2. * ALPHA * y2) - (yg + yd1) * y2

) / MAJOR;
81 *d0y = d0y1 * (1. - 2. * ALPHA * y2 / MAJOR);
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82 return ;
83 }
84
85 void Mon_algorithme :: algorithme_ponctuel ( double t, double *

yd , long * nbAppels )
86 {
87 double tr , yd1 , yd2 , yg , dtyg;
88
89 (* nbAppels ) ++;
90 tr = - log ( mcmRng ()) / MAJOR;
91 if (t - tr <= 0.) {
92 RK4interp (0., & yg , NULL);
93 *yd = Y0 - yg;
94 return ;
95 }
96 RK4interp (t - tr , & yg , & dtyg);
97 algorithme_ponctuel (t - tr , & yd1 , nbAppels );
98 algorithme_ponctuel (t - tr , & yd2 , nbAppels );
99 *yd = yd1 * (1. - ALPHA / MAJOR * (2. * yg + yd2)) - (dtyg

+ ALPHA * yg * yg) / MAJOR;
100 return ;
101 }
102
103 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
104 {
105 double yg , yd , day , d0y;
106 long nbAppels ;
107
108 nbAppels = 0;
109 RK4interp (TF , & yg , NULL);
110 algorithme_ponctuel_avec_sensis (TF , & yd , & day , & d0y , &

nbAppels );
111
112 setCoordonneeRes ( indiceCoordonneeRes (1) , yg);
113 setCoordonneeRes ( indiceCoordonneeRes (2) , yd);
114 setCoordonneeRes ( indiceCoordonneeRes (3) , day);
115 setCoordonneeRes ( indiceCoordonneeRes (4) , d0y);
116 setCoordonneeRes ( indiceCoordonneeRes (5) , nbAppels );
117 enregistrerRealisation ();
118 }
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D.3 Calcul de f (~c; t) dans la situation du mode
BKW

Le problème physique à l’étude est celui du chapitre 5. Les fichiers algorithmes
détaillés ici calculent soit :
— f(~c; t), pour ~c et t spécifiés,
— la fraction des particules (c’est-à-dire de la masse) dont la vitesse dépasse un

seuil c0 à un instant t, pour c0 et t spécifiés.
La distribution est connue en t = td = 6 ln 5/2, et égalise celle du mode BKW
décrite au chapitre 5.1.2.

Ces fichiers sont prévus pour être compilés avec l’environnement MCM, expliqué
à la page 277 ; d’où la ligne #include "mcmGT2.h" présente en tête de tous ces
fichiers.

Lors de la compilation de ces codes, les valeurs de t− td, et cx ou c0 doivent
être fournies au travers des macros DELTAT, POS, et C0 respectivement.

Fichier vector.h (inclut par le biais de mcmGT2.h) :
1 /* ************************************** */
2 /* Repris depuis le code source de PBRT */
3 /* ************************************** */
4
5 /*
6 pbrt source code Copyright (c) 1998 -2010 Matt Pharr and

Greg Humphreys .
7 pbrt is free software ; you can redistribute it and/or

modify it under the terms of the GNU General Public
License as published by the Free Software Foundation ;

either version 2 of the License , or (at your option )
any later version . Note that the text contents of

the book " Physically Based Rendering " are *not*
licensed under the GNU GPL.

8 pbrt is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE . See the GNU General Public
License for more details .

9 You should have received a copy of the GNU General
Public License along with this program . If not , see <
http :// www.gnu.org/ licenses />.

10 */
11
12 # ifndef KWVECTOR_H
13 # define KWVECTOR_H
14
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15 # include <math.h>
16
17 class Vector {
18 public :
19 // Vector Public Methods
20 Vector () { x = y = z = 0.f; }
21 Vector ( double xx , double yy , double zz)
22 : x(xx), y(yy), z(zz) { }
23 Vector operator +( const Vector &v) const {
24 return Vector (x + v.x, y + v.y, z + v.z);
25 }
26
27 Vector & operator +=( const Vector &v) {
28 x += v.x; y += v.y; z += v.z;
29 return *this;
30 }
31 Vector operator -( const Vector &v) const {
32 return Vector (x - v.x, y - v.y, z - v.z);
33 }
34
35 Vector & operator -=( const Vector &v) {
36 x -= v.x; y -= v.y; z -= v.z;
37 return *this;
38 }
39 Vector operator *( double f) const { return Vector (f*x, f*

y, f*z); }
40
41 Vector & operator *=( double f) {
42 x *= f; y *= f; z *= f;
43 return *this;
44 }
45 Vector operator /( double f) const {
46 double inv = 1. / f;
47 return Vector (x * inv , y * inv , z * inv);
48 }
49
50 Vector & operator /=( double f) {
51 double inv = 1. / f;
52 x *= inv; y *= inv; z *= inv;
53 return *this;
54 }
55 Vector operator -() const { return Vector (-x, -y, -z); }
56 double operator []( int i) const {
57 return (&x)[i];
58 }
59
60 double & operator []( int i) {
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61 return (&x)[i];
62 }
63 double LengthSquared () const { return x*x + y*y + z*z; }
64 double Length () const { return sqrt ( LengthSquared ()); }
65
66 bool operator ==( const Vector &v) const {
67 return x == v.x && y == v.y && z == v.z;
68 }
69 bool operator !=( const Vector &v) const {
70 return x != v.x || y != v.y || z != v.z;
71 }
72
73 // Vector Public Data
74 double x, y, z;
75 };
76
77 inline Vector operator *( float f, const Vector &v) { return v

*f; }
78 inline Vector Normalize (const Vector &v) { return v / v.

Length (); }
79 inline double Dot(const Vector &v1 , const Vector &v2) {

return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; }
80
81 void tirageGaussien2D ( double r1 , double r2 , double * rn1 ,

double * rn2);
82 Vector UniformSampleSphere ( double u1 , double u2);
83
84 #endif // KWVECTOR_H

Fichier vector.cpp (contient des routines utilisées par les algorithmes) :

1 # include " vector .h"
2
3 void tirageGaussien2D ( double r1 , double r2 , double * rn1 ,

double * rn2)
4 {
5 double r, theta , sx , sy;
6
7 // On commence par injecter continuement et en preservant

les surfaces le carre standard sur le disque unite ...
8 sx = 2. * r1 - 1.;
9 sy = 2. * r2 - 1.;

10 if (sx == 0. && sy == 0.) {
11 if (rn1) *rn1 = 0.;
12 if (rn2) *rn2 = 0.;
13 return ;
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14 }
15 if (sx >= -sy) {
16 if (sx > sy) {
17 r = sx;
18 theta = sy / r;
19 }
20 else {
21 r = sy;
22 theta = 2. - sx / r;
23 }
24 }
25 else {
26 if (sx <= sy) {
27 r = - sx;
28 theta = 4. - sy / r;
29 }
30 else {
31 r = - sy;
32 theta = - 2. + sx / r;
33 }
34 }
35 theta *= M_PI / 4.;
36 // ... puis on utilise la methode de Box - Muller .
37 r = sqrt (- 2. * log (1. - r * r));
38 if (rn1) *rn1 = r * cos (theta);
39 if (rn2) *rn2 = r * sin (theta);
40 }
41
42 Vector UniformSampleSphere ( double u1 , double u2)
43 {
44 double z = 1. - 2. * u1;
45 double r = sqrt (1. - z * z);
46 double phi = 2. * M_PI * u2;
47 double x = r * cos (phi);
48 double y = r * sin (phi);
49 return Vector (x, y, z);
50 }

Fichier algo1.cpp (code l’algorithme 5.1) :
1 # include " mcmGT2 .h"
2 # include <math.h>
3
4 InfosMontageAlgo Mon_algorithme :: giveDims () {
5
6 InfosMontageAlgo infosMontage ;
7
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8 infosMontage . nb_Grandeurs_RDR = 2;
9 infosMontage . nb_Parametres_RDR = 0;

10 infosMontage . pile_active = 0;
11 infosMontage . nb_Coordonnees_PDR = 2;
12 infosMontage . valeurDeBaseResume = 0.;
13 infosMontage . valeurDeBasePile = 0.;
14
15 return ( infosMontage );
16 }
17
18 # define T0 (( double ) 5.497744391)
19
20 double distribution_initiale ( const Vector & c)
21 {
22 double c2n;
23
24 c2n = c. LengthSquared ();
25 return (exp (- 5. / 6. * c2n) * c2n * (25. / (54. * M_PI *

sqrt (6. * M_PI / 5.))));
26 }
27
28 void Mon_algorithme :: algorithme_ponctuel ( double t, const

Vector & c, double * f, long * nbAppels )
29 {
30 Vector c2 , omega , cm , c3 , c4;
31 double dv , f3 , f4;
32
33 (* nbAppels ) ++;
34 t += log ( mcmRng ());
35
36 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
37 if (t <= T0) {
38 *f = distribution_initiale (c);
39 return ;
40 }
41
42 // Sinon , on choisit des vitesses entrantes .
43 // D’abord , on tire une vitesse sortante selon une

distribution maxwellienne de vitesse projetee moyenne
quadratique unite.

44 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.x, &c2.y);
45 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.z, NULL);
46 // Ensuite , on tire une direction entrante .
47 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
48 // Ensuite on calcule les directions entrantes

correspondantes .
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49 cm = .5 * (c + c2);
50 dv = .5 * (c - c2). Length ();
51 c3 = cm + dv * omega;
52 c4 = cm - dv * omega;
53
54 // Calcul du terme source
55 algorithme_ponctuel (t, c3 , &f3 , nbAppels );
56 algorithme_ponctuel (t, c4 , &f4 , nbAppels );
57 *f = f3 * f4 * 15.74960995 /* (2* pi)^1.5 */ * exp (.5 * c2

. LengthSquared ());
58 }
59
60 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
61 {
62 double f;
63 long nbAppels ;
64
65 nbAppels = 0;
66 algorithme_ponctuel (T0 + DELTAT , Vector (POS , 0., 0.) , &

f, & nbAppels );
67
68 setCoordonneeRes ( indiceCoordonneeRes (1) , f);
69 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
70 enregistrerRealisation ();
71 }

Fichier algo1-queue.cpp (code l’algorithme 5.2) :
1 # include " mcmGT2 .h"
2 # include <math.h>
3
4 InfosMontageAlgo Mon_algorithme :: giveDims () {
5
6 InfosMontageAlgo infosMontage ;
7
8 infosMontage . nb_Grandeurs_RDR = 2;
9 infosMontage . nb_Parametres_RDR = 0;

10 infosMontage . pile_active = 0;
11 infosMontage . nb_Coordonnees_PDR = 2;
12 infosMontage . valeurDeBaseResume = 0.;
13 infosMontage . valeurDeBasePile = 0.;
14
15 return ( infosMontage );
16 }
17
18 # define T0 (( double ) 5.497744391)
19
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20 double distribution_initiale ( const Vector & c)
21 {
22 double c2n;
23
24 c2n = c. LengthSquared ();
25 return (exp (- 5. / 6. * c2n) * c2n * (25. / (54. * M_PI *

sqrt (6. * M_PI / 5.))));
26 }
27
28 void Mon_algorithme :: algorithme_ponctuel ( double t, const

Vector & c, double * f, long * nbAppels )
29 {
30 Vector c2 , omega , cm , c3 , c4;
31 double dv , f3 , f4;
32
33 (* nbAppels ) ++;
34 t += log ( mcmRng ());
35
36 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
37 if (t <= T0) {
38 *f = distribution_initiale (c);
39 return ;
40 }
41
42 // Sinon , on choisit des vitesses entrantes .
43 // D’abord , on tire une vitesse sortante selon une

distribution maxwellienne de vitesse projetee moyenne
quadratique unite.

44 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.x, &c2.y);
45 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.z, NULL);
46 // Ensuite , on tire une direction entrante .
47 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
48 // Ensuite on calcule les directions entrantes

correspondantes .
49 cm = .5 * (c + c2);
50 dv = .5 * (c - c2). Length ();
51 c3 = cm + dv * omega;
52 c4 = cm - dv * omega;
53
54 // Calcul du terme source
55 algorithme_ponctuel (t, c3 , &f3 , nbAppels );
56 algorithme_ponctuel (t, c4 , &f4 , nbAppels );
57 *f = f3 * f4 * 15.74960995 /* (2* pi)^1.5 */ * exp (.5 * c2

. LengthSquared ());
58 }
59
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60 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
61 {
62 double f, norminit , tirage ;
63 long nbAppels ;
64
65 tirage = mcmRng ();
66 norminit = C0 > 2. ? C0 * (1. + ((1. / tirage ) - 1.) * (1.

/ (C0 * C0 - 2.))) : 2. * (1. / tirage - 1.) + C0;
67 Vector cinit ( norminit * UniformSampleSphere ( mcmRng (),

mcmRng ()));
68
69 nbAppels = 0;
70 algorithme_ponctuel (T0 + DELTAT , cinit , & f, & nbAppels );
71 f *= C0 > 2. ? (4 * M_PI * C0 / (C0 * C0 - 2.) * norminit

* norminit ) / ( tirage * tirage ) : 8. * M_PI * norminit
* norminit / ( tirage * tirage );

72
73 setCoordonneeRes ( indiceCoordonneeRes (1) , f);
74 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
75 enregistrerRealisation ();
76 }

Fichier algo2.cpp (code l’algorithme 5.3) :
1 # include " mcmGT2 .h"
2 # include <math.h>
3
4 InfosMontageAlgo Mon_algorithme :: giveDims () {
5
6 InfosMontageAlgo infosMontage ;
7
8 infosMontage . nb_Grandeurs_RDR = 2;
9 infosMontage . nb_Parametres_RDR = 0;

10 infosMontage . pile_active = 0;
11 infosMontage . nb_Coordonnees_PDR = 2;
12 infosMontage . valeurDeBaseResume = 0.;
13 infosMontage . valeurDeBasePile = 0.;
14
15 return ( infosMontage );
16 }
17
18 # define T0 (( double ) 5.497744391)
19 # define PALIER1 (T0 + 1.2)
20 # define PALIER2 (T0 + 2.5)
21 # define PALIER3 (T0 + 4.0)
22
23 double distribution_initiale ( const Vector & c)
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24 {
25 double c2n;
26
27 c2n = c. LengthSquared ();
28 return (exp (- 5. / 6. * c2n) * c2n * (25. / (54. * M_PI *

sqrt (6. * M_PI / 5.))));
29 }
30
31 void Mon_algorithme :: algorithme_ponctuel ( double t, const

Vector & c, double * f, long * nbAppels )
32 {
33 Vector c2 , omega , cm , c3 , c4;
34 double trecul , dv , f3 , f4 , f1;
35 int tirages , itirage ;
36
37 (* nbAppels ) ++;
38 trecul = log ( mcmRng ());
39
40 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
41 if (t + trecul <= T0) {
42 *f = distribution_initiale (c);
43 return ;
44 }
45
46 // Tests : si on franchit un des paliers , on multiplie les

chemins suivis pour moyenner leur contribution
47 if ((t > PALIER1 ) && (t + trecul <= PALIER1 )) tirages = 9;
48 else if ((t > PALIER2 ) && (t + trecul <= PALIER2 )) tirages

= 4;
49 else if ((t > PALIER3 ) && (t + trecul <= PALIER3 )) tirages

= 4;
50 else tirages = 1;
51
52 for ( itirage = 0, f1 = 0.; itirage < tirages ; itirage ++)

{
53 // On choisit des vitesses entrantes .
54 // D’abord , on tire une vitesse sortante selon une

distribution maxwellienne de vitesse projetee moyenne
quadratique unite.

55 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.x, &c2.y);
56 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.z, NULL);
57 // Ensuite , on tire une direction entrante .
58 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
59 // Ensuite on calcule les directions entrantes

correspondantes .
60 cm = .5 * (c + c2);
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61 dv = .5 * (c - c2). Length ();
62 c3 = cm + dv * omega;
63 c4 = cm - dv * omega;
64 // Calcul du terme source
65 algorithme_ponctuel (t + trecul , c3 , &f3 , nbAppels );
66 algorithme_ponctuel (t + trecul , c4 , &f4 , nbAppels );
67 f1 += f3 * f4 * 15.74960995 /* (2* pi)^1.5 */ * exp (.5 *

c2. LengthSquared ());
68 }
69 *f = f1 / tirages ;
70 }
71
72 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
73 {
74 double f;
75 long nbAppels ;
76
77 nbAppels = 0;
78 algorithme_ponctuel (T0 + DELTAT , Vector (POS , 0., 0.) , &

f, & nbAppels );
79
80 setCoordonneeRes ( indiceCoordonneeRes (1) , f);
81 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
82 enregistrerRealisation ();
83 }

Fichier algo2-queue.cpp (algorithme calculant des fractions de la masse
au-delà d’une certaine vitesse, sur le modèle de l’algorithme 5.2, mais
en estimant f(~c; t) grâce à l’algorithme 5.3) :

1 # include " mcmGT2 .h"
2 # include <math.h>
3
4 InfosMontageAlgo Mon_algorithme :: giveDims () {
5
6 InfosMontageAlgo infosMontage ;
7
8 infosMontage . nb_Grandeurs_RDR = 2;
9 infosMontage . nb_Parametres_RDR = 0;

10 infosMontage . pile_active = 0;
11 infosMontage . nb_Coordonnees_PDR = 2;
12 infosMontage . valeurDeBaseResume = 0.;
13 infosMontage . valeurDeBasePile = 0.;
14
15 return ( infosMontage );
16 }
17
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18 # define T0 (( double ) 5.497744391)
19 # define PALIER1 (T0 + 1.2)
20 # define PALIER2 (T0 + 2.5)
21 # define PALIER3 (T0 + 4.0)
22
23 double distribution_initiale ( const Vector & c)
24 {
25 double c2n;
26
27 c2n = c. LengthSquared ();
28 return (exp (- 5. / 6. * c2n) * c2n * (25. / (54. * M_PI *

sqrt (6. * M_PI / 5.))));
29 }
30
31 void Mon_algorithme :: algorithme_ponctuel ( double t, const

Vector & c, double * f, long * nbAppels )
32 {
33 Vector c2 , omega , cm , c3 , c4;
34 double trecul , dv , f3 , f4 , f1;
35 int tirages , itirage ;
36
37 (* nbAppels ) ++;
38 trecul = log ( mcmRng ());
39
40 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
41 if (t + trecul <= T0) {
42 *f = distribution_initiale (c);
43 return ;
44 }
45
46 // Tests : si on franchit un des paliers , on multiplie les

chemins suivis pour moyenner leur contribution
47 if ((t > PALIER1 ) && (t + trecul <= PALIER1 )) tirages = 9;
48 else if ((t > PALIER2 ) && (t + trecul <= PALIER2 )) tirages

= 4;
49 else if ((t > PALIER3 ) && (t + trecul <= PALIER3 )) tirages

= 4;
50 else tirages = 1;
51
52 for ( itirage = 0, f1 = 0.; itirage < tirages ; itirage ++)

{
53 // On choisit des vitesses entrantes .
54 // D’abord , on tire une vitesse sortante selon une

distribution maxwellienne de vitesse projetee moyenne
quadratique unite.

55 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.x, &c2.y);
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56 tirageGaussien2D ( mcmRng (), mcmRng (), &c2.z, NULL);
57 // Ensuite , on tire une direction entrante .
58 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
59 // Ensuite on calcule les directions entrantes

correspondantes .
60 cm = .5 * (c + c2);
61 dv = .5 * (c - c2). Length ();
62 c3 = cm + dv * omega;
63 c4 = cm - dv * omega;
64 // Calcul du terme source
65 algorithme_ponctuel (t + trecul , c3 , &f3 , nbAppels );
66 algorithme_ponctuel (t + trecul , c4 , &f4 , nbAppels );
67 f1 += f3 * f4 * 15.74960995 /* (2* pi)^1.5 */ * exp (.5 *

c2. LengthSquared ());
68 }
69 *f = f1 / tirages ;
70 }
71
72 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
73 {
74 double f, norminit , tirage ;
75 long nbAppels ;
76
77 tirage = mcmRng ();
78 norminit = C0 > 2. ? C0 * (1. + ((1. / tirage ) - 1.) * (1.

/ (C0 * C0 - 2.))) : 2. * (1. / tirage - 1.) + C0;
79 Vector cinit ( norminit * UniformSampleSphere ( mcmRng (),

mcmRng ()));
80
81 nbAppels = 0;
82 algorithme_ponctuel (T0 + DELTAT , cinit , & f, & nbAppels );
83 f *= C0 > 2. ? (4 * M_PI * C0 / (C0 * C0 - 2.) * norminit

* norminit ) / ( tirage * tirage ) : 8. * M_PI * norminit
* norminit / ( tirage * tirage );

84
85 setCoordonneeRes ( indiceCoordonneeRes (1) , f);
86 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
87 enregistrerRealisation ();
88 }

D.4 Calcul de f (~r;~c; t) dans la situation de
confinement harmonique

Le problème physique à l’étude est celui du chapitre 6. Les fichiers algorithmes
détaillés ici calculent soit :
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— f(~r;~c; t), pour ~r, ~c et t spécifiés,
— η(~r; t), pour ~r et t spécifiés,
— la fraction des particules (c’est-à-dire de la masse) dont la distance à l’origine

dépasse un seuil r0 à un instant t, pour r0 et t spécifiés.
La distribution est connue en t = 0, et égalise celle décrite au chapitre 6.1.

Les calculs sont divisés entre plusieurs fichiers :
— Les fichiers algoN.cpp où N ∈ [[1; 6]] implémentent chacun une façon différente

d’estimer f(~r;~c; t), estimation à la base de tout les calculs effectués.
— Les fichiers algo-X.cpp où X ∈ {f; dens; GR} effectuent si nécessaire l’inté-

gration finale de f dans l’espace des phases.
— Les fichiers approximateurs0.cpp et approximateurs1.cpp contiennent

chacun un jeu d’approximations des grandeurs macroscopiques, utilisées dans
les procédures d’estimations de f(~r;~c; t). Le fichier approximateurs0.cpp
fournit les grandeurs exactes, ce qui amène presque tous les algorithmes
d’estimation de f à la variance nulle. Le fichier approximateurs1.cpp fournit
les approximations détaillées au chapitre 6.2.3.

Conformément à ce qui est détaillé au chapitre 6.1, les paramètres n, ω, et
cqm max sont fixés d’emblée respectivement à 1 mol, 2πHz, et 1 m/s. Les paramètres
adimentionnels cqm min

cqm max
, nκω2

cqm max3 , et φ0 doivent par contre être fournis par l’utilisateur
lors de la compilation, au travers des macros PI1, PI2 et PHI0 respectivement. Il
en va de même pour les paramètres du lieu de la mesure : t doit être fourni au
travers de TFIN en secondes, r0 (si nécessaire) au travers de R0 en mètres, et ~r et ~c
(si nécessaires) au travers de POS en unités SI.

Ces fichiers sont prévus pour être compilés avec l’environnement MCM, expliqué
à la page 277 ; d’où la ligne #include "mcmGT2.h" présente en tête de tous ces
fichiers.

Fichier vector.h (inclut par le biais de mcmGT2.h) : voir la section précédente
D.3

Fichier vector.cpp (contient des routines utilisées par les algorithmes) :
voir la section précédente D.3

Fichier params.h (contient les déclarations des paramètres physiques et
des approximations) :

1 # ifndef PARAMS_H
2 # define PARAMS_H
3
4 # include <math.h>
5 # define OMEGA (2. * M_PI)
6 # define VMIN (( double ) PI1)
7 # define KAPPA ((( double ) PI2) / (OMEGA * OMEGA))
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8 # define NMAX (OMEGA * OMEGA * OMEGA / (15.74960995 /* (2* pi)
^(3/2) */ * VMIN * VMIN * VMIN))

9 # define NEST (1. * NMAX)
10
11 # include " vector .h"
12 double distrib_exacte (const Vector & pos , const Vector &

vit , double t);
13 double distrib_approx (const Vector & pos , const Vector &

vit , double t);
14 double vitQCM_approx ( double t);
15 Vector vitM_approx (const Vector & pos , double t);
16 double dens_approx ( const Vector & pos , double t);
17
18 #endif

Fichier approximateurs0.cpp (fournit les grandeurs macroscopiques, exactes) :

1 # include <math.h>
2 # include " vector .h"
3 # include " params .h"
4
5 double distrib_exacte (const Vector & pos , const Vector &

vit , double t)
6 {
7 double sint , cost;
8
9 sint = sin (2. * (OMEGA * t + PHI0));

10 cost = cos (2. * (OMEGA * t + PHI0));
11 return ((( OMEGA * OMEGA * OMEGA) / (8. * M_PI * M_PI *

M_PI * VMIN * VMIN * VMIN)) * exp (- (((1. / (VMIN *
VMIN)) + 1.) * .25 - ((1. / (VMIN * VMIN)) - 1.) * .25
* sint) * (OMEGA * OMEGA) * pos. LengthSquared () + ((1.

/ (VMIN * VMIN)) - 1.) * .5 * OMEGA * cost * Dot (pos ,
vit) - (((1. / (VMIN * VMIN)) + 1.) * .25 + ((1. / (

VMIN * VMIN)) - 1.) * .25 * sint) * vit. LengthSquared
()));

12 }
13
14 double distrib_approx (const Vector & pos , const Vector &

vit , double t)
15 {
16 return ( distrib_exacte (pos , vit , t));
17 }
18
19 double vitQCM_approx ( double t)
20 {
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21 return (1. / sqrt (((1. / (VMIN * VMIN)) + 1.) * .5 + ((1.
/ (VMIN * VMIN)) - 1.) * .5 * sin (2. * (OMEGA * t +

PHI0))));
22 }
23
24 Vector vitM_approx (const Vector & pos , double t)
25 {
26 double fact;
27
28 fact = ((1. - VMIN * VMIN) * cos (2. * (OMEGA * t + PHI0))

) / ((1. + VMIN * VMIN) + (1. - VMIN * VMIN) * sin (2.
* (OMEGA * t + PHI0)));

29 return (fact * OMEGA * pos);
30 }
31
32 double dens_approx ( const Vector & pos , double t)
33 {
34 double vittmp ;
35
36 vittmp = 1. + VMIN * VMIN + (1. - VMIN * VMIN) * sin (2. *

(OMEGA * t + PHI0));
37 return (( OMEGA * OMEGA * OMEGA) / 5.568327997 / ( vittmp *

sqrt ( vittmp )) * exp (- OMEGA * OMEGA * pos.
LengthSquared () / vittmp ));

38 }

Fichier approximateurs1.cpp (fournit les grandeurs macroscopiques, ap-
proximées) :

1 # include <math.h>
2 # include " vector .h"
3 # include " params .h"
4
5 double distrib_exacte (const Vector & pos , const Vector &

vit , double t)
6 {
7 double sint , cost;
8
9 sint = sin (2. * (OMEGA * t + PHI0));

10 cost = cos (2. * (OMEGA * t + PHI0));
11 return ((( OMEGA * OMEGA * OMEGA) / (8. * M_PI * M_PI *

M_PI * VMIN * VMIN * VMIN)) * exp (- (((1. / (VMIN *
VMIN)) + 1.) * .25 - ((1. / (VMIN * VMIN)) - 1.) * .25
* sint) * (OMEGA * OMEGA) * pos. LengthSquared () + ((1.

/ (VMIN * VMIN)) - 1.) * .5 * OMEGA * cost * Dot (pos ,
vit) - (((1. / (VMIN * VMIN)) + 1.) * .25 + ((1. / (

VMIN * VMIN)) - 1.) * .25 * sint) * vit. LengthSquared
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()));
12 }
13
14 double distrib_approx (const Vector & pos , const Vector &

vit , double t)
15 {
16 return ((( OMEGA * OMEGA * OMEGA) / (M_PI * M_PI * M_PI *

(1. + VMIN * VMIN) * (1. + VMIN * VMIN) * (1. + VMIN *
VMIN))) * exp (- 1. / (1. + VMIN * VMIN) * (OMEGA *
OMEGA) * pos. LengthSquared () - 1. / (1. + VMIN * VMIN)

* vit. LengthSquared ()));
17 }
18
19 double vitQCM_approx ( double t)
20 {
21 return (sqrt (.5 * (1. + VMIN * VMIN)));
22 }
23
24 Vector vitM_approx (const Vector & pos , double t)
25 {
26 return ( Vector (0., 0., 0.));
27 }
28
29 double dens_approx ( const Vector & pos , double t)
30 {
31 return (( OMEGA * OMEGA * OMEGA) / 5.568327997 /* pi ^(3/2)

*/ / ((1. + VMIN * VMIN) * sqrt (1. + VMIN * VMIN)) *
exp (- OMEGA * OMEGA * pos. LengthSquared () / (1. +
VMIN * VMIN)));

32 }

Fichier algo-f.cpp (permet le calcul de f en un point quelconque de
l’espace des phases) :

1 # include " mcmGT2 .h"
2 # include " vector .h"
3
4 InfosMontageAlgo Mon_algorithme :: giveDims () {
5
6 InfosMontageAlgo infosMontage ;
7
8 infosMontage . nb_Grandeurs_RDR = 2;
9 infosMontage . nb_Parametres_RDR = 0;

10 infosMontage . pile_active = 0;
11 infosMontage . nb_Coordonnees_PDR = 2;
12 infosMontage . valeurDeBaseResume = 0.;
13 infosMontage . valeurDeBasePile = 0.;
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14
15 return ( infosMontage );
16 }
17
18
19 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
20 {
21 double f;
22 long nbAppels ;
23
24 nbAppels = 0;
25
26 algorithme_ponctuel (POS , TFIN , & f, & nbAppels );
27
28 setCoordonneeRes ( indiceCoordonneeRes (1) , f);
29 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
30 enregistrerRealisation ();
31 }

Fichier algo-dens.cpp (permet le calcul de η en un point quelconque de
l’espace usuel) :

1 # include " mcmGT2 .h"
2 # include " vector .h"
3 # include <math.h>
4 # include " params .h"
5
6 InfosMontageAlgo Mon_algorithme :: giveDims () {
7
8 InfosMontageAlgo infosMontage ;
9

10 infosMontage . nb_Grandeurs_RDR = 2;
11 infosMontage . nb_Parametres_RDR = 0;
12 infosMontage . pile_active = 0;
13 infosMontage . nb_Coordonnees_PDR = 2;
14 infosMontage . valeurDeBaseResume = 0.;
15 infosMontage . valeurDeBasePile = 0.;
16
17 return ( infosMontage );
18 }
19
20
21 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
22 {
23 double f, vitQCMdep ;
24 Vector posDep , vitN , vitDep ;
25 long nbAppels ;
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26
27 nbAppels = 0;
28
29 // choix d’une direction d’arrivee
30 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y);
31 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
32 vitQCMdep = vitQCM_approx (TFIN);
33 vitDep = vitQCMdep * vitN;
34 vitDep += vitM_approx (POS , TFIN);
35
36 // lancement du calcul
37 algorithme_ponctuel (POS , vitDep , TFIN , & f, & nbAppels );
38 // correction par les probas de tirage
39 f *= 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMdep * vitQCMdep

* vitQCMdep ) * exp (.5 * vitN. LengthSquared ());
40
41 setCoordonneeRes ( indiceCoordonneeRes (1) , f);
42 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
43 enregistrerRealisation ();
44 }

Fichier algo-GR.cpp (permet le calcul de la fraction des particules éloi-
gnées de l’origine des positions) :

1 # include " mcmGT2 .h"
2 # include " vector .h"
3 # include <math.h>
4
5 InfosMontageAlgo Mon_algorithme :: giveDims () {
6
7 InfosMontageAlgo infosMontage ;
8
9 infosMontage . nb_Grandeurs_RDR = 2;

10 infosMontage . nb_Parametres_RDR = 0;
11 infosMontage . pile_active = 0;
12 infosMontage . nb_Coordonnees_PDR = 2;
13 infosMontage . valeurDeBaseResume = 0.;
14 infosMontage . valeurDeBasePile = 0.;
15
16 return ( infosMontage );
17 }
18
19
20 void Mon_algorithme :: calculUnique () // FONCTION ALGORITHME
21 {
22 double tirage , normPos , f, vitQCMdep ;
23 Vector posDep , vitN , vitDep ;
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24 long nbAppels ;
25
26 nbAppels = 0;
27
28 // choix d’un point d’arrivee
29 tirage = mcmRng ();
30 normPos = R0 > 2. ? R0 * (1. + ((1. / tirage ) - 1.) * (1.

/ (R0 * R0 - 2.))) : 2. * (1. / tirage - 1.) + R0;
31 posDep = normPos * UniformSampleSphere ( mcmRng (), mcmRng

());
32
33 // choix d’une direction d’arrivee
34 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y);
35 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
36 vitQCMdep = vitQCM_approx (TFIN);
37 vitDep = vitQCMdep * vitN;
38 vitDep += vitM_approx (posDep , TFIN);
39
40 // lancement du calcul
41 algorithme_ponctuel (posDep , vitDep , TFIN , & f, & nbAppels

);
42 // correction par les probas de tirage
43 f *= (R0 > 2. ? (4 * M_PI * R0 / (R0 * R0 - 2.) * normPos

* normPos ) / ( tirage * tirage ) : 8. * M_PI * normPos *
normPos / ( tirage * tirage )) * (15.74960995 /* (2* pi)
^1.5 */ * ( vitQCMdep * vitQCMdep * vitQCMdep ) * exp (.5

* vitN. LengthSquared ()));
44
45 setCoordonneeRes ( indiceCoordonneeRes (1) , f);
46 setCoordonneeRes ( indiceCoordonneeRes (2) , nbAppels );
47 enregistrerRealisation ();
48 }

Fichier algo1.cpp (code l’algorithme 6.1) :

1 # include " mcmGT2 .h"
2 # include " vector .h"
3 # include <math.h>
4 # include " params .h"
5
6 void Mon_algorithme :: algorithme_ponctuel (const Vector & pos

, const Vector & vit , double t, double * f, long *
nbAppels )

7 {
8 Vector A, B, posC , vitC , vitN , vit1 , omega , vit2 , vit3 ,

vitm;
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9 double tvol , sint , cost , f1 , f2 , f3 , f4 , vitQCMtc , dvit ,
finv;

10
11 (* nbAppels ) ++;
12
13 // On commence par choisir un temps de vol.
14 tvol = - log ( mcmRng ()) / (KAPPA * NEST);
15
16 // Et on calcule les parametres de trajectoire du vol.
17 sint = sin (OMEGA * t);
18 cost = cos (OMEGA * t);
19 A = cost * pos - (sint / OMEGA) * vit;
20 B = sint * pos + (cost / OMEGA) * vit;
21
22 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
23 if (tvol >= t) {
24 *f = distrib_exacte (A, OMEGA * B, 0.);
25 return ;
26 }
27
28 // Sinon , on retrouve la position de depart de la

particule .
29 sint = sin (OMEGA * (t - tvol));
30 cost = cos (OMEGA * (t - tvol));
31 posC = cost * A + sint * B;
32 vitC = - OMEGA * sint * A + OMEGA * cost * B;
33
34 // On choisit une partenaire de collision .
35 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y);
36 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
37 vitQCMtc = vitQCM_approx (t - tvol);
38 vit1 = vitQCMtc * vitN;
39 vit1 += vitM_approx (posC , t - tvol);
40
41 // On va chercher recursivement la fonction de

distribution .
42 algorithme_ponctuel (posC , vit1 , t - tvol , &f1 , nbAppels );
43 algorithme_ponctuel (posC , vitC , t - tvol , &f2 , nbAppels );
44
45 // On calcule des directions entrantes .
46 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
47 vitm = .5 * (vitC + vit1);
48 dvit = .5 * (vitC - vit1). Length ();
49 vit2 = vitm + dvit * omega;
50 vit3 = vitm - dvit * omega;
51
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52 // On va chercher recursivement la fonction de
distribution .

53 algorithme_ponctuel (posC , vit2 , t - tvol , &f3 , nbAppels );
54 algorithme_ponctuel (posC , vit3 , t - tvol , &f4 , nbAppels );
55 // On calcule un resultat .
56 finv = 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc * vitQCMtc

* vitQCMtc ) * exp (.5 * vitN. LengthSquared ());
57 *f = f2 * (1. - finv * f1 / NEST) + finv * f3 * f4 / NEST;
58 return ;
59 }

Fichier algo2.cpp (code l’algorithme 6.2) :
1 # include " mcmGT2 .h"
2 # include " vector .h"
3 # include <math.h>
4 # include " params .h"
5
6 void Mon_algorithme :: algorithme_ponctuel (const Vector & pos

, const Vector & vit , double t, double * f, long *
nbAppels )

7 {
8 Vector A, B, posC , vitC , vitN , vit1 , omega , vit2 , vit3 ,

vitm;
9 double tvol , sint , cost , f1 , f2 , f3 , f4 , vitQCMtc , dvit ,

finv;
10
11 (* nbAppels ) ++;
12
13 // On commence par choisir un temps de vol.
14 tvol = - log ( mcmRng ()) / (KAPPA * NEST);
15
16 // Et on calcule les parametres de trajectoire du vol.
17 sint = sin (OMEGA * t);
18 cost = cos (OMEGA * t);
19 A = cost * pos - (sint / OMEGA) * vit;
20 B = sint * pos + (cost / OMEGA) * vit;
21
22 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
23 if (tvol >= t) {
24 *f = distrib_exacte (A, OMEGA * B, 0.);
25 return ;
26 }
27
28 // Sinon , on retrouve la position de depart de la

particule .
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29 sint = sin (OMEGA * (t - tvol));
30 cost = cos (OMEGA * (t - tvol));
31 posC = cost * A + sint * B;
32 vitC = - OMEGA * sint * A + OMEGA * cost * B;
33
34 // On choisit une partenaire de collision .
35 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y);
36 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
37 vitQCMtc = vitQCM_approx (t - tvol);
38 vit1 = vitQCMtc * vitN;
39 vit1 += vitM_approx (posC , t - tvol);
40 finv = 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc * vitQCMtc

* vitQCMtc ) * exp (.5 * vitN. LengthSquared ());
41
42 // On va chercher recursivement la fonction de

distribution .
43 algorithme_ponctuel (posC , vit1 , t - tvol , &f1 , nbAppels );
44 algorithme_ponctuel (posC , vitC , t - tvol , &f2 , nbAppels );
45
46 // On calcule des directions entrantes , en considerant une

nouvelle partenaire de collision .
47 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y);
48 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
49 vitQCMtc = vitQCM_approx (t - tvol);
50 vit1 = vitQCMtc * vitN;
51 vit1 += vitM_approx (posC , t - tvol);
52 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
53 vitm = .5 * (vitC + vit1);
54 dvit = .5 * (vitC - vit1). Length ();
55 vit2 = vitm + dvit * omega;
56 vit3 = vitm - dvit * omega;
57
58 // On va chercher recursivement la fonction de

distribution .
59 algorithme_ponctuel (posC , vit2 , t - tvol , &f3 , nbAppels );
60 algorithme_ponctuel (posC , vit3 , t - tvol , &f4 , nbAppels );
61 // On calcule un resultat .
62 *f = f2 * (1. - finv * f1 / NEST) + 15.74960995 /* (2* pi)

^1.5 */ * ( vitQCMtc * vitQCMtc * vitQCMtc ) * exp (.5 *
vitN. LengthSquared ()) * f3 * f4 / NEST;

63 return ;
64 }

Fichier algo3.cpp (code l’algorithme 6.3) :
1 # include " mcmGT2 .h"
2 # include " vector .h"
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3 # include <math.h>
4 # include " params .h"
5
6 void Mon_algorithme :: algorithme_ponctuel (const Vector & pos

, const Vector & vit , double t, double * f, long *
nbAppels )

7 {
8 Vector A, B, posC , vitC , vitN , vit1 , omega , vit2 , vit3 ,

vitm;
9 double tvol , sint , cost , f1 , f2 , vitQCMtc , dvit;

10
11 (* nbAppels ) ++;
12
13 // On commence par choisir un temps de vol.
14 tvol = - log ( mcmRng ()) / (KAPPA * NEST);
15
16 // Et on calcule les parametres de trajectoire du vol.
17 sint = sin (OMEGA * t);
18 cost = cos (OMEGA * t);
19 A = cost * pos - (sint / OMEGA) * vit;
20 B = sint * pos + (cost / OMEGA) * vit;
21
22 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
23 if (tvol >= t) {
24 *f = distrib_exacte (A, OMEGA * B, 0.);
25 return ;
26 }
27
28 // Sinon , on retrouve la position de depart de la

particule .
29 sint = sin (OMEGA * (t - tvol));
30 cost = cos (OMEGA * (t - tvol));
31 posC = cost * A + sint * B;
32 vitC = - OMEGA * sint * A + OMEGA * cost * B;
33
34 // On choisit si la particule a subi une collision ou non.
35 if ( mcmRng () > .5) {
36 // si la collision est annulee
37 // On choisit une partenaire de collision fantome .
38 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y

);
39 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
40 vitQCMtc = vitQCM_approx (t - tvol);
41 vit1 = vitQCMtc * vitN;
42 vit1 += vitM_approx (posC , t - tvol);
43
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44 // On va chercher recursivement la fonction de
distribution .

45 algorithme_ponctuel (posC , vit1 , t - tvol , &f1 , nbAppels
);

46 algorithme_ponctuel (posC , vitC , t - tvol , &f2 , nbAppels
);

47 // On calcule un resultat .
48 *f = 2. * f2 * (1. - 15.74960995 /* (2* pi)^1.5 */ * (

vitQCMtc * vitQCMtc * vitQCMtc ) * exp (.5 * vitN.
LengthSquared ()) * f1 / NEST);

49 return ;
50 }
51 else {
52 // si la collision est confirmee
53 // On calcule des directions entrantes .
54 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y

);
55 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
56 vitQCMtc = vitQCM_approx (t - tvol);
57 vit1 = vitQCMtc * vitN;
58 vit1 += vitM_approx (posC , t - tvol);
59 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
60 vitm = .5 * (vitC + vit1);
61 dvit = .5 * (vitC - vit1). Length ();
62 vit2 = vitm + dvit * omega;
63 vit3 = vitm - dvit * omega;
64
65 // On va chercher recursivement la fonction de

distribution .
66 algorithme_ponctuel (posC , vit2 , t - tvol , &f1 , nbAppels

);
67 algorithme_ponctuel (posC , vit3 , t - tvol , &f2 , nbAppels

);
68 // On calcule un resultat .
69 *f = 2. * 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc *

vitQCMtc * vitQCMtc ) * exp (.5 * vitN. LengthSquared
()) * f1 * f2 / NEST;

70 return ;
71 }
72 }

Fichier algo4.cpp (code l’algorithme 6.4) :
1 # include " mcmGT2 .h"
2 # include " vector .h"
3 # include <math.h>
4 # include " params .h"
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5
6 void Mon_algorithme :: algorithme_ponctuel (const Vector & pos

, const Vector & vit , double t, double * f, long *
nbAppels )

7 {
8 Vector A, B, posC , vitC , vitN , vit1 , vitMtc , omega , vit2 ,

vit3 , vitm;
9 double tvol , sint , cost , finv , f1 , f2 , vitQCMtc , dvit , PCA

, RPN;
10
11 (* nbAppels ) ++;
12
13 // On commence par choisir un temps de vol.
14 tvol = - log ( mcmRng ()) / (KAPPA * NEST);
15
16 // Et on calcule les parametres de trajectoire du vol.
17 sint = sin (OMEGA * t);
18 cost = cos (OMEGA * t);
19 A = cost * pos - (sint / OMEGA) * vit;
20 B = sint * pos + (cost / OMEGA) * vit;
21
22 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
23 if (tvol >= t) {
24 *f = distrib_exacte (A, OMEGA * B, 0.);
25 return ;
26 }
27
28 // Sinon , on retrouve la position de depart de la

particule .
29 sint = sin (OMEGA * (t - tvol));
30 cost = cos (OMEGA * (t - tvol));
31 posC = cost * A + sint * B;
32 vitC = - OMEGA * sint * A + OMEGA * cost * B;
33
34 vitQCMtc = vitQCM_approx (t - tvol);
35 vitMtc = vitM_approx (posC , t - tvol);
36 // Puis on calcule une densite approximative en ce point.
37 f1 = dens_approx (posC , t - tvol);
38 // On en deduit une probabilite de collisionner .
39 finv = 1. / NEST;
40 PCA = f1 / NEST;
41 if (PCA > 1. || PCA < 0.) PCA /= 2. * PCA - 1.;
42
43 // On choisit si la particule a subi une collision ou non.
44 if ( mcmRng () > PCA) {
45 // si la collision est annulee
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46 // On choisit une direction entrante .
47 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y

);
48 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
49 vit1 = vitQCMtc * vitN;
50 vit1 += vitMtc ;
51 // On va chercher recursivement la fonction de

distribution dans la direction entrante d’une
partenaire de collision fantome , pour corriger l’
approximation faite.

52 algorithme_ponctuel (posC , vit1 , t - tvol , &f2 , nbAppels
);

53 RPN = (1. - 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc *
vitQCMtc * vitQCMtc ) * exp (.5 * vitN. LengthSquared
()) * f2 / NEST) / (1. - PCA);

54 // On va chercher recursivement la fonction de
distribution .

55 algorithme_ponctuel (posC , vitC , t - tvol , &f2 , nbAppels
);

56 // On calcule un resultat .
57 *f = RPN * f2 ;
58 return ;
59 }
60 else {
61 // si la collision est confirmee
62 // On calcule des directions entrantes .
63 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y

);
64 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
65 vit1 = vitQCMtc * vitN;
66 vit1 += vitMtc ;
67 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
68 vitm = .5 * (vitC + vit1);
69 dvit = .5 * (vitC - vit1). Length ();
70 vit2 = vitm + dvit * omega;
71 vit3 = vitm - dvit * omega;
72
73 // On va chercher recursivement la fonction de

distribution .
74 algorithme_ponctuel (posC , vit2 , t - tvol , &f1 , nbAppels

);
75 algorithme_ponctuel (posC , vit3 , t - tvol , &f2 , nbAppels

);
76 // On calcule un resultat .
77 *f = 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc * vitQCMtc

* vitQCMtc ) * exp (.5 * vitN. LengthSquared ()) * f1
* f2 / (NEST * PCA);

328



D.4. Calcul de f(~r;~c; t) en confinement harmonique

78 return ;
79 }
80 }

Fichier algo5.cpp (code l’algorithme 6.5) :
1 # include " mcmGT2 .h"
2 # include " vector .h"
3 # include <math.h>
4 # include " params .h"
5
6 void Mon_algorithme :: algorithme_ponctuel (const Vector & pos

, const Vector & vit , double t, double * f, long *
nbAppels )

7 {
8 Vector A, B, posC , vitC , vitN , vit1 , omega , vit2 , vit3 ,

vitm;
9 double tvol , sint , cost , f1 , f2 , f3 , vitQCMtc , dvit , PCE ,

PCA , RPC , RPN;
10
11 (* nbAppels ) ++;
12
13 // On commence par choisir un temps de vol.
14 tvol = - log ( mcmRng ()) / (KAPPA * NEST);
15
16 // Et on calcule les parametres de trajectoire du vol.
17 sint = sin (OMEGA * t);
18 cost = cos (OMEGA * t);
19 A = cost * pos - (sint / OMEGA) * vit;
20 B = sint * pos + (cost / OMEGA) * vit;
21
22 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
23 if (tvol >= t) {
24 *f = distrib_exacte (A, OMEGA * B, 0.);
25 return ;
26 }
27
28 // Sinon , on retrouve la position de depart de la

particule .
29 sint = sin (OMEGA * (t - tvol));
30 cost = cos (OMEGA * (t - tvol));
31 posC = cost * A + sint * B;
32 vitC = - OMEGA * sint * A + OMEGA * cost * B;
33
34 // Puis on choisit une partenaire de collision eventuelle .
35 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y);
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36 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
37 vitQCMtc = vitQCM_approx (t - tvol);
38 vit1 = vitQCMtc * vitN;
39 vit1 += vitM_approx (posC , t - tvol);
40
41 // On va chercher recursivement la fonction de

distribution .
42 algorithme_ponctuel (posC , vit1 , t - tvol , &f1 , nbAppels );
43 // On en deduit une probabilite de collisionner .
44 PCE = 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc * vitQCMtc

* vitQCMtc ) * exp (.5 * vitN. LengthSquared ()) * f1 /
NEST;

45 if (PCE > 1. || PCE < 0.) {
46 PCA = PCE / (2. * PCE - 1.);
47 RPN = 1. - 2. * PCE;
48 RPC = - RPN;
49 }
50 else {
51 PCA = PCE;
52 RPN = 1.;
53 RPC = 1.;
54 }
55
56 // On choisit si la particule a subi une collision ou non.
57 if ( mcmRng () > PCA) {
58 // si la collision est annulee
59 // On va chercher recursivement la fonction de

distribution .
60 algorithme_ponctuel (posC , vitC , t - tvol , &f2 , nbAppels

);
61 // On calcule un resultat .
62 *f = RPN * f2 ;
63 return ;
64 }
65 else {
66 // si la collision est confirmee
67 // On calcule des directions entrantes , ici en

reutilisant la direction de la partenaire de
collision .

68 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
69 vitm = .5 * (vitC + vit1);
70 dvit = .5 * (vitC - vit1). Length ();
71 vit2 = vitm + dvit * omega;
72 vit3 = vitm - dvit * omega;
73
74 // On va chercher recursivement la fonction de

distribution .
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75 algorithme_ponctuel (posC , vit2 , t - tvol , &f2 , nbAppels
);

76 algorithme_ponctuel (posC , vit3 , t - tvol , &f3 , nbAppels
);

77 // On calcule un resultat .
78 *f = RPC * f2 * f3 / f1;
79 return ;
80 }
81 }

Fichier algo6.cpp (code l’algorithme 6.6) :
1 # include " mcmGT2 .h"
2 # include " vector .h"
3 # include <math.h>
4 # include " params .h"
5
6 void Mon_algorithme :: algorithme_ponctuel (const Vector & pos

, const Vector & vit , double t, double * f, long *
nbAppels )

7 {
8 Vector A, B, posC , vitC , vitN , vit1 , vitMtc , omega , vit2 ,

vit3 , vitm;
9 double tvol , sint , cost , f1 , f2 , vitQCMtc , dvit , PCE , PCA ,

RPN;
10
11 (* nbAppels ) ++;
12
13 // On commence par choisir un temps de vol.
14 tvol = - log ( mcmRng ()) / (KAPPA * NEST);
15
16 // Et on calcule les parametres de trajectoire du vol.
17 sint = sin (OMEGA * t);
18 cost = cos (OMEGA * t);
19 A = cost * pos - (sint / OMEGA) * vit;
20 B = sint * pos + (cost / OMEGA) * vit;
21
22 // Si on remonte le temps avant l’instant initial , on

prend en compte la distribution initiale .
23 if (tvol >= t) {
24 *f = distrib_exacte (A, OMEGA * B, 0.);
25 return ;
26 }
27
28 // Sinon , on retrouve la position de depart de la

particule .
29 sint = sin (OMEGA * (t - tvol));
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30 cost = cos (OMEGA * (t - tvol));
31 posC = cost * A + sint * B;
32 vitC = - OMEGA * sint * A + OMEGA * cost * B;
33
34 // Puis on choisit une partenaire de collision eventuelle .
35 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y);
36 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
37 vitQCMtc = vitQCM_approx (t - tvol);
38 vit1 = vitQCMtc * vitN;
39 vitMtc = vitM_approx (posC , t - tvol);
40 vit1 += vitMtc ;
41
42 // On va chercher recursivement la fonction de

distribution .
43 algorithme_ponctuel (posC , vit1 , t - tvol , &f1 , nbAppels );
44 // On en deduit une probabilite de collisionner .
45 PCE = 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc * vitQCMtc

* vitQCMtc ) * exp (.5 * vitN. LengthSquared ()) * f1 /
NEST;

46 if (PCE > 1. || PCE < 0.) {
47 PCA = PCE / (2. * PCE - 1.);
48 RPN = 1. - 2. * PCE;
49 }
50 else {
51 PCA = PCE;
52 RPN = 1.;
53 }
54
55 // On choisit si la particule a subi une collision ou non.
56 if ( mcmRng () > PCA) {
57 // si la collision est annulee
58 // On va chercher recursivement la fonction de

distribution .
59 algorithme_ponctuel (posC , vitC , t - tvol , &f2 , nbAppels

);
60 // On calcule un resultat .
61 *f = RPN * f2 ;
62 return ;
63 }
64 else {
65 // si la collision est confirmee
66 // On calcule des directions entrantes .
67 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.x, &vitN.y

);
68 tirageGaussien2D ( mcmRng (), mcmRng (), &vitN.z, NULL);
69 vit1 = vitQCMtc * vitN;
70 vit1 += vitMtc ;
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71 omega = UniformSampleSphere ( mcmRng (), mcmRng ());
72 vitm = .5 * (vitC + vit1);
73 dvit = .5 * (vitC - vit1). Length ();
74 vit2 = vitm + dvit * omega;
75 vit3 = vitm - dvit * omega;
76
77 // On va chercher recursivement la fonction de

distribution .
78 algorithme_ponctuel (posC , vit2 , t - tvol , &f1 , nbAppels

);
79 algorithme_ponctuel (posC , vit3 , t - tvol , &f2 , nbAppels

);
80 // On calcule un resultat .
81 *f = 15.74960995 /* (2* pi)^1.5 */ * ( vitQCMtc * vitQCMtc

* vitQCMtc ) * exp (.5 * vitN. LengthSquared ()) * f1
* f2 / (NEST * PCA);

82 return ;
83 }
84 }
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Monte-Carlo method and non-linearities :
from radiative transfer physics to gas kinetics

Abstract : In transport physics, especially in radiative transfer physics, the Monte-Carlo method
has been originally developed as the simulation of the history of numerous particles, from which
are deduced mean observables. This numerical method owes its success to several qualities : a
natural management of many-dimensional phase space, a null systematic error away from the
mathematical and physical model, the confidence intervals given with the results, an ability to
take into account simultaneously numerous physical phenomenons, the simultaneous sensitivities
calculating possibility, and an easy parallelization.

In gas kinetics, particles collide each other, not with an external fixed medium ; it is said that
their transport is non-linear. These mutual collisions put out of action the aforesaid approach of the
Monte-Carlo method ; because in order to simulate the independent trajectories of multiple particles
and thus estimate their distribution, this distribution must beforehand be exactly known. . .

This thesis follows on from those of Jérémy Dauchet (2012) and of Mathieu Galtier (2014),
dedicated to radiative transfer physics. Between other works, these authors have shown how
the Monte-Carlo method can bear non-linearities, while keeping its customary formalism and
specificities. The then overcome non-linearities were respectively a chemistry/irradiance coupling
law, and the dependence of the irradiance toward the absorption coefficient. We try in this
manuscript to overcome the non-linearity of the transport. In this aim, our main tools are a reverse
following of particles, based on integral formulations of the transport equations, formulations
largely inspired from the so-called null collisions algorithms.

We show, on several academic examples, that we have indeed extended the Monte Carlo method
to the resolution of the Boltzmann equation. These examples are also occasions to test the limits
of what we have built. The most noteworthy results are certainly the absence of any mesh in
the numerical method, and its capacity to calculate correctly the high-speed particles quantities
(always rare compared to the total, in gas kinetics).

Beyond the given examples, this manuscript is wanted as a formalism attempt and an exploration
of the developed method basics. The focus is made on the reasoning leading to the method, rather
than on particular implementations which have been realized. In the eyes of the author, the method
is still largely reworkable. In particular, the maximal times on which the evolution of particles is
computable, which constitute the main weakness of the developed numerical method, can surely
be increased.

Keywords : Monte-Carlo method, Gas kinetics, Radiative transfer, Boltzmann equation, Non-
linear transport, Integral formulation

Abstract (intended to the general public) : The subject is the extension of a numerical
computing method, named the Monte-Carlo method, from the radiative transfer physics (the study
of heat transfer by the light, or the image synthesis) to the gas kinetics (a gas is thought as an
ensemble of billions of billiard ball which bump into each other). Briefly, it consists in mimicking
the physical phenomenon (the transport of photons or molecules), using a random generator for
choosing the future of particles when they are subjected to an event (for example the encounter of
a wall). In gas kinetics, molecules collide each other, so for evaluating the evolution of each one the
evolution of the others has to be known previously : from where an apparent contradiction. The
author proposes to solve this problem by following the molecules backward in the time, and by
calculating on demand and recursively the past of the collision partners of the followed particles.



Méthode de Monte-Carlo et non-linéarités :
de la physique du transfert radiatif à la cinétique des gaz

Résumé : En physique du transport, en particulier en physique du transfert radiatif, la méthode
de Monte-Carlo a été développée à l’origine comme la simulation de l’histoire d’un grand nombre
de particules, dont on déduit des observables moyennes. Cette méthode numérique doit son succès
à plusieurs qualités : une gestion naturelle des espaces des phases aux nombreuses dimensions,
une erreur systématique nulle par rapport au modèle physico-mathématique, les intervalles de
confiance donnés avec les résultats, une capacité à prendre en compte simultanément de nombreux
phénomènes physiques, la possibilité de calcul de sensibilités simultané, et une parallélisation aisée.

En cinétique des gaz, les particules collisionnent entre elles et non pas avec un milieu extérieur
; on dit que leur transport est non-linéaire. Ces collisions mutuelles mettent en défaut l’approche
évoquée ci-dessus de la méthode de Monte-Carlo ; car pour simuler des trajectoires indépendantes
de multiples particules et ainsi estimer leur distribution, il faut connaître au préalable exactement
cette même distribution. . .

Cette thèse fait suite à celles de Jérémi Dauchet (2012) et de Mathieu Galtier (2014),
consacrées au transfert radiatif. Entre autres travaux, ces auteurs montraient comment la méthode
de Monte-Carlo peut s’accommoder de non-linéarités, en gardant son formalisme et ses spécificités
habituelles. Les non-linéarités alors franchies étaient respectivement une loi de couplage chimie/lu-
minance, et la dépendance de la luminance envers le coefficient d’absorption. On essaie dans ce
manuscrit d’outrepasser la non-linéarité du transport. Pour cela, nos principaux outils sont un
suivi des particules en remontant le temps, basé sur des formulations intégrales des équations de
transport, formulations largement inspirées des algorithmes dits à collisions nulles.

Nous montrons, sur plusieurs exemples académiques, que nous avons en effet étendu la méthode
de Monte-Carlo à la résolution de l’équation de Boltzmann. Ces exemples sont aussi l’occasion
de tester les limites de ce que nous avons mis en place. Les résultats les plus marquants sont
certainement l’absence totale de maillage dans la méthode numérique, ainsi que sa capacité à calculer
correctement les quantités de particules de haute énergie cinétique (toujours peu nombreuses par
rapport au total, en cinétique des gaz).

Au-delà des exemples fournis, ce manuscrit est voulu comme un essai de formalisme et une
exploration des bases de la méthode développée. L’accent est mis sur les raisonnements menant
à la mise au point de la méthode, plutôt que sur les implémentations particulières qui ont été
abouties. La méthode est encore, aux yeux de l’auteur, largement susceptible d’être retravaillée. En
particulier, les temps maximaux sur lesquels l’évolution des particules est calculable, qui constituent
la faiblesse principale de la méthode numérique développée, peuvent sûrement être augmentés.

Mots-clés : Méthode de Monte-Carlo, Cinétique des gaz, Transfert radiatif, Équation de Boltz-
mann, Transport non-linéaire, Formulation intégrale

Résumé (à l’adresse du grand public) : Le sujet est l’extension d’une méthode de calcul
numérique, nommée méthode de Monte-Carlo, depuis la physique du transfert radiatif (l’étude du
transfert de chaleur par la lumière, et aussi la synthèse d’image) vers la cinétique des gaz (on imagine
le gaz comme un ensemble de milliards de boules de billard qui s’entrechoquent). Brièvement, elle
consiste à mimer le phénomène physique (le transport des photons ou des molécules), à l’aide d’un
générateur aléatoire pour choisir le devenir des particules quand elles subissent un événement (par
exemple la rencontre d’une paroi). En cinétique des gaz, les molécules collisionnent entre elles,
donc pour calculer l’évolution de chacune il faut connaître au préalable celle des autres : d’où une
apparente contradiction. L’auteur propose de résoudre ce problème en suivant les molécules en
remontant le temps, et en calculant à la demande et récursivement le passé des partenaires de
collision des particules suivies.
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